WO2024012593A1 - 用于近视理疗的红光照射控制方法及其相关产品 - Google Patents

用于近视理疗的红光照射控制方法及其相关产品 Download PDF

Info

Publication number
WO2024012593A1
WO2024012593A1 PCT/CN2023/107768 CN2023107768W WO2024012593A1 WO 2024012593 A1 WO2024012593 A1 WO 2024012593A1 CN 2023107768 W CN2023107768 W CN 2023107768W WO 2024012593 A1 WO2024012593 A1 WO 2024012593A1
Authority
WO
WIPO (PCT)
Prior art keywords
red light
light irradiation
pupil
user
power
Prior art date
Application number
PCT/CN2023/107768
Other languages
English (en)
French (fr)
Inventor
和超
常献刚
卢鹏
李达
任文斌
姜欣
李春
Original Assignee
北京鹰瞳科技发展股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京鹰瞳科技发展股份有限公司 filed Critical 北京鹰瞳科技发展股份有限公司
Publication of WO2024012593A1 publication Critical patent/WO2024012593A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/197Matching; Classification
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0626Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0642Irradiating part of the body at a certain distance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0662Visible light
    • A61N2005/0663Coloured light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present invention relates generally to the field of optics. More specifically, the present invention relates to a red light irradiation control method, device, equipment and computer-readable storage medium for myopia physiotherapy.
  • a low-intensity red light device that illuminates the fundus can be used to irradiate a low-energy red laser to the macular area, thereby accurately simulating the beneficial rays of the sun.
  • red light irradiation the blood circulation of the fundus can be improved, the retinal pigment epithelial cells can be promoted to secrete dopamine, and the thinned choroid can be restored to normal.
  • red light irradiation as mentioned above is effective in preventing, controlling and correcting myopia
  • the unified red light irradiation operation often results in the user's actual red light
  • the power irradiated into the eye often does not reach its expected or ideal value, which limits the effect of myopia physiotherapy and may even cause potential risks and injuries.
  • how to effectively control red light irradiation to provide effective red light irradiation for the eyeballs has become a current problem that needs to be solved.
  • the present invention provides a solution for controlling red light irradiating the fundus of the eye.
  • the irradiation power during red light irradiation can be effectively controlled and adjusted, thereby significantly improving the effectiveness of red light irradiation and myopia physiotherapy.
  • the present invention provides a red light irradiation control method for myopia physiotherapy, which includes: acquiring an ocular surface image of a user; analyzing the ocular surface image to determine pupil status information; and controlling the red light irradiation of the user's fundus based on the status information of the pupil and the power of the user's red light irradiation eye.
  • obtaining the user's ocular surface image includes using at least one positioning camera to obtain the user's ocular surface image before and/or during red light irradiation of the user's fundus.
  • analyzing the ocular surface image to determine the status information of the pupil includes using a neural network model to analyze the ocular surface image to determine the status information of the pupil.
  • the pupil status information includes the size of the pupil.
  • the status information of the pupil further includes the distance of the pupil relative to the red light irradiation component.
  • the status information of the pupil further includes the position and/or direction of the pupil relative to the red light irradiation component.
  • the method further includes: in response to a shift in the position and/or direction of the pupil relative to the red light illumination assembly, moving the red light illumination assembly in at least one movement direction such that The fundus of the eye is irradiated with vertical red light.
  • controlling the red light irradiation to the fundus of the user's eyes based on the status information of the pupil and the user's red light irradiation power includes: based on the size of the pupil and the user's ocular power. Red light irradiates the power of the eye, determines the light source power of the red light irradiation component; and based on the light source power of the red light irradiation component Control the red light irradiation to the user's fundus.
  • the light source of the red light irradiation component includes a non-homogenized light beam
  • the light source power of the red light irradiation component is determined based on the size of the pupil and the eye power of the user's red light irradiation.
  • the method includes: determining the light source power based on the pupil size, the user's eye power of red light irradiation, and the non-homogenized beam power-annulus radius correspondence relationship.
  • the light source of the red light irradiation component includes a homogenized light beam
  • determining the light source power of the red light irradiation component based on the size of the pupil and the power of the user's red light irradiation eye includes: : Determine the light source power based on the pupil size, the user's eye power of red light irradiation, and the corresponding relationship between the homogenized beam power and the annulus radius.
  • controlling the red light irradiation of the user's fundus based on the status information of the pupil and the user's red light irradiation eye power further includes: based on the size of the pupil, the The distance between the pupil and the red light irradiation component and the power of the user's red light irradiation eye determine the light source power of the red light irradiation component.
  • the light source power of the red light irradiation component ranges from 0.1mw to 1.7mw.
  • the spectrum of the light source of the red light irradiation component is narrow-band red light or infrared light, the center wavelength of which is in the range of 630-850 nm, and the width of the spectrum (full width at half maximum) does not exceed 20 nm.
  • the present invention provides a device for red light irradiation control for myopia physiotherapy, including: a processor; and a memory, on which program instructions for controlling the red light irradiating the fundus are stored.
  • a processor When the program instructions are executed by a processor, the method described in the first aspect and its multiple embodiments is implemented.
  • the present invention provides a device for myopia physiotherapy, including: a positioning camera used to take pictures of the user's ocular surface to generate an ocular surface image; a red light irradiation component used to The user's fundus is irradiated with red light for myopia physiotherapy; and according to the device described in the second aspect, it is respectively connected to the positioning camera and the red light irradiation component for irradiating the red light irradiating the fundus. control.
  • the present invention provides a computer-readable storage medium on which program instructions for controlling red light illuminating the fundus of the eye are stored.
  • program instructions for controlling red light illuminating the fundus of the eye are stored.
  • the program instructions are executed by a processor, the above-mentioned first method is implemented. Aspects and methods described in various embodiments thereof.
  • the red light irradiation control method of the present invention By utilizing the red light irradiation control method of the present invention, safe, effective, and personalized fundus red light irradiation can be achieved for different users. Specifically, by, for example, acquiring the user's ocular surface image in real-time or quasi-real-time and analyzing it, the solution of the present invention can determine the user's pupil size, the distance, position, direction and other status information of the pupil relative to the red light irradiation component. , and based on the status information of the pupil, the light source power of the red light irradiation component is controlled individually.
  • the solution of the present invention can ensure that the user's actual red light irradiation power into the eye (that is, the actual red light power irradiated into the user's fundus) is equal to the user's red light irradiation power into the eye (also known as The user's "standard red light irradiation power into the eye” or “expected red light irradiation power into the eye” (the three can be interchanged in this article) remain consistent. Therefore, the solution of the present invention can achieve effective control of red light irradiation on the fundus and avoid ineffective or inefficient fundus irradiation. In some embodiments, with the help of neural network models in the field of artificial intelligence, the solution of the present invention can achieve precise analysis of ocular surface images, thereby accurately determining the condition of the pupil and providing a good basis for subsequent power control or adjustment.
  • the solution of the present invention can be executed before, during or after red light irradiation. Therefore, the solution of the present invention can be applied at different timings, thereby achieving effective red light irradiation flexibly in time. Sexually monitored.
  • the solution of the present invention provides a myopia physiotherapy device that supports controllable red light irradiation, thereby ensuring the effectiveness of red light irradiation, thereby improving the therapeutic effect of myopia physiotherapy.
  • red light control scheme of the present invention safe, effective, and personalized fundus red light irradiation can be provided for each user based on his or her unique eye characteristics (for example, pupil status) and the power of red light irradiation into the eye. This significantly improves the efficiency of myopia physiotherapy.
  • Figure 1 is a simplified flow chart illustrating a red light irradiation control method for myopia physiotherapy according to an embodiment of the present invention
  • Figure 2 is a detailed flow chart showing a red light irradiation control method according to one embodiment of the present invention
  • Figure 3 is a detailed flow chart showing a red light irradiation control method according to another embodiment of the present invention.
  • Figure 4 is a schematic block diagram showing a device for red light irradiation control for myopia physiotherapy according to an embodiment of the present invention.
  • Figure 5 is a structural block diagram showing a device for myopia physiotherapy according to an embodiment of the present invention.
  • the solution of the present invention proposes to obtain pupil status information by analyzing the user's ocular surface image, such as Pupil size information. Then, based on the status information and the obtained user's red light irradiation power into the eye, the light source power of the red light irradiation component that irradiates the fundus is effectively controlled, thereby significantly improving the effectiveness of the fundus red light irradiation.
  • the spectrum of the light source of the red light irradiation component is narrow-band red light or infrared light, its central wavelength is in the range of 630-850nm, and the width of the spectrum (full width at half maximum) does not exceed 20nm.
  • the preferred wavelength is 650 ⁇ 10nm.
  • the light source power range of the red light irradiation component can be 0.1mw to 1.7mw.
  • FIG. 1 is a simplified flow chart illustrating a red light irradiation control method 100 for myopia physiotherapy according to an embodiment of the present invention.
  • the red light irradiation here can be performed by a red light irradiation device (also called a "component", the two can be interchanged in this article) that irradiates the fundus with red light.
  • the red light irradiation device can first irradiate red light onto the ocular surface of a myopia patient, and then the red light irradiates the fundus of the eye through the pupil, thereby performing myopia physical therapy on the eyeball.
  • the method 100 may be performed by a device (as shown in FIG.
  • the device for control may be an internal device integrated in the red light irradiation device, or an external device connected to the control device or system of the red light irradiation device.
  • the user's eye surface image is obtained.
  • the ocular surface image here can be obtained by taking pictures by a positioning camera arranged at the red light irradiation device, and transmitted to the processor of the device executing method 100.
  • two positioning cameras may be arranged, which may be located on the periphery of the red light irradiation device or integrated inside the red light irradiation device. By positioning the camera to capture the ocular surface of the eyeball in real-time or quasi-real-time, the user's ocular surface image can be obtained.
  • the action of acquiring the ocular surface image may be performed before irradiating the fundus with red light and/or during irradiating the fundus with red light.
  • the ocular surface image is analyzed (eg, computer vision analysis) to determine pupil status information.
  • the aforementioned pupil status information may include pupil size information.
  • the aforementioned pupil status information may also include the distance of the pupil relative to the red light irradiation component.
  • the aforementioned pupil status information may further include the position and/or direction of the pupil relative to the red light irradiation component.
  • the foregoing analysis may be, for example, computer analysis of the ocular surface images captured by the two positioning cameras mentioned above.
  • the aforementioned computer analysis may include using a neural network model in the field of artificial intelligence to analyze the ocular surface image to determine Pupil size.
  • the red light irradiation on the fundus of the user's eyes is controlled based on the status information of the pupil and the power of the user's red light irradiation eye.
  • the solution principle of the present invention there is a correlation between the size or size of the pupil and the actual red light irradiation power of the user's eyes. Therefore, by adjusting the light source power of the red light irradiation device based on the pupil size, the user's actual red light irradiation power can be adjusted.
  • the eye power is closer to its standard value, thus promoting the effective improvement of eye myopia problem.
  • the user's red light incident eye power can be obtained in different ways.
  • an ophthalmologist can determine, after examining a user (such as a myopic patient), how much incident eye power is suitable for the fundus of the user when irradiated with red light (i.e., the aforementioned "standard red light irradiation incident eye power" or "Expected power of red light entering the eye”).
  • the incident light power suitable for the user when exposed to red light can also be determined by searching the historical records of the incident light power when the user was exposed to red light in the past.
  • various physiological indicators related to myopia of the user can also be input into the computer system, and the computer system generates the incident light power suitable for the user when exposed to red light. Therefore, it can be understood that the acquisition of incident light power can be achieved in different ways according to different application scenarios, and the solution of the present invention is not too restrictive in this regard.
  • the control here may be to adjust the light source power based on the status information of the pupil (such as the size of the pupil and the distance of the pupil relative to the red light irradiation component) and the power of the red light irradiation incident eye.
  • the light source power can also be adjusted by adjusting the distance between the pupil and the red light irradiation device to achieve the user's expected red light irradiation power into the eye. Therefore, the power adjustment method here in the present invention is only exemplary. According to the teachings of the present invention, those skilled in the art can also adopt other methods to adjust the red light irradiation in order to achieve effective irradiation of the fundus.
  • the solution of the present invention in response to a shift in the position and/or direction of the pupil relative to the red light irradiation component, the solution of the present invention also proposes to move the red light irradiation component in at least one movement direction,
  • the user's pupils can be aligned with the light source of the red light irradiation device so as to irradiate the fundus with red light in a vertical direction, thereby achieving effective fundus red light irradiation.
  • the method of the present invention can determine its corresponding light source power. Based on this, before the next red light irradiation starts, the light source power of the red light source can be adjusted to the effective red light irradiation light source power determined in the previous round of irradiation, thereby further improving the efficiency and effectiveness of the red light irradiation.
  • the method of the present invention can achieve personalized red light irradiation. For example, for user A, it can be irradiated with 0.3 milliwatts (mW), For user B, it can irradiate at 0.35mW.
  • FIG. 2 is a detailed flowchart illustrating a method 200 for controlling red light illumination of the fundus according to one embodiment of the present invention. It can be understood that the method 200 below can be regarded as an implementation scenario of the method 100 shown in FIG. 1 , so the previous description of the method 100 in conjunction with FIG. 1 is also applicable to the description of the method 200 below.
  • At step S202 at least one positioning camera is used to photograph the eyeball of the myopia patient to obtain an ocular surface image of the eyeball (shown as 404 in Figure 4).
  • the ocular surface image here may include a normal eye pupil image or an abnormally shaped pupil image.
  • the ocular surface images taken at intervals in time also reflect fluctuations in pupil size to a certain extent, for example, the pupil shrinks after being irradiated for a period of time.
  • the pupil in the ocular surface image may also be obscured by the upper and lower eyelids, and these situations are also within the scope of the solution of the present invention.
  • the neural network model is used to analyze the ocular surface image to obtain the pupil size.
  • the neural network model here may for example involve a convolutional neural network for predicting pupil position and/or a logistic regression model for predicting pupil position (which may be considered as a single layer of neural networks containing only one neuron). network).
  • the neural network can be repeatedly trained using ocular surface images including pupils, and finally a neural network model can be obtained that can achieve good inference operations (i.e., locate the pupil position and size). Through the calculation of such a neural network model, it can be determined The size of the pupil in an image of the ocular surface.
  • the diameter of an adult's pupil is generally between 2 mm and 4 mm, and its shape is a perfect circle.
  • the size of the pupil is also related to factors such as age, refraction, and physiological state.
  • the light source power of the red light irradiation component is determined based on the size of the pupil, the distance of the pupil relative to the red light irradiation component, and the power of the user's red light irradiation eye.
  • the corresponding light source power can be determined by the following formula (1):
  • P s (r) represents the power of the red light irradiating the eye
  • P a represents the power of the light source
  • f1 represents the distance of the pupil relative to the red light irradiation component
  • f2 represents the size of the pupil.
  • the red light irradiation of the user's fundus is controlled based on the light source power of the red light irradiation component.
  • the above method of determining the power of the light source through the power of the red light irradiated into the eye is only exemplary, and those skilled in the art can also think of other ways to adjust the red light irradiation.
  • a mapping table between pupil size and light source power can be directly established, so that after determining the pupil size, the corresponding light source power can be directly found in the mapping table and adjusted accordingly.
  • red light irradiation device For another example, after obtaining the power of red light irradiating into the eye, you can also directly move the red light irradiation device appropriately according to the correspondence table between the power of red light irradiating into the eye and the distance from the red light source to the ocular surface, so as to move the red light source Adjust the distance to the eye surface to a suitable position. Based on the adjustment of the relative position, it also correspondingly changes the area where the red light illuminates the pupil, thereby improving the effectiveness of the red light illuminating the fundus.
  • the current incident light power or light source power can also be fine-tuned based on the previous adjustment and changes in pupil size. For example, the pupil size in a previously captured ocular surface image can be compared with the pupil size obtained by analyzing the current ocular surface image to identify size differences between the two. Then, the current light source power can be adjusted (or fine-tuned) based on the size difference, so that the adjusted red light beam with the expected red light irradiation power into the eye can illuminate the fundus of the eye most effectively through the pupil.
  • FIG. 3 is a detailed flowchart illustrating a method 300 for controlling red light illuminating the fundus of the eye according to another embodiment of the present invention. It can be understood that the method 300 here includes more implementation details of the method 100 shown in FIG. 1 , and therefore the description of the method 100 in conjunction with FIG. 1 is also applicable to the method 300 .
  • multiple (for example, two) positioning cameras are used to capture the eyeball, so that an ocular surface image of the eyeball during red light irradiation can be obtained.
  • the positioning cameras here can be two positioning cameras provided by the red light irradiation device, which can be installed on both sides of the lens barrel of the red light irradiation device.
  • the positioning camera can also be used to determine the precise position of the eyeball during red light irradiation.
  • the first positioning camera and the second positioning camera acquire the characteristics of the eye surface (such as the pupil) from different positions and viewing angles, thereby positioning the eyeball or the pupil relative to the red light irradiation device (such as a mirror). tube) position. Thereafter, the red light irradiation device can also move the red light irradiation component or the entire lens barrel through the position information obtained above, so that it can be aimed at the eyes (such as eyeballs) of myopia patients to achieve efficient red light irradiation or imaging. .
  • the ocular surface image is analyzed using a neural network model to obtain pupil position information.
  • the neural network model here can be implemented as a target detection device, and the target is the pupil in the context of the present invention.
  • the target detection device may include multiple target detection modules, such as first and second target detection modules, wherein the first target detection module may process the ocular surface image to obtain preliminary position information about the pupil. Using this preliminary position information, the pupil area image can be intercepted from the ocular surface image. Then, the second target detection module can be used to process the pupil area image to obtain the final position information of the pupil.
  • the dotted rectangular frame in the eye surface image corresponds to the preliminary predicted rectangular frame output by the first target detection module
  • the solid rectangular frame corresponds to the final predicted rectangular frame output by the second target detection module.
  • the final position information may include the final coordinates, final width and final height of the pupil center point.
  • the pupil size is determined based on the position information of the pupil.
  • the pupil size can be calculated based on the final position information obtained above.
  • the pupil size can include the pupil ruler after upper and lower eyelid occlusion size or change in pupil size from the previous measurement.
  • the type of red light beam currently used by the red light irradiation device can be determined, that is, whether it is a non-homogenized light beam or a homogenized light beam. It can be understood that the beam type judgment here is an optional step. For example, for a red light irradiation device with only one type of light beam, there is no such judgment step.
  • the laser at this time is a Gaussian beam. Therefore, at step S310, the light source power is determined based on the pupil size, the user's red light incident eye power, and the non-homogenized beam power-annulus radius correspondence relationship.
  • Gaussian beam power - annulus radius refers to the total power of the beam within the range covered by the annulus radius when the annulus radius is r, when the annulus radius r represents the pupil radius, the Gaussian beam power represents the power of the red light incident on the eye.
  • P s (r) represents the power of red light irradiating into the eye
  • R represents the spot radius of the laser beam
  • r represents the pupil radius
  • P a represents the light source power.
  • the beam spot diameter of the red light irradiation device is 10mm
  • the pupil size is reduced to a diameter of 2mm
  • the light source power Pa is 1mW
  • the incident light power at this time is 0.077mW.
  • the power of the red light entering the eye corresponding to the expected pupil size of 2mm diameter reaches 0.1mW.
  • the light source power of the red light that illuminates the fundus of the eye may be adjusted based on the power of the red light that illuminates the eye.
  • Pr is the power entering the eye
  • Pa is the total power of the spot
  • Sr represents the pupil area with a radius of r
  • SR represents the spot area with a spot radius of R.
  • step S314 the red light irradiation to the user's fundus is controlled based on the determined light source power.
  • the solution of the present invention provides a solution for controlling the power of the red light source for different beam types. It should be understood that the method shown in Figure 3 is only illustrative and not restrictive. Based on the disclosure and teaching of the present invention, those skilled in the art can understand that the red light power adjustment of the present invention can also adopt other methods, and these methods are still within the scope of the present invention.
  • FIG. 4 is a schematic block diagram illustrating a device 400 for controlling red light irradiating fundus according to an embodiment of the present invention. It can be understood that the device 400 can perform the method steps described in conjunction with FIGS. 1-3.
  • the device 400 of the present invention includes a memory 402 and a processor 403, where the memory can store program instructions for controlling red light irradiation for myopia physiotherapy. Additionally or alternatively, memory 402 may also store code that implements an analysis algorithm for ocular surface images. Depending on different implementation scenarios, the processor 403 here may be a general-purpose processor or a special-purpose processor (such as an artificial intelligence processor). Further, when the program in the memory 402 is executed by the processor 403, the device will receive the ocular surface image 404 and execute the method steps described in conjunction with FIGS. 1-3, thereby finally outputting the control result for use in controlling red light irradiation. The red light source power of the device.
  • FIG. 5 is a schematic block diagram showing a device 500 for myopia physiotherapy according to an embodiment of the present invention.
  • the device 500 includes a device 400 that can be used to perform the method flow described above in conjunction with FIGS. 1-3.
  • the device 400 for controlling red light irradiation includes a memory 402 and a processor 403.
  • memory 403 stores information for The program instructions for controlling the red light irradiation of the fundus, when executed by the processor, implement the method steps described in conjunction with Figures 1-3.
  • the device 500 also includes a positioning camera 501 and a red light irradiation component 502, where the red light irradiation component 502 may constitute what is called a red light irradiation device in the context of the present invention.
  • the positioning cameras here can be two positioning cameras arranged on both sides of the red light irradiation component. The two positioning cameras can be operated to image the eyeballs in real-time or quasi-realtime to generate eyeball images. table image.
  • the positioning camera can also be operated to position the eyeball, especially the pupil, so that the position of the device 500 can be accurately adjusted according to the position of the eyeball, so as to target the eyeball for efficient red light irradiation.
  • the processor 403 may also determine the user's cooperation during the illumination.
  • the degree of fit may relate, for example, to whether the user squints, half-opens, closes, or tilts the head.
  • the device 500 can also perform voice broadcast or graphic display through its external interface, thereby reminding the user to correct the current deviation in the degree of cooperation in order to obtain a good red light. Effects of irradiation and myopia treatment.
  • the red light illumination component 502 includes a red light source, which may be various light source devices including a laser head capable of emitting low-intensity red light (eg, red light around 650 nanometers (“nm”)).
  • the red light emitted by the light source device can pass through the pupil of the eyeball and illuminate the fundus of the eye through, for example, a collimating lens arranged on the light path, thereby improving the blood circulation of the fundus and promoting the secretion of dopamine by retinal pigment epithelial cells.
  • the thinned choroid can be restored to normal and at the same time, sufficient oxygen can be supplied to the sclera, thereby strengthening the strength of the sclera.
  • the effect of inhibiting the abnormal growth of the eye axis can be achieved, thereby achieving effective prevention, control and correction of myopia.
  • the device 400 for controlling red light irradiation may first be started to prepare for monitoring the red light to be used. Then, the red light irradiation component of the red light irradiation device can be turned on to irradiate the fundus with red light. During the irradiation period, the positioning camera can be started to capture images of the ocular surface of the eyeball, thereby obtaining an ocular surface image.
  • the device 400 receives the ocular surface image from the positioning camera, and executes the process steps shown in FIGS. 1-3 to control the red light irradiating the fundus.
  • the processor 403 determines the pupil size by running the pupil positioning code, it can determine the red light source power corresponding to the current pupil size through calculation or table lookup.
  • the processor 403 may interact with the red light irradiation component through, for example, a bus to instruct the control circuit in the red light irradiation component to adjust the red light power emitted by the red light source.
  • the processor 403 can also send instructions to the moving mechanism (not shown in the figure) of the device 500, so that the moving mechanism can move the red light source to an appropriate position, thereby changing the distance between the red light source and the ocular surface. distance.
  • the red light source emitted from the device toward the window of the myopic patient's eye will pass through the pupil and enter the fundus of the eye with a more appropriate distribution, thus improving the effectiveness of red light irradiation.
  • the device 500 can also inform the user through the external interface through voice broadcast or graphic display of the current size information of his eyeball pupils, and how much red light will be irradiated into the eye or the incident light power to affect the fundus. Perform irradiation.
  • the device for myopia physiotherapy of the present invention is described in detail above with reference to FIG. 5 .
  • the description here is merely illustrative and not restrictive, and those skilled in the art will understand that changes can be made to the illustrated devices based on the disclosure of the present invention.
  • the red light irradiation device and the device for controlling the red light irradiation device are drawn together in the figure, they can also be arranged separately in some application scenarios.
  • the red light irradiation device is arranged in a window with a window.
  • the device 400 can be arranged in the base of the device, and can be connected through various connection interfaces (such as wireless, wired, such as serial bus interfaces).
  • the processing of performing ocular surface image analysis, pupil size determination and control operations can also be arranged on a remote server (such as a cloud server), thereby reducing the size of the device 500 and reducing its operation. cost.
  • connection can be a fixed connection, a detachable connection, or an integral body; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary. , or it can be the internal connection between two elements or the interactive relationship between two elements. Therefore, unless otherwise expressly limited in this specification, those skilled in the art can understand the specific meanings of the above terms in the present invention according to specific circumstances.
  • any module, unit, component, server, computer, terminal or device executing instructions exemplified herein may include or otherwise access computer-readable media, such as storage media, computer storage media or data storage devices (removable (excluding) and/or non-removable) such as magnetic disks, optical disks or tapes.
  • Computer storage media may include volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data.
  • first or second used in this specification to refer to numbers or ordinal numbers are only for descriptive purposes and cannot be understood to express or imply relative importance or implicit indication.
  • a feature qualified with “first” or “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three or more, etc., unless otherwise clearly and specifically limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Theoretical Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Geometry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

一种用于近视理疗的红光照射控制方法,包括:获取用户的眼表图像(S102);对眼表图像进行分析,以确定瞳孔的状态信息(S104);以及基于瞳孔的状态信息以及用户的红光照射入眼光功率,来控制对用户的眼底的红光照射(S106)。这种红光控制方案,可以依据每个用户特有的眼部特征(例如,瞳孔状态)和红光照射入眼光功率,为其提供安全、有效、个性化的眼底红光照射,从而显著提升近视理疗的效率。

Description

用于近视理疗的红光照射控制方法及其相关产品
相关申请的交叉引用
本申请要求于2022年7月15日申请的,申请号为202210832712.4,名称为“用于近视理疗的红光照射控制方法及其相关产品”的中国专利申请的优先权。
技术领域
本发明一般地涉及光学领域。更具体地,本发明涉及一种用于近视理疗的红光照射控制方法、装置、设备和计算机可读存储介质。
背景技术
由于对具有电子显示屏的设备的过度使用,当前青少年的近视问题变得愈发严重。为了控制近视的发生并减缓近视的程度,目前提出使用低强度红光来照射眼底。就具体操作而言,可以利用照射眼底的低强度红光设备向黄斑区照射低能量红激光,由此可以精准地模拟太阳光的有益光线。通过这样的红光照射,可以改善眼底血液循环,促进视网膜色素上皮细胞分泌多巴胺,从而使变薄的脉络膜恢复正常。另外,通过红光的持续照射,可以供给巩膜足够的氧,由此可以加强巩膜的强度。最终,通过红光的照射,可以达到抑制眼轴非正常增长的效果,从而实现对近视的有效防控和校正。
尽管如上所述的红光照射对于近视的防控和纠正有效,但由于不同的用户具有不同的眼部特征(例如,瞳孔状态不同),统一化的红光照射操作往往导致用户实际的红光照射入眼光功率往往达不到其预期值或理想值,进而造成近视理疗的效果受限,甚至可能会产生潜在的风险和伤害。鉴于此,如何对红光照射进行有效控制,以便为眼球提供有效的红光照射成为当前需要解决的问题。
发明内容
鉴于上文所提到的技术问题,本发明提供了一种用于对照射眼底的红光进行控制的方案。通过本发明的控制方案,可以实现对红光照射时的照射功率进行有效控制和调节,从而显著改善红光照射和近视理疗的有效性。
为此,在第一方面中,本发明提供一种用于近视理疗的红光照射控制方法,包括:获取用户的眼表图像;对所述眼表图像进行分析,以确定瞳孔的状态信息;以及基于所述瞳孔的状态信息以及所述用户的红光照射入眼光功率,来控制对所述用户的眼底的红光照射。
在一个实施例中,所述获取用户的眼表图像包括在对所述用户的眼底进行红光照射之前和/或进行红光照射期间,利用至少一个定位摄像头获取所述用户的眼表图像。
在一个实施例中,对所述眼表图像进行分析,以确定瞳孔的状态信息包括利用神经网络模型对所述眼表图像进行分析,以确定所述瞳孔的状态信息。
在一个实施例中,所述瞳孔的状态信息包括所述瞳孔的尺寸。
在一个实施例中,所述瞳孔的状态信息还包括所述瞳孔相对于红光照射组件的距离。
在一个实施例中,所述瞳孔的状态信息还包括所述瞳孔相对于所述红光照射组件的位置和/或方向。
在一个实施例中,所述方法还包括:响应于所述瞳孔相对于所述红光照射组件的位置和/或方向发生偏移,在至少一个移动方向上移动所述红光照射组件,以便对所述眼底进行垂直方向的红光照射。
在一个实施例中,基于所述瞳孔的状态信息以及所述用户的红光照射入眼光功率,来控制对所述用户的眼底的红光照射包括:基于所述瞳孔的尺寸以及所述用户的红光照射入眼光功率,确定所述红光照射组件的光源功率;以及基于所述红光照射组件的光源功率来 控制对所述用户的眼底的红光照射。
在一个实施例中,所述红光照射组件的光源包括非匀化光束,所述基于所述瞳孔的尺寸以及所述用户的红光照射入眼光功率,确定所述红光照射组件的光源功率包括:基于所述瞳孔尺寸、所述用户的红光照射入眼光功率、以及非匀化光束功率-环带半径对应关系,来确定所述光源功率。
在一个实施例中,所述红光照射组件的光源包括匀化光束,所述基于所述瞳孔的尺寸以及所述用户的红光照射入眼光功率,确定所述红光照射组件的光源功率包括:基于瞳孔尺寸、所述用户的红光照射入眼光功率、以及所述匀化光束功率-环带半径对应关系,来确定所述光源功率。
在一个实施例中,其中基于所述瞳孔的状态信息以及所述用户的红光照射入眼光功率,来控制对所述用户的眼底的红光照射还包括:基于所述瞳孔的尺寸、所述瞳孔相对于红光照射组件的距离、以及所述用户的红光照射入眼光功率,确定所述红光照射组件的光源功率。
在一个实施例中,红光照射组件的光源功率范围为0.1mw至1.7mw。
在一个实施例中,红光照射组件的光源的光谱为窄带红光或红外光,其中心波长在630-850nm范围内,光谱的宽度(半高全宽)不超过20nm。
在第二方面中,本发明提供一种用于近视理疗的红光照射控制的装置,包括:处理器;以及存储器,其上存储有用于对照射眼底的红光进行控制的程序指令,当所述程序指令由处理器执行时,实现根据上述第一方面及其多个实施例所述的方法。
在第三方面中,本发明提供一种用于近视理疗的设备,包括:定位摄像头,其用于对用户的眼表进行拍照,以生成眼表图像;红光照射组件,其用于对所述用户的眼底进行红光照射以便进行近视理疗;以及根据第二方面中所述的装置,其分别与所述定位摄像头和所述红光照射组件连接,以用于对照射眼底的红光进行控制。
在第四方面中,本发明提供一种计算机可读存储介质,其上存储有用于对照射眼底的红光进行控制的程序指令,当所述程序指令由处理器执行时,实现根据上述第一方面及其多个实施例所述的方法。
利用本发明的红光照射控制方法,可以针对不同的用户,实现安全、有效、个性化的眼底红光照射。具体地,通过例如实时或准实时地获取用户的眼表图像并对其进行分析,本发明的方案可以确定该用户的瞳孔尺寸、瞳孔相对于红光照射组件的距离、位置、方向等状态信息,并且根据该瞳孔的状态信息,个性化地控制红光照射组件的光源功率。通过控制前述的光源功率,本发明的方案可以确保该用户的实际红光照射入眼光功率(即,实际照射进入该用户眼底的红光功率)与该用户的红光照射入眼光功率(又称该用户的“标准红光照射入眼光功率”,或“预期红光照射入眼光功率”,在本文中三者可以互换)保持一致。由此,本发明的方案可以实现对眼底进行红光照射的有效控制,避免无效或低效的眼底照射。在一些实施例中,借助于人工智能领域的神经网络模型,本发明的方案可以实现对眼表图像的精准分析,从而可以准确确定瞳孔的状况并为后续的功率控制或调整提供良好的基础。
在一些应用场景中,可以在红光照射前、照射期间或照射后来执行本发明的方案,因此本发明的方案可以应用于不同的时机,由此实现在时间上灵活地对红光照射的有效性进行监测。当将本发明的方案实施于设备中时,本发明的方案提供了支持红光照射可控的近视理疗设备,由此确保红光照射的有效性,从而提升了近视理疗的治疗效果。另外,利用本发明的红光控制方案,可以依据每个用户特有的眼部特征(例如,瞳孔状态)和红光照射入眼光功率,为其提供安全、有效、个性化的眼底红光照射,从而显著提升近视理疗的效率。
附图说明
通过参考附图阅读下文的详细描述,本公开示例性实施方式的上述以及其他目的、特征和优点将变得易于理解。在附图中,以示例性而非限制性的方式示出了本公开的若干实施方式,并且相同或对应的标号表示相同或对应的部分,其中:
图1是示出根据本发明实施例的用于近视理疗的红光照射控制方法的简化流程图;
图2是示出根据本发明一个实施例的红光照射控制方法的详细流程图;
图3是示出根据本发明另一实施例的红光照射控制方法的详细流程图;
图4是示出根据本发明实施例的用于近视理疗的红光照射控制的装置的原理框图;以及
图5是示出根据本发明实施例的用于近视理疗的设备的结构框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
如前所述,为了实现对照射眼底的红光的有效控制,特别是照射眼底的红光能量的控制,本发明的方案提出通过对用户的眼表图像进行分析来获取瞳孔的状态信息,例如瞳孔的尺寸信息。接着,基于该状态信息和所获得的用户的红光照射入眼光功率来有效控制照射眼底的红光照射组件的光源功率,从而显著提升眼底红光照射的有效性。红光照射组件的光源的光谱为窄带红光或红外光,其中心波长在630-850nm范围内,光谱的宽度(半高全宽)不超过20nm。优选波长为650±10nm。红光照射组件的光源功率范围可以为0.1mw至1.7mw。
下面结合附图来详细描述本发明的具体实施方式。
图1是示出根据本发明实施例的用于近视理疗的红光照射控制方法100的简化流程图。可以理解的是,此处的红光照射可以由对眼底进行红光照射的红光照射装置(又称“组件”,在本文中二者可以互换)来执行。具体地,红光照射装置可以将红光首先照射到近视患者的眼表上,然后该红光透过瞳孔而照射到眼底上,从而对眼球进行近视理疗。基于此,方法100可以由与红光照射装置交互并控制红光照射装置的装置(如图4所示)来执行。根据不同的应用场景,该用于控制的装置可以是集成于红光照射装置内的内部装置,或者是与红光照射装置的控制器件或***连接的外部装置。
如图1所示,在步骤S102处,获取用户的眼表图像。在一个实施场景中,此处的眼表图像可以由布置在红光照射装置处的定位摄像头通过拍摄来获得,并且传送至执行方法100的装置的处理器。作为示例,定位摄像头可以布置为两个,其可以位于红光照射装置的***或集成于红光照射装置的内部。通过定位摄像头对眼球的眼表进行的例如实时或准实时的拍摄,可以获取到用户的眼表图像。
关于上述眼表图像的获取时机,本发明在此方面并不做过多的限制。该获取眼表图像的动作可以是在对眼底进行红光照射之前和/或在对眼底进行红光照射期间执行。
在步骤S104处,对所述眼表图像进行分析(例如计算机视觉方面的分析),以确定瞳孔的状态信息。在一个实施场景中,前述的瞳孔状态信息可以包括瞳孔的尺寸信息。在另一个实施场景中,前述的瞳孔状态信息还可以包括瞳孔相对于红光照射组件的距离。在又一个实施场景中,前述的瞳孔状态信息还进一步可以包括瞳孔相对于红光照射组件的位置和/或方向。
当上述的瞳孔状态信息包括瞳孔的尺寸信息时,在一些实施场景中,前述的分析例如可以是对上文所到的两个定位摄像头所拍摄的眼表图像利用计算机分析。作为示例,前述的计算机分析可以包括利用人工智能领域的神经网络模型来对眼表图像进行分析,以确定 瞳孔的尺寸。
最后,在步骤S106处,基于所述瞳孔的状态信息以及所述用户的红光照射入眼光功率,来控制对所述用户的眼底的红光照射。根据本发明的方案原理,瞳孔的尺寸或大小与用户的实际红光照射入眼光功率存在相关性,因此通过基于瞳孔尺寸来调整红光照射装置的光源功率,可以使得用户的实际红光照射入眼光功率更加接近其标准值,从而促进眼部近视问题的有效改善。这里,用户的红光照射入眼光功率可以通过不同的方式来获得。作为示例,可以由眼科医生在对用户(如近视患者)进行检查后确定其眼底在红光照射时适合多大的入眼光功率(也即前文所提到的“标准红光照射入眼光功率”或“预期红光照射入眼光功率”)。作为另一示例,也可以通过查找用户过往红光照射时的入眼光功率历史记录来确定适宜用户红光照射时的入眼光功率。另外,也可以将用户与近视相关的各类生理指标输入至计算机***中,由计算机***生成适于用户红光照射时的入眼光功率。因此,可以理解的是关于入眼光功率的获得可以根据不同的应用场景而有不同的方式,本发明的方案在此方面并不做过多的限制。
上述的控制也可以有不同的方式。作为示例,这里的控制可以是基于瞳孔的状态信息(例如瞳孔的尺寸以及瞳孔相对于红光照射组件的距离)和红光照射入眼光功率来对光源功率进行调节。在一些场景中,还可以通过调整瞳孔和红光照射装置之间的距离来调节光源功率,以便达到用户的预期红光照射入眼光功率。因此,本发明这里的功率调整方式仅仅是示例性的,本领域技术人员根据本发明的教导,也可以采取其他的方式来对红光照射进行调整,以便实现对眼底的有效性照射。例如,在一些场景中,响应于所述瞳孔相对于所述红光照射组件的位置和/或方向发生偏移,本发明的方案还提出在至少一个移动方向上移动所述红光照射组件,使得用户的瞳孔能够与红光照射装置的光源对齐,以便对眼底进行垂直方向的红光照射,从而实现有效地眼底红光照射。
基于该状态信息和选定的红光照射入眼光功率,本发明的方法可以确定其对应的光源功率。基于此,可以在下一次的红光照射开始前就将红光光源的光源功率调节到上轮照射时所确定的有效红光照射的光源功率上,从而进一步提升红光照射的效率和有效性。另外,由于不同的用户可以具有适用于其自身的红光照射入眼光功率,因此本发明的方法可以实现个性化的红光照射,例如对于用户A,其可以0.3毫瓦(mW)进行照射,而对于用户B,其可以0.35mW进行照射。
下文将结合图2和图3来分别对在红光照射期间采集到眼球的眼表图像时的具体处理场景进行描述。可以理解的是,下文的各类具体操作仅仅是示例性的而非限制性的,本领域技术人员基于本发明的公开和教导,也可以想到利用其他具体的方式来实施。
图2是示出根据本发明一个实施例的用于对眼底的红光照射进行控制的方法200的详细流程图。可以理解的是,下文的方法200可以视为图1所示方法100的一种实现场景,因此前文结合图1对方法100的描述同样也适用于下文方法200的描述。
如图2中所示,在步骤S202处,利用至少一个定位摄像头来对近视患者的眼球进行拍摄,以得到所述眼球的眼表图像(如图4中的404所示出的)。根据不同的场景,这里的眼表图像可以包括正常的眼部瞳孔图像或形状异常的瞳孔图像。当持续以固定的频率来对眼表进行成像时,则时间上间隔拍摄的眼表图像还反映出瞳孔尺寸在一定程度内的波动,例如瞳孔在经照射一段时间后缩小。在一些场景中,眼表图像中的瞳孔还可能受上下眼睑的遮蔽,而这些情形也都在本发明方案的涵盖范围内。
接着,在步骤S204处,利用神经网络模型对眼表图像进行分析,以得到瞳孔尺寸。根据不同的应用,这里的神经网络模型可以例如涉及用于预测瞳孔位置的卷积神经网络和/或用于预测瞳孔位置的逻辑回归模型(其可以视为仅含有一个神经元的单层的神经网络)。神经网络可以利用包含瞳孔的眼表图像进行反复训练,最终得到可以实现良好推断操作(即定位瞳孔方位及尺寸)的神经网络模型。通过这样的神经网络模型的计算,可以确定 眼表图像中瞳孔的尺寸。如本领域技术人员所知,成人瞳孔直径一般为2mm-4mm之间,其形状呈正圆形。一般情况下,瞳孔的大小除了随光线的强弱变化外,还与年龄大小、屈光、生理状态等因素有关。
在步骤S206处,基于瞳孔的尺寸、瞳孔相对于红光照射组件的距离以及用户的红光照射入眼光功率,确定红光照射组件的光源功率。例如,可以通过下式(1)来确定对应的光源功率:
其中Ps(r)表示红光照射入眼光功率,Pa表示光源功率,f1表示瞳孔相对于红光照射组件的距离,f2表示瞳孔的大小。
最后,在步骤S208处,基于所述红光照射组件的光源功率来控制对所述用户的眼底的红光照射。可以理解的是,上文通过红光照射入眼光功率来确定光源功率的方式仅仅是示例性的,本领域技术人员也可以想到通过其他方式来对红光照射进行调整。例如,可以直接建立瞳孔尺寸和光源功率的映射表,从而可以在确定瞳孔尺寸后,直接在映射表中查找到对应的光源功率,从而进行相应地调整。再例如,在得到红光照射入眼光功率后,还可以直接根据红光照射入眼光功率与红光光源到眼表的距离的对应关系表来适当地移动红光照射装置,以将红光光源和眼表之间的距离调整到一个合适的位置。基于该相对位置的调整,其也就相应地改变了红光照射瞳孔的区域,由此提升红光照射眼底的有效性。
在一个应用场景中,还可以基于前一次的调整和瞳孔尺寸的变化来微调当前的入眼光功率或光源功率。例如,可以将前一次拍摄的眼表图像中的瞳孔尺寸和分析当前眼表图像所得到的瞳孔尺寸进行比较,以识别出二者的尺寸差异。接着,可以基于该尺寸差异来调整(或微调)当前的光源功率,以便调整后的、具有预期红光照射入眼光功率的红光光束可以透过瞳孔对眼底进行最为有效的照射。
图3是示出根据本发明另一实施例的用于对照射眼底的红光进行控制的方法300的详细流程图。可以理解的是,此处的方法300包括图1所示方法100的更多实施细节,并且因此结合图1对方法100的描述同样适用于方法300。
如图3中所示,在步骤S302处,利用多个(例如两个)定位摄像头来对眼球进行拍摄,从而可以获得红光照射期间眼球的眼表图像。如前所述,此处的定位摄像头可以是由红光照射装置所提供的两个定位摄像头,其可以安装在红光照射装置镜筒的两侧。除了对眼球进行拍摄以得到关于眼球的眼表图像外,在一些场景中,定位摄像头还可以用于在红光照射期间对眼球的精准位置确定。例如,借助于立体定位的原理,第一定位摄像头和第二定位摄像头通过从不同位置和视角来获取眼表的特征(例如瞳孔),从而可以定位眼球或者瞳孔相对于红光照射装置(例如镜筒)的位置。此后,红光照射装置还可以通过前述得到的位置信息来移动红光照射组件或令整个镜筒移动,从而可以对准近视患者的眼部(如眼球),以实现高效的红光照射或成像。
接着,在步骤S304处,利用神经网络模型对所述眼表图像进行分析,以得到瞳孔的位置信息。作为示例,这里的神经网络模型可以实施为一种目标检测装置,而目标也即本发明上下文的瞳孔。该目标检测装置可以包括多个目标检测模块,例如第一和第二目标检测模块,其中第一目标检测模块可以对眼表图像进行处理,以得到关于瞳孔的初步位置信息。利用该初步位置信息可以从眼表图像中截取出瞳孔区域图像。接着,可以利用第二目标检测模块对瞳孔区域图像进行处理,从而得到瞳孔的最终位置信息。参见图4,其中眼表图像中的虚线矩形框对应于第一目标检测模块输出的初步预测矩形框,而实线矩形框对应于第二目标检测模块输出的最终预测矩形框。进一步,最终位置信息可以包括瞳孔中心点的最终坐标、最终宽度和最终高度。
在步骤S306处,基于所述瞳孔的位置信息确定瞳孔尺寸。例如,可以基于上述得到的最终位置信息来计算得到瞳孔尺寸。这里,瞳孔尺寸可以包括上下眼睑遮挡后的瞳孔尺 寸或相对于前一次测量发生变化的瞳孔尺寸。接着,在步骤S308处,可以判断当前红光照射装置所使用的红光光束类型,即其是非匀化光束还是匀化光束。可以理解的是,这里的光束类型判断是可选的步骤。例如,对于只有一种类型光束的红光照射装置来说,则不存在该判断的步骤。
当照射的光束是非匀化(即光斑不匀化)光束时,此时的激光是高斯光束。因此,在步骤S310处,基于所述瞳孔尺寸、所述用户的红光照射入眼光功率以及非匀化光束功率-环带半径对应关系来确定所述光源功率。仅作为示例,高斯光束功率-环带半径(高斯光束功率-环带半径是指在环带半径为r的情况下,环带半径所覆盖范围内的光束总功率,当环带半径r表示瞳孔半径时,则高斯光束功率表示红光照射入眼光功率。)
具有如下式(2)所表达的对应关系:
其中Ps(r)表示红光照射入眼光功率,R表示激光光束的光斑半径,r表示瞳孔半径,Pa表示光源功率。假定红光照射装置的光束光斑直径为10mm,瞳孔尺寸缩小为直径2mm,假设光源功率Pa为1mW,则此时的入眼光功率为0.077mW。再假定期望2mm直径的瞳孔尺寸所对应的红光照射入眼光功率达到0.1mW,则根据式(2)可得红光照射装置的光源功率应调整为:1*0.1/0.077=1.3mW。
接着,在步骤S314处,可以基于红光照射入眼光功率来调节照射眼底的红光的光源功率。
当照射的光束是匀化光束时,则在步骤S312处,基于所述瞳孔尺寸、所述用户的红光照射入眼光功率以及所述匀化光束功率-环带半径对应关系来确定所述光源功率。具体地,在光斑匀化的情况系下,则半径为r的环带对应的功率为
Pr=Sr/SR×Pa  (3)
其中Pr为入眼功率,Pa为光斑总功率,Sr表示半径为r的瞳孔面积,而SR表示光斑半径为R的光斑面积。
仍假设匀化的光束光斑直径为10mm,光源功率Pa为1mW,则2mm瞳孔对应的红光照射入眼光功率Pr为0.04mW,如下式(4)所示:
Pr=1/52×1=1mW    (4)
假设期望2mm直径瞳孔对应的红光照射入眼光功率Pr达到0.1mW,则红光照射装置的光源功率Pa可以调整为:Pa=1*0.1/0.04=2.5mW。
接着,在步骤S314处,基于确定的光源功率来控制对用户眼底的红光照射。
结合图3所示出的方法300,本发明的方案针对不同的光束类型给出了控制红光光源功率的方案。可以理解的是,图3所示出的方法仅仅是示例性而非限制性的。基于本发明的公开和教导,本领域技术人员可以理解本发明的红光功率调节也可以采取其他的方式,而这些方式仍然在本发明的涵盖范围内。
图4是示出根据本发明实施例的用于对照射眼底的红光进行控制的装置400的原理框图。可以理解的是,该装置400可以执行结合图1-图3所描述的方法步骤。
如图4所示,本发明的装置400包括存储器402和处理器403,其中存储器可以存储有对用于近视理疗的红光照射进行控制的程序指令。附加地或可选地,存储器402也可以存储实现眼表图像的分析算法的代码。根据不同的实现场景,这里的处理器403可以是通用处理器或专用处理器(例如人工智能处理器)。进一步,当存储器402中的程序由处理器403执行时,装置将接收眼表图像404,并且执行结合图1-图3所描述的方法步骤,从而最终输出控制结果,以便用于控制红光照射装置的红光光源功率。
图5是示出根据本发明实施例的用于近视理疗的设备500的原理框图。如图中所示,该设备500包括可以用于执行前文结合图1-图3所描述的方法流程的装置400,该用于控制红光照射的装置400包括存储器402和处理器403。如前所述,存储器403存储有用于 对眼底的红光照射进行控制的程序指令,当该程序指令由处理器执行时,实现结合图1-图3所描述的方法步骤。
进一步,设备500还包括定位摄像头501和红光照射组件502,其中红光照射组件502可以构成本发明上下文中所称的红光照射装置。如前所述,在一个实施场景中,这里的定位摄像头可以是布置于红光照射组件两侧的两个定位摄像头,二者可以操作于实时或准实时地对眼球进行成像以生成眼球的眼表图像。在另一个实用场景中,定位摄像头还可以操作于对眼球特别是瞳孔进行定位,从而可以根据眼球的位置来准确地调整设备500的位置,以便对准眼球进行高效的红光照射。另外,根据定位摄像头的图像捕获,处理器403还可以确定用户在照射期间的配合度。该配合度例如可以涉及用户是否眯眼、半睁眼、闭眼或者头部倾斜。当检测到用户存在配合度偏差,即存在前述一种情况时,则设备500还可以经由其对外接口来执行语音播报或图文显示,从而提醒用户纠正当前配合度偏差,以便获得良好的红光照射和近视治疗效果。
在一个实施场景中,红光照射组件502包括红光光源,该光源可以是包含能发射出低强度红光(例如650纳米(“nm”)左右的红光)的激光头的各种光源器件。光源器件所发出的红光可以通过布置于光路上的例如准直透镜而穿过眼球的瞳孔并照射于眼底上,从而可以改善眼底的血液循环,促进视网膜色素上皮细胞分泌多巴胺。另外,可以使变薄的脉络膜恢复正常,并同时供给巩膜足够的氧,由此加强巩膜的强度。最终,可以达到抑制眼轴非正常增长的效果,从而实现对近视的有效防控和修正。
以红光照射期间的控制作为示例,在设备500的操作期间,可以首先启动用于控制红光照射的装置400,以准备对待使用的红光进行监测。接着,可以开启红光照射装置的红光照射组件,以便对眼底进行红光照射。在照射期间,可以启动定位摄像头对眼球的眼表进行图像捕获,从而获得眼表图像。
此后,装置400接收来自于定位摄像头的眼表图像,并且执行如图1-图3中所示出的流程步骤来执行对照射眼底的红光的控制。例如,当处理器403通过运行瞳孔定位代码确定瞳孔尺寸后,其可以通过计算确定或查表等方式来确定与该当前瞳孔尺寸相应的红光光源功率。此后,处理器403可以通过例如总线来与红光照射组件进行交互,以指示红光照射组件中的控制电路来调整红光光源发射的红光功率。替代地,处理器403也可以向设备500的移动机构(图中未示出)来发送指令,以便该移动机构可以移动红光光源到合适的位置,从而改变红光光源与眼表之间的距离。由此,从设备朝向近视患者眼部的视窗所射出的红光光源将以更为合适的分布通过瞳孔而进入眼底,从而提升红光照射的有效性。
在一些应用场景中,设备500还可以经由对外接口通过语音播报或图文显示的方式告知用户其眼球瞳孔当前的尺寸信息,以及将以多大的红光照射入眼光功率或入射光功率来对眼底进行照射。
以上结合图5对本发明的用于近视理疗的设备进行了详细地说明。然而,可以理解的是这里的描述仅仅是示例性的而非限制性的,基于本发明的公开,本领域技术人员可以理解对示出的设备进行改变。例如,尽管图中将红光照射装置和用于控制该红光照射装置的装置绘制在一起,但二者在一些应用场景中也可以是分离式的布置,例如红光照射装置布置于带视窗的镜筒内,而装置400可以布置于该设备的底座内,并且可以通过各种连接接口(例如无线、有线如串行总线接口)来进行连接。另外,在一些应用场景中,还可以将执行眼表图像分析、瞳孔尺寸大小确定和控制操作的处理布置于远程的服务器(例如云端服务器),从而减小了设备500的尺寸并且减小其运算成本。
在本说明书的上述描述中,除非另有明确的规定和限定,术语“固定”、“安装”、“相连”或“连接”等术语应该做广义的理解。例如,就术语“连接”来说,其可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,或者可以是两个元件内部的连通或两个元件的相互作用关系。 因此,除非本说明书另有明确的限定,本领域技术人员可以根据具体情况理解上述术语在本发明中的具体含义。
还应当理解,本文示例的执行指令的任何模块、单元、组件、服务器、计算机、终端或设备可以包括或以其他方式访问计算机可读介质,诸如存储介质、计算机存储介质或数据存储设备(可移除的)和/或不可移动的)例如磁盘、光盘或磁带。计算机存储介质可以包括以用于存储信息的任何方法或技术实现的易失性和非易失性,可移动和不可移动介质,例如计算机可读指令、数据结构、程序模块或其他数据。
另外,本说明书中所使用的术语“第一”或“第二”等用于指代编号或序数的术语仅用于描述目的,而不能理解为明示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”或“第二”的特征可以明示或者隐含地包括至少一个该特征。在本说明书的描述中,“多个”的含义是至少两个,例如两个,三个或更多个等,除非另有明确具体的限定。
虽然本说明书已经示出和描述了本发明的多个实施例,但对于本领域技术人员显而易见的是,这样的实施例只是以示例的方式提供的。本领域技术人员会在不偏离本发明思想和精神的情况下想到许多更改、改变和替代的方式。应当理解的是在实践本发明的过程中,可以采用对本文所描述的本发明实施例的各种替代方案。所附权利要求书旨在限定本发明的保护范围,并因此覆盖这些权利要求范围内的模块组成、等同或替代方案。

Claims (16)

  1. 一种用于近视理疗的红光照射控制方法,包括:
    获取用户的眼表图像;
    对所述眼表图像进行分析,以确定瞳孔的状态信息;以及
    基于所述瞳孔的状态信息以及所述用户的红光照射入眼光功率,来控制对所述用户的眼底的红光照射。
  2. 根据权利要求1所述的红光照射控制方法,其中所述获取用户的眼表图像包括:
    在对所述用户的眼底进行红光照射之前和/或进行红光照射期间,利用至少一个定位摄像头获取所述用户的眼表图像。
  3. 根据权利要求1所述的红光照射控制方法,其中对所述眼表图像进行分析,以确定瞳孔的状态信息包括:
    利用神经网络模型对所述眼表图像进行分析,以确定所述瞳孔的状态信息。
  4. 根据权利要求1所述的红光照射控制方法,其中所述瞳孔的状态信息包括所述瞳孔的尺寸。
  5. 根据权利要求4所述的红光照射控制方法,其中所述瞳孔的状态信息还包括所述瞳孔相对于红光照射组件的距离。
  6. 根据权利要求5所述的红光照射控制方法,其中所述瞳孔的状态信息还包括所述瞳孔相对于所述红光照射组件的位置和/或方向。
  7. 根据权利要求6所述的红光照射控制方法,还包括:
    响应于所述瞳孔相对于所述红光照射组件的位置和/或方向发生偏移,在至少一个移动方向上移动所述红光照射组件,以便对所述眼底进行垂直方向的红光照射。
  8. 根据权利要求4-7的任意一项所述的红光照射控制方法,其中基于所述瞳孔的状态信息以及所述用户的红光照射入眼光功率,来控制对所述用户的眼底的红光照射包括:
    基于所述瞳孔的尺寸以及所述用户的红光照射入眼光功率,确定所述红光照射组件的光源功率;以及
    基于所述红光照射组件的光源功率来控制对所述用户的眼底的红光照射。
  9. 根据权利要求8所述的红光照射控制方法,其中所述红光照射组件的光源包括非匀化光束,所述基于所述瞳孔的尺寸以及所述用户的红光照射入眼光功率,确定所述红光照射组件的光源功率包括:
    基于所述瞳孔尺寸、所述用户的红光照射入眼光功率以及非匀化光束功率-环带半径对应关系来确定所述光源功率。
  10. 根据权利要求8所述的红光照射控制方法,其中所述红光照射组件的光源包括匀化光束,所述基于所述瞳孔的尺寸以及所述用户的红光照射入眼光功率,确定所述红光照射组件的光源功率包括:
    基于所述瞳孔尺寸、所述用户的红光照射入眼光功率以及所述匀化光束功率-环带半径对应关系来确定所述光源功率。
  11. 根据权利要求8所述的红光照射控制方法,其中基于所述瞳孔的状态信息以及所述用户的红光照射入眼光功率,来控制对所述用户的眼底的红光照射还包括:
    基于所述瞳孔的尺寸、所述瞳孔相对于红光照射组件的距离、以及所述用户的红光照射入眼光功率,确定所述红光照射组件的光源功率。
  12. 根据权利要求8所述的红光照射控制方法,其中所述红光照射组件的光源功率范围为0.1mw至1.7mw。
  13. 根据权利要求12所述的红光照射控制方法,光源的光谱为窄带红光或红外光,其中心波长在630-850nm范围内,光谱的宽度(半高全宽)不超过20nm。
  14. 一种用于近视理疗的红光照射控制的装置,包括:
    处理器;以及
    存储器,其上存储有用于对照射眼底的红光进行控制的程序指令,当所述程序指令由处理器执行时,实现根据权利要求1-13的任意一项所述的方法。
  15. 一种用于近视理疗的设备,包括:
    定位摄像头,其用于对用户的眼表进行拍照,以生成眼表图像;
    红光照射组件,其用于对所述用户的眼底进行红光照射以便进行近视理疗;以及
    根据权利要求14所述的装置,其分别与所述定位摄像头和所述红光照射组件连接,以用于对照射眼底的红光进行控制。
  16. 一种计算机可读存储介质,其上存储有对用于近视理疗的红光照射进行控制的程序指令,当所述程序指令由处理器执行时,实现根据权利要求1-13的任意一项所述的方法。
PCT/CN2023/107768 2022-07-15 2023-07-17 用于近视理疗的红光照射控制方法及其相关产品 WO2024012593A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210832712.4A CN114887233B (zh) 2022-07-15 2022-07-15 用于近视理疗的红光照射控制装置及其相关产品
CN202210832712.4 2022-07-15

Publications (1)

Publication Number Publication Date
WO2024012593A1 true WO2024012593A1 (zh) 2024-01-18

Family

ID=82729526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107768 WO2024012593A1 (zh) 2022-07-15 2023-07-17 用于近视理疗的红光照射控制方法及其相关产品

Country Status (2)

Country Link
CN (1) CN114887233B (zh)
WO (1) WO2024012593A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114887233B (zh) * 2022-07-15 2023-04-11 北京鹰瞳科技发展股份有限公司 用于近视理疗的红光照射控制装置及其相关产品
CN116212250A (zh) * 2022-12-09 2023-06-06 北京鹰瞳科技发展股份有限公司 一种设备控制方法、装置、***、电子设备及存储介质
CN116570843B (zh) * 2023-07-12 2023-09-29 北京市眼科研究所 一种近视治疗装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112220447A (zh) * 2020-10-14 2021-01-15 上海鹰瞳医疗科技有限公司 眼底相机及眼底图像拍摄方法
WO2021044540A1 (ja) * 2019-09-04 2021-03-11 日本電気株式会社 制御装置、制御方法及び記憶媒体
CN114209990A (zh) * 2021-12-24 2022-03-22 艾视雅健康科技(苏州)有限公司 一种实时分析医疗装置的入眼有效功的方法及装置
CN114272519A (zh) * 2021-12-24 2022-04-05 艾视雅健康科技(苏州)有限公司 一种自适应调节医疗装置光能量源位置的方法及其装置
CN114887232A (zh) * 2022-07-15 2022-08-12 北京鹰瞳科技发展股份有限公司 用于对眼底的红光照射进行控制的方法及其相关产品
CN114887233A (zh) * 2022-07-15 2022-08-12 北京鹰瞳科技发展股份有限公司 用于近视理疗的红光照射控制方法及其相关产品
CN115245311A (zh) * 2022-07-15 2022-10-28 北京鹰瞳科技发展股份有限公司 一种用于眼部的多功能装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3978024B2 (ja) * 2001-12-03 2007-09-19 株式会社ニデック 眼科装置及び角膜手術装置
JP4080379B2 (ja) * 2003-05-30 2008-04-23 株式会社ニデック 眼科用レーザ装置
WO2020093060A2 (en) * 2018-11-02 2020-05-07 Aleyegn Technologies Llc Laser therapy for treatment and prevention of eye diseases
CN111265392B (zh) * 2020-02-27 2022-05-03 深圳市视界智造科技有限公司 一种弱视治疗***
TWI722945B (zh) * 2020-07-21 2021-03-21 林芸萱 具紅光及近紅外光多波段眼部活化裝置及其操作方法
CN112057749B (zh) * 2020-10-14 2022-03-22 爱眼(广州)医疗科技有限公司 基于红光激光照射的双目眼轴平衡近视治疗仪
CN215136026U (zh) * 2021-03-31 2021-12-14 汪少辉 一种光照均匀的眼部治疗仪
CN114642834B (zh) * 2022-05-18 2022-08-16 欧普康视科技股份有限公司 一种近视防控的光疗装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021044540A1 (ja) * 2019-09-04 2021-03-11 日本電気株式会社 制御装置、制御方法及び記憶媒体
CN112220447A (zh) * 2020-10-14 2021-01-15 上海鹰瞳医疗科技有限公司 眼底相机及眼底图像拍摄方法
CN114209990A (zh) * 2021-12-24 2022-03-22 艾视雅健康科技(苏州)有限公司 一种实时分析医疗装置的入眼有效功的方法及装置
CN114272519A (zh) * 2021-12-24 2022-04-05 艾视雅健康科技(苏州)有限公司 一种自适应调节医疗装置光能量源位置的方法及其装置
CN114887232A (zh) * 2022-07-15 2022-08-12 北京鹰瞳科技发展股份有限公司 用于对眼底的红光照射进行控制的方法及其相关产品
CN114887233A (zh) * 2022-07-15 2022-08-12 北京鹰瞳科技发展股份有限公司 用于近视理疗的红光照射控制方法及其相关产品
CN115245311A (zh) * 2022-07-15 2022-10-28 北京鹰瞳科技发展股份有限公司 一种用于眼部的多功能装置

Also Published As

Publication number Publication date
CN114887233B (zh) 2023-04-11
CN114887233A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
WO2024012593A1 (zh) 用于近视理疗的红光照射控制方法及其相关产品
US9931171B1 (en) Laser treatment of an eye structure or a body surface from a remote location
US8602555B2 (en) Method and system for treating binocular anomalies
US20210325649A1 (en) System and method to automatically adjust illumination during a microsurgical procedure
NZ773842A (en) Methods and systems for diagnosing and treating health ailments
US20150371383A1 (en) System and apparatus for providing ophthalmic images for diagnosis and treatment
JP7352905B2 (ja) 視覚検査装置及び視覚検査方法
EP3509546B1 (en) Systems for obtaining iris registration and pupil centration for laser surgery
US9037217B1 (en) Laser coagulation of an eye structure or a body surface from a remote location
CN114887232B (zh) 对眼底的红光照射进行控制的装置及近视理疗设备
US6585724B2 (en) Ophthalmic surgery apparatus
US20220076417A1 (en) Vision screening systems and methods
US11445904B2 (en) Joint determination of accommodation and vergence
US9125599B2 (en) Systems and methods for balancing infrared illumination in eye imaging
JP2024063237A (ja) 眼の治療中の眼球追跡のためのシステム及び方法
CN117679246A (zh) 用于处理晶状体状况的激光方法和***
US9510974B1 (en) Laser coagulation of an eye structure or a body surface from a remote location
US20170100285A1 (en) Photocoagulation with closed-loop control
CN114041923B (zh) 一种高压氧眼罩的眼部治疗方法、设备及介质
TW201914644A (zh) 用於雷射角膜治療的雷射脈衝調製
WO2022123237A1 (en) Vision aid device
EP3925519B1 (en) Vision screening systems and methods
CN116570843B (zh) 一种近视治疗装置
US20230190097A1 (en) Cataract detection and assessment
KR102243332B1 (ko) 이동단말기를 이용한 동공검사용 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839079

Country of ref document: EP

Kind code of ref document: A1