WO2024009628A1 - Electrochemical sensor and electrochemical sensor system - Google Patents

Electrochemical sensor and electrochemical sensor system Download PDF

Info

Publication number
WO2024009628A1
WO2024009628A1 PCT/JP2023/018726 JP2023018726W WO2024009628A1 WO 2024009628 A1 WO2024009628 A1 WO 2024009628A1 JP 2023018726 W JP2023018726 W JP 2023018726W WO 2024009628 A1 WO2024009628 A1 WO 2024009628A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrodes
circuit
electrochemical sensor
bdd
Prior art date
Application number
PCT/JP2023/018726
Other languages
French (fr)
Japanese (ja)
Inventor
香 栗原
浩二 中村
真佐知 柴田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2024009628A1 publication Critical patent/WO2024009628A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present invention relates to an electrochemical sensor and an electrochemical sensor system.
  • an electrochemical sensor for measuring the ozone concentration of ozonated water there is one in which the three electrodes of a working electrode, a counter electrode, and a reference electrode are constituted by conductive diamond electrodes (see, for example, Patent Document 1).
  • Such an electrochemical sensor measures the ozone concentration by measuring the current value between the working electrode and the counter electrode with at least the working electrode and the counter electrode in contact with ozonated water.
  • the working electrode and the counter electrode are arranged so that they are adjacent to each other (so that the distance between them is short) among the three electrodes arranged in parallel (for example, as shown in "Fig. 9 of Patent Document 1"). "reference).
  • Electrochemical sensors detect the movement of electrons due to electrochemical reactions (e.g. redox reactions) in a test liquid (e.g. ozone water) using three electrodes (especially a working electrode and a counter electrode). , the concentration of a specific component (for example, ozone) in the test liquid is measured. Therefore, the concentration measurement result by the electrochemical sensor can be affected by the state (for example, surface state) of each electrode. In this case, if the function of each electrode is fixed, there is a risk that desired measurement accuracy may not be obtained or measurement sensitivity may decrease due to individual differences in each electrode or condition deterioration due to use.
  • a test liquid e.g. ozone water
  • the concentration measurement result by the electrochemical sensor can be affected by the state (for example, surface state) of each electrode. In this case, if the function of each electrode is fixed, there is a risk that desired measurement accuracy may not be obtained or measurement sensitivity may decrease due to individual differences in each electrode or condition deterioration due to use.
  • the present disclosure makes it possible to flexibly switch the function of each electrode by devising the arrangement of the three-electrode electrodes that make up the electrochemical sensor, thereby making it possible to improve measurement accuracy and suppress decreases in measurement sensitivity.
  • An electrochemical sensor used for measuring the concentration of a specific component in a test liquid comprising at least three electrodes disposed on the same substrate, At least two of the three electrodes are constituted by diamond electrodes having the same structure and shape, Each of the two electrodes functions as either a working electrode or a counter electrode, and one of the three electrodes other than the two electrodes functions as a reference electrode,
  • the two electrodes are an electrochemical sensor in which each of the two electrodes is arranged at a line-symmetrical position with an imaginary line passing through a predetermined electrode reference point in the one electrode as an axis of symmetry.
  • the technology of the present disclosure it is possible to flexibly respond to switching of at least the functions of the working electrode and the counter electrode, and it is possible to improve measurement accuracy and suppress a decrease in measurement sensitivity.
  • FIG. 1 is a perspective view showing a schematic configuration example of an electrochemical sensor according to a first embodiment of the present disclosure.
  • 2 is a sectional view taken along line AA of the electrochemical sensor shown in FIG. 1.
  • FIG. FIG. 2 is an explanatory diagram schematically showing a specific example of electrode arrangement in the electrochemical sensor according to the first embodiment of the present disclosure.
  • FIG. 3 is an explanatory diagram (Part 1) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the first embodiment of the present disclosure.
  • FIG. 2 is an explanatory diagram (part 2) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the first embodiment of the present disclosure.
  • FIG. 3 is an explanatory diagram (part 3) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the first embodiment of the present disclosure.
  • FIG. 4 is an explanatory diagram (part 4) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the first embodiment of the present disclosure.
  • FIG. 1 is a block diagram showing an example of a functional configuration of an electrochemical sensor system according to a first embodiment of the present disclosure.
  • FIG. 3 is a time chart diagram illustrating a specific example of processing operations in the electrochemical sensor system according to the first embodiment of the present disclosure.
  • FIG. 7 is a time chart diagram showing another specific example of the processing operation in the electrochemical sensor system according to the first embodiment of the present disclosure.
  • FIG. 7 is an explanatory diagram schematically showing a specific example of electrode arrangement in an electrochemical sensor according to a second embodiment of the present disclosure.
  • FIG. 7 is an explanatory diagram (Part 1) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the second embodiment of the present disclosure.
  • FIG. 7 is an explanatory diagram (Part 2) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the second embodiment of the present disclosure.
  • FIG. 3 is an explanatory diagram (part 1) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure.
  • FIG. 7 is an explanatory diagram (Part 2) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure.
  • FIG. 3 is an explanatory diagram (Part 3) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure, in which (a) is a top view, (b) is a side view, and (c) is a bottom view.
  • FIG. 4 is an explanatory diagram (No. 4) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure.
  • FIG. 5 is an explanatory diagram (No. 5) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure.
  • FIG. 6 is an explanatory diagram (No. 6) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure.
  • FIG. 4 is an explanatory diagram (No. 4) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure.
  • FIG. 5 is an explanatory diagram (No. 5) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure.
  • FIG. 6
  • FIG. 1 is a perspective view showing a specific example of the configuration of an electrochemical sensor according to the present disclosure.
  • 21 is a six-sided view of the electrochemical sensor of FIG. 20, in which (a) is a top view, (b) is a front view, (c) is a bottom view, (d) is a rear view, (e) is a right side view, (f) is a left side view.
  • the electrochemical sensor described in this embodiment is used to measure the concentration of a specific component in a test liquid.
  • the test liquid is, for example, ozone water in which ozone (O 3 ) is dissolved in water (tap water, etc.).
  • the specific component is, for example, ozone dissolved in ozone water.
  • Concentration measurement is performed using, for example, linear sweep voltammetry (LSV). That is, the electrochemical sensor in this embodiment measures the ozone concentration (O 3 concentration) in ozone water using LSV.
  • LSV linear sweep voltammetry
  • FIG. 1 is a perspective view showing a schematic configuration example of an electrochemical sensor according to a first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view taken along line AA of the electrochemical sensor shown in FIG.
  • the electrochemical sensor 1 includes three electrodes 21, 22, and 23 arranged on a support substrate 10 that is the same base material (that is, one base material). ing. Moreover, on the surface on which the electrodes 21, 22, 23 are arranged on the support substrate (hereinafter also simply referred to as "substrate") 10, there are three wirings (electrical wiring) that are electrically connected to each of the electrodes 21, 22, 23. 31, 32, and 33 are arranged apart from each other. The wirings 31, 32, 33 on the substrate 10 are insulated so that the test liquid does not come into contact with the wirings 31, 32, 33 when the electrodes 21, 22, 23 are brought into contact with the test liquid. It is covered with a waterproof member 40 made of a plastic material or the like.
  • the substrate 10 supports each of the electrodes 21, 22, and 23, and is formed as a rectangular sheet-like (plate-like) member extending in the longitudinal direction.
  • the substrate 10 can be made of an insulating material such as composite resin, ceramic, glass, or plastic, which has insulating properties.
  • the substrate 10 is preferably made of, for example, glass epoxy resin or polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the substrate 10 may be a semiconductor substrate or a metal substrate configured such that the surfaces on which the electrodes 21, 22, and 23 are arranged have insulating properties.
  • the substrate 10 has predetermined physical strength and mechanical strength, such as strength that will not bend or break while measuring the O 3 concentration in the test liquid.
  • Electrode configuration The electrodes 21, 22, and 23 are arranged along the lateral direction of the substrate 10. Note that the planar arrangement of each electrode 21, 22, 23 will be described in detail later.
  • the two electrodes 21, 22, 23 lined up on the substrate 10 each function as either a working electrode or a counter electrode. Further, one electrode 23 other than these two electrodes 21 and 22, that is, one electrode 23 located between the two electrodes 21 and 22, functions as a reference electrode.
  • a BDD electrode is a diamond film doped with boron at a high concentration to give it metallic properties, and is used as an electrode for electrochemistry, and here it is used in the form of a chip.
  • the BDD electrode used this time is a chip-shaped electrode (electrode tip) that includes an electrode film 24 made of a metal polycrystalline diamond film or the like, and a conductive substrate (hereinafter also simply referred to as "substrate”) 25. .
  • the BDD electrode is configured as a vertical electrode that conducts from the back surface of the substrate 25 (that is, the surface opposite to the surface on which the electrode film 24 is provided).
  • each BDD electrodes are each BDD electrodes, and in addition, each has the same structure and shape.
  • the "same structure” here means that each has the same laminated structure, that is, each has a laminated structure including the electrode film 24 and the substrate 25.
  • the "same shape” here means that each chip has the same planar shape, that is, the detection surfaces that function as electrodes have the same planar shape and area, and the figures drawn by each planar shape are congruent. It means that.
  • one BDD electrode of the two electrodes 21 and 22 that functions as either a working electrode or a counter electrode is also referred to as a first diamond electrode (first BDD electrode) 21, and the two electrodes are The other BDD electrode of the electrodes 21 and 22 is also referred to as a second diamond electrode (second BDD electrode) 22.
  • the BDD electrode, which is one electrode 23 that functions as a reference electrode is also referred to as a third diamond electrode (third BDD electrode) 23.
  • These first BDD electrode 21, second BDD electrode 22, and third BDD electrode 23 may be collectively referred to as an electrode group 20.
  • These first to third BDD electrodes 21 to 23 are each configured to include an electrode film 24 and a conductive substrate 25, as described above.
  • the electrode film 24 is made of polycrystalline diamond.
  • the electrode film 24 is a polycrystalline film (polycrystalline diamond film) made of a diamond crystal containing boron (B) as a dopant, that is, a diamond crystal having p-type conductivity.
  • a diamond crystal is a crystal in which carbon (C) atoms are arranged in a pattern called a diamond crystal structure.
  • the electrode film 24 may be a diamond-like carbon (DLC) film doped with B.
  • the B concentration in the electrode film 24 can be measured by secondary ion mass spectrometry (SIMS), and can be set to, for example, 5 ⁇ 10 19 cm ⁇ 3 or more and 5 ⁇ 10 21 cm ⁇ 3 or less.
  • SIMS secondary ion mass spectrometry
  • SIMS is a method of measuring the concentration of a predetermined substance by detecting ions (secondary ions) generated when the surface of the electrode film 24 is irradiated with a beam of ions (primary ions) using a mass spectrometer. .
  • the electrode film 24 is provided on one of the two main surfaces of the substrate 25.
  • the main surface of the substrate 25 on which the electrode film 24 is provided is also referred to as the "crystal growth surface of the substrate 25.”
  • the electrode film 24 is provided over the entire crystal growth surface of the substrate 25.
  • the electrode film 24 causes a predetermined electrochemical reaction (for example, an ozone redox reaction) on its surface (exposed surface).
  • the electrode film 24 can be grown (deposited, synthesized) by a chemical vapor deposition (CVD) method, a physical vapor deposition (PVD) method, or the like.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • Examples of the CVD method include a hot filament CVD method using a tungsten filament, a plasma CVD method, and the like
  • examples of the PVD method include an ion beam method, an ionized vapor deposition method, and the like.
  • the thickness of the electrode film 24 can be, for example, 0.5 ⁇ m or more and 10 ⁇ m or less, preferably 1 ⁇ m or more and 6 ⁇ m or less, and more preferably 2 ⁇ m or more and 4 ⁇ m or less.
  • a flat substrate made of a low resistance material is used.
  • a substrate that is composed of silicon (Si) as a main element and contains a p-type dopant such as boron (B) at a predetermined concentration, such as a p-type single crystal Si substrate can be used.
  • a p-type polycrystalline Si substrate can also be used.
  • the B concentration in the substrate 25 is, for example, 5 ⁇ 10 18 cm ⁇ 3 or more and 1.5 ⁇ 10 20 cm ⁇ 3 or less, preferably 5 ⁇ 10 18 cm ⁇ 3 or more and 1.2 ⁇ 10 20 cm ⁇ 3 or less. Can be done.
  • the thickness of the substrate 25 can be, for example, 350 ⁇ m or more. This makes it possible to use a commercially available single-crystal Si substrate with a diameter of 6 inches or 8 inches as it is as the substrate 25 without back lapping and adjusting the thickness. As a result, it becomes possible to increase the productivity of BDD electrodes and reduce manufacturing costs.
  • the upper limit of the thickness of the substrate 25 is not particularly limited, the thickness of a Si substrate generally available on the market at present is about 775 ⁇ m for a single crystal Si substrate with a diameter of 12 inches. Therefore, the upper limit of the thickness of the substrate 25 in the current technology can be, for example, about 775 ⁇ m.
  • a substrate other than a substrate composed of Si as a main element can also be used.
  • a substrate configured using a Si compound such as a silicon carbide substrate (SiC substrate) can also be used.
  • a metal substrate composed of niobium (Nb), molybdenum (Mo), titanium (Ti), or the like as a main element as the substrate 25.
  • a metal substrate is used, leakage current is likely to occur, so it is preferable to use a Si substrate as the substrate 25.
  • the first to third BDD electrodes 21 to 23 configured as described above can be formed using a known film forming method.
  • Wirings 31, 32, and 33 are arranged on the support substrate 10 from one end to the other end in the longitudinal direction of the substrate 10.
  • the materials for forming the wirings 31, 32, and 33 include various noble metals such as copper (Cu), gold (Au), platinum (Pt), silver (Ag), and palladium (Pd), aluminum (Al), and iron (Fe). , various metals such as nickel (Ni), chromium (Cr), and titanium (Ti), alloys containing these noble metals or metals as main components, oxides of the above noble metals, metals, or alloys, and carbon.
  • the wirings 31, 32, and 33 may be formed using the same material, or may be formed using different materials.
  • the wirings 31, 32, and 33 can be formed by a subtractive method, a semi-additive method, or the like. Moreover, the wirings 31, 32, and 33 can also be formed by a printing method such as screen printing, gravure printing, offset printing, or inkjet printing, or a vapor deposition method.
  • the first BDD electrode 21 is electrically connected to one end of the wiring 31 via a conductive bonding material 34 (see FIG. 2).
  • the second BDD electrode 22 is electrically connected to one end of the wiring 32 via a conductive bonding material 34 .
  • the third BDD electrode 23 is electrically connected to one end of the wiring 33 via a conductive bonding material 34 .
  • As the bonding material 34 a conductive paste (conductive adhesive), a conductive tape, or the like can be used.
  • the metals used in the metallization process include Au, Ag, Pt, Cu, Al, magnesium (Mg), Ni, Ti, Mo, tungsten (W), and their laminates and alloys, which are used to mount semiconductor chips. It is possible to apply technology. By performing the metallization process, the connection resistance between the conductive substrate 25 and the bonding material 34 can be lowered, and the bonding strength can be increased.
  • each BDD electrode 21, 22, and 23 By connecting the substrate 25 side of the first BDD electrode 21, second BDD electrode 22, and third BDD electrode 23 to the wirings 31, 32, and 33, electrical wiring can be provided on the surface side of each BDD electrode 21, 22, and 23.
  • no matter which electrode 21, 22, 23 is used as a working electrode the ozone diffusion path around each BDD electrode 21, 22, 23 during ozone concentration measurement can be made to be the same. No matter which electrode 21, 22, 23 is used as a working electrode, ozone concentration can be measured with an equivalent circuit.
  • the area around the joint between the first BDD electrode 21 and the wiring 31, the area around the joint between the second BDD electrode 22 and the wiring 32, and the area around the joint between the third BDD electrode 23 and the wiring 33 are as follows: It is sealed with an insulating resin 35 (see FIG. 2).
  • the insulating resin 35 can be made of thermosetting resin or ultraviolet curable resin.
  • thermosetting resin or ultraviolet curable resin epoxy-based insulating resin, novolac-based insulating resin, etc. can be used.
  • the insulating resin 35 is, for example, a liquid insulating resin before curing (hereinafter also referred to as "liquid resin") around each bonding material 34, the first BDD electrode 21, the second BDD electrode 22, and the third BDD electrode 22.
  • the liquid resin can be provided by applying the liquid resin around each of the BDD electrodes 23 and curing the liquid resin by heating or irradiating ultraviolet rays.
  • the application and curing of the liquid resin is performed by electrically connecting the first BDD electrode 21 and the wiring 31, electrically connecting the second BDD electrode 22 and the wiring 32, and electrically connecting the third BDD electrode 23 and the wiring 33. This is done after electrically connecting the
  • the liquid resin is applied so as to cover the bonding material 34, the side surface of the first BDD electrode 21, the side surface of the second BDD electrode 22, and the side surface of the third BDD electrode 23 without exposing them.
  • the liquid resin is applied so as not to adhere to the surface of the first BDD electrode 21, the surface of the second BDD electrode 22, and the surface of the third BDD electrode 23.
  • the surface of the first BDD electrode 21", “the surface of the second BDD electrode 22", and “the surface of the third BDD electrode 23” respectively mean the surface of the electrode film 24 of each electrode, and the specific Specifically, of the two main surfaces of the electrode film 24, it refers to the surface opposite to the surface in contact with the substrate 25.
  • the "surface of the first BDD electrode 21," the “surface of the second BDD electrode 22,” and the “surface of the third BDD electrode 23” are surfaces (detection surfaces) that contribute to the detection of ozone in the test liquid. I can say that.
  • the wiring 31, which is connected to each electrode 21 and 22, 32, the bonding material 34 that electrically connects each electrode 21, 22 and each wiring 31, 32, and the insulating resin 35 that seals the periphery of these bonded parts 34 have the same structure (material ), preferably have the same shape. This is because the first circuit 52 and the second circuit 53, which will be described later, can be equivalent.
  • Electrode arrangement Next, the arrangement of the electrodes 21, 22, 23 on the support substrate 10 in the electrochemical sensor 1 having the above-described configuration will be described using a specific example.
  • FIG. 3 is an explanatory diagram schematically showing a specific example of electrode arrangement in the electrochemical sensor according to the first embodiment of the present disclosure.
  • the three electrodes 21, 22, 23, the first BDD electrode 21, the second BDD electrode 22, and the third BDD electrode 23, are arranged along the width direction of the substrate 10. They are arranged side by side. More specifically, the first BDD electrode 21 and the second BDD electrode 22 are arranged in parallel so that the third BDD electrode 23 is located between them.
  • each electrode 21, 22, 23 can be, for example, a rectangular shape with long sides arranged along the longitudinal direction of the substrate 10, but is not limited to this, and can be square or circular. It doesn't matter what shape it is. However, at least the first BDD electrode 21 and the second BDD electrode 22, preferably all of the first BDD electrode 21 to third BDD electrode 23, have the same planar shape.
  • each electrode 21, 22, 23 is not particularly limited, but is, for example, 1 mm 2 or more, preferably 4 mm 2 or more, more preferably 10 mm 2 or more, still more preferably 20 mm 2 or more, and preferably It is 100 mm 2 or less, more preferably 50 mm 2 or less.
  • the "flat area” herein refers to the area when each electrode 21, 22, 23 is viewed from above in the vertical direction with respect to the main surface of the substrate 10, and is the area that contributes to the detection of ozone in the test liquid. (detection surface). If the planar area of each electrode 21, 22, 23 is 1 mm2 or more, the electrodes 21, 22, 23 can be easily manufactured accurately, stably, and the reduction in handling property and mounting stability can be avoided.
  • each electrode 21, 22, 23 is 100 mm 2 or less, it is possible to avoid increasing the size of the electrochemical sensor 1, that is, it becomes easier to obtain a small electrochemical sensor 1. Furthermore, since the planar area of each electrode 21, 22, 23 is 50 mm 2 or less, it is possible to reliably avoid increasing the size of the sensor 1 while obtaining a highly sensitive sensor 1.
  • the first BDD electrode 21 and the second BDD electrode 22 are located at a predetermined electrode reference point 26 in the third BDD electrode 23 located between them. Each is arranged at a line-symmetrical position with an imaginary line 27 passing through the axis of symmetry as an axis of symmetry.
  • the "predetermined electrode reference point 26 in the third BDD electrode 23" is a point that serves as a preset position reference for the third BDD electrode 23.
  • the center point or center point of the third BDD electrode 23 in its planar shape can be exemplified as the electrode reference point 26.
  • the “imaginary line 27 passing through the electrode reference point 26” is a line assumed to pass through the electrode reference point 26. Specifically, a straight line passing through the electrode reference point 26 and extending along the longitudinal direction of the substrate 10 can be exemplified as the virtual line 27 passing through the electrode reference point 26.
  • the first BDD electrode 21 and the second BDD electrode 22 are arranged in line-symmetrical positions with the virtual line 27 passing through the electrode reference point 26 of the third BDD electrode 23 as the axis of symmetry. ing. Therefore, in addition to each having the same planar shape, the first BDD electrode 21 and the second BDD electrode 22 are located at the same distance from the virtual line 27 passing through the electrode reference point 26 of the third BDD electrode 23. It will be placed in .
  • the substrate 10 on which the electrodes 21, 22, and 23 are arranged is also preferably formed into a symmetrical planar shape.
  • the planar shape of the substrate 10 has symmetry with the virtual line 27 passing through the electrode reference point 26 of the third BDD electrode 23 as an axis of symmetry.
  • the virtual line 27 passing through the electrode reference point 26 of the third BDD electrode 23 on the substrate 10 passes through the center of the substrate 10 in the transverse direction.
  • the corner treatment portion 11 is configured to form a virtual line 27 passing through the electrode reference point 26 of the third BDD electrode 23. They will be located on each side of the sandwich.
  • the first BDD electrode 21 to the third BDD electrode 23 are arranged so as to be arranged along the width direction of the substrate 10.
  • the arrangement is not limited to this. That is, each electrode 21, 22, 23 may be arranged in another manner as long as the first BDD electrode 21 and the second BDD electrode 22 are line symmetrical.
  • FIG. 4 is an explanatory diagram (Part 1) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the first embodiment of the present disclosure.
  • the first to third BDD electrodes 21 to 23 are arranged on the substrate 10 so as to be lined up along the longitudinal direction of the substrate 10.
  • the first BDD electrode 21 and the second BDD electrode 22 are aligned with an imaginary line 27 passing through the electrode reference point 26 of the third BDD electrode 23 located between the first BDD electrode 21 and the second BDD electrode 22 as an axis of symmetry. and are arranged in line-symmetrical positions.
  • the virtual line 27 serving as the axis of symmetry is arranged to extend along the lateral direction of the substrate 10.
  • the first BDD electrode 21 and the second BDD electrode 22 each have the same planar shape, and each has a virtual shape passing through the electrode reference point 26 of the third BDD electrode 23. This means that they are placed at positions equidistant from line 27.
  • FIG. 5 is an explanatory diagram (part 2) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the first embodiment of the present disclosure.
  • the first BDD electrode 21 and the second BDD electrode 22 are lined up along the width direction of the substrate 10, but the third BDD electrode 23 is separated from the line.
  • Each electrode 21, 22, 23 is arranged so that The first BDD electrode 21 and the second BDD electrode 22 are arranged in line-symmetrical positions with an imaginary line 27 passing through the electrode reference point 26 of the third BDD electrode 23 as an axis of symmetry. Even in the case of such an arrangement, the first BDD electrode 21 and the second BDD electrode 22 each have the same planar shape, and each has a virtual shape passing through the electrode reference point 26 of the third BDD electrode 23. This means that they are placed at positions equidistant from line 27. With this arrangement, the distance between the first BDD electrode 21 and the second BDD electrode 22 can be made closer than when the first BDD electrode 21 to the third BDD electrode 23 are lined up in a row. Therefore, the electrochemical sensor 1 can be made more compact.
  • FIG. 6 is an explanatory diagram (Part 3) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the first embodiment of the present disclosure.
  • FIG. 7 is an explanatory diagram (No. 4) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the first embodiment of the present disclosure.
  • the third BDD electrode 23 functioning as a reference electrode is formed in a planar shape different from that of the first BDD electrode 21 and the second BDD electrode 22.
  • first BDD electrode 21 and the second BDD electrode 22 are arranged at symmetrical positions with respect to an imaginary line 27 passing through the electrode reference point 26 of the third BDD electrode 23 as an axis of symmetry. Even in the case of such an arrangement, the first BDD electrode 21 and the second BDD electrode 22 each have the same planar shape, and each has a virtual shape passing through the electrode reference point 26 of the third BDD electrode 23. This means that they are placed at positions equidistant from line 27.
  • FIG. 8 is a block diagram showing an example of the functional configuration of the electrochemical sensor system according to the first embodiment of the present disclosure.
  • the electrochemical sensor system (hereinafter also simply referred to as "system") includes an electrochemical measuring device 2 in addition to the electrochemical sensor 1.
  • a computer device 3 is connected to the electrochemical measurement device 2 . Note that the electrochemical measuring device 2 and the computer device 3 may be configured as an integrated device.
  • the electrochemical sensor 1 includes the first BDD electrode 21, the second BDD electrode 22, and the third BDD electrode 23.
  • the first BDD electrode 21 functions as either a working electrode or a counter electrode.
  • the second BDD electrode 22 also functions as either a working electrode or a counter electrode.
  • the first BDD electrode 21 and the second BDD electrode 22 function as different electrodes.
  • the third BDD electrode 23 functions as a reference electrode.
  • the electrochemical measuring device (hereinafter also simply referred to as “measuring device”) 2 has the function of, for example, a potentiostat, and controls the electrochemical reaction at each electrode 21, 22, 23 in contact with the test liquid. , and is used to measure the potential and current.
  • the measuring device 2 in this embodiment includes an electrochemical measuring circuit (hereinafter also simply referred to as a "measuring circuit") 51, a first circuit 52, a second circuit 53, and a selection circuit 54. There is.
  • the measurement circuit 51 applies a voltage between the working electrode and the counter electrode by controlling the voltage applied to each electrode 21, 22, 23, and makes it possible to sweep the potential of the working electrode with reference to the potential of the reference electrode. It is. Furthermore, the measurement circuit 51 measures the current value flowing between the working electrode and the counter electrode in accordance with the electrochemical reaction occurring at the working electrode. That is, the measurement circuit 51 performs electrochemical measurement using the three-electrode method using LSV. For details of the LSV, a known technique may be used, and the explanation thereof will be omitted here.
  • the first circuit 52 includes wirings 31 and 32 in the electrochemical sensor 1 such that one of the two electrodes 21 and 22 that functions as either a working electrode or a counter electrode is used as a working electrode and the other as a counter electrode. and the measurement circuit 51 are electrically connected to each other. Specifically, the first circuit 52 connects each wiring 31, 32 and the measurement circuit 51 so that the first BDD electrode 21 functions as a working electrode and the second BDD electrode 22 functions as a counter electrode. It is made up of circuit patterns.
  • the second circuit 53 connects the wirings 31 and 32 in the electrochemical sensor 1 to the measurement electrode so that one of the two electrodes 21 and 22 functions as a counter electrode and the other functions as a working electrode. It electrically connects with the circuit 51. Specifically, the second circuit 53 connects each wiring 31, 32 and the measurement circuit 51 so that the first BDD electrode 21 functions as a counter electrode and the second BDD electrode 22 functions as a working electrode. It is made up of circuit patterns.
  • the wiring in the electrochemical sensor 1 is arranged so that the third BDD electrode 23, which is one electrode 23 other than the two electrodes 21 and 22, functions as a reference electrode. 33 and the measurement circuit 51 are connected to each other.
  • first circuit 52 and the second circuit 53 are equivalent circuits.
  • An equivalent circuit means that the electric circuit used for electrochemical measurement is equivalent, and that the electrochemical reaction during measurement proceeds in an equivalent environment.
  • the shape of each electrode connected to each circuit, the area of the electrode contributing to the reaction, the arrangement of each electrode (equal or symmetrical arrangement), the spacing, etc. must be the same. Must be.
  • the selection circuit 54 selects either the first circuit 52 or the second circuit 53 to connect each wiring 31, 32, 33 in the electrochemical sensor 1 and the measurement circuit when applying a voltage and measuring a current value by the measurement circuit 51. 51 to establish an electrical connection with it. In other words, the selection circuit 54 switches between the first circuit 52 and the second circuit 53 to establish the electrical connection between each of the wirings 31, 32, 33 and the measurement circuit 51.
  • the selection circuit 54 can be configured using a known switch circuit. The selection change by the selection circuit 54 may be based on an instruction from the outside (for example, the computer device 3) or may be based on an operation by the system user.
  • the computer device 3 is used by being connected to the measuring device 2, and is not limited to a stationary type such as a personal computer device, as long as it has an information processing function to execute a predetermined program. It may also be a typical portable information terminal device or the like.
  • the computer device 3 is configured to function as a control unit 60 that controls processing operations in the measuring device 2 by executing a predetermined program.
  • the control performed by the control unit 60 includes control of the electrochemical measurement process, that is, control of the process of measuring the O 3 concentration in the ozone water that is the test liquid based on the measurement result of the current value by the measurement device 2.
  • control section 60 also functions as a selection control section 61, a measured value management section 62, and an energization control section 63 by executing a predetermined program.
  • the selection control unit 61 gives an instruction to the selection circuit 54 in the measuring device 2 to switch the selection between the first circuit 52 and the second circuit 53.
  • the selection control unit 61 controls the selection circuit 54 to perform selection switching between the first circuit 52 and the second circuit 53. It is assumed that the selection control unit 61 switches the selection between the first circuit 52 and the second circuit 53 at a preset regular timing. A specific example of periodic timing will be described in detail later.
  • the measurement value management unit 62 manages the measurement results of current values obtained through the measurement circuit 51 of the measurement device 2 (hereinafter also simply referred to as “measurement values”). More specifically, the measured value management unit 62 acquires a plurality of measured values obtained when a connection is established by the first circuit 52 and when a connection is established by the second circuit 53, and based on these plurality of measured values. One measurement value is derived by using the method, and the derived one measurement value is used as a measurement value for measuring the O 3 concentration in ozone water, which is a test liquid. Specific examples of how the measured value management unit 62 acquires a plurality of measured values, derives one measured value, etc. will be described in detail later.
  • the energization control unit 63 controls the energization state of the measurement circuit 51 of the measurement device 2 to each electrode 21 , 22 , 23 of the electrochemical sensor 1 . More specifically, the energization control unit 63 transmits a signal from the measurement circuit 51 of the measurement device 2 to each electrode 21, 22, 23 of the electrochemical sensor 1, which is necessary for measuring the O 3 concentration in the ozone water that is the test liquid. At the same time, separately from this (that is, at a timing different from that energization), energization is performed in a manner different from that for measuring the O 3 concentration, thereby each electrode 21, 22, 23 It performs state recovery processing. Specific examples of the energization control by the energization control unit 63 and the state recovery processing performed thereby will be described in detail later.
  • each electrode 21, 22, 23 of the electrochemical sensor 1 is brought into contact with the ozonated water.
  • the ozonated water that brings the electrodes 21, 22, and 23 into contact be in a static state without stirring or the like, that is, in a state in which no liquid flow occurs, and that this state is maintained.
  • the measurement circuit 51 of the measurement device 2 controls the voltage applied to each electrode 21, 22, 23 to apply a voltage between the working electrode and the counter electrode. A voltage is applied to the electrode, the potential of the working electrode is swept based on the potential of the reference electrode, and the value of the current flowing between the working electrode and the counter electrode at this time is measured.
  • the selection circuit 54 of the measuring device 2 selects either the first circuit 52 or the second circuit 53 according to instructions from the selection control section 61 of the computer device 3, and selects each electrode 21, 22, 23 and the measuring circuit 51 is established.
  • the first circuit 52 when the first circuit 52 is selected, the O 3 concentration in ozonated water is measured while the first BDD electrode 21 functions as a working electrode and the second BDD electrode 22 functions as a counter electrode.
  • the second circuit 53 when the second circuit 53 is selected, the O 3 concentration in ozonated water is measured while the first BDD electrode 21 functions as a counter electrode and the second BDD electrode 22 functions as a working electrode.
  • the presence of the first circuit 52, the second circuit 53, and the selection circuit 54 allows selection and switching of which of the first BDD electrode 21 and the second BDD electrode 22 is to function as a working electrode or a counter electrode. It has become.
  • the first BDD electrode 21 and the second BDD electrode 22 corresponding to such selection switching each have the same laminated structure, each have a detection surface having the same planar shape and area, and
  • the third BDD electrode 23 is arranged at a line-symmetrical position with respect to an imaginary line 27 passing through the electrode reference point 26 of the third BDD electrode 23.
  • the first BDD electrode 21 and the second BDD electrode 22 have the same structure and the same shape, and are arranged at the same distance from the third BDD electrode 23, which functions as a reference electrode.
  • the conditions are exactly the same except that the respective configurations as seen from the BDD electrode 23 are symmetrically arranged.
  • the first BDD electrode 21 or the second BDD electrode 22 can both function as a working electrode or a counter electrode depending on their arrangement, and the selection of the function (fixed selection only) is possible. (including switching of the selection).
  • the electrochemical sensor 1 if not only the first BDD electrode 21 and the second BDD electrode 22 but also the substrate 10 that supports them are formed in a symmetrical planar shape, functional differences may occur. This will be even more effective in suppressing the When measuring the O 3 concentration in ozonated water, which is the test liquid, O 3 in the ozonated water is consumed on the electrode surface of either the first BDD electrode 21 or the second BDD electrode 22, which functions as a working electrode.
  • O 3 is diffused from a position away from the working electrode and supplied to the electrode surface, but if the substrate 10 has a symmetrical planar shape, the first BDD electrode 21 and the second BDD electrode This is because no matter which one of the electrodes 22 and 22 is selected as the working electrode, there will be no difference in the diffusion and supply path of O 3 to the electrode surface.
  • the selection control section 61 which instructs the selection circuit 54, performs the selection switching as described above at regular preset timing. Thereby, the selection control unit 61 can automatically (forcibly) switch the selection between the first circuit 52 and the second circuit 53.
  • the periodic timing of selection switching will be explained using a specific example.
  • FIG. 9 is a time chart diagram illustrating a specific example of processing operations in the electrochemical sensor system according to the first embodiment of the present disclosure.
  • the selection circuit 54 when starting the measurement of the O 3 concentration in ozonated water, the selection circuit 54 first selects the first circuit 52 and connects the electricity between each electrode 21, 22, 23 and the measurement circuit 51 A physical connection is established (step 101, hereinafter the step is abbreviated as "S"). Then, a state in which the first BDD electrode 21 functions as a working electrode and the second BDD electrode 22 as a counter electrode is detected by one circuit from the start of the sweep to the end of the sweep with respect to the reference electrode with respect to the potential of the working electrode. The detection execution unit is continued until the detection execution unit is completed.
  • the selection circuit 54 performs selection switching at that timing (S102). By this selection switching, the selection circuit 54 selects the second circuit 53 and establishes electrical connection between each electrode 21, 22, 23 and the measurement circuit 51 (S103). Then, the state in which the first BDD electrode 21 functions as a counter electrode and the second BDD electrode 22 functions as a working electrode is continued until the detection execution unit is completed.
  • the selection circuit 54 determines the timing of each detection performed by the first circuit 52 and the second circuit 53 (that is, the timing of each detection execution) from the start to the end of one concentration measurement. The selection is switched between the first circuit 52 and the second circuit 53 at the timing (each time a unit ends).
  • selection switching between the first circuit 52 and the second circuit 53 is performed at regular preset timing, but the timing is different from the start to the end of one concentration measurement.
  • the timing is set every time one circuit (the first circuit 52 or the second circuit 53) performs detection in between.
  • the timing described here may be a timing at which a predetermined interval period has been secured from the end of the detection execution unit, in addition to the timing at the same time as the end of the detection execution unit.
  • the predetermined interval period is, for example, a period considered necessary to prepare the measurement environment for repeated measurements.
  • the measured value management unit 62 of the computer device 3 acquires a plurality of measured values obtained from each of the first circuit 52 and the second circuit 53 from the start to the end of one concentration measurement. Specifically, the measured value management unit 62 acquires the measured value obtained through the first circuit 52 at the end of the detection execution unit (S101) by the first circuit 52 (S104). Further, the measured value management unit 62 acquires the measured value obtained through the second circuit 53 at the end of the detection execution unit (S103) by the second circuit 53 (S105).
  • the measured value management unit 62 derives one measured value based on the acquired multiple measured values (S106).
  • one measurement value for example, a maximum value corresponding to the best measurement result among multiple measurement values, an average value obtained by removing noise components included in multiple measurement values, a predetermined calculated value corresponding to these, etc. Either of these can be used.
  • a plurality of second and subsequent measurement values excluding the first measurement may be used to derive one measurement value. This is because there is a concern that the first measurement is likely to be influenced by measurement errors.
  • the control unit 60 of the computer device 3 performs necessary processing to specify the O 3 concentration in ozonated water based on that one measurement value. I do. Therefore, by deriving one measurement value from a plurality of measurement values obtained from concentration measurements performed redundantly by each circuit 52 and 53, it is possible to eliminate individual differences between the first BDD electrode 21 and the second BDD electrode 22, for example. Even if there is one of the electrodes 21, 22 that does not provide the desired measurement accuracy due to condition deterioration due to the use of each electrode 21, 22, this effect will affect the measured value as the concentration measurement result. It will be possible to suppress the spread of the virus. In other words, it is possible to eliminate as much as possible the influence of the state of each electrode 21, 22 (for example, surface state) on the measured value of O 3 concentration, and as a result, it is possible to improve measurement accuracy. becomes.
  • each circuit 52, 53 when a plurality of measured values are obtained through each circuit 52, 53, in addition to deriving one measured value from these, or without deriving a single measured value, the obtained plural measured values can be used. By comparing them with each other, it is also possible to detect the state (for example, surface state) of each electrode 21, 22 from the comparison result. Specifically, by comparing the measured values obtained by the first circuit 52 and the measured values obtained by the second circuit 53, for example, if a difference greater than normal measurement variation occurs between them. Furthermore, it becomes possible to detect the state of each electrode 21, 22, such as determining that either the first BDD electrode 21 or the second BDD electrode 22 has deteriorated due to surface contamination or the like.
  • the periodic timing for selectively switching is not limited to the above-mentioned one specific example.
  • FIG. 10 is a time chart diagram showing another specific example of the processing operation in the electrochemical sensor system according to the first embodiment of the present disclosure.
  • the selection circuit 54 when starting the measurement of the O 3 concentration in ozonated water, the selection circuit 54 first selects the first circuit 52 and connects each electrode 21, 22, 23 and the measurement circuit 51 with A physical connection is established (S201). Then, the state in which the first BDD electrode 21 functions as a working electrode and the second BDD electrode 22 as a counter electrode is continued from the start of sweeping the potentials of the working electrode and the counter electrode to the end of the sweep, and when the sweep ends, the ozone water is It is assumed that one concentration measurement of O 3 concentration has been completed. In other words, this embodiment differs from the above-described specific example (see FIG. 9) in that redundant detection by each circuit is not performed in one concentration measurement.
  • the O 3 concentration is measured for ozonated water, which is a new test liquid.
  • the state in which the BDD electrode 21 functions as a working electrode and the second BDD electrode 22 as a counter electrode continues.
  • the example in the figure shows a case in which concentration measurements are repeated three times, but the number of concentration measurements under the same conditions is not limited to this, and can be repeated once as long as it is n times set in advance. or multiple times.
  • the selection circuit 54 When n concentration measurements are completed, the selection circuit 54 performs selection switching at that timing (S202). By this selection switching, the selection circuit 54 selects the second circuit 53 and establishes electrical connection between each electrode 21, 22, 23 and the measurement circuit 51 (S204). Then, the state in which the first BDD electrode 21 functions as a counter electrode and the second BDD electrode 22 functions as a working electrode is continued until n times of concentration measurements are completed.
  • the selection circuit 54 performs selection switching between the first circuit 52 and the second circuit 53 at the timing each time one or more concentration measurements are performed.
  • concentration measurements using an electrode configuration in which the same electrode serves as a working electrode are not repeated more than necessary. Therefore, it is possible to suppress deterioration of the electrode condition (for example, surface condition) over time due to repeated concentration measurements.
  • the energization control unit 63 controls the energization state to each electrode 21, 22, 23, and when measuring the O 3 concentration with respect to each electrode 21, 22, 23.
  • the energization may be performed in a different manner (S203). Thereby, the energization control unit 63 performs state recovery processing for each electrode 21, 22, 23 whose energization state has been controlled.
  • energization in a manner different from that for measuring O 3 concentration means at a timing different from that for measuring O 3 concentration in ozone water, which is the test liquid (for example, before or after concentration measurement). This means, for example, performing energization processing at a higher current density than when measuring concentration, or performing energization processing with a current flowing in the opposite direction to that during concentration measurement. If current is applied in this manner, the current can oxidize the surface of the working electrode or generate bubbles on the surface of the working electrode, which will cause the surface of the working electrode to change over time. It becomes possible to recover from contamination, deterioration, etc. In other words, it is possible to perform a treatment for recovering the contamination, deterioration, etc. on the surface of the working electrode over time through oxidation of the electrode surface, etc., as a "condition recovery treatment" for the working electrode.
  • the energization control unit 63 controls the energization control to match the switching timing between the first circuit 52 and the second circuit 53. This is performed on either the first BDD electrode 21 which functions as a working electrode through the circuit 53 or the second BDD electrode 22 which functions as a working electrode through the second circuit 53, or both of these electrodes.
  • the energization control unit 63 when performing the measurement on the first BDD electrode 21, the energization control unit 63 operates the first BDD electrode 21 as a working electrode to measure the concentration n times (that is, after the concentration measurement is finished). Then, the first BDD electrode 21 is energized for state recovery processing. That is, after the first BDD electrode 21 completes n-time concentration measurements, the state recovery process for the first BDD electrode 21 is performed.
  • the energization control unit 63 causes the second BDD electrode 22 to function as a working electrode and performs n concentration measurements (i.e., prior to the concentration measurement). ), the second BDD electrode 22 is energized for state recovery processing. That is, prior to starting concentration measurement using the second BDD electrode 22, a state recovery process for the second BDD electrode 22 is performed.
  • the state recovery process is performed at the timing of selection switching from the first circuit 52 to the second circuit 53; At the timing of selection switching to the first circuit 52, the state recovery process may be performed in exactly the same manner. However, the timing to perform the state recovery process does not need to be every time the selection is switched between the first circuit 52 and the second circuit 53; The degree of deterioration may be detected and the process may be performed in accordance with the detection result (that is, at a timing after electrode deterioration is detected).
  • condition recovery treatment is performed on the first BDD electrode 21 or the second BDD electrode 22 through the above-described energization control, for example, repeated measurements of O 3 concentration in ozonated water will prevent contamination or deterioration of the electrode surface over time. Even if this occurs, it is possible to remove the contamination, deterioration, etc. and restore the condition of the electrode surface. Therefore, by performing a state recovery process on the first BDD electrode 21 or the second BDD electrode 22 that functions as a working electrode, it is possible to suppress a decrease in detection sensitivity induced by contamination, deterioration, etc. of the electrode surface.
  • the first BDD electrode 21 and the second BDD electrode 22 have the same structure and the same shape, and the first BDD electrode 21 and the second BDD electrode 22 have the same structure and shape. It is arranged symmetrically with respect to the third BDD electrode 23. Therefore, the configurations of the first BDD electrode 21 and the second BDD electrode 22 viewed from the third BDD electrode 23 are completely the same except that they are symmetrically arranged, and the configuration of the first BDD electrode 21 and the second BDD electrode 22 is completely the same. Either can function as a working or counter electrode. Furthermore, it becomes possible to switch the function as a working electrode or a counter electrode.
  • the electrode arrangement in the electrochemical sensor 1 of this embodiment it is possible to select the electrode function depending on the states of the first BDD electrode 21 and the second BDD electrode 22.
  • By selecting the electrode functions in this manner it is possible to improve the measurement accuracy of concentration measurement results by selecting the electrodes, and to suppress a decrease in measurement sensitivity due to selection switching.
  • the electrochemical sensor 1 of this embodiment by devising the arrangement of the three-electrode electrodes, it is possible to measure the O 3 concentration in ozonated water while, for example, changing the selection of the electrode function. It becomes possible to realize a sensor configuration that can ensure flexibility (versatility), and as a result, it becomes possible to improve measurement accuracy and suppress a decrease in measurement sensitivity.
  • the substrate 10 that supports each electrode 21, 22, and 23 of the electrochemical sensor 1 is formed into a symmetrical planar shape. If the substrate 10 has a symmetrical planar shape, no matter which of the first BDD electrode 21 and the second BDD electrode 22 is selected as the working electrode, there will be a difference in the diffusion and supply path of O 3 to the electrode surface. You can avoid it. Therefore, it is even more effective in suppressing the occurrence of functional differences between the first BDD electrode 21 and the second BDD electrode 22, improving the measurement accuracy of the electrochemical sensor 1, suppressing a decrease in measurement sensitivity, etc. This makes it very suitable for realizing the following.
  • the specific component whose concentration is measured by the electrochemical sensor 1 is dissolved ozone in ozone water, which is the test liquid. Therefore, the electrochemical sensor 1 of the present embodiment is suitable for use in measuring the O 3 concentration in ozonated water, and it is possible to improve measurement accuracy and suppress a decrease in measurement sensitivity in measuring the O 3 concentration.
  • the electrochemical sensor system configured with the electrochemical sensor 1 includes the first circuit 52 and the second circuit 53 in addition to the electrochemical sensor 1. This corresponds to selection switching of which of the first BDD electrode 21 and the second BDD electrode 22 is to function as a working electrode or a counter electrode. Therefore, by performing such selection switching, in the electrochemical sensor system of this embodiment, for example, concentration measurement is performed by the first circuit 52 and concentration measurement is performed by the second circuit 53, and based on the respective measurement results. It becomes possible to extract the final measurement result (selecting the one with a better measurement result, averaging the measurement results to remove noise components, etc.), and as a result, the measurement accuracy of the concentration measurement result can be improved. It becomes like this.
  • concentration measurement by the first circuit 52 and concentration measurement by the second circuit 53 are performed depending on the respective states of the first BDD electrode 21 and the second BDD electrode 22. By appropriately switching the selection, it becomes possible to improve the measurement accuracy of the electrochemical sensor 1 and suppress a decrease in measurement sensitivity.
  • the timing of selection switching between the first circuit 52 and the second circuit 53 is determined every time detection is performed by one circuit from the start to the end of one concentration measurement. If the timing is set, it becomes possible to repeatedly measure the O 3 concentration of ozonated water under the same conditions while selectively switching between the first circuit 52 and the second circuit 53. Therefore, it becomes possible to derive a single measurement result from duplicate measurement results, which is very effective in improving the measurement accuracy of O 3 concentration measurement.
  • the timing of selection switching between the first circuit 52 and the second circuit 53 is determined at the timing every time the O 3 concentration measurement is performed n times (once or multiple times). If set, O 3 concentration measurements in an electrode configuration in which the same electrode is the working electrode will not be repeated more than necessary. Therefore, it is possible to suppress the deterioration of the electrode condition (for example, surface condition) over time due to repeated O 3 concentration measurements, which is very effective in suppressing the decrease in measurement sensitivity of O 3 concentration measurements. Become something.
  • the first BDD electrode 21 or the second BDD electrode 22 is connected to the first BDD electrode 21 or the second BDD electrode 22 at a timing different from the measurement of the O 3 concentration in ozone water (for example, before or after measuring the O 3 concentration). For example, if the state of the first BDD electrode 21 or the second BDD electrode 22 is restored by applying electricity in a manner different from that used for O 3 concentration measurement, for example, O 3 concentration measurement can be performed. Even if contamination or deterioration occurs on the electrode surface over time by repeating the steps, it is possible to remove the contamination, deterioration, etc. and restore the condition of the electrode surface.
  • the electrochemical sensor 1 described in this embodiment is different from the first embodiment described above in the manner in which the electrodes 21, 22, and 23 are arranged on the support substrate 10. .
  • FIG. 11 is an explanatory diagram schematically showing a specific example of electrode arrangement in the electrochemical sensor according to the second embodiment of the present disclosure.
  • the same reference numerals are attached to the same components as in the case of the first embodiment.
  • the "same structure” and “same shape” herein have the same meanings as in the first embodiment.
  • the wirings 31, 32, 33 connected to each electrode 21, 22, 23, and each electrode 21, 22, 23 and each wiring 31, 32, 33, and also the insulating resin 35 that seals the periphery of these joints 34 have the same structure (material), It is desirable to have the same shape. This is because each of the first to sixth circuits described later can be made equivalent.
  • each of the three electrodes 21, 22, and 23 has the same structure and the same shape, in this embodiment, in addition to the first BDD electrode 21 and the second BDD electrode 22, the third BDD electrode 23 is also included. It can correspond to the selection switching of That is, in this embodiment, the first BDD electrode 21, the second BDD electrode 22, and the third BDD electrode 23 each function as a working electrode, a counter electrode, or a reference electrode.
  • the first BDD electrode 21, the second BDD electrode 22, and the third BDD electrode 23 are each centered around a predetermined base material reference point 28 on the substrate 10. They are arranged in a three-fold symmetrical position.
  • the "predetermined base material reference point 28 on the substrate 10" is a point on the substrate 10 that serves as a preset position reference. Specifically, for example, when hypothetical lines 27a, 27b, and 27c passing through the electrode reference points 26a, 26b, and 26c described in the first embodiment for each of the electrodes 21, 22, and 23 are assumed, the base material reference Point 28 is located at the point where the respective virtual lines 27a, 27b, and 27c intersect.
  • three-fold symmetry means that each time the base material reference point 28 is rotated by 120 degrees, at least the reference point of the figure (for example, the planar shape of each electrode 21, 22, 23) This refers to the symmetry in which the electrode reference points 26a, 26b, 26c) of electrodes 21, 22, and 23 overlap. If there is three-fold symmetry, the lines connecting the electrode reference points 26a, 26b, 26c of each electrode 21, 22, 23 will draw an equilateral triangle.
  • each of the first BDD electrode 21, the second BDD electrode 22, and the third BDD electrode 23 is arranged in three-fold symmetrical positions with the base material reference point 28 as the center. Therefore, for example, when considering the first BDD electrode 21 as a reference, the second BDD electrode 22 and the third BDD electrode 23 each have the same planar shape, and the electrode reference point of the first BDD electrode 21 They are in a line-symmetrical relationship with an imaginary line 27a passing through 26a as the axis of symmetry, and are arranged at positions equidistant from the imaginary line 27a.
  • the first BDD electrode 21 and the third BDD electrode 23 have the same planar shape, and the electrode reference point of the second BDD electrode 22 They are in a line-symmetrical relationship with an imaginary line 27b passing through 26b as the axis of symmetry, and are arranged at positions equidistant from the imaginary line 27b.
  • the first BDD electrode 21 and the second BDD electrode 22 each have the same planar shape, and the electrode reference point of the third BDD electrode 23 They are in a line-symmetrical relationship with an imaginary line 27c passing through 26c as an axis of symmetry, and are arranged at positions equidistant from the imaginary line 27c.
  • the planar shape of the first BDD electrode 21 to the third BDD electrode 23 is rectangular, and the long sides of each electrode are arranged radially around the base material reference point 28.
  • the arrangement of the electrodes 21, 22, 23 is not limited to this. That is, the electrodes 21, 22, and 23 may be arranged in other manners as long as they are arranged in three-fold symmetrical positions with the base material reference point 28 as the center.
  • FIG. 12 is an explanatory diagram (part 1) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the second embodiment of the present disclosure.
  • the planar shape of the first to third BDD electrodes 21 to 23 is square.
  • the first to third BDD electrodes 21 to 23 are arranged so that the sides of their planar shapes are aligned in the same direction.
  • the electrode reference points 26a, 26b, and 26c of each electrode 21, 22, and 23 are arranged at three-fold symmetrical positions with respect to the base material reference point 28 on the substrate 10, respectively.
  • the first BDD electrode 21, the second BDD electrode 22, and the third BDD electrode 23 are arranged at least at each electrode reference point 26a, if each electrode reference point 26a, 26b, 26c corresponds to the three-fold symmetrical arrangement.
  • the planar shapes may be freely rotatably arranged.
  • the first BDD electrode 21 and the second BDD electrode 22 can be considered to be arranged symmetrically when viewed from the third BDD electrode 23. Further, the first BDD electrode 21 and the third BDD electrode 23 can be considered to be arranged symmetrically when viewed from the second BDD electrode 22. Further, the second BDD electrode 22 and the third BDD electrode 23 can be considered to be arranged symmetrically when viewed from the first BDD electrode 21. In other words, the arrangement shown in FIG. 12 can be handled in the same way as the arrangement shown in FIG. 11.
  • FIG. 13 is an explanatory diagram (Part 2) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the second embodiment of the present disclosure.
  • Part 2 schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the second embodiment of the present disclosure.
  • the third BDD electrode 23 is arranged to be located farthest from the tip of the substrate 10.
  • each of the electrodes 21, 22, 23 is arranged at three-fold symmetrical positions with respect to the base material reference point 28 on the substrate 10.
  • the relative positional relationship between each of the electrodes 21, 22, and 23 is set to be three-fold symmetrical about the base material reference point 28.
  • the relative positional relationship between each electrode 21, 22, 23 and the substrate 10 is not particularly limited.
  • the system exemplified in the second embodiment includes the electrochemical sensor 1 in which the electrodes 21, 22, and 23 are arranged in three-fold symmetry, as described above.
  • a measuring device 2 is configured as follows to correspond to the electrochemical sensor 1.
  • the measuring device 2 includes, in addition to the measuring circuit 51 and the selection circuit 54, first to sixth circuits.
  • the first circuit includes each wiring 31, 32, 33 and a measurement circuit 51 so that the first BDD electrode 21 functions as a working electrode, the second BDD electrode 22 functions as a counter electrode, and the third BDD electrode 23 functions as a reference electrode. It consists of a circuit pattern that electrically connects the
  • the second circuit includes each wiring 31, 32, 33 and a measurement circuit 51 so that the first BDD electrode 21 functions as a counter electrode, the second BDD electrode 22 functions as a working electrode, and the third BDD electrode 23 functions as a reference electrode.
  • the third circuit includes each wiring 31, 32, 33 and the measurement circuit 51 so that the first BDD electrode 21 functions as a working electrode, the second BDD electrode 22 functions as a reference electrode, and the third BDD electrode 23 functions as a counter electrode. It consists of a circuit pattern that electrically connects the The fourth circuit includes each wiring 31, 32, 33 and a measuring circuit 51 so that the first BDD electrode 21 functions as a counter electrode, the second BDD electrode 22 functions as a reference electrode, and the third BDD electrode 23 functions as a working electrode.
  • the fifth circuit includes each wiring 31, 32, 33 and a measuring circuit 51 so that the first BDD electrode 21 functions as a reference electrode, the second BDD electrode 22 functions as a working electrode, and the third BDD electrode 23 functions as a counter electrode. It consists of a circuit pattern that electrically connects the
  • the sixth circuit includes each wiring 31, 32, 33 and the measurement circuit 51 so that the first BDD electrode 21 functions as a reference electrode, the second BDD electrode 22 functions as a counter electrode, and the third BDD electrode 23 functions as a working electrode. It consists of a circuit pattern that electrically connects the
  • the selection circuit 54 selects one of the first to sixth circuits when applying voltage and measuring current value by the measurement circuit 51, and selects one of the first to sixth circuits to make the electrochemical sensor An electrical connection is established between each of the wirings 31, 32, 33 in 1 and the measuring circuit 51.
  • each electrode 21, 22, 23 of the electrochemical sensor 1 when measuring the O 3 concentration in ozonated water as the test liquid, each electrode 21, 22, 23 of the electrochemical sensor 1 is connected to the ozone While in contact with water, a voltage is applied between the working electrode and the counter electrode by controlling the voltage applied to each electrode 21, 22, 23, and the potential of the working electrode is swept with reference to the potential of the reference electrode. At that time, the value of the current flowing between the working electrode and the counter electrode is measured.
  • the selection circuit 54 of the measuring device 2 selects any one of the first to sixth circuits, following instructions from the selection control section 61 of the computer device 3, and selects each of the electrodes 21, 22, 23. and the measurement circuit 51 is established. In other words, it corresponds to selection switching of whether each of the three electrodes 21, 22, and 23 is to function as a working electrode, a counter electrode, or a reference electrode.
  • the first BDD electrode 21, second BDD electrode 22, and third BDD electrode 23 corresponding to such selection switching are each arranged at three-fold symmetrical positions with the base material reference point 28 as the center. Therefore, no matter which of the first to sixth circuits is selected, the configuration of the working electrode and the counter electrode with respect to the reference electrode is the same, and the occurrence of functional differences between the working electrode and the counter electrode is prevented. Can be suppressed.
  • the working electrode and the counter electrode but also the reference electrode can be used, and the functions thereof can be selectively switched.
  • one measurement value is derived from two types of measurement results, whereas in this embodiment, one measurement value can be derived from three types of measurement results, which improves measurement accuracy. It becomes possible to increase the Furthermore, it becomes easier to manage variations in measurement results, and it becomes possible to increase the detection sensitivity of electrode deterioration and the like.
  • each electrode 21, 22, 23 is automatically (forced) performed at a preset periodic timing.
  • each circuit For example, as an example of regular timing, the selection of each circuit is switched every time one circuit (any of the first to sixth circuits) performs detection. Then, each circuit repeatedly measures the O 3 concentration in ozonated water under the same conditions, and when each circuit completes all detection execution units, one concentration measurement of the O 3 concentration in ozonated water is completed. It shall be assumed that By switching the selection at such timing, it is possible to derive a single measurement value from multiple measurement values obtained from repeated concentration measurements, and as a result, it is possible to improve measurement accuracy. It becomes possible. Moreover, in this case, by supporting selection and switching of functions not only for the working electrode and the counter electrode but also for the reference electrode, the number of base measurements increases, contributing to further improvement of measurement accuracy. You will get it.
  • selection switching for each circuit is performed each time one or more concentration measurements are performed. If the selection is switched at such timing, it will be possible to suppress the deterioration of the electrode condition over time due to repeated concentration measurements, but it will be possible to suppress the deterioration of the electrode condition over time due to repeated concentration measurements. By dealing with this, it becomes possible to further suppress the degree of deterioration of the electrode condition.
  • the first BDD electrode 21, the second BDD electrode 22, and the third BDD electrode 23 have the same structure and the same shape, and each electrode 21, 22, 23 are arranged at three-fold symmetrical positions with respect to the base material reference point 28. Therefore, each of these three electrodes 21, 22, and 23 can function as a working electrode, a counter electrode, or a reference electrode. Furthermore, it becomes possible to switch between functions as a working electrode, a counter electrode, or a reference electrode. Therefore, according to the electrode arrangement in the electrochemical sensor 1 of this embodiment, by devising the arrangement of the three-electrode electrode, it is possible to measure the O 3 concentration in ozonated water while, for example, selecting and switching the electrode function. It becomes possible to realize a sensor configuration that can ensure flexibility (versatility) in concentration measurement, and as a result, it becomes possible to further improve measurement accuracy and suppress a decrease in measurement sensitivity.
  • the electrochemical sensor system configured with the electrochemical sensor 1 includes the first to sixth circuits in addition to the electrochemical sensor 1, so that each of the electrochemical sensor 1 This corresponds to selection switching of whether each of the electrodes 21, 22, and 23 is to function as a working electrode, a counter electrode, or a reference electrode. Therefore, according to the electrochemical sensor system of this embodiment, it becomes possible to respond to selective switching of the functions of not only the working electrode and the counter electrode but also the reference electrode, and as a result, further measurement is possible. It becomes possible to improve accuracy and suppress a decrease in measurement sensitivity.
  • the measurement device 2 is provided with the selection circuit 54. If the configuration is such that the O 3 concentration in ozone water, which is the test liquid, is measured by selectively selecting one of the circuits 1 to 6, the selection circuit 54 such as a switch circuit is not necessarily used. You don't need to be prepared. That is, the alternative selection of the plurality of circuits may not be based on the selection circuit 54.
  • the sample liquid is ozonated water and the specific component whose concentration is to be measured is dissolved ozone in the ozonated water, but this is not necessarily limited to this.
  • This method can be applied to other types of test liquids and specific components as long as the concentration can be measured using electrochemical reactions.
  • selection switching Moreover, among the above-mentioned embodiments, especially in the first embodiment, which of the first BDD electrode 21 and the second BDD electrode 22 arranged line-symmetrically is to function as a working electrode or a counter electrode is determined.
  • the case where selection switching is performed is given as an example.
  • An electrochemical sensor used for measuring the concentration of a specific component in a test liquid comprising at least three electrodes disposed on the same substrate, At least two of the three electrodes are constituted by diamond electrodes having the same structure and shape, Each of the two electrodes functions as either a working electrode or a reference electrode, and one electrode other than the two electrodes among the three electrodes functions as a counter electrode,
  • the two electrodes include an electrochemical sensor in which each of the two electrodes is arranged at a line-symmetrical position with respect to an imaginary line passing through a predetermined electrode reference point in the one electrode as an axis of symmetry.
  • An electrochemical sensor according to the above embodiment; a first circuit that causes one of the two electrodes in the electrochemical sensor to function as a working electrode and the other as a reference electrode; a second circuit in which the one electrode functions as a reference electrode and the other electrode functions as a working electrode,
  • the electrochemical sensor system is configured to select either the first circuit or the second circuit to measure the concentration of the specific component in the test liquid.
  • the third BDD electrode 23 functions fixedly as a working electrode. If the working electrode is fixed, the effects of selection switching described in the first embodiment may not necessarily be obtained. Therefore, regarding selection and switching of electrode functions, at least the functions of the working electrode and counter electrode should be interchangeable as explained in the first embodiment, or the functions of the working electrode and reference electrode should be interchanged as in the above modification. Preferably, they are interchangeable or the respective functions of the working electrode, counter electrode and reference electrode are interchangeable as explained in the second embodiment.
  • FIG. 14 is an explanatory diagram (part 1) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure.
  • FIG. 15 is an explanatory diagram (part 2) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure.
  • the electrode group 20 arranged on the substrate 10 is composed of four BDD electrodes.
  • a combination of three electrodes is extracted from the electrode group 20, and selection switching as described in the first embodiment or the second embodiment is performed for each electrode constituting the combination. It becomes possible to perform operations such as performing the above operations and changing the combination as necessary.
  • the combinations of three electrodes should be extracted so that the conditions (circuits) at the time of measurement are equivalent (the positional relationship of each electrode is the same or symmetrically arranged), that is, the combinations are extracted so that they are equivalent. It is desirable to extract.
  • the function of at least one of the working electrode, the counter electrode, or the reference electrode may be realized by a plurality of electrodes, and then the selection switching as described in the first embodiment or the second embodiment may be performed. It becomes possible to implement operations such as That is, as long as the electrode group 20 arranged on the substrate 10 is composed of at least three electrodes, the technical idea according to the present disclosure can be applied.
  • electrode arrangement Further, for example, in each of the above-described embodiments, an example is given where three electrodes 21, 22, and 23 are arranged on the same surface of the substrate 10, but the invention is not necessarily limited to this, and each The electrodes 21, 22, 23 may be arranged on different surfaces of the substrate 10.
  • FIG. 16 is an explanatory diagram (Part 3) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure.
  • one electrode 23 is arranged on one surface (for example, the top surface) of the flat substrate 10, and two electrodes 21 and 22 are arranged on the other surface (for example, the bottom surface).
  • the electrodes 21, 22, 23 have a three-fold symmetrical positional relationship.
  • FIG. 17 is an explanatory diagram (No. 4) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure.
  • three electrodes 21, 22, and 23 are distributed and arranged on each of the three side surfaces of the square columnar substrate 10. Even in the case of such an electrode arrangement, it is possible to realize a symmetrical arrangement of the two electrodes 21 and 22 when viewed from the electrode 23. Further, depending on the cross-sectional size of the substrate 10, etc., it is also possible to make each electrode 21, 22, 23 have a three-fold symmetrical positional relationship.
  • FIG. 18 is an explanatory diagram (No. 5) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure.
  • three electrodes 21, 22, and 23 are distributed and arranged on each of three wall surfaces that constitute the inner surface of a square columnar substrate 10 with one side open. Even in the case of such an electrode arrangement, it is possible to realize a symmetrical arrangement of the two electrodes 21 and 22 when viewed from the electrode 23. Further, depending on the cross-sectional size of the substrate 10, etc., it is also possible to make each electrode 21, 22, 23 have a three-fold symmetrical positional relationship.
  • FIG. 19 is an explanatory diagram (No. 6) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure.
  • the substrate 10 has a desired cross-sectional shape (for example, a U-shaped cross section).
  • the electrodes 21, 22, and 23 are arranged on different surfaces by bending the electrodes 21, 22, and 23 in this manner. Even in the case of such an electrode arrangement, it is possible to realize a symmetrical arrangement of the two electrodes 21 and 22 when viewed from the electrode 23.
  • the electrodes 21, 22, and 23 have a three-fold symmetrical positional relationship.
  • FIG. 20 is a perspective view showing a specific example of the configuration of the electrochemical sensor according to the present disclosure.
  • three electrodes 21, 22, and 23 are arranged in three-fold symmetrical positions on the same surface of a substrate 10, and two of these electrodes are arranged in a line-symmetrical relationship.
  • Each electrode 21, 22, 23 is arranged in the structure.
  • there is a terminal part 36 that is electrically connected to each electrode 21, 22, 23 via wiring 31, 32, 33. , 37, and 38 are provided, and the wirings 31, 32, and 33 that establish continuity therewith are covered with a waterproof member 40.
  • FIG. 21 is a six-sided view of the electrochemical sensor of FIG. 20.
  • (a) is a plan view
  • (b) is a front view
  • (c) is a bottom view
  • (d) is a rear view
  • (e) is a right side view
  • (f) is a left side view. It shows.
  • An electrochemical sensor used for measuring the concentration of a specific component in a test liquid comprising at least three electrodes disposed on the same substrate, At least two of the three electrodes are constituted by diamond electrodes having the same structure and shape, The two electrodes are connected to wiring provided on the substrate using the same conductive bonding material with the same structure, The periphery of the joint of the two electrodes with the wiring is sealed with the same structure using the same insulating resin, An electrochemical sensor is provided in which the two electrodes are arranged at symmetrical positions with respect to an imaginary line passing through a predetermined electrode reference point in the one electrode as an axis of symmetry.
  • the diamond electrode has a structure in which a polycrystalline diamond film is laminated on a conductive base material, The conductive base material of the diamond electrode is electrically connected to the wiring via the bonding material, The wiring, the bonding material, and the conductive resin are not in contact with the surface of the diamond film.
  • An electrochemical sensor used for measuring the concentration of a specific component in a test liquid comprising at least three or more electrodes arranged on the same base material, Among the combinations in which three electrodes are selected from the three or more electrodes and each electrode is assigned the function of a working electrode, a counter electrode, or a reference electrode, the electrodes to which the working electrode is assigned are different, and the test subject
  • An electrochemical sensor is provided in which there are two or more combinations of equivalent electrochemical measurement circuits when measuring the concentration of a specific component in a liquid.
  • An electrochemical sensor used for measuring the concentration of a specific component in a test liquid comprising at least three electrodes disposed on the same substrate, At least two of the three electrodes are constituted by diamond electrodes having the same structure and shape, Each of the two electrodes functions as either a working electrode or a counter electrode, and one of the three electrodes other than the two electrodes functions as a reference electrode, An electrochemical sensor is provided in which the two electrodes are arranged at symmetrical positions with respect to an imaginary line passing through a predetermined electrode reference point in the one electrode as an axis of symmetry.
  • An electrochemical sensor used for measuring the concentration of a specific component in a test liquid comprising at least three electrodes disposed on the same substrate, At least two of the three electrodes are constituted by diamond electrodes having the same structure and shape, Each of the two electrodes functions as either a working electrode or a reference electrode, and one electrode other than the two electrodes among the three electrodes functions as a counter electrode, An electrochemical sensor is provided in which the two electrodes are arranged at symmetrical positions with respect to an imaginary line passing through a predetermined electrode reference point in the one electrode as an axis of symmetry.
  • An electrochemical sensor used for measuring the concentration of a specific component in a test liquid comprising at least three electrodes disposed on the same substrate, The three electrodes are composed of diamond electrodes having the same structure and shape, The three electrodes each function as either a working electrode, a counter electrode, or a reference electrode, An electrochemical sensor is provided in which each of the three electrodes is arranged at three-fold symmetrical positions with respect to a predetermined base material reference point on the base material.
  • Appendix 7 Preferably, The electrochemical sensor according to any one of appendices 3 to 5 is provided, in which the specific component is dissolved ozone in the test liquid.
  • Appendix 8 According to one aspect of the present disclosure, The electrochemical sensor described in Appendix 3; a first circuit in which one of the two electrodes in the electrochemical sensor functions as a working electrode and the other as a counter electrode; a second circuit in which the one electrode functions as a counter electrode and the other electrode functions as a working electrode, An electrochemical sensor system is provided that is configured to select either the first circuit or the second circuit to measure the concentration of the specific component in the test liquid.
  • the electrochemical sensor described in Appendix 4 a first circuit that causes one of the two electrodes in the electrochemical sensor to function as a working electrode and the other as a reference electrode; a second circuit in which the one electrode functions as a reference electrode and the other electrode functions as a working electrode,
  • An electrochemical sensor system is provided that is configured to select either the first circuit or the second circuit to measure the concentration of the specific component in the test liquid.
  • An electrochemical sensor system is provided that is configured to select any one of the first circuit to the sixth circuit to measure the concentration of the specific component in the test liquid.
  • an electrochemical sensor system according to any one of appendices 8 to 10, including a selection control section that performs selection switching for a plurality of circuits at preset regular timing.
  • Appendix 12 Preferably, there is provided an electrochemical sensor system according to appendix 11, wherein the timing is set to a timing every time detection by one circuit is executed from the start to the end of one concentration measurement.
  • Appendix 13 Preferably, Acquire a plurality of measured values obtained from each of the plurality of circuits, derive one measured value based on the plurality of measured values, and use the one measured value to measure the concentration of the specific component in the test liquid.
  • an electrochemical sensor system according to appendix 12 which includes a measured value management unit that takes measured values for.
  • Appendix 14 Preferably, there is provided an electrochemical sensor system according to appendix 11, wherein the timing is set to a timing every time one or more concentration measurements are performed.
  • An energization control unit that performs a state recovery process on each electrode by energizing each electrode in the electrochemical sensor in a manner different from that when measuring the concentration of the specific component in the test liquid.
  • An electrochemical sensor system according to any one of appendices 8 to 10 is provided.
  • Electrochemical sensor 2... Electrochemical measuring device, 3... Computer device, 10... Support substrate (base material), 21... First BDD electrode, 22... Second BDD electrode, 23... Third BDD electrode, 24... Electrode film, 25... Conductive substrate, 26, 26a, 26b, 26c... Electrode reference point, 27, 27a, 27b, 27c... Virtual line, 28... Base material reference point, 31, 32, 33... Wiring, 51... Electricity Chemical measurement circuit, 52... first circuit, 53... second circuit, 54... selection circuit, 60... control section, 61... selection control section, 62... measurement value management section, 63... energization control section

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

This electrochemical sensor is used in a concentration measurement of a specific component in a to-be-tested liquid, the electrochemical sensor comprising at least three electrodes 21, 22, 23 disposed on the same substrate 10, wherein: at least two electrodes 21, 22 among the three electrodes 21, 22, 23 are constituted by diamond electrodes that have the same structure and the same shape; the two electrodes 21, 22 respectively function as a working electrode or as a counter electrode and the one electrode 23 other than the two electrodes 21, 22 among the three electrodes 21, 22, 23, function as a reference electrode; and the two electrodes 21, 22 are disposed in linearly symmetrical positions with a virtual line 27 that passes through a predetermined electrode reference point 26 in the one electrode 23, and that serves as the axis of symmetry.

Description

電気化学センサおよび電気化学センサシステムElectrochemical sensors and electrochemical sensor systems
 本発明は、電気化学センサおよび電気化学センサシステムに関する。 The present invention relates to an electrochemical sensor and an electrochemical sensor system.
 オゾン水のオゾン濃度を測定する電気化学センサとして、作用電極、対電極および参照電極の三極電極が導電性ダイヤモンド電極によって構成されたものがある(例えば、特許文献1参照)。斯かる電気化学センサは、オゾン水に少なくとも作用電極および対電極を接触させた状態で、作用電極と対電極との間の電流値を測定することで、オゾン濃度の測定を行う。作用電極と対電極は、並設される三極電極のうちでそれぞれが互いに隣り合うように(互いの間の距離が近くなるように)配置されている(例えば、特許文献1の「図9」参照)。 As an electrochemical sensor for measuring the ozone concentration of ozonated water, there is one in which the three electrodes of a working electrode, a counter electrode, and a reference electrode are constituted by conductive diamond electrodes (see, for example, Patent Document 1). Such an electrochemical sensor measures the ozone concentration by measuring the current value between the working electrode and the counter electrode with at least the working electrode and the counter electrode in contact with ozonated water. The working electrode and the counter electrode are arranged so that they are adjacent to each other (so that the distance between them is short) among the three electrodes arranged in parallel (for example, as shown in "Fig. 9 of Patent Document 1"). "reference).
国際公開第2020/091033号International Publication No. 2020/091033
 電気化学センサは、被検液(例えばオゾン水)中での電気化学反応(例えば酸化還元反応)による電子の移動を、三極電極(特に作用電極および対電極)を利用して検出することで、被検液中の特定成分(例えばオゾン)の濃度測定を行う。そのため、電気化学センサによる濃度測定結果は、各電極の状態(例えば表面状態)の影響を受け得る。その場合に、各電極の機能が固定的であると、各電極の個体差や使用に伴う状態劣化等により、所望の測定精度が得られなかったり測定感度が低下したりするおそれがある。 Electrochemical sensors detect the movement of electrons due to electrochemical reactions (e.g. redox reactions) in a test liquid (e.g. ozone water) using three electrodes (especially a working electrode and a counter electrode). , the concentration of a specific component (for example, ozone) in the test liquid is measured. Therefore, the concentration measurement result by the electrochemical sensor can be affected by the state (for example, surface state) of each electrode. In this case, if the function of each electrode is fixed, there is a risk that desired measurement accuracy may not be obtained or measurement sensitivity may decrease due to individual differences in each electrode or condition deterioration due to use.
 本開示は、電気化学センサを構成する三極電極の配置の工夫により、各電極の機能の切り換えに柔軟に対応することを可能にし、測定精度の向上や測定感度低下の抑制等を実現可能にする技術を提供する。 The present disclosure makes it possible to flexibly switch the function of each electrode by devising the arrangement of the three-electrode electrodes that make up the electrochemical sensor, thereby making it possible to improve measurement accuracy and suppress decreases in measurement sensitivity. We provide technology to
 本開示の一態様は、
 被検液中の特定成分の濃度測定に用いられる電気化学センサであって、
 同一の基材上に配置された少なくとも三つの電極を備え、
 前記三つの電極のうち、少なくとも二つの電極は、同一構造および同一形状を有するダイヤモンド電極によって構成され、
 前記二つの電極はそれぞれが作用電極または対電極のいずれかとして機能するとともに、前記三つの電極のうちの前記二つの電極以外の一つの電極が参照電極として機能し、
 前記二つの電極は、前記一つの電極における所定の電極基準点を通る仮想線を対称軸として、それぞれが線対称の位置に配置されている
 電気化学センサである。
One aspect of the present disclosure is
An electrochemical sensor used for measuring the concentration of a specific component in a test liquid,
comprising at least three electrodes disposed on the same substrate,
At least two of the three electrodes are constituted by diamond electrodes having the same structure and shape,
Each of the two electrodes functions as either a working electrode or a counter electrode, and one of the three electrodes other than the two electrodes functions as a reference electrode,
The two electrodes are an electrochemical sensor in which each of the two electrodes is arranged at a line-symmetrical position with an imaginary line passing through a predetermined electrode reference point in the one electrode as an axis of symmetry.
 本開示の技術によれば、少なくとも作用電極と対電極との機能の切り換えに柔軟に対応することができ、測定精度の向上や測定感度低下の抑制等が実現可能となる。 According to the technology of the present disclosure, it is possible to flexibly respond to switching of at least the functions of the working electrode and the counter electrode, and it is possible to improve measurement accuracy and suppress a decrease in measurement sensitivity.
本開示の第一実施形態に係る電気化学センサの概略構成例を示す斜視図である。FIG. 1 is a perspective view showing a schematic configuration example of an electrochemical sensor according to a first embodiment of the present disclosure. 図1に示す電気化学センサのA-A線断面図である。2 is a sectional view taken along line AA of the electrochemical sensor shown in FIG. 1. FIG. 本開示の第一実施形態に係る電気化学センサにおける電極配置の一具体例を模式的に示す説明図である。FIG. 2 is an explanatory diagram schematically showing a specific example of electrode arrangement in the electrochemical sensor according to the first embodiment of the present disclosure. 本開示の第一実施形態に係る電気化学センサにおける電極配置の他の一具体例を模式的に示す説明図(その1)である。FIG. 3 is an explanatory diagram (Part 1) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the first embodiment of the present disclosure. 本開示の第一実施形態に係る電気化学センサにおける電極配置の他の一具体例を模式的に示す説明図(その2)である。FIG. 2 is an explanatory diagram (part 2) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the first embodiment of the present disclosure. 本開示の第一実施形態に係る電気化学センサにおける電極配置の他の一具体例を模式的に示す説明図(その3)である。FIG. 3 is an explanatory diagram (part 3) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the first embodiment of the present disclosure. 本開示の第一実施形態に係る電気化学センサにおける電極配置の他の一具体例を模式的に示す説明図(その4)である。FIG. 4 is an explanatory diagram (part 4) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the first embodiment of the present disclosure. 本開示の第一実施形態に係る電気化学センサシステムの機能構成例を示すブロック図である。FIG. 1 is a block diagram showing an example of a functional configuration of an electrochemical sensor system according to a first embodiment of the present disclosure. 本開示の第一実施形態に係る電気化学センサシステムにおける処理動作の一具体例を示すタイムチャート図である。FIG. 3 is a time chart diagram illustrating a specific example of processing operations in the electrochemical sensor system according to the first embodiment of the present disclosure. 本開示の第一実施形態に係る電気化学センサシステムにおける処理動作の他の一具体例を示すタイムチャート図である。FIG. 7 is a time chart diagram showing another specific example of the processing operation in the electrochemical sensor system according to the first embodiment of the present disclosure. 本開示の第二実施形態に係る電気化学センサにおける電極配置の一具体例を模式的に示す説明図である。FIG. 7 is an explanatory diagram schematically showing a specific example of electrode arrangement in an electrochemical sensor according to a second embodiment of the present disclosure. 本開示の第二実施形態に係る電気化学センサにおける電極配置の他の一具体例を模式的に示す説明図(その1)である。FIG. 7 is an explanatory diagram (Part 1) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the second embodiment of the present disclosure. 本開示の第二実施形態に係る電気化学センサにおける電極配置の他の一具体例を模式的に示す説明図(その2)である。FIG. 7 is an explanatory diagram (Part 2) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the second embodiment of the present disclosure. 本開示に係る電気化学センサにおける電極配置の変形例を模式的に示す説明図(その1)である。FIG. 3 is an explanatory diagram (part 1) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure. 本開示に係る電気化学センサにおける電極配置の変形例を模式的に示す説明図(その2)である。FIG. 7 is an explanatory diagram (Part 2) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure. 本開示に係る電気化学センサにおける電極配置の変形例を模式的に示す説明図(その3)であり、(a)は上面図、(b)は側面図、(c)は下面図である。FIG. 3 is an explanatory diagram (Part 3) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure, in which (a) is a top view, (b) is a side view, and (c) is a bottom view. 本開示に係る電気化学センサにおける電極配置の変形例を模式的に示す説明図(その4)である。FIG. 4 is an explanatory diagram (No. 4) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure. 本開示に係る電気化学センサにおける電極配置の変形例を模式的に示す説明図(その5)である。FIG. 5 is an explanatory diagram (No. 5) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure. 本開示に係る電気化学センサにおける電極配置の変形例を模式的に示す説明図(その6)である。FIG. 6 is an explanatory diagram (No. 6) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure. 本開示に係る電気化学センサの具体的な一構成例を示す斜視図である。FIG. 1 is a perspective view showing a specific example of the configuration of an electrochemical sensor according to the present disclosure. 図20の電気化学センサについての六面図であり、(a)は平面図、(b)は正面図、(c)は底面図、(d)は背面図、(e)は右側面図、(f)は左側面図である。21 is a six-sided view of the electrochemical sensor of FIG. 20, in which (a) is a top view, (b) is a front view, (c) is a bottom view, (d) is a rear view, (e) is a right side view, (f) is a left side view.
 以下、本開示の実施形態について、図面を参照しながら説明する。なお、以下の説明は例示であって、本開示は例示された態様に限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that the following description is an example, and the present disclosure is not limited to the illustrated embodiment.
<第一実施形態>
 まず、本開示の第一実施形態について説明する。
<First embodiment>
First, a first embodiment of the present disclosure will be described.
(1)電気化学センサの構成
 本実施形態で説明する電気化学センサは、被検液中の特定成分の濃度測定に用いられるものである。被検液は、例えば、オゾン(O)が水(水道水等)中に溶存するオゾン水である。特定成分は、例えば、オゾン水中に溶存するオゾンである。濃度測定は、例えば、リニアスイープボルタンメトリー(LSV)を利用して行う。つまり、本実施形態における電気化学センサは、オゾン水中のオゾン濃度(O濃度)を、LSVを利用して測定するものである。
(1) Configuration of electrochemical sensor The electrochemical sensor described in this embodiment is used to measure the concentration of a specific component in a test liquid. The test liquid is, for example, ozone water in which ozone (O 3 ) is dissolved in water (tap water, etc.). The specific component is, for example, ozone dissolved in ozone water. Concentration measurement is performed using, for example, linear sweep voltammetry (LSV). That is, the electrochemical sensor in this embodiment measures the ozone concentration (O 3 concentration) in ozone water using LSV.
(全体構成)
 オゾン水中のオゾン濃度を測定するために、本実施形態における電気化学センサは、以下に説明するように構成されている。
 図1は、本開示の第一実施形態に係る電気化学センサの概略構成例を示す斜視図である。図2は、図1に示す電気化学センサのA-A線断面図である。
(overall structure)
In order to measure the ozone concentration in ozone water, the electrochemical sensor in this embodiment is configured as described below.
FIG. 1 is a perspective view showing a schematic configuration example of an electrochemical sensor according to a first embodiment of the present disclosure. FIG. 2 is a cross-sectional view taken along line AA of the electrochemical sensor shown in FIG.
 図1および図2に示すように、電気化学センサ1は、同一の基材(すなわち一つの基材)である支持基板10上に配置された三つの電極21,22,23を備えて構成されている。また、支持基板(以下、単に「基板」とも称する)10における各電極21,22,23の配置面上には、各電極21,22,23のそれぞれに導通する三本の配線(電気配線)31,32,33が互いに離間して配設されている。基板10上の配線31,32,33は、各電極21,22,23を被検液に接触させた際に、被検液が配線31,32,33に接触することがないように、絶縁性の材料等で形成された防水部材40により覆われている。 As shown in FIGS. 1 and 2, the electrochemical sensor 1 includes three electrodes 21, 22, and 23 arranged on a support substrate 10 that is the same base material (that is, one base material). ing. Moreover, on the surface on which the electrodes 21, 22, 23 are arranged on the support substrate (hereinafter also simply referred to as "substrate") 10, there are three wirings (electrical wiring) that are electrically connected to each of the electrodes 21, 22, 23. 31, 32, and 33 are arranged apart from each other. The wirings 31, 32, 33 on the substrate 10 are insulated so that the test liquid does not come into contact with the wirings 31, 32, 33 when the electrodes 21, 22, 23 are brought into contact with the test liquid. It is covered with a waterproof member 40 made of a plastic material or the like.
(基板構成)
 基板10は、各電極21,22,23を支持するものであり、長手方向に延びる短冊形のシート状(板状)部材として形成されている。基板10は、例えば絶縁性を有する複合樹脂、セラミック、ガラス、プラスチック等の絶縁性材料で形成することができる。基板10は、例えば、ガラスエポキシ樹脂やポリエチレンテレフタレート(PET)で形成されていることが好ましい。また、基板10は、各電極21,22,23の配置面が絶縁性を有するように構成された半導体基板や金属基板であってもよい。基板10は、所定の物理的強度および機械的強度、例えば被検液中のO濃度を測定している間は、折れ曲がったり、破損したりすることがない強度を有している。
(Substrate configuration)
The substrate 10 supports each of the electrodes 21, 22, and 23, and is formed as a rectangular sheet-like (plate-like) member extending in the longitudinal direction. The substrate 10 can be made of an insulating material such as composite resin, ceramic, glass, or plastic, which has insulating properties. The substrate 10 is preferably made of, for example, glass epoxy resin or polyethylene terephthalate (PET). Further, the substrate 10 may be a semiconductor substrate or a metal substrate configured such that the surfaces on which the electrodes 21, 22, and 23 are arranged have insulating properties. The substrate 10 has predetermined physical strength and mechanical strength, such as strength that will not bend or break while measuring the O 3 concentration in the test liquid.
(電極構成)
 各電極21,22,23は、基板10の短手方向に沿って並ぶように配置されている。なお、各電極21,22,23の平面的な配置については、詳細を後述する。
(Electrode configuration)
The electrodes 21, 22, and 23 are arranged along the lateral direction of the substrate 10. Note that the planar arrangement of each electrode 21, 22, 23 will be described in detail later.
 基板10上で並ぶ三つの電極21,22,23のうち、その並びの両端に位置する二つの電極21,22は、それぞれが作用電極または対電極のいずれかとして機能するようになっている。また、これら二つの電極21,22以外の一つの電極23、すなわち二つの電極21,22の間に位置する一つの電極23は、参照電極として機能するようになっている。 Of the three electrodes 21, 22, 23 lined up on the substrate 10, the two electrodes 21, 22 located at both ends of the line each function as either a working electrode or a counter electrode. Further, one electrode 23 other than these two electrodes 21 and 22, that is, one electrode 23 located between the two electrodes 21 and 22, functions as a reference electrode.
 少なくとも作用電極または対電極のいずれかとして機能する二つの電極21,22、好ましくは参照電極として機能する一つの電極23も含む三つの電極21,22,23は、それぞれ、ホウ素ドープダイヤモンド電極(以下、「BDD電極」とも称する)で構成されている。BDD電極とは、ダイヤモンド膜にホウ素を高濃度ドープし、金属性質を持たせたものを電気化学用電極として用いるものであり、ここではチップ化して使用する。今回用いるBDD電極は、金属製多結晶ダイヤモンド膜等で構成された電極膜24と、導電性基板(以下、単に「基板」とも称する)25と、を備えるチップ状の電極(電極チップ)である。BDD電極は、基板25の裏面(すなわち電極膜24が設けられた面とは反対側の面)から導通をとる縦型電極として構成されている。 The three electrodes 21, 22, 23, including at least two electrodes 21, 22 functioning either as a working electrode or a counter electrode, preferably also one electrode 23 functioning as a reference electrode, each include a boron-doped diamond electrode (hereinafter referred to as , also referred to as "BDD electrodes"). A BDD electrode is a diamond film doped with boron at a high concentration to give it metallic properties, and is used as an electrode for electrochemistry, and here it is used in the form of a chip. The BDD electrode used this time is a chip-shaped electrode (electrode tip) that includes an electrode film 24 made of a metal polycrystalline diamond film or the like, and a conductive substrate (hereinafter also simply referred to as "substrate") 25. . The BDD electrode is configured as a vertical electrode that conducts from the back surface of the substrate 25 (that is, the surface opposite to the surface on which the electrode film 24 is provided).
 また、少なくとも二つ、好ましくは三つの電極21,22,23は、それぞれがBDD電極であることに加えて、それぞれが同一構造および同一形状を有する。ここでいう「同一構造」とは、それぞれが同一の積層構造であること、すなわちそれぞれが電極膜24と基板25とを備える積層構造であることを意味する。また、ここでいう「同一形状」とは、それぞれが同一のチップ平面形状であること、すなわち電極として機能する検出面が同一の平面形状および面積であり、各平面形状が描く図形が合同であることを意味する。 Furthermore, at least two, preferably three, electrodes 21, 22, and 23 are each BDD electrodes, and in addition, each has the same structure and shape. The "same structure" here means that each has the same laminated structure, that is, each has a laminated structure including the electrode film 24 and the substrate 25. In addition, the "same shape" here means that each chip has the same planar shape, that is, the detection surfaces that function as electrodes have the same planar shape and area, and the figures drawn by each planar shape are congruent. It means that.
 なお、本明細書では、作用電極または対電極のいずれかとして機能する二つの電極21,22のうちの一方のBDD電極を、第一ダイヤモンド電極(第一BDD電極)21とも称し、当該二つの電極21,22のうちの他方のBDD電極を、第二ダイヤモンド電極(第二BDD電極)22とも称する。また、参照電極として機能する一つの電極23であるBDD電極については、第三ダイヤモンド電極(第三BDD電極)23とも称する。これら第一BDD電極21、第二BDD電極22および第三BDD電極23をまとめて電極群20と称することもある。 In addition, in this specification, one BDD electrode of the two electrodes 21 and 22 that functions as either a working electrode or a counter electrode is also referred to as a first diamond electrode (first BDD electrode) 21, and the two electrodes are The other BDD electrode of the electrodes 21 and 22 is also referred to as a second diamond electrode (second BDD electrode) 22. Further, the BDD electrode, which is one electrode 23 that functions as a reference electrode, is also referred to as a third diamond electrode (third BDD electrode) 23. These first BDD electrode 21, second BDD electrode 22, and third BDD electrode 23 may be collectively referred to as an electrode group 20.
 これら第一BDD電極21~第三BDD電極23は、既述のように、それぞれが電極膜24と導電性基板25とを備えて構成されている。 These first to third BDD electrodes 21 to 23 are each configured to include an electrode film 24 and a conductive substrate 25, as described above.
 電極膜24は、多結晶ダイヤモンドで構成されている。具体的には、電極膜24は、ドーパントとしてのホウ素(B)元素を含むダイヤモンド結晶、すなわち、p型の導電性を有するダイヤモンド結晶で構成される多結晶膜(多結晶ダイヤモンド膜)である。ダイヤモンド結晶とは、炭素(C)原子がダイヤモンド結晶構造と呼ばれるパターンで配列している結晶である。また、電極膜24は、Bがドープされたダイヤモンド・ライク・カーボン(DLC)膜であってもよい。電極膜24におけるB濃度は、二次イオン質量分析(Secondary Ion Mass Spectrometry(SIMS))で測定でき、例えば5×1019cm-3以上5×1021cm-3以下とすることができる。SIMSとは、電極膜24の表面にビーム状のイオン(一次イオン)を照射した際に発生するイオン(二次イオン)を質量分析計で検出して所定の物質の濃度を測定する手法である。 The electrode film 24 is made of polycrystalline diamond. Specifically, the electrode film 24 is a polycrystalline film (polycrystalline diamond film) made of a diamond crystal containing boron (B) as a dopant, that is, a diamond crystal having p-type conductivity. A diamond crystal is a crystal in which carbon (C) atoms are arranged in a pattern called a diamond crystal structure. Further, the electrode film 24 may be a diamond-like carbon (DLC) film doped with B. The B concentration in the electrode film 24 can be measured by secondary ion mass spectrometry (SIMS), and can be set to, for example, 5×10 19 cm −3 or more and 5×10 21 cm −3 or less. SIMS is a method of measuring the concentration of a predetermined substance by detecting ions (secondary ions) generated when the surface of the electrode film 24 is irradiated with a beam of ions (primary ions) using a mass spectrometer. .
 電極膜24は、基板25が有する二つの主面のうちいずれか一方の主面上に設けられている。本明細書では、電極膜24が設けられる基板25の主面を、「基板25の結晶成長面」とも称する。電極膜24は、基板25の結晶成長面全域にわたって設けられている。電極膜24は、表面(露出面)で、所定の電気化学反応(例えば、オゾンの酸化還元反応)を生じさせる。 The electrode film 24 is provided on one of the two main surfaces of the substrate 25. In this specification, the main surface of the substrate 25 on which the electrode film 24 is provided is also referred to as the "crystal growth surface of the substrate 25." The electrode film 24 is provided over the entire crystal growth surface of the substrate 25. The electrode film 24 causes a predetermined electrochemical reaction (for example, an ozone redox reaction) on its surface (exposed surface).
 電極膜24は、化学気相成長(Chemical Vapor Deposition(CVD))法や、物理蒸着(Physical Vapor Deposition(PVD))法等により成長させる(堆積させる、合成する)ことができる。CVD法としては、タングステンフィラメントを用いた熱フィラメント(ホットフィラメント)CVD法、プラズマCVD法等が例示され、PVD法としては、イオンビーム法やイオン化蒸着法等が例示される。電極膜24の厚さは、例えば0.5μm以上10μm以下、好ましくは1μm以上6μm以下、より好ましくは2μm以上4μm以下とすることができる。 The electrode film 24 can be grown (deposited, synthesized) by a chemical vapor deposition (CVD) method, a physical vapor deposition (PVD) method, or the like. Examples of the CVD method include a hot filament CVD method using a tungsten filament, a plasma CVD method, and the like, and examples of the PVD method include an ion beam method, an ionized vapor deposition method, and the like. The thickness of the electrode film 24 can be, for example, 0.5 μm or more and 10 μm or less, preferably 1 μm or more and 6 μm or less, and more preferably 2 μm or more and 4 μm or less.
 導電性基板25としては、低抵抗材料で構成された平板状の基板が用いられる。基板25として、シリコン(Si)を主元素として構成され、ホウ素(B)等のp型のドーパントを所定濃度で含む基板、例えばp型の単結晶Si基板を用いることができる。基板25として、p型の多結晶Si基板を用いることもできる。基板25におけるB濃度は、例えば5×1018cm-3以上1.5×1020cm-3以下、好ましくは5×1018cm-3以上1.2×1020cm-3以下とすることができる。基板25におけるB濃度が上記範囲内であることにより、基板25の比抵抗を低くしつつ、基板25の製造歩留の低下や性能劣化を回避することができる。 As the conductive substrate 25, a flat substrate made of a low resistance material is used. As the substrate 25, a substrate that is composed of silicon (Si) as a main element and contains a p-type dopant such as boron (B) at a predetermined concentration, such as a p-type single crystal Si substrate, can be used. As the substrate 25, a p-type polycrystalline Si substrate can also be used. The B concentration in the substrate 25 is, for example, 5×10 18 cm −3 or more and 1.5×10 20 cm −3 or less, preferably 5×10 18 cm −3 or more and 1.2×10 20 cm −3 or less. Can be done. By setting the B concentration in the substrate 25 within the above range, it is possible to reduce the specific resistance of the substrate 25 while avoiding a decrease in manufacturing yield or performance deterioration of the substrate 25.
 基板25の厚さは例えば350μm以上とすることができる。これにより、直径が6インチや8インチである市販の単結晶Si基板を、バックラップ(back rap)して厚さ調整することなく、基板25としてそのまま用いることが可能となる。その結果、BDD電極の生産性を高め、製造コストを低減することが可能となる。基板25の厚さの上限は特に限定されないが、現在一般的に市場に流通しているSi基板の厚さは、直径が12インチの単結晶Si基板で775μm程度である。このため、現在の技術における基板25の厚さの上限は例えば775μm程度とすることができる。 The thickness of the substrate 25 can be, for example, 350 μm or more. This makes it possible to use a commercially available single-crystal Si substrate with a diameter of 6 inches or 8 inches as it is as the substrate 25 without back lapping and adjusting the thickness. As a result, it becomes possible to increase the productivity of BDD electrodes and reduce manufacturing costs. Although the upper limit of the thickness of the substrate 25 is not particularly limited, the thickness of a Si substrate generally available on the market at present is about 775 μm for a single crystal Si substrate with a diameter of 12 inches. Therefore, the upper limit of the thickness of the substrate 25 in the current technology can be, for example, about 775 μm.
 基板25として、Siを主元素として構成された基板(Si基板)以外の基板を用いることもできる。例えば、基板25として、炭化シリコン基板(SiC基板)等のSiの化合物を用いて構成された基板を用いることもできる。 As the substrate 25, a substrate other than a substrate composed of Si as a main element (Si substrate) can also be used. For example, as the substrate 25, a substrate configured using a Si compound such as a silicon carbide substrate (SiC substrate) can also be used.
 なお、基板25として、ニオブ(Nb)、モリブデン(Mo)、チタン(Ti)等を主元素として構成された金属基板を用いることも考えられる。しかしながら、金属基板を用いた場合、リーク電流が生じやすいことから、基板25としてSi基板を用いる方が好ましい。 Note that it is also possible to use a metal substrate composed of niobium (Nb), molybdenum (Mo), titanium (Ti), or the like as a main element as the substrate 25. However, if a metal substrate is used, leakage current is likely to occur, so it is preferable to use a Si substrate as the substrate 25.
 以上のような構成の第一BDD電極21~第三BDD電極23は、公知の成膜手法を用いて形成することができる。 The first to third BDD electrodes 21 to 23 configured as described above can be formed using a known film forming method.
(配線構成)
 支持基板10上には、当該基板10の長手方向における一端部から他端部側に向かって、配線31,32,33が配設されている。配線31,32,33の形成材料としては、銅(Cu)、金(Au)、白金(Pt)、銀(Ag)、パラジウム(Pd)等の各種貴金属、アルミニウム(Al)、鉄(Fe)、ニッケル(Ni)、クロム(Cr)、チタン(Ti)等の各種金属、これらの貴金属または金属を主成分とする合金、上記貴金属、金属、または合金の酸化物、カーボン等が例示される。配線31,32,33は、同一の材料を用いて形成されていてもよく、それぞれが異なる材料を用いて形成されていてもよい。配線31,32,33は、サブトラクティブ法やセミアディティブ法等により形成することができる。また、配線31,32,33は、スクリーン印刷、グラビア印刷、オフセット印刷、インクジェット印刷等の印刷法や、蒸着法等により形成することもできる。
(Wiring configuration)
Wirings 31, 32, and 33 are arranged on the support substrate 10 from one end to the other end in the longitudinal direction of the substrate 10. The materials for forming the wirings 31, 32, and 33 include various noble metals such as copper (Cu), gold (Au), platinum (Pt), silver (Ag), and palladium (Pd), aluminum (Al), and iron (Fe). , various metals such as nickel (Ni), chromium (Cr), and titanium (Ti), alloys containing these noble metals or metals as main components, oxides of the above noble metals, metals, or alloys, and carbon. The wirings 31, 32, and 33 may be formed using the same material, or may be formed using different materials. The wirings 31, 32, and 33 can be formed by a subtractive method, a semi-additive method, or the like. Moreover, the wirings 31, 32, and 33 can also be formed by a printing method such as screen printing, gravure printing, offset printing, or inkjet printing, or a vapor deposition method.
 配線31の一端部には、導電性の接合材34(図2参照)を介して、第一BDD電極21が電気的に接続されている。配線32の一端部には、導電性の接合材34を介して、第二BDD電極22が電気的に接続されている。配線33の一端部には、導電性の接合材34を介して、第三BDD電極23が電気的に接続されている。接合材34としては、導電性ペースト(導電性接着剤)や導電性テープ等を用いることができる。 The first BDD electrode 21 is electrically connected to one end of the wiring 31 via a conductive bonding material 34 (see FIG. 2). The second BDD electrode 22 is electrically connected to one end of the wiring 32 via a conductive bonding material 34 . The third BDD electrode 23 is electrically connected to one end of the wiring 33 via a conductive bonding material 34 . As the bonding material 34, a conductive paste (conductive adhesive), a conductive tape, or the like can be used.
 第一BDD電極21、第二BDD電極22、第三BDD電極23のそれぞれにおける基板25側(電極膜24を積層したのとは反対の面)には、メタライズ処理することが望ましい。メタライズ処理に用いる金属は、Au、Ag、Pt、Cu、Al、マグネシウム(Mg)、Ni、Ti、Mo、タングステン(W)やそれらの積層体、合金など、半導体チップのマウントに用いられている技術を適用することが可能である。メタライズ処理を行うことで、導電性基板25と接合材34との接続抵抗を下げ、接合強度を高めることができる。 It is desirable to perform metallization treatment on the substrate 25 side (the surface opposite to the layered electrode film 24) of each of the first BDD electrode 21, the second BDD electrode 22, and the third BDD electrode 23. The metals used in the metallization process include Au, Ag, Pt, Cu, Al, magnesium (Mg), Ni, Ti, Mo, tungsten (W), and their laminates and alloys, which are used to mount semiconductor chips. It is possible to apply technology. By performing the metallization process, the connection resistance between the conductive substrate 25 and the bonding material 34 can be lowered, and the bonding strength can be increased.
 第一BDD電極21、第二BDD電極22、第三BDD電極23の基板25側を配線31,32,33に接続すること、更には、接合面の基板25側にメタライズ処理を行うことにより、オゾン濃度測定時の各BDD電極21,22,23内の電流分散に偏りが生じるのを防ぐことができ、いずれの電極21,22,23を作用電極に用いても、電極表面全体で均一に電気化学反応を生じさせることができるようになる。 By connecting the substrate 25 side of the first BDD electrode 21, second BDD electrode 22, and third BDD electrode 23 to the wirings 31, 32, and 33, and further performing metallization treatment on the substrate 25 side of the bonding surface, It is possible to prevent bias from occurring in the current distribution within each BDD electrode 21, 22, 23 during ozone concentration measurement, and evenly spread over the entire electrode surface regardless of which electrode 21, 22, 23 is used as the working electrode. Becomes able to generate electrochemical reactions.
 また、第一BDD電極21、第二BDD電極22、第三BDD電極23の基板25側を配線31,32,33に接続することにより、各BDD電極21,22,23の表面側に電気配線や絶縁樹脂を被せる必用が無くなり、各BDD電極21,22,23の表面の汚染が防止できるだけでなく、各BDD電極21,22,23の表面を凹凸の無い平坦面に保つことでできる。これにより、いずれの電極21,22,23を作用電極に用いても、オゾン濃度測定時の各BDD電極21,22,23の周りのオゾンの拡散経路を同じになるようにすることができ、いずれの電極21,22,23を作用電極に用いても等価な回路でオゾン濃度測定ができるようになる。 In addition, by connecting the substrate 25 side of the first BDD electrode 21, second BDD electrode 22, and third BDD electrode 23 to the wirings 31, 32, and 33, electrical wiring can be provided on the surface side of each BDD electrode 21, 22, and 23. This eliminates the need to cover the BDD electrodes 21, 22, and 23 with an insulating resin, which not only prevents contamination of the surfaces of the BDD electrodes 21, 22, and 23, but also allows the surfaces of the BDD electrodes 21, 22, and 23 to be kept flat without irregularities. As a result, no matter which electrode 21, 22, 23 is used as a working electrode, the ozone diffusion path around each BDD electrode 21, 22, 23 during ozone concentration measurement can be made to be the same. No matter which electrode 21, 22, 23 is used as a working electrode, ozone concentration can be measured with an equivalent circuit.
 第一BDD電極21と配線31との接合部の周囲、第二BDD電極22と配線32との接合部の周囲、および、第三BDD電極23と配線33との接合部の周囲は、それぞれ、絶縁性樹脂35(図2参照)で封止されている。絶縁性樹脂35は、熱硬化性樹脂または紫外線硬化性樹脂で構成することができる。熱硬化性樹脂または紫外線硬化性樹脂としては、エポキシ系の絶縁樹脂、ノボラック系の絶縁樹脂等を用いることができる。絶縁性樹脂35は、例えば、硬化前の液状の絶縁性樹脂(以下、「液状樹脂」とも称する)を、各接合材34の周囲と、第一BDD電極21、第二BDD電極22および第三BDD電極23のそれぞれの周囲と、に塗布し、加熱または紫外線照射により液状樹脂を硬化させることで設けることができる。なお、液状樹脂の塗布および硬化は、第一BDD電極21と配線31とを電気的に接続し、第二BDD電極22と配線32とを電気的に接続し、第三BDD電極23と配線33とを電気的に接続した後に行われる。液状樹脂は、例えば、接合材34、第一BDD電極21の側面、第二BDD電極22の側面および第三BDD電極23の側面を露出させることなく覆うように塗布する。また、液状樹脂は、第一BDD電極21の表面、第二BDD電極22の表面および第三BDD電極23の表面には付着しないように塗布する。なお、「第一BDD電極21の表面」、「第二BDD電極22の表面」、「第三BDD電極23の表面」とは、それぞれ、各電極が有する電極膜24の表面を意味し、具体的には、電極膜24が有する2つの主面のうち、基板25と接する面とは反対側の面を意味する。「第一BDD電極21の表面」、「第二BDD電極22の表面」、「第三BDD電極23の表面」は、被検液中のオゾンの検出に寄与する面(検出面)であるともいえる。 The area around the joint between the first BDD electrode 21 and the wiring 31, the area around the joint between the second BDD electrode 22 and the wiring 32, and the area around the joint between the third BDD electrode 23 and the wiring 33 are as follows: It is sealed with an insulating resin 35 (see FIG. 2). The insulating resin 35 can be made of thermosetting resin or ultraviolet curable resin. As the thermosetting resin or ultraviolet curable resin, epoxy-based insulating resin, novolac-based insulating resin, etc. can be used. The insulating resin 35 is, for example, a liquid insulating resin before curing (hereinafter also referred to as "liquid resin") around each bonding material 34, the first BDD electrode 21, the second BDD electrode 22, and the third BDD electrode 22. It can be provided by applying the liquid resin around each of the BDD electrodes 23 and curing the liquid resin by heating or irradiating ultraviolet rays. Note that the application and curing of the liquid resin is performed by electrically connecting the first BDD electrode 21 and the wiring 31, electrically connecting the second BDD electrode 22 and the wiring 32, and electrically connecting the third BDD electrode 23 and the wiring 33. This is done after electrically connecting the For example, the liquid resin is applied so as to cover the bonding material 34, the side surface of the first BDD electrode 21, the side surface of the second BDD electrode 22, and the side surface of the third BDD electrode 23 without exposing them. Further, the liquid resin is applied so as not to adhere to the surface of the first BDD electrode 21, the surface of the second BDD electrode 22, and the surface of the third BDD electrode 23. In addition, "the surface of the first BDD electrode 21", "the surface of the second BDD electrode 22", and "the surface of the third BDD electrode 23" respectively mean the surface of the electrode film 24 of each electrode, and the specific Specifically, of the two main surfaces of the electrode film 24, it refers to the surface opposite to the surface in contact with the substrate 25. The "surface of the first BDD electrode 21," the "surface of the second BDD electrode 22," and the "surface of the third BDD electrode 23" are surfaces (detection surfaces) that contribute to the detection of ozone in the test liquid. I can say that.
 なお、本実施形態においては、少なくとも作用電極または対電極のいずれかとして機能する二つの電極21,22が同一構造および同一形状を有することに加え、各電極21,22と接続される配線31,32、および、各電極21,22と各配線31,32とを電気的に接続する接合材34、更にはそれらの接合部34の周囲を封止する絶縁性樹脂35についても、同一構造(材質)、同一形状を有することが望ましい。これにより、後述する第一回路52と第二回路53とが等価となり得るからである。 In addition, in this embodiment, in addition to the two electrodes 21 and 22 functioning as at least the working electrode or the counter electrode having the same structure and the same shape, the wiring 31, which is connected to each electrode 21 and 22, 32, the bonding material 34 that electrically connects each electrode 21, 22 and each wiring 31, 32, and the insulating resin 35 that seals the periphery of these bonded parts 34 have the same structure (material ), preferably have the same shape. This is because the first circuit 52 and the second circuit 53, which will be described later, can be equivalent.
(電極配置)
 次に、上述した構成の電気化学センサ1における各電極21,22,23の支持基板10上での配置の態様について、具体例を挙げて説明する。
(electrode arrangement)
Next, the arrangement of the electrodes 21, 22, 23 on the support substrate 10 in the electrochemical sensor 1 having the above-described configuration will be described using a specific example.
 図3は、本開示の第一実施形態に係る電気化学センサにおける電極配置の一具体例を模式的に示す説明図である。
 図3に示すように、基板10上において、三つの電極21,22,23である第一BDD電極21、第二BDD電極22および第三BDD電極23は、当該基板10の短手方向に沿って並設されている。さらに詳しくは、第一BDD電極21と第二BDD電極22との間に第三BDD電極23が位置するように、それぞれが並設されている。
FIG. 3 is an explanatory diagram schematically showing a specific example of electrode arrangement in the electrochemical sensor according to the first embodiment of the present disclosure.
As shown in FIG. 3, on the substrate 10, the three electrodes 21, 22, 23, the first BDD electrode 21, the second BDD electrode 22, and the third BDD electrode 23, are arranged along the width direction of the substrate 10. They are arranged side by side. More specifically, the first BDD electrode 21 and the second BDD electrode 22 are arranged in parallel so that the third BDD electrode 23 is located between them.
 各電極21,22,23の平面形状は、例えば基板10の長手方向に沿って配された長辺を有する長方形状とすることができるが、これに限定されるものではなく、正方形状や円形状であっても構わない。ただし、少なくとも第一BDD電極21および第二BDD電極22、好ましくは第一BDD電極21~第三BDD電極23の全ては、それぞれが同一の平面形状であるものとする。 The planar shape of each electrode 21, 22, 23 can be, for example, a rectangular shape with long sides arranged along the longitudinal direction of the substrate 10, but is not limited to this, and can be square or circular. It doesn't matter what shape it is. However, at least the first BDD electrode 21 and the second BDD electrode 22, preferably all of the first BDD electrode 21 to third BDD electrode 23, have the same planar shape.
 各電極21,22,23の平面積は、特に限定されるものではないが、例えば1mm以上、好ましくは4mm以上、より好ましくは10mm以上、さらに好ましくは20mm以上であり、好ましくは100mm以下、より好ましくは50mm以下である。ここでいう「平面積」とは、基板10の主面に対して垂直方向上方から各電極21,22,23を見た際の面積であり、被検液中のオゾンの検出に寄与する面(検出面)の面積に相当する。
 各電極21,22,23の平面積が1mm以上であれば、当該電極21,22,23を精度よく安定して容易に作製することができ、ハンドリング性の低下および実装安定性の低下を抑制することもできる。
 各電極21,22,23の平面積が100mm以下であれば、電気化学センサ1の大型化を回避できる、すなわち、小型の電気化学センサ1を得やすくなる。さらには、各電極21,22,23の平面積が50mm以下であることで、高感度のセンサ1を得ながら、センサ1の大型化を確実に回避できる。
The planar area of each electrode 21, 22, 23 is not particularly limited, but is, for example, 1 mm 2 or more, preferably 4 mm 2 or more, more preferably 10 mm 2 or more, still more preferably 20 mm 2 or more, and preferably It is 100 mm 2 or less, more preferably 50 mm 2 or less. The "flat area" herein refers to the area when each electrode 21, 22, 23 is viewed from above in the vertical direction with respect to the main surface of the substrate 10, and is the area that contributes to the detection of ozone in the test liquid. (detection surface).
If the planar area of each electrode 21, 22, 23 is 1 mm2 or more, the electrodes 21, 22, 23 can be easily manufactured accurately, stably, and the reduction in handling property and mounting stability can be avoided. It can also be suppressed.
If the planar area of each electrode 21, 22, 23 is 100 mm 2 or less, it is possible to avoid increasing the size of the electrochemical sensor 1, that is, it becomes easier to obtain a small electrochemical sensor 1. Furthermore, since the planar area of each electrode 21, 22, 23 is 50 mm 2 or less, it is possible to reliably avoid increasing the size of the sensor 1 while obtaining a highly sensitive sensor 1.
 基板10上に並設された各電極21,22,23のうち、第一BDD電極21と第二BDD電極22とは、これらの間に位置する第三BDD電極23における所定の電極基準点26を通る仮想線27を対称軸として、それぞれが線対称の位置に配置されている。ここで「第三BDD電極23における所定の電極基準点26」とは、第三BDD電極23について予め設定された位置基準となる点である。具体的には、例えば第三BDD電極23の平面形状における重心点または中心点が、電極基準点26として例示できる。また、「電極基準点26を通る仮想線27」は、電極基準点26を通過するように想定された線である。具体的には、電極基準点26を通り、かつ、基板10の長手方向に沿って延びる直線が、電極基準点26を通る仮想線27として例示できる。 Among the electrodes 21, 22, 23 arranged in parallel on the substrate 10, the first BDD electrode 21 and the second BDD electrode 22 are located at a predetermined electrode reference point 26 in the third BDD electrode 23 located between them. Each is arranged at a line-symmetrical position with an imaginary line 27 passing through the axis of symmetry as an axis of symmetry. Here, the "predetermined electrode reference point 26 in the third BDD electrode 23" is a point that serves as a preset position reference for the third BDD electrode 23. Specifically, for example, the center point or center point of the third BDD electrode 23 in its planar shape can be exemplified as the electrode reference point 26. Further, the “imaginary line 27 passing through the electrode reference point 26” is a line assumed to pass through the electrode reference point 26. Specifically, a straight line passing through the electrode reference point 26 and extending along the longitudinal direction of the substrate 10 can be exemplified as the virtual line 27 passing through the electrode reference point 26.
 このように、基板10上においては、第三BDD電極23の電極基準点26を通る仮想線27を対称軸として、第一BDD電極21と第二BDD電極22とが線対称の位置に配置されている。したがって、第一BDD電極21と第二BDD電極22とは、それぞれが同一の平面形状であることに加え、それぞれが第三BDD電極23の電極基準点26を通る仮想線27から等距離の位置に配置されていることになる。 In this way, on the substrate 10, the first BDD electrode 21 and the second BDD electrode 22 are arranged in line-symmetrical positions with the virtual line 27 passing through the electrode reference point 26 of the third BDD electrode 23 as the axis of symmetry. ing. Therefore, in addition to each having the same planar shape, the first BDD electrode 21 and the second BDD electrode 22 are located at the same distance from the virtual line 27 passing through the electrode reference point 26 of the third BDD electrode 23. It will be placed in .
 なお、第一BDD電極21および第二BDD電極22と同様に、各電極21,22,23が配設される基板10についても、対称性を有する平面形状に形成されていることが好ましい。つまり、基板10は、第三BDD電極23の電極基準点26を通る仮想線27を対称軸として、当該基板10の平面形状が対称性を有していることが好ましい。対称性を有する場合、基板10上において、第三BDD電極23の電極基準点26を通る仮想線27は、当該基板10の短手方向の中心を通過することになる。また、基板10の角部にR加工やC面取り加工等が施された角処理部11が設けられる場合、角処理部11は、第三BDD電極23の電極基準点26を通る仮想線27を挟んで両辺側のそれぞれに位置することになる。 Note that, similarly to the first BDD electrode 21 and the second BDD electrode 22, the substrate 10 on which the electrodes 21, 22, and 23 are arranged is also preferably formed into a symmetrical planar shape. In other words, it is preferable that the planar shape of the substrate 10 has symmetry with the virtual line 27 passing through the electrode reference point 26 of the third BDD electrode 23 as an axis of symmetry. In the case of symmetry, the virtual line 27 passing through the electrode reference point 26 of the third BDD electrode 23 on the substrate 10 passes through the center of the substrate 10 in the transverse direction. Furthermore, when the corner of the substrate 10 is provided with a corner treatment portion 11 that is subjected to R processing, C chamfering, etc., the corner treatment portion 11 is configured to form a virtual line 27 passing through the electrode reference point 26 of the third BDD electrode 23. They will be located on each side of the sandwich.
 以上に説明した具体例では、第一BDD電極21~第三BDD電極23が基板10の短手方向に沿って並ぶように配置されている構成について説明したが、各電極21,22,23の配置がこれに限定されるものではない。つまり、各電極21,22,23は、第一BDD電極21と第二BDD電極22とが線対称であれば、他の態様で配置されていてもよい。 In the specific example described above, the first BDD electrode 21 to the third BDD electrode 23 are arranged so as to be arranged along the width direction of the substrate 10. The arrangement is not limited to this. That is, each electrode 21, 22, 23 may be arranged in another manner as long as the first BDD electrode 21 and the second BDD electrode 22 are line symmetrical.
 図4は、本開示の第一実施形態に係る電気化学センサにおける電極配置の他の一具体例を模式的に示す説明図(その1)である。
 図4に示す配置態様では、基板10上において、第一BDD電極21~第三BDD電極23が、当該基板10の長手方向に沿って並ぶように配置されている。そして、第一BDD電極21と第二BDD電極22との間に位置する第三BDD電極23の電極基準点26を通る仮想線27を対称軸として、第一BDD電極21と第二BDD電極22とが線対称の位置に配置されている。つまり、対称軸となる仮想線27は、基板10の短手方向に沿って延びるように配されている。このような配置態様の場合も、第一BDD電極21と第二BDD電極22とは、それぞれが同一の平面形状であることに加え、それぞれが第三BDD電極23の電極基準点26を通る仮想線27から等距離の位置に配置されていることになる。
FIG. 4 is an explanatory diagram (Part 1) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the first embodiment of the present disclosure.
In the arrangement shown in FIG. 4, the first to third BDD electrodes 21 to 23 are arranged on the substrate 10 so as to be lined up along the longitudinal direction of the substrate 10. Then, the first BDD electrode 21 and the second BDD electrode 22 are aligned with an imaginary line 27 passing through the electrode reference point 26 of the third BDD electrode 23 located between the first BDD electrode 21 and the second BDD electrode 22 as an axis of symmetry. and are arranged in line-symmetrical positions. In other words, the virtual line 27 serving as the axis of symmetry is arranged to extend along the lateral direction of the substrate 10. Even in the case of such an arrangement, the first BDD electrode 21 and the second BDD electrode 22 each have the same planar shape, and each has a virtual shape passing through the electrode reference point 26 of the third BDD electrode 23. This means that they are placed at positions equidistant from line 27.
 また、上述した各具体例では、第一BDD電極21~第三BDD電極23が基板10で一列に並ぶように配置されている構成について説明したが、各電極21,22,23の配置がこれに限定されるものではない。
 図5は、本開示の第一実施形態に係る電気化学センサにおける電極配置の他の一具体例を模式的に示す説明図(その2)である。
 図5に示す配置態様では、基板10上において、第一BDD電極21と第二BDD電極22が当該基板10の短手方向に沿って並んでいるが、その列から離れて第三BDD電極23が位置するように、各電極21,22,23が配置されている。そして、第三BDD電極23の電極基準点26を通る仮想線27を対称軸として、第一BDD電極21と第二BDD電極22とが線対称の位置に配置されている。このような配置態様の場合も、第一BDD電極21と第二BDD電極22とは、それぞれが同一の平面形状であることに加え、それぞれが第三BDD電極23の電極基準点26を通る仮想線27から等距離の位置に配置されていることになる。
 このような配置態様であれば、第一BDD電極21~第三BDD電極23が一列に並ぶ場合に比べて、第一BDD電極21と第二BDD電極22との間隔を近づけることができる。したがって、電気化学センサ1のコンパクト化に容易に対応し得るようになる。
Further, in each of the specific examples described above, the first BDD electrode 21 to the third BDD electrode 23 are arranged in a line on the substrate 10. However, the arrangement of each electrode 21, 22, 23 is It is not limited to.
FIG. 5 is an explanatory diagram (part 2) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the first embodiment of the present disclosure.
In the arrangement shown in FIG. 5, on the substrate 10, the first BDD electrode 21 and the second BDD electrode 22 are lined up along the width direction of the substrate 10, but the third BDD electrode 23 is separated from the line. Each electrode 21, 22, 23 is arranged so that The first BDD electrode 21 and the second BDD electrode 22 are arranged in line-symmetrical positions with an imaginary line 27 passing through the electrode reference point 26 of the third BDD electrode 23 as an axis of symmetry. Even in the case of such an arrangement, the first BDD electrode 21 and the second BDD electrode 22 each have the same planar shape, and each has a virtual shape passing through the electrode reference point 26 of the third BDD electrode 23. This means that they are placed at positions equidistant from line 27.
With this arrangement, the distance between the first BDD electrode 21 and the second BDD electrode 22 can be made closer than when the first BDD electrode 21 to the third BDD electrode 23 are lined up in a row. Therefore, the electrochemical sensor 1 can be made more compact.
 また、上述した各具体例では、第一BDD電極21~第三BDD電極23がいずれも同一の平面形状である構成について説明したが、各電極21,22,23の配置がこれに限定されるものではない。
 図6は、本開示の第一実施形態に係る電気化学センサにおける電極配置の他の一具体例を模式的に示す説明図(その3)である。図7は、本開示の第一実施形態に係る電気化学センサにおける電極配置の他の一具体例を模式的に示す説明図(その4)である。
 図6または図7に示す配置態様では、参照電極として機能する第三BDD電極23が、第一BDD電極21および第二BDD電極22とは異なる平面形状で形成されている。一方、第一BDD電極21と第二BDD電極22とは、第三BDD電極23の電極基準点26を通る仮想線27を対称軸として、それぞれが線対称の位置に配置されている。このような配置態様の場合も、第一BDD電極21と第二BDD電極22とは、それぞれが同一の平面形状であることに加え、それぞれが第三BDD電極23の電極基準点26を通る仮想線27から等距離の位置に配置されていることになる。
Further, in each of the above-mentioned specific examples, the first BDD electrode 21 to the third BDD electrode 23 have the same planar shape, but the arrangement of the electrodes 21, 22, and 23 is limited to this. It's not a thing.
FIG. 6 is an explanatory diagram (Part 3) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the first embodiment of the present disclosure. FIG. 7 is an explanatory diagram (No. 4) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the first embodiment of the present disclosure.
In the arrangement shown in FIG. 6 or 7, the third BDD electrode 23 functioning as a reference electrode is formed in a planar shape different from that of the first BDD electrode 21 and the second BDD electrode 22. On the other hand, the first BDD electrode 21 and the second BDD electrode 22 are arranged at symmetrical positions with respect to an imaginary line 27 passing through the electrode reference point 26 of the third BDD electrode 23 as an axis of symmetry. Even in the case of such an arrangement, the first BDD electrode 21 and the second BDD electrode 22 each have the same planar shape, and each has a virtual shape passing through the electrode reference point 26 of the third BDD electrode 23. This means that they are placed at positions equidistant from line 27.
(2)システム構成
 次に、上述した電気化学センサ1を備えて構成される電気化学センサシステムについて説明する。
 図8は、本開示の第一実施形態に係る電気化学センサシステムの機能構成例を示すブロック図である。
(2) System Configuration Next, an electrochemical sensor system including the electrochemical sensor 1 described above will be described.
FIG. 8 is a block diagram showing an example of the functional configuration of the electrochemical sensor system according to the first embodiment of the present disclosure.
 図8に示すように、電気化学センサシステム(以下、単に「システム」とも称する)は、電気化学センサ1に加えて、電気化学測定装置2を備えて構成されている。電気化学測定装置2には、コンピュータ装置3が接続されている。なお、電気化学測定装置2とコンピュータ装置3は、一体の装置として構成されていてもよい。 As shown in FIG. 8, the electrochemical sensor system (hereinafter also simply referred to as "system") includes an electrochemical measuring device 2 in addition to the electrochemical sensor 1. A computer device 3 is connected to the electrochemical measurement device 2 . Note that the electrochemical measuring device 2 and the computer device 3 may be configured as an integrated device.
(電気化学センサ)
 電気化学センサ1は、既述のように、第一BDD電極21、第二BDD電極22および第三BDD電極23を備えている。第一BDD電極21は、作用電極または対電極のいずれかとして機能する。これと同様に、第二BDD電極22も、作用電極または対電極のいずれかとして機能する。ただし、第一BDD電極21と第二BDD電極22とは、それぞれが異なる電極として機能するようになっている。第三BDD電極23は、参照電極として機能する。
(electrochemical sensor)
As described above, the electrochemical sensor 1 includes the first BDD electrode 21, the second BDD electrode 22, and the third BDD electrode 23. The first BDD electrode 21 functions as either a working electrode or a counter electrode. Similarly, the second BDD electrode 22 also functions as either a working electrode or a counter electrode. However, the first BDD electrode 21 and the second BDD electrode 22 function as different electrodes. The third BDD electrode 23 functions as a reference electrode.
(電気化学測定装置)
 電気化学測定装置(以下、単に「測定装置」とも称する)2は、例えばポテンショスタットとしての機能を有するもので、被検液に接触する各電極21,22,23における電気化学反応を制御して、その電位・電流を測定するために用いられるものである。
(Electrochemical measuring device)
The electrochemical measuring device (hereinafter also simply referred to as "measuring device") 2 has the function of, for example, a potentiostat, and controls the electrochemical reaction at each electrode 21, 22, 23 in contact with the test liquid. , and is used to measure the potential and current.
 本実施形態における測定装置2は、電気化学測定回路(以下、単に「測定回路」とも称する)51と、第一回路52と、第二回路53と、選択回路54と、を備えて構成されている。 The measuring device 2 in this embodiment includes an electrochemical measuring circuit (hereinafter also simply referred to as a "measuring circuit") 51, a first circuit 52, a second circuit 53, and a selection circuit 54. There is.
 測定回路51は、各電極21,22,23への印加電圧の制御により、作用電極と対電極の間に電圧をかけ、参照電極の電位を基準にして作用電極の電位を掃引可能にするものである。さらに、測定回路51は、作用電極で生じる電気化学反応に応じて、作用電極と対電極との間をえる電流値の測定を行うものである。つまり、測定回路51は、三電極法による電気化学測定を、LSVを利用して行うものである。LSVの詳細は、公知技術を利用すればよく、ここではその説明を省略する。 The measurement circuit 51 applies a voltage between the working electrode and the counter electrode by controlling the voltage applied to each electrode 21, 22, 23, and makes it possible to sweep the potential of the working electrode with reference to the potential of the reference electrode. It is. Furthermore, the measurement circuit 51 measures the current value flowing between the working electrode and the counter electrode in accordance with the electrochemical reaction occurring at the working electrode. That is, the measurement circuit 51 performs electrochemical measurement using the three-electrode method using LSV. For details of the LSV, a known technique may be used, and the explanation thereof will be omitted here.
 第一回路52は、作用電極または対電極のいずれかとして機能する二つの電極21,22のうちの一方を作用電極とし他方を対電極として機能させるように、電気化学センサ1における配線31,32と測定回路51との間を電気的に接続するものである。具体的には、第一回路52は、第一BDD電極21を作用電極とし、第二BDD電極22を対電極として機能させるように、各配線31,32と測定回路51との間を接続する回路パターンで構成されている。 The first circuit 52 includes wirings 31 and 32 in the electrochemical sensor 1 such that one of the two electrodes 21 and 22 that functions as either a working electrode or a counter electrode is used as a working electrode and the other as a counter electrode. and the measurement circuit 51 are electrically connected to each other. Specifically, the first circuit 52 connects each wiring 31, 32 and the measurement circuit 51 so that the first BDD electrode 21 functions as a working electrode and the second BDD electrode 22 functions as a counter electrode. It is made up of circuit patterns.
 第二回路53は、第一回路52とは逆に、二つの電極21,22のうちの一方を対電極とし他方を作用電極として機能させるように、電気化学センサ1における配線31,32と測定回路51との間を電気的に接続するものである。具体的には、第二回路53は、第一BDD電極21を対電極とし、第二BDD電極22を作用電極として機能させるように、各配線31,32と測定回路51との間を接続する回路パターンで構成されている。 Contrary to the first circuit 52, the second circuit 53 connects the wirings 31 and 32 in the electrochemical sensor 1 to the measurement electrode so that one of the two electrodes 21 and 22 functions as a counter electrode and the other functions as a working electrode. It electrically connects with the circuit 51. Specifically, the second circuit 53 connects each wiring 31, 32 and the measurement circuit 51 so that the first BDD electrode 21 functions as a counter electrode and the second BDD electrode 22 functions as a working electrode. It is made up of circuit patterns.
 なお、第一回路52と第二回路53のいずれも、二つの電極21,22以外の一つの電極23である第三BDD電極23については参照電極として機能させるように、電気化学センサ1における配線33と測定回路51との間を接続する回路パターンとなっているものとする。 In both the first circuit 52 and the second circuit 53, the wiring in the electrochemical sensor 1 is arranged so that the third BDD electrode 23, which is one electrode 23 other than the two electrodes 21 and 22, functions as a reference electrode. 33 and the measurement circuit 51 are connected to each other.
 また、第一回路52と第二回路53は、それぞれが互いに等価な回路になっている。等価な回路とは、電気化学測定を行う際の電気回路が等価であると同時に、測定時の電気化学反応が同等の環境で進行することを意味する。特に、電気化学反応を同等の環境で進行させるためには、それぞれの回路に接続する各電極の形状、反応に寄与する電極の面積、各電極の配置(同等または対称配置)、間隔等が揃っている必要がある。 Furthermore, the first circuit 52 and the second circuit 53 are equivalent circuits. An equivalent circuit means that the electric circuit used for electrochemical measurement is equivalent, and that the electrochemical reaction during measurement proceeds in an equivalent environment. In particular, in order for the electrochemical reaction to proceed in the same environment, the shape of each electrode connected to each circuit, the area of the electrode contributing to the reaction, the arrangement of each electrode (equal or symmetrical arrangement), the spacing, etc. must be the same. Must be.
 選択回路54は、測定回路51による電圧印加および電流値測定にあたり、第一回路52と第二回路53とのいずれかを選択して、電気化学センサ1における各配線31,32,33と測定回路51との間の電気的な接続を確立させるものである。つまり、選択回路54は、各配線31,32,33と測定回路51との間の電気的な接続を、第一回路52と第二回路53のどちらによって確立させるかを切り換えるものである。選択回路54は、公知のスイッチ回路を利用して構成することができる。選択回路54による選択切り換えは、外部(例えばコンピュータ装置3)からの指示によるものであってもよいし、システム利用者の操作によるものであってもよい。 The selection circuit 54 selects either the first circuit 52 or the second circuit 53 to connect each wiring 31, 32, 33 in the electrochemical sensor 1 and the measurement circuit when applying a voltage and measuring a current value by the measurement circuit 51. 51 to establish an electrical connection with it. In other words, the selection circuit 54 switches between the first circuit 52 and the second circuit 53 to establish the electrical connection between each of the wirings 31, 32, 33 and the measurement circuit 51. The selection circuit 54 can be configured using a known switch circuit. The selection change by the selection circuit 54 may be based on an instruction from the outside (for example, the computer device 3) or may be based on an operation by the system user.
(コンピュータ装置)
 コンピュータ装置3は、測定装置2に接続されて用いられるもので、所定プログラムを実行する情報処理機能を有するものであれば、パーソナルコンピュータ装置に代表される据置型のものに限定されず、スマートフォンに代表される携帯型の情報端末装置等であってもよい。
(computer equipment)
The computer device 3 is used by being connected to the measuring device 2, and is not limited to a stationary type such as a personal computer device, as long as it has an information processing function to execute a predetermined program. It may also be a typical portable information terminal device or the like.
 コンピュータ装置3は、所定プログラムを実行することにより、測定装置2における処理動作を制御する制御部60として機能するように構成されている。制御部60が行う制御には、電気化学測定処理の制御、すなわち測定装置2による電流値の測定結果に基づき被検液であるオゾン水中のO濃度を測定する処理についての制御が含まれる。 The computer device 3 is configured to function as a control unit 60 that controls processing operations in the measuring device 2 by executing a predetermined program. The control performed by the control unit 60 includes control of the electrochemical measurement process, that is, control of the process of measuring the O 3 concentration in the ozone water that is the test liquid based on the measurement result of the current value by the measurement device 2.
 また、制御部60は、所定プログラムを実行することにより、選択制御部61、測定値管理部62および通電制御部63としても機能するようになっている。 Furthermore, the control section 60 also functions as a selection control section 61, a measured value management section 62, and an energization control section 63 by executing a predetermined program.
 選択制御部61は、測定装置2における選択回路54に対して、第一回路52と第二回路53とについての選択の切り換え指示を与えるものである。つまり、選択制御部61は、選択回路54を制御することで、第一回路52と第二回路53との選択切り換えを行うものである。選択制御部61による第一回路52と第二回路53との選択切り換えは、予め設定された定期的なタイミングで行うものとする。定期的なタイミングの具体例については、詳細を後述する。 The selection control unit 61 gives an instruction to the selection circuit 54 in the measuring device 2 to switch the selection between the first circuit 52 and the second circuit 53. In other words, the selection control unit 61 controls the selection circuit 54 to perform selection switching between the first circuit 52 and the second circuit 53. It is assumed that the selection control unit 61 switches the selection between the first circuit 52 and the second circuit 53 at a preset regular timing. A specific example of periodic timing will be described in detail later.
 測定値管理部62は、測定装置2の測定回路51を通じて得られる電流値の測定結果(以下、単に「測定値」とも称する)を管理するものである。さらに詳しくは、測定値管理部62は、第一回路52による接続確立時と第二回路53による接続確立時とのそれぞれで得られる複数の測定値を取得するとともに、これら複数の測定値に基づいて一つの測定値を導き出し、導き出した一つの測定値を被検液であるオゾン水中のO濃度を測定するための測定値とするものである。測定値管理部62での複数測定値の取得や一つの測定値の導出等の具体例については、詳細を後述する。 The measurement value management unit 62 manages the measurement results of current values obtained through the measurement circuit 51 of the measurement device 2 (hereinafter also simply referred to as “measurement values”). More specifically, the measured value management unit 62 acquires a plurality of measured values obtained when a connection is established by the first circuit 52 and when a connection is established by the second circuit 53, and based on these plurality of measured values. One measurement value is derived by using the method, and the derived one measurement value is used as a measurement value for measuring the O 3 concentration in ozone water, which is a test liquid. Specific examples of how the measured value management unit 62 acquires a plurality of measured values, derives one measured value, etc. will be described in detail later.
 通電制御部63は、測定装置2の測定回路51による電気化学センサ1の各電極21,22,23への通電状態を制御するものである。さらに詳しくは、通電制御部63は、電気化学センサ1の各電極21,22,23に対して、測定装置2の測定回路51から、被検液であるオゾン水中のO濃度の測定に必要となる通電を行うとともに、これとは別に(すなわち、その通電とは異なるタイミングで)、O濃度の測定の際とは異なる態様での通電を行って、これにより各電極21,22,23の状態回復処理を施すものである。通電制御部63による通電制御やこれによる状態回復処理等の具体例については、詳細を後述する。 The energization control unit 63 controls the energization state of the measurement circuit 51 of the measurement device 2 to each electrode 21 , 22 , 23 of the electrochemical sensor 1 . More specifically, the energization control unit 63 transmits a signal from the measurement circuit 51 of the measurement device 2 to each electrode 21, 22, 23 of the electrochemical sensor 1, which is necessary for measuring the O 3 concentration in the ozone water that is the test liquid. At the same time, separately from this (that is, at a timing different from that energization), energization is performed in a manner different from that for measuring the O 3 concentration, thereby each electrode 21, 22, 23 It performs state recovery processing. Specific examples of the energization control by the energization control unit 63 and the state recovery processing performed thereby will be described in detail later.
(3)システム処理動作
 次に、上述したシステムにおける処理動作について、被検液であるオゾン水中のO濃度を測定する場合を例に挙げて説明する。
(3) System processing operation Next, the processing operation in the above-mentioned system will be explained using an example in which the O 3 concentration in ozone water, which is a test liquid, is measured.
(濃度測定処理)
 上述したシステムを用いて被検液であるオゾン水中のO濃度を測定する場合には、電気化学センサ1の各電極21,22,23をオゾン水に接触させた状態にする。このとき、被検液であるオゾン水は、電気化学センサ1に対して十分な量を確保することが望ましい。オゾン水の量が少ないと、濃度測定によりオゾンが消費されることの影響で、精確な濃度測定ができないおそれが生じるからである。また、各電極21,22,23を接触させるオゾン水は、撹拌等をしない静止の状態、すなわち液体の流れが生じていない状態とし、その状態を保持しておくことが望ましい。後述する選択切り換えを行う際のそれぞれの測定条件を同一に揃えるためである。そして、各電極21,22,23をオゾン水に接触させた状態において、測定装置2の測定回路51が、各電極21,22,23への印加電圧の制御により、作用電極と対電極の間に電圧をかけ、参照電極の電位を基準にして作用電極の電位を掃引し、そのときに作用電極と対電極との間を流れる電流値を測定する。
(Concentration measurement processing)
When measuring the O 3 concentration in ozonated water, which is a test liquid, using the above-described system, each electrode 21, 22, 23 of the electrochemical sensor 1 is brought into contact with the ozonated water. At this time, it is desirable to secure a sufficient amount of ozone water, which is the test liquid, for the electrochemical sensor 1. This is because if the amount of ozonated water is small, there is a risk that accurate concentration measurement may not be possible due to ozone being consumed by concentration measurement. Further, it is desirable that the ozonated water that brings the electrodes 21, 22, and 23 into contact be in a static state without stirring or the like, that is, in a state in which no liquid flow occurs, and that this state is maintained. This is to ensure that the respective measurement conditions are the same when performing selection switching, which will be described later. Then, with each electrode 21, 22, 23 in contact with ozonated water, the measurement circuit 51 of the measurement device 2 controls the voltage applied to each electrode 21, 22, 23 to apply a voltage between the working electrode and the counter electrode. A voltage is applied to the electrode, the potential of the working electrode is swept based on the potential of the reference electrode, and the value of the current flowing between the working electrode and the counter electrode at this time is measured.
(選択切り換え)
 このとき、測定装置2の選択回路54は、コンピュータ装置3の選択制御部61からの指示に従いつつ、第一回路52と第二回路53とのいずれかを選択して、各電極21,22,23と測定回路51との間の電気的接続を確立させる。これにより、例えば、第一回路52を選択した場合には、第一BDD電極21を作用電極とし第二BDD電極22を対電極として機能させつつ、オゾン水中のO濃度の測定を行うことになる。また、例えば、第二回路53を選択した場合には、第一BDD電極21を対電極とし第二BDD電極22を作用電極として機能させつつ、オゾン水中のO濃度の測定を行うことになる。つまり、第一回路52、第二回路53および選択回路54の存在によって、第一BDD電極21と第二BDD電極22とのどちらを作用電極または対電極として機能させるかの選択切り換えに対応するようになっている。
(selection switching)
At this time, the selection circuit 54 of the measuring device 2 selects either the first circuit 52 or the second circuit 53 according to instructions from the selection control section 61 of the computer device 3, and selects each electrode 21, 22, 23 and the measuring circuit 51 is established. As a result, for example, when the first circuit 52 is selected, the O 3 concentration in ozonated water is measured while the first BDD electrode 21 functions as a working electrode and the second BDD electrode 22 functions as a counter electrode. Become. For example, when the second circuit 53 is selected, the O 3 concentration in ozonated water is measured while the first BDD electrode 21 functions as a counter electrode and the second BDD electrode 22 functions as a working electrode. . In other words, the presence of the first circuit 52, the second circuit 53, and the selection circuit 54 allows selection and switching of which of the first BDD electrode 21 and the second BDD electrode 22 is to function as a working electrode or a counter electrode. It has become.
 このような選択切り換えに対応する第一BDD電極21と第二BDD電極22とは、それぞれが同一の積層構造を有し、それぞれが同一の平面形状および面積である検出面を有し、さらには第三BDD電極23の電極基準点26を通る仮想線27に対して線対称の位置に配置されている。つまり、第一BDD電極21と第二BDD電極22とは、それぞれが同一構造および同一形状で、しかも参照電極として機能する第三BDD電極23から等距離の位置に配置されているので、第三BDD電極23からみたそれぞれの構成状況が左右対称の配置である以外は全く同一条件となる。 The first BDD electrode 21 and the second BDD electrode 22 corresponding to such selection switching each have the same laminated structure, each have a detection surface having the same planar shape and area, and The third BDD electrode 23 is arranged at a line-symmetrical position with respect to an imaginary line 27 passing through the electrode reference point 26 of the third BDD electrode 23. In other words, the first BDD electrode 21 and the second BDD electrode 22 have the same structure and the same shape, and are arranged at the same distance from the third BDD electrode 23, which functions as a reference electrode. The conditions are exactly the same except that the respective configurations as seen from the BDD electrode 23 are symmetrically arranged.
 したがって、選択切り換えによって第一BDD電極21と第二BDD電極22とのどちらを作用電極として機能させた場合であっても、機能上の差異の発生を抑制することができる。このように、第一BDD電極21と第二BDD電極22とは、その配置構成により、どちらも作用電極または対電極として機能させることが可能であり、当該機能の選択(固定的な選択のみならず当該選択の切り換えを含む)に対応することができるのである。 Therefore, even if either the first BDD electrode 21 or the second BDD electrode 22 is made to function as a working electrode by selective switching, it is possible to suppress the occurrence of functional differences. In this way, the first BDD electrode 21 and the second BDD electrode 22 can both function as a working electrode or a counter electrode depending on their arrangement, and the selection of the function (fixed selection only) is possible. (including switching of the selection).
 また、電気化学センサ1において、第一BDD電極21および第二BDD電極22のみならず、これらを支持する基板10についても対称性を有する平面形状に形成されていれば、機能上の差異の発生を抑制する上で、より一層有効なものとなる。被検液であるオゾン水中のO濃度を測定する際には、作用電極として機能する第一BDD電極21または第二BDD電極22のいずれかの電極表面でオゾン水中のOが消費される一方で、その作用電極から離れた位置からOが拡散して電極表面に供給されることになるが、基板10が対称性を有する平面形状であれば、第一BDD電極21と第二BDD電極22とのどちらを作用電極として選択しても、Oの電極表面への拡散供給経路に差異が生じないようにし得るからである。 Furthermore, in the electrochemical sensor 1, if not only the first BDD electrode 21 and the second BDD electrode 22 but also the substrate 10 that supports them are formed in a symmetrical planar shape, functional differences may occur. This will be even more effective in suppressing the When measuring the O 3 concentration in ozonated water, which is the test liquid, O 3 in the ozonated water is consumed on the electrode surface of either the first BDD electrode 21 or the second BDD electrode 22, which functions as a working electrode. On the other hand, O 3 is diffused from a position away from the working electrode and supplied to the electrode surface, but if the substrate 10 has a symmetrical planar shape, the first BDD electrode 21 and the second BDD electrode This is because no matter which one of the electrodes 22 and 22 is selected as the working electrode, there will be no difference in the diffusion and supply path of O 3 to the electrode surface.
(切り換えタイミング)
 以上のような選択切り換えを、選択回路54に指示を与える選択制御部61は、予め設定された定期的なタイミングで行う。これにより、選択制御部61は、第一回路52と第二回路53とについての選択切り換えを、自動的(強制的)に行うことが可能となる。以下、選択切り換えを行う定期的なタイミングについて、具体例を挙げて説明する。
(switching timing)
The selection control section 61, which instructs the selection circuit 54, performs the selection switching as described above at regular preset timing. Thereby, the selection control unit 61 can automatically (forcibly) switch the selection between the first circuit 52 and the second circuit 53. Hereinafter, the periodic timing of selection switching will be explained using a specific example.
 図9は、本開示の第一実施形態に係る電気化学センサシステムにおける処理動作の一具体例を示すタイムチャート図である。
 図9に示す具体例では、オゾン水中のO濃度の測定開始にあたり、まず、選択回路54が第一回路52を選択して、各電極21,22,23と測定回路51との間の電気的接続を確立させる(ステップ101、以下ステップを「S」と略す。)。そして、第一BDD電極21を作用電極とし第二BDD電極22を対電極として機能させる状態を、作用電極電位の電位につき参照電極に対しての掃引開始から掃引終了までを一回路による検出の実行単位として、その検出実行単位が終了するまで継続させる。
FIG. 9 is a time chart diagram illustrating a specific example of processing operations in the electrochemical sensor system according to the first embodiment of the present disclosure.
In the specific example shown in FIG. 9, when starting the measurement of the O 3 concentration in ozonated water, the selection circuit 54 first selects the first circuit 52 and connects the electricity between each electrode 21, 22, 23 and the measurement circuit 51 A physical connection is established (step 101, hereinafter the step is abbreviated as "S"). Then, a state in which the first BDD electrode 21 functions as a working electrode and the second BDD electrode 22 as a counter electrode is detected by one circuit from the start of the sweep to the end of the sweep with respect to the reference electrode with respect to the potential of the working electrode. The detection execution unit is continued until the detection execution unit is completed.
 その後、第一回路52による検出実行単位が終了すると、そのタイミングで、選択回路54が選択切り換えを行う(S102)。この選択切り換えにより、選択回路54が第二回路53を選択して、各電極21,22,23と測定回路51との間の電気的接続を確立させる(S103)。そして、第一BDD電極21を対電極とし第二BDD電極22を作用電極として機能させる状態を、その検出実行単位が終了するまで継続させる。 Thereafter, when the detection execution unit by the first circuit 52 ends, the selection circuit 54 performs selection switching at that timing (S102). By this selection switching, the selection circuit 54 selects the second circuit 53 and establishes electrical connection between each electrode 21, 22, 23 and the measurement circuit 51 (S103). Then, the state in which the first BDD electrode 21 functions as a counter electrode and the second BDD electrode 22 functions as a working electrode is continued until the detection execution unit is completed.
 選択回路54が選択し得る全ての回路について、すなわち第一回路52と第二回路53とのそれぞれについて、これらを利用した検出実行単位が終了すると、オゾン水中のO濃度について一回の濃度測定が終了したものとする。このように、選択回路54は、一回の濃度測定の開始から終了までの間で、第一回路52と第二回路53とのそれぞれによる検出を実行する毎のタイミング(すなわち、それぞれの検出実行単位が終了する毎のタイミング)で、第一回路52と第二回路53との選択切り換えを行う。 When the detection execution unit using these circuits is completed for all the circuits that can be selected by the selection circuit 54, that is, for each of the first circuit 52 and the second circuit 53, one concentration measurement is performed for the O 3 concentration in ozonated water. is assumed to have ended. In this way, the selection circuit 54 determines the timing of each detection performed by the first circuit 52 and the second circuit 53 (that is, the timing of each detection execution) from the start to the end of one concentration measurement. The selection is switched between the first circuit 52 and the second circuit 53 at the timing (each time a unit ends).
 つまり、図9に示す具体例では、予め設定された定期的なタイミングで第一回路52と第二回路53との選択切り換えを行うが、そのタイミングが一回の濃度測定の開始から終了までの間で一回路(第一回路52または第二回路53)による検出を実行する毎のタイミングに設定されている。斯かるタイミングで選択切り換えを行うことで、同一条件でのオゾン水中のO濃度の測定を、第一回路52と第二回路53との選択切り換えをしつつ、各回路52,53により重複して行うことが可能である。なお、ここで説明するタイミングは、検出実行単位の終了と同時のタイミングの他に、検出実行単位の終了から所定のインターバル期間を確保したタイミングであってもよい。所定のインターバル期間は、例えば、繰り返し測定をする際の測定環境を揃えるために必要と考えられる期間である。 In other words, in the specific example shown in FIG. 9, selection switching between the first circuit 52 and the second circuit 53 is performed at regular preset timing, but the timing is different from the start to the end of one concentration measurement. The timing is set every time one circuit (the first circuit 52 or the second circuit 53) performs detection in between. By switching the selection at such timing, it is possible to measure the O 3 concentration in ozonated water under the same conditions by switching the selection between the first circuit 52 and the second circuit 53, while simultaneously measuring the O 3 concentration in ozonated water under the same conditions. It is possible to do so. Note that the timing described here may be a timing at which a predetermined interval period has been secured from the end of the detection execution unit, in addition to the timing at the same time as the end of the detection execution unit. The predetermined interval period is, for example, a period considered necessary to prepare the measurement environment for repeated measurements.
 このようなタイミングでの選択切り換えを行えば、各回路52,53を通じて得られる測定結果である電流値(以下、単に「測定値」とも称する。)について、以下のような処理を行えるようになる。 By switching the selection at such timing, it becomes possible to perform the following processing on the current value (hereinafter also simply referred to as "measured value") that is the measurement result obtained through each circuit 52, 53. .
 例えば、コンピュータ装置3の測定値管理部62は、一回の濃度測定の開始から終了までの間において、第一回路52と第二回路53とのそれぞれで得られる複数の測定値を取得する。具体的には、測定値管理部62は、第一回路52による検出実行単位(S101)の終了時点で、その第一回路52を通じて得られる測定値を取得する(S104)。また、測定値管理部62は、第二回路53による検出実行単位(S103)の終了時点で、その第二回路53を通じて得られる測定値を取得する(S105)。 For example, the measured value management unit 62 of the computer device 3 acquires a plurality of measured values obtained from each of the first circuit 52 and the second circuit 53 from the start to the end of one concentration measurement. Specifically, the measured value management unit 62 acquires the measured value obtained through the first circuit 52 at the end of the detection execution unit (S101) by the first circuit 52 (S104). Further, the measured value management unit 62 acquires the measured value obtained through the second circuit 53 at the end of the detection execution unit (S103) by the second circuit 53 (S105).
 これら複数の測定値を取得すると、測定値管理部62は、取得した複数の測定値に基づいて一つの測定値を導き出す(S106)。一つの測定値としては、例えば、複数の測定値のうちで最も良好な測定結果に相当する最大値、複数の測定値に含まれるノイズ成分を除去した平均値、これらに準ずる所定の演算値等のいずれかを用いることができる。なお、一つの測定値の導出に際しては、例えば、初回測定を除く二回目以降の複数の測定値を用いて一つの測定値を導き出すようにしてもよい。初回測定については、測定誤差の影響が生じ易いことが懸念されるからである。 After acquiring these multiple measured values, the measured value management unit 62 derives one measured value based on the acquired multiple measured values (S106). As one measurement value, for example, a maximum value corresponding to the best measurement result among multiple measurement values, an average value obtained by removing noise components included in multiple measurement values, a predetermined calculated value corresponding to these, etc. Either of these can be used. Note that when deriving one measurement value, for example, a plurality of second and subsequent measurement values excluding the first measurement may be used to derive one measurement value. This is because there is a concern that the first measurement is likely to be influenced by measurement errors.
 そして、測定値管理部62が一つの測定値を導き出すと、その後は、その一つの測定値に基づき、コンピュータ装置3の制御部60が、オゾン水中のO濃度を特定するために必要な処理を行う。したがって、各回路52,53により重複して行った濃度測定で得られる複数の測定値から一つの測定値を導き出すことで、例えば、第一BDD電極21と第二BDD電極22との個体差や各電極21,22の使用に伴う状態劣化等により、各電極21,22のいずれかに所望の測定精度が得られないものが存在していても、その影響が濃度測定結果としての測定値に及ぶことを抑制し得るようになる。つまり、各電極21,22の状態(例えば表面状態)の影響がO濃度についての測定値に及ぶことを極力排除することが可能になり、その結果として測定精度の向上を図ることが実現可能となる。 Then, when the measurement value management unit 62 derives one measurement value, the control unit 60 of the computer device 3 performs necessary processing to specify the O 3 concentration in ozonated water based on that one measurement value. I do. Therefore, by deriving one measurement value from a plurality of measurement values obtained from concentration measurements performed redundantly by each circuit 52 and 53, it is possible to eliminate individual differences between the first BDD electrode 21 and the second BDD electrode 22, for example. Even if there is one of the electrodes 21, 22 that does not provide the desired measurement accuracy due to condition deterioration due to the use of each electrode 21, 22, this effect will affect the measured value as the concentration measurement result. It will be possible to suppress the spread of the virus. In other words, it is possible to eliminate as much as possible the influence of the state of each electrode 21, 22 (for example, surface state) on the measured value of O 3 concentration, and as a result, it is possible to improve measurement accuracy. becomes.
 また、各回路52,53を通じて複数の測定値を取得した場合には、これらから一つの測定値を導き出すことに加えて、または一つの測定値を導き出すことなく、得られた複数の測定値を互いに比較して、その比較結果から各電極21,22の状態(例えば表面状態)を検知することもできる。具体的には、第一回路52で得られた測定値と第二回路53で得られた測定値とを比較することで、例えば、それぞれの間に通常の測定ばらつき以上の差が発生した場合に、第一BDD電極21または第二BDD電極22のどちらか一方が表面汚染等で劣化していると判断するといったように、各電極21,22の状態を検知することが可能となる。したがって、各回路52,53により重複して行った濃度測定で得られる複数の測定値を比較することで、各電極21,22の状態劣化を検知した場合に、例えば、エラーメッセージを表示したり、後述する状態回復処理の必要性やセンサ交換の必要性等についての情報出力を行ったりし得るようになり、その結果としてシステムの状態を常に最適に保つことが実現可能となる。 Furthermore, when a plurality of measured values are obtained through each circuit 52, 53, in addition to deriving one measured value from these, or without deriving a single measured value, the obtained plural measured values can be used. By comparing them with each other, it is also possible to detect the state (for example, surface state) of each electrode 21, 22 from the comparison result. Specifically, by comparing the measured values obtained by the first circuit 52 and the measured values obtained by the second circuit 53, for example, if a difference greater than normal measurement variation occurs between them. Furthermore, it becomes possible to detect the state of each electrode 21, 22, such as determining that either the first BDD electrode 21 or the second BDD electrode 22 has deteriorated due to surface contamination or the like. Therefore, by comparing a plurality of measured values obtained from concentration measurements performed redundantly by each circuit 52, 53, if deterioration in the condition of each electrode 21, 22 is detected, for example, an error message may be displayed. It becomes possible to output information regarding the necessity of state recovery processing, the necessity of sensor replacement, etc., which will be described later, and as a result, it becomes possible to always maintain the optimum state of the system.
 以上に、各回路52,53の選択切り換えを行う定期的なタイミングの一具体例を説明したが、選択切り換えを行う定期的なタイミングは、上述の一具体例に限定されるものではない。 Although one specific example of the periodic timing for selectively switching each of the circuits 52 and 53 has been described above, the periodic timing for selectively switching is not limited to the above-mentioned one specific example.
 図10は、本開示の第一実施形態に係る電気化学センサシステムにおける処理動作の他の一具体例を示すタイムチャート図である。
 図10に示す具体例では、オゾン水中のO濃度の測定開始にあたり、まず、選択回路54が第一回路52を選択して、各電極21,22,23と測定回路51との間の電気的接続を確立させる(S201)。そして、第一BDD電極21を作用電極とし第二BDD電極22を対電極として機能させる状態を、作用電極と対電極との電位の掃引開始から掃引終了まで継続させ、掃引の終了によりオゾン水中のO濃度について一回の濃度測定が終了したものとする。つまり、一回の濃度測定において、各回路による重複検出を行わない点で、上述した一具体例(図9参照)の場合とは異なる。
FIG. 10 is a time chart diagram showing another specific example of the processing operation in the electrochemical sensor system according to the first embodiment of the present disclosure.
In the specific example shown in FIG. 10, when starting the measurement of the O 3 concentration in ozonated water, the selection circuit 54 first selects the first circuit 52 and connects each electrode 21, 22, 23 and the measurement circuit 51 with A physical connection is established (S201). Then, the state in which the first BDD electrode 21 functions as a working electrode and the second BDD electrode 22 as a counter electrode is continued from the start of sweeping the potentials of the working electrode and the counter electrode to the end of the sweep, and when the sweep ends, the ozone water is It is assumed that one concentration measurement of O 3 concentration has been completed. In other words, this embodiment differs from the above-described specific example (see FIG. 9) in that redundant detection by each circuit is not performed in one concentration measurement.
 その後、新たな被検液であるオゾン水についてO濃度の測定を行うが、予め設定されたn(nは自然数)回の濃度測定が終了するまでは、第一回路52の選択により第一BDD電極21を作用電極とし第二BDD電極22を対電極として機能させる状態を継続させる。図例では、三回の濃度測定を繰り返す場合を示しているが、同一条件での濃度測定の回数がこれに限定されることはなく、予め設定されたn回であれば、一回であってもよいし、複数回であってもよい。 Thereafter, the O 3 concentration is measured for ozonated water, which is a new test liquid. The state in which the BDD electrode 21 functions as a working electrode and the second BDD electrode 22 as a counter electrode continues. The example in the figure shows a case in which concentration measurements are repeated three times, but the number of concentration measurements under the same conditions is not limited to this, and can be repeated once as long as it is n times set in advance. or multiple times.
 n回の濃度測定が終了すると、そのタイミングで、選択回路54が選択切り換えを行う(S202)。この選択切り換えにより、選択回路54が第二回路53を選択して、各電極21,22,23と測定回路51との間の電気的接続を確立させる(S204)。そして、第一BDD電極21を対電極とし第二BDD電極22を作用電極として機能させる状態を、改めてn回の濃度測定が終了するまで継続させる。 When n concentration measurements are completed, the selection circuit 54 performs selection switching at that timing (S202). By this selection switching, the selection circuit 54 selects the second circuit 53 and establishes electrical connection between each electrode 21, 22, 23 and the measurement circuit 51 (S204). Then, the state in which the first BDD electrode 21 functions as a counter electrode and the second BDD electrode 22 functions as a working electrode is continued until n times of concentration measurements are completed.
 このように、選択回路54は、一回または複数回の濃度測定を実行する毎のタイミングで、第一回路52と第二回路53との選択切り換えを行う。斯かるタイミングで選択切り換えを行うことで、同一電極が作用電極となる電極構成での濃度測定が必要以上に繰り返されることがなくなる。したがって、濃度測定の繰り返しに伴う経時的な電極状態(例えば表面状態)の劣化を抑制することが実現可能となる。 In this way, the selection circuit 54 performs selection switching between the first circuit 52 and the second circuit 53 at the timing each time one or more concentration measurements are performed. By performing selection switching at such a timing, concentration measurements using an electrode configuration in which the same electrode serves as a working electrode are not repeated more than necessary. Therefore, it is possible to suppress deterioration of the electrode condition (for example, surface condition) over time due to repeated concentration measurements.
 この選択切り換えのタイミングと合わせて、通電制御部63は、各電極21,22,23への通電状態を制御して、各電極21,22,23に対してO濃度の測定の際とは異なる態様での通電を行うようにしてもよい(S203)。これにより、通電制御部63は、通電状態を制御した各電極21,22,23の状態回復処理を施すことになる。 In conjunction with the timing of this selection switching, the energization control unit 63 controls the energization state to each electrode 21, 22, 23, and when measuring the O 3 concentration with respect to each electrode 21, 22, 23. The energization may be performed in a different manner (S203). Thereby, the energization control unit 63 performs state recovery processing for each electrode 21, 22, 23 whose energization state has been controlled.
 ここでいう「O濃度の測定の際とは異なる態様での通電」とは、被検液であるオゾン水中のO濃度の測定とは異なるタイミング(例えば、濃度測定を行う前または後)で、例えば、濃度測定の際よりも高い電流密度での通電処理を行ったり、または濃度測定の際とは逆方向に流れる電流での通電処理を行ったりすることを意味する。このような態様での通電処理を行えば、その通電によって作用電極の表面を酸化させたり作用電極の表面で気泡を発生させたりし得るようになり、これにより作用電極の経時的な電極表面の汚染や変質等を回復させることが可能となる。つまり、電極表面の酸化等を通じて、作用電極の経時的な電極表面の汚染や変質等を回復させる処理を、当該作用電極の「状態回復処理」として施すことが可能となる。 Here, "energization in a manner different from that for measuring O 3 concentration" means at a timing different from that for measuring O 3 concentration in ozone water, which is the test liquid (for example, before or after concentration measurement). This means, for example, performing energization processing at a higher current density than when measuring concentration, or performing energization processing with a current flowing in the opposite direction to that during concentration measurement. If current is applied in this manner, the current can oxidize the surface of the working electrode or generate bubbles on the surface of the working electrode, which will cause the surface of the working electrode to change over time. It becomes possible to recover from contamination, deterioration, etc. In other words, it is possible to perform a treatment for recovering the contamination, deterioration, etc. on the surface of the working electrode over time through oxidation of the electrode surface, etc., as a "condition recovery treatment" for the working electrode.
 このような状態回復処理のための通電制御を行う場合に、通電制御部63は、その通電制御を、第一回路52と第二回路53との選択切り換えのタイミングに合わせて、第一回路52を通じて作用電極として機能する第一BDD電極21もしくは第二回路53を通じて作用電極として機能する第二BDD電極22のいずれか一方、またはこれらの両方に対して行う。 When performing energization control for such state recovery processing, the energization control unit 63 controls the energization control to match the switching timing between the first circuit 52 and the second circuit 53. This is performed on either the first BDD electrode 21 which functions as a working electrode through the circuit 53 or the second BDD electrode 22 which functions as a working electrode through the second circuit 53, or both of these electrodes.
 例えば、第一BDD電極21に対して行う場合、通電制御部63は、その第一BDD電極21を作用電極として機能させてn回の濃度測定を行った後(すなわち当該濃度測定の終了後)に、その第一BDD電極21に対して状態回復処理のための通電を行う。つまり、第一BDD電極21によるn回の濃度測定の終了後に、その第一BDD電極21の状態回復処理を行う。 For example, when performing the measurement on the first BDD electrode 21, the energization control unit 63 operates the first BDD electrode 21 as a working electrode to measure the concentration n times (that is, after the concentration measurement is finished). Then, the first BDD electrode 21 is energized for state recovery processing. That is, after the first BDD electrode 21 completes n-time concentration measurements, the state recovery process for the first BDD electrode 21 is performed.
 また、例えば、第二BDD電極22に対して行う場合、通電制御部63は、その第二BDD電極22を作用電極として機能させてn回の濃度測定を行う前に(すなわち当該濃度測定に先立って)、その第二BDD電極22に対して状態回復処理のための通電を行う。つまり、第二BDD電極22による濃度測定の開始に先立って、その第二BDD電極22の状態回復処理を行う。 For example, in the case of performing the concentration measurement on the second BDD electrode 22, the energization control unit 63 causes the second BDD electrode 22 to function as a working electrode and performs n concentration measurements (i.e., prior to the concentration measurement). ), the second BDD electrode 22 is energized for state recovery processing. That is, prior to starting concentration measurement using the second BDD electrode 22, a state recovery process for the second BDD electrode 22 is performed.
 なお、図10に示す具体例では、第一回路52から第二回路53への選択切り換えを行うタイミングで状態回復処理を施す場合を例示しているが、これとは逆に第二回路53から第一回路52への選択切り換えを行うタイミングにおいても、全く同様に状態回復処理を施すようにしてもよい。ただし、状態回復処理を施すタイミングは、第一回路52と第二回路53との選択切り換えを行う毎である必要はなく、例えば、第一回路52と第二回路53の測定値の差から電極劣化具合を検知し、その検知結果に応じて(すなわち電極劣化が検知された後のタイミングで)行うようにしてもよい。 Note that in the specific example shown in FIG. 10, a case is illustrated in which the state recovery process is performed at the timing of selection switching from the first circuit 52 to the second circuit 53; At the timing of selection switching to the first circuit 52, the state recovery process may be performed in exactly the same manner. However, the timing to perform the state recovery process does not need to be every time the selection is switched between the first circuit 52 and the second circuit 53; The degree of deterioration may be detected and the process may be performed in accordance with the detection result (that is, at a timing after electrode deterioration is detected).
 以上のような通電制御により第一BDD電極21または第二BDD電極22に状態回復処理を施せば、例えば、オゾン水中のO濃度の測定の繰り返しによって電極表面に経時的な汚染や変質等が生じた場合であっても、その汚染や変質等を除去して、電極表面の状態を回復させることが可能となる。したがって、作用電極として機能する第一BDD電極21または第二BDD電極22の状態回復処理を施せば、電極表面の汚染や変質等によって誘起される検出感度低下を抑制することができる。 If the condition recovery treatment is performed on the first BDD electrode 21 or the second BDD electrode 22 through the above-described energization control, for example, repeated measurements of O 3 concentration in ozonated water will prevent contamination or deterioration of the electrode surface over time. Even if this occurs, it is possible to remove the contamination, deterioration, etc. and restore the condition of the electrode surface. Therefore, by performing a state recovery process on the first BDD electrode 21 or the second BDD electrode 22 that functions as a working electrode, it is possible to suppress a decrease in detection sensitivity induced by contamination, deterioration, etc. of the electrode surface.
(4)本実施形態にかかる効果
 本実施形態によれば、以下に示す一つまたは複数の効果を奏する。
(4) Effects of this embodiment According to this embodiment, one or more of the following effects can be achieved.
(a)本実施形態において、電気化学センサ1は、第一BDD電極21および第二BDD電極22が同一構造および同一形状を有しており、しかも第一BDD電極21および第二BDD電極22が第三BDD電極23に対して対称配置されている。そのため、第三BDD電極23からみた第一BDD電極21および第二BDD電極22の構成状況が左右対称配置であること以外は全く同一条件となり、これら第一BDD電極21および第二BDD電極22のどちらも作用電極または対電極として機能させることが可能である。さらには、作用電極または対電極としての機能について、当該機能の切り換えにも対応し得るようになる。
 したがって、本実施形態の電気化学センサ1における電極配置によれば、第一BDD電極21と第二BDD電極22との状態に応じて電極機能を選択する、といったことが可能となる。このような電極機能の選択を行えば、電極選択による濃度測定結果の測定精度の向上や、選択切り換えによる測定感度低下の抑制等が図れる。
 つまり、本実施形態の電気化学センサ1によれば、三極電極の配置の工夫により、例えば電極機能の選択切り換えを行いつつオゾン水中のO濃度の測定をするといったように、その濃度測定に対する柔軟度(汎用性)を確保し得るセンサ構成が実現可能となり、その結果として、測定精度の向上や測定感度低下の抑制等が実現可能になる。
(a) In the present embodiment, in the electrochemical sensor 1, the first BDD electrode 21 and the second BDD electrode 22 have the same structure and the same shape, and the first BDD electrode 21 and the second BDD electrode 22 have the same structure and shape. It is arranged symmetrically with respect to the third BDD electrode 23. Therefore, the configurations of the first BDD electrode 21 and the second BDD electrode 22 viewed from the third BDD electrode 23 are completely the same except that they are symmetrically arranged, and the configuration of the first BDD electrode 21 and the second BDD electrode 22 is completely the same. Either can function as a working or counter electrode. Furthermore, it becomes possible to switch the function as a working electrode or a counter electrode.
Therefore, according to the electrode arrangement in the electrochemical sensor 1 of this embodiment, it is possible to select the electrode function depending on the states of the first BDD electrode 21 and the second BDD electrode 22. By selecting the electrode functions in this manner, it is possible to improve the measurement accuracy of concentration measurement results by selecting the electrodes, and to suppress a decrease in measurement sensitivity due to selection switching.
In other words, according to the electrochemical sensor 1 of this embodiment, by devising the arrangement of the three-electrode electrodes, it is possible to measure the O 3 concentration in ozonated water while, for example, changing the selection of the electrode function. It becomes possible to realize a sensor configuration that can ensure flexibility (versatility), and as a result, it becomes possible to improve measurement accuracy and suppress a decrease in measurement sensitivity.
(b)本実施形態において、電気化学センサ1は、電極配置に加えて、各電極21,22,23を支持する基板10についても、対称性を有する平面形状に形成されている。基板10が対称性を有する平面形状であれば、第一BDD電極21と第二BDD電極22とのどちらを作用電極として選択しても、Oの電極表面への拡散供給経路に差異が生じないようにし得る。したがって、第一BDD電極21と第二BDD電極22のそれぞれの機能上の差異の発生を抑制する上でより一層有効なものとなり、電気化学センサ1の測定精度の向上や測定感度低下の抑制等の実現に非常に好適なものとなる。 (b) In this embodiment, in addition to the electrode arrangement, the substrate 10 that supports each electrode 21, 22, and 23 of the electrochemical sensor 1 is formed into a symmetrical planar shape. If the substrate 10 has a symmetrical planar shape, no matter which of the first BDD electrode 21 and the second BDD electrode 22 is selected as the working electrode, there will be a difference in the diffusion and supply path of O 3 to the electrode surface. You can avoid it. Therefore, it is even more effective in suppressing the occurrence of functional differences between the first BDD electrode 21 and the second BDD electrode 22, improving the measurement accuracy of the electrochemical sensor 1, suppressing a decrease in measurement sensitivity, etc. This makes it very suitable for realizing the following.
(c)本実施形態において、電気化学センサ1が濃度測定の対象とする特定成分は、被検液であるオゾン水中の溶存オゾンである。したがって、本実施形態の電気化学センサ1は、オゾン水中のO濃度測定に用いて好適であり、そのO濃度測定ついて、測定精度の向上や測定感度低下の抑制等が実現可能になる。 (c) In this embodiment, the specific component whose concentration is measured by the electrochemical sensor 1 is dissolved ozone in ozone water, which is the test liquid. Therefore, the electrochemical sensor 1 of the present embodiment is suitable for use in measuring the O 3 concentration in ozonated water, and it is possible to improve measurement accuracy and suppress a decrease in measurement sensitivity in measuring the O 3 concentration.
(d)本実施形態において、電気化学センサ1を備えて構成される電気化学センサシステムは、その電気化学センサ1に加えて第一回路52および第二回路53を備えることで、電気化学センサ1における第一BDD電極21と第二BDD電極22とのどちらを作用電極または対電極として機能させるかの選択切り換えに対応するようになっている。
 したがって、このような選択切り換えを経ることで、本実施形態の電気化学センサシステムでは、例えば、第一回路52による濃度測定と第二回路53による濃度測定とをそれぞれ行い、それぞれの測定結果に基づいて最終的な測定結果を抽出する(測定結果が良好なほうを選ぶ、測定結果を平均化してノイズ成分を除去する等)といったことが可能となり、その結果として濃度測定結果の測定精度向上が図れるようになる。また、例えば、第一回路52による濃度測定と第二回路53による濃度測定とを必要に応じて適宜切り換えることによって、同一電極が作用電極となる電極構成の濃度測定が継続的に繰り返されることを回避でき、その結果として各電極21,22の表面状態(汚れ等の蓄積)の劣化による測定感度低下の抑制が図れるようになる。
 つまり、本実施形態の電気化学センサシステムによれば、第一BDD電極21と第二BDD電極22とのそれぞれの状態に応じて、第一回路52による濃度測定と第二回路53による濃度測定との選択を適宜切り換えることで、電気化学センサ1の測定精度の向上や測定感度低下の抑制等が実現可能になる。
(d) In this embodiment, the electrochemical sensor system configured with the electrochemical sensor 1 includes the first circuit 52 and the second circuit 53 in addition to the electrochemical sensor 1. This corresponds to selection switching of which of the first BDD electrode 21 and the second BDD electrode 22 is to function as a working electrode or a counter electrode.
Therefore, by performing such selection switching, in the electrochemical sensor system of this embodiment, for example, concentration measurement is performed by the first circuit 52 and concentration measurement is performed by the second circuit 53, and based on the respective measurement results. It becomes possible to extract the final measurement result (selecting the one with a better measurement result, averaging the measurement results to remove noise components, etc.), and as a result, the measurement accuracy of the concentration measurement result can be improved. It becomes like this. Further, for example, by appropriately switching concentration measurement by the first circuit 52 and concentration measurement by the second circuit 53 as necessary, it is possible to continuously repeat concentration measurement with an electrode configuration in which the same electrode is the working electrode. As a result, it becomes possible to suppress a decrease in measurement sensitivity due to deterioration of the surface condition (accumulation of dirt, etc.) of each electrode 21, 22.
In other words, according to the electrochemical sensor system of this embodiment, concentration measurement by the first circuit 52 and concentration measurement by the second circuit 53 are performed depending on the respective states of the first BDD electrode 21 and the second BDD electrode 22. By appropriately switching the selection, it becomes possible to improve the measurement accuracy of the electrochemical sensor 1 and suppress a decrease in measurement sensitivity.
(e)本実施形態で説明したように、第一回路52と第二回路53との選択切り換えを予め設定された定期的なタイミングで行えば、その選択切り換えを自動的(強制的)に行うことが可能となり、電気化学センサ1の測定精度の向上や測定感度低下の抑制等を実現する上で非常に有効なものとなる。 (e) As explained in the present embodiment, if the selection switching between the first circuit 52 and the second circuit 53 is performed at a preset periodic timing, the selection switching is automatically (forced) performed. This is very effective in improving the measurement accuracy of the electrochemical sensor 1 and suppressing a decrease in measurement sensitivity.
(f)本実施形態で説明したように、第一回路52と第二回路53との選択切り換えのタイミングについて、一回の濃度測定の開始から終了までの間で一回路による検出を実行する毎のタイミングに設定すれば、同一条件でのオゾン水に対するO濃度測定を第一回路52と第二回路53とのそれぞれについての選択切り換えをしつつ重複して行うことが可能となる。したがって、重複する測定結果から一つの測定結果を導き出すことが実現可能となり、O濃度測定の測定精度の向上を実現する上で非常に有効なものとなる。 (f) As explained in the present embodiment, the timing of selection switching between the first circuit 52 and the second circuit 53 is determined every time detection is performed by one circuit from the start to the end of one concentration measurement. If the timing is set, it becomes possible to repeatedly measure the O 3 concentration of ozonated water under the same conditions while selectively switching between the first circuit 52 and the second circuit 53. Therefore, it becomes possible to derive a single measurement result from duplicate measurement results, which is very effective in improving the measurement accuracy of O 3 concentration measurement.
(g)本実施形態で説明したように、オゾン水中のO濃度測定にあたり、重複する測定結果から一つの測定結果を導き出し、導き出した一つの測定値をO濃度測定のための測定値とすれば、例えば、第一BDD電極21と第二BDD電極22との個体差や使用に伴う状態劣化等により、各電極21,22のいずれかに所望の測定精度が得られないものが存在していても、その影響が濃度測定の結果に及ぶことを抑制できる。つまり、各電極21,22の状態(例えば表面状態)の影響を極力排除することが可能になり、これにより被検液であるオゾン水中のO濃度測定について測定精度の向上が図れるようになる。 (g) As explained in this embodiment, when measuring the O 3 concentration in ozonated water, one measurement result is derived from the overlapping measurement results, and the derived one measurement value is used as the measurement value for O 3 concentration measurement. In this case, for example, there may be some electrodes 21 and 22 for which the desired measurement accuracy cannot be obtained due to individual differences between the first BDD electrode 21 and the second BDD electrode 22 or deterioration in condition due to use. Even if the concentration is measured, its influence on the concentration measurement results can be suppressed. In other words, it becomes possible to eliminate as much as possible the influence of the state (for example, surface state) of each electrode 21, 22, and thereby it becomes possible to improve the measurement accuracy in measuring the O 3 concentration in ozone water, which is the test liquid. .
(h)本実施形態で説明したように、第一回路52と第二回路53との選択切り換えのタイミングについて、n回(一回または複数回)のO濃度測定を実行する毎のタイミングに設定すれば、同一電極が作用電極となる電極構成でのO濃度測定が必要以上に繰り返されることがなくなる。したがって、O濃度測定の繰り返しに伴う経時的な電極状態(例えば表面状態)の劣化を抑制することが実現可能となり、O濃度測定の測定感度低下の抑制等を実現する上で非常に有効なものとなる。 (h) As explained in the present embodiment, the timing of selection switching between the first circuit 52 and the second circuit 53 is determined at the timing every time the O 3 concentration measurement is performed n times (once or multiple times). If set, O 3 concentration measurements in an electrode configuration in which the same electrode is the working electrode will not be repeated more than necessary. Therefore, it is possible to suppress the deterioration of the electrode condition (for example, surface condition) over time due to repeated O 3 concentration measurements, which is very effective in suppressing the decrease in measurement sensitivity of O 3 concentration measurements. Become something.
(i)本実施形態で説明したように、オゾン水中のO濃度の測定とは異なるタイミング(例えば、O濃度測定を行う前または後)で、第一BDD電極21または第二BDD電極22に対してO濃度測定の際とは異なる態様での通電を行って、これにより第一BDD電極21または第二BDD電極22の状態回復処理を行うようにすれば、例えば、O濃度測定の繰り返しによって電極表面に経時的な汚染や変質等が生じた場合であっても、その汚染や変質等を除去して、電極表面の状態を回復させることが可能となる。したがって、作用電極として機能する第一BDD電極21または第二BDD電極22の状態回復処理を施すことで、電極表面の汚染や変質等によって誘起される検出感度低下を抑制することができ、その結果として、O濃度測定の測定感度低下の抑制等を実現する上で非常に有効なものとなる。 (i) As described in the present embodiment, the first BDD electrode 21 or the second BDD electrode 22 is connected to the first BDD electrode 21 or the second BDD electrode 22 at a timing different from the measurement of the O 3 concentration in ozone water (for example, before or after measuring the O 3 concentration). For example, if the state of the first BDD electrode 21 or the second BDD electrode 22 is restored by applying electricity in a manner different from that used for O 3 concentration measurement, for example, O 3 concentration measurement can be performed. Even if contamination or deterioration occurs on the electrode surface over time by repeating the steps, it is possible to remove the contamination, deterioration, etc. and restore the condition of the electrode surface. Therefore, by performing a state recovery treatment on the first BDD electrode 21 or the second BDD electrode 22 that functions as a working electrode, it is possible to suppress a decrease in detection sensitivity induced by contamination or deterioration of the electrode surface, and as a result, As such, it is very effective in suppressing a decrease in measurement sensitivity in O 3 concentration measurement.
(j)本実施形態で説明したように、第一回路52と第二回路53との選択切り換えを行うことにより、同一条件でのオゾン水に対するO濃度測定を第一回路52と第二回路53とのそれぞれについての選択切り換えをしつつ重複して行うことが可能となる。これにより、第一回路52で得られた測定値と第二回路53で得られた測定値を比較することが可能となり、第一BDD電極21または第二BDD電極22のどちらか一方が表面汚染等で劣化している場合に、それを検知することが可能となる。したがって、各電極21,22の状態劣化を検知した場合に、例えば、エラーメッセージを表示したり、状態回復処理の必要性やセンサ交換の必要性等についての情報出力を行ったりし得るようになり、その結果としてシステムの状態を常に最適に保つことが実現可能となる。 (j) As described in the present embodiment, by selectively switching between the first circuit 52 and the second circuit 53, O 3 concentration measurement for ozonated water under the same conditions can be performed using the first circuit 52 and the second circuit. 53 and 53, it is possible to perform the selection overlappingly. This makes it possible to compare the measured values obtained in the first circuit 52 and the measured values obtained in the second circuit 53, and it is possible to determine whether either the first BDD electrode 21 or the second BDD electrode 22 has surface contamination. This makes it possible to detect when there is deterioration due to, etc. Therefore, when deterioration of the condition of each electrode 21, 22 is detected, it is possible to display an error message or output information regarding the necessity of condition recovery processing, the necessity of sensor replacement, etc. As a result, it is possible to maintain the system in an optimal state at all times.
<第二実施形態>
 次に、本開示の第二実施形態について説明する。なお、ここでは、主として第一実施形態の場合との相違点について説明する。
<Second embodiment>
Next, a second embodiment of the present disclosure will be described. Note that here, differences from the first embodiment will be mainly explained.
(5)電気化学センサの構成
 本実施形態で説明する電気化学センサ1は、各電極21,22,23の支持基板10上での配置の態様が、上述した第一実施形態の場合とは異なる。
(5) Configuration of electrochemical sensor The electrochemical sensor 1 described in this embodiment is different from the first embodiment described above in the manner in which the electrodes 21, 22, and 23 are arranged on the support substrate 10. .
(電極配置)
 図11は、本開示の第二実施形態に係る電気化学センサにおける電極配置の一具体例を模式的に示す説明図である。なお、図中において、第一実施形態の場合と同一の構成要素については、同一の符号を付している。
(electrode arrangement)
FIG. 11 is an explanatory diagram schematically showing a specific example of electrode arrangement in the electrochemical sensor according to the second embodiment of the present disclosure. In addition, in the figure, the same reference numerals are attached to the same components as in the case of the first embodiment.
 本実施形態において、三つの電極21,22,23である第一BDD電極21、第二BDD電極22および第三BDD電極23は、それぞれが同一構造および同一形状を有する。ここでいう「同一構造」および「同一形状」は、第一実施形態の場合と同じ意味である。また、本実施形態においては、三つの電極21,22,23が同一構造および同一形状を有することに加え、各電極21,22,23と接続される配線31,32,33、および、各電極21,22,23と各配線31,32,33とを電気的に接続する接合材34、更にはそれらの接合部34の周囲を封止する絶縁性樹脂35についても、同一構造(材質)、同一形状を有することが望ましい。これにより、後述する第一回路~第六回路のそれぞれが等価となり得るからである。 In this embodiment, the first BDD electrode 21, the second BDD electrode 22, and the third BDD electrode 23, which are the three electrodes 21, 22, and 23, each have the same structure and the same shape. The "same structure" and "same shape" herein have the same meanings as in the first embodiment. Moreover, in this embodiment, in addition to the three electrodes 21, 22, 23 having the same structure and the same shape, the wirings 31, 32, 33 connected to each electrode 21, 22, 23, and each electrode 21, 22, 23 and each wiring 31, 32, 33, and also the insulating resin 35 that seals the periphery of these joints 34, have the same structure (material), It is desirable to have the same shape. This is because each of the first to sixth circuits described later can be made equivalent.
 三つの電極21,22,23のそれぞれが同一構造および同一形状を有することから、本実施形態では、第一BDD電極21および第二BDD電極22に加え、第三BDD電極23も含めて、機能の選択切り換えに対応し得る。つまり、本実施形態において、第一BDD電極21、第二BDD電極22および第三BDD電極23は、それぞれ作用電極、対電極または参照電極のいずれかとして機能するようになっている。 Since each of the three electrodes 21, 22, and 23 has the same structure and the same shape, in this embodiment, in addition to the first BDD electrode 21 and the second BDD electrode 22, the third BDD electrode 23 is also included. It can correspond to the selection switching of That is, in this embodiment, the first BDD electrode 21, the second BDD electrode 22, and the third BDD electrode 23 each function as a working electrode, a counter electrode, or a reference electrode.
 このような選択切り換えに対応すべく、本実施形態において、第一BDD電極21、第二BDD電極22および第三BDD電極23は、基板10における所定の基材基準点28を中心として、それぞれが三回対称の位置に配置されている。ここで「基板10における所定の基材基準点28」とは、基板10上において予め設定された位置基準となる点である。具体的には、例えば、各電極21,22,23のそれぞれについて第一実施形態で説明した電極基準点26a,26b,26cを通る仮想線27a,27b,27cを想定した場合に、基材基準点28は、それぞれの仮想線27a,27b,27cが交わる点に位置する。また、「三回対称」とは、基材基準点28を中心にして120°回転させる度に、少なくとも図形(例えば、各電極21,22,23の平面形状)の基準点(例えば、各電極21,22,23の電極基準点26a,26b,26c)が重なることになる対称性のことである。三回対称であれば、各電極21,22,23の電極基準点26a,26b,26cを結ぶ線が正三角形を描くことになる。 In order to accommodate such selection switching, in the present embodiment, the first BDD electrode 21, the second BDD electrode 22, and the third BDD electrode 23 are each centered around a predetermined base material reference point 28 on the substrate 10. They are arranged in a three-fold symmetrical position. Here, the "predetermined base material reference point 28 on the substrate 10" is a point on the substrate 10 that serves as a preset position reference. Specifically, for example, when hypothetical lines 27a, 27b, and 27c passing through the electrode reference points 26a, 26b, and 26c described in the first embodiment for each of the electrodes 21, 22, and 23 are assumed, the base material reference Point 28 is located at the point where the respective virtual lines 27a, 27b, and 27c intersect. In addition, "three-fold symmetry" means that each time the base material reference point 28 is rotated by 120 degrees, at least the reference point of the figure (for example, the planar shape of each electrode 21, 22, 23) This refers to the symmetry in which the electrode reference points 26a, 26b, 26c) of electrodes 21, 22, and 23 overlap. If there is three-fold symmetry, the lines connecting the electrode reference points 26a, 26b, 26c of each electrode 21, 22, 23 will draw an equilateral triangle.
 このように、基板10上においては、第一BDD電極21、第二BDD電極22および第三BDD電極23のそれぞれが、基材基準点28を中心として三回対称の位置に配置されている。したがって、例えば、第一BDD電極21を基準として考えると、第二BDD電極22と第三BDD電極23とは、それぞれが同一の平面形状であることに加え、第一BDD電極21の電極基準点26aを通る仮想線27aを対称軸とする線対称の関係にあり、その仮想線27aから等距離の位置に配置されていることになる。また、例えば、第二BDD電極22を基準として考えると、第一BDD電極21と第三BDD電極23とは、それぞれが同一の平面形状であることに加え、第二BDD電極22の電極基準点26bを通る仮想線27bを対称軸とする線対称の関係にあり、その仮想線27bから等距離の位置に配置されていることになる。また、例えば、第三BDD電極23を基準として考えると、第一BDD電極21と第二BDD電極22とは、それぞれが同一の平面形状であることに加え、第三BDD電極23の電極基準点26cを通る仮想線27cを対称軸とする線対称の関係にあり、その仮想線27cから等距離の位置に配置されていることになる。 In this way, on the substrate 10, each of the first BDD electrode 21, the second BDD electrode 22, and the third BDD electrode 23 is arranged in three-fold symmetrical positions with the base material reference point 28 as the center. Therefore, for example, when considering the first BDD electrode 21 as a reference, the second BDD electrode 22 and the third BDD electrode 23 each have the same planar shape, and the electrode reference point of the first BDD electrode 21 They are in a line-symmetrical relationship with an imaginary line 27a passing through 26a as the axis of symmetry, and are arranged at positions equidistant from the imaginary line 27a. For example, when considering the second BDD electrode 22 as a reference, the first BDD electrode 21 and the third BDD electrode 23 have the same planar shape, and the electrode reference point of the second BDD electrode 22 They are in a line-symmetrical relationship with an imaginary line 27b passing through 26b as the axis of symmetry, and are arranged at positions equidistant from the imaginary line 27b. Further, for example, when considering the third BDD electrode 23 as a reference, the first BDD electrode 21 and the second BDD electrode 22 each have the same planar shape, and the electrode reference point of the third BDD electrode 23 They are in a line-symmetrical relationship with an imaginary line 27c passing through 26c as an axis of symmetry, and are arranged at positions equidistant from the imaginary line 27c.
 以上に説明した具体例では、第一BDD電極21~第三BDD電極23の平面形状が長方形状であり、それぞれの長辺方向が基材基準点28を中心にして放射状に位置するように配置されている構成について説明したが、各電極21,22,23の配置がこれに限定されるものではない。つまり、各電極21,22,23は、基材基準点28を中心として三回対称の位置に配置されていれば、他の態様で配置されていてもよい。 In the specific example described above, the planar shape of the first BDD electrode 21 to the third BDD electrode 23 is rectangular, and the long sides of each electrode are arranged radially around the base material reference point 28. Although the configuration has been described, the arrangement of the electrodes 21, 22, 23 is not limited to this. That is, the electrodes 21, 22, and 23 may be arranged in other manners as long as they are arranged in three-fold symmetrical positions with the base material reference point 28 as the center.
 図12は、本開示の第二実施形態に係る電気化学センサにおける電極配置の他の一具体例を模式的に示す説明図(その1)である。
 図12に示す配置態様では、第一BDD電極21~第三BDD電極23の平面形状が正方形状に形成されている。そして、第一BDD電極21~第三BDD電極23の平面形状の構成辺が同一方向に揃うように、それぞれが配置されている。ただし、各電極21,22,23の電極基準点26a,26b,26cは、基板10上の基材基準点28を中心にして、それぞれが三回対称の位置に配置されている。つまり、第一BDD電極21、第二BDD電極22および第三BDD電極23は、少なくともそれぞれの電極基準点26a,26b,26cが三回対称配置に対応していれば、それぞれの電極基準点26a,26b,26cに対して平面形状を回転自由に配置しても構わない。
FIG. 12 is an explanatory diagram (part 1) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the second embodiment of the present disclosure.
In the arrangement shown in FIG. 12, the planar shape of the first to third BDD electrodes 21 to 23 is square. The first to third BDD electrodes 21 to 23 are arranged so that the sides of their planar shapes are aligned in the same direction. However, the electrode reference points 26a, 26b, and 26c of each electrode 21, 22, and 23 are arranged at three-fold symmetrical positions with respect to the base material reference point 28 on the substrate 10, respectively. In other words, the first BDD electrode 21, the second BDD electrode 22, and the third BDD electrode 23 are arranged at least at each electrode reference point 26a, if each electrode reference point 26a, 26b, 26c corresponds to the three-fold symmetrical arrangement. , 26b, and 26c, the planar shapes may be freely rotatably arranged.
 このような配置態様の場合も、第一BDD電極21と第二BDD電極22とは、第三BDD電極23からみて対称性を有して配置されていると見做すことができる。また、第一BDD電極21と第三BDD電極23とは、第二BDD電極22からみて対称性を有して配置されていると見做すことができる。また、第二BDD電極22と第三BDD電極23とは、第一BDD電極21からみて対称性を有して配置されていると見做すことができる。つまり、図12に示す配置態様についても、図11に示す配置態様と同様に取り扱うことが可能である。 Even in the case of such an arrangement, the first BDD electrode 21 and the second BDD electrode 22 can be considered to be arranged symmetrically when viewed from the third BDD electrode 23. Further, the first BDD electrode 21 and the third BDD electrode 23 can be considered to be arranged symmetrically when viewed from the second BDD electrode 22. Further, the second BDD electrode 22 and the third BDD electrode 23 can be considered to be arranged symmetrically when viewed from the first BDD electrode 21. In other words, the arrangement shown in FIG. 12 can be handled in the same way as the arrangement shown in FIG. 11.
 また、上述した各具体例では、各電極21,22,23のうち第三BDD電極23が最も基板10の先端側に位置するように配置されている構成について説明したが、各電極21,22,23の配置がこれに限定されるものではない。
 図13は、本開示の第二実施形態に係る電気化学センサにおける電極配置の他の一具体例を模式的に示す説明図(その2)である。
 図13に示す配置態様では、図11または図12に示す配置態様の場合とは逆に、第三BDD電極23が基板10の先端から最も離れる側に位置するように配置されている。このような配置態様の場合も、各電極21,22,23は、基板10上の基材基準点28を中心にして、それぞれが三回対称の位置に配置されていることになる。
 つまり、本開示の第二実施形態においては、各電極21,22,23のそれぞれの間の相対的な位置関係が基材基準点28を中心にした三回対称となるように設定されていれば、各電極21,22,23と基板10との相対的な位置関係については特に限定されるものではない。
Furthermore, in each of the specific examples described above, a configuration was described in which the third BDD electrode 23 among the electrodes 21, 22, 23 is located closest to the tip side of the substrate 10; however, each of the electrodes 21, 22 , 23 is not limited to this.
FIG. 13 is an explanatory diagram (Part 2) schematically showing another specific example of electrode arrangement in the electrochemical sensor according to the second embodiment of the present disclosure.
In the arrangement shown in FIG. 13, contrary to the arrangement shown in FIG. 11 or 12, the third BDD electrode 23 is arranged to be located farthest from the tip of the substrate 10. Also in this arrangement, each of the electrodes 21, 22, 23 is arranged at three-fold symmetrical positions with respect to the base material reference point 28 on the substrate 10.
That is, in the second embodiment of the present disclosure, the relative positional relationship between each of the electrodes 21, 22, and 23 is set to be three-fold symmetrical about the base material reference point 28. For example, the relative positional relationship between each electrode 21, 22, 23 and the substrate 10 is not particularly limited.
(6)システム構成
 次に、本開示の第二実施形態における電気化学センサシステムの機能構成例について説明する。なお、ここではシステム構成の図示を省略するが、第一実施形態の場合と同一の構成要素については同一の符号を用いて説明を行う。
(6) System Configuration Next, an example of the functional configuration of the electrochemical sensor system according to the second embodiment of the present disclosure will be described. Although illustration of the system configuration is omitted here, the same components as in the first embodiment will be described using the same reference numerals.
 第二実施形態で例に挙げるシステムは、上述したように各電極21,22,23が三回対称配置された電気化学センサ1を備える。そして、その電気化学センサ1に対応するように、測定装置2が以下のように構成されている。 The system exemplified in the second embodiment includes the electrochemical sensor 1 in which the electrodes 21, 22, and 23 are arranged in three-fold symmetry, as described above. A measuring device 2 is configured as follows to correspond to the electrochemical sensor 1.
 測定装置2は、測定回路51および選択回路54に加えて、第一回路~第六回路を備えて構成されている。
 第一回路は、第一BDD電極21を作用電極とし、第二BDD電極22を対電極とし、第三BDD電極23を参照電極として機能させるように、各配線31,32,33と測定回路51との間を電気的に接続する回路パターンで構成されたものである。
 第二回路は、第一BDD電極21を対電極とし、第二BDD電極22を作用電極とし、第三BDD電極23を参照電極として機能させるように、各配線31,32,33と測定回路51との間を電気的に接続する回路パターンで構成されたものである。
 第三回路は、第一BDD電極21を作用電極とし、第二BDD電極22を参照電極とし、第三BDD電極23を対電極として機能させるように、各配線31,32,33と測定回路51との間を電気的に接続する回路パターンで構成されたものである。
 第四回路は、第一BDD電極21を対電極とし、第二BDD電極22を参照電極とし、第三BDD電極23を作用電極として機能させるように、各配線31,32,33と測定回路51との間を電気的に接続する回路パターンで構成されたものである。
 第五回路は、第一BDD電極21を参照電極とし、第二BDD電極22を作用電極とし、第三BDD電極23を対電極として機能させるように、各配線31,32,33と測定回路51との間を電気的に接続する回路パターンで構成されたものである。
 第六回路は、第一BDD電極21を参照電極とし、第二BDD電極22を対電極とし、第三BDD電極23を作用電極として機能させるように、各配線31,32,33と測定回路51との間を電気的に接続する回路パターンで構成されたものである。
The measuring device 2 includes, in addition to the measuring circuit 51 and the selection circuit 54, first to sixth circuits.
The first circuit includes each wiring 31, 32, 33 and a measurement circuit 51 so that the first BDD electrode 21 functions as a working electrode, the second BDD electrode 22 functions as a counter electrode, and the third BDD electrode 23 functions as a reference electrode. It consists of a circuit pattern that electrically connects the
The second circuit includes each wiring 31, 32, 33 and a measurement circuit 51 so that the first BDD electrode 21 functions as a counter electrode, the second BDD electrode 22 functions as a working electrode, and the third BDD electrode 23 functions as a reference electrode. It consists of a circuit pattern that electrically connects the
The third circuit includes each wiring 31, 32, 33 and the measurement circuit 51 so that the first BDD electrode 21 functions as a working electrode, the second BDD electrode 22 functions as a reference electrode, and the third BDD electrode 23 functions as a counter electrode. It consists of a circuit pattern that electrically connects the
The fourth circuit includes each wiring 31, 32, 33 and a measuring circuit 51 so that the first BDD electrode 21 functions as a counter electrode, the second BDD electrode 22 functions as a reference electrode, and the third BDD electrode 23 functions as a working electrode. It consists of a circuit pattern that electrically connects the
The fifth circuit includes each wiring 31, 32, 33 and a measuring circuit 51 so that the first BDD electrode 21 functions as a reference electrode, the second BDD electrode 22 functions as a working electrode, and the third BDD electrode 23 functions as a counter electrode. It consists of a circuit pattern that electrically connects the
The sixth circuit includes each wiring 31, 32, 33 and the measurement circuit 51 so that the first BDD electrode 21 functions as a reference electrode, the second BDD electrode 22 functions as a counter electrode, and the third BDD electrode 23 functions as a working electrode. It consists of a circuit pattern that electrically connects the
 これら第一回路~第六回路に対応して、選択回路54は、測定回路51による電圧印加および電流値測定にあたり、第一回路~第六回路のいずれか一つを選択して、電気化学センサ1における各配線31,32,33と測定回路51との間の電気的な接続を確立させるようになっている。 Corresponding to these first to sixth circuits, the selection circuit 54 selects one of the first to sixth circuits when applying voltage and measuring current value by the measurement circuit 51, and selects one of the first to sixth circuits to make the electrochemical sensor An electrical connection is established between each of the wirings 31, 32, 33 in 1 and the measuring circuit 51.
(7)システム処理動作
 次に、上述したシステムにおける処理動作について説明する。
(7) System Processing Operation Next, the processing operation in the above-mentioned system will be explained.
 本実施形態のシステムにおいても、第一実施形態の場合と同様に、被検液であるオゾン水中のO濃度を測定する場合には、電気化学センサ1の各電極21,22,23をオゾン水に接触させた状態で、各電極21,22,23への印加電圧の制御により、作用電極と対電極の間に電圧をかけ、参照電極の電位を基準にして作用電極の電位を掃引し、そのときに作用電極と対電極との間を流れる電流値を測定する。 In the system of this embodiment, as in the case of the first embodiment, when measuring the O 3 concentration in ozonated water as the test liquid, each electrode 21, 22, 23 of the electrochemical sensor 1 is connected to the ozone While in contact with water, a voltage is applied between the working electrode and the counter electrode by controlling the voltage applied to each electrode 21, 22, 23, and the potential of the working electrode is swept with reference to the potential of the reference electrode. At that time, the value of the current flowing between the working electrode and the counter electrode is measured.
 このとき、測定装置2の選択回路54は、コンピュータ装置3の選択制御部61からの指示に従いつつ、第一回路~第六回路のいずれか一つを選択して、各電極21,22,23と測定回路51との間の電気的接続を確立させる。つまり、三つの電極21,22,23のそれぞれを作用電極、対電極または参照電極のいずれとして機能させるかの選択切り換えに対応するようになっている。 At this time, the selection circuit 54 of the measuring device 2 selects any one of the first to sixth circuits, following instructions from the selection control section 61 of the computer device 3, and selects each of the electrodes 21, 22, 23. and the measurement circuit 51 is established. In other words, it corresponds to selection switching of whether each of the three electrodes 21, 22, and 23 is to function as a working electrode, a counter electrode, or a reference electrode.
 このような選択切り換えに対応する第一BDD電極21、第二BDD電極22および第三BDD電極23は、基材基準点28を中心として、それぞれが三回対称の位置に配置されている。したがって、第一回路~第六回路のいずれを選択した場合であっても、参照電極に対する作用電極および対電極の構成状況が同一条件となり、これら作用電極および対電極における機能上の差異の発生を抑制することができる。 The first BDD electrode 21, second BDD electrode 22, and third BDD electrode 23 corresponding to such selection switching are each arranged at three-fold symmetrical positions with the base material reference point 28 as the center. Therefore, no matter which of the first to sixth circuits is selected, the configuration of the working electrode and the counter electrode with respect to the reference electrode is the same, and the occurrence of functional differences between the working electrode and the counter electrode is prevented. Can be suppressed.
 つまり、本実施形態においては、作用電極と対電極のみならず、参照電極も含めて、これらの機能の選択切り換えに対応することができる。これにより、濃度測定に対する柔軟度(汎用性)をより一層確保し得るようになり、その結果として、さらなる測定精度の向上や測定感度低下の抑制等が実現可能になる。つまり、上述した第一実施形態では二種の測定結果から一つの測定値を導き出すのに対し、本実施形態においては、三種の測定結果から一つの測定値を導き出すことができるので、より測定精度を高めることが可能となる。また、測定結果のばらつきの管理も行い易くなり、電極劣化等の検知感度も高めることが可能となる。 That is, in this embodiment, not only the working electrode and the counter electrode but also the reference electrode can be used, and the functions thereof can be selectively switched. This makes it possible to further ensure flexibility (versatility) in concentration measurement, and as a result, it becomes possible to further improve measurement accuracy and suppress a decrease in measurement sensitivity. In other words, in the first embodiment described above, one measurement value is derived from two types of measurement results, whereas in this embodiment, one measurement value can be derived from three types of measurement results, which improves measurement accuracy. It becomes possible to increase the Furthermore, it becomes easier to manage variations in measurement results, and it becomes possible to increase the detection sensitivity of electrode deterioration and the like.
 本実施形態においても、各電極21,22,23における機能の選択切り換えについては、予め設定された定期的なタイミングで自動的(強制的)に行う。 Also in this embodiment, the selection and switching of the functions of each electrode 21, 22, 23 is automatically (forced) performed at a preset periodic timing.
 例えば、定期的なタイミングの一例として、一回路(第一回路~第六回路のいずれか)による検出を実行する毎のタイミングで、各回路についての選択切り換えを行う。そして、同一条件でのオゾン水中のO濃度の測定を各回路により重複して行いつつ、それぞれの回路による検出実行単位が全て終了すると、オゾン水中のO濃度について一回の濃度測定が終了したものとする。
 このようなタイミングでの選択切り換えを行えば、重複して行った濃度測定で得られる複数の測定値から一つの測定値を導き出すことが可能となり、その結果として測定精度の向上を図ることが実現可能となる。しかも、その場合において、作用電極と対電極のみならず参照電極も含めて機能の選択切り換えに対応することで、基となる複数の測定値が増えるので、より一層の測定精度の向上に寄与し得るようになる。
For example, as an example of regular timing, the selection of each circuit is switched every time one circuit (any of the first to sixth circuits) performs detection. Then, each circuit repeatedly measures the O 3 concentration in ozonated water under the same conditions, and when each circuit completes all detection execution units, one concentration measurement of the O 3 concentration in ozonated water is completed. It shall be assumed that
By switching the selection at such timing, it is possible to derive a single measurement value from multiple measurement values obtained from repeated concentration measurements, and as a result, it is possible to improve measurement accuracy. It becomes possible. Moreover, in this case, by supporting selection and switching of functions not only for the working electrode and the counter electrode but also for the reference electrode, the number of base measurements increases, contributing to further improvement of measurement accuracy. You will get it.
 また、例えば、定期的なタイミングの他の例として、一回または複数回の濃度測定を実行する毎のタイミングで、各回路についての選択切り換えを行う。
 このようなタイミングでの選択切り換えを行えば、濃度測定の繰り返しに伴う経時的な電極状態の劣化を抑制できるようになるが、作用電極と対電極のみならず参照電極も含めて機能の選択切り換えに対応することで、電極状態の劣化の度合いをより一層抑制することが実現可能となる。
Furthermore, as another example of periodic timing, selection switching for each circuit is performed each time one or more concentration measurements are performed.
If the selection is switched at such timing, it will be possible to suppress the deterioration of the electrode condition over time due to repeated concentration measurements, but it will be possible to suppress the deterioration of the electrode condition over time due to repeated concentration measurements. By dealing with this, it becomes possible to further suppress the degree of deterioration of the electrode condition.
(8)本実施形態にかかる効果
 本実施形態によれば、第一実施形態で説明した効果に加えて、以下に示す一つまたは複数の効果を奏する。
(8) Effects of this embodiment According to this embodiment, in addition to the effects described in the first embodiment, one or more of the following effects can be achieved.
(k)本実施形態において、電気化学センサ1は、第一BDD電極21、第二BDD電極22および第三BDD電極23が同一構造および同一形状を有しており、しかも各電極21,22,23が基材基準点28に対して三回対称な位置に配置されている。そのため、これら三つの電極21,22,23のそれぞれについて、作用電極、対電極または参照電極として機能させることが可能である。さらには、作用電極、対電極または参照電極としての機能について、当該機能の切り換えにも対応し得るようになる。
 したがって、本実施形態の電気化学センサ1における電極配置によれば、三極電極の配置の工夫により、例えば電極機能の選択切り換えを行いつつオゾン水中のO濃度の測定をするといったように、その濃度測定に対する柔軟度(汎用性)を確保し得るセンサ構成が実現可能となり、その結果として、より一層の測定精度の向上や測定感度低下の抑制等が実現可能になる。
(k) In the present embodiment, in the electrochemical sensor 1, the first BDD electrode 21, the second BDD electrode 22, and the third BDD electrode 23 have the same structure and the same shape, and each electrode 21, 22, 23 are arranged at three-fold symmetrical positions with respect to the base material reference point 28. Therefore, each of these three electrodes 21, 22, and 23 can function as a working electrode, a counter electrode, or a reference electrode. Furthermore, it becomes possible to switch between functions as a working electrode, a counter electrode, or a reference electrode.
Therefore, according to the electrode arrangement in the electrochemical sensor 1 of this embodiment, by devising the arrangement of the three-electrode electrode, it is possible to measure the O 3 concentration in ozonated water while, for example, selecting and switching the electrode function. It becomes possible to realize a sensor configuration that can ensure flexibility (versatility) in concentration measurement, and as a result, it becomes possible to further improve measurement accuracy and suppress a decrease in measurement sensitivity.
(l)本実施形態において、電気化学センサ1を備えて構成される電気化学センサシステムは、その電気化学センサ1に加えて第一回路~第六回路を備えることで、電気化学センサ1における各電極21,22,23のそれぞれを作用電極、対電極または参照電極のいずれとして機能させるかの選択切り換えに対応するようになっている。
 したがって、本実施形態の電気化学センサシステムによれば、作用電極と対電極のみならず参照電極も含めて、それぞれの機能の選択切り換えに対応し得るようになり、その結果として、より一層の測定精度の向上や測定感度低下の抑制等が実現可能になる。
(l) In this embodiment, the electrochemical sensor system configured with the electrochemical sensor 1 includes the first to sixth circuits in addition to the electrochemical sensor 1, so that each of the electrochemical sensor 1 This corresponds to selection switching of whether each of the electrodes 21, 22, and 23 is to function as a working electrode, a counter electrode, or a reference electrode.
Therefore, according to the electrochemical sensor system of this embodiment, it becomes possible to respond to selective switching of the functions of not only the working electrode and the counter electrode but also the reference electrode, and as a result, further measurement is possible. It becomes possible to improve accuracy and suppress a decrease in measurement sensitivity.
<変形例等>
 以上に第一実施形態および第二実施形態について説明したが、本開示の技術的範囲は、上述の各実施形態の内容に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Modified examples, etc.>
Although the first embodiment and the second embodiment have been described above, the technical scope of the present disclosure is not limited to the content of each embodiment described above, and various changes can be made without departing from the gist thereof. be.
(回路構成)
 例えば、上述の各実施形態では、電気化学センサシステムにおいて、測定装置2が選択回路54を備える場合を例に挙げたが、複数回路(例えば、第一回路52と第二回路53、または、第一回路~第六回路)のいずれかを択一的に選択して被検液であるオゾン水中のO濃度を測定を行うように構成されていれば、必ずしもスイッチ回路等の選択回路54を備えている必要はない。すなわち、複数回路の択一的な選択は、選択回路54によらないものであっても構わない。
(Circuit configuration)
For example, in each of the above-mentioned embodiments, in the electrochemical sensor system, the measurement device 2 is provided with the selection circuit 54. If the configuration is such that the O 3 concentration in ozone water, which is the test liquid, is measured by selectively selecting one of the circuits 1 to 6, the selection circuit 54 such as a switch circuit is not necessarily used. You don't need to be prepared. That is, the alternative selection of the plurality of circuits may not be based on the selection circuit 54.
(濃度測定)
 また、例えば、上述の各実施形態では、オゾン水中のO濃度の測定に際してLSV測定を行う場合を例に挙げたが、必ずしもこれに限定されることはなく、サイクリックボルタンメトリー(cyclic voltammetry:CV)測定であっても構わないし、クロノアンペロメトリー測定や定電位を印加してあらかじめ規定したタイミングにおける電流値を測定するやり方でも構わない。
(concentration measurement)
Further, for example, in each of the above-described embodiments, an example is given in which LSV measurement is performed when measuring the O 3 concentration in ozonated water, but the present invention is not necessarily limited to this, and cyclic voltammetry (CV) is used. ) measurement, or chronoamperometry measurement or a method of applying a constant potential and measuring the current value at a predetermined timing may be used.
 また、例えば、上述の各実施形態では、被検液がオゾン水であり、濃度測定の対象となる特定成分がオゾン水中の溶存オゾンである場合を例に挙げたが、必ずしもこれに限定されることはなく、電気化学反応を利用して濃度測定を行い得るものであれば、他の種類の被検液および特定成分にも適用可能である。 Further, for example, in each of the embodiments described above, the sample liquid is ozonated water and the specific component whose concentration is to be measured is dissolved ozone in the ozonated water, but this is not necessarily limited to this. This method can be applied to other types of test liquids and specific components as long as the concentration can be measured using electrochemical reactions.
(選択切り換え)
 また、上述の各実施形態のうち、特に第一実施形態においては、線対象配置された第一BDD電極21と第二BDD電極22とにつき、これらのどちらを作用電極または対電極として機能させるか選択切り換えを行う場合を例に挙げている。この点については、以下のような変形例を構成することも考えられる。
 当該変形例では、線対象配置された第一BDD電極21と第二BDD電極22とにつき、これらのどちらを作用電極または参照電極として機能させるか選択切り換えを行うようにする。このような構成であっても、参照電極からみた作用電極および対電極の構成状況が選択切り換えの前後で同一条件となるため、第一実施形態で説明した作用効果を得ることが可能となる。
(selection switching)
Moreover, among the above-mentioned embodiments, especially in the first embodiment, which of the first BDD electrode 21 and the second BDD electrode 22 arranged line-symmetrically is to function as a working electrode or a counter electrode is determined. The case where selection switching is performed is given as an example. Regarding this point, it is also possible to configure the following modification example.
In this modification, selection and switching is performed as to which of the first BDD electrode 21 and the second BDD electrode 22 arranged line-symmetrically is to function as a working electrode or a reference electrode. Even with such a configuration, the configuration status of the working electrode and counter electrode viewed from the reference electrode is the same before and after selection switching, so it is possible to obtain the effects described in the first embodiment.
 つまり、本開示には、以下に述べる技術的思想も含まれるものとする。
 本開示の一態様には、
 被検液中の特定成分の濃度測定に用いられる電気化学センサであって、
 同一の基材上に配置された少なくとも三つの電極を備え、
 前記三つの電極のうち、少なくとも二つの電極は、同一構造および同一形状を有するダイヤモンド電極によって構成され、
 前記二つの電極はそれぞれが作用電極または参照電極のいずれかとして機能するとともに、前記三つの電極のうちの前記二つの電極以外の一つの電極が対電極として機能し、
 前記二つの電極は、前記一つの電極における所定の電極基準点を通る仮想線を対称軸として、それぞれが線対称の位置に配置されている
 電気化学センサが含まれる。
 また、本開示の他の態様には、
 上記の一態様に係る電気化学センサと、
 前記電気化学センサにおける前記二つの電極のうちの一方を作用電極とし他方を参照電極として機能させる第一回路と、
 前記一方の電極を参照電極とし前記他方の電極を作用電極として機能させる第二回路と、を備え、
 前記第一回路と前記第二回路とのいずれかを選択して前記被検液中の前記特定成分の濃度測定を行うように構成された
 電気化学センサシステムが含まれる。
That is, the present disclosure also includes the technical ideas described below.
One aspect of the present disclosure includes:
An electrochemical sensor used for measuring the concentration of a specific component in a test liquid,
comprising at least three electrodes disposed on the same substrate,
At least two of the three electrodes are constituted by diamond electrodes having the same structure and shape,
Each of the two electrodes functions as either a working electrode or a reference electrode, and one electrode other than the two electrodes among the three electrodes functions as a counter electrode,
The two electrodes include an electrochemical sensor in which each of the two electrodes is arranged at a line-symmetrical position with respect to an imaginary line passing through a predetermined electrode reference point in the one electrode as an axis of symmetry.
Additionally, other aspects of the present disclosure include:
An electrochemical sensor according to the above embodiment;
a first circuit that causes one of the two electrodes in the electrochemical sensor to function as a working electrode and the other as a reference electrode;
a second circuit in which the one electrode functions as a reference electrode and the other electrode functions as a working electrode,
The electrochemical sensor system is configured to select either the first circuit or the second circuit to measure the concentration of the specific component in the test liquid.
 なお、上記の変形例と同様に、第一BDD電極21と第二BDD電極22とについて、これらのどちらを対電極または参照電極として機能させるか選択切り換えを行うことも考えられるが、その場合には第三BDD電極23が作用電極として固定的に機能することになる。作用電極が固定的であると、必ずしも第一実施形態で説明した選択切り換えの作用効果が得られるとは限らない。そのため、電極機能の選択切り換えについては、少なくとも、第一実施形態で説明したように作用電極と対電極の機能を入れ替え可能にするか、上記の変形例のように作用電極と参照電極の機能を入れ替え可能にするか、または第二実施形態で説明したように作用電極、対電極および参照電極のそれぞれの機能を入れ替え可能にすることが好ましい。 Note that, similarly to the above modification, it is possible to select and switch which of the first BDD electrode 21 and the second BDD electrode 22 is to function as a counter electrode or a reference electrode, but in that case, In this case, the third BDD electrode 23 functions fixedly as a working electrode. If the working electrode is fixed, the effects of selection switching described in the first embodiment may not necessarily be obtained. Therefore, regarding selection and switching of electrode functions, at least the functions of the working electrode and counter electrode should be interchangeable as explained in the first embodiment, or the functions of the working electrode and reference electrode should be interchanged as in the above modification. Preferably, they are interchangeable or the respective functions of the working electrode, counter electrode and reference electrode are interchangeable as explained in the second embodiment.
(電極数)
 また、例えば、上述の各実施形態では、基板10上に三つの電極21,22,23が配置されている場合を例に挙げたが、必ずしもこれに限定されることはなく、基板10上に四つ以上の電極が配置されていてもよい。
 図14は、本開示に係る電気化学センサにおける電極配置の変形例を模式的に示す説明図(その1)である。図15は、本開示に係る電気化学センサにおける電極配置の変形例を模式的に示す説明図(その2)である。
 図14または図15に示す配置態様では、いずれも、基板10上に配置された電極群20が、四つのBDD電極によって構成されている。このような配置態様の場合、例えば、電極群20の中から三つの電極の組み合わせを抽出し、その組み合わせを構成する各電極について第一実施形態または第二実施形態で説明したような選択切り換えを行い、さらに必要に応じてその組み合わせを適宜変更する、といった運用が実現可能となる。その場合に、三つの電極の組み合わせについては、測定時の条件(回路)が等価(各電極の位置関係が同一または対称配置)になるように抽出すること、すなわち当該組み合わせが等価になるように抽出することが望ましい。また、例えば、作用電極、対電極または参照電極の少なくとも一つについて、その機能を複数の電極によって実現するようにした上で、第一実施形態または第二実施形態で説明したような選択切り換えを行う、といった運用が実現可能となる。
 つまり、基板10上に配置された電極群20は、少なくとも三つの電極によって構成されていれば、本開示に係る技術的思想を適用することが可能である。
(Number of electrodes)
Further, for example, in each of the above-described embodiments, the case where three electrodes 21, 22, and 23 are arranged on the substrate 10 is taken as an example, but the invention is not necessarily limited to this, and the three electrodes 21, 22, 23 are arranged on the substrate 10. Four or more electrodes may be arranged.
FIG. 14 is an explanatory diagram (part 1) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure. FIG. 15 is an explanatory diagram (part 2) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure.
In the arrangement mode shown in FIG. 14 or 15, the electrode group 20 arranged on the substrate 10 is composed of four BDD electrodes. In the case of such an arrangement, for example, a combination of three electrodes is extracted from the electrode group 20, and selection switching as described in the first embodiment or the second embodiment is performed for each electrode constituting the combination. It becomes possible to perform operations such as performing the above operations and changing the combination as necessary. In that case, the combinations of three electrodes should be extracted so that the conditions (circuits) at the time of measurement are equivalent (the positional relationship of each electrode is the same or symmetrically arranged), that is, the combinations are extracted so that they are equivalent. It is desirable to extract. Alternatively, for example, the function of at least one of the working electrode, the counter electrode, or the reference electrode may be realized by a plurality of electrodes, and then the selection switching as described in the first embodiment or the second embodiment may be performed. It becomes possible to implement operations such as
That is, as long as the electrode group 20 arranged on the substrate 10 is composed of at least three electrodes, the technical idea according to the present disclosure can be applied.
(電極配置)
 また、例えば、上述の各実施形態では、基板10の同一面上に三つの電極21,22,23が配置されている場合を例に挙げたが、必ずしもこれに限定されることはなく、各電極21,22,23が基板10の異なる面上に配置されていてもよい。
(electrode arrangement)
Further, for example, in each of the above-described embodiments, an example is given where three electrodes 21, 22, and 23 are arranged on the same surface of the substrate 10, but the invention is not necessarily limited to this, and each The electrodes 21, 22, 23 may be arranged on different surfaces of the substrate 10.
 図16は、本開示に係る電気化学センサにおける電極配置の変形例を模式的に示す説明図(その3)である。
 図16に示す配置態様では、平板状の基板10の一方の面(例えば上面)に一つの電極23が配置され、他方の面(例えば下面)に二つの電極21,22が配置されている。このような電極配置の場合であっても、電極23からみた二つの電極21,22の対象配置を実現することができる。また、基板10の厚さ等によっては、各電極21,22,23を三回対称の位置関係とすることも実現可能である。
FIG. 16 is an explanatory diagram (Part 3) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure.
In the arrangement shown in FIG. 16, one electrode 23 is arranged on one surface (for example, the top surface) of the flat substrate 10, and two electrodes 21 and 22 are arranged on the other surface (for example, the bottom surface). Even in the case of such an electrode arrangement, it is possible to realize a symmetrical arrangement of the two electrodes 21 and 22 when viewed from the electrode 23. Further, depending on the thickness of the substrate 10, etc., it is also possible to make the electrodes 21, 22, 23 have a three-fold symmetrical positional relationship.
 図17は、本開示に係る電気化学センサにおける電極配置の変形例を模式的に示す説明図(その4)である。
 図17に示す配置態様では、四角柱状の基板10における三つの側面のそれぞれに三つの電極21,22,23が分散して配置されている。このような電極配置の場合であっても、電極23からみた二つの電極21,22の対象配置を実現することができる。また、基板10の断面サイズ等によっては、各電極21,22,23を三回対称の位置関係とすることも実現可能である。
FIG. 17 is an explanatory diagram (No. 4) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure.
In the arrangement shown in FIG. 17, three electrodes 21, 22, and 23 are distributed and arranged on each of the three side surfaces of the square columnar substrate 10. Even in the case of such an electrode arrangement, it is possible to realize a symmetrical arrangement of the two electrodes 21 and 22 when viewed from the electrode 23. Further, depending on the cross-sectional size of the substrate 10, etc., it is also possible to make each electrode 21, 22, 23 have a three-fold symmetrical positional relationship.
 図18は、本開示に係る電気化学センサにおける電極配置の変形例を模式的に示す説明図(その5)である。
 図18に示す配置態様では、一面が開いた四角柱状の基板10の内面を構成する三つの壁面のそれぞれに三つの電極21,22,23が分散して配置されている。このような電極配置の場合であっても、電極23からみた二つの電極21,22の対象配置を実現することができる。また、基板10の断面サイズ等によっては、各電極21,22,23を三回対称の位置関係とすることも実現可能である。
FIG. 18 is an explanatory diagram (No. 5) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure.
In the arrangement shown in FIG. 18, three electrodes 21, 22, and 23 are distributed and arranged on each of three wall surfaces that constitute the inner surface of a square columnar substrate 10 with one side open. Even in the case of such an electrode arrangement, it is possible to realize a symmetrical arrangement of the two electrodes 21 and 22 when viewed from the electrode 23. Further, depending on the cross-sectional size of the substrate 10, etc., it is also possible to make each electrode 21, 22, 23 have a three-fold symmetrical positional relationship.
 図19は、本開示に係る電気化学センサにおける電極配置の変形例を模式的に示す説明図(その6)である。
 図19に示す配置態様では、平板状の基板10における同一の面上に三つの電極21,22,23を並べて配置した後に、その基板10を所望断面形状(例えば断面コの字型)となるように折り曲げて、各電極21,22,23が異なる面上に配置されるようにしている。このような電極配置の場合であっても、電極23からみた二つの電極21,22の対象配置を実現することができる。また、基板10の折り曲げ後における断面形状等によっては、各電極21,22,23を三回対称の位置関係とすることも実現可能である。
FIG. 19 is an explanatory diagram (No. 6) schematically showing a modification of the electrode arrangement in the electrochemical sensor according to the present disclosure.
In the arrangement shown in FIG. 19, after three electrodes 21, 22, and 23 are arranged side by side on the same surface of a flat substrate 10, the substrate 10 has a desired cross-sectional shape (for example, a U-shaped cross section). The electrodes 21, 22, and 23 are arranged on different surfaces by bending the electrodes 21, 22, and 23 in this manner. Even in the case of such an electrode arrangement, it is possible to realize a symmetrical arrangement of the two electrodes 21 and 22 when viewed from the electrode 23. Furthermore, depending on the cross-sectional shape of the substrate 10 after bending, it is also possible to make the electrodes 21, 22, and 23 have a three-fold symmetrical positional relationship.
(具体的な一構成例)
 ここで、本開示に係る電気化学センサの具体的な一構成例について、図20および図21に例示する。
(Specific configuration example)
Here, a specific configuration example of the electrochemical sensor according to the present disclosure is illustrated in FIGS. 20 and 21.
 図20は、本開示に係る電気化学センサの具体的な一構成例を示す斜視図である。
 図例の電気化学センサ1は、基板10の同一面上において、三つの電極21,22,23が三回対称の位置に配置され、かつ、これらのうちの二つが線対称の関係となるように各電極21,22,23が配置されて構成されている。また、基板10上には、各電極21,22,23が配置された側とは反対の端縁側に、各電極21,22,23と配線31,32,33を介して導通する端子部36,37,38が設けられているが、その導通を確立する配線31,32,33は防水部材40により覆われている。
FIG. 20 is a perspective view showing a specific example of the configuration of the electrochemical sensor according to the present disclosure.
In the illustrated electrochemical sensor 1, three electrodes 21, 22, and 23 are arranged in three-fold symmetrical positions on the same surface of a substrate 10, and two of these electrodes are arranged in a line-symmetrical relationship. Each electrode 21, 22, 23 is arranged in the structure. Further, on the substrate 10, on the edge side opposite to the side where each electrode 21, 22, 23 is arranged, there is a terminal part 36 that is electrically connected to each electrode 21, 22, 23 via wiring 31, 32, 33. , 37, and 38 are provided, and the wirings 31, 32, and 33 that establish continuity therewith are covered with a waterproof member 40.
 図21は、図20の電気化学センサについての六面図である。図21において、(a)は平面図、(b)は正面図、(c)は底面図、(d)は背面図、(e)は右側面図、(f)は左側面図を、それぞれ示している。 FIG. 21 is a six-sided view of the electrochemical sensor of FIG. 20. In FIG. 21, (a) is a plan view, (b) is a front view, (c) is a bottom view, (d) is a rear view, (e) is a right side view, and (f) is a left side view. It shows.
<本開示の好ましい態様>
 以下、本開示の好ましい態様について付記する。
<Preferred embodiments of the present disclosure>
Preferred embodiments of the present disclosure will be additionally described below.
(付記1)
 本開示の一態様によれば、
 被検液中の特定成分の濃度測定に用いられる電気化学センサであって、
 同一の基材上に配置された少なくとも三つの電極を備え、
 前記三つの電極のうち、少なくとも二つの電極は、同一構造および同一形状を有するダイヤモンド電極によって構成され、
 前記二つの電極は、前記基板に設けられた配線に同一の導電性の接合材を用いて同等の構造で接続され、
 前記二つの電極の配線との接合部の周囲は、同一の絶縁性樹脂を用いて同等の構造で封止され、
 前記二つの電極は、前記一つの電極における所定の電極基準点を通る仮想線を対称軸として、それぞれが線対称の位置に配置されている
 電気化学センサが提供される。
 ここで、前記ダイヤモンド電極は導電性の基材の上に多結晶ダイヤモンド膜を積層した構造であり、
 前記ダイヤモンド電極の前記導電性の基材が、前記接合材を介して前記配線と電気的に接続されており、
 前記ダイヤモンド膜表面には、前記配線、前記接合材、前記導電性樹脂が接触していない。
(Additional note 1)
According to one aspect of the present disclosure,
An electrochemical sensor used for measuring the concentration of a specific component in a test liquid,
comprising at least three electrodes disposed on the same substrate,
At least two of the three electrodes are constituted by diamond electrodes having the same structure and shape,
The two electrodes are connected to wiring provided on the substrate using the same conductive bonding material with the same structure,
The periphery of the joint of the two electrodes with the wiring is sealed with the same structure using the same insulating resin,
An electrochemical sensor is provided in which the two electrodes are arranged at symmetrical positions with respect to an imaginary line passing through a predetermined electrode reference point in the one electrode as an axis of symmetry.
Here, the diamond electrode has a structure in which a polycrystalline diamond film is laminated on a conductive base material,
The conductive base material of the diamond electrode is electrically connected to the wiring via the bonding material,
The wiring, the bonding material, and the conductive resin are not in contact with the surface of the diamond film.
(付記2)
 本開示の一態様によれば、
 被検液中の特定成分の濃度測定に用いられる電気化学センサであって、
 同一の基材上に配置された少なくとも三つ以上の電極を備え、
 前記三つ以上の電極から三つの電極を選び、各電極に作用電極、対電極または参照電極のいずれかの機能を割り振る組合せの中に、前記作用電極を割り振る電極が異なり、かつ、前記被検液中の特定成分の濃度測定を行う際の電気化学測定の回路が等価となる組合せが二つ以上存在する
 電気化学センサが提供される。
(Additional note 2)
According to one aspect of the present disclosure,
An electrochemical sensor used for measuring the concentration of a specific component in a test liquid,
comprising at least three or more electrodes arranged on the same base material,
Among the combinations in which three electrodes are selected from the three or more electrodes and each electrode is assigned the function of a working electrode, a counter electrode, or a reference electrode, the electrodes to which the working electrode is assigned are different, and the test subject An electrochemical sensor is provided in which there are two or more combinations of equivalent electrochemical measurement circuits when measuring the concentration of a specific component in a liquid.
(付記3)
 本開示の一態様によれば、
 被検液中の特定成分の濃度測定に用いられる電気化学センサであって、
 同一の基材上に配置された少なくとも三つの電極を備え、
 前記三つの電極のうち、少なくとも二つの電極は、同一構造および同一形状を有するダイヤモンド電極によって構成され、
 前記二つの電極はそれぞれが作用電極または対電極のいずれかとして機能するとともに、前記三つの電極のうちの前記二つの電極以外の一つの電極が参照電極として機能し、
 前記二つの電極は、前記一つの電極における所定の電極基準点を通る仮想線を対称軸として、それぞれが線対称の位置に配置されている
 電気化学センサが提供される。
(Additional note 3)
According to one aspect of the present disclosure,
An electrochemical sensor used for measuring the concentration of a specific component in a test liquid,
comprising at least three electrodes disposed on the same substrate,
At least two of the three electrodes are constituted by diamond electrodes having the same structure and shape,
Each of the two electrodes functions as either a working electrode or a counter electrode, and one of the three electrodes other than the two electrodes functions as a reference electrode,
An electrochemical sensor is provided in which the two electrodes are arranged at symmetrical positions with respect to an imaginary line passing through a predetermined electrode reference point in the one electrode as an axis of symmetry.
(付記4)
 本開示の他の一態様によれば、
 被検液中の特定成分の濃度測定に用いられる電気化学センサであって、
 同一の基材上に配置された少なくとも三つの電極を備え、
 前記三つの電極のうち、少なくとも二つの電極は、同一構造および同一形状を有するダイヤモンド電極によって構成され、
 前記二つの電極はそれぞれが作用電極または参照電極のいずれかとして機能するとともに、前記三つの電極のうちの前記二つの電極以外の一つの電極が対電極として機能し、
 前記二つの電極は、前記一つの電極における所定の電極基準点を通る仮想線を対称軸として、それぞれが線対称の位置に配置されている
 電気化学センサが提供される。
(Additional note 4)
According to another aspect of the present disclosure,
An electrochemical sensor used for measuring the concentration of a specific component in a test liquid,
comprising at least three electrodes disposed on the same substrate,
At least two of the three electrodes are constituted by diamond electrodes having the same structure and shape,
Each of the two electrodes functions as either a working electrode or a reference electrode, and one electrode other than the two electrodes among the three electrodes functions as a counter electrode,
An electrochemical sensor is provided in which the two electrodes are arranged at symmetrical positions with respect to an imaginary line passing through a predetermined electrode reference point in the one electrode as an axis of symmetry.
(付記5)
 本開示のさらに他の一態様によれば、
 被検液中の特定成分の濃度測定に用いられる電気化学センサであって、
 同一の基材上に配置された少なくとも三つの電極を備え、
 前記三つの電極は、同一構造および同一形状を有するダイヤモンド電極によって構成され、
 前記三つの電極がそれぞれ作用電極、対電極または参照電極のいずれかとして機能し、
 前記三つの電極は、前記基材における所定の基材基準点を中心として、それぞれが三回対称の位置に配置されている
 電気化学センサが提供される。
(Appendix 5)
According to yet another aspect of the present disclosure,
An electrochemical sensor used for measuring the concentration of a specific component in a test liquid,
comprising at least three electrodes disposed on the same substrate,
The three electrodes are composed of diamond electrodes having the same structure and shape,
The three electrodes each function as either a working electrode, a counter electrode, or a reference electrode,
An electrochemical sensor is provided in which each of the three electrodes is arranged at three-fold symmetrical positions with respect to a predetermined base material reference point on the base material.
(付記6)
 好ましくは、
 前記基材は、対称性を有する平面形状に形成されている
 付記3から5のいずれか1態様に記載の電気化学センサが提供される。
(Appendix 6)
Preferably,
The electrochemical sensor according to any one of appendices 3 to 5 is provided, wherein the base material is formed into a symmetrical planar shape.
(付記7)
 好ましくは、
 前記特定成分は、前記被検液中の溶存オゾンである
 付記3から5のいずれか1態様に記載の電気化学センサが提供される。
(Appendix 7)
Preferably,
The electrochemical sensor according to any one of appendices 3 to 5 is provided, in which the specific component is dissolved ozone in the test liquid.
(付記8)
 本開示の一態様によれば、
 付記3に記載の電気化学センサと、
 前記電気化学センサにおける前記二つの電極のうちの一方を作用電極とし他方を対電極として機能させる第一回路と、
 前記一方の電極を対電極とし前記他方の電極を作用電極として機能させる第二回路と、を備え、
 前記第一回路と前記第二回路とのいずれかを選択して前記被検液中の前記特定成分の濃度測定を行うように構成された
 電気化学センサシステムが提供される。
(Appendix 8)
According to one aspect of the present disclosure,
The electrochemical sensor described in Appendix 3;
a first circuit in which one of the two electrodes in the electrochemical sensor functions as a working electrode and the other as a counter electrode;
a second circuit in which the one electrode functions as a counter electrode and the other electrode functions as a working electrode,
An electrochemical sensor system is provided that is configured to select either the first circuit or the second circuit to measure the concentration of the specific component in the test liquid.
(付記9)
 本開示の他の一態様によれば、
 付記4に記載の電気化学センサと、
 前記電気化学センサにおける前記二つの電極のうちの一方を作用電極とし他方を参照電極として機能させる第一回路と、
 前記一方の電極を参照電極とし前記他方の電極を作用電極として機能させる第二回路と、を備え、
 前記第一回路と前記第二回路とのいずれかを選択して前記被検液中の前記特定成分の濃度測定を行うように構成された
 電気化学センサシステムが提供される。
(Appendix 9)
According to another aspect of the present disclosure,
The electrochemical sensor described in Appendix 4,
a first circuit that causes one of the two electrodes in the electrochemical sensor to function as a working electrode and the other as a reference electrode;
a second circuit in which the one electrode functions as a reference electrode and the other electrode functions as a working electrode,
An electrochemical sensor system is provided that is configured to select either the first circuit or the second circuit to measure the concentration of the specific component in the test liquid.
(付記10)
 本開示のさらに他の一態様によれば、
 付記5に記載の電気化学センサと、
 前記電気化学センサにおける前記三つの電極のそれぞれを第一電極、第二電極および第三電極とした場合に、前記第一電極を作用電極とし前記第二電極を対電極とし前記第三電極を参照電極として機能させる第一回路と、
 前記第一電極を対電極とし前記第二電極を作用電極とし前記第三電極を参照電極として機能させる第二回路と、
 前記第一電極を作用電極とし前記第二電極を参照電極とし前記第三電極を対電極として機能させる第三回路と、
 前記第一電極を対電極とし前記第二電極を参照電極とし前記第三電極を作用電極として機能させる第四回路と、
 前記第一電極を参照電極とし前記第二電極を作用電極とし前記第三電極を対電極として機能させる第五回路と、
 前記第一電極を参照電極とし前記第二電極を対電極とし前記第三電極を作用電極として機能させる第六回路と、を備え、
 前記第一回路から前記第六回路までのいずれか一つを選択して前記被検液中の前記特定成分の濃度測定を行うように構成された
 電気化学センサシステムが提供される。
(Appendix 10)
According to yet another aspect of the present disclosure,
The electrochemical sensor described in Appendix 5;
When each of the three electrodes in the electrochemical sensor is a first electrode, a second electrode, and a third electrode, the first electrode is the working electrode and the second electrode is the counter electrode, and the third electrode is referred to. a first circuit that functions as an electrode;
a second circuit in which the first electrode serves as a counter electrode, the second electrode serves as a working electrode, and the third electrode serves as a reference electrode;
a third circuit in which the first electrode functions as a working electrode, the second electrode functions as a reference electrode, and the third electrode functions as a counter electrode;
a fourth circuit in which the first electrode serves as a counter electrode, the second electrode serves as a reference electrode, and the third electrode serves as a working electrode;
a fifth circuit in which the first electrode functions as a reference electrode, the second electrode functions as a working electrode, and the third electrode functions as a counter electrode;
a sixth circuit in which the first electrode functions as a reference electrode, the second electrode functions as a counter electrode, and the third electrode functions as a working electrode;
An electrochemical sensor system is provided that is configured to select any one of the first circuit to the sixth circuit to measure the concentration of the specific component in the test liquid.
(付記11)
 好ましくは、
 予め設定された定期的なタイミングで複数回路についての選択切り換えを行う選択制御部
 を備える付記8から10のいずれか1態様に記載の電気化学センサシステムが提供される。
(Appendix 11)
Preferably,
There is provided an electrochemical sensor system according to any one of appendices 8 to 10, including a selection control section that performs selection switching for a plurality of circuits at preset regular timing.
(付記12)
 好ましくは、
 前記タイミングが、一回の濃度測定の開始から終了までの間で一回路による検出を実行する毎のタイミングに設定されている
 付記11に記載の電気化学センサシステムが提供される。
(Appendix 12)
Preferably,
There is provided an electrochemical sensor system according to appendix 11, wherein the timing is set to a timing every time detection by one circuit is executed from the start to the end of one concentration measurement.
(付記13)
 好ましくは、
 複数回路のそれぞれで得られる複数の測定値を取得するとともに、前記複数の測定値に基づいて一つの測定値を導き出し、前記一つの測定値を前記被検液中の前記特定成分の濃度測定のための測定値とする測定値管理部
 を備える付記12に記載の電気化学センサシステムが提供される。
(Appendix 13)
Preferably,
Acquire a plurality of measured values obtained from each of the plurality of circuits, derive one measured value based on the plurality of measured values, and use the one measured value to measure the concentration of the specific component in the test liquid. There is provided an electrochemical sensor system according to appendix 12, which includes a measured value management unit that takes measured values for.
(付記14)
 好ましくは、
 前記タイミングが、一回または複数回の濃度測定を実行する毎のタイミングに設定されている
 付記11に記載の電気化学センサシステムが提供される。
(Appendix 14)
Preferably,
There is provided an electrochemical sensor system according to appendix 11, wherein the timing is set to a timing every time one or more concentration measurements are performed.
(付記15)
 好ましくは、
 前記電気化学センサにおける各電極に対して、前記被検液中の前記特定成分の濃度測定の際とは異なる態様での通電を行って、前記各電極の状態回復処理を施す通電制御部
 を備える付記8から10のいずれか1態様に記載の電気化学センサシステムが提供される。
(Appendix 15)
Preferably,
An energization control unit that performs a state recovery process on each electrode by energizing each electrode in the electrochemical sensor in a manner different from that when measuring the concentration of the specific component in the test liquid. An electrochemical sensor system according to any one of appendices 8 to 10 is provided.
 1…電気化学センサ、2…電気化学測定装置、3…コンピュータ装置、10…支持基板(基材)、21…第一BDD電極、22…第二BDD電極、23…第三BDD電極、24…電極膜、25…導電性基板、26,26a,26b,26c…電極基準点、27,27a,27b,27c…仮想線、28…基材基準点、31,32,33…配線、51…電気化学測定回路、52…第一回路、53…第二回路、54…選択回路、60…制御部、61…選択制御部、62…測定値管理部、63…通電制御部 DESCRIPTION OF SYMBOLS 1... Electrochemical sensor, 2... Electrochemical measuring device, 3... Computer device, 10... Support substrate (base material), 21... First BDD electrode, 22... Second BDD electrode, 23... Third BDD electrode, 24... Electrode film, 25... Conductive substrate, 26, 26a, 26b, 26c... Electrode reference point, 27, 27a, 27b, 27c... Virtual line, 28... Base material reference point, 31, 32, 33... Wiring, 51... Electricity Chemical measurement circuit, 52... first circuit, 53... second circuit, 54... selection circuit, 60... control section, 61... selection control section, 62... measurement value management section, 63... energization control section

Claims (13)

  1.  被検液中の特定成分の濃度測定に用いられる電気化学センサであって、
     同一の基材上に配置された少なくとも三つの電極を備え、
     前記三つの電極のうち、少なくとも二つの電極は、同一構造および同一形状を有するダイヤモンド電極によって構成され、
     前記二つの電極はそれぞれが作用電極または対電極のいずれかとして機能するとともに、前記三つの電極のうちの前記二つの電極以外の一つの電極が参照電極として機能し、
     前記二つの電極は、前記一つの電極における所定の電極基準点を通る仮想線を対称軸として、それぞれが線対称の位置に配置されている
     電気化学センサ。
    An electrochemical sensor used for measuring the concentration of a specific component in a test liquid,
    comprising at least three electrodes disposed on the same substrate,
    At least two of the three electrodes are constituted by diamond electrodes having the same structure and shape,
    Each of the two electrodes functions as either a working electrode or a counter electrode, and one of the three electrodes other than the two electrodes functions as a reference electrode,
    The two electrodes are each arranged at a line-symmetrical position with respect to an imaginary line passing through a predetermined electrode reference point in the one electrode as an axis of symmetry.
  2.  被検液中の特定成分の濃度測定に用いられる電気化学センサであって、
     同一の基材上に配置された少なくとも三つの電極を備え、
     前記三つの電極のうち、少なくとも二つの電極は、同一構造および同一形状を有するダイヤモンド電極によって構成され、
     前記二つの電極はそれぞれが作用電極または参照電極のいずれかとして機能するとともに、前記三つの電極のうちの前記二つの電極以外の一つの電極が対電極として機能し、
     前記二つの電極は、前記一つの電極における所定の電極基準点を通る仮想線を対称軸として、それぞれが線対称の位置に配置されている
     電気化学センサ。
    An electrochemical sensor used for measuring the concentration of a specific component in a test liquid,
    comprising at least three electrodes disposed on the same substrate,
    At least two of the three electrodes are constituted by diamond electrodes having the same structure and shape,
    Each of the two electrodes functions as either a working electrode or a reference electrode, and one electrode other than the two electrodes among the three electrodes functions as a counter electrode,
    The two electrodes are each arranged at a line-symmetrical position with respect to an imaginary line passing through a predetermined electrode reference point in the one electrode as an axis of symmetry.
  3.  被検液中の特定成分の濃度測定に用いられる電気化学センサであって、
     同一の基材上に配置された少なくとも三つの電極を備え、
     前記三つの電極は、同一構造および同一形状を有するダイヤモンド電極によって構成され、
     前記三つの電極がそれぞれ作用電極、対電極または参照電極のいずれかとして機能し、
     前記三つの電極は、前記基材における所定の基材基準点を中心として、それぞれが三回対称の位置に配置されている
     電気化学センサ。
    An electrochemical sensor used for measuring the concentration of a specific component in a test liquid,
    comprising at least three electrodes disposed on the same substrate,
    The three electrodes are composed of diamond electrodes having the same structure and shape,
    The three electrodes each function as either a working electrode, a counter electrode, or a reference electrode,
    The three electrodes are each arranged at three-fold symmetrical positions with respect to a predetermined base material reference point on the base material. The electrochemical sensor.
  4.  前記基材は、対称性を有する平面形状に形成されている
     請求項1から3のいずれか1項に記載の電気化学センサ。
    The electrochemical sensor according to any one of claims 1 to 3, wherein the base material is formed into a symmetrical planar shape.
  5.  前記特定成分は、前記被検液中の溶存オゾンである
     請求項1から3のいずれか1項に記載の電気化学センサ。
    The electrochemical sensor according to any one of claims 1 to 3, wherein the specific component is dissolved ozone in the test liquid.
  6.  請求項1に記載の電気化学センサと、
     前記電気化学センサにおける前記二つの電極のうちの一方を作用電極とし他方を対電極として機能させる第一回路と、
     前記一方の電極を対電極とし前記他方の電極を作用電極として機能させる第二回路と、を備え、
     前記第一回路と前記第二回路とのいずれかを選択して前記被検液中の前記特定成分の濃度測定を行うように構成された
     電気化学センサシステム。
    The electrochemical sensor according to claim 1;
    a first circuit in which one of the two electrodes in the electrochemical sensor functions as a working electrode and the other as a counter electrode;
    a second circuit in which the one electrode functions as a counter electrode and the other electrode functions as a working electrode,
    An electrochemical sensor system configured to select either the first circuit or the second circuit to measure the concentration of the specific component in the test liquid.
  7.  請求項2に記載の電気化学センサと、
     前記電気化学センサにおける前記二つの電極のうちの一方を作用電極とし他方を参照電極として機能させる第一回路と、
     前記一方の電極を参照電極とし前記他方の電極を作用電極として機能させる第二回路と、を備え、
     前記第一回路と前記第二回路とのいずれかを選択して前記被検液中の前記特定成分の濃度測定を行うように構成された
     電気化学センサシステム。
    The electrochemical sensor according to claim 2;
    a first circuit that causes one of the two electrodes in the electrochemical sensor to function as a working electrode and the other as a reference electrode;
    a second circuit in which the one electrode functions as a reference electrode and the other electrode functions as a working electrode,
    An electrochemical sensor system configured to select either the first circuit or the second circuit to measure the concentration of the specific component in the test liquid.
  8.  請求項3に記載の電気化学センサと、
     前記電気化学センサにおける前記三つの電極のそれぞれを第一電極、第二電極および第三電極とした場合に、前記第一電極を作用電極とし前記第二電極を対電極とし前記第三電極を参照電極として機能させる第一回路と、
     前記第一電極を対電極とし前記第二電極を作用電極とし前記第三電極を参照電極として機能させる第二回路と、
     前記第一電極を作用電極とし前記第二電極を参照電極とし前記第三電極を対電極として機能させる第三回路と、
     前記第一電極を対電極とし前記第二電極を参照電極とし前記第三電極を作用電極として機能させる第四回路と、
     前記第一電極を参照電極とし前記第二電極を作用電極とし前記第三電極を対電極として機能させる第五回路と、
     前記第一電極を参照電極とし前記第二電極を対電極とし前記第三電極を作用電極として機能させる第六回路と、を備え、
     前記第一回路から前記第六回路までのいずれか一つを選択して前記被検液中の前記特定成分の濃度測定を行うように構成された
     電気化学センサシステム。
    The electrochemical sensor according to claim 3;
    When each of the three electrodes in the electrochemical sensor is a first electrode, a second electrode, and a third electrode, the first electrode is the working electrode and the second electrode is the counter electrode, and the third electrode is referred to. a first circuit that functions as an electrode;
    a second circuit in which the first electrode serves as a counter electrode, the second electrode serves as a working electrode, and the third electrode serves as a reference electrode;
    a third circuit in which the first electrode functions as a working electrode, the second electrode functions as a reference electrode, and the third electrode functions as a counter electrode;
    a fourth circuit in which the first electrode serves as a counter electrode, the second electrode serves as a reference electrode, and the third electrode serves as a working electrode;
    a fifth circuit in which the first electrode functions as a reference electrode, the second electrode functions as a working electrode, and the third electrode functions as a counter electrode;
    a sixth circuit in which the first electrode functions as a reference electrode, the second electrode functions as a counter electrode, and the third electrode functions as a working electrode;
    An electrochemical sensor system configured to select any one of the first circuit to the sixth circuit to measure the concentration of the specific component in the test liquid.
  9.  予め設定された定期的なタイミングで複数回路についての選択切り換えを行う選択制御部
     を備える請求項6から8のいずれか1項に記載の電気化学センサシステム。
    The electrochemical sensor system according to any one of claims 6 to 8, further comprising a selection control section that performs selection switching for a plurality of circuits at regular preset timing.
  10.  前記タイミングが、一回の濃度測定の開始から終了までの間で一回路による検出を実行する毎のタイミングに設定されている
     請求項9に記載の電気化学センサシステム。
    10. The electrochemical sensor system according to claim 9, wherein the timing is set to a timing every time detection by one circuit is executed from the start to the end of one concentration measurement.
  11.  複数回路のそれぞれで得られる複数の測定値を取得するとともに、前記複数の測定値に基づいて一つの測定値を導き出し、前記一つの測定値を前記被検液中の前記特定成分の濃度測定のための測定値とする測定値管理部
     を備える請求項10に記載の電気化学センサシステム。
    Acquire a plurality of measured values obtained from each of the plurality of circuits, derive one measured value based on the plurality of measured values, and use the one measured value to measure the concentration of the specific component in the test liquid. The electrochemical sensor system according to claim 10, further comprising: a measured value management unit that takes measured values for.
  12.  前記タイミングが、一回または複数回の濃度測定を実行する毎のタイミングに設定されている
     請求項9に記載の電気化学センサシステム。
    The electrochemical sensor system according to claim 9, wherein the timing is set each time concentration measurement is performed once or multiple times.
  13.  前記電気化学センサにおける各電極に対して、前記被検液中の前記特定成分の濃度測定の際とは異なる態様での通電を行って、前記各電極の状態回復処理を施す通電制御部
     を備える請求項6から8のいずれか1項に記載の電気化学センサシステム。
    An energization control unit that performs a state recovery process on each electrode by energizing each electrode in the electrochemical sensor in a manner different from that when measuring the concentration of the specific component in the test liquid. An electrochemical sensor system according to any one of claims 6 to 8.
PCT/JP2023/018726 2022-07-08 2023-05-19 Electrochemical sensor and electrochemical sensor system WO2024009628A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022110717A JP7303353B1 (en) 2022-07-08 2022-07-08 Electrochemical sensors and electrochemical sensor systems
JP2022-110717 2022-07-08

Publications (1)

Publication Number Publication Date
WO2024009628A1 true WO2024009628A1 (en) 2024-01-11

Family

ID=86996562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018726 WO2024009628A1 (en) 2022-07-08 2023-05-19 Electrochemical sensor and electrochemical sensor system

Country Status (2)

Country Link
JP (1) JP7303353B1 (en)
WO (1) WO2024009628A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058168A (en) * 2010-09-13 2012-03-22 Dainippon Printing Co Ltd Biosensor and method for manufacturing the same
WO2014077017A1 (en) * 2012-11-16 2014-05-22 学校法人慶應義塾 Ozone water concentration measurement apparatus and ozone water concentration measurement method
US20190250153A1 (en) * 2016-10-20 2019-08-15 EnLiSense, LLC Multi-configurable sensing array and methods of using same
WO2020091033A1 (en) * 2018-11-01 2020-05-07 学校法人慶應義塾 Triple-pole electrode having electrically conductive diamond electrode as reference electrode, device, and electrochemical measuring method
JP2021001826A (en) * 2019-06-24 2021-01-07 テクノグローバル株式会社 Electrode structure, electrochemical measurement device and electrochemical measurement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058168A (en) * 2010-09-13 2012-03-22 Dainippon Printing Co Ltd Biosensor and method for manufacturing the same
WO2014077017A1 (en) * 2012-11-16 2014-05-22 学校法人慶應義塾 Ozone water concentration measurement apparatus and ozone water concentration measurement method
US20190250153A1 (en) * 2016-10-20 2019-08-15 EnLiSense, LLC Multi-configurable sensing array and methods of using same
WO2020091033A1 (en) * 2018-11-01 2020-05-07 学校法人慶應義塾 Triple-pole electrode having electrically conductive diamond electrode as reference electrode, device, and electrochemical measuring method
JP2021001826A (en) * 2019-06-24 2021-01-07 テクノグローバル株式会社 Electrode structure, electrochemical measurement device and electrochemical measurement method

Also Published As

Publication number Publication date
JP7303353B1 (en) 2023-07-04
JP2024008668A (en) 2024-01-19

Similar Documents

Publication Publication Date Title
TWI227066B (en) Electrochemical cell
DE60025929D1 (en) ARRANGEMENT AND METHOD FOR DETERMINING AND / OR MONITORING ELECTROPHYSIOLOGICAL CHARACTERISTICS OF ION CHANNELS
JP2010071994A (en) Disposable working electrode for electrochemical cell
Niu et al. Disposable screen-printed antimony film electrode modified with carbon nanotubes/ionic liquid for electrochemical stripping measurement
JP2011522266A5 (en)
TWI657243B (en) Methods of correcting for uncompensated resistances in the conductive elements of biosensors, as well as devices and systems incorporating the same
TWI625522B (en) Planar ammonia selective sensing electrode and manufacturing method thereof
EP1616172B1 (en) A thin semiconductor film gas sensor device
JP5988965B2 (en) Analytical test strip with electrodes having electrochemically active and inactive regions of a predetermined size and distribution
WO2024009628A1 (en) Electrochemical sensor and electrochemical sensor system
CN105917219A (en) Gas sensor element
JP2021173608A (en) Electrochemical sensor and manufacturing method for electrochemical sensor
WO2022168360A1 (en) Electrochemical sensor
JP2886343B2 (en) Method of manufacturing parts on metal film base
WO1999031304A1 (en) Plating device and method of confirming current feed
CN103842807B (en) Be printed on suprabasil working electrode
US7652479B2 (en) Electrolyte measurement device and measurement procedure
JP7455249B1 (en) Electrochemical measurement method, electrochemical measurement device, and program
US20200096471A1 (en) Electrode break detection
JPS5823705B2 (en) radiation detector
JP5792181B2 (en) Controlled electrochemical activation of carbon-based electrodes
JP2000065875A (en) Electrode and method for measuring insulation resistance
JP2009019935A (en) Manufacturing method of analytical tool
JP4926688B2 (en) Volume resistivity measuring device for dielectric layer of electrostatic chuck and measuring method using the device
JP5830658B2 (en) Electrochemical detector and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835164

Country of ref document: EP

Kind code of ref document: A1