WO2024009382A1 - Robot device - Google Patents

Robot device Download PDF

Info

Publication number
WO2024009382A1
WO2024009382A1 PCT/JP2022/026675 JP2022026675W WO2024009382A1 WO 2024009382 A1 WO2024009382 A1 WO 2024009382A1 JP 2022026675 W JP2022026675 W JP 2022026675W WO 2024009382 A1 WO2024009382 A1 WO 2024009382A1
Authority
WO
WIPO (PCT)
Prior art keywords
button
robot arm
arm
teaching
robot
Prior art date
Application number
PCT/JP2022/026675
Other languages
French (fr)
Japanese (ja)
Inventor
智紀 原田
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2022/026675 priority Critical patent/WO2024009382A1/en
Publication of WO2024009382A1 publication Critical patent/WO2024009382A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators

Definitions

  • the present invention relates to a robot device equipped with a robot arm having a plurality of arm elements and an operating axis for rotating these arm elements.
  • a teaching operation is required to teach the movement trajectory when the robot arm performs the required work.
  • a robot apparatus is known that has a direct teaching function for receiving manual teaching of the motion path of a robot arm (for example, Patent Document 1).
  • Patent Document 1 a direct teaching function for receiving manual teaching of the motion path of a robot arm
  • a handle is attached to the robot arm, which is held by a user during a teach operation and has an operation button that accepts selection of a teach mode. For example, if two operation buttons are equipped on the handle, pressing one operation button will allow you to teach with free movement only in the vertical plane, and pressing the other operation button will allow you to teach free movement on all axes. It is possible to provide a teaching function such as
  • An object of the present invention is to provide a robot device that allows selection of various teaching modes for a robot arm using a small number of operation buttons.
  • a robot device includes a robot arm having a plurality of arm elements and a plurality of operation axes for rotating the plurality of arm elements, and at least a first button and a second button, A group of operation buttons that are operated to select one of a plurality of teach modes in which the plurality of motion axes are fixed in different states during a teaching operation for teaching the target operation position of the robot arm; a control unit that causes the teaching operation to be executed in accordance with an operation, the control unit configured to operate the first button or the second button individually, or simultaneously operate the first button and the second button. Accordingly, the selection of the teaching mode is accepted.
  • FIG. 1 is a schematic diagram of a robot device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an operation button according to the first embodiment, which is mounted on an operation handle attached to a robot arm.
  • FIG. 3 is a block diagram showing the electrical configuration of the robot device.
  • FIG. 4 is a tabular diagram showing the relationship between the pressed state of the operation button and the teach mode in the first embodiment.
  • FIG. 5 is a flowchart showing the direct teach operation in the first embodiment.
  • FIGS. 6A and 6B are a front view and a side view showing an operation button according to the second embodiment, which is attached to a robot arm.
  • FIG. 7 is a tabular diagram showing the relationship between the pressed state of the operation button and the teach mode in the second embodiment.
  • a robot device is a robot device including an articulated robot arm having a plurality of arm elements and a plurality of operation axes for rotating the plurality of arm elements.
  • a preferred use of the robot device according to the present invention is as a collaborative robot placed in an area where a worker performs a predetermined task.
  • direct teaching is often used to manually teach the target position of the robot arm.
  • a robot device designed for direct teaching will be exemplified.
  • a seven-axis robot arm is exemplified as a robot arm, which has one redundant axis in addition to six general operating axes.
  • the present invention is applicable to methods other than the direct teaching method, and is also applicable to remote teaching, for example. Further, the present invention can also be applied to a robot arm having a plurality of operating axes other than seven axes.
  • FIG. 1 is a schematic diagram of a robot device 1 according to the first embodiment.
  • the robot device 1 is a vertically articulated seven-axis robot, and includes a robot arm 10, an operation handle 20, and a control device 30.
  • the robot arm 10 has seven rotation axes: a first axis J1, a second axis J2, a third axis J3, a fourth axis J4, a fifth axis J5, a sixth axis J6, and a seventh axis J7.
  • the robot arm 10 includes a base portion 10B, a first arm 11, a second arm 12, a third arm 13, a fourth arm 14, a fifth arm 15, a sixth arm 16, and a head portion 17 as arm elements.
  • An end effector 18 and an operating handle 20 are attached to the head portion 17.
  • the base portion 10B is a casing that is fixedly installed on a mounting plane such as a floor or a pedestal.
  • the first arm 11 is connected to the upper surface of the base portion 10B via a first shaft J1.
  • the first axis J1 is a rotation axis extending in a direction perpendicular to the mounting plane.
  • the first arm 11 is rotatable in both forward and reverse directions around the first axis J1.
  • the upper base end of the second arm 12 is connected to the first arm 11 via the second shaft J2.
  • the second axis J2 is a rotation axis extending in a horizontal direction parallel to the mounting plane.
  • the second arm 12 is swingable around the second axis J2.
  • the second arm 12 includes an upper arm 121 closer to the first arm 11 and a lower arm 122 closer to the third arm 13.
  • the upper arm 121 and the lower arm 122 are connected by a third shaft J3 extending in the arm axis direction.
  • the lower arm 122 is rotatable around the third axis J3.
  • the third axis J3 provided in the second arm 12 can be said to be an operation axis added to the robot arm 10 of this embodiment as a so-called redundant axis.
  • the third arm 13 is an arm connected to the lower part of the second arm 12, and its base end is connected to the distal end of the second arm 12 via the fourth shaft J4.
  • the third arm 13 is swingable around a fourth axis J4 that extends in the horizontal direction.
  • the fourth arm 14 is an arm connected to the lower part of the third arm 13, and its base end is connected to the distal end of the third arm 13 via the fifth shaft J5.
  • the fourth arm 14 is rotatable around a fifth axis J5 extending in the arm axis direction.
  • the fifth arm 15 is an arm connected to the lower part of the fourth arm 14, and its base end is connected to the distal end of the fourth arm 14 via the sixth shaft J6.
  • the fifth arm 15 is swingable around a sixth axis J6 that extends in the horizontal direction.
  • the sixth arm 16 is an arm connected to the lower part of the fifth arm 15, and its base end is connected to the distal end of the fifth arm 15 via the seventh shaft J7.
  • the sixth arm 16 is rotatable around a seventh axis J7 extending in the arm axis direction.
  • the head portion 17 is attached to the distal end side of the sixth arm 16 via a force sensor FS, which will be described later.
  • the head portion 17 is a support base for the end effector 18, and is also an attachment base for the operation handle 20 that is gripped by the operator during direct teaching work.
  • the end effector 18 is a member that performs a required operation on a workpiece. In FIG. 1, a two-jaw type gripper that grips a workpiece is illustrated as the end effector 18.
  • the end effector 18 may perform operations other than gripping, such as suction, welding, and polishing of the workpiece.
  • TCP 19 of the end effector 18 is shown.
  • TCP 19 is a position that serves as a control reference point for robot arm 10.
  • the TCP 19 can be set at the center of gravity of the workpiece gripped by the end effector 18.
  • the TCP 19 may be set at the center of gravity of the end effector 18 or at some position associated with the end effector 18.
  • the force sensor FS is a six-axis force detector interposed between the sixth arm 16, which is the tip of the robot arm 10, and the end effector 18. Specifically, the force sensor FS detects force components in the translational directions of the x-axis, y-axis, and z-axis, which are three axes orthogonal to each other, and moment components around these x-axis, y-axis, and z-axis. This is a sensor that can detect both at the same time. Note that the robot arm 10 may be equipped with a torque sensor instead of the force sensor FS.
  • the operating handle 20 includes a handle body 21 and a button unit 22.
  • the handle body 21 is a rod-shaped member extending laterally from the head portion 17, and has a size that allows the operator to hold it with one hand.
  • the button unit 22 is attached to the tip of the handle body 21 and includes a group of operation buttons. During the direct teaching operation, the operator grasps the operating handle 20, manually moves the TCP 19 of the robot arm 10 from one teaching point to another, and teaches the operation target position.
  • FIG. 2 is a diagram showing an example of an operation button group 200 mounted on the button unit 22.
  • the button unit 22 includes a first button 2A, a second button 2B, and a third button 2C as an operation button group 200.
  • These buttons 2A, 2B, and 2C are operated during direct teaching work to select one of a plurality of teaching modes in which the fixed states of the first axis J1 to the seventh axis J7, which are the operation axes, are different. It's a button.
  • the three buttons 2A, 2B, and 2C are arranged so that the operator can press any one, any two, or all three at the same time with the finger of one hand of the operator.
  • FIG. 1 is a diagram showing an example of an operation button group 200 mounted on the button unit 22.
  • the button unit 22 includes a first button 2A, a second button 2B, and a third button 2C as an operation button group 200.
  • These buttons 2A, 2B, and 2C are operated during direct teaching work to
  • buttons 2A, 2B, and 2C are arranged in a row. Specifically, the three buttons are arranged such that the second button 2B is placed on one side of the first button 2A, and the third button 2C is placed on the other side.
  • the control device 30 controls the operation of the robot arm 10 according to teaching data given in advance. Further, the control device 30 executes a teaching operation for teaching the target movement position of the robot arm 10 while changing the fixing state of the movement axis depending on the operation of the operation button group 200.
  • the control device 30 will be described in detail with reference to FIG. 3.
  • FIG. 3 is a block diagram showing the electrical configuration of the robot device 1.
  • the robot arm 10 applies rotational driving force around a first axis J1, a second axis J2, a third axis J3, a fourth axis J4, a fifth axis J5, a sixth axis J6, and a seventh axis J7.
  • a first drive section 41, a second drive section 42, a third drive section 43, a fourth drive section 44, a fifth drive section 45, a sixth drive section 46, and a seventh drive section 47 are built in.
  • the first drive unit 41 generates a rotational driving force that rotates the first arm 11 around the first axis J1. Since the second to seventh drive units 42 to 47 are also similar, individual explanations will be omitted.
  • the first drive section 41 includes a motor 51, a brake 52, and an encoder 53.
  • the motor 51 is a drive source that generates the rotational driving force.
  • the brake 52 regulates the rotational driving force of the motor 51.
  • the encoder 53 detects the amount of rotation of the motor 51, that is, the rotation angle of the first arm 11.
  • the first drive section 41 includes an unillustrated speed reducer.
  • the speed reducer reduces the rotational speed of the output shaft of the motor 51 at a predetermined speed reduction ratio and transmits it to the rotation mechanism of the first shaft J1.
  • the second to seventh drive units 42 to 47 include a motor 51, a brake 52, an encoder 53, and a reduction gear, and these operate in the same manner as described above.
  • the robot arm 10 can be Behavior can be restricted.
  • the second axis J2, the fourth axis J4, and the sixth axis J6, which are operating axes extending in the horizontal direction are controlled by the brakes 52 provided in the second drive unit 42, the fourth drive unit 44, and the sixth drive unit 46, respectively.
  • the end effector 18 TCP 19
  • TCP 19 the end effector 18
  • the posture of the arm may have a degree of freedom.
  • the operating handle 20 includes the first button 2A, the second button 2B, and the third button 2C. Operation information for these buttons 2A, 2B, and 2C is input to the control device 30. Data on the force components of the six axes described above detected by the force sensor FS is also input to the control device 30, and is used to control the motion of the robot arm 10 during direct teaching work and the motion control of the robot arm 10 during actual operation. Utilized.
  • the control device 30 is a processor that executes various processes according to a given program, and is functionally equipped with a robot control section 31, a storage section 32, and a teach control section 33 by executing the program.
  • the robot control unit 31 operates the robot arm 10 based on teaching data indicating a target operation position given in advance, and causes the end effector 18 to perform a predetermined work on the workpiece.
  • the storage unit 32 stores the program and the teaching data.
  • the teach control unit 33 executes a direct teach operation in response to the operation of the operation button group 200.
  • the teach control unit 33 individually operates any one of the three buttons 2A, 2B, and 2C provided on the operation handle 20, and simultaneously operates two of the three buttons.
  • the teaching modes in which the fixed states of the first axis J1 to the seventh axis J7, which are the operating axes, are changed are changed to execute the direct teaching operation.
  • the teach control unit 33 stores the operation target position of the robot arm 10 set in the direct teaching operation in the storage unit 32 as teaching data.
  • FIG. 4 is a tabular diagram showing the relationship between the pressed states of the operation button group 200 and the teach mode in the first embodiment.
  • FIG. 4 shows seven teach modes [1] to [7] in which the first button 2A, second button 2B, and third button 2C are pressed in different states.
  • the teaching modes [1] to [7] each have a different fixed state of the operating axis. Note that in the table, a circle indicates that the first button 2A, second button 2B, or third button 2C is pressed, and a blank space indicates that these buttons are not pressed.
  • Teach mode [1] is a mode selected by single operation of the first button 2A.
  • the teach mode [1] all of the first axis J1 to seventh axis J7, which are the operating axes of the robot arm 10, are free to operate. That is, in the direct teaching operation, the operator can freely move the robot arm 10 and teach the target operation position.
  • This teaching mode [1] is used in normal direct teaching, but in actual teaching work, it may be desirable to perform teaching with a specific motion axis fixed. Teach modes [2] to [7] respond to such requests.
  • Teach mode [2] is a mode selected by simultaneous operation of the first button 2A and the second button 2B.
  • the operating axis is fixed so that the robot arm 10 can move freely only in a plane parallel to the xy plane and including the positions where the buttons 2A and 2B are operated.
  • Teach mode [3] is a mode selected by simultaneous operation of the first button 2A and the third button 2C.
  • the operating axis is fixed so that the robot arm 10 is free to move only in the direction parallel to the z-axis.
  • Teach mode [4] is a mode selected when all of the first button 2A, second button 2B, and third button 2C are operated at the same time.
  • the robot arm 10 becomes free to move while maintaining the posture of the end effector 18 (TCP 19).
  • the teach mode [4] is a mode in which only the attitude of the TCP 19 is regulated.
  • Teach mode [5] is a mode selected by single operation of the second button 2B.
  • the motion axis is fixed so that the robot arm 10 can move freely only in the xy plane while maintaining the posture of the end effector 18 (TCP 19) of the robot arm 10.
  • Teach mode [6] is a mode selected by single operation of the third button 3B.
  • the motion axis is fixed so that the robot arm 10 can move freely only in the z-axis direction while maintaining the posture of the end effector 18.
  • Teach mode [7] is a mode selected by simultaneous operation of the second button 2B and third button 2C.
  • each arm 11 to 16 of the robot arm 10 is allowed to move while the position of the end effector 18 is maintained, that is, the position of the robot coordinate system of the TCP 19 is fixed.
  • the motion axis is fixed.
  • the teach control section 33 functionally includes a mode determination section 34 and an axis fixing control section 35.
  • the mode determination unit 34 determines which of the above teaching modes [1] to [7] is selected in the direct teaching operation based on the combination of pressing of the first button 2A, the second button 2B, and the third button 2C. Determine if there are any.
  • the axis fixing control unit 35 controls one or more brakes of the first drive unit 41 to the seventh drive unit 47 to fix the operating axis in accordance with the settings of the selected teaching modes [1] to [7]. 52 is activated.
  • the teach control unit 33 controls the first to third arms 11 of the robot arm 10 according to the movement force applied to the robot arm 10 by the operator while gripping the operating handle 20 under the regulation of the movement axis by the axis fixing control unit 35. 6.
  • the teach control unit 33 acquires the detection results and estimates the magnitude and direction of the moving force. Based on this estimation result, the teach control unit 33 appropriately drives the motors 51 of the first to seventh drive units 41 to 47 to move the robot arm 10 in the direction in which the operator intends to move the robot arm 10. . However, the robot arm 10 is not moved in the restricted direction. For example, if teach mode [2] is selected, the teach control unit 33 drives the motor 51 so that the robot arm 10 moves only in the xy plane.
  • FIG. 5 is a flowchart showing the direct teach operation in the first embodiment.
  • the teach control unit 33 of the control device 30 determines whether the direct teach execution mode is enabled (step S1).
  • the operation button group 200 of the operation handle 20 shown in FIG. 2 may be provided with an activation button for starting the direct teach mode, and the determination in step S1 may be made depending on whether or not the activation button is pressed.
  • step S1 the controller waits for the operator's operations on the first button 2A, second button 2B, and third button 2C.
  • the mode determination unit 34 determines the teach mode selected by the operator from the pattern of presses of the buttons 2A, 2B, and 2C (step S2). For example, a table as shown in FIG. 4 that defines the relationship between teach modes and button press patterns is stored in advance in the storage unit 32.
  • the mode determination unit 34 refers to the table in the storage unit 32 and identifies the selected teach mode.
  • the axis fixing control unit 35 sets the fixed state of the operating axis according to the teaching mode (step S3). That is, the axis fixing control unit 35 controls which of the drive units 41 to 47 of the first axis J1 to the seventh axis J7 of the robot arm 10 is selected as the operating axis to be fixed.
  • the brake 52 of the drive section is activated. In this state, the robot waits for the operator to apply a moving force to the robot arm 10 using the operating handle 20.
  • the robot arm 10 is in a movable state around an unrestricted motion axis.
  • the force sensor FS detects the magnitude and direction of the moving force in six axes.
  • the teach control unit 33 acquires the detected value of the force sensor FS (step S4). That is, information about the direction in which the operator attempts to move the robot arm 10 is acquired.
  • the teach control unit 33 appropriately drives the motors 51 of the first to seventh drive units 41 to 47 so that the robot arm 10 moves according to the operator's intention (step S5).
  • step S6 it is determined whether the TCP 19 has reached one target position in one turn of direct teaching.
  • the teach control unit 33 stores the position and orientation of the robot arm 10 at that time in the storage unit 32 as teaching data (step S7).
  • the target position has not been reached (NO in step S6), the driving of the motor 51 in step S5 is continued.
  • step S8 After registering the teaching data for one target position for direct teaching, it is determined whether there is a next target position to which direct teaching should be performed in this turn (step S8). If there is a next target position to perform direct teaching (NO in step S8), the process returns to step S4 and the process is repeated targeting the next target position of direct teaching. On the other hand, if there is no next target position in the current direct teach turn (NO in step S8), it is determined whether or not to execute the next direct teach turn, that is, whether or not to continue the direct teach work. (Step S9). When the direct teaching operation is to be ended (NO in step S9), for example, when a button for canceling the activation of the direct teaching mode is pressed, the process is ended.
  • step S10 determines whether there is a change in the teaching mode. Specifically, the teach control unit 33 determines whether there is a change in the combination of pressing of the first button 2A, second button 2B, and third button 2C. If there is a change in the button press state (YES in step S10), the process returns to step S2 to determine the mode, and the processes from step S3 onwards are repeated. On the other hand, if there is no change in the button press state (YES in step S10), the process returns to step S4 and is repeated without changing the teach mode.
  • the operation button group for selecting the teach mode is composed of two buttons, a first button and a second button.
  • the teach control unit 33 accepts the selection of the teach mode in response to individual operations of the first button or the second button, or simultaneous operations of the first button and the second button.
  • FIGS. 6(A) and 6(B) are a front view and a side view showing the operation button according to the second embodiment, which is attached to the robot arm 100.
  • the robot arm 100 is, for example, a six-axis articulated robot arm.
  • the robot arm 100 has a cylindrical shape, and includes a first button 20A and a second button 20B arranged to face each other on the side thereof.
  • FIG. 6(B) shows a side view in which the first button 20A appears.
  • the operating handle 20 as shown in the first embodiment is not attached to the robot arm 100.
  • the operator directly grasps the arm tip 101 of the robot arm 100.
  • the first button 20A and the second button 20B are arranged at positions where they can be operated simultaneously with one finger of the operator.
  • the first button 20A is operated with the thumb of the right hand
  • the second button 20B is operated with the middle finger of the right hand.
  • the teach control unit 33 switches the movement free state of the operating axis of the robot arm 100, that is, the teach mode, by operating the first button 20A or the second button 20B alone or by simultaneously operating the first button 20A and the second button 20B.
  • FIG. 7 is a tabular diagram showing the relationship between the pressed states of the operation button group and the teach mode in the second embodiment.
  • FIG. 7 shows three teach modes [1] to [3] in which the first button 20A and the second button 20B are pressed in different states. Teach modes [1] to [3] differ in the fixed state of the plurality of motion axes included in the robot arm 100. Note that in the table, a circle mark indicates that the first button 20A or the second button 20B is pressed.
  • Teach mode [1] is a mode selected by simultaneous operation of the first button 20A and the second button 20B. In the teach mode [1], all the motion axes of the robot arm 100 are set to free motion. Teach mode [2] is a mode selected by single operation of the first button 20A. In the teach mode [2], the operating axis of the robot arm 100 is fixed so that it can move freely only in a plane parallel to the xy plane and including the position where the first button 20A is operated. Teach mode [3] is a mode selected by single operation of the second button 20B. In the teach mode [3], the operating axis is fixed so that the robot arm 100 can move freely only in a direction parallel to the z-axis.
  • direct teach function selection is performed using two buttons 20A and 20B that can be operated with one hand of the operator.
  • the teaching mode can be selected not only by operating the first button 20A or the second button 20B alone, but also by simultaneously operating the first button 20A and the second button 20B. That is, not only one teach mode selection function is assigned to each of the buttons 20A and 20B, but also the teach mode selection function is assigned to the simultaneous operation of the two buttons 20A and 20B. Therefore, the number of teaching mode options for direct teaching can be increased with a small number of operation buttons.
  • the arrangement of the operation button group for selecting the teach mode can be arbitrarily set.
  • the three buttons 2A, 2B, and 2C are arranged in a straight line in the button unit 22.
  • the three buttons 2A, 2B, and 2C may be arranged on an arc line or arranged at each vertex of a triangle.
  • two buttons 20A and 20B are arranged on the peripheral wall of the cylindrical robot arm 100 so as to face each other.
  • the two buttons 20A and 20B may be arranged adjacent to each other.
  • buttons 2A, 2B, and 2C buttons 20A and 20B.
  • the operation button group may be composed of four or more buttons.
  • the combination of buttons to be operated simultaneously tends to become complicated, so it is desirable not to increase the number unnecessarily.
  • FIG. 4 illustrates the relationship between the teach modes [1] to [7] and the pressed states of the three buttons 2A, 2B, and 2C. This is just an example, and the association between the teach mode and the pressed state of the button can be set arbitrarily. It is desirable to be able to freely change this setting through a user interface for the robot device 1.
  • a camera may be mounted on the operation handle 20, and the camera may be caused to take an image by additionally operating a button other than the one for selecting the teach mode included in the operation button group 200.
  • a robot device includes a robot arm having a plurality of arm elements and a plurality of operation axes for rotating the plurality of arm elements, and at least a first button and a second button, A group of operation buttons that are operated to select one of a plurality of teach modes in which the plurality of motion axes are fixed in different states during a teaching operation for teaching the target operation position of the robot arm; a control unit that causes the teaching operation to be executed in accordance with an operation, the control unit configured to operate the first button or the second button individually, or simultaneously operate the first button and the second button. Accordingly, the selection of the teaching mode is accepted.
  • the teach mode can be selected not only by individual operation of the first button or the second button but also by simultaneous operation of the first button and the second button.
  • the teach mode selection function is assigned to simultaneous operation of a plurality of buttons. Therefore, it is possible to select various teaching modes for the robot arm with a small number of operation button groups.
  • the teaching operation is a direct teaching operation in which the target operation position of the robot arm is manually taught, and the handle gripped during the direct teaching operation and equipped with the operation button group is It may be better to have more.
  • the direct teach function selection can be diversified with simple button operations.
  • the operation button group includes three buttons including the first button, the second button, and a third button, and the control unit selects one of the three buttons.
  • the selection of the teach mode may be accepted in response to individual operation of two buttons, simultaneous operation of two of the three buttons, or simultaneous operation of all three buttons.
  • the control unit sets all of the plurality of motion axes to free operation when the first button is operated alone, and when the first button and the second button are operated simultaneously,
  • the plurality of operating axes are fixed so that the robot arm can move freely only in a horizontal plane, and when the first button and the third button are operated simultaneously, the robot arm can move freely only in a vertical plane.
  • the plurality of motion axes may be fixed so that when all three buttons are operated simultaneously, the plurality of motion axes may be fixed so as to maintain the posture of the robot arm.
  • the robot arm's operating axes can be moved entirely freely, freely only in the horizontal plane, freely only in the vertical plane, and while maintaining the posture of the robot arm. You can select the functions of the four main teach modes for free.
  • control unit fixes the plurality of operating axes so that the robot arm can move freely only in a horizontal plane while maintaining the posture of the robot arm by operating the second button alone;
  • the operation fixes the plurality of operating axes so that the robot arm can move freely only in the vertical plane while maintaining its posture, and when the second button and the third button are operated simultaneously, the robot arm
  • An aspect may be further added in which the plurality of operating axes are fixed so as to maintain the positions of the movement axes.
  • the robot arm can move freely in the horizontal plane while maintaining its posture or freely move in the vertical plane, and can move while maintaining the robot arm's position. You can add three free function selections.
  • the first button and the second button are arranged at positions where they can be operated simultaneously with one finger of the operator, and the control unit is configured to control the operation of the first button or the second button individually.
  • a mode may be adopted in which the free movement state of the robot arm is switched by simultaneous operation of the first button and the second button.
  • the direct teach function selection is performed using two operation buttons that can be operated with one hand of the operator. Function selection is possible not only by operating the first button or the second button alone, but also by simultaneously operating the first button and the second button. Therefore, the number of teaching mode options for direct teaching can be increased with a small number of operation buttons.
  • the control unit fixes the plurality of operating axes so that the robot arm can move freely only in a horizontal plane
  • the plurality of motion axes are fixed so that the robot arm can move freely only in a vertical plane
  • all of the plurality of motion axes are set to free motion. It may be possible to do so.
  • the operating axes of the robot arm can move freely only in the horizontal plane, freely move only in the vertical plane, or completely freely. It is possible to select the function of two teach modes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

A robot device according to the present invention comprises: a robot arm having a plurality of arm elements and a plurality of operating shafts that rotate the plurality of arm elements; an operation button group that includes at least a first button and a second button and that, during a teaching operation to teach a target operation position of the robot arm, is operated in order to select any of a plurality of teaching modes in which fixed states of the plurality of operating shafts differ; and a control unit that executes a teaching operation in accordance with the operation of the operation button group. The control unit accepts the selection of the teaching mode in accordance with an individual operation of the first button or the second button, or simultaneous operation of the first button and the second button.

Description

ロボット装置robot equipment
 本発明は、複数のアーム要素と、これらアーム要素を回動させる動作軸とを有するロボットアームを備えたロボット装置に関する。 The present invention relates to a robot device equipped with a robot arm having a plurality of arm elements and an operating axis for rotating these arm elements.
 関節部を有するロボットアームを備えたロボット装置を作業現場に適用するに際しては、当該ロボットアームが所要の作業を行う際の動作軌道を教示するティーチ作業が必要となる。このティーチ作業の受け付け機能として、ロボットアームの動作経路の手動での教示を受け付けるダイレクトティーチ機能を備えたロボット装置が知られている(例えば特許文献1)。ダイレクトティーチ機能を具備させることで、プログラミングの専門知識を有しないユーザであっても、自在に動作軌道をティーチングできる利点がある。 When applying a robot device equipped with a robot arm with joints to a work site, a teaching operation is required to teach the movement trajectory when the robot arm performs the required work. As a function for receiving this teaching work, a robot apparatus is known that has a direct teaching function for receiving manual teaching of the motion path of a robot arm (for example, Patent Document 1). By providing the direct teaching function, there is an advantage that even a user without programming expertise can freely teach the motion trajectory.
 ダイレクトティーチ機能を具備するロボット装置では、ティーチ作業の際にユーザに把持され、ティーチモードの選択を受け付ける操作ボタンを有するハンドルが、ロボットアームに付設される。例えば、二つの操作ボタンが前記ハンドルに装備されている場合、一の操作ボタンを押下すると垂直平面でのみ移動フリーの状態で教示でき、他の操作ボタンを押下すると全ての動作軸がフリーで教示できるといったティーチ機能を具備させることが可能である。 In a robot device equipped with a direct teach function, a handle is attached to the robot arm, which is held by a user during a teach operation and has an operation button that accepts selection of a teach mode. For example, if two operation buttons are equipped on the handle, pressing one operation button will allow you to teach with free movement only in the vertical plane, and pressing the other operation button will allow you to teach free movement on all axes. It is possible to provide a teaching function such as
 しかし、ティーチ機能として上掲の例以外の態様の機能が必要となる場合がある。例えば、ロボットアームが水平面でのみ移動フリーの状態でティーチを行える機能である。この場合、ユーザインターフェイスを用いてロボット装置にアクセスし、操作ボタンによるティーチングモードの選択機能を変更する必要があり、大きな手間を要することになる。ティーチングモード選択用の操作ボタンの数を増やすことも考えられるが、前記ハンドルに操作ボタンを配置するスペースを大きく取ることは難しい。また、徒にボタン数を増やすと、操作性も悪化する。 However, there are cases where a teaching function other than the above example is required. For example, this is a function that allows the robot arm to perform teaching while being free to move only on a horizontal plane. In this case, it is necessary to access the robot device using a user interface and change the teaching mode selection function using the operation buttons, which requires a great deal of effort. Although it is conceivable to increase the number of operation buttons for selecting the teaching mode, it is difficult to secure a large space for arranging the operation buttons on the handle. Furthermore, if the number of buttons is increased unnecessarily, operability will deteriorate.
韓国公開特許第20180063515号公報Korean Published Patent No. 20180063515
 本発明の目的は、少ない数の操作ボタンで、ロボットアームに対する多様なティーチングモードの選択を可能としたロボット装置を提供することにある。 An object of the present invention is to provide a robot device that allows selection of various teaching modes for a robot arm using a small number of operation buttons.
 本発明の一局面に係るロボット装置は、複数のアーム要素と、前記複数のアーム要素を回動させる複数の動作軸と、を有するロボットアームと、少なくとも第1ボタンおよび第2ボタンを含み、前記ロボットアームの動作目標位置を教示するティーチ作業の際に、前記複数の動作軸の固定状態が異なる複数のティーチモードのいずれかの選択のために操作される操作ボタン群と、前記操作ボタン群の操作に応じて前記ティーチ作業を実行させる制御部と、を備え、前記制御部は、前記第1ボタンまたは前記第2ボタンの個別操作、あるいは、前記第1ボタンおよび前記第2ボタンの同時操作に応じて、前記ティーチモードの選択を受け付ける。 A robot device according to one aspect of the present invention includes a robot arm having a plurality of arm elements and a plurality of operation axes for rotating the plurality of arm elements, and at least a first button and a second button, A group of operation buttons that are operated to select one of a plurality of teach modes in which the plurality of motion axes are fixed in different states during a teaching operation for teaching the target operation position of the robot arm; a control unit that causes the teaching operation to be executed in accordance with an operation, the control unit configured to operate the first button or the second button individually, or simultaneously operate the first button and the second button. Accordingly, the selection of the teaching mode is accepted.
図1は、本発明の第1実施形態に係るロボット装置の概略図である。FIG. 1 is a schematic diagram of a robot device according to a first embodiment of the present invention. 図2は、ロボットアームに付設される操作ハンドルに搭載される、第1実施形態に係る操作ボタンを示す図である。FIG. 2 is a diagram showing an operation button according to the first embodiment, which is mounted on an operation handle attached to a robot arm. 図3は、前記ロボット装置の電気的構成を示すブロック図である。FIG. 3 is a block diagram showing the electrical configuration of the robot device. 図4は、第1実施形態における操作ボタンの押下状態と、ティーチモードとの関係を示す表形式の図である。FIG. 4 is a tabular diagram showing the relationship between the pressed state of the operation button and the teach mode in the first embodiment. 図5は、第1実施形態におけるダイレクトティーチ動作を示すフローチャートである。FIG. 5 is a flowchart showing the direct teach operation in the first embodiment. 図6(A)、(B)は、ロボットアームに付設される、第2実施形態に係る操作ボタンを示す正面図、側面図である。FIGS. 6A and 6B are a front view and a side view showing an operation button according to the second embodiment, which is attached to a robot arm. 図7は、第2実施形態における操作ボタンの押下状態と、ティーチモードとの関係を示す表形式の図である。FIG. 7 is a tabular diagram showing the relationship between the pressed state of the operation button and the teach mode in the second embodiment.
 以下、本発明の実施形態を、図面を参照しながら詳細に説明する。本発明に係るロボット装置は、複数のアーム要素と、これら複数のアーム要素を回動させる複数の動作軸とを有する多関節ロボットアームを備えたロボット装置である。本発明に係るロボット装置の好適な用途は、作業者が所定の作業を行うエリア内に配置される協働ロボットである。協働ロボットでは、ロボットアームの動作目標位置を手動で教示するダイレクトティーチが採用されることが多い。以下の実施形態では、ダイレクトティーチを想定したロボット装置を例示する。また、ロボットアームとして第1実施形態では、一般的な6軸の動作軸に加えて、1軸の冗長軸を備えた7軸ロボットアームを例示する。冗長軸を具備することで、TCP(Tool center point)のxyz位置を固定したまま、ロボットアームの肘部分の位置を変更できる利点がある。なお、本発明はダイレクトティーチ方式以外にも適用可能であって、例えばリモートでのティーチングにも適用できる。また、7軸以外の複数の動作軸を持つロボットアームにも、本発明を適用できる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. A robot device according to the present invention is a robot device including an articulated robot arm having a plurality of arm elements and a plurality of operation axes for rotating the plurality of arm elements. A preferred use of the robot device according to the present invention is as a collaborative robot placed in an area where a worker performs a predetermined task. In collaborative robots, direct teaching is often used to manually teach the target position of the robot arm. In the following embodiments, a robot device designed for direct teaching will be exemplified. Furthermore, in the first embodiment, a seven-axis robot arm is exemplified as a robot arm, which has one redundant axis in addition to six general operating axes. By providing redundant axes, there is an advantage that the position of the elbow portion of the robot arm can be changed while the xyz position of the TCP (Tool center point) is fixed. Note that the present invention is applicable to methods other than the direct teaching method, and is also applicable to remote teaching, for example. Further, the present invention can also be applied to a robot arm having a plurality of operating axes other than seven axes.
 [第1実施形態/ロボット装置の全体構成]
 図1は、第1実施形態に係るロボット装置1の概略図である。ロボット装置1は、垂直多関節7軸ロボットであって、ロボットアーム10、操作ハンドル20および制御装置30を備える。ロボットアーム10は、7つの回動軸;第1軸J1、第2軸J2、第3軸J3、第4軸J4、第5軸J5、第6軸J6および第7軸J7を有する。ロボットアーム10は、アーム要素として、ベース部10B、第1アーム11、第2アーム12、第3アーム13、第4アーム14、第5アーム15、第6アーム16およびヘッド部17を含む。ヘッド部17には、エンドエフェクタ18と操作ハンドル20とが取り付けられている。
[First embodiment/Overall configuration of robot device]
FIG. 1 is a schematic diagram of a robot device 1 according to the first embodiment. The robot device 1 is a vertically articulated seven-axis robot, and includes a robot arm 10, an operation handle 20, and a control device 30. The robot arm 10 has seven rotation axes: a first axis J1, a second axis J2, a third axis J3, a fourth axis J4, a fifth axis J5, a sixth axis J6, and a seventh axis J7. The robot arm 10 includes a base portion 10B, a first arm 11, a second arm 12, a third arm 13, a fourth arm 14, a fifth arm 15, a sixth arm 16, and a head portion 17 as arm elements. An end effector 18 and an operating handle 20 are attached to the head portion 17.
 ベース部10Bは、床面や台座等の取り付け平面上に固定的に設置される筐体である。第1アーム11は、ベース部10Bの上面に、第1軸J1を介して接続されている。第1軸J1は、前記取り付け平面に対して鉛直方向に延びる回転軸である。第1アーム11は、第1軸J1の軸回りに正逆両方向に回動可能である。 The base portion 10B is a casing that is fixedly installed on a mounting plane such as a floor or a pedestal. The first arm 11 is connected to the upper surface of the base portion 10B via a first shaft J1. The first axis J1 is a rotation axis extending in a direction perpendicular to the mounting plane. The first arm 11 is rotatable in both forward and reverse directions around the first axis J1.
 第2アーム12は、上手側の基端部が、第2軸J2を介して第1アーム11に接続されている。第2軸J2は、前記取り付け平面と平行な水平方向に延びる回転軸である。第2アーム12は、第2軸J2の軸周りに揺動可能である。第2アーム12は、第1アーム11寄りの上手アーム121と、第3アーム13寄りの下手アーム122とを含む。上手アーム121と下手アーム122とは、アーム軸方向に延びる第3軸J3により連結されている。下手アーム122は、第3軸J3の軸回りに回動可能である。この第2アーム12に備えられる第3軸J3が、いわゆる冗長軸として本実施形態のロボットアーム10に追加された動作軸ということができる。 The upper base end of the second arm 12 is connected to the first arm 11 via the second shaft J2. The second axis J2 is a rotation axis extending in a horizontal direction parallel to the mounting plane. The second arm 12 is swingable around the second axis J2. The second arm 12 includes an upper arm 121 closer to the first arm 11 and a lower arm 122 closer to the third arm 13. The upper arm 121 and the lower arm 122 are connected by a third shaft J3 extending in the arm axis direction. The lower arm 122 is rotatable around the third axis J3. The third axis J3 provided in the second arm 12 can be said to be an operation axis added to the robot arm 10 of this embodiment as a so-called redundant axis.
 第3アーム13は、第2アーム12の下手に連設されるアームであり、その基端部が第4軸J4を介して第2アーム12の先端部に接続されている。第3アーム13は、水平方向に延びる第4軸J4の軸周りに揺動可能である。第4アーム14は、第3アーム13の下手に連設されるアームであり、その基端部が第5軸J5を介して第3アーム13の先端部に接続されている。第4アーム14は、アーム軸方向に延びる第5軸J5の軸回りに回動可能である。 The third arm 13 is an arm connected to the lower part of the second arm 12, and its base end is connected to the distal end of the second arm 12 via the fourth shaft J4. The third arm 13 is swingable around a fourth axis J4 that extends in the horizontal direction. The fourth arm 14 is an arm connected to the lower part of the third arm 13, and its base end is connected to the distal end of the third arm 13 via the fifth shaft J5. The fourth arm 14 is rotatable around a fifth axis J5 extending in the arm axis direction.
 第5アーム15は、第4アーム14の下手に連設されるアームであり、その基端部が第6軸J6を介して第4アーム14の先端部に接続されている。第5アーム15は、水平方向に延びる第6軸J6の軸周りに揺動可能である。第6アーム16は、第5アーム15の下手に連設されるアームであり、その基端部が第7軸J7を介して第5アーム15の先端部に接続されている。第6アーム16は、アーム軸方向に延びる第7軸J7の軸周りに回動可能である。 The fifth arm 15 is an arm connected to the lower part of the fourth arm 14, and its base end is connected to the distal end of the fourth arm 14 via the sixth shaft J6. The fifth arm 15 is swingable around a sixth axis J6 that extends in the horizontal direction. The sixth arm 16 is an arm connected to the lower part of the fifth arm 15, and its base end is connected to the distal end of the fifth arm 15 via the seventh shaft J7. The sixth arm 16 is rotatable around a seventh axis J7 extending in the arm axis direction.
 ヘッド部17は、後述する力覚センサFSを介して、第6アーム16の先端側に取り付けられている。ヘッド部17は、エンドエフェクタ18の支持ベースであるとともに、ダイレクトティーチ作業の際に操作者に把持される操作ハンドル20の取り付けベースである。エンドエフェクタ18は、作業対象とするワークに所要の作業を施す部材である。図1では、エンドエフェクタ18としてワークを把持する2爪タイプのグリッパを例示している。エンドエフェクタ18は、把持以外の他の作業、例えばワークの吸着、溶接、研磨などの作業を行うものであっても良い。 The head portion 17 is attached to the distal end side of the sixth arm 16 via a force sensor FS, which will be described later. The head portion 17 is a support base for the end effector 18, and is also an attachment base for the operation handle 20 that is gripped by the operator during direct teaching work. The end effector 18 is a member that performs a required operation on a workpiece. In FIG. 1, a two-jaw type gripper that grips a workpiece is illustrated as the end effector 18. The end effector 18 may perform operations other than gripping, such as suction, welding, and polishing of the workpiece.
 図1には、エンドエフェクタ18のTCP19が示されている。TCP19は、ロボットアーム10の制御基準点となる位置である。例えば、エンドエフェクタ18により把持されるワークの重心位置に、TCP19を設定することができる。この他、TCP19は、エンドエフェクタ18の重心位置や、エンドエフェクタ18に対応付けられた何らかの位置に設定しても良い。 In FIG. 1, the TCP 19 of the end effector 18 is shown. TCP 19 is a position that serves as a control reference point for robot arm 10. For example, the TCP 19 can be set at the center of gravity of the workpiece gripped by the end effector 18. In addition, the TCP 19 may be set at the center of gravity of the end effector 18 or at some position associated with the end effector 18.
 力覚センサFSは、ロボットアーム10の先端である第6アーム16とエンドエフェクタ18との間に介在される、6軸の力検出器である。具体的には力覚センサFSは、互いに直交する3軸であるx軸、y軸、z軸の並進3軸方向の力成分と、これらx軸、y軸、z軸回りのモーメント成分とを同時に検出できるセンサである。なお、力覚センサFSに代えて、トルクセンサをロボットアーム10に装備させても良い。 The force sensor FS is a six-axis force detector interposed between the sixth arm 16, which is the tip of the robot arm 10, and the end effector 18. Specifically, the force sensor FS detects force components in the translational directions of the x-axis, y-axis, and z-axis, which are three axes orthogonal to each other, and moment components around these x-axis, y-axis, and z-axis. This is a sensor that can detect both at the same time. Note that the robot arm 10 may be equipped with a torque sensor instead of the force sensor FS.
 操作ハンドル20は、ハンドル本体21とボタンユニット22とを含む。ハンドル本体21は、ヘッド部17から側方に延び出した棒状の部材であり、操作者が片手で把持できるサイズを有している。ボタンユニット22は、ハンドル本体21の先端に取り付けられ、操作ボタン群が搭載されている。操作者は、ダイレクトティーチ作業の際に操作ハンドル20を把持し、一つの教示点から他の教示点までロボットアーム10のTCP19を手動で移動させ、動作目標位置を教示する。 The operating handle 20 includes a handle body 21 and a button unit 22. The handle body 21 is a rod-shaped member extending laterally from the head portion 17, and has a size that allows the operator to hold it with one hand. The button unit 22 is attached to the tip of the handle body 21 and includes a group of operation buttons. During the direct teaching operation, the operator grasps the operating handle 20, manually moves the TCP 19 of the robot arm 10 from one teaching point to another, and teaches the operation target position.
 図2は、ボタンユニット22に搭載される、操作ボタン群200の一例を示す図である。ボタンユニット22には、操作ボタン群200として、第1ボタン2A、第2ボタン2Bおよび第3ボタン2Cを含んでいる。これらのボタン2A、2B、2Cは、ダイレクトティーチ作業の際に、動作軸である第1軸J1~第7軸J7の固定状態が異なる複数のティーチモードのいずれかの選択のために操作されるボタンである。三つのボタン2A、2B、2Cは、操作者の片手の手指にて、いずれか一つ、いずれか二つを同時に、もしくは三つ全てを同時に押下可能に配置されている。図2では、三つのボタン2A、2B、2Cが一列に配列されている例を示している。詳しくは三つのボタンは、第1ボタン2Aの一方の側に第2ボタン2Bが、他方の側に第3ボタン2Cが各々配置されるよう配列されている。 FIG. 2 is a diagram showing an example of an operation button group 200 mounted on the button unit 22. The button unit 22 includes a first button 2A, a second button 2B, and a third button 2C as an operation button group 200. These buttons 2A, 2B, and 2C are operated during direct teaching work to select one of a plurality of teaching modes in which the fixed states of the first axis J1 to the seventh axis J7, which are the operation axes, are different. It's a button. The three buttons 2A, 2B, and 2C are arranged so that the operator can press any one, any two, or all three at the same time with the finger of one hand of the operator. FIG. 2 shows an example in which three buttons 2A, 2B, and 2C are arranged in a row. Specifically, the three buttons are arranged such that the second button 2B is placed on one side of the first button 2A, and the third button 2C is placed on the other side.
 制御装置30は、予め与えられた教示データに従って、ロボットアーム10の動作を制御する。また、制御装置30は、操作ボタン群200の操作に応じて動作軸の固定状態を異ならせつつ、ロボットアーム10の動作目標位置を教示するティーチ作業を実行させる。制御装置30については、図3を参照して詳述する。 The control device 30 controls the operation of the robot arm 10 according to teaching data given in advance. Further, the control device 30 executes a teaching operation for teaching the target movement position of the robot arm 10 while changing the fixing state of the movement axis depending on the operation of the operation button group 200. The control device 30 will be described in detail with reference to FIG. 3.
 [ロボット装置の電気的構成]
 図3は、ロボット装置1の電気的構成を示すブロック図である。ロボットアーム10は、第1軸J1、第2軸J2、第3軸J3、第4軸J4、第5軸J5、第6軸J6および第7軸J7の軸回りに、各々回転駆動力を与える第1駆動部41、第2駆動部42、第3駆動部43、第4駆動部44、第5駆動部45、第6駆動部46および第7駆動部47を内蔵している。第1駆動部41は、第1軸J1の軸回りに第1アーム11を回転させる回転駆動力を発生する。第2~第7駆動部42~47も同様であるので、個々の説明は省く。
[Electrical configuration of robot device]
FIG. 3 is a block diagram showing the electrical configuration of the robot device 1. As shown in FIG. The robot arm 10 applies rotational driving force around a first axis J1, a second axis J2, a third axis J3, a fourth axis J4, a fifth axis J5, a sixth axis J6, and a seventh axis J7. A first drive section 41, a second drive section 42, a third drive section 43, a fourth drive section 44, a fifth drive section 45, a sixth drive section 46, and a seventh drive section 47 are built in. The first drive unit 41 generates a rotational driving force that rotates the first arm 11 around the first axis J1. Since the second to seventh drive units 42 to 47 are also similar, individual explanations will be omitted.
 第1駆動部41は、モータ51、ブレーキ52およびエンコーダ53を含む。モータ51は、前記回転駆動力を発生する駆動源である。ブレーキ52は、モータ51の回転駆動力を規制する。ブレーキ52を作動させることで、第1軸J1を固定することができる。つまり、ブレーキ52の作動によりモータ51の回転駆動が禁止され、第1アーム11が第1軸J1の軸回りに回転しないよう拘束される。エンコーダ53は、モータ51の回転量、すなわち第1アーム11の回転角度を検出する。このほか、第1駆動部41には図略の減速機が含まれる。前記減速機は、モータ51の出力軸の回転数を所定の減速比で低減して第1軸J1の回動機構に伝達する。第2~第7駆動部42~47も同様に、モータ51、ブレーキ52、エンコーダ53および減速機を含み、これらが上記と同様な動作を行う。 The first drive section 41 includes a motor 51, a brake 52, and an encoder 53. The motor 51 is a drive source that generates the rotational driving force. The brake 52 regulates the rotational driving force of the motor 51. By operating the brake 52, the first shaft J1 can be fixed. That is, the actuation of the brake 52 prohibits rotational driving of the motor 51, and the first arm 11 is restrained from rotating around the first shaft J1. The encoder 53 detects the amount of rotation of the motor 51, that is, the rotation angle of the first arm 11. In addition, the first drive section 41 includes an unillustrated speed reducer. The speed reducer reduces the rotational speed of the output shaft of the motor 51 at a predetermined speed reduction ratio and transmits it to the rotation mechanism of the first shaft J1. Similarly, the second to seventh drive units 42 to 47 include a motor 51, a brake 52, an encoder 53, and a reduction gear, and these operate in the same manner as described above.
 第1~第7駆動部41~47のブレーキ52の作動を制御し、動作軸である第1軸J1~第7軸J7の固定状態を変更することで、ダイレクトティーチ作業時においてロボットアーム10の挙動を制限できる。例えば、水平方向に延びる動作軸である第2軸J2、第4軸J4および第6軸J6を、第2駆動部42、第4駆動部44および第6駆動部46が各々具備するブレーキ52で固定すれば、エンドエフェクタ18(TCP19)は、z方向の動きが規制され、xy平面でしか移動できなくなる(xy平面フリー)。逆に、垂直方向に延びる動作軸である第1軸J1、第3軸J3、第5軸J5および第7軸J7を固定すれば、エンドエフェクタ18はxy方向の動きが規制され、z軸方向でしか移動できなくなる(z軸フリー)。なお、上記のxy平面フリー、z軸フリーにおいて、アームの姿勢に自由度を持たせても良い。 By controlling the operation of the brakes 52 of the first to seventh drive units 41 to 47 and changing the fixed state of the first to seventh axes J1 to J7, which are the operating axes, the robot arm 10 can be Behavior can be restricted. For example, the second axis J2, the fourth axis J4, and the sixth axis J6, which are operating axes extending in the horizontal direction, are controlled by the brakes 52 provided in the second drive unit 42, the fourth drive unit 44, and the sixth drive unit 46, respectively. When fixed, the end effector 18 (TCP 19) is restricted from moving in the z direction, and can only move in the xy plane (free in the xy plane). Conversely, if the first axis J1, the third axis J3, the fifth axis J5, and the seventh axis J7, which are operating axes extending in the vertical direction, are fixed, the movement of the end effector 18 in the x and y directions is restricted, and the movement in the z axis direction is restricted. (z-axis free). In addition, in the above-mentioned xy plane free and z axis free, the posture of the arm may have a degree of freedom.
 操作ハンドル20は、既述の通り、第1ボタン2A、第2ボタン2Bおよび第3ボタン2Cを含む。これらボタン2A、2B、2Cの操作情報は、制御装置30に入力される。力覚センサFSが検出する、上述の6軸の力成分のデータも制御装置30に入力され、ダイレクトティーチ作業時におけるロボットアーム10の動作制御、並びに実際の運用時におけるロボットアーム10の動作制御に活用される。 As described above, the operating handle 20 includes the first button 2A, the second button 2B, and the third button 2C. Operation information for these buttons 2A, 2B, and 2C is input to the control device 30. Data on the force components of the six axes described above detected by the force sensor FS is also input to the control device 30, and is used to control the motion of the robot arm 10 during direct teaching work and the motion control of the robot arm 10 during actual operation. Utilized.
 制御装置30は、与えられたプログラムに従って各種の処理を実行するプロセッサーであり、前記プログラムの実行により、機能的にロボット制御部31、記憶部32およびティーチ制御部33を具備する。ロボット制御部31は、ロボット装置1の現場運用時に、予め与えられている動作目標位置を示す教示データに基づいてロボットアーム10を動作させ、ワークに対する所定の作業をエンドエフェクタ18に実行させる。記憶部32は、前記プログラムや前記教示データを記憶する。 The control device 30 is a processor that executes various processes according to a given program, and is functionally equipped with a robot control section 31, a storage section 32, and a teach control section 33 by executing the program. During on-site operation of the robot device 1, the robot control unit 31 operates the robot arm 10 based on teaching data indicating a target operation position given in advance, and causes the end effector 18 to perform a predetermined work on the workpiece. The storage unit 32 stores the program and the teaching data.
 ティーチ制御部33は、操作ボタン群200の操作に応じてダイレクトティーチ作業を実行させる。第1実施形態ではティーチ制御部33は、操作ハンドル20に備えられている三つのボタン2A、2B、2Cのうちのいずれか一つのボタンの個別操作、三つのボタンのうちの2つのボタンの同時操作、あるいは、三つのボタン全ての同時操作に応じて、動作軸である第1軸J1~第7軸J7の固定状態の異なるティーチモードを変更してダイレクトティーチ作業を実行させる。また、ティーチ制御部33は、ダイレクトティーチ作業において設定されたロボットアーム10の動作目標位置を、教示データとして記憶部32に格納する。 The teach control unit 33 executes a direct teach operation in response to the operation of the operation button group 200. In the first embodiment, the teach control unit 33 individually operates any one of the three buttons 2A, 2B, and 2C provided on the operation handle 20, and simultaneously operates two of the three buttons. In response to the operation or the simultaneous operation of all three buttons, the teaching modes in which the fixed states of the first axis J1 to the seventh axis J7, which are the operating axes, are changed are changed to execute the direct teaching operation. Furthermore, the teach control unit 33 stores the operation target position of the robot arm 10 set in the direct teaching operation in the storage unit 32 as teaching data.
 図4は、第1実施形態における操作ボタン群200の押下状態と、ティーチモードとの関係を示す表形式の図である。図4には、第1ボタン2A、第2ボタン2Bおよび第3ボタン2Cの押下状態の異なる7つのティーチモード[1]~[7]が記載されている。ティーチモード[1]~[7]は、それぞれ動作軸の固定状態が異なる。なお、表中において○印は、第1ボタン2A、第2ボタン2Bまたは第3ボタン2Cが押下されることを示し、空欄はこれらボタンが押下されないことを示す。 FIG. 4 is a tabular diagram showing the relationship between the pressed states of the operation button group 200 and the teach mode in the first embodiment. FIG. 4 shows seven teach modes [1] to [7] in which the first button 2A, second button 2B, and third button 2C are pressed in different states. The teaching modes [1] to [7] each have a different fixed state of the operating axis. Note that in the table, a circle indicates that the first button 2A, second button 2B, or third button 2C is pressed, and a blank space indicates that these buttons are not pressed.
 ティーチモード[1]は、第1ボタン2Aの単独操作で選択されるモードである。ティーチモード[1]では、ロボットアーム10の動作軸である第1軸J1~第7軸J7の全てがフリー動作とされる。つまり、ダイレクトティーチ作業において操作者は、ロボットアーム10を自在に移動させ動作目標位置を教示できる。このティーチモード[1]が、通常のダイレクトティーチで用いられるが、実際のティーチ作業では特定の動作軸を固定した状態でのティーチングが望ましい場合がある。ティーチモード[2]~[7]は、かかる要請に呼応するものである。 Teach mode [1] is a mode selected by single operation of the first button 2A. In the teach mode [1], all of the first axis J1 to seventh axis J7, which are the operating axes of the robot arm 10, are free to operate. That is, in the direct teaching operation, the operator can freely move the robot arm 10 and teach the target operation position. This teaching mode [1] is used in normal direct teaching, but in actual teaching work, it may be desirable to perform teaching with a specific motion axis fixed. Teach modes [2] to [7] respond to such requests.
 ティーチモード[2]は、第1ボタン2Aおよび第2ボタン2Bの同時操作により選択されるモードである。ティーチモード[2]では、ロボットアーム10がxy平面に平行な平面であって、ボタン2A、2Bが操作された位置を含む平面でのみ移動フリーとなるよう動作軸が固定される。ティーチモード[3]は、第1ボタン2Aおよび第3ボタン2Cの同時操作により選択されるモードである。ティーチモード[3]では、ロボットアーム10がz軸に平行な方向にのみ移動フリーとなるよう動作軸が固定される。 Teach mode [2] is a mode selected by simultaneous operation of the first button 2A and the second button 2B. In the teach mode [2], the operating axis is fixed so that the robot arm 10 can move freely only in a plane parallel to the xy plane and including the positions where the buttons 2A and 2B are operated. Teach mode [3] is a mode selected by simultaneous operation of the first button 2A and the third button 2C. In the teach mode [3], the operating axis is fixed so that the robot arm 10 is free to move only in the direction parallel to the z-axis.
 ティーチモード[4]は、第1ボタン2A、第2ボタン2Bおよび第3ボタン2Cの全てが同時操作されることで選択されるモードである。ティーチモード[4]では、エンドエフェクタ18(TCP19)の姿勢を維持した状態で、ロボットアーム10が移動フリーとなる。つまり、ティーチモード[4]は、TCP19の姿勢だけが規制されるモードである。 Teach mode [4] is a mode selected when all of the first button 2A, second button 2B, and third button 2C are operated at the same time. In the teach mode [4], the robot arm 10 becomes free to move while maintaining the posture of the end effector 18 (TCP 19). In other words, the teach mode [4] is a mode in which only the attitude of the TCP 19 is regulated.
 ティーチモード[5]は、第2ボタン2Bの単独操作で選択されるモードである。ティーチモード[5]では、ロボットアーム10のエンドエフェクタ18(TCP19)の姿勢を維持した状態で、ロボットアーム10がxy平面でのみ移動フリーとなるよう動作軸が固定される。ティーチモード[6]は、第3ボタン3Bの単独操作で選択されるモードである。ティーチモード[6]では、エンドエフェクタ18の姿勢を維持した状態で、ロボットアーム10がz軸方向でのみ移動フリーとなるよう動作軸が固定される。 Teach mode [5] is a mode selected by single operation of the second button 2B. In the teach mode [5], the motion axis is fixed so that the robot arm 10 can move freely only in the xy plane while maintaining the posture of the end effector 18 (TCP 19) of the robot arm 10. Teach mode [6] is a mode selected by single operation of the third button 3B. In the teach mode [6], the motion axis is fixed so that the robot arm 10 can move freely only in the z-axis direction while maintaining the posture of the end effector 18.
 ティーチモード[7]は、第2ボタン2Bおよび第3ボタン2Cの同時操作により選択されるモードである。ティーチモード[7]では、エンドエフェクタ18の位置が維持された状態、つまりTCP19のロボット座標系の位置が固定された状態で、ロボットアーム10の各アーム11~16の移動が許容されるよう、動作軸が固定される。 Teach mode [7] is a mode selected by simultaneous operation of the second button 2B and third button 2C. In the teach mode [7], each arm 11 to 16 of the robot arm 10 is allowed to move while the position of the end effector 18 is maintained, that is, the position of the robot coordinate system of the TCP 19 is fixed. The motion axis is fixed.
 ティーチ制御部33は、モード判定部34および軸固定制御部35を機能的に備える。モード判定部34は、第1ボタン2A、第2ボタン2Bおよび第3ボタン2Cの押下の組み合わせに基づいて、ダイレクトティーチ作業において上掲のティーチモード[1]~[7]の何れが選定されているかを判定する。軸固定制御部35は、選択されたティーチモード[1]~[7]の設定に対応して動作軸を固定するよう、第1駆動部41~第7駆動部47の一つまたは複数のブレーキ52を作動させる。 The teach control section 33 functionally includes a mode determination section 34 and an axis fixing control section 35. The mode determination unit 34 determines which of the above teaching modes [1] to [7] is selected in the direct teaching operation based on the combination of pressing of the first button 2A, the second button 2B, and the third button 2C. Determine if there are any. The axis fixing control unit 35 controls one or more brakes of the first drive unit 41 to the seventh drive unit 47 to fix the operating axis in accordance with the settings of the selected teaching modes [1] to [7]. 52 is activated.
 ティーチ制御部33は、軸固定制御部35による動作軸の規制下、操作者が操作ハンドル20を把持してロボットアーム10に与えた移動力に応じて、ロボットアーム10の第1アーム11~第6アーム16を移動させる。具体的には、ロボットアーム10へ与えられた移動力を力覚センサFSが検知する。ティーチ制御部33は、その検知結果を取得し、当該移動力の大きさおよび方向を推定する。この推定結果に基づきティーチ制御部33は、第1駆動部41~第7駆動部47のモータ51を適宜駆動して、操作者がロボットアーム10を動かそうとした方向にロボットアーム10を移動させる。但し、規制が加えられている方向にはロボットアーム10は移動されない。例えばティーチモード[2]が選択されていれば、ティーチ制御部33はxy平面でのみロボットアーム10が移動するようにモータ51を駆動させる。 The teach control unit 33 controls the first to third arms 11 of the robot arm 10 according to the movement force applied to the robot arm 10 by the operator while gripping the operating handle 20 under the regulation of the movement axis by the axis fixing control unit 35. 6. Move the arm 16. Specifically, the force sensor FS detects the moving force applied to the robot arm 10. The teach control unit 33 acquires the detection results and estimates the magnitude and direction of the moving force. Based on this estimation result, the teach control unit 33 appropriately drives the motors 51 of the first to seventh drive units 41 to 47 to move the robot arm 10 in the direction in which the operator intends to move the robot arm 10. . However, the robot arm 10 is not moved in the restricted direction. For example, if teach mode [2] is selected, the teach control unit 33 drives the motor 51 so that the robot arm 10 moves only in the xy plane.
 [ダイレクトティーチの動作フロー]
 図5は、第1実施形態におけるダイレクトティーチ動作を示すフローチャートである。ロボット装置1が起動すると、制御装置30のティーチ制御部33は、ダイレクトティーチの実行モードが有効になっているか否かを判定する(ステップS1)。例えば、図2に示す操作ハンドル20の操作ボタン群200に、ダイレクトティーチモードを開始させる起動ボタンを具備させ、前記起動ボタンが押下されたか否かにより、ステップS1の判定を行わせることができる。
[Direct teach operation flow]
FIG. 5 is a flowchart showing the direct teach operation in the first embodiment. When the robot device 1 is started, the teach control unit 33 of the control device 30 determines whether the direct teach execution mode is enabled (step S1). For example, the operation button group 200 of the operation handle 20 shown in FIG. 2 may be provided with an activation button for starting the direct teach mode, and the determination in step S1 may be made depending on whether or not the activation button is pressed.
 ダイレクトティーチモードが有効であると(ステップS1でYES)、操作者の第1ボタン2A、第2ボタン2Bおよび第3ボタン2Cに対する操作を待つ。操作者のボタン操作を受け付けると、モード判定部34は、ボタン2A、2B、2Cの押下のパターンから、操作者が選択したティーチモードを判定する(ステップS2)。例えば、図4に示したようなティーチモードとボタン押下パターンとの関係を定めたテーブルが、記憶部32に予め格納される。モード判定部34は、記憶部32の前記テーブルを参照して、選択されたティーチモードを特定する。 If the direct teach mode is valid (YES in step S1), the controller waits for the operator's operations on the first button 2A, second button 2B, and third button 2C. When the button operation by the operator is received, the mode determination unit 34 determines the teach mode selected by the operator from the pattern of presses of the buttons 2A, 2B, and 2C (step S2). For example, a table as shown in FIG. 4 that defines the relationship between teach modes and button press patterns is stored in advance in the storage unit 32. The mode determination unit 34 refers to the table in the storage unit 32 and identifies the selected teach mode.
 ティーチモードが特定されると、軸固定制御部35は、当該ティーチモードに応じた動作軸の固定状態を設定する(ステップS3)。すなわち、軸固定制御部35は、ロボットアーム10が備える第1軸J1~第7軸J7の駆動部41~47のうち、固定すべき動作軸として選定された駆動部41~47の内の何れかの駆動部のブレーキ52を作動させる。この状態で、操作者が操作ハンドル20を用いてロボットアーム10に移動力を与えるのを待つ。拘束されていない動作軸回りに、ロボットアーム10は移動可能な状態である。 Once the teaching mode is specified, the axis fixing control unit 35 sets the fixed state of the operating axis according to the teaching mode (step S3). That is, the axis fixing control unit 35 controls which of the drive units 41 to 47 of the first axis J1 to the seventh axis J7 of the robot arm 10 is selected as the operating axis to be fixed. The brake 52 of the drive section is activated. In this state, the robot waits for the operator to apply a moving force to the robot arm 10 using the operating handle 20. The robot arm 10 is in a movable state around an unrestricted motion axis.
 ロボットアーム10に移動力が与えられると、力覚センサFSが当該移動力の6軸の大きさおよび方向を検出する。ティーチ制御部33は、この力覚センサFSの検出値を取得する(ステップS4)。つまり、操作者がロボットアーム10を動かそうとした方向の情報を取得する。ティーチ制御部33は、操作者の意図に応じてロボットアーム10が移動するよう、第1駆動部41~第7駆動部47のモータ51を適宜駆動する(ステップS5)。 When a moving force is applied to the robot arm 10, the force sensor FS detects the magnitude and direction of the moving force in six axes. The teach control unit 33 acquires the detected value of the force sensor FS (step S4). That is, information about the direction in which the operator attempts to move the robot arm 10 is acquired. The teach control unit 33 appropriately drives the motors 51 of the first to seventh drive units 41 to 47 so that the robot arm 10 moves according to the operator's intention (step S5).
 続いて、TCP19が、ダイレクトティーチの一つターンにおける一つの目標位置まで到達したか否かが判定される(ステップS6)。目標位置に到達した場合(ステップS6でYES)、ティーチ制御部33は、そのときのロボットアーム10の位置姿勢を、教示データとして記憶部32に記憶させる(ステップS7)。これに対し、目標位置へ未到達である場合(ステップS6でNO)、ステップS5のモータ51の駆動が継続される。 Subsequently, it is determined whether the TCP 19 has reached one target position in one turn of direct teaching (step S6). When the target position is reached (YES in step S6), the teach control unit 33 stores the position and orientation of the robot arm 10 at that time in the storage unit 32 as teaching data (step S7). On the other hand, if the target position has not been reached (NO in step S6), the driving of the motor 51 in step S5 is continued.
 ダイレクトティーチの一つの目標位置についての教示データの登録後、今回のターンでダイレクトティーチを実行すべき次の目標位置が存在するか否かが判定される(ステップS8)。ダイレクトティーチを実行する次の目標位置が有る場合(ステップS8でNO)、ステップS4に戻り、ダイレクトティーチの次の目標位置を対象として処理が繰り返される。一方、今回のダイレクトティーチのターンでは次の目標位置が無い場合(ステップS8でNO)、ダイレクトティーチの次のターンを実行するか否か、すなわち、ダイレクトティーチ作業を継続するか否かが判定される(ステップS9)。ダイレクトティーチ作業を終了する場合(ステップS9でNO)、例えばダイレクトティーチモードの有効化を解除するボタンが押下された場合、処理を終える。 After registering the teaching data for one target position for direct teaching, it is determined whether there is a next target position to which direct teaching should be performed in this turn (step S8). If there is a next target position to perform direct teaching (NO in step S8), the process returns to step S4 and the process is repeated targeting the next target position of direct teaching. On the other hand, if there is no next target position in the current direct teach turn (NO in step S8), it is determined whether or not to execute the next direct teach turn, that is, whether or not to continue the direct teach work. (Step S9). When the direct teaching operation is to be ended (NO in step S9), for example, when a button for canceling the activation of the direct teaching mode is pressed, the process is ended.
 一方、ダイレクトティーチ作業が継続される場合(ステップS9でYES)、つまり、次のターンのダイレクトティーチが実行される場合、ティーチモードの変更が有るか否かが判定される(ステップS10)。具体的にはティーチ制御部33は、第1ボタン2A、第2ボタン2Bおよび第3ボタン2Cの押下の組み合わせに変更があるか否かを判定する。ボタン押下状態に変更が有った場合(ステップS10でYES)、ステップS2に戻ってモード判定がなされ、ステップS3以下の処理が繰り返される。一方、ボタン押下状態に変更が無い場合(ステップS10でYES)、ティーチモードを変更することなく、ステップS4に戻って処理が繰り返される。 On the other hand, if the direct teaching work is continued (YES in step S9), that is, if the next turn's direct teaching is to be executed, it is determined whether there is a change in the teaching mode (step S10). Specifically, the teach control unit 33 determines whether there is a change in the combination of pressing of the first button 2A, second button 2B, and third button 2C. If there is a change in the button press state (YES in step S10), the process returns to step S2 to determine the mode, and the processes from step S3 onwards are repeated. On the other hand, if there is no change in the button press state (YES in step S10), the process returns to step S4 and is repeated without changing the teach mode.
 [第2実施形態]
 続いて、本発明の第2実施形態を説明する。第2実施形態では、ティーチモード選択のための操作ボタン群が、第1ボタン及び第2ボタンの2つで構成される例を示す。この場合、ティーチ制御部33は、前記第1ボタンまたは前記第2ボタンの個別操作、あるいは、前記第1ボタンおよび前記第2ボタンの同時操作に応じて、前記ティーチモードの選択を受け付ける。
[Second embodiment]
Next, a second embodiment of the present invention will be described. In the second embodiment, an example is shown in which the operation button group for selecting the teach mode is composed of two buttons, a first button and a second button. In this case, the teach control unit 33 accepts the selection of the teach mode in response to individual operations of the first button or the second button, or simultaneous operations of the first button and the second button.
 図6(A)、(B)は、ロボットアーム100に付設される、第2実施形態に係る操作ボタンを示す正面図、側面図である。図6(A)、(B)では、ロボットアーム100のアーム先端部101付近だけが示されている。ロボットアーム100は、例えば6軸の多関節ロボットアームである。図6(A)に示すように、ロボットアーム100は円筒型の形状を有しており、その側面に互いに対向するように配置された第1ボタン20Aおよび第2ボタン20Bを備えている。図6(B)は、第1ボタン20Aが現れる側面図を示している。 FIGS. 6(A) and 6(B) are a front view and a side view showing the operation button according to the second embodiment, which is attached to the robot arm 100. In FIGS. 6A and 6B, only the vicinity of the arm tip 101 of the robot arm 100 is shown. The robot arm 100 is, for example, a six-axis articulated robot arm. As shown in FIG. 6(A), the robot arm 100 has a cylindrical shape, and includes a first button 20A and a second button 20B arranged to face each other on the side thereof. FIG. 6(B) shows a side view in which the first button 20A appears.
 第1実施形態で示したような操作ハンドル20は、ロボットアーム100には付設されていない。ダイレクトティーチ作業では、操作者はロボットアーム100のアーム先端部101を直接把持する。第1ボタン20Aおよび第2ボタン20Bは、操作者の片方の手指で同時操作が可能な位置に配置されている。例えば、右手の親指で第1ボタン20Aが、中指で第2ボタン20Bが操作される。ティーチ制御部33は、第1ボタン20Aまたは第2ボタン20Bの単独操作、第1ボタン20Aおよび第2ボタン20Bの同時操作により、ロボットアーム100の動作軸の移動フリー状態、つまりティーチモードを切り替える。 The operating handle 20 as shown in the first embodiment is not attached to the robot arm 100. In the direct teaching operation, the operator directly grasps the arm tip 101 of the robot arm 100. The first button 20A and the second button 20B are arranged at positions where they can be operated simultaneously with one finger of the operator. For example, the first button 20A is operated with the thumb of the right hand, and the second button 20B is operated with the middle finger of the right hand. The teach control unit 33 switches the movement free state of the operating axis of the robot arm 100, that is, the teach mode, by operating the first button 20A or the second button 20B alone or by simultaneously operating the first button 20A and the second button 20B.
 図7は、第2実施形態における操作ボタン群の押下状態と、ティーチモードとの関係を示す表形式の図である。図7には、第1ボタン20Aおよび第2ボタン20Bの押下状態の異なる3つのティーチモード[1]~[3]が記載されている。ティーチモード[1]~[3]は、ロボットアーム100が備える複数の動作軸の固定状態が異なる。なお、表中において○印は、第1ボタン20Aまたは第2ボタン20Bが押下されることを示す。 FIG. 7 is a tabular diagram showing the relationship between the pressed states of the operation button group and the teach mode in the second embodiment. FIG. 7 shows three teach modes [1] to [3] in which the first button 20A and the second button 20B are pressed in different states. Teach modes [1] to [3] differ in the fixed state of the plurality of motion axes included in the robot arm 100. Note that in the table, a circle mark indicates that the first button 20A or the second button 20B is pressed.
 ティーチモード[1]は、第1ボタン20Aおよび第2ボタン20Bの同時操作で選択されるモードである。ティーチモード[1]では、ロボットアーム100の動作軸の全てがフリー動作とされる。ティーチモード[2]は、第1ボタン20Aの単独操作で選択されるモードである。ティーチモード[2]では、ロボットアーム100が、xy平面に平行な平面であって、第1ボタン20Aが操作された位置を含む平面でのみ移動フリーとなるよう動作軸が固定される。ティーチモード[3]は、第2ボタン20Bの単独操作により選択されるモードである。ティーチモード[3]では、ロボットアーム100がz軸と平行な方向にのみ移動フリーとなるよう動作軸が固定される。 Teach mode [1] is a mode selected by simultaneous operation of the first button 20A and the second button 20B. In the teach mode [1], all the motion axes of the robot arm 100 are set to free motion. Teach mode [2] is a mode selected by single operation of the first button 20A. In the teach mode [2], the operating axis of the robot arm 100 is fixed so that it can move freely only in a plane parallel to the xy plane and including the position where the first button 20A is operated. Teach mode [3] is a mode selected by single operation of the second button 20B. In the teach mode [3], the operating axis is fixed so that the robot arm 100 can move freely only in a direction parallel to the z-axis.
 第2実施形態によれば、操作者の片手で操作可能な2つのボタン20A、20Bで、ダイレクトティーチの機能選択を行わせる。そして、第1ボタン20Aまたは第2ボタン20Bの単独操作だけでなく、第1ボタン20Aおよび第2ボタン20Bの同時操作によってもティーチモードの選択が可能である。つまり、一つのボタン20A、20Bに各一つのティーチモード選択機能を割り当てるだけでなく、二つボタン20A、20Bの同時操作にもティーチモード選択機能を割り当てる。従って、少ない操作ボタン数で、ダイレクトティーチのティーチモードの選択肢を増やすことができる。 According to the second embodiment, direct teach function selection is performed using two buttons 20A and 20B that can be operated with one hand of the operator. The teaching mode can be selected not only by operating the first button 20A or the second button 20B alone, but also by simultaneously operating the first button 20A and the second button 20B. That is, not only one teach mode selection function is assigned to each of the buttons 20A and 20B, but also the teach mode selection function is assigned to the simultaneous operation of the two buttons 20A and 20B. Therefore, the number of teaching mode options for direct teaching can be increased with a small number of operation buttons.
 [変形実施形態]
 以上、本発明の実施形態につき説明したが、本発明は上記実施形態に限定されるものではなく、例えば次のような変形実施形態を採用することができる。
[Modified embodiment]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and for example, the following modified embodiments can be adopted.
 (1)ティーチモードを選択させる操作ボタン群の配置は任意に設定することができる。第1実施形態では、ボタンユニット22に3つのボタン2A、2B、2Cが直線的に一列に並ぶように配列される例を示した。このような配列に代えて、例えば3つのボタン2A、2B、2Cが円弧ライン上に並ぶように、あるいは三角形の各頂点に配置されるように配列しても良い。また、第2実施形態では、円筒型のロボットアーム100の周壁に互いに対向するように二つのボタン20A、20Bを配置する例を示した。これに代えて、2つのボタン20A、20Bが互いに隣接するよう配置しても良い。 (1) The arrangement of the operation button group for selecting the teach mode can be arbitrarily set. In the first embodiment, an example was shown in which the three buttons 2A, 2B, and 2C are arranged in a straight line in the button unit 22. Instead of such an arrangement, for example, the three buttons 2A, 2B, and 2C may be arranged on an arc line or arranged at each vertex of a triangle. Further, in the second embodiment, an example was shown in which two buttons 20A and 20B are arranged on the peripheral wall of the cylindrical robot arm 100 so as to face each other. Alternatively, the two buttons 20A and 20B may be arranged adjacent to each other.
 (2)上記第1、第3実施形態では、操作ボタン群が3個のボタン2A、2B、2C、または2個のボタン20A、20Bで構成される例を示した。これに代えて、4個またはそれ以上の個数のボタンで、操作ボタン群を構成しても良い。但し、ボタン数が増えると、同時操作するボタンの組み合わせが複雑化する傾向が出るので、徒に増加させないことが望ましい。 (2) In the first and third embodiments described above, examples were shown in which the operation button group was composed of three buttons 2A, 2B, and 2C, or two buttons 20A and 20B. Alternatively, the operation button group may be composed of four or more buttons. However, as the number of buttons increases, the combination of buttons to be operated simultaneously tends to become complicated, so it is desirable not to increase the number unnecessarily.
 (3)第1実施形態において、図4にティーチモード[1]~[7]と3個のボタン2A、2B、2Cの押下状態との関係を例示した。これは一例であり、ティーチモードとボタンの押下状態との紐付けは任意に設定できる。この設定を、ロボット装置1に対するユーザインターフェイスで、自在に変更できるようにすることが望ましい。 (3) In the first embodiment, FIG. 4 illustrates the relationship between the teach modes [1] to [7] and the pressed states of the three buttons 2A, 2B, and 2C. This is just an example, and the association between the teach mode and the pressed state of the button can be set arbitrarily. It is desirable to be able to freely change this setting through a user interface for the robot device 1.
 (4)ダイレクトティーチ作業を行いながら、他の機能が実現されるようにしても良い。例えば、操作ハンドル20にカメラを搭載し、操作ボタン群200に含まれるティーチモード選択用以外の他のボタンの追加操作により、前記カメラに撮像を行わせるようにせても良い。 (4) Other functions may be realized while direct teaching work is being performed. For example, a camera may be mounted on the operation handle 20, and the camera may be caused to take an image by additionally operating a button other than the one for selecting the teach mode included in the operation button group 200.
 [上記実施形態に含まれる発明]
 以上説明した実施形態には、以下に示す発明が含まれている。
[Inventions included in the above embodiments]
The embodiments described above include the inventions shown below.
 本発明の一局面に係るロボット装置は、複数のアーム要素と、前記複数のアーム要素を回動させる複数の動作軸と、を有するロボットアームと、少なくとも第1ボタンおよび第2ボタンを含み、前記ロボットアームの動作目標位置を教示するティーチ作業の際に、前記複数の動作軸の固定状態が異なる複数のティーチモードのいずれかの選択のために操作される操作ボタン群と、前記操作ボタン群の操作に応じて前記ティーチ作業を実行させる制御部と、を備え、前記制御部は、前記第1ボタンまたは前記第2ボタンの個別操作、あるいは、前記第1ボタンおよび前記第2ボタンの同時操作に応じて、前記ティーチモードの選択を受け付ける。 A robot device according to one aspect of the present invention includes a robot arm having a plurality of arm elements and a plurality of operation axes for rotating the plurality of arm elements, and at least a first button and a second button, A group of operation buttons that are operated to select one of a plurality of teach modes in which the plurality of motion axes are fixed in different states during a teaching operation for teaching the target operation position of the robot arm; a control unit that causes the teaching operation to be executed in accordance with an operation, the control unit configured to operate the first button or the second button individually, or simultaneously operate the first button and the second button. Accordingly, the selection of the teaching mode is accepted.
 このロボット装置によれば、第1ボタンまたは第2ボタンの個別操作だけでなく、前記第1ボタンおよび前記第2ボタンの同時操作によってティーチモードを選択できる。つまり、一つのボタンに一つのティーチモード選択機能を割り当てるだけでなく、複数のボタンの同時操作にもティーチモード選択機能を割り当てる。従って、少ない数の操作ボタン群で、ロボットアームに対する多様なティーチモードの選択が可能となる。 According to this robot device, the teach mode can be selected not only by individual operation of the first button or the second button but also by simultaneous operation of the first button and the second button. In other words, not only one teach mode selection function is assigned to one button, but also the teach mode selection function is assigned to simultaneous operation of a plurality of buttons. Therefore, it is possible to select various teaching modes for the robot arm with a small number of operation button groups.
 上記のロボット装置において、前記ティーチ作業は、前記ロボットアームの動作目標位置を手動で教示するダイレクトティーチ作業であって、前記ダイレクトティーチ作業の際に把持され、前記操作ボタン群が搭載されたハンドルをさらに備えていても良い。 In the above-mentioned robot device, the teaching operation is a direct teaching operation in which the target operation position of the robot arm is manually taught, and the handle gripped during the direct teaching operation and equipped with the operation button group is It may be better to have more.
 この態様によれば、ダイレクトティーチの機能選択を、簡易なボタン操作で多様化することができる。 According to this aspect, the direct teach function selection can be diversified with simple button operations.
 上記のロボット装置において、前記操作ボタン群は、前記第1ボタンおよび前記第2ボタンに、第3ボタンを加えた三つのボタンを含み、前記制御部は、前記三つのボタンのうちのいずれか一つのボタンの個別操作、前記三つのボタンのうちの2つのボタンの同時操作、あるいは、前記三つのボタン全ての同時操作に応じて、前記ティーチモードの選択を受け付ける態様としても良い。 In the robot device described above, the operation button group includes three buttons including the first button, the second button, and a third button, and the control unit selects one of the three buttons. The selection of the teach mode may be accepted in response to individual operation of two buttons, simultaneous operation of two of the three buttons, or simultaneous operation of all three buttons.
 この態様によれば、三つの操作ボタンの個別操作および三つの操作ボタンも一部または全部の同時操作の使い分けにより、最大7つのティーチモードの機能選択を設定できる。従って、ダイレクトティーチのティーチモードの選択肢をより多様化することができる。 According to this aspect, up to seven teach mode function selections can be set by selectively operating the three operation buttons individually and operating some or all of the three operation buttons simultaneously. Therefore, it is possible to further diversify the teaching mode options for direct teaching.
 上記のロボット装置において、前記制御部は、前記第1ボタンが単独操作されると、前記複数の動作軸の全てをフリー動作とし、前記第1ボタンおよび前記第2ボタンが同時操作されると、前記ロボットアームが水平面でのみ移動フリーとなるよう前記複数の動作軸を固定し、前記第1ボタンおよび前記第3ボタンが同時操作されると、前記ロボットアームが垂直平面でのみ移動フリーとなるよう前記複数の動作軸を固定し、前記三つのボタン全てが同時操作されると、前記ロボットアームの姿勢を維持するよう前記複数の動作軸を固定する態様としても良い。 In the above robot device, the control unit sets all of the plurality of motion axes to free operation when the first button is operated alone, and when the first button and the second button are operated simultaneously, The plurality of operating axes are fixed so that the robot arm can move freely only in a horizontal plane, and when the first button and the third button are operated simultaneously, the robot arm can move freely only in a vertical plane. The plurality of motion axes may be fixed so that when all three buttons are operated simultaneously, the plurality of motion axes may be fixed so as to maintain the posture of the robot arm.
 この態様によれば、三つのボタンの個別または同時操作により、ロボットアームの動作軸がオールフリー、水平面でのみ移動フリー、垂直平面でのみ移動フリー、および、ロボットアームの姿勢を維持した状態で移動フリーの、主要な4つのティーチモードの機能選択を行わせることができる。 According to this aspect, by operating the three buttons individually or simultaneously, the robot arm's operating axes can be moved entirely freely, freely only in the horizontal plane, freely only in the vertical plane, and while maintaining the posture of the robot arm. You can select the functions of the four main teach modes for free.
 この場合、前記制御部は、前記第2ボタンの単独操作により、前記ロボットアームの姿勢を維持した状態で水平面でのみ移動フリーとなるよう前記複数の動作軸を固定し、前記第3ボタンの単独操作により、前記ロボットアームの姿勢を維持した状態で垂直平面でのみ移動フリーとなるよう前記複数の動作軸を固定し、前記第2ボタンおよび前記第3ボタンが同時操作されると、前記ロボットアームの位置を維持するよう前記複数の動作軸を固定する態様をさらに追加しても良い。 In this case, the control unit fixes the plurality of operating axes so that the robot arm can move freely only in a horizontal plane while maintaining the posture of the robot arm by operating the second button alone; The operation fixes the plurality of operating axes so that the robot arm can move freely only in the vertical plane while maintaining its posture, and when the second button and the third button are operated simultaneously, the robot arm An aspect may be further added in which the plurality of operating axes are fixed so as to maintain the positions of the movement axes.
 この態様によれば、三つのボタンの個別または同時操作により、ロボットアームの姿勢を維持した状態で水平面での移動フリーまたは垂直平面での移動フリーと、ロボットアームの位置を維持した状態での移動フリーの、3つの機能選択を追加できる。 According to this aspect, by individually or simultaneously operating the three buttons, the robot arm can move freely in the horizontal plane while maintaining its posture or freely move in the vertical plane, and can move while maintaining the robot arm's position. You can add three free function selections.
 上記のロボット装置において、前記第1ボタンおよび前記第2ボタンは、操作者の片方の手指で同時操作が可能な位置に配置され、前記制御部は、前記第1ボタンまたは前記第2ボタンの単独操作、前記第1ボタンおよび前記第2ボタンの同時操作により、前記ロボットアームの移動フリー状態を切り替える態様としても良い。 In the above-mentioned robot device, the first button and the second button are arranged at positions where they can be operated simultaneously with one finger of the operator, and the control unit is configured to control the operation of the first button or the second button individually. A mode may be adopted in which the free movement state of the robot arm is switched by simultaneous operation of the first button and the second button.
 この態様によれば、操作者の片手で操作可能な2つの操作ボタンで、ダイレクトティーチの機能選択を行わせる。そして、第1ボタンまたは第2ボタンの単独操作だけでなく、前記第1ボタンおよび前記第2ボタンの同時操作によっても機能選択が可能である。従って、少ない操作ボタン数で、ダイレクトティーチのティーチモードの選択肢を増やすことができる。 According to this aspect, the direct teach function selection is performed using two operation buttons that can be operated with one hand of the operator. Function selection is possible not only by operating the first button or the second button alone, but also by simultaneously operating the first button and the second button. Therefore, the number of teaching mode options for direct teaching can be increased with a small number of operation buttons.
 この場合、前記制御部は、前記第1ボタンが単独操作されると、前記ロボットアームが水平面でのみ移動フリーとなるよう前記複数の動作軸を固定し、前記第2ボタンが単独操作されると、前記ロボットアームが垂直平面でのみ移動フリーとなるよう前記複数の動作軸を固定し、前記第1ボタンおよび前記第2ボタンが同時操作されると、前記複数の動作軸の全てをフリー動作とする態様とすることができる。 In this case, when the first button is operated alone, the control unit fixes the plurality of operating axes so that the robot arm can move freely only in a horizontal plane, and when the second button is operated alone, , the plurality of motion axes are fixed so that the robot arm can move freely only in a vertical plane, and when the first button and the second button are simultaneously operated, all of the plurality of motion axes are set to free motion. It may be possible to do so.
 この態様によれば、第1ボタンおよび第2ボタンの単独操作もしくは同時操作の組み合わせにより、ロボットアームの動作軸が水平面でのみ移動フリー、垂直平面でのみ移動フリー、もしくはオールフリーの、主要な3つのティーチモードの機能選択を行わせることができる。 According to this aspect, by operating the first button and the second button alone or in combination, the operating axes of the robot arm can move freely only in the horizontal plane, freely move only in the vertical plane, or completely freely. It is possible to select the function of two teach modes.
 以上説明した通り、本発明によれば、少ない数の操作ボタンで、ロボットアームに対する多様なティーチングモードの選択を可能としたロボット装置を提供できる。
 
As described above, according to the present invention, it is possible to provide a robot device that allows selection of various teaching modes for a robot arm using a small number of operation buttons.

Claims (8)

  1.  複数のアーム要素と、前記複数のアーム要素を回動させる複数の動作軸と、を有するロボットアームと、
     少なくとも第1ボタンおよび第2ボタンを含み、前記ロボットアームの動作目標位置を教示するティーチ作業の際に、前記複数の動作軸の固定状態が異なる複数のティーチモードのいずれかの選択のために操作される操作ボタン群と、
     前記操作ボタン群の操作に応じて前記ティーチ作業を実行させる制御部と、を備え、
     前記制御部は、前記第1ボタンまたは前記第2ボタンの個別操作、あるいは、前記第1ボタンおよび前記第2ボタンの同時操作に応じて、前記ティーチモードの選択を受け付ける、ロボット装置。
    a robot arm having a plurality of arm elements and a plurality of operation axes for rotating the plurality of arm elements;
    The button includes at least a first button and a second button, and is operated to select one of a plurality of teaching modes in which the plurality of movement axes are fixed in different states during a teaching operation for teaching the movement target position of the robot arm. a group of operation buttons,
    a control unit that executes the teaching operation in accordance with the operation of the operation button group;
    The robot device is characterized in that the control unit receives selection of the teach mode in response to individual operation of the first button or the second button, or simultaneous operation of the first button and the second button.
  2.  請求項1に記載のロボット装置において、
     前記ティーチ作業は、前記ロボットアームの動作目標位置を手動で教示するダイレクトティーチ作業であって、
     前記ダイレクトティーチ作業の際に把持され、前記操作ボタン群が搭載されたハンドルをさらに備える、ロボット装置。
    The robot device according to claim 1,
    The teaching operation is a direct teaching operation in which the target operation position of the robot arm is manually taught,
    The robot device further includes a handle that is gripped during the direct teaching operation and on which the operation button group is mounted.
  3.  請求項2に記載のロボット装置において、
     前記操作ボタン群は、前記第1ボタンおよび前記第2ボタンに、第3ボタンを加えた三つのボタンを含み、
     前記制御部は、前記三つのボタンのうちのいずれか一つのボタンの個別操作、前記三つのボタンのうちの2つのボタンの同時操作、あるいは、前記三つのボタン全ての同時操作に応じて、前記ティーチモードの選択を受け付ける、ロボット装置。
    The robot device according to claim 2,
    The operation button group includes three buttons, the first button, the second button, and a third button,
    The control unit may control the control unit according to the individual operation of any one of the three buttons, the simultaneous operation of two of the three buttons, or the simultaneous operation of all three buttons. A robot device that accepts the selection of teach mode.
  4.  請求項3に記載のロボット装置において、
     前記三つのボタンは、前記第1ボタンの一方の側に前記第2ボタンが、他方の側に前記第3ボタンが配置されるよう配列され、
     前記制御部は、前記第1ボタンの単独操作、前記第1ボタンおよび前記第2ボタンの同時操作、前記第1ボタンおよび前記第3ボタンの同時操作、あるいは、前記三つのボタン全ての同時操作に応じて、前記ティーチモードの選択を受け付ける、ロボット装置。
    The robot device according to claim 3,
    The three buttons are arranged such that the second button is placed on one side of the first button, and the third button is placed on the other side,
    The control unit is configured to operate the first button alone, simultaneously operate the first button and the second button, simultaneously operate the first button and the third button, or simultaneously operate all three buttons. The robot device accepts the selection of the teaching mode according to the teaching mode.
  5.  請求項4に記載のロボット装置において、
     前記制御部は、
      前記第1ボタンが単独操作されると、前記複数の動作軸の全てをフリー動作とし、
      前記第1ボタンおよび前記第2ボタンが同時操作されると、前記ロボットアームが水平面でのみ移動フリーとなるよう前記複数の動作軸を固定し、
      前記第1ボタンおよび前記第3ボタンが同時操作されると、前記ロボットアームが垂直平面でのみ移動フリーとなるよう前記複数の動作軸を固定し、
      前記三つのボタン全てが同時操作されると、前記ロボットアームの姿勢を維持するよう前記複数の動作軸を固定する、ロボット装置。
    The robot device according to claim 4,
    The control unit includes:
    When the first button is operated alone, all of the plurality of motion axes are set to free motion,
    fixing the plurality of operating axes so that when the first button and the second button are operated simultaneously, the robot arm can move freely only in a horizontal plane;
    fixing the plurality of operating axes so that when the first button and the third button are operated simultaneously, the robot arm can move freely only in a vertical plane;
    A robot device that fixes the plurality of operating axes to maintain the posture of the robot arm when all three buttons are operated simultaneously.
  6.  請求項5に記載のロボット装置において、
     前記制御部は、
      前記第2ボタンの単独操作により、前記ロボットアームの姿勢を維持した状態で水平面でのみ移動フリーとなるよう前記複数の動作軸を固定し、
      前記第3ボタンの単独操作により、前記ロボットアームの姿勢を維持した状態で垂直平面でのみ移動フリーとなるよう前記複数の動作軸を固定し、
      前記第2ボタンおよび前記第3ボタンが同時操作されると、前記ロボットアームの位置を維持するよう前記複数の動作軸を固定する、ロボット装置。
    The robot device according to claim 5,
    The control unit includes:
    By single operation of the second button, the plurality of operating axes are fixed so that the robot arm can move freely only in a horizontal plane while maintaining its posture;
    By single operation of the third button, the plurality of operating axes are fixed so that the robot arm can move freely only in a vertical plane while maintaining its posture;
    A robot device, wherein when the second button and the third button are operated simultaneously, the plurality of operating axes are fixed so as to maintain the position of the robot arm.
  7.  請求項2に記載のロボット装置において、
     前記第1ボタンおよび前記第2ボタンは、操作者の片方の手指で同時操作が可能な位置に配置され、
     前記制御部は、前記第1ボタンまたは前記第2ボタンの単独操作、前記第1ボタンおよび前記第2ボタンの同時操作により、前記ロボットアームの移動フリー状態を切り替える、ロボット装置。
    The robot device according to claim 2,
    The first button and the second button are arranged at positions where they can be operated simultaneously with one finger of the operator,
    The control unit may switch the free movement state of the robot arm by operating the first button or the second button alone or by simultaneously operating the first button and the second button.
  8.  請求項7に記載のロボット装置において、
     前記制御部は、
      前記第1ボタンが単独操作されると、前記ロボットアームが水平面でのみ移動フリーとなるよう前記複数の動作軸を固定し、
      前記第2ボタンが単独操作されると、前記ロボットアームが垂直平面でのみ移動フリーとなるよう前記複数の動作軸を固定し、
      前記第1ボタンおよび前記第2ボタンが同時操作されると、前記複数の動作軸の全てをフリー動作とする、ロボット装置。
    The robot device according to claim 7,
    The control unit includes:
    When the first button is operated alone, the plurality of operating axes are fixed so that the robot arm can move freely only in a horizontal plane;
    When the second button is operated alone, the plurality of operating axes are fixed so that the robot arm can move freely only in a vertical plane;
    A robot device, wherein when the first button and the second button are operated simultaneously, all of the plurality of motion axes are set to free motion.
PCT/JP2022/026675 2022-07-05 2022-07-05 Robot device WO2024009382A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026675 WO2024009382A1 (en) 2022-07-05 2022-07-05 Robot device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026675 WO2024009382A1 (en) 2022-07-05 2022-07-05 Robot device

Publications (1)

Publication Number Publication Date
WO2024009382A1 true WO2024009382A1 (en) 2024-01-11

Family

ID=89452958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026675 WO2024009382A1 (en) 2022-07-05 2022-07-05 Robot device

Country Status (1)

Country Link
WO (1) WO2024009382A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389278A (en) * 1986-10-02 1988-04-20 株式会社東芝 Industrial-robot teaching device
JP2012139754A (en) * 2010-12-28 2012-07-26 Kawasaki Heavy Ind Ltd Control device and teaching method for seven-shaft multi-joint robot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389278A (en) * 1986-10-02 1988-04-20 株式会社東芝 Industrial-robot teaching device
JP2012139754A (en) * 2010-12-28 2012-07-26 Kawasaki Heavy Ind Ltd Control device and teaching method for seven-shaft multi-joint robot

Similar Documents

Publication Publication Date Title
US9339934B2 (en) Method for manually adjusting the pose of a manipulator arm of an industrial robot and industrial robots
US7211978B2 (en) Multiple robot arm tracking and mirror jog
CN106493711B (en) Control device, robot, and robot system
JP7279180B2 (en) articulated robot
WO2012090440A1 (en) Control device and teaching method for seven-shaft multi-joint robot
KR102071162B1 (en) Manipulators for controlling or programming manipulators
US20220250237A1 (en) Teaching device, teaching method, and recording medium
JP2009034754A (en) Power assist apparatus and its control method
JPH06250728A (en) Direct teaching device for robot
CN111356560B (en) Operating device
WO2024009382A1 (en) Robot device
JP2015231659A (en) Robot device
JP2001260062A (en) Teaching device for industrial robot
JP7124439B2 (en) Control device and robot system
JP7208443B2 (en) A control device capable of receiving direct teaching operations, a teaching device, and a computer program for the control device
CN111482947B (en) Horizontal multi-joint robot
JP6823795B2 (en) Work equipment and teaching methods in work equipment
JP7172485B2 (en) robot controller
JPH08336785A (en) Industrial robot teaching device
JP2009274191A (en) Working robot and computer program applied to the working robot
JP2824134B2 (en) Control device of different structure master-slave manipulator
US20220250236A1 (en) Teaching device, teaching method, and recording medium
WO2024004037A1 (en) Robot device, and parameter adjusting method
US20230286142A1 (en) Robot teaching control method, robot teaching apparatus, and robot system
US20230142821A1 (en) Method for Precise, Intuitive Positioning of Robotic Welding Machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950176

Country of ref document: EP

Kind code of ref document: A1