WO2024008214A1 - 一种离子型稀土浸出剂的制备方法 - Google Patents

一种离子型稀土浸出剂的制备方法 Download PDF

Info

Publication number
WO2024008214A1
WO2024008214A1 PCT/CN2023/117024 CN2023117024W WO2024008214A1 WO 2024008214 A1 WO2024008214 A1 WO 2024008214A1 CN 2023117024 W CN2023117024 W CN 2023117024W WO 2024008214 A1 WO2024008214 A1 WO 2024008214A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
mineral powder
preparation
ionic
ionic rare
Prior art date
Application number
PCT/CN2023/117024
Other languages
English (en)
French (fr)
Inventor
谭宗勇
雷震彬
覃祚明
林成旭
赵明勇
唐祥俊
***
胡明振
农永萍
周德炎
Original Assignee
广西华锡有色金属股份有限公司
广西华锡集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211242468.2A external-priority patent/CN115478182B/zh
Priority claimed from CN202310367797.8A external-priority patent/CN116273075A/zh
Priority claimed from CN202310367804.4A external-priority patent/CN116272840A/zh
Application filed by 广西华锡有色金属股份有限公司, 广西华锡集团股份有限公司 filed Critical 广西华锡有色金属股份有限公司
Priority to AU2023237173A priority Critical patent/AU2023237173A1/en
Priority to ZA2023/09467A priority patent/ZA202309467B/en
Priority to ZA2023/09466A priority patent/ZA202309466B/en
Priority to ZA2023/09468A priority patent/ZA202309468B/en
Priority to ZA2024/00277A priority patent/ZA202400277B/en
Priority to ZA2024/00279A priority patent/ZA202400279B/en
Priority to ZA2024/00278A priority patent/ZA202400278B/en
Publication of WO2024008214A1 publication Critical patent/WO2024008214A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/18Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/29Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/72Candida
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/84Pichia

Definitions

  • This application belongs to the technical field of rare earth hydrometallurgy, and specifically relates to a preparation method of an ionic rare earth leaching agent.
  • Rare earth resources are called "universal soil” and are important strategic reserve resources in my country. Important manufacturing raw materials such as rare earth materials for permanent magnets, hydrogen storage, luminescence, and catalysis have become an important basis for new material manufacturing and a key resource for the development of cutting-edge national defense technology. my country has abundant rare earth resources, forming a distribution pattern of light rare earths in the north and heavy rare earths in the south. Due to backward rare earth technology and over-exploitation in the early stage, it not only caused ecological damage, but also caused the waste and loss of rare earth resources.
  • the rare earth elements in ionic rare earth ores are in the state of hydrated or hydroxyl hydrated cations and are adsorbed on weathered crust clay minerals, such as kaolin and montmorillonite, with a content of about 0.3 to 0.05%.
  • weathered crust clay minerals such as kaolin and montmorillonite
  • rare earth ions encounter electrolyte cations with more active chemical properties ( K + , Na + , Mg 2+ , Ca 2+ , NH 4 + , etc.) can be exchanged and analyzed from clay minerals.
  • the patent publication number CN113699389A discloses a method for leaching and purifying rare earth concentrates. This method uses hydrochloric acid solution as the leaching agent, acts on the rare earth concentrate powder, and stirs it under the conditions to conduct small tests; however, this method uses hydrochloric acid and is easy to The leaching slag is acidified, and the pH of the supernatant liquid is too low and needs to be treated to the emission standard.
  • the patent publication number is CN113046552A, which discloses a method for leaching weathered husks of rare earth minerals using plant extracts.
  • the method uses one or more raw materials from oak, bamboo, jujube, rice husk and corn cob to extract Pyrolysis solution or wood vinegar solution is then mixed with ammonium sulfate or magnesium sulfate, and then sulfuric acid or sodium hydroxide is used to adjust the pH value to 1 to 6.
  • the leaching rate of ionic rare earths in the small-scale test of the leaching agent can reach 93.7%; but this The method is to use wood vinegar to cooperate with NH + to leach rare earths in an acidic environment, but it is still inevitable that the supernatant will contain ammonia nitrogen, so it still needs to be improved.
  • test results show that after adding sesbania gum, the filtration performance of the filter cake is improved, the diffusion resistance during the exchange process is reduced, the filtration strength is improved while ensuring the rare earth leaching rate, and it plays the role of flocculation and filter aid. However, its leaching rate still needs to be improved.
  • the purpose of this application is to solve the above technical problems and provide a preparation method of an ionic rare earth leach agent that is pollution-free, economical, safe, environmentally friendly and has a high rare earth leaching rate.
  • a preparation method of ionic rare earth leaching agent including the following steps:
  • the domestication described in the above step (1) is to inoculate microorganisms into rare earth activated mineral powder culture medium for culture, the initial microbial inoculum amount is ⁇ 1.2 ⁇ 10 7 /mL, and the inoculation temperature is 15°C to 60°C.
  • the acclimation time is 36 to 240 hours, and a microbial suspension is obtained;
  • the microorganism is one or more of actinomycetes and yeast;
  • the rare earth activated mineral powder culture medium is composed of 2 to 30g/L carbon source, It is composed of 5 ⁇ 15g/L nitrogen source, 1 ⁇ 10g/L growth factor, 0.42 ⁇ 4.2g/L inorganic salt, 0.52 ⁇ 10g/L rare earth activated mineral powder and remaining water.
  • the above-mentioned actinomycetes are Micromonospora
  • the yeast is Candida or Pichia pastoris
  • the carbon source is one of fructose, lignin, calcium carbonate and protein, or A variety of
  • the nitrogen source is one or more of amino acids, proteins, nitrates, peptone and urea
  • the growth factor is one or more of yeast extract, corn steep liquor and wort
  • the salt is a combination of potassium nitrate, sodium chloride, potassium phosphate, magnesium sulfate and iron sulfate
  • the rare earth activated mineral powder is a combination of ionic rare earth mineral powder and activated mineral powder.
  • the above-mentioned potassium nitrate dosage is 0.1-1.2g/L
  • the sodium chloride dosage is 0.1-0.9g/L
  • the potassium phosphate dosage is 0.07-0.7g/L
  • the sulfuric acid dosage The dosage of magnesium is 0.1-0.9g/L
  • the dosage of iron sulfate is 0.05-0.5g/L
  • the dosage of ionic rare earth mineral powder is 0.5-4g/L
  • the dosage of activated mineral powder is 0.02-6g/L .
  • the amplification culture in the above step (2) the culture temperature is 15°C to 60°C, the culture time is 36 to 240 hours, the additive is activated mineral powder, and the additive is the amplification culture solution 1% to 6% of the mass is added, and the volume ratio of the microbial suspension to the amplification culture medium is 1:10000 to 1:50.
  • the above-mentioned preparation method of activated mineral powder is to add the activator to the active metal-containing mineral powder in weight percentage, and roast it at 400-900°C for 0.5-5 hours.
  • the activator is one or more of calcium chloride, sodium chloride, potassium carbonate, magnesium carbonate and calcium carbonate
  • the active metal-containing mineral powder is one or more of mica powder, feldspar powder and bentonite;
  • the dosage of the activator is 5% to 40% by weight of the active metal mineral powder.
  • the above-mentioned mica powder is lepidolite ore powder;
  • the feldspar powder is one or both of potassium feldspar ore powder and albite ore powder.
  • the modification method of Tianqing gum in the above step (3) is to add 0.5 to 5.0g of Tianqing gum and 1.0 to 6.5g of strong alkali solid to 100 mL of monochloroacetic acid solution. Stir for 5 to 60 minutes at a temperature of 10 to 35°C to place the solution in a strongly alkaline environment, then vigorously stir for 1 to 6 hours at a temperature of 40 to 80°C, and then separate by suction filtration to obtain alkali metal modified carboxymethyl alkyl gum.
  • the above-mentioned modified Tianqing rubber is added in an amount of 0.05% to 0.2% of the mass of the ionic rare earth leachant.
  • Me is Na or K metal.
  • the principle of this application is to utilize the excellent ion and cation exchange properties of organic acids, various proteases and mineral powder produced during the microbial metabolism process, and synergistically add modified Tianqing gum to improve the permeability of the leaching agent through complexation or ion exchange. , to achieve the effect of improving the leaching rate of ionic rare earths.
  • activated mineral powder is an active metal-containing mineral powder in nature that has excellent cation exchange function after activation.
  • Activated mineral powder and ionic rare earth mineral powder are used as culture medium components to domesticate microorganisms so that the microorganisms can react in the above-mentioned ions. Survive in the solution and improve the leaching rate of synergistic leaching of ionic rare earths.
  • the leaching agent of this application is non-toxic and non-polluting. After the rare earths are precipitated from the leach solution, the supernatant does not contain ammonia nitrogen, which eliminates water pollution sources from the source of the process. In addition, potassium ions can improve the soil, so that after leaching the rare earth slag, it will not be affected by pollution, on the contrary, it improves the soil quality of the slag, so this is a green and environmentally friendly leaching agent.
  • the ionic rare earth leaching agent of the present application is obtained by amplifying and cultivating domesticated microorganisms and ionic rare earth mineral powder in nature with activated mineral powder, and the raw materials of the activated mineral powder include mica powder, feldspar powder, bentonite and other active metals.
  • Mineral powder is composed of K + , Na + , Mg 2+ , Ca 2+ and other chemical elements, which are abundant in nature; sesbania gum is a product obtained by processing and separating sesbania seeds, and is a natural polymer compound (its molecular weight is 250,000), thus reducing the cost of raw materials, making it economical and environmentally friendly.
  • indium selenide is used due to its good electrical, optical and mechanical properties, low toxicity and environmental friendliness. Indium selenide is an n-type semiconductor with a direct narrow band gap of 1.36 to 2.0 eV, giving it excellent visible light absorption.
  • the preparation methods of indium selenide include hydrothermal method, solvothermal method, two-step hydrothermal calcination method, thermal evaporation method, chemical vapor deposition method, thermal injection method and molecular beam epitaxy method.
  • Wei et al. (Applied Catalysis B: Environment 260 (2020) 118218) reported the preparation of indium selenide using a hydrothermal method.
  • the selenium powder was dissolved in a mixed solvent (NaOH solution + hydrazine hydrate solution + EDTA solution), and then the solution was transferred to Add to autoclave InCl 3 ⁇ 4H 2 O is sealed and heated to finally obtain ⁇ -In 2 Se 3 . Ding Wei et al.
  • the purpose of this application is to provide a method for preparing In 2 Se 3 nanomaterials for photocatalytic degradation of tetracycline.
  • the prepared In 2 Se 3 nanomaterials can have excellent photocatalytic degradation of tetracycline, and the preparation process is simple and easy. operate.
  • This application provides a method for preparing In 2 Se 3 nanomaterials for photocatalytic degradation of tetracycline, which is characterized by including the following steps:
  • the method for preparing a photocatalyst for tetracycline degradation is characterized in that the metal precursor of indium in step (1) is acetate, acetylacetonate or chlorine. salt.
  • the method for preparing a photocatalyst for tetracycline degradation is characterized in that the molar ratio of the metal precursor of indium and selenium powder in step (1) is 0.332 to 1 .
  • the preparation method of a photocatalyst for tetracycline degradation is characterized in that the solvent in step (1) is an alkylamine, optionally oleylamine, dodecaamine or Hexadecylamine.
  • the present application also provides In 2 Se 3 nanomaterials prepared by the preparation method of In 2 Se 3 nanomaterials for photocatalytic degradation of tetracycline, characterized in that the In 2 Se 3 nanomaterials have a morphology of nanometer sheets and nanoparticles.
  • This application also provides In 2 Se 3 nanomaterials prepared by the preparation method of In 2 Se 3 nanomaterials for photocatalytic degradation of tetracycline, and the In 2 Se 3 nanomaterials have visible light absorption characteristics.
  • the organic solvent used for cleaning in steps (2) and (3) is one or more of n-hexane, ethanol and acetone.
  • the organic solvent used for dispersion in step (3) is toluene, mercaptopropionic acid, cysteine or ammonium thiocyanate.
  • the size and morphology of the provided In 2 Se 3 nanomaterials can be adjusted by changing the reaction temperature and reactant ratio.
  • the photocatalytic performance of indium selenide with different sizes/morphologies is different, but it still has good performance. photocatalytic performance.
  • nanomaterials are prepared by a liquid phase one-pot method.
  • the preparation process is simple, the reaction conditions are easy to control, the cost is low, and it is convenient for industrial production.
  • the prepared In 2 Se 3 photocatalyst is used for tetracycline degradation at normal temperature and pressure. It is simple and easy to operate and has broad application prospects in the field of photocatalytic degradation.
  • the biodegradation method takes a long time to repair, is slow to produce results, and has few types of decomposable pollutants.
  • adsorption technology is considered one of the simplest, effective and economical methods to remove organic dyes. Therefore, it is crucial to develop an efficient and green adsorption material.
  • Some traditional natural adsorbents such as activated carbon materials, clay, etc. have been developed for the removal of dyes from wastewater.
  • the above materials also have shortcomings such as not being acid-resistant and poor adsorption effect.
  • metal sulfide nanomaterials have attracted widespread attention in dye wastewater treatment due to their high specific surface area, special microstructure and high surface activity.
  • SnS 2 has the advantages of simple synthesis, adsorption With the advantages of high performance and low cost, it is expected to become a new type of organic dye adsorbent.
  • SnS 2 can stably exist in acidic or neutral aqueous solutions, which greatly expands its application in wastewater treatment.
  • the purpose of this application is to provide a method for preparing flaky tin disulfide nanomaterials for efficient adsorption of organic dyes.
  • the prepared nanoflower-like SnS 2 maintains the advantages of high specific area of nanomaterials and avoids the problem of nanomaterials due to If the size is too small, agglomeration may easily occur.
  • the layered hierarchical structure can effectively improve the diffusion of dye molecules, provide a better transport path, and provide a large number of adsorption sites for the adsorption process.
  • This application provides a method for preparing flaky tin disulfide nanomaterials for efficient adsorption of organic dyes, which is characterized by including the following steps:
  • step (2) Transfer the mixed solution in step (1) to a 50mL polytetrafluoroethylene-lined reaction kettle, place the reaction kettle in a constant temperature blast drying oven, heat it to 200 ⁇ 220°C, and keep it at this temperature for 8 ⁇ 12h;
  • the preparation method of sheet-shaped tin disulfide nanomaterials for efficient adsorption of organic dyes is characterized in that the sulfur source described in step (1) is thiourea (CH 4 N 2 S), L-Cysteine (L-Cysteine) or thioacetamide (TAA).
  • the sulfur source described in step (1) is thiourea (CH 4 N 2 S), L-Cysteine (L-Cysteine) or thioacetamide (TAA).
  • the preparation method of sheet-shaped tin disulfide nanomaterials for efficient adsorption of organic dyes is characterized in that the stannous chloride dihydrate described in step (1) and The molar ratio of the sulfur source is 0.1 to 0.2.
  • the preparation method of sheet-shaped tin disulfide nanomaterials for efficient adsorption of organic dyes is characterized in that the solvent described in step (1) is diethylene glycol or triethylene glycol. glycol.
  • This application also provides tin disulfide nanomaterials prepared by the preparation method of flaky tin disulfide nanomaterials for efficient adsorption of organic dyes, which is characterized in that the flaky tin disulfide can be connected and assembled with each other.
  • the flower-like structure is formed, and the diameter of the nanoflower is 3 to 10 ⁇ m.
  • the triethylene glycol is triethylene glycol.
  • the diethylene glycol is diethylene glycol.
  • the prepared tin disulfide has a flower-like structure composed of interconnected and assembled nanosheets.
  • the diameter of the nanoflowers is 3 to 10 ⁇ m and has a high specific surface area.
  • the morphology and size of the provided tin disulfide nanomaterials can be controlled by adjusting parameters such as reaction solvent, reaction temperature and time, and the proportion of required precursors.
  • the adsorption properties of tin disulfide with different shapes/sizes are: differences, but still has high specific surface area and high adsorption capacity.
  • Tin disulfide nanomaterials are synthesized by a simple solvothermal method. The synthesis process is simple, the cost is relatively low, and it is more conducive to industrial production.
  • the prepared tin disulfide adsorbent is used to adsorb the organic dye rhodamine b at normal temperature and pressure.
  • the operation is simple and has broad application prospects in the field of adsorption of industrial organic dyes.
  • Figure 1 is a test report diagram of the ionic rare earth ore used in this application.
  • Figure 2 is the XRD pattern of activated mineral powder in Example 3 of the present application.
  • Figure 3 is an SEM image of activated mineral powder in Example 3 of the present application.
  • Figure 4 is an EDS diagram of activated mineral powder in Example 3 of the present application.
  • Figure 5 is a graph of the rare earth leaching concentration detection report after the ionic rare earth leachant in Example 3 of the present application is applied to the rare earth raw ore;
  • Figure 6 is a graph showing the rare earth leaching concentration detection report after the (NH 4 ) 2 SO 4 leaching agent of Comparative Example 1 was applied to the rare earth raw ore;
  • Figure 7 shows the rare earth leaching concentration detection report of Comparative Example 2 (NH 4 ) 2 SO 4 and modified sesbania gum leaching agent applied to rare earth raw ore;
  • Figure 8 is a graph showing the rare earth leaching concentration detection report after the amplification culture medium of Comparative Example 3 was used as a leaching agent in the rare earth raw ore.
  • Figure 9 is an X-ray diffraction pattern of the In 2 Se 3 nanomaterial prepared in Example 6 of the present application.
  • Figure 10 is a low-magnification transmission electron microscope photo of the In 2 Se 3 nanomaterial prepared in Example 6 of the present application.
  • the scale bar is 200nm;
  • Figure 11 is a high-magnification transmission electron microscope photo of the In 2 Se 3 nanomaterial prepared in Example 6 of the present application.
  • the scale bar is 5 nm;
  • Figure 12 is a UV-visible diffuse reflection diagram of the In 2 Se 3 nanomaterial prepared in Example 6 of the present application.
  • Figure 13 is a graph showing the photocatalytic degradation rate of tetracycline by In 2 Se 3 nanomaterials prepared in Example 6 of the present application;
  • Figure 14 is an X-ray diffraction pattern of the tin disulfide nanomaterial prepared in Example 9, in which the abscissa is the 2 ⁇ diffraction angle and the ordinate is the diffraction intensity;
  • Figure 15 is a scanning electron microscope image (SEM) of the tin disulfide nanomaterial prepared in Example 9;
  • Figure 16 is a transmission electron microscope (TEM) image of the tin disulfide nanomaterial prepared in Example 9;
  • Figure 17 is a high-magnification transmission electron microscope image (HRTEM) of the tin disulfide nanomaterial prepared in Example 9;
  • Figure 18 is a curve of the solution concentration and initial concentration ratio changing with time when the tin disulfide nanomaterial prepared in Example 9 adsorbs the organic solvent rhodamine b under dark conditions.
  • the abscissa is time (min) and the ordinate is C/ C 0 (%).
  • the ionic rare earth ores and ionic rare earth ore powder mentioned in the examples of this application are all obtained from ionic rare earths in Cenxi City, Wuzhou City, Guangxi Zhuang Autonomous Region.
  • the ore powder is dry powder of ionic rare earth ores ground to less than 200 mesh.
  • the test report is shown in Figure 1.
  • the rare earth content of the mineral sample is: 0.12% for the full phase and 0.062% for the ionic phase.
  • the rare earth forms in ionic rare earth ores can be divided into four phases: water-soluble phase, exchangeable ion phase, mineral phase and colloidal phase.
  • the proportions of the four phases to the total amount of rare earths are approximately ⁇ 0.0001%, 50 % ⁇ 90%, 1% ⁇ 10%, 5% ⁇ 40%.
  • the water-soluble phase rare earths are the part of rare earth resources that can be free in water.
  • the exchangeable ionic phase rare earths refer to the rare earth resources adsorbed on clay with hydroxyl groups or water and hydroxyl groups.
  • the mineral phase refers to the rare earth resources that make up the mineral crystal lattice or are dispersed and formed in rock minerals.
  • Ionic and colloidal rare earths refer to rare earth oxides or hydroxides that are insoluble in water, especially rare earth resources adsorbed on iron/manganese oxides.
  • colloidal rare earths and mineral rare earths cannot be used through direct replacement leaching. Instead, strong acids such as sulfuric acid and hydrochloric acid or the addition of roasted acid leaching are used to convert them into ionic forms. Only then can more active materials than rare earths be used. Cation displacement leaching. This application mainly focuses on leaching the exchangeable ion phase in the rare earth mineral sample.
  • the full phase mentioned in the embodiment refers to the sum of the four phases of the rare earth.
  • the culture medium contains 6.0g/ L peptone, 6.0g/L amino acids, 22g/L fructose, 4.5g/L yeast extract, 0.3g/L potassium nitrate, 0.4g/L sodium chloride, 0.4g/L potassium phosphate, 0.2g/L magnesium sulfate, 0.1g/L iron sulfate, 1.2g/L ionic rare earth mineral powder, 0.03g/L activated mineral powder and the remainder water to obtain a microbial suspension.
  • amplification culture solution At 21°C, add 27g of the activated mineral powder obtained in step (1) and 5mL of the microbial suspension in step (3) to 1L of distilled water for amplification and culture for 48 hours to obtain an amplification culture solution.
  • ionic rare earth leaching agent Add 0.8g of SG-CH 2 COOK obtained in step (2) to 1 L of the amplification culture solution obtained in step (4), and mix evenly to obtain an ionic rare earth leachant.
  • the pH value of the supernatant was 8.2
  • the COD value was 68.9mg/L
  • the ammonia nitrogen was 5.29mg/L
  • other testing indicators were in compliance with the rare earth industrial pollutant emission standard "GB/T 26451-2011".
  • the culture medium contains 6.0g/ L peptone, 6.0g/L amino acids, 22g/L fructose, 4.5g/L yeast extract, 0.3g/L potassium nitrate, 0.4g/L sodium chloride, 0.4g/L potassium phosphate, 0.2g/L magnesium sulfate, 0.1g/L iron sulfate, 1.2g/L ionic rare earth mineral powder, 0.03g/L activated mineral powder and the remainder water to obtain a microbial suspension.
  • amplification culture solution At 21°C, add 27g of the activated mineral powder obtained in step (1) and 5 mL of the microbial suspension in step (3) to 1L of distilled water for amplification and culture for 48 hours to obtain an amplification culture solution.
  • ionic rare earth leaching agent Add 0.8g of SG-CH 2 COOK obtained in step (2) to 1 L of the amplification culture solution obtained in step (4), and mix evenly to obtain an ionic rare earth leachant.
  • the pH value of the supernatant was 8.5
  • the COD value was 14.29mg/L
  • the ammonia nitrogen was 5.96mg/L
  • other testing indicators were in compliance with the rare earth industrial pollutant emission standard "GB/T 26451-2011".
  • the culture medium contains 6.0g/ L peptone, 60g/L amino acids, 22g/L fructose, 4.5g/L yeast extract, 0.3g/L potassium nitrate, 0.4g/L sodium chloride, 0.4g/L potassium phosphate, 0.2g/L magnesium sulfate, 0.1g/L iron sulfate, 1.2g/L ionic rare earth mineral powder, 0.03g/L activated mineral powder and the remainder water to obtain a microbial suspension.
  • amplification culture solution At 21°C, add 27g of the activated mineral powder obtained in step (1) and 5 mL of the microbial suspension in step (3) to 1L of distilled water for amplification and culture for 48 hours to obtain an amplification culture solution.
  • the pH value of the supernatant was 8.46
  • the COD value was 36.5mg/L
  • the ammonia nitrogen was 6.49mg/L
  • other testing indicators were in compliance with the rare earth industrial pollutant emission standard "GB/T 26451-2011".
  • the culture medium contains 3.0g/ L protein, 2.0g/L urea, 2g/L lignin, 1g/L corn steep liquor, 0.1g/L potassium nitrate, 0.1g/L sodium chloride, 0.07g/L potassium phosphate, 0.1g/L magnesium sulfate, 0.05g/L iron sulfate, 0.5g/L ionic rare earth mineral powder, 0.02g/L activated mineral powder and the remainder water to obtain a microbial suspension.
  • amplification culture solution Add 2.5g of the activated mineral powder obtained in step (1) and 5 mL of the microbial suspension in step (3) to 250 mL of distilled water at 15°C for amplification and culture for 240 hours to obtain an amplification culture solution.
  • the pH value of the supernatant was 8.4
  • the COD value was 27.9mg/L
  • the ammonia nitrogen was 7.69mg/L
  • other testing indicators were in compliance with the rare earth industrial pollutant emission standard "GB/T 26451-2011".
  • the culture medium contains 10.0g/ L peptone, 5.0g/L amino acids, 30g/L calcium carbonate, 10g/L wort, 1.2g/L potassium nitrate, 0.9g/L sodium chloride, 0.7g/L potassium phosphate, 0.9g/L magnesium sulfate, 0.5g/L iron sulfate, 4g/L ionic rare earth mineral powder, 6g/L activated mineral powder and the remainder water to obtain a microbial suspension.
  • amplification culture solution Add 3kg of the activated mineral powder obtained in step (1) and 5mL of the microbial suspension in step (3) to 50L of distilled water at 60°C for amplification and culture for 36 hours to obtain an amplification culture solution.
  • ionic rare earth leachant Add 100g of SG-CH 2 COOK obtained in step (2) to 50L of the amplification culture solution obtained in step (4), and mix evenly to obtain an ionic rare earth leachant.
  • the pH value of the supernatant was 8.51
  • the COD value was 41.7mg/L
  • the ammonia nitrogen was 11.22mg/L
  • other testing indicators were in compliance with the rare earth industrial pollutant emission standard "GB/T 26451-2011”.
  • Comparative Example 1 Add 0.15mol/L (NH 4 ) 2 SO 4 to 500 mL of distilled water and stir evenly to obtain leaching agent B; collect and obtain 325 mL of leaching liquid.
  • Comparative Example 2 Add 0.15 mol/L (NH 4 ) 2 SO 4 and 0.15 g of the potassium-modified carboxymethyl agarum gum of Example 3 to 500 mL of distilled water, and stir evenly to obtain leaching agent C. Collect 340 mL of leachate.
  • Comparative Example 3 Take the amplification culture liquid of Example 3 as leaching agent D. Collect 325 mL of leachate.
  • Example 3 Use the same leaching process as in Example 3: The cylindrical empty tube is fixed upright, a filter is put on the bottom of the column, 500g, 0.062% of the ionic rare earth ore is added, and then 250g of the rare earth leaching agent of the above comparative examples 1 to 10 is dripped in. After the leaching agent is dripped, clean water is slowly added to make the leachate Wash out from the ore body and stop collecting when the leachate mass exceeds 250mL. The obtained leachate was sent for testing, and the results are shown in Table 1, and the original test parts are shown in Figures 5 to 8.
  • Comparative Example 1 and Comparative Example 2 illustrate that when traditional (NH 4 ) 2 SO 4 is used as the leaching agent, the modified modified sesbania gum helps to increase the leaching rate of ionic rare earths;
  • Example 3 and Comparative Example 3 illustrate that the microbial suspension amplification culture medium and modified sesbania gum have the effect of synergistically leaching ionic rare earths.
  • Example 3 and Comparative Example 2 Comparative Example 1 and Comparative Example 3 all show that when the microbial suspension amplification culture medium is used as a leaching agent, the leaching effect of ionic rare earths is better than that of traditional (NH 4 ) 2 SO 4 As a leaching agent, the microbial suspension amplification culture solution in Example 3 of the present application and the modified sesbania gum have the highest leaching rate of ionic rare earths.
  • This embodiment is an example of the preparation method of In 2 Se 3 nanomaterials for photocatalytic degradation of tetracycline described in this application.
  • the specific steps are as follows:
  • Figure 9 shows the X-ray diffraction pattern of the product.
  • the obtained product is In 2 Se 3 .
  • Figure 10 is a transmission electron microscope photo of the product. It can be observed that In 2 Se 3 has the shape of both nanosheets and nanoparticles.
  • Figure 11 shows the high-resolution electron microscopy image of the In 2 Se 3 nanophotocatalyst.
  • Figure 12 shows the UV-visible light absorption spectrum of In 2 Se 3 nanophotocatalyst.
  • FIG. 13 is a graph showing the degradation rate of tetracycline versus illumination time. The degradation rate reached 53% in 20 minutes.
  • This embodiment is another example of the preparation method of In 2 Se 3 nanomaterials for photocatalytic degradation of tetracycline described in this application.
  • the specific steps are as follows:
  • This embodiment is another example of the preparation method of In 2 Se 3 nanomaterials for photocatalytic degradation of tetracycline described in this application.
  • the specific steps are as follows:
  • tetracycline 20 mg/L tetracycline (80 ml) was degraded under normal temperature and pressure. Tetracycline concentration was determined by UV-visible spectrophotometry, and the degradation rate was calculated based on the concentration.
  • the evaluation method for the photocatalytic degradation of tetracycline performance of the catalyst is as follows: 50 mg of In 2 Se 3 is dispersed in a tetracycline (80 ml) aqueous solution with a concentration of 20 mg/L. Before the photocatalytic experiment, the solution is adsorbed in the dark for 20 min to allow the photocatalyst to interact with the tetracycline. The aqueous solution reaches adsorption-desorption equilibrium.
  • the solution was then irradiated with a 300W xenon lamp; 2 to 5 ml of the solution was taken out at regular intervals, the concentration of tetracycline was measured by UV-visible spectrophotometry, and the photocatalytic degradation efficiency of tetracycline by the In 2 Se 3 catalyst was calculated based on the concentration.
  • This embodiment is an example of the preparation method of flaky tin disulfide nanomaterials for efficient adsorption of organic dyes described in this application.
  • the specific steps are as follows:
  • Figure 14 shows the X-ray diffraction pattern of the product, which confirms that the product is mainly tin disulfide and contains a small amount of stannous sulfide (SnS), and the material has good crystallization.
  • Figure 15 is a scanning electron microscope image of tin disulfide. The morphology and size of the prepared samples are relatively uniform, and they are all nanoflower-like structures self-assembled by two-dimensional nanosheets.
  • Figure 16 Transmission electron microscope image of the prepared sample.
  • Figure 17 is the HRTEM image of the prepared sample.
  • Figure 18 shows the adsorption performance of the prepared sample to the organic solvent rhodamine b under dark conditions. The abscissa is time (min), and the ordinate is the ratio of solution concentration to initial concentration C/C 0 (%).
  • This embodiment is another example of the preparation method of flaky tin disulfide nanomaterials for efficient adsorption of organic dyes described in this application.
  • the specific steps are as follows:
  • This embodiment is another example of the preparation method of flaky tin disulfide nanomaterials for efficient adsorption of organic dyes described in this application.
  • the specific steps are as follows:
  • the evaluation method for the organic dye adsorption performance of the adsorbent is as follows: at room temperature (about 25°C), place 40 mg of the prepared tin disulfide adsorbent in the reactor, and inject 100 mL of a rhodamine b solution with a concentration of 20 mg/L. Stir continuously under dark conditions to fully disperse tin disulfide in the rhodamine b solution. Take 3 ml of the supernatant at regular intervals and measure the concentration of rhodamine b by UV-visible spectrophotometry. Calculate the adsorption of tin disulfide based on the concentration. The adsorption rate of rhodamine b.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Botany (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Catalysts (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本申请公开一种离子型稀土浸出剂的制备方法,包括如下步骤:(1)用稀土活化矿粉培养基驯化微生物,得到微生物悬浮液;(2)将微生物悬浮液与添加剂进行扩增培养,得到扩增培养液;(3)将改性后的田箐胶与所述扩增培养液混匀,即得到离子型稀土浸出剂。本申请中活化矿粉为自然界中的含活泼金属矿粉经过活化后具有优异的阳离子交换功能,用活化矿粉和离子型稀土矿粉作为培养基成分驯化微生物,使微生物能够在上述离子溶液中生存,提高协同浸出离子型稀土浸出率。

Description

一种离子型稀土浸出剂的制备方法 技术领域
本申请属于稀土湿法冶金技术领域,具体涉及一种离子型稀土浸出剂的制备方法。
背景技术
稀土资源被称为“万能之土”,是我国重要的战略储备资源。稀土材料永磁、储氢、发光、催化等重要制造原材料,成为新材料制造的重要依托和尖端国防技术开发的关键性资源。我国稀土资源储量丰富,形成北方轻稀土、南方重稀土的分布格局,由于早期稀土技术落后和过度开采,造成生态破坏的同时,也造成了稀土资源的浪费和流失。离子型稀土矿中稀土元素呈水合或羟基水合阳离子状态吸附于风化壳黏土矿物上,如高岭土,蒙脱,含量在0.3~0.05%左右,当稀土离子遇到化学性质更为活泼的电解质阳离子(K+、Na+、Mg2+、Ca2+、NH4 +等)时能被其从黏土矿物中交换解析下来。
近年来对离子型稀土的开采形成的以硫酸铵原地浸矿技术为主的浸出工艺,但浸出液总氨氮对水体造成污染,不再符合开采稀土与生态友好并行的发展理念。专利公开号为CN113699389A公开了一种稀土精矿的浸出和净化方法,该方法以盐酸溶液为浸出剂,作用于稀土精矿粉末,并在条件下搅拌进行小试验;但该方法使用盐酸,容易使浸出矿渣酸化,同时上清液pH过低需处理至排放标准,此外,实际开采过程中稀土矿用量多,制成粉末以及在搅拌条件下进行生产必将增加大量成本,因此不足以为工业化开采离子型稀土提供技术参考。专利公开号为CN113046579A公布了一种生物与化学协同浸出风化壳淋积型稀土矿的方法,其小试试验离子型稀土浸出率可达98.30%,在缓解环境污染前提下实现了稀土的清洁高效提取,但浸出剂制备过程中使用化学原料诸多,因此增加了稀土提取成本。专利公开号为CN113046552A公布了一种利用植物提取物浸出风化壳淋积型稀土矿的方法,该方法以柞木、竹子、酸枣、稻壳和玉米芯中的一种或多种原料,提取出热解液或木醋液,再与硫酸铵或硫酸镁混合,随后用硫酸或氢氧化钠调节pH值至1~6,其浸出剂小试试验离子型稀土浸出率可达93.7%;但该方法是利用木醋液协同NH+在酸性环境下浸出稀土,仍然不可避免使上清液含用氨氮,因此也仍需加以改善。文献《田菁胶及其化学改性产物对风化壳淋积型稀土矿浸矿的影响》,饶国华等,湿法冶金,第2期(总第54期),1995年6月,P10-13页,其针对风化壳淋积型稀土矿的特点,对田菁胶进行了次氯酸钠氧化改性、羧甲基化改性和磷酸酯化改性,考察原胶及改性胶对浸矿速度的影响。试验结果表明,加入田菁胶后,改善了滤饼的过滤性能,减少了交换过程中的扩散阻力,在保证稀土浸出率的前提下,提高了过滤强度,起到了絮凝和助滤的作用,但其浸出率仍待需提高。
发明内容
本申请的目的是解决上述技术问题,提供一种无污染、经济安全环保且稀土浸出率高的的离子型稀土浸出剂的制备方法。
为实现上述的目的,本申请的技术方案为:
一种离子型稀土浸出剂的制备方法,包括如下步骤:
(1)用稀土活化矿粉培养基驯化微生物,得到微生物悬浮液;
(2)将微生物悬浮液与添加剂进行扩增培养,得到扩增培养液;
(3)将改性后的田箐胶与所述扩增培养液混匀,即得到离子型稀土浸出剂。
作为进一步的技术方案,以上步骤(1)所述驯化,是将微生物接种至稀土活化矿粉培养基中培养,初始微生物接种量≥1.2×107个/mL,接种温度为15℃~60℃,驯化时间为36~240小时,得到微生物悬浮液;所述的微生物为放线菌和酵母菌中的一种或多种;所述稀土活化矿粉培养基由2~30g/L碳源、5~15g/L氮源、1~10g/L生长因子、0.42~4.2g/L无机盐、0.52~10g/L稀土活化矿粉和余量水组成。
作为进一步的技术方案,以上所述放线菌为小单孢菌,所述酵母菌为假丝酵母或毕赤酵母,所述碳源为果糖、木质素、碳酸钙和蛋白质中的一种或多种;所述氮源为氨基酸、蛋白质、硝酸盐、蛋白胨和尿素中的一种或多种;所述生长因子为酵母膏、玉米浆和麦芽汁中的一种或多种;所述无机盐为硝酸钾、氯化钠、磷酸钾、硫酸镁和硫酸铁的组合;所述稀土活化矿粉为离子型稀土矿粉与活化矿粉的组合。
作为进一步的技术方案,以上所述硝酸钾用量为0.1~1.2g/L,所述氯化钠用量为0.1~0.9g/L,所述磷酸钾用量为0.07~0.7g/L,所述硫酸镁用量为0.1~0.9g/L,所述硫酸铁用量为0.05~0.5g/L,所述离子型稀土矿粉用量为0.5~4g/L,所述活化矿粉用量为0.02~6g/L。
作为进一步的技术方案,以上步骤(2)所述扩增培养,培养温度为15℃~60℃,培养时间为36~240小时,所述添加剂为活化矿粉,所述添加剂按扩增培养液质量的1%~6%添加,所述微生物悬浮液与扩增培养液体积比为1:10000~1:50。
作为进一步的技术方案,以上所述活化矿粉的制备方法,是将活化剂按重量百分比加入到含活泼金属矿粉中,置于400~900℃下焙烧0.5~5小时后即得,所述活化剂为氯化钙、氯化钠、碳酸钾、碳酸镁和碳酸钙中的一种或多种,所述含活泼金属矿粉为云母粉、长石粉和膨润土中的一种或多种;所述活化剂用量为含活泼金属矿粉重量的5%~40%。
作为进一步的技术方案,以上所述云母粉为锂云母矿粉;所述长石粉为钾长石矿粉和钠长石矿粉中的一种或两种。
作为进一步的技术方案,以上步骤(3)所述田箐胶的改性方法,是向100mL的一氯乙酸溶液中加入0.5~5.0g的田箐胶、1.0~6 5g的强碱固体,于10~35℃温度下搅拌5~60min,使溶液处于强碱性环境条件,随后于40~80℃温度下强力搅拌1~6h,抽滤分离,得到碱金属改性羧甲基田箐胶。
作为进一步的技术方案,以上所述改性后的田箐胶添加量为离子型稀土浸出剂质量的0.05%~0.2%。
本申请中碱金属改性羧甲基田箐胶的改性化学方程式为:
(1)一氯乙酸碱金属溶液的制备:ClCH2COOH+MeOH==ClCH2COOMe+H2O
(2)碱金属改性羧甲基田箐胶:[C6H7O2(OH)3]n+nClCH2COOMe===[C6H7O2(OH)2OCH2COOMe]n+nMeCl+nH2O
Me为Na或K金属。
本申请的原理是利用微生物新陈代谢过程产生的有机酸、各种蛋白酶以及矿粉的优异离子阳离子交换性质,通过络合或离子交换作用,协同加入改性后的田箐胶提高浸出剂的渗透性能,达到提高离子型稀土浸出率的效果。
与现有技术相比,本申请的有益效果为:
1、本申请中活化矿粉为自然界中的含活泼金属矿粉经过活化后具有优异的阳离子交换功能,用活化矿粉和离子型稀土矿粉作为培养基成分驯化微生物,使微生物能够在上述离子溶液中生存,提高协同浸出离子型稀土浸出率。
2、本申请浸出剂无毒,无污染,浸出液沉淀出稀土后,上清液不含氨氮,从工艺源头消除水体污染源,此外,钾离子能够改善土壤,使得浸出稀土矿渣后,其不仅未受到污染,反而改善了矿渣的土质,因此这是一种绿色环保浸出剂。
3、本申请离子型稀土浸出剂通过驯化后的微生物与自然界中的离子型稀土矿粉配合活化矿粉扩增培养而得,且活化矿粉的原料云母粉、长石粉、膨润土等含活泼金属矿粉由K+、Na+、Mg2+、Ca2+等化学元素组成,其自然界储量丰富;田菁胶是田菁的种子通过加工分离后所得的产物,是一种天然的高分子化合物(其分子量为250000),从而原料成本降低,经济环保。
各种工业过程和人类活动产生的有害有机污染物严重影响水安全。例如甲基橙、溴酚蓝、苯酚和四环素等水污染物,因其高化学需氧量和致癌性对环境构成了严重威胁。然而,传统的物理分离技术、生物法、化学反应等水处理技术无法完全去除这些抗生素。
近些年来的研究表明,半导体催化剂可以借助太阳能降解四环素而无二次污染。将自然能源阳光与半导体材料相结合的光催化技术,是一种有效消除水环境污染物的策略之一,引起了研究人员的极大的关注。在各种无机半导体中,硒化铟由于其良好的电学、光学及机械性能、低毒性和环境友好等特点。硒化铟是一种n型半导体,具有1.36~2.0eV的直接窄带隙,使其具有优异的可见光吸收。
硒化铟的制备方法有水热法、溶剂热法、两步水热煅烧法、热蒸发法、化学气相沉积法、热注入法和分子束外延法等。Wei等(Applied Catalysis B:Environment 260(2020)118218)报道了采用水热法制备硒化铟,将硒粉溶于混合溶剂(NaOH溶液+水合肼溶液+EDTA溶液)内,再把溶液转移至高压釜中加入 InCl3·4H2O密封加热,最终得到γ-In2Se3。Ding Wei等(Inorganic Chemistry Frontier,2(2015)657)报道了采用两步水热煅烧法制备硒化铟,将氯化铟和氧化硒溶于混合溶剂(水+乙二胺)内,把溶液转移到高压釜内进行密封加热,得到四方无孔In-Se基前驱体;之后把In-Se基前驱体在N2气氛下进行热分解,得到多孔硒化铟四边形。然而,目前制备硒化铟的方法所需反应时间较长,步骤较为繁琐,不利于大规模的生产及应用。因此,研发一种简易的硒化铟纳米光催化材料的方法具有重大意义。
本申请旨在提供一种用于光催化降解四环素的In2Se3纳米材料的制备方法,所制备的In2Se3纳米材料能具有优异的光催化降解四环素的性能,并且制备工艺简单,易操作。
本申请提供一种用于光催化降解四环素的In2Se3纳米材料的制备方法,其特征在于,包括如下步骤:
(1)在惰性气体的保护下,将铟的金属前驱体、硒粉以及溶剂加入至反应容器内充分混合搅拌,在50~80℃下保温5~30min,使其混合均匀;
(2)升温至260~300℃,在此温度下保温30~120min,冷却至室温,将所得反应物用有机溶剂清洗多次,离心分离,真空干燥,得到粉体产物;
(3)把得到的粉体产物分散在有机溶剂中,然后放入封口的容器中,在室温下保持剧烈搅拌5~10h,将所得反应物用乙醇清洗多次,离心分离,真空干燥得到In2Se3光催化剂。
根据本申请的其中一种实施方式,所述的用于四环素降解的光催化剂的制备方法,其特征在于,步骤(1)所述的铟的金属前驱体为醋酸盐、乙酰丙酮盐或氯化盐。
根据本申请的其中一种实施方式,所述的用于四环素降解的光催化剂的制备方法,其特征在于,步骤(1)所述的铟的金属前驱体与硒粉的摩尔比为0.332~1。
根据本申请的其中一种实施方式,所述的用于四环素降解的光催化剂的制备方法,其特征在于,步骤(1)所述的溶剂为烷基胺,可选油胺、十二胺或十六胺。
本申请还提供所述的用于光催化降解四环素的In2Se3纳米材料的制备方法制备得到的In2Se3纳米材料,其特征在于,所述的In2Se3纳米材料形貌为纳米片和纳米颗粒。
本申请还提供所述的用于光催化降解四环素的In2Se3纳米材料的制备方法制备得到的In2Se3纳米材料,所述的In2Se3纳米材料具有可见光吸收的特性。
根据本申请的其中一种实施方式,步骤(2)、(3)中清洗用的有机溶剂为正己烷、乙醇和丙酮中的一种或两种以上。
根据本申请的其中一种实施方式,步骤(3)分散用的有机溶剂为甲苯、巯基丙酸、半胱氨酸或硫氰酸铵。
本申请的有益效果在于:
1、所提供的In2Se3纳米材料的尺寸和形貌均可通过改变反应温度以及反应物配比来调节,不同尺寸/形貌的硒化铟光催化性能有差异,但仍具有较好的光催化性能。
2、In2Se3纳米材料采用液相一锅法制备,制备过程简单,反应条件易控,成本低廉,便于工业化生产。
3、所制备的In2Se3光催化剂用于四环素降解在常温常压下进行,简单易操作,在光催化降解领域具有广泛的应用前景。
随着工业化进程的不断发展,纺织、造纸、油漆、皮革等行业不合理排放了大量含有有机染料的工业废水。工业废水中以罗丹明b为代表的有机污染物属于剧毒物质,一旦放入水中就很难被除去,这将对人类健康和生态环境造成极大的伤害。目前为止,有多种方法已经被应用在含有罗丹明b等有机染料的废水处理中,例如化学沉淀法、光催化降解法、膜分离法、生物降解法和吸附法等。但这些技术在实际应用中还存在着各种局限性。比如光催化降解法虽然因其绿色环保而备受青睐,但目前其成本昂贵,效率较低。生物降解法存在修复时间长,见效速度慢,且可分解的污染物种类少。相比之下,吸附技术被认为是一种去除有机染料最简单、有效和经济的方法。因此,研发一种能够实现高效、绿色的吸附材料至关重要。
一些传统的天然吸附剂如活性炭材料、粘土等已开发用于去除废水中的染料。然而,上述材料还存在着不耐酸、吸附效果差等缺点。金属硫化物纳米材料作为一种新型吸附剂由于其高比表面积、特殊的微观结构和较高的表面活性而在染料废水处理中引起了广泛的关注。其中,SnS2具有合成简单、吸附 性能高、低成本等优点,有望成为一种新型有机染料吸附剂。此外,SnS2能够稳定的存在于酸性或中性水溶液中,这大大拓展了它在废水处理中的应用。在之前的研究中,研究人员为优化SnS2的纳米结构在合成策略开展了大量的工作。Umar A等人(Talanta,2013,114:183-190.)通过水热法合成了一种形状卷曲、分布无序的SnS2纳米片。然而在合成过程中需要用到具有高毒性的丙酮等有机溶剂,这将造成较大的环境污染。Sreedevi Gedi等人(RSC Advances,2015,5(31):24640-24648.)采用化学沉淀法制备了SnS2纳米颗粒并将其用于在水溶液中吸附有机染料罗丹明b。但是SnS2纳米颗粒容易发生团聚,这大大降低了其吸附效率。因此,开发一种简易的二硫化锡纳米材料的方法用于吸附工业废水中的有机染料具有重大意义。
本申请的目的在于提供一种用于高效吸附有机染料的片状二硫化锡纳米材料的制备方法,所制备的纳米花状SnS2在保持了纳米材料高比面积的优点,避免了纳米材料因尺寸过小而容易发生团聚的现象。并且层状分级结构可以有效地改善染料分子的扩散情况,提供更优异的传输路径,为吸附过程提供了大量的吸附位点。
本申请提供一种用于高效吸附有机染料的片状二硫化锡纳米材料的制备方法,其特征在于,包括以下步骤:
(1)称取适量的二水合氯化亚锡(SnCl2·2H2O)和硫源,将其溶解在35mL溶剂中,在室温下磁力搅拌1小时以上,使其混合均匀;
(2)将步骤(1)中的混合溶液转移至50mL聚四氟乙烯内衬的反应釜中,将反应釜放置在恒温鼓风干燥箱中升温至200~220℃,在此温度下保温8~12h;
(3)待反应釜冷却至室温以后,离心分离,并用去离子水和乙醇清洗沉淀物,然后在60℃下真空干燥8h得到二硫化锡纳米材料。
根据本申请的其中一种实施方式,所述的用于高效吸附有机染料的片状二硫化锡纳米材料的制备方法,其特征在于,步骤(1)中所述的硫源为硫脲(CH4N2S)、L-半胱氨酸(L-Cysteine)或硫代乙酰胺(TAA)。
根据本申请的其中一种实施方式,所述的用于高效吸附有机染料的片状二硫化锡纳米材料的制备方法,其特征在于,步骤(1)中所述的二水合氯化亚锡与硫源的摩尔比为0.1~0.2。
根据本申请的其中一种实施方式,所述的用于高效吸附有机染料的片状二硫化锡纳米材料的制备方法,其特征在于,步骤(1)中所述的溶剂为二甘醇或三甘醇。
本申请还提供了所述的用于高效吸附有机染料的片状二硫化锡纳米材料的制备方法制备得到的二硫化锡纳米材料,其特征在于,所述的片状二硫化锡可相互连接组装成的花状结构,纳米花的直径为3~10μm。
根据本申请的其中一种实施方式,所述三甘醇为二缩三乙二醇。
根据本申请的其中一种实施方式,所述二甘醇为一缩二乙二醇。
本申请的有益效果在于:
1、所制备的二硫化锡具有由纳米片相互连接组装而成的花状结构,纳米花的直径为3~10μm,具有高比表面积。
2、所提供的二硫化锡纳米材料的形貌和尺寸可通过调节反应溶剂、反应的温度和时间以及所需前驱体的比例等参数进行控制,不同形貌/尺寸的二硫化锡吸附性能有差异,但仍具有高比表面积和高吸附能力。
3、二硫化锡纳米材料通过简便的溶剂热法合成,合成工艺简单、成本相对较低、更利于工业化生产。
4、所制备的二硫化锡吸附剂用于吸附有机染料罗丹明b的过程在常温常压下进行,操作简单,在吸附工业有机染料领域具有广泛的应用前景。
附图说明
图1为本申请所用的离子型稀土矿的检测报告图;
图2为本申请实施例3活化矿粉XRD图;
图3为本申请实施例3活化矿粉SEM图;
图4为本申请实施例3活化矿粉EDS图;
图5为本申请实施例3离子型稀土浸出剂应用于稀土原矿后的稀土浸出浓度检测报告图;
图6为对比例1(NH4)2SO4浸出剂应用于稀土原矿后的稀土浸出浓度检测报告图;
图7为对比例2(NH4)2SO4与改性田菁胶浸出剂应用于稀土原矿后的稀土浸出浓度检测报告图;
图8为对比例3扩增培养液作为浸出剂应用于稀土原矿后的稀土浸出浓度检测报告图。
图9为本申请的实施例6所制得的In2Se3纳米材料的X射线衍射图;
图10为本申请的实施例6所制得的In2Se3纳米材料的透射电镜低倍照片,标尺为200nm;
图11为本申请的实施例6所制得的In2Se3纳米材料的透射电镜高倍照片,标尺为5nm;
图12为本申请的实施例6所制得的In2Se3纳米材料的紫外-可见漫反射图;
图13为本申请的实施例6所制得的In2Se3纳米材料的光催化降解四环素的降解率曲线图;
图14为实施例9所制备的二硫化锡纳米材料的X射线衍射图,其中横坐标为2θ衍射角,纵坐标为衍射强度;
图15为实施例9所制备的二硫化锡纳米材料的扫描电子显微镜图(SEM);
图16为实施例9所制备的二硫化锡纳米材料的透射电子显微镜图(TEM);
图17为实施例9所制备的二硫化锡纳米材料的高倍透射电子显微镜图(HRTEM);
图18为实施例9所制备的二硫化锡纳米材料在黑暗条件下吸附有机溶剂罗丹明b时溶液浓度与初始浓度比随时间变化的曲线,横坐标为时间(min),纵坐标为C/C0(%)。
具体实施方式
下面结合实施例对本申请作进一步详细的描述,但本申请的实施方式并不局限于实施例表示的范围。
本申请实施例中所提到的离子型稀土矿和离子型稀土矿粉均取自广西壮族自治区梧州市岑溪市离子型稀土,矿粉为离子型稀土矿研磨至200目以下干粉。其检测报告如图1所示,矿样稀土含量:全相0.12%,离子相0.062%。
离子型稀土矿中的稀土存在形态可以分成4种相态:包括水溶相、可交换离子相、矿物相和胶态相,四种相态分别占稀土总量的比例约为<0.0001%、50%~90%、1%~10%、5%~40%。水溶相稀土可游离于水中的那部分稀土资源,可交换离子相稀土指以羟基或水和羟基吸附于黏土上的稀土资源;矿物相是指组成矿物晶格或分散与形成岩石矿物中的稀土离子,胶相稀土指不溶于水的稀土氧化物或氢氧化物,尤其是吸附在铁/锰氧化物上的稀土资源。上述四种稀土资源中,胶相稀土和矿物稀土不能通过直接置换浸出采用,而是采用硫酸、盐酸等强酸或加入焙烧酸浸,将其转化成离子的形式,才能采用比稀土更为活泼的阳离子置换浸出。本申请主要针对矿样稀土中的可交换离子相进行浸出,实施例所提到的全相指稀土四种相态的总和。
实施例1
(1)制备活化矿粉:向100g、200目钾长石矿粉中加入20g无水氯化钙,置于750℃下焙烧1小时,得到活化矿粉,备用。
(2)制备钾改性羧甲基田箐胶:在真空手套箱中,向100mL的一氯乙酸溶液中加入1.0g的田箐胶和1.5g氢氧化钾,于21℃温度下搅拌30min,使溶液处于强碱性环境条件,随后于60℃温度下强力搅拌2.5h,抽滤分离,醇洗分液2次,得到钾改性羧甲基田箐胶,记为SG-CH2COOK备用。
(3)制备微生物悬浮液:将假丝酵母接种至培养基中驯化,微生物接种量为1.5×107个/mL,驯化温度为30℃,驯化时间为120小时,该培养基含有6.0g/L蛋白胨、6.0g/L氨基酸、22g/L果糖、4.5g/L酵母膏、0.3g/L硝酸钾、0.4g/L氯化钠、0.4g/L磷酸钾、0.2g/L硫酸镁、0.1g/L硫酸铁、1.2g/L离子型稀土矿粉、0.03g/L的活化矿粉和余量水,得到微生物悬浮液。
(4)制备扩增培养液:21℃下,向1L蒸馏水中加入27g步骤(1)所得的活化矿粉和5m L步骤(3)微生物悬浮液进行扩增培养48小时得到扩增培养液。
(5)制备离子型稀土浸出剂:向1L步骤(4)所得的扩增培养液中加入0.8g步骤(2)所得的SG-CH2COOK,混匀,得到离子型稀土浸出剂。
(6)将的圆柱空管直立固定,柱底套上滤网,加入500g的离子型稀土矿后滴入250g上述离子型稀土浸出剂,浸出剂滴完后缓慢加入清水,使浸出液从矿体洗出,收集得到浸出液320mL。 检测其稀土浸出率为97.12%。
浸出液沉淀析出稀土后的上清液pH值为8.2、COD值为68.9mg/L、氨氮为5.29mg/L以及其他检测指标均符合稀土工业污染物排放标准《GB/T 26451-2011》。
实施例2
(1)制备活化矿粉:向100g、200目锂云母矿粉中加入20g无水氯化钙,置于750℃下焙烧1小时,得到活化矿粉,备用。
(2)制备钾改性羧甲基田箐胶:在真空手套箱中,向100mL的一氯乙酸溶液中加入1.5g的田箐胶和4.2氢氧化钾,于21℃温度下搅拌30min,使溶液处于强碱性环境条件,随后于60℃温度下强力搅拌2.5h,抽滤分离,醇洗分液2次,得到钾改性羧甲基田箐胶,记为SG-CH2COOK备用。
(3)制备微生物悬浮液:将毕赤酵母接种至培养基中驯化,微生物接种量为1.5×107个/mL,驯化温度为30℃,驯化时间为120小时,该培养基含有6.0g/L蛋白胨、6.0g/L氨基酸、22g/L果糖、4.5g/L酵母膏、0.3g/L硝酸钾、0.4g/L氯化钠、0.4g/L磷酸钾、0.2g/L硫酸镁、0.1g/L硫酸铁、1.2g/L离子型稀土矿粉、0.03g/L的活化矿粉和余量水,得到微生物悬浮液。
(4)制备扩增培养液:21℃下,向1L蒸馏水中加入27g步骤(1)所得的活化矿粉和5mL步骤(3)微生物悬浮液进行扩增培养48小时得到扩增培养液。
(5)制备离子型稀土浸出剂:向1L步骤(4)所得的扩增培养液中加入0.8g步骤(2)所得的SG-CH2COOK,混匀,得到离子型稀土浸出剂。
(6)将的圆柱空管直立固定,柱底套上滤网,加入500g的离子型稀土矿后滴入250g上述离子型稀土浸出剂,浸出剂滴完后缓慢加入清水,使浸出液从矿体洗出,收集得到浸出液315mL。检测其稀土浸出率为92.41%。
浸出液沉淀析出稀土后的上清液pH值为8.5、COD值为14.29mg/L、氨氮为5.96mg/L以及其他检测指标均符合稀土工业污染物排放标准《GB/T 26451-2011》。
实施例3
(1)制备活化矿粉:向100g、200目膨润土矿粉中加入20g无水氯化钙,置于750℃下焙烧1小时,得到活化矿粉,备用。将所得活化矿粉进行检测,结果如图2~图4所示。
(2)制备钾改性羧甲基田箐胶:在真空手套箱中,向100mL的一氯乙酸溶液中加入2.0g的田箐胶和4.2g氢氧化钾,于21℃温度下搅拌30min,使溶液处于强碱性环境条件,随后于60℃温度下强力搅拌2.5h,抽滤分离,醇洗分液2次,得到钾改性羧甲基田箐胶,记为SG-CH2COOK备用。
(3)制备微生物悬浮液:将假丝酵母接种至培养基中驯化,微生物接种量为1.5×107个/mL,驯化温度为30℃,驯化时间为120小时,该培养基含有6.0g/L蛋白胨、6 0g/L氨基酸、22g/L果糖、4.5g/L酵母膏、0.3g/L硝酸钾、0.4g/L氯化钠、0.4g/L磷酸钾、0.2g/L硫酸镁、0.1g/L硫酸铁、1.2g/L离子型稀土矿粉、0.03g/L的活化矿粉和余量水,得到微生物悬浮液。
(4)制备扩增培养液:21℃下,向1L蒸馏水中加入27g步骤(1)所得的活化矿粉和5mL步骤(3)微生物悬浮液进行扩增培养48小时得到扩增培养液。
(5)制备离子型稀土浸出剂:向1L步骤(4)所得的扩增培养液中加入0.3g步骤(2)所得的SG-CH2COOK,混匀,得到离子型稀土浸出剂。
(6)将的圆柱空管直立固定,柱底套上滤网,加入500g的离子型稀土矿后滴入250g上述离子型稀土浸出剂,浸出剂滴完后缓慢加入清水,使浸出液从矿体洗出,收集得到浸出液300mL。检测其稀土浸出率为98.71%。
浸出液沉淀析出稀土后的上清液pH值为8.46、COD值为36.5mg/L、氨氮为6.49mg/L以及其他检测指标均符合稀土工业污染物排放标准《GB/T 26451-2011》。
实施例4
(1)制备活化矿粉:向100g、200目钠长石矿粉中加入5g无水氯化钠,置于400℃下焙烧5小时,得到活化矿粉,备用。将所得活化矿粉进行检测。
(2)制备钠改性羧甲基田箐胶:在真空手套箱中,向100mL的一氯乙酸溶液中加入3.0g的田箐胶和5.0g氢氧化钾,于15℃温度下搅拌60min,使溶液处于强碱性环境条件,随后于40℃温度下强力搅拌6h,抽滤分离,醇洗分液2次,得到钠改性羧甲基田箐胶,记为SG-CH2COONa备用。
(3)制备微生物悬浮液:将假丝酵母接种至培养基中驯化,微生物接种量为1.5×107个/mL,驯化温度为15℃,驯化时间为240小时,该培养基含有3.0g/L蛋白质、2.0g/L尿素、2g/L木质素、1g/L玉米浆、0.1g/L硝酸钾、0.1g/L氯化钠、0.07g/L磷酸钾、0.1g/L硫酸镁、0.05g/L硫酸铁、0.5g/L离子型稀土矿粉、0.02g/L的活化矿粉和余量水,得到微生物悬浮液。
(4)制备扩增培养液:15℃下,向250mL蒸馏水中加入2.5g步骤(1)所得的活化矿粉和5mL步骤(3)微生物悬浮液进行扩增培养240小时得到扩增培养液。
(5)制备离子型稀土浸出剂:向250ml步骤(4)所得的扩增培养液中加入0.125g步骤(2)所得的SG-CH2COOK,混匀,得到离子型稀土浸出剂。
(6)将的圆柱空管直立固定,柱底套上滤网,加入500g的离子型稀土矿后滴入250g上述离子型稀土浸出剂,浸出剂滴完后缓慢加入清水,使浸出液从矿体洗出,收集得到浸出液305mL。检测其稀土浸出率为93.25%。
浸出液沉淀析出稀土后的上清液pH值为8.4、COD值为27.9mg/L、氨氮为7.69mg/L以及其他检测指标均符合稀土工业污染物排放标准《GB/T 26451-2011》。
实施例5
(1)制备活化矿粉:向100g、200目膨润土中加入40g无水碳酸钙,置于900℃下焙烧0.5小时,得到活化矿粉,备用。将所得活化矿粉进行检测。
(2)制备钾改性羧甲基田箐胶:在真空手套箱中,向100mL的一氯乙酸溶液中加入2.5g的田箐胶和5.0g氢氧化钾,于35℃温度下搅拌5min,使溶液处于强碱性环境条件,随后于80℃温度下强力搅拌1h,抽滤分离,醇洗分液2次,得到钾改性羧甲基田箐胶,记为SG-CH2COOK备用。
(3)制备微生物悬浮液:将假丝酵母接种至培养基中驯化,微生物接种量为1.5×107个/mL,驯化温度为60℃,驯化时间为36小时,该培养基含有10.0g/L蛋白胨、5.0g/L氨基酸、30g/L碳酸钙、10g/L麦芽汁、1.2g/L硝酸钾、0.9g/L氯化钠、0.7g/L磷酸钾、0.9g/L硫酸镁、0.5g/L硫酸铁、4g/L离子型稀土矿粉、6g/L的活化矿粉和余量水,得到微生物悬浮液。
(4)制备扩增培养液:60℃下,向50L蒸馏水中加入3kg步骤(1)所得的活化矿粉和5mL步骤(3)微生物悬浮液进行扩增培养36小时得到扩增培养液。
(5)制备离子型稀土浸出剂:向50L步骤(4)所得的扩增培养液中加入100g步骤(2)所得的SG-CH2COOK,混匀,得到离子型稀土浸出剂。
(6)将的圆柱空管直立固定,柱底套上滤网,加入500g的离子型稀土矿后滴入250g上述离子型稀土浸出剂,浸出剂滴完后缓慢加入清水,使浸出液从矿体洗出,收集得到浸出液300mL。检测其稀土浸出率为92.76%。
浸出液沉淀析出稀土后的上清液pH值为8.51、COD值为41.7mg/L、氨氮为11.22mg/L以及其他检测指标均符合稀土工业污染物排放标准《GB/T 26451-2011》。
对比实验
对比例1:向500mL蒸馏水中加入0.15mol/L(NH4)2SO4,搅拌均匀,得到浸出剂B;收集得到浸出液325mL。
对比例2:向500mL蒸馏水中加入0.15mol/L(NH4)2SO4和0.15g实施例3的钾改性羧甲基田箐胶,搅拌均匀,得到浸出剂C。收集得到浸出液340mL。
对比例3:取实施例3扩增培养液作为浸出剂D。收集得到浸出液325mL。
与实施例3采用同样的浸出过程:将的圆柱空管直立固定,柱底套上滤网,加入500g,0.062%的离子型稀土矿后滴入250g上述对比例一至十的稀土浸出浸出剂,浸出剂滴完后缓慢加入清水,使浸出液从矿体洗出,待浸出液质量超过250mL后停止收集。所得浸出液送至检测,其结果如表1所示,检测原件如图5~图8所示。
表1
由表1可以看出:
(1)对比例1与对比例2说明了,以传统的(NH4)2SO4作为浸出剂时,改性后的改性田菁胶有助于提高离子型稀土的浸出率;
(2)实施例3与对比例3说明了,微生物悬浮液扩增培养液与改性的田菁胶具有协同浸出离子型稀土的效果。
(3)实施例3与对比例2、对比例1与对比例3均说明微生物悬浮液扩增培养液作为浸出剂时,浸出离子型稀土的进出效果优于传统的(NH4)2SO4浸出剂,本申请实施例3微生物悬浮液扩增培养液协同改性田菁胶对离子型稀土浸出率最高。
实施例6
本实施例为本申请所述的用于光催化降解四环素的In2Se3纳米材料的制备方法的一个实例,具体步骤如下:
称取氯化铟2mmol和硒粉2mmol,在室温下将上述物质依次加入到100ml三口烧瓶中,再向三口烧瓶中注入16ml油胺;将三口烧瓶转移至电热套内,加热至60℃并保温10min,使样品充分混合;然后升热至290℃,保温1h,使其充分反应。整个反应在氩气保护下搅拌。程序结束时,将样品自然冷却至室温;之后用12ml正己烷混合4ml乙醇反复清洗3次。然后真空干燥,研磨成粉末。把得到的粉末再次装入三口烧瓶中,向三口烧瓶中注入10ml甲苯+10ml 10%3-巯基丙酸水溶液的混合溶液,搅拌5h。之后用乙醇反复清洗3次,真空干燥,研磨得到黑色的硒化铟产物。图9为该产物的X射线衍射图,制得的产物为In2Se3。图10为该产物的透射电镜照片,可以观察到In2Se3既有纳米片的形状,又有纳米颗粒的形状。图11显示了In2Se3纳米光催化剂的高分辨电子显微图像。图12显示了In2Se3纳米光催化剂的紫外可见光吸收光谱。
采用50mg所制备的硒化铟光催化剂,在常温常压下降解20mg/L四环素(80ml)。通过紫外-可见分光光度法测定四环素浓度,根据浓度计算降解率。图13为四环素降解率与光照时间的曲线图,20min降解率达到了53%。
实施例7
本实施例为本申请所述的用于光催化降解四环素的In2Se3纳米材料的制备方法的另一个实例,具体步骤如下:
称取醋酸铟2mmol和硒粉3mmol,在室温下将上述物质依次加入到100ml三口烧瓶中,再向三口烧瓶中注入16ml十二胺;将三口烧瓶转移至电热套内,加热至50℃并保温20min,使样品充分混合;然后升热至280℃,保温1h,使其充分反应。整个反应在氩气保护下搅拌。程序结束时,将样品自然冷却至室温;之后用12ml正己烷混合4ml乙醇反复清洗3次。然后真空干燥,研磨成粉末。把得到的粉末再次装入三口烧瓶中,向三口烧瓶中注入10ml甲苯+10ml 10%3-巯基丙酸水溶液的混合溶液,搅拌8h。之后用乙醇反复清洗3次,真空干燥,研磨得到黑色的硒化铟产物。
采用50mg所制备的硒化铟光催化剂,在常温常压下降解20mg/L四环素80ml。通过紫外-可见分光光度法测定四环素浓度,根据浓度计算降解率。
实施例8
本实施例为本申请所述的用于光催化降解四环素的In2Se3纳米材料的制备方法的另一个实例,具体步骤如下:
称取氯化铟2mmol和硒粉4mmol,在室温下将上述物质依次加入到100ml三口烧瓶中,再向三口烧瓶中注入16ml十六胺;将三口烧瓶转移至电热套内,加热至70℃并保温10min,使样品充分混合;然后升热至300℃,保温1h,使其充分反应。整个反应在氩气保护下搅拌。程序结束时,将样品自然冷却至室温;之后用12ml正己烷混合4ml乙醇反复清洗3次。然后真空干燥,研磨成粉末。把得到的粉末再次装入三口烧瓶中,向三口烧瓶中注入10ml甲苯+10ml 10%3-巯基丙酸水溶液的混合溶液,搅拌5h。之后用乙醇反复清洗3次,真空干燥,研磨得到黑色的硒化铟产物。
采用50mg所制备的硒化铟光催化剂,在常温常压下降解20mg/L四环素(80ml)。通过紫外-可见分光光度法测定四环素浓度,根据浓度计算降解率。
催化剂的光催化降解四环素性能评价方法如下:将50mg的In2Se3分散在浓度为20mg/L的四环素(80ml)水溶液中,光催化实验前,溶液在黑暗中吸附20min,使光催化剂与四环素水溶液达到吸附-脱附平衡。然后通过300W氙灯对溶液进行辐照;每隔一段时间取出2~5ml溶液,通过紫外-可见分光光度法测定四环素浓度,根据浓度计算In2Se3催化剂对四环素的光催化降解效率。
实施例9
本实施例为本申请所述的用于高效吸附有机染料的片状二硫化锡纳米材料的制备方法的一个实例,具体步骤如下:
将2mmol二水合氯化亚锡、10mmol硫脲加入100mL烧杯中,向烧杯中加入35mL三甘醇,然后在室温下磁力搅拌1h,使其充分混合。混合均匀后,将烧杯中的溶液转移到50mL聚四氟乙烯内衬的不锈钢反应釜中,将反应釜放置在恒温鼓风干燥箱中,设置反应温度为200℃,反应时间为10h。反应釜冷却至室温后,将所得产物离心,并用去离子水和乙醇反复洗涤三次。最后将固体放入真空烘箱中在60℃下干燥8小时,得到二硫化锡纳米材料。图14为产物的X射线衍射图谱,证实制得的产物主要为二硫化锡,同时含有少量的硫化亚锡(SnS),材料的结晶良好。图15为二硫化锡的扫描电子显微镜图,所制得样品形貌和尺寸比较均匀,均为由二维纳米片自组装的纳米花状结构。图16所制得样品的透射电子显微镜图。图17为所制得样品的HRTEM图。图18为所制得样品在黑暗条件下对有机溶剂罗丹明b的吸附性能,横坐标为时间(min),纵坐标为溶液浓度与初始浓度比C/C0(%)。
实施例10
本实施例为本申请所述的用于高效吸附有机染料的片状二硫化锡纳米材料的制备方法的另一个实例,具体步骤如下:
将2mmol二水合氯化亚锡、15mmol硫脲加入100mL烧杯中,向烧杯中加入35mL三甘醇,然后在室温下磁力搅拌1h,使其充分混合。混合均匀后,将烧杯中的溶液转移到50mL聚四氟乙烯内衬的不锈钢反应釜中,将反应釜放置在恒温鼓风干燥箱中,设置反应温度为200℃,反应时间为10h。反应釜冷却至室温后,将所得产物离心,并用去离子水和乙醇反复洗涤三次。最后将固体放入真空烘箱中在60℃下干燥8小时,得到二硫化锡纳米材料。
实施例11
本实施例为本申请所述的用于高效吸附有机染料的片状二硫化锡纳米材料的制备方法的另一个实例,具体步骤如下:
将2mmol二水合氯化亚锡、15mmol硫脲加入100mL烧杯中,向烧杯中加入35mL二甘醇,然后在室温下磁力搅拌1h,使其充分混合。混合均匀后,将烧杯中的溶液转移到50mL聚四氟乙烯内衬的不锈钢反应釜中,将反应釜放置在恒温鼓风干燥箱中,设置反应温度为220℃,反应时间为8h。反应釜冷却至室温后,将所得产物离心,并用去离子水和乙醇反复洗涤三次。最后将固体放入真空烘箱中在60℃下干燥8小时,得到二硫化锡纳米材料。
吸附剂的有机染料吸附性能评价方法如下:在室温(约25℃)下,将40mg所制备的二硫化锡吸附剂放置于反应器中,并注入100mL浓度为20mg/L罗丹明b溶液,在黑暗条件下不断搅拌,使二硫化锡充分分散在罗丹明b溶液中的,每隔一段时间取3ml上层清液,通过紫外-可见分光光度法测定罗丹明b浓度,根据浓度计算二硫化锡吸附剂对罗丹明b的吸附率。
上述实施例,仅为对本申请的目的、技术方案和有益效果进一步详细说明的具体个例,本申请并非限定于此。凡在本申请公开的范围之内所做的任何修改、等同替换、改进等,均包含在本申请的保护范围之内。

Claims (7)

  1. 一种离子型稀土浸出剂的制备方法,其特征在于,包括如下步骤:
    (1)用稀土活化矿粉培养基驯化微生物,得到微生物悬浮液;所述的微生物为放线菌和酵母菌中的一种或多种;所述稀土活化矿粉培养基由2~30g/L碳源、5~15g/L氮源、1~10g/L生长因子、0.42~4.2g/L无机盐、0.52~10g/L稀土活化矿粉和余量水组成;所述稀土活化矿粉为离子型稀土矿粉与活化矿粉的组合;
    (2)将微生物悬浮液与添加剂进行扩增培养,得到扩增培养液;所述添加剂为活化矿粉;
    (3)将改性后的田箐胶与所述扩增培养液混匀,即得到离子型稀土浸出剂;所述田箐胶的改性方法,是向100mL的一氯乙酸溶液中加入0.5~5.0g的田箐胶、1.0~6.5g的强碱固体,于10~35℃温度下搅拌5~60min,使溶液处于强碱性环境条件,随后于40~80℃温度下强力搅拌1~6h,抽滤分离,得到碱金属改性羧甲基田箐胶;所述活化矿粉的制备方法,是将活化剂按重量百分比加入到含活泼金属矿粉中,置于400~900℃下焙烧0.5~5小时后即得,所述活化剂为氯化钙、氯化钠、碳酸钾、碳酸镁和碳酸钙中的一种或多种,所述含活泼金属矿粉为云母粉、长石粉和膨润土中的一种或多种;所述活化剂用量为含活泼金属矿粉重量的5%~40%。
  2. 根据权利要求1所述的一种离子型稀土浸出剂的制备方法,其特征在于:步骤(1)所述驯化,是将微生物接种至稀土活化矿粉培养基中培养,初始微生物接种量≥1.2×107个/mL,接种温度为15℃~60℃,驯化时间为36~240小时,得到微生物悬浮液。
  3. 根据权利要求2所述的一种离子型稀土浸出剂的制备方法,其特征在于:所述放线菌为小单孢菌,所述酵母菌为假丝酵母或毕赤酵母,所述碳源为果糖、木质素、碳酸钙和蛋白质中的一种或多种;所述氮源为氨基酸、蛋白质、硝酸盐、蛋白胨和尿素中的一种或多种;所述生长因子为酵母膏、玉米浆和麦芽汁中的一种或多种;所述无机盐为硝酸钾、氯化钠、磷酸钾、硫酸镁和硫酸铁的组合。
  4. 根据权利要求3所述的一种离子型稀土浸出剂的制备方法,其特征在于:所述硝酸钾用量为0.1~1.2g/L,所述氯化钠用量为0.1~0.9g/L,所述磷酸钾用量为0.07~0.7g/L,所述硫酸镁用量为0.1~0.9g/L,所述硫酸铁用量为0.05~0.5g/L,所述离子型稀土矿粉用量为0.5~4g/L,所述活化矿粉用量为0.02~6g/L。
  5. 根据权利要求1所述的一种离子型稀土浸出剂的制备方法,其特征在于:步骤(2)所述扩增培养,培养温度为15℃~60℃,培养时间为36~240小时,所述添加剂按扩增培养液质量的1%~6%添加,所述微生物悬浮液与扩增培养液体积比为1:10000~1:50。
  6. 根据权利要求1所述的一种离子型稀土浸出剂的制备方法,其特征在于:所述云母粉为锂云母矿粉;所述长石粉为钾长石矿粉和钠长石矿粉中的一种或两种。
  7. 根据权利要求1所述的一种离子型稀土浸出剂的制备方法,其特征在于:所述改性后的田箐胶添加量为离子型稀土浸出剂质量的0.05%~0.2%。
PCT/CN2023/117024 2022-10-11 2023-09-05 一种离子型稀土浸出剂的制备方法 WO2024008214A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2023237173A AU2023237173A1 (en) 2022-10-11 2023-09-05 Preparation method of ionic rare earth leaching agent
ZA2023/09467A ZA202309467B (en) 2022-10-11 2023-10-10 Method for preparing the in2se3 nanomaterials for photocatalytic degradation of tetracycline
ZA2023/09466A ZA202309466B (en) 2022-10-11 2023-10-10 Preparation method of ionic rare earth leaching agent
ZA2023/09468A ZA202309468B (en) 2022-10-11 2023-10-10 Method for preparing sheet tin disulfide nanomaterial for efficient adsorption of organic dyes
ZA2024/00277A ZA202400277B (en) 2022-10-11 2024-01-08 Preparation method of ionic rare earth leaching agent
ZA2024/00279A ZA202400279B (en) 2022-10-11 2024-01-08 Method for preparing sheet tin disulfide nanomaterial for efficient adsorption of organic dyes
ZA2024/00278A ZA202400278B (en) 2022-10-11 2024-01-08 Method for preparing the in2se3 nanomaterials for photocatalytic degradation of tetracycline

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202211242468.2A CN115478182B (zh) 2022-10-11 2022-10-11 一种离子型稀土浸出剂的制备方法
CN202211242468.2 2022-10-11
CN202310367797.8A CN116273075A (zh) 2023-04-07 2023-04-07 一种用于光催化降解四环素的In2Se3纳米材料的制备方法
CN202310367797.8 2023-04-07
CN202310367804.4A CN116272840A (zh) 2023-04-07 2023-04-07 一种用于高效吸附有机染料的片状二硫化锡纳米材料的制备方法
CN202310367804.4 2023-04-07

Publications (1)

Publication Number Publication Date
WO2024008214A1 true WO2024008214A1 (zh) 2024-01-11

Family

ID=89454327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117024 WO2024008214A1 (zh) 2022-10-11 2023-09-05 一种离子型稀土浸出剂的制备方法

Country Status (4)

Country Link
AU (1) AU2023237173A1 (zh)
LU (5) LU505245B1 (zh)
WO (1) WO2024008214A1 (zh)
ZA (6) ZA202309467B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117828732A (zh) * 2024-01-02 2024-04-05 中国恩菲工程技术有限公司 基于数字孪生的边坡稳定性确定方法及***、介质、终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105753617A (zh) * 2016-05-20 2016-07-13 宜兴市阳生化工有限公司 一种钻探井筒用胶状乳化***及其制备方法
CN113046552A (zh) * 2021-03-09 2021-06-29 中南大学 一种利用植物提取物浸出风化壳淋积型稀土矿的方法
CN113046579A (zh) * 2021-03-09 2021-06-29 中南大学 一种生物与化学协同浸出风化壳淋积型稀土矿的方法
CN113151696A (zh) * 2021-01-27 2021-07-23 赣州求真科技有限公司 一种稀土开采及萃取方法
CN115478182A (zh) * 2022-10-11 2022-12-16 广西华锡集团股份有限公司 一种新型离子型稀土浸出剂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105753617A (zh) * 2016-05-20 2016-07-13 宜兴市阳生化工有限公司 一种钻探井筒用胶状乳化***及其制备方法
CN113151696A (zh) * 2021-01-27 2021-07-23 赣州求真科技有限公司 一种稀土开采及萃取方法
CN113046552A (zh) * 2021-03-09 2021-06-29 中南大学 一种利用植物提取物浸出风化壳淋积型稀土矿的方法
CN113046579A (zh) * 2021-03-09 2021-06-29 中南大学 一种生物与化学协同浸出风化壳淋积型稀土矿的方法
CN115478182A (zh) * 2022-10-11 2022-12-16 广西华锡集团股份有限公司 一种新型离子型稀土浸出剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANG, XUEKUN; TIAN, JUN; YIN, JING-QUN; LUO, XIAN-PING: "Research on Aid-Leaching Rare Earth from Low-Grade Weathered Crust Elution-Deposited Rare Earth Ore with Sesbania Gum", YOUSE JINSHU KEXUE YU GONGCHENG - NONFERROUS METALS SCIENCE AND ENGINEERING, YOUSE JINSHU KEXUE YU GONGCHENG BIANJIBU, vol. 4, no. 2, 15 April 2013 (2013-04-15), pages 85 - 89, XP009552397, ISSN: 1674-9669, DOI: 10.13264/j.cnki.ysjskx.2013.02.002 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117828732A (zh) * 2024-01-02 2024-04-05 中国恩菲工程技术有限公司 基于数字孪生的边坡稳定性确定方法及***、介质、终端
CN117828732B (zh) * 2024-01-02 2024-05-31 中国恩菲工程技术有限公司 基于数字孪生的边坡稳定性确定方法及***、介质、终端

Also Published As

Publication number Publication date
ZA202400279B (en) 2024-04-24
ZA202400278B (en) 2024-04-24
LU505245B1 (en) 2024-01-18
ZA202309468B (en) 2024-04-24
LU505260B1 (en) 2024-04-12
LU505259B1 (en) 2024-04-12
ZA202400277B (en) 2024-04-24
ZA202309466B (en) 2024-04-24
AU2023237173A1 (en) 2024-05-02
ZA202309467B (en) 2024-04-24
LU506046B1 (en) 2024-07-08
LU505258B1 (en) 2024-04-12

Similar Documents

Publication Publication Date Title
Guo et al. Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C3N4 nanosheets for enhanced visible-light photocatalytic degradation of tetracycline in wastewater
Li et al. Visible-light-driven CQDs@ MIL-125 (Ti) nanocomposite photocatalyst with enhanced photocatalytic activity for the degradation of tetracycline
CN103191699B (zh) 一种铁氧体/石墨烯复合吸附剂及其制备、使用方法
WO2024008214A1 (zh) 一种离子型稀土浸出剂的制备方法
Zhang et al. Carbon quantum dots sensitized ZnSn (OH) 6 for visible light-driven photocatalytic water purification
CN111318287B (zh) 一种FeS@rGO复合材料的生物合成方法
CN111718719B (zh) 一种硫化纳米零价铁-酸活化蒙脱石复合材料及其制备方法与应用
CN115155543B (zh) 一步制备磁性镁铁ldh-生物炭复合材料的方法及应用
Wang et al. One-pot preparation of novel Bi/BiOBr/Bi2O2CO3 heterojunction for pollutant degradation under visible light: catalyst generation insights, reaction mechanism, degradation pathways, and toxicological effects
CN113134339A (zh) 一种锆掺杂类水滑石吸附剂的制备及在处理含磷废水中的应用
Song et al. A novel slag-based Ce/TiO2@ LDH catalyst for visible light driven degradation of tetracycline: Performance and mechanism
Wei et al. A stable and efficient La-doped MIL-53 (Al)/ZnO photocatalyst for sulfamethazine degradation
Lu et al. In situ doping lignin-derived carbon quantum dots on magnetic hydrotalcite for enhanced degradation of Congo Red over a wide pH range and simultaneous removal of heavy metal ions
Hou et al. Mechanistic insight into the removal of aqueous Cd using an immobilized ZIF-8 and microflora cooperative composite
Yuan et al. The synergistic effect of PMS activation by LaCoO 3/gC 3 N 4 for degradation of tetracycline hydrochloride: Performance, mechanism and phytotoxicity evaluation
Li et al. Heterostructure CoFe2O4/kaolinite composite for efficient degradation of tetracycline hydrochloride through synergetic photo-Fenton reaction
CN111921558B (zh) 一种可见光响应的MIL-125/BiOBr复合催化剂及其制备方法与应用
Li et al. Double vacancies synergistically enhanced photocatalytic activity of S-Scheme VO, S-Bi2WO6/L-CoIn2S4 heterojunction for degradation of co-existing antibiotics
CN113318768A (zh) 一种复合光催化剂及其制备方法
CN113120977A (zh) 由含镍铁电镀废水制备铁酸镍纳米材料的方法及应用
CN115478182B (zh) 一种离子型稀土浸出剂的制备方法
CN113398896B (zh) 聚丙烯酸钠分散硫化亚铁插层层状双氢氧化物的制备方法
CN108636416A (zh) 一种ZnO/煤矸石复合光催化剂及其制备方法和应用
CN111569890A (zh) 一种氧化石墨烯-氧化铽-氧化铁复合材料、合成方法及其在催化降解中的应用
CN111569910A (zh) 一种过渡金属锌掺杂硫化钼复合催化粉体材料及其制备与应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202337065597

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834979

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023237173

Country of ref document: AU

Date of ref document: 20230905

Kind code of ref document: A