WO2024007727A1 - 功率放大器 - Google Patents

功率放大器 Download PDF

Info

Publication number
WO2024007727A1
WO2024007727A1 PCT/CN2023/093517 CN2023093517W WO2024007727A1 WO 2024007727 A1 WO2024007727 A1 WO 2024007727A1 CN 2023093517 W CN2023093517 W CN 2023093517W WO 2024007727 A1 WO2024007727 A1 WO 2024007727A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
amplification circuit
transistor
stage amplification
circuit
Prior art date
Application number
PCT/CN2023/093517
Other languages
English (en)
French (fr)
Inventor
周佳辉
胡滨
郭嘉帅
Original Assignee
深圳飞骧科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳飞骧科技股份有限公司 filed Critical 深圳飞骧科技股份有限公司
Publication of WO2024007727A1 publication Critical patent/WO2024007727A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only

Definitions

  • the utility model relates to the field of electronic technology, in particular to a power amplifier.
  • the spurious index of the power amplifier is a key performance index of the communication system. Its performance determines the working time of the PA. Will it cause interference to other channel signals? Generally, if out-of-band spurious indicators are not good, either the design needs to be revised, or an additional suppression circuit needs to be added to the RF path to improve the spurious indicators. Re-modifying the design will cause major changes, and adding a suppression circuit will increase the module's load. At the same time, the miniaturization trend of modern mobile communication terminals also puts forward higher requirements for the size of power amplifier modules.
  • the present utility model proposes a power amplifier and radio frequency chip that suppresses and attenuates non-resonant frequency band signals and reduces the gain of non-resonant frequency band signals.
  • an embodiment of the present invention provides a power amplifier, including: a first-stage amplification circuit, a second-stage amplification circuit connected to the output end of the first-stage amplification circuit, and a second-stage amplification circuit connected to the output end of the first-stage amplification circuit. a third-stage amplifier circuit connected to the output end of the second-stage amplifier circuit;
  • the first stage amplifier circuit includes: a first transistor Q1, a first inductor L1 connected to the emitter of the first transistor Q1, and a first inductor L1 connected to the collector of the first transistor Q1. a second inductor L2, a first capacitor C1 connected in series with the second inductor L2, and a first variable capacitor VC1 connected in series with the first capacitor C1;
  • the base of the first transistor Q1 is connected to an input matching circuit and the first bias circuit Bias1, the input terminal of the second inductor L2 is connected to the power supply VCC, the first inductor L1 and the first variable capacitor VC1 Ground setting.
  • the first-stage amplifier circuit further includes: a third inductor L3 connected in series with the second inductor L2, and the power supply VCC is connected through the input end of the third inductor L3.
  • the first variable capacitor VC1 is controlled by a first control voltage U1.
  • the second stage amplifier circuit includes: a second transistor Q2, a fourth inductor L4 connected to the collector of the second transistor Q2, and a second capacitor connected in series with the fourth inductor L4. C2, and a second variable capacitor VC2 connected in series with the second capacitor C2;
  • the base of the second transistor Q1 is connected to the collector of the first transistor Q1 and the second bias circuit Bias2, the input terminal of the fourth inductor L4 is connected to the power supply VCC, and the second triode The emitter of tube Q2 and the second variable capacitor VC2 are grounded.
  • the fifth inductor L5 connected in series with the fourth inductor L4 is connected to the power supply VCC through the input end of the fifth inductor L5.
  • the second variable capacitor VC2 is controlled by a second control voltage U2.
  • the third-stage amplifier circuit includes: a third transistor Q3, a sixth inductor L6 connected to the collector of the third transistor Q3, and a third capacitor connected in series with the sixth inductor L6. C3;
  • the base of the third triode Q3 is connected to the collector of the second triode Q2 and the third bias circuit Bias3, the input terminal of the sixth inductor L6 is connected to the power supply VCC, and the third triode The emitter of tube Q3 and the third capacitor C3 are connected to ground.
  • the first-stage amplification circuit and the second-stage amplification circuit are matched and connected through a first-stage inter-stage matching circuit.
  • the second-stage amplification circuit and the third-stage amplification circuit are matched and connected through a second inter-stage matching circuit.
  • the collector of the third transistor Q3 is connected to An output matching circuit is connected to match the output.
  • the power amplifier of the present invention does not need to add additional circuits to suppress low-frequency gain and improve spurs. It only uses the self-resonance characteristics of the collector decoupling capacitor on the first-stage amplifier circuit to suppress low-frequency gain. , this method is economical and effective.
  • Figure 1 is a circuit structure diagram of a power amplifier according to an embodiment of the present invention.
  • Figure 2 is the S-parameter simulation curve of the power amplifier according to the embodiment of the present invention.
  • Figure 3 is a power simulation curve of the power amplifier according to the embodiment of the present invention.
  • the present utility model provides a power amplifier, which includes: a first-stage amplification circuit 11, a second-stage amplification circuit 12 connected to the output end of the first-stage amplification circuit 11; The output end of the second-stage amplifier circuit 12 is connected to the third-stage amplifier circuit 13.
  • the first stage amplifier circuit 11 includes: a first transistor Q1, a first inductor L1 connected to the emitter of the first transistor Q1, and a first transistor Q1 connected to the collector of the first transistor Q1.
  • the base of the first transistor Q1 is connected to an input matching circuit and the first bias circuit Bias1, and the second inductor L2
  • the input terminal is connected to the power supply VCC, and the first inductor L1 and the first variable capacitor VC1 are connected to the ground.
  • the first-stage amplifier circuit 11 further includes: a third inductor L3 connected in series with the second inductor L2, and the power supply VCC is connected through the input end of the third inductor L3.
  • the first variable capacitor VC1 is controlled by a first control voltage U1.
  • the second-stage amplifier circuit 12 includes: a second transistor Q2, a fourth inductor L4 connected to the collector of the second transistor Q2, and a fourth inductor L4 connected in series with the fourth inductor L4. a second capacitor C2, and a second variable capacitor VC2 connected in series with the second capacitor C2; the base of the second transistor Q1 is connected to the collector of the first transistor Q1 and the second bias In the circuit Bias2, the input terminal of the fourth inductor L4 is connected to the power supply VCC, and the emitter of the second transistor Q2 and the second variable capacitor VC2 are connected to the ground.
  • the fifth inductor L5 connected in series with the fourth inductor L4 is connected to the power supply VCC through the input end of the fifth inductor L5.
  • the second variable capacitor VC2 is controlled by a second control voltage U2.
  • the third-stage amplifier circuit 13 includes: a third transistor Q3, a sixth inductor L6 connected to the collector of the third transistor Q3, and a sixth inductor L6 connected in series with the sixth inductor L6.
  • the third capacitor C3; the base of the third transistor Q3 is connected to the collector of the second transistor Q2 and the third bias circuit Bias3, and the input terminal of the sixth inductor L6 is connected to the power supply VCC, so The emitter of the third transistor Q3 and the third capacitor C3 are connected to the ground.
  • first-stage amplification circuit and the second-stage amplification circuit are matched and connected through a first-stage inter-stage matching circuit.
  • the second-stage amplification circuit and the third-stage amplification circuit are matched and connected through a second inter-stage matching circuit.
  • the collector of the third transistor Q3 is connected to an output matching circuit for matching output.
  • the circuit composed of the second inductor L2, the first capacitor C1, the first variable capacitor VC1 and the fourth inductor L4, the second capacitor C2 and the second variable capacitor VC2 also participates in some simple matching. In terms of radio frequency, they actually form an LC resonant filter. Taking advantage of this, by reducing the capacitance values of the first variable capacitor VC1 and the second variable capacitor VC2, we can easily obtain an LC harmonic. By filtering low-frequency signals, the gain of low-frequency signals is reduced, thereby improving spurious effects.
  • the thicker curve is the S-parameter simulation curve of the PA when the first control voltage U1 is 10V and the second control voltage U2 is 15V.
  • the red curve is the simulation curve of the traditional PA circuit structure. You can see Out, by controlling the voltage of U1U2, two resonant notches are generated at the 570MHz and 1GHz frequency points respectively, thereby suppressing the signal gains of 570MHz and 1GHz.
  • the 570MHz curve notch effect is jointly produced by L4 C2 VC2, and the 1GHz
  • the notch effect is jointly produced by the second inductor L2, the first capacitor C1 and the first variable capacitor VC1.
  • the figure shows that the gain at 570MHz is 2.1dB, which is 5dB lower than the traditional PA gain.
  • the gain at 1GHz is -2dB, which is 26dB lower than the traditional PA structure.
  • the low-frequency gain suppression is very obvious, and the picture on the right No significant change was found in the power, which was still in the power range of 32.7dBm-32.3dBm.
  • the power amplifier of the present invention does not need to add additional circuits to suppress low-frequency gain and improve spurs. It only uses the self-resonance characteristics of the collector decoupling capacitor on the first-stage amplifier circuit to suppress low-frequency gain. This method is economical and effective.
  • circuit modules are all commonly used circuit modules and components in this field, and the corresponding specific indicators and parameters are adjusted according to the actual application, so they will not be described in detail here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

一种功率放大器,包括:第一级放大电路(11)、与所述第一级放大电路(11)的输出端连接的第二级放大电路(12)、以及与所述第二级放大电路(12)的输出端连接的第三级放大电路(13);其中,所述第一级放大电路(11)包括:第一三极管(Q1)、与所述第一三极管(Q1)发射极连接的第一电感(L1)、与所述第一三极管(Q1)的集电极连接的第二电感(L2)、与所述第二电感(L2)串联的第一电容(C1)、以及与所述第一电容(C1)串联的第一可变电容(VC1);所述第一三极管(Q1)的基极连接一输入匹配电路以及第一偏置电路(Bias1),所述第二电感(L2)的输入端接电源(VCC),所述第一电感(L1)、第一可变电容(VC1)接地设置。该功率放大器可以改善杂散作用。

Description

功率放大器 技术领域
本实用新型涉及电子技术领域,尤其涉及一种功率放大器。
背景技术
随着无线通信的快速发展和广泛普及,无线通信***标准对移动通信终端收发机的性能要求越来越高。功率放大器作为射频前端的关键模块,它的性能指标对收发机的总体性能起着重要的作用,而功率放大器的杂散指标是通信***的关键性能指标,他的性能好坏决定了PA工作时候是否会对其他信道的信号产生干扰。一般如果出现了带外杂散指标不好,要么需要重新修改设计,要么需要额外再射频通路上增加抑制电路去改善杂散指标,重新修改设计改动较大,增加抑制电路会额外增加模组的面积,同时现代移动通信终端的小型化趋势,对于功率放大器模组的尺寸也提出了更高的要求。
实用新型内容
针对以上现有技术的不足,本实用新型提出一种抑制和衰减非谐振频段信号并减少非谐振频段信号的增益的功率放大器和射频芯片。
为了解决上述技术问题,本实用新型的实施例提供了一种功率放大器,包括:第一级放大电路、与所述第一级放大电路的输出端连接的第二级放大电路、以及与所述第二级放大电路的输出端连接的第三级放大电路;
其中,所述第一级放大电路包括:第一三极管Q1、与所述第一三极管Q1发射极连接的第一电感L1、与所述第一三极管Q1的集电极连接的第二电感L2、与所述第二电感L2串联的第一电容C1、以及与所述第一电容C1串联的第一可变电容VC1;
所述第一三极管Q1的基极连接一输入匹配电路以及第一偏置电路Bias1,所述第二电感L2的输入端接电源VCC,所述第一电感L1、第一可变电容VC1接地设置。
优选的,所述第一级放大电路还包括:与所述第二电感L2串联的第三电感L3,通过所第三电感L3的输入端接入所述电源VCC。
优选的,所述第一可变电容VC1通过一第一控制电压U1进行控制。
优选的,所述第二级放大电路包括:第二三极管Q2、与所述第二三极管Q2的集电极连接的第四电感L4、与所述第四电感L4串联的第二电容C2、以及与所述第二电容C2串联的第二可变电容VC2;
所述第二三极管Q1的基极连接所述第一三极管Q1的集电极以及第二偏置电路Bias2,所述第四电感L4的输入端接电源VCC,所述第二三极管Q2的发射极、第二可变电容VC2接地设置。
优选的,与所述第四电感L4串联的第五电感L5,通过所述第五电感L5的输入端接入所述电源VCC。
优选的,所述第二可变电容VC2通过一第二控制电压U2进行控。
优选的,所述第三级放大电路包括:第三三极管Q3、与所述第三三极管Q3的集电极连接的第六电感L6、与所述第六电感L6串联的第三电容C3;
所述第三三极管Q3的基极连接所述第二三极管Q2的集电极以及第三偏置电路Bias3,所述第六电感L6的输入端接电源VCC,所述第三三极管Q3的发射极、第三电容C3接地设置。
优选的,所述第一级放大电路与所述第二级放大电路之间通过第一级间匹配电路进行匹配连接。
优选的,所述第二级放大电路与所述第三级放大电路之间通过第二级间匹配电路进行匹配连接。
优选的,所述第三级放大电路中,第三三极管Q3的集电极与 一输出匹配电路连接进行匹配输出。
与相关技术相比,本实用新型的功率放大器中,不需要增加额外的电路去抑制低频增益改善杂散,只是利用第一级放大电路上的集电极去耦电容的自谐振特性去抑制低频增益,这种方法经济实惠,效果明显。
附图说明
下面结合附图详细说明本实用新型。通过结合以下附图所作的详细描述,本实用新型的上述或其他方面的内容将变得更清楚和更容易理解。附图中,
图1为本实用新型实施例的功率放大器电路结构图;
图2为本实用新型实施例的功率放大器的S参数仿真曲线;
图3为本实用新型实施例的功率放大器的功率仿真曲线。
具体实施方式
下面结合附图详细说明本实用新型的具体实施方式。
在此记载的具体实施方式/实施例为本实用新型的特定的具体实施方式,用于说明本实用新型的构思,均是解释性和示例性的,不应解释为对本实用新型实施方式及本实用新型范围的限制。除在此记载的实施例外,本领域技术人员还能够基于本申请权利要求书和说明书所公开的内容采用显而易见的其它技术方案,这些技术方案包括采用对在此记载的实施例的做出任何显而易见的替换和修改的技术方案,都在本实用新型的保护范围之内。
如图1所示为本实用新型提供一种功率放大器,包括:第一级放大电路11、与所述第一级放大电路11的输出端连接的第二级放大电路12、以及与所述第二级放大电路12的输出端连接的第三级放大电路13。
其中,所述第一级放大电路11包括:第一三极管Q1、与所述第一三极管Q1发射极连接的第一电感L1、与所述第一三极管Q1的集电极连接的第二电感L2、与所述第二电感L2串联的第一电容 C1、以及与所述第一电容C1串联的第一可变电容VC1;所述第一三极管Q1的基极连接一输入匹配电路以及第一偏置电路Bias1,所述第二电感L2的输入端接电源VCC,所述第一电感L1、第一可变电容VC1接地设置。
进一步的,所述第一级放大电路11还包括:与所述第二电感L2串联的第三电感L3,通过所第三电感L3的输入端接入所述电源VCC。
本实施例中,所述第一可变电容VC1通过一第一控制电压U1进行控制。
本实施例中,所述第二级放大电路12包括:第二三极管Q2、与所述第二三极管Q2的集电极连接的第四电感L4、与所述第四电感L4串联的第二电容C2、以及与所述第二电容C2串联的第二可变电容VC2;所述第二三极管Q1的基极连接所述第一三极管Q1的集电极以及第二偏置电路Bias2,所述第四电感L4的输入端接电源VCC,所述第二三极管Q2的发射极、第二可变电容VC2接地设置。
进一步的,与所述第四电感L4串联的第五电感L5,通过所述第五电感L5的输入端接入所述电源VCC。
本实施例中,所述第二可变电容VC2通过一第二控制电压U2进行控。
本实施例中,所述第三级放大电路13包括:第三三极管Q3、与所述第三三极管Q3的集电极连接的第六电感L6、与所述第六电感L6串联的第三电容C3;所述第三三极管Q3的基极连接所述第二三极管Q2的集电极以及第三偏置电路Bias3,所述第六电感L6的输入端接电源VCC,所述第三三极管Q3的发射极、第三电容C3接地设置。
进一步的,所述第一级放大电路与所述第二级放大电路之间通过第一级间匹配电路进行匹配连接。
进一步的,所述第二级放大电路与所述第三级放大电路之间通过第二级间匹配电路进行匹配连接。
进一步的,所述第三级放大电路中,第三三极管Q3的集电极与一输出匹配电路连接进行匹配输出。
请继续参考图1,以第一放大电路的第一电容C1和第一可变电容VC1为例进行说明,第一电容C1和第一可变电容VC1串联,因此其等效电容大小C=C1*VC1/(C1+VC1)=VC1/(1+VC1/C1),从公式我们可以看出来,C1如果趋于无穷大,那么第一电容C1和第一可变电容VC1串联的电容的大小就取决于第一可变电容VC1的电容大小。其实在PA电路结构中,第二电感L2、第一电容C1、第一可变电容VC1和第四电感L4第二电容C2、第二可变电容VC2组成电路也参与了一部分简单的匹配,对于射频而言,他们其实是组成了一个LC谐振滤波。利用这一点,通过减小第一可变VC1和第二可变电容VC2的电容值,我们就可以很容易得到一个LC谐波。通过对低频滤波作用从而减小对低频信号的增益,从而达到改善杂散的作用。
如图2和图3所示,较粗曲线是第一控制电压U1为10V,第二控制电压U2为15V时候的PA的S参数仿真曲线,红色曲线是传统PA电路结构的仿真曲线,可以看出,通过控制U1U2的电压,分别在570MHz和1GHz频点上产生2个谐振陷波,从而抑制了570MHz和1GHz的信号增益,其中570MHz的曲线陷波效果是由L4 C2 VC2联合产生,1GHz的陷波效果是第二电感L2、第一电容C1以及第一可变电容VC1联合产生。图中显示570MHz的增益为2.1dB,相较于传统PA增益降低了5dB增益,1GHz的增益为-2dB,相较于传统PA结构的增益降低了26dB,低频增益抑制十分明显,而且右图的功率没有发现明显变化,依然是32.7dBm-32.3dBm的功率范围。
与相关技术相比本实用新型的功率放大器中,不需要增加额外的电路去抑制低频增益改善杂散,只是利用第一级放大电路上的集电极去耦电容的自谐振特性去抑制低频增益,这种方法经济实惠,效果明显。
需要指出的是,本实用新型采用的相关电容、电感、电阻及电 路模块均为本领域常用的电路模块和元器件,对应的具体的指标和参数根据实际应用进行调整,在此,不作详细赘述。
需要说明的是,以上参照附图所描述的各个实施例仅用以说明本实用新型而非限制本实用新型的范围,本领域的普通技术人员应当理解,在不脱离本实用新型的精神和范围的前提下对本实用新型进行的修改或者等同替换,均应涵盖在本实用新型的范围之内。此外,除上下文另有所指外,以单数形式出现的词包括复数形式,反之亦然。另外,除非特别说明,那么任何实施例的全部或一部分可结合任何其它实施例的全部或一部分来使用。

Claims (10)

  1. 一种功率放大器,其特征在于,包括:第一级放大电路、与所述第一级放大电路的输出端连接的第二级放大电路、以及与所述第二级放大电路的输出端连接的第三级放大电路;
    其中,所述第一级放大电路包括:第一三极管Q1、与所述第一三极管Q1发射极连接的第一电感L1、与所述第一三极管Q1的集电极连接的第二电感L2、与所述第二电感L2串联的第一电容C1、以及与所述第一电容C1串联的第一可变电容VC1;
    所述第一三极管Q1的基极连接一输入匹配电路以及第一偏置电路Bias1,所述第二电感L2的输入端接电源VCC,所述第一电感L1、第一可变电容VC1接地设置。
  2. 根据权利要求1所述的功率放大器,其特征在于,所述第一级放大电路还包括:与所述第二电感L2串联的第三电感L3,通过所第三电感L3的输入端接入所述电源VCC。
  3. 根据权利要求1所述的功率放大器,其特征在于,所述第一可变电容VC1通过一第一控制电压U1进行控制。
  4. 根据权利要求1所述的功率放大器,其特征在于,所述第二级放大电路包括:第二三极管Q2、与所述第二三极管Q2的集电极连接的第四电感L4、与所述第四电感L4串联的第二电容C2、以及与所述第二电容C2串联的第二可变电容VC2;
    所述第二三极管Q1的基极连接所述第一三极管Q1的集电极以及第二偏置电路Bias2,所述第四电感L4的输入端接电源VCC,所述第二三极管Q2的发射极、第二可变电容VC2接地设置。
  5. 根据权利要求4所述的功率放大器,其特征在于,与所述第四电感L4串联的第五电感L5,通过所述第五电感L5的输入端接入所述电源VCC。
  6. 根据权利要求4所述的功率放大器,其特征在于,所述第二可变电容VC2通过一第二控制电压U2进行控。
  7. 根据权利要求1所述的功率放大器,其特征在于,所述第三级放大电路包括:第三三极管Q3、与所述第三三极管Q3的集电 极连接的第六电感L6、与所述第六电感L6串联的第三电容C3;
    所述第三三极管Q3的基极连接所述第二三极管Q2的集电极以及第三偏置电路Bias3,所述第六电感L6的输入端接电源VCC,所述第三三极管Q3的发射极、第三电容C3接地设置。
  8. 根据权利要求1所述的功率放大器,其特征在于,所述第一级放大电路与所述第二级放大电路之间通过第一级间匹配电路进行匹配连接。
  9. 根据权利要求1所述的功率放大器,其特征在于,所述第二级放大电路与所述第三级放大电路之间通过第二级间匹配电路进行匹配连接。
  10. 根据权利要求1所述的功率放大器,其特征在于,所述第三级放大电路中,第三三极管Q3的集电极与一输出匹配电路连接进行匹配输出。
PCT/CN2023/093517 2022-07-06 2023-05-11 功率放大器 WO2024007727A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221762476.5U CN218124669U (zh) 2022-07-06 2022-07-06 功率放大器
CN202221762476.5 2022-07-06

Publications (1)

Publication Number Publication Date
WO2024007727A1 true WO2024007727A1 (zh) 2024-01-11

Family

ID=84518304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093517 WO2024007727A1 (zh) 2022-07-06 2023-05-11 功率放大器

Country Status (2)

Country Link
CN (1) CN218124669U (zh)
WO (1) WO2024007727A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218124669U (zh) * 2022-07-06 2022-12-23 深圳飞骧科技股份有限公司 功率放大器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112968678A (zh) * 2021-02-10 2021-06-15 广州慧智微电子有限公司 一种射频功率放大器及通信终端
US20210273615A1 (en) * 2020-02-28 2021-09-02 Qualcomm Incorporated Stability improvement circuit for radio frequency (rf) power amplifiers
CN114094953A (zh) * 2021-11-03 2022-02-25 深圳飞骧科技股份有限公司 功率放大器和射频芯片
CN114142818A (zh) * 2021-10-14 2022-03-04 深圳飞骧科技股份有限公司 应用于5G-Sub6G频段通信***的射频功率放大器
CN218124669U (zh) * 2022-07-06 2022-12-23 深圳飞骧科技股份有限公司 功率放大器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210273615A1 (en) * 2020-02-28 2021-09-02 Qualcomm Incorporated Stability improvement circuit for radio frequency (rf) power amplifiers
CN112968678A (zh) * 2021-02-10 2021-06-15 广州慧智微电子有限公司 一种射频功率放大器及通信终端
CN114142818A (zh) * 2021-10-14 2022-03-04 深圳飞骧科技股份有限公司 应用于5G-Sub6G频段通信***的射频功率放大器
CN114094953A (zh) * 2021-11-03 2022-02-25 深圳飞骧科技股份有限公司 功率放大器和射频芯片
CN218124669U (zh) * 2022-07-06 2022-12-23 深圳飞骧科技股份有限公司 功率放大器

Also Published As

Publication number Publication date
CN218124669U (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
CN107332517B (zh) 一种基于增益补偿技术的高线性宽带堆叠低噪声放大器
CN103117711B (zh) 一种单片集成的射频高增益低噪声放大器
WO2024055759A1 (zh) 低噪声放大器和射频芯片
WO2023093350A1 (zh) 射频功率放大器及短报文通信***
WO2024007727A1 (zh) 功率放大器
WO2024078155A1 (zh) 射频低噪声放大器电路及射频芯片
CN109525203B (zh) 一种基于GaAs pHEMT工艺的中频放大器
CN110896300A (zh) 一种宽带低噪声放大器
CN107846195A (zh) 一种带有源多路反馈的超宽带微波低噪声放大器
WO2023202309A1 (zh) 射频放大器电路和射频芯片
WO2023082938A1 (zh) 射频功率放大器、射频芯片及无线通讯设备
WO2024125230A1 (zh) 一种射频功率放大器和射频模组
WO2024125231A1 (zh) 一种射频功率放大器和基板模组
CN114499419B (zh) 一种晶体管合路结构放大器
CN116248052A (zh) 低噪声放大器和射频芯片
JP2024500119A (ja) 差動電力増幅器
CN112865717B (zh) 一种基于自适应线性化技术的高增益功率放大器
CN211063579U (zh) 一种x波段低噪声放大器
KR101590605B1 (ko) 무선 송수신기용 선형 전력증폭기
WO2023082932A1 (zh) 低噪声放大器、相关设备及芯片
WO2023202310A1 (zh) 功率放大器及其输入匹配网络
WO2023093360A1 (zh) 功率放大器和射频芯片
CN113098403A (zh) 基于GaAs pHEMT工艺的超宽带低电流驱动放大器
CN209844918U (zh) 一种用于低噪声放大器的高倍频程超宽带输入匹配电路
CN107528555B (zh) 一种分布式放大器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834501

Country of ref document: EP

Kind code of ref document: A1