WO2024007501A1 - 一种声光扫描超分辨光纤光刻机 - Google Patents

一种声光扫描超分辨光纤光刻机 Download PDF

Info

Publication number
WO2024007501A1
WO2024007501A1 PCT/CN2022/131025 CN2022131025W WO2024007501A1 WO 2024007501 A1 WO2024007501 A1 WO 2024007501A1 CN 2022131025 W CN2022131025 W CN 2022131025W WO 2024007501 A1 WO2024007501 A1 WO 2024007501A1
Authority
WO
WIPO (PCT)
Prior art keywords
super
optical
fiber
resolution
laser
Prior art date
Application number
PCT/CN2022/131025
Other languages
English (en)
French (fr)
Inventor
李西军
Original Assignee
西湖大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西湖大学 filed Critical 西湖大学
Publication of WO2024007501A1 publication Critical patent/WO2024007501A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2053Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser

Definitions

  • the present disclosure relates to the field of manufacturing chips or integrated circuits, and in particular to an acousto-optic scanning super-resolution fiber lithography machine.
  • the photolithography machine uses photons of purple or ultraviolet light to irradiate the photoresist (photoresist) coated on the surface of the wafer or sample to change the size of the photoresist molecules to obtain a certain contrast due to its solubility in a specific solvent.
  • the solvent is used to develop the selectively exposed photoresist coated on the wafer/sample surface to form a pattern.
  • the lithography machine is the core equipment of the chip production line.
  • the minimum line width that can be obtained after exposing the photoresist is the most important indicator of the lithography machine and represents the advanced level of the chip production line.
  • a state-of-the-art chip production line usually configures one or more machines with various processing precisions in its transistor manufacturing process (front-end) and inter-transistor interconnection process (back-end) according to the level of transistor integration and chip wiring requirements. Lithography.
  • Photolithography machines are divided into two categories based on the way patterns are formed on the photoresist.
  • the first type is to pass a light spot with uniform intensity distribution through a photolithography mask with a transparent and opaque area pattern to form an image on the photoresist that is highly fidelity to the mask pattern.
  • This type of photolithography machine is widely used in semiconductor production lines.
  • the second type of lithography machine uses a focused beam of light to scan the area that needs to be exposed on the photosensitive film, or uses a spatial light modulator to modulate the light intensity of a uniform light spot regionally to form a pattern of spatial contrast between light and dark, and then scans the photosensitive film.
  • this type of lithography machine is called a maskless lithography machine because it does not require a photolithography mask.
  • the former is also called laser direct writing, and the latter is also called LDI.
  • the above two types of lithography machines are designed to adopt free space optical structures, that is, when the light emitted from the light source reaches the photoresist surface, the light is exposed in the air or vacuum.
  • embodiments of the present disclosure propose an acousto-optic scanning super-resolution fiber lithography machine to solve the problems in the existing technology.
  • the present disclosure provides an acousto-optic scanning super-resolution fiber lithography machine, including a control device, a super-resolution fiber laser light source, an optical scanning system, and an electrically driven workpiece stage.
  • the control device and the super-resolution fiber laser light source, The optical scanning system and the electrically driven workpiece table are connected, and the control device can control the super-resolution fiber laser light source to emit the corresponding exposure laser based on the design layout, and control the optical scanning system to control the super-resolution optical fiber.
  • the laser emitted by the laser light source performs deflection scanning and controls the movement of the electric drive worktable.
  • control device can decompose the design layout into multi-layer patterns according to the processing technology, generate lithography data based on each layer pattern, and generate regulation for the super-resolution fiber laser light source based on the lithography data.
  • signal a light deflection control signal for the optical scanning system, and a workpiece stage control signal for the electrically driven stage.
  • the super-resolution fiber laser light source includes an exposure ultraviolet laser, a de-excitation laser and a transmission fiber, and the laser pulses emitted by the ultraviolet laser and the de-excitation laser emitted by the de-excitation laser are coupled to the into the transmission optical fiber, and then transmitted to the optical scanning system after collimation through the transmission optical fiber.
  • the super-resolution fiber laser light source further includes an electro-optic modulator and a spatial phase controller
  • the control device is connected to the electro-optic modulator and the spatial phase controller, and the control device can be based on The design layout controls the electro-optic modulator to adjust the intensity of the laser pulse emitted by the ultraviolet laser and controls the spatial phase controller to convert the de-excitation laser emitted by the de-excitation laser into a donut-shaped de-excitation Structured light.
  • the transmission optical fiber includes a photolithographic optical fiber core.
  • the photolithographic optical fiber core is surrounded by an optical fiber cladding.
  • the exit end of the optical fiber cladding is provided with an exit focusing lens system.
  • the exit focusing lens system is provided.
  • the lens system transmits the coupled laser pulses and de-excitation structured light to the optical scanning system.
  • the spatial phase controller includes a helical phaser or a metasurface device.
  • the optical scanning system includes an incident focusing lens system, an optical scanner and an exit lens focusing system.
  • the laser emitted by the super-resolution fiber laser light source is focused on the optical scanning system after passing through the incident focusing lens system.
  • the exit lens focusing system focuses the laser on the optical scanner at a set position.
  • the super-resolution fiber laser light source includes a transmission fiber and a metasurface lens
  • the optical scanning system includes an optical scanner and an exit lens focusing system
  • the laser emitted by the super-resolution fiber laser light source is in the transmission
  • the optical fiber is transmitted through the metasurface lens and then focused on the optical scanner.
  • the exit lens focusing system focuses the laser on the optical scanner at a set position.
  • the super-resolution fiber laser light source includes a plurality of transmission optical fibers, all of the transmission optical fibers are distributed in an array, the optical scanning system includes a plurality of optical scanners, and each of the optical scanners is connected to at least one The transmission optical fibers are arranged correspondingly.
  • the electrically driven workpiece stage includes a plurality of driving devices to achieve positioning and control of the exposure position on the photolithographic material in the three axes of XYZ, where the X-axis and Y-axis are located on the light focusing array.
  • the Z-axis is along the direction perpendicular to the focal plane.
  • Embodiments of the present disclosure use optical fibers to connect the light energy used in lithography to the light source and the light focusing system, thereby avoiding the use of multiple optical lenses or lens groups in the design and production of the free space optical lithography machine.
  • the optical path of the fiber optic lithography machine is simple and easy to manufacture. Maintenance costs are greatly reduced; optical fiber is used to connect the super-resolution fiber laser light source and optical scanning system.
  • the switch of laser light energy combines non-mechanical light scanning and the movement of an electrically driven stage to realize the patterning function of photolithography; a plurality of optical fibers are used to form an array, and a single or multiple non-mechanical light scanners are used to form an array, forming a multi-layer array. Bundle optical fiber lithography machine to improve the processing rate of the lithography machine.
  • Figure 1 is a schematic diagram of the principle of an acousto-optic scanning super-resolution fiber lithography machine according to an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of an acousto-optic scanning super-resolution fiber lithography machine according to an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of the principle of a control device of an acousto-optic scanning super-resolution fiber lithography machine according to an embodiment of the present disclosure
  • Figure 4 is a schematic diagram of a module of a super-resolution fiber laser light source in an acousto-optic scanning super-resolution fiber lithography machine according to an embodiment of the present disclosure
  • Figure 5 is a schematic structural diagram of a transmission fiber in an acousto-optic scanning super-resolution fiber lithography machine according to an embodiment of the present disclosure
  • Figure 6 is another structural schematic diagram of an acousto-optic scanning super-resolution fiber lithography machine according to an embodiment of the present disclosure
  • Figure 7 is another structural schematic diagram of an acousto-optic scanning super-resolution fiber lithography machine according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of the spatial distribution of the fiber array of the acousto-optic scanning super-resolution fiber lithography machine according to an embodiment of the present disclosure.
  • Embodiments of the present disclosure relate to an acousto-optic scanning super-resolution fiber lithography machine, which is used to implement photolithography operations on the photolithography material of the wafer through exposure based on a preset design layout for photolithography.
  • Figure 1 shows a schematic structural diagram of the acousto-optic scanning super-resolution fiber lithography machine.
  • the acousto-optic scanning super-resolution fiber lithography machine includes a control device 1, a super-resolution fiber laser light source 2, Optical scanning system 3 and electrically driven workpiece stage 4, the control device 1 is connected to the super-resolution fiber laser light source 2, the optical scanning system 3 and the electrically driven workpiece stage 4, and the control device 1 can be based on
  • the design layout controls the super-resolution fiber laser light source 2 to emit the corresponding exposure laser, controls the optical scanning system 3 to deflect and scan the laser emitted by the super-resolution fiber laser light source 2, and controls the movement of the electric drive worktable. .
  • the photolithographic material here is, for example, a wafer or other materials.
  • the wafer is placed on the electrically driven workpiece table 4 and is coated on the wafer by using spin coating, spray glue or other processes.
  • Photoresist The super-resolution fiber laser light source 2 is used to emit laser light to the photolithography material located on the electrically driven workbench to achieve exposure based on a pre-designed design layout.
  • the super-resolution fiber laser light source 2 is a super-resolution fiber laser light source 2 output by an optical fiber.
  • the exposed light energy passes through the optical scanning system 3 and is written point by point in the writing field on the wafer coated with photoresist on the electric drive workbench. During each scan, the super-resolution fiber laser light source 2 can output laser pulses matching the light energy required for exposure, thereby realizing the exposure function to complete the photolithography operation.
  • the super-resolution fiber laser light source 2 for emitting laser includes a power supply and a laser.
  • the wavelength of the laser emitted by the super-resolution fiber laser light source 2 here can be in the range of 193nm to 436nm, and the power of the emitted laser can be In the range of 1 mW to 100 W, the super-resolution fiber laser light source 2 can emit laser light in a free space manner or in a coupled fiber output manner.
  • the transmission fiber 21 of the super-resolution fiber laser light source 2 is an ultraviolet fiber, which can be a single-film or multi-mode fiber, and its material can be an organic fiber or a quartz fiber, preferably a single-mode quartz fiber.
  • the transmission optical fiber 21 is preferably an optical fiber with a focusing function on its output end face.
  • control device 1 can be controlled using a human-machine interface.
  • First for example, use graphics software to design the design layout of the integrated circuit/chip that meets the target function, or input the design layout of the integrated circuit that meets the requirements based on third-party design software, and decompose the design layout into multiple layers according to the processing technology.
  • Exposure pattern based on the exposure pattern of each layer and according to the type of photoresist (such as positive or negative resist, exposure sensitivity of the photoresist), the exposure parameters are converted into photolithography data.
  • the photolithography data here refers to the The data related to the photolithography material and the realization of exposure are finally generated based on the photolithography data, a control signal 11 for the super-resolution fiber laser light source 2, a light deflection control signal 12 for the optical scanning system 3, and a control signal 12 for the electro-optical
  • the workpiece table control signal 13 drives the workpiece table 4.
  • the control device 1 can control the super-resolution fiber laser light source 2 to emit corresponding laser light for exposure based on the control signal 11, and control the optical scanning system 3 to deflect the laser light emitted by the super-resolution fiber laser light source 2 based on the light deflection control signal 12, thereby The laser can be exposed on the corresponding pixel point; the control device 1 controls the movement of the electrically driven workpiece stage 4 through the workpiece stage control signal 13 to move to each exposure position to implement the exposure operation.
  • control device 1 can synchronously control the super-resolution fiber laser light source 2, the optical scanning system 3 and the The workpiece stage 4 is electrically driven, thereby performing an exposure operation on the photoresist on the photolithography material disposed on the electrically driven worktable, and ultimately achieving a precise photolithography function.
  • the control device 1 obtains the exposure-related data required by the photolithography material based on, for example, the design layout, and decomposes the exposure-related data into DAC modules or ADC modules.
  • information and movement control data of the driving device; the set of light deflection control signals 12 at least includes laser deflection data corresponding to each exposure position.
  • the super-resolution fiber laser light source 2 includes an exposure ultraviolet laser 21, a de-excitation laser 22 and a transmission fiber 23.
  • the de-excitation laser 221 is coupled into the transmission fiber 23 and is collimated by the transmission fiber 23 before being transmitted to the optical scanning system 3 .
  • the laser pulse 211 and the de-excitation laser 221 are collimated by the transmission fiber 23 and simultaneously deflected to a preset position under the action of the optical scanning system 3 for exposure.
  • the super-resolution fiber laser light source 2 also includes an electro-optic modulator 24 and a spatial phase controller 25.
  • the control device 1 is connected to the electro-optic modulator 24 and the spatial phase controller 25, and the control device 1 is connected to the electro-optic modulator 24 and the spatial phase controller 25.
  • the device 1 can control the electro-optic modulator 24 to adjust the intensity of the laser pulse 211 emitted by the ultraviolet laser 21 and control the spatial phase controller 25 to adjust the de-excitation laser 221 emitted by the de-excitation laser 22 based on the design layout.
  • the excitation laser 221 is transformed into a donut-shaped de-excitation structured light.
  • the laser emitted by the ultraviolet laser 21 can achieve super-resolution lithography under the limitation of the de-excitation laser 221 emitted by the de-excitation laser 221 .
  • the transmission optical fiber 23 includes a photolithographic optical fiber core 231.
  • the photolithographic optical fiber core 231 is surrounded by an optical fiber cladding 232.
  • the exit end of the optical fiber cladding 232 is provided with an exit focusing lens system 233, so
  • the exit focusing lens system 233 transmits the coupled laser pulse 211 and de-excitation structured light to the optical scanning system 3 .
  • the laser pulse 211 and the de-excitation structured light transmitted through the photolithography fiber core 231 act on the preset position (the designated pixel point of the wafer exposure) under the focus of the exit focusing lens system.
  • the spatial phase controller includes a spiral phaser or a metasurface device.
  • control device 1 can decompose the design layout into multi-layer patterns according to the processing technology, generate lithography data based on each layer pattern, and generate a control signal for the super-resolution fiber laser light source 2 based on the lithography data. 11.
  • the control device 1 can sequentially control the super-resolution fiber laser light source 2, the optical scanning system 3 and the electric drive workbench according to different lithography data, so as to simultaneously realize the exposure of the corresponding positions and further increase the exposure accuracy.
  • the optical scanning system 3 includes an incident focusing lens system, an optical scanner 31 and an exit lens focusing system.
  • the laser emitted by the super-resolution fiber laser light source 2 is focused on the target after passing through the incident focusing lens system.
  • the exit lens focusing system focuses the laser on the optical scanner 31 at a set position.
  • the super-resolution fiber laser light source 2 includes a transmission fiber 21 and a metasurface lens.
  • the optical scanning system 3 includes an optical scanner 31 and an exit lens focusing system.
  • the super-resolution fiber laser light source 2 emits The laser is transmitted by the transmission fiber 21 and then focused on the optical scanner 31 after passing through the metasurface lens.
  • the exit lens focusing system focuses the laser on the optical scanner 31 at a set position.
  • the super-resolution fiber laser light source 2 includes a plurality of transmission fibers 21 , all of the transmission fibers 21 are distributed in an array, the optical scanning system 3 includes a plurality of optical scanners 31 , and each of the light The scanner 31 is arranged corresponding to at least one of the transmission optical fibers 21 .
  • a plurality of optical fibers are spatially distributed in an array, and their exposure lasers cover several writing fields at the same time under the action of the corresponding optical scanner 31.
  • the control device 1 decomposes the lithography data that the wafer needs to be exposed into multiple writing field information, the light deflection control signal 12 of each optical fiber and its corresponding pixel point in the writing field, and the light intensity of each optical fiber at the corresponding pixel point.
  • the number of optical fibers is determined by the lowest frequency among the frequencies of the light intensity modulator and the optical scanning system 3 .
  • Multiple transmission optical fibers 21 are distributed in a spatial array so that their exposure pulses cover the same or adjacent writing field covered by the scanning range of the optical scanning system 3.
  • the control device 1 decomposes the data that needs to be exposed on the wafer into writing fields. Field information (corresponding to the workpiece stage control signal 13), the position information of each optical fiber and its corresponding pixel point in the writing field (corresponding to the light deflection control signal 12 of the optical scanning system 3) and each optical fiber at the corresponding pixel point exposure light intensity information (corresponding to the light intensity control signal).
  • the electric drive motor positions the corresponding writing field on the wafer required for photolithography in this process to the bottom of the non-mechanical light scanning system 3; the corresponding writing field on the wafer reaches the non-mechanical light scanning system
  • the light deflection control signal 12 of the control device 1 controls the non-mechanical light scanning system 3, so that the exposure light pulse of each optical fiber is deflected at each respective pixel position in turn. point, the control device 1 uses the light intensity modulation signal to control the light pulse reaching the pixel point to complete the photolithography of the exposure point.
  • the control device 1 After completing the scanning control of all pixel positions on the writing field this time, the control device 1 then controls the movement of the motor stage, transports the wafer to the next writing field position that needs to be exposed, and repeats the scanning and light intensity modulation required for exposure to complete the process. A single exposure across the entire wafer. If a total of 100 optical fibers are used at 10x10, in principle, the exposure yield of 300nm resolution can be increased to 200 square centimeters per minute, which can meet the needs of chip production and chip packaging production lines.
  • the present invention reveals that the acousto-optic scanning super-resolution fiber lithography machine can even use a plurality of optical fibers to form a plurality of arrays, and each array consists of a plurality of optical fibers; the optical scanning system 3 uses a plurality of acousto-optic scanners 31 to form an array. Each scanner corresponds to a fiber array. As shown in Figure 6. If there are 10x10 acousto-optic scanners31, and each scanner has 10x10 optical fibers, the processing yield of 300nm resolution can reach 2 square meters per minute, which can meet the production needs of various large displays and high-end chip packaging needs .
  • the electrically driven workpiece stage 4 includes multiple driving devices to position and control the exposure position on the photolithographic material in the three axes of XYZ.
  • the driving device here may be a motor unit, for example.
  • the X-axis and the Y-axis are located on the focal plane where the light focusing array achieves optical signal focusing or a plane parallel to the focal plane, and the Z-axis is along the direction perpendicular to the focal plane.
  • the positioning and control accuracy of the electrically driven workpiece stage 4 in the Z-axis direction is on the order of 100nm-10um.
  • the motion control in the Z-axis direction can preferably be achieved by using a stepper motor or a piezoelectric motor.
  • the maximum displacement amount of the motor unit here to control the movement of the electrically driven workpiece table 4 is between 5 mm and 50 mm. between;
  • the movement of the electrically driven workpiece table 4 in the X-axis and Y-axis directions is controlled by two independent groups of motor units.
  • Each group of the motor units includes at least a stepper motor and a piezoelectric motor.
  • Each group of the motor units The positioning accuracy can be achieved, for example, by a laser interferometer.
  • the positioning signal emitted by the laser interferometer and the drive signal of the piezoelectric motor are used to form a closed-loop control signal to control the positioning accuracy.
  • the X-axis and Y-axis located in the focal plane
  • the positioning and control accuracy of each axis is controlled between 1nm and 10nm, and the motor unit controls the movement of the electrically driven workpiece table 4 to a maximum displacement of 50mm to 320mm.
  • the electrically driven workpiece stage 4 may also have the ability to rotate within the focal plane and tilt the XY plane normal to deviate from the focused light, positioning and controlling it.
  • Embodiments of the present disclosure can realize the formation of large-area and high-precision micro-nano structures on the surface of photolithographic materials such as wafers or other materials, thereby meeting the research, development and production needs of integrated circuits and other micro-nano systems.
  • the exposure laser wavelength of the acousto-optic scanning super-resolution fiber lithography machine involved in the embodiment of the present disclosure is between 193nm and 436nm, the output power is between 1mW and 100W, and the deexcitation wavelength is between 630nm and 1300nm. The power is between 5mW and 500W.
  • the modulation frequency can reach 100GHz.
  • the synchronization of the light intensity modulation and the non-mechanical light scanning system 3 is used to realize the photoresist-coated semiconductor wafer or other R&D samples. A large area of micron and nanoscale patterns is formed on the chip to meet the needs of chip production.
  • the acousto-optic scanning super-resolution fiber lithography machine involved in the embodiment of the present disclosure realizes the lithography function through the following solution.
  • the electrically driven workpiece stage 4 realizes movement and positioning in the Z-axis direction through a driving device that controls the movement in the Z-axis direction, wherein the photoresist is positioned on the surface formed by the optical scanning system 3 within the focal plane.
  • control device 1 Design the design layout for the chip or micro-nano system on the built-in design software of the control device 1, or convert the design layout obtained through third-party software design and import it into the control device 1; wherein , the control device 1 decomposes the design layout for a chip or micro-nano system into multi-layer patterns according to the processing technology, and generates photolithography data based on each layer of patterns.
  • control device 1 obtains the photolithography data required for the photolithography operation and related to the exposure based on the design layout, and decomposes each photolithography data into several writing fields as needed.
  • the control device 1 decomposes the data that the wafer needs to be exposed into a light deflection control signal 12, a workbench control signal 13 and a regulation signal 11, wherein the workbench control signal at least includes the wafer and other lithography to meet the needs of the process lithography.
  • the light deflection control signal 12 sets It at least includes laser deflection data corresponding to each exposure position;
  • the light modulation signal 13 at least includes modulation of the super-resolution fiber laser light source 2 so that it outputs laser pulses 211 that match the light energy required for exposure.
  • control device 1 controls the signal based on the workpiece stage 13.
  • Control the electric drive workpiece stage 4 to move in the X-axis and Y-axis directions, and move the photolithography material to the initial exposure point position, according to the laser deflection data corresponding to each exposure position in the light deflection control signal 12 , thereby deflecting based on the light deflection control signal 12, and finally completing the photolithography operation at the current exposure position;
  • the control device 1 continues to control the electrically driven workpiece stage 4 to move within the focal plane, move the semiconductor wafer coated with photoresist to the next exposure position in this photolithography data, and perform light deflection
  • the deflection data in the control signal 12 and the light intensity adjustment of the light modulation signal 13 complete the photolithography of the current wafer.
  • the photolithography materials such as the wafer exit the fiber lithography machine through the electrically driven workpiece stage 4 and enter other etching or coating or ion implantation, annealing or other processes after development and fixation. After other related processes, this will complete all the process steps of this photolithography operation.
  • the embodiment of the present disclosure uses a super-resolution fiber laser light source 2 in the range of 193nm to 436nm as the photolithography light, and uses an electro-optical or acousto-optic modulator to modulate the light intensity and switching of the laser.
  • the frequency of modulation can reach 100GHz; further, multiple optical fibers are used
  • Array parallel processing is formed to further improve the exposure yield; the synchronization of light intensity modulation and non-mechanical light scanning is used to form large-area micron and nanoscale patterns on photoresist-coated semiconductor wafers or other R&D samples.
  • an optical fiber array is used to realize multi-beam parallel lithography, thereby improving the productivity of the lithography machine.
  • Embodiments of the present disclosure can directly implement photolithography from the chip design layout without requiring a photolithography mask, thereby realizing digital production of chips.
  • the embodiments of the present disclosure are suitable for research, development and production of integrated circuits or other similar integrated micro-nano systems.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

本公开实施例提出一种声光扫描超分辨光纤光刻机,包括控制装置、超分辨光纤激光光源、光扫描***以及电驱动工件台。本公开实施例通过采用光纤把光刻使用的光能连接光源和光聚焦***,避免自由空间光学光刻机在设计和生产上采用复数个光学透镜或透镜组,光纤光刻机光路简单,制造和维护成本都大大降低;采用光纤连接超分辨光纤激光光源和光扫描***,因为避免采用透镜组消除相差,可以大大缩短光路的长度,有效减小光刻机的几何尺寸;采用电光调制实现对光刻的激光光能的开关,结合非机械光扫描和电驱动位移台的移动,实现光刻的图案化功能。

Description

一种声光扫描超分辨光纤光刻机 技术领域
本公开涉及一种芯片或者集成电路的制造领域,尤其涉及一种声光扫描超分辨光纤光刻机。
背景技术
光刻机是利用紫光或紫外光的光子照射涂覆在晶圆或试样表面的光刻胶(感光胶)使光刻胶分子大小产生变化得到其在特定溶剂中的溶解度产生一定的对比度。利用该溶剂对晶圆/试样表面上涂覆的经过选择性曝光的光刻胶进行显影形成图案。光刻机是芯片生产线的核心装备,曝光光刻胶后能得到的最小线宽是光刻机的最重要指标和代表芯片产线的先进程度。一条最先进的芯片产线,通常根据晶体管集成度高低和芯片布线要求,在其晶体管制造工艺(前道)和晶体管间互联工艺(后道)分别配置1台或多台各种不同加工精度的光刻机。
光刻机按光刻胶上形成图案的方式分为两大类。第一类是把强度分布均匀的光斑,通过具有透明和不透明区域图案的光刻掩模板后在光刻胶上形成与掩模板图案高度保真的像。这类光刻机广泛用于半导体的生产线上。第二类光刻机是利用一束聚焦后的光在感光胶上扫描需要曝光的区域,或利用空间光调制器对均匀的光斑分区域调制光强形成空间上明暗对比的图案后在感光胶上实现曝光,这类光刻机因不需要光刻掩模版被称为无掩模光刻机,前者也叫激光直写,后者也被称为LDI。上述两类光刻机的设计都采用自由空间光学结构,即从光源发出的光到达光刻胶表面的过程中,光线都裸露在空气或真空中。
发明内容
有鉴于此,本公开实施例提出了一种声光扫描超分辨光纤光刻机,以解决现有技术中的问题。
一方面,本公开提供一种声光扫描超分辨光纤光刻机,包括控制装置、超分辨光纤激光光源、光扫描***以及电驱动工件台,所述控制装置与所述超分辨光纤激光光源、所述光扫描***以及所述电驱动工件台连接,且所述控制装置能够基于设计版图控制所述超分辨光纤激光光源发出相应的曝光用激光、控制所述光扫描***对所述超分辨光纤激光光源发射的激光进行偏转扫描以及控制所述电驱动工作台进行运动。
在一些实施例中,所述控制装置能够将所述设计版图按照加工工艺分解成多层图案,并基于每层图案生成光刻数据,基于所述光刻数据生成针对超分辨光纤激光光源的调控信号、针对所述光扫描***的光偏转控制信号以及针对所述电驱动工作台的工件台控制信号。
在一些实施例中,所述超分辨光纤激光光源包括曝光用的紫外激光器、退激发激光器和传输光纤,所述紫外激光器发出的激光脉冲和所述退激发激光器发出的退激发激光耦合于所述传输光纤中,并通过所述传输光纤准直后传输至所述光扫描***。
在一些实施例中,所述超分辨光纤激光光源还包括电光调制器和空间相位控制器,所述控制装置与所述电光调制器和所述空间相位控制器相连,且所述控制装置能够基于所述设计版图控制所述电光调制器对所述紫外激光器发出的激光脉冲进行强度调节以及控制所述空间相位控制器将所述退激发激光器发出的退激发激光转变为甜甜圈形状的退激发结构光。
在一些实施例中,所述传输光纤包括光刻光纤芯,所述光刻光纤芯的外侧包围设置有光纤包层,所述光纤包层的出射端设置有出射聚焦透镜***,所述出射聚焦透镜***将耦合后的激光脉冲和退激发结构光传输至所述光扫描***处。
在一些实施例中,所述空间相位控制器包括螺旋相位器或超表面器件。
在一些实施例中,所述光扫描***包括入射聚焦透镜***、光扫描器和出射透镜聚焦***,所述超分辨光纤激光光源发射的激光经过所述入射聚焦透镜***后聚焦于所述光扫描器上,所述出射透镜聚焦***将所述光扫描器上的激光聚焦于设定位置。
在一些实施例中,所述超分辨光纤激光光源包括传输光纤和超表面透镜, 所述光扫描***包括光扫描器和出射透镜聚焦***,所述超分辨光纤激光光源发射的激光在所述传输光纤的传输下经过所述超表面透镜后聚焦于所述光扫描器上,所述出射透镜聚焦***将所述光扫描器上的激光聚焦于设定位置。
在一些实施例中,所述超分辨光纤激光光源包括多根传输光纤,所有所述传输光纤阵列分布,所述光扫描***包括多个光扫描器,且每一所述光扫描器与至少一个所述传输光纤对应设置。
在一些实施例中,所述电驱动工件台包括多个驱动装置以实现光刻材料上的曝光位置在XYZ三个轴向的定位和控制,其中,X轴和Y轴位于所述光聚焦阵列实现光信号聚焦的焦平面或与所述焦平面平行的平面上,Z轴在沿与该焦平面垂直的方向。
本公开实施例通过采用光纤把光刻使用的光能连接光源和光聚焦***,避免自由空间光学光刻机在设计和生产上采用复数个光学透镜或透镜组,光纤光刻机光路简单,制造和维护成本都大大降低;采用光纤连接超分辨光纤激光光源和光扫描***,因为避免采用透镜组消除相差,可以大大缩短光路的长度,有效减小光刻机的几何尺寸;采用电光调制实现对光刻的激光光能的开关,结合非机械光扫描和电驱动位移台的移动,实现光刻的图案化功能;采用复数根光纤组成阵列,单个或复数个非机械光扫描器组成阵列,形成为多束光纤光刻机,提高光刻机的加工速率。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例的声光扫描超分辨光纤光刻机的原理示意图;
图2为本公开实施例的声光扫描超分辨光纤光刻机的结构示意图;
图3为本公开实施例的声光扫描超分辨光纤光刻机的控制装置的原理示意图;
图4为本公开实施例的声光扫描超分辨光纤光刻机中超分辨光纤激光光源的模块示意图;
图5为本公开实施例的声光扫描超分辨光纤光刻机中传输光纤的结构示意图;
图6为本公开实施例的声光扫描超分辨光纤光刻机的另一结构示意图;
图7为本公开实施例的声光扫描超分辨光纤光刻机的另一结构示意图;
图8为本公开实施例的声光扫描超分辨光纤光刻机的光纤阵列空间分布的示意图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
本公开实施例涉及一种声光扫描超分辨光纤光刻机,其用于基于预先设置的用于光刻的设计版图在晶圆的光刻材料上通过曝光的方式实现光刻操作。如图1至图8所示,图1示出了所述声光扫描超分辨光纤光刻机的结构示意图,声光扫描超分辨光纤光刻机包括控制装置1、超分辨光纤激光光源2、光 扫描***3以及电驱动工件台4,所述控制装置1与所述超分辨光纤激光光源2、所述光扫描***3以及所述电驱动工件台4连接,且所述控制装置1能够基于设计版图控制所述超分辨光纤激光光源2发出相应的曝光用激光、控制所述光扫描***3对所述超分辨光纤激光光源2发射的激光进行偏转扫描以及控制所述电驱动工作台进行运动。
其中,这里的所述光刻材料例如是晶圆或者其他材料,所述晶圆设置在所述电驱动工件台4上,通过采用旋涂、喷胶或其它工艺在所述晶圆上涂覆光刻胶。所述超分辨光纤激光光源2用于向位于所述电驱动工作台上的所述光刻材料发射激光以基于预先设计的设计版图实现曝光。超分辨光纤激光光源2是一个光纤输出的超分辨光纤激光光源2,曝光的光能量经过光扫描***3后在位于电驱动工作台上涂覆光刻胶的晶圆上的写场内逐点扫描,每个扫描电上,超分辨光纤激光光源2均能够输出于曝光需要的光能量匹配的激光脉冲,实现曝光功能以完成光刻操作。
具体的,用于发射激光的所述超分辨光纤激光光源2包括电源以及激光器,这里的所述超分辨光纤激光光源2发射的激光的波长可以在193nm到436nm的范围内,发射激光的功率可以在1mW到100W的范围内,所述超分辨光纤激光光源2的激光发射的方式可以是以向自由空间发射的方式或者以耦合光纤输出的方式,这里优选地采用能够以光纤输出方式发射激光的激光器。
其中超分辨光纤激光光源2的传输光纤21是紫外光纤,它可以是单膜或多模光纤,其材质可以是有机光纤或石英光纤,优选单模石英光纤。传输光纤21传优选为输出端面有聚焦功能的光纤。
进一步地,所述控制装置1可以采用人机界面的方式进行控制。首先,例如通过图形软件设计出符合目标功能的集成电路/芯片的设计版图,或者基于第三方设计软件输入符合要求的集成电路的设计版图,并把所述设计版图按照加工工艺分解成多层的曝光图案,基于每层的曝光图案并根据光刻胶的类型(例如正胶或负胶、光刻胶的曝光感度)将曝光参数转换为光刻数据,这里的所述光刻数据是指针对所述光刻材料与实现曝光相关的数据,最后基于所述光刻数据生成针对超分辨光纤激光光源2的调控信号11、针对所述光扫描***3的光偏转控制信号12以及针对所述电驱动工件台4的工件台控制信号13。
控制装置1能够基于调控信号11控制超分辨光纤激光光源2发出用于曝 光的相对应的激光,基于光偏转控制信号12控制光扫描***3对超分辨光纤激光光源2发出的激光进行偏转,从而使激光能够在对应的像素点上进行曝光;控制装置1通过所述工件台控制信号13控制所述电驱动工件台4进行运动以移动到每次的曝光位置从而实现曝光操作。这样,所述控制装置1能够通过所述调控信号11、所述光偏转控制信号12和所述工件台控制信号13同步控制所述超分辨光纤激光光源2、所述光扫描***3和所述电驱动工件台4,从而实现在设置在所述电驱动工作台上的所述光刻材料上的光刻胶上执行曝光操作,最终实现精密的光刻功能。
其中,如图3所示,所述控制装置1基于例如通过所述设计版图获取所述光刻材料需要的与曝光相关的数据,并通过将与曝光相关的数据通过DAC模块或者ADC模块分解为工作台控制信号13、调控信号11和对应的光偏转控制信号12,其中,所述调控信号11至少包括激光脉冲宽度、曝光强度信息等,所述工作台控制信号13至少包括为满足光刻工艺需要的晶圆等光刻材料上所有曝光位置和不需要曝光位置的位置信息、每个曝光位置和不需要曝光位置的位置对应的所述电驱动工件台4上所述晶圆的位置的定位信息和驱动装置的移动控制数据;所述光偏转控制信号12集至少包括对应于每个曝光位置的激光偏转数据。
如图2所示,所述超分辨光纤激光光源2包括曝光用的紫外激光器21、退激发激光器22和传输光纤23,所述紫外激光器21发出的激光脉冲211和所述退激发激光器22发出的退激发激光221耦合于所述传输光纤23中,并通过所述传输光纤23准直后传输至所述光扫描***3。激光脉冲211和退激发激光221通过传输光纤23的准直后同时在光扫描***3的作用下偏转至预设位置进行曝光。
优选的,所述超分辨光纤激光光源2还包括电光调制器24和空间相位控制器25,所述控制装置1与所述电光调制器24和所述空间相位控制器25相连,且所述控制装置1能够基于所述设计版图控制所述电光调制器24对所述紫外激光器21发出的激光脉冲211进行强度调节以及控制所述空间相位控制器25将所述退激发激光221器22发出的退激发激光221转变为甜甜圈形状的退激发结构光。紫外激光器21发出的激光能够在退激发激光221器22发出的退激发激光221的限制下实现超分辨光刻。
具体的,所述传输光纤23包括光刻光纤芯231,所述光刻光纤芯231的 外侧包围设置有光纤包层232,所述光纤包层232的出射端设置有出射聚焦透镜***233,所述出射聚焦透镜***233将耦合后的激光脉冲211和退激发结构光传输至所述光扫描***3处。经过光刻光纤芯231传输的激光脉冲211和退激发结构光在出射聚焦透镜***的聚焦下作用于预设位置(晶圆曝光的指定像素点上)。
优选的,所述空间相位控制器包括螺旋相位器或超表面器件。
进一步地,所述控制装置1能够将所述设计版图按照加工工艺分解成多层图案,并基于每层图案生成光刻数据,基于所述光刻数据生成针对超分辨光纤激光光源2的调控信号11、针对所述光扫描***3的光偏转控制信号12以及针对所述电驱动工作台的工件台控制信号13。控制装置1能够根据不同的光刻数据依次对超分辨光纤激光光源2、光扫描***3及电驱动工作台进行控制,同步实现对应位置的曝光,进一步增加曝光精度。
在一些实施例中,所述光扫描***3包括入射聚焦透镜***、光扫描器31和出射透镜聚焦***,所述超分辨光纤激光光源2发射的激光经过所述入射聚焦透镜***后聚焦于所述光扫描器31上,所述出射透镜聚焦***将所述光扫描器31上的激光聚焦于设定位置。
在一些实施例中,所述超分辨光纤激光光源2包括传输光纤21和超表面透镜,所述光扫描***3包括光扫描器31和出射透镜聚焦***,所述超分辨光纤激光光源2发射的激光在所述传输光纤21的传输下经过所述超表面透镜后聚焦于所述光扫描器31上,所述出射透镜聚焦***将所述光扫描器31上的激光聚焦于设定位置。
在一些实施例中,所述超分辨光纤激光光源2包括多根传输光纤21,所有所述传输光纤21阵列分布,所述光扫描***3包括多个光扫描器31,且每一所述光扫描器31与至少一个所述传输光纤21对应设置。其中多根光纤在空间上阵列分布,它们的曝光激光在对应的光扫描器31的作用下同时覆盖若干个写场。控制装置1把晶圆需要曝光的光刻数据分解成多个写场信息、每根光纤和它对应的写场内的像素点的光偏转控制信号12和对应像素点上每根光纤的光强度控制信号。其中,光纤的数量由光强度调制器和光扫描***3的频率中最低的频率进行确定。将多根传输光纤21在空间上阵列分布,使它们的曝光脉冲覆盖同一个或相邻的光扫描***3的扫描范围覆盖的写场中,控制装置1把晶圆需要曝光的数据分解成写场信息(对应于工件台控制 信号13),每根光纤和它对应的写场内的像素点的位置信息(对应于光扫描***3的光偏转控制信号12)和对应像素点上每根光纤的曝光光强度信息(对应于光强度控制信号)。电驱动马达在工件台控制信号13的控制下,把本次工艺光刻需要的晶圆上对应的写场定位到非机械光扫描***3下方;晶圆上对应的写场到达非机械光扫描***3的焦平面位置后,控制装置1的光偏转控制信号12控制非机械光扫描***3,使每根光纤的曝光光脉冲依次在各自的每个像素点位置偏转,在对每一个的像素点,控制装置1利用光强度调制信号控制到达该像素点的光脉冲,完成曝光点位的光刻。完成这一次写场上所有像素点位置的扫描控制后,控制装置1再控制马达台的移动,把晶圆运送到下一个需要曝光的写场位置,并重复曝光需要的扫描和光强度调制,完成整个晶圆上的当次曝光。如果由10x10共100根光纤,原则上可以把300nm分辨率的曝光产率提高到每分钟200平方厘米,能满足芯片生产和芯片封装产线的需要。
本发明揭示声光扫描超分辨光纤光刻机甚至可以采用复数根光纤组成复数个阵列,每个阵列由复数根光纤;光扫描***3采用复数个声光扫描器31组成阵列。每个扫描器对应与一个光纤阵列。如图6所示。如果有10x10个声光扫描器31,每个扫描器有10x10根光纤,那300nm分辨率的加工产率可以到达每分钟2平方米,能满足各类大型显示器的生产需要和高端芯片封装的需要。
在一些实施例中,所述电驱动工件台4包括多个驱动装置以实现光刻材料上的曝光位置在XYZ三个轴向的定位和控制,这里的所述驱动装置例如可以是电机单元,其中,X轴和Y轴位于所述光聚焦阵列实现光信号聚焦的焦平面或与所述焦平面平行的平面上,Z轴在沿与该焦平面垂直的方向。
进一步地,所述电驱动工件台4在Z轴方向上的定位和控制精度为100nm-10um量级。为此,对于Z轴方向上的运动控制可以优选采用步进电机,也可以采用压电电机实现,这里的所述电机单元控制所述电驱动工件台4运动的最大位移量在5mm到50mm之间;
所述电驱动工件台4的在X轴和Y轴方向上的运动分别由两组独立的电机单元控制,每组所述电机单元至少包括步进电机和压电电机,每组所述电机单元的定位精度例如可以由激光干涉器实现,例如利用激光干涉器发射的定位信号和压电电机的驱动信号组成闭环控制信号以控制定位精度,这样, 使得位于焦平面内的X轴和Y轴两个轴向的定位和控制精度控制在1nm到10nm之间,所述电机单元控制所述电驱动工件台4的运动最大位移量为50mm到320mm。当然,所述电驱动工件台4也可以具有焦平面内的转动和XY面法线偏离聚焦光线的倾斜定位和控制能力。
本公开实施例能够实现例如在晶圆或其他材料等光刻材料的表面形成大面积并且高精度的微纳结构,从而满足例如集成电路和其它微纳***的研究、研发和生产需要。
本公开实施例涉及的所述声光扫描超分辨光纤光刻机的曝光激光波长在193nm到436nm之间,输出的功率在1mW到100W之间,退激发光波长在630nm到1300nm之间,输出的功率在5mW到500W之间。通利用电光调制器对激光进行光强度和开关调制,调制的频率可以达到100GHz,利用光强度调制和非机械光扫描***3的同步实现在涂覆光刻胶的半导体晶圆或其他研发试样上形成大面积的微米纳米级图案,满足芯片生产的需要。具体地,本公开实施例涉及的所述声光扫描超分辨光纤光刻机通过以下的方案实现光刻功能。
(1)在例如半导体晶圆或其它需要光刻的材料的表面涂覆上具有理想厚度的光刻胶,并经过烘烤等方式将光刻胶固化后将所述光刻材料设置在所述电驱动工件台4上,所述电驱动工件台4通过控制Z轴方向运动的驱动装置实现Z轴方向上的移动和定位,其中,将光刻胶定位在所述光扫描***3所形成的焦平面内。
(2)在所述控制装置1内置的设计软件上设计用于芯片或微纳***的设计版图,或者将通过第三方软件设计得到的设计版图经过转化后导入到所述控制装置1中;其中,所述控制装置1将用于芯片或者微纳***的设计版图按照加工工艺分解成多层图案,并基于每层图案生成光刻数据。
其中,所述控制装置1基于所述设计版图获取光刻操作需要的与实现曝光相关的光刻数据,并按需要把每个光刻数据分解成若干个写场。控制装置1将晶圆需要曝光的数据分解成光偏转控制信号12、工作台控制信号13和调控信号11,其中,所述工作台控制信号至少包括为满足工艺光刻需要的晶圆等光刻材料上所有曝光位置和不需要曝光位置的位置信息、每个位置对应的所述电驱动工件台4上光刻材料的位置的定位和驱动装置的移动控制数据;所述光偏转控制信号12集至少包括对应于每个曝光位置的激光偏转数据;光 调制信号13至少包括超分辨光纤激光光源2进行调制,使其输出与曝光需要的光能量匹配的激光脉冲211。
(3)当例如涂覆有光刻材料的晶圆等通过所述电驱动工件台4移动到所述光扫描***3的焦平面的位置后,所述控制装置1基于所述工件台控制信号13控制所述电驱动工件台4在X轴和Y轴方向上移动,并把所述光刻材料移动到初始曝光点位置后,根据光偏转控制信号12中每个曝光位置对应的激光偏转数据,从而基于光偏转控制信号12进行偏转,最终完成在当前曝光位置的光刻操作;
所述控制装置1继续控制所述电驱动工件台4在焦平面内移动,把涂覆有光刻胶的半导体晶圆等移动到本次光刻数据中的下一个曝光位置,并执行光偏转控制信号12中的偏转数据和光调制信号13的光强调节,则完成当次晶圆的光刻。
(4)完成当次光刻后,晶圆等所述光刻材料通过所述电驱动工件台4退出光纤光刻机后,进入显影、定影后其他的刻蚀或镀膜或离子注入、退火或其他相关工艺后,这样将完成本次光刻操作的所有工艺步骤。
(5)根据芯片或者微纳***的设计版图或工艺线的实际情况,重复上述(1)-(3)的步骤,即可完成芯片或者微纳***的光刻工艺。
本公开实施例采用193nm到436nm范围的超分辨光纤激光光源2作为光刻光,利用电光或声光调制器对激光进行光强度和开关调制,调制的频率可以达到100GHz;进一步地由多根光纤构成阵列并行加工,进一步提高曝光产率;利用光强度调制和非机械光扫描的同步实现在涂覆光刻胶的半导体晶圆或其他研发试样上形成大面积的微米纳米级图案。尤其,在本实施例中采用光纤阵列实现多束并行光刻,提高光刻机的生产率。本公开实施例可以从芯片设计的版图直接实现光刻,不需要光刻掩模板,实现芯片的数字化生产。本公开实施例适用于集成电路或其它类似集成微纳***研究、研发和生产。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
此外,虽然采用特定次序描绘了各操作,但是这不应当理解为要求这些操作以所示出的特定次序或以顺序次序执行来执行。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本公开的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实施例中。相反地,在单个实施例的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实施例中。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。
以上对本公开多个实施例进行了详细说明,但本公开不限于这些具体的实施例,本领域技术人员在本公开构思的基础上,能够做出多种变型和修改实施例,这些变型和修改都应落入本公开所要求保护的范围。

Claims (10)

  1. 一种声光扫描超分辨光纤光刻机,其特征在于,包括控制装置、超分辨光纤激光光源、光扫描***以及电驱动工件台,所述控制装置与所述超分辨光纤激光光源、所述光扫描***以及所述电驱动工件台连接,且所述控制装置能够基于设计版图控制所述超分辨光纤激光光源发出相应的曝光用激光、所述光扫描***对所述超分辨光纤激光光源发射的激光进行偏转扫描以及控制所述电驱动工件台进行运动。
  2. 根据权利要求1所述的声光扫描超分辨光纤光刻机,其特征在于,所述控制装置能够将所述设计版图按照加工工艺分解成多层图案,并基于每层图案生成光刻数据,基于所述光刻数据生成针对超分辨光纤激光光源的调控信号、针对所述光扫描***的光偏转控制信号以及针对所述电驱动工作台的工件台控制信号。
  3. 根据权利要求1所述的声光扫描超分辨光纤光刻机,其特征在于,所述超分辨光纤激光光源包括曝光用的紫外激光器、退激发激光器和传输光纤,所述紫外激光器发出的激光脉冲和所述退激发激光器发出的退激发激光耦合于所述传输光纤中,并通过所述传输光纤准直后传输至所述光扫描***。
  4. 根据权利要求3所述的声光扫描超分辨光纤光刻机,其特征在于,所述超分辨光纤激光光源还包括电光调制器和空间相位控制器,所述控制装置与所述电光调制器和所述空间相位控制器相连,且所述控制装置能够基于所述设计版图控制所述电光调制器对所述紫外激光器发出的激光脉冲进行强度调节以及控制所述空间相位控制器将所述退激发激光器发出的退激发激光转变为甜甜圈形状的退激发结构光。
  5. 根据权利要求4所述的声光扫描超分辨光纤光刻机,其特征在于,所述传输光纤包括光刻光纤芯,所述光刻光纤芯的外侧包围设置有光纤包层,所述光纤包层的出射端设置有出射聚焦透镜***,所述出射聚焦透镜***将耦合后的激光脉冲和退激发结构光传输至所述光扫描***处。
  6. 根据权利要求4所述的声光扫描超分辨光纤光刻机,其特征在于,所述空间相位控制器包括螺旋相位器或超表面器件。
  7. 根据权利要求1所述的声光扫描超分辨光纤光刻机,其特征在于,所述光扫描***包括入射聚焦透镜***、光扫描器和出射透镜聚焦***,所述超分辨光纤激光光源发射的激光经过所述入射聚焦透镜***后聚焦于所述光 扫描器上,所述出射透镜聚焦***将所述光扫描器上的激光聚焦于设定位置。
  8. 根据权利要求1所述的声光扫描超分辨光纤光刻机,其特征在于,所述超分辨光纤激光光源包括传输光纤和超表面透镜,所述光扫描***包括光扫描器和出射透镜聚焦***,所述超分辨光纤激光光源发射的激光在所述传输光纤的传输下经过所述超表面透镜后聚焦于所述光扫描器上,所述出射透镜聚焦***将所述光扫描器上的激光聚焦于设定位置。
  9. 根据权利要求1所述的声光扫描超分辨光纤光刻机,其特征在于,所述超分辨光纤激光光源包括多根传输光纤,所有所述传输光纤阵列分布,所述光扫描***包括多个光扫描器,且每一所述光扫描器与至少一个所述传输光纤对应设置。
  10. 根据权利要求1所述的声光扫描超分辨光纤光刻机,其特征在于,所述电驱动工件台包括多个驱动装置以实现光刻材料上的曝光位置在XYZ三个轴向的定位和控制,其中,X轴和Y轴位于所述超分辨光纤激光光源聚焦的焦平面或与所述焦平面平行的平面上,Z轴在沿与该焦平面垂直的方向。
PCT/CN2022/131025 2022-07-08 2022-11-10 一种声光扫描超分辨光纤光刻机 WO2024007501A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210805817.0A CN115061338A (zh) 2022-07-08 2022-07-08 一种声光扫描超分辨光纤光刻机
CN202210805817.0 2022-07-08

Publications (1)

Publication Number Publication Date
WO2024007501A1 true WO2024007501A1 (zh) 2024-01-11

Family

ID=83206847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131025 WO2024007501A1 (zh) 2022-07-08 2022-11-10 一种声光扫描超分辨光纤光刻机

Country Status (2)

Country Link
CN (1) CN115061338A (zh)
WO (1) WO2024007501A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115128912A (zh) * 2022-07-08 2022-09-30 西湖大学 一种非机械光扫描光纤光刻机
CN115061338A (zh) * 2022-07-08 2022-09-16 西湖大学 一种声光扫描超分辨光纤光刻机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060093265A1 (en) * 2004-10-29 2006-05-04 Matsushita Electric Industrial Co., Ltd. Ultrafast laser machining system and method for forming diffractive structures in optical fibers
CN113189847A (zh) * 2021-04-21 2021-07-30 之江实验室 基于光纤选模耦合器的多通道并行式超分辨直写光刻***
CN113189848A (zh) * 2021-04-21 2021-07-30 之江实验室 一种基于光纤阵列的多通道并行式超分辨直写式光刻***
CN114488715A (zh) * 2022-02-18 2022-05-13 西湖大学 一种光纤阵列光刻机
CN114488713A (zh) * 2022-02-18 2022-05-13 西湖大学 一种光刻机以及物理光刻方法
CN115061338A (zh) * 2022-07-08 2022-09-16 西湖大学 一种声光扫描超分辨光纤光刻机
CN115128912A (zh) * 2022-07-08 2022-09-30 西湖大学 一种非机械光扫描光纤光刻机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060093265A1 (en) * 2004-10-29 2006-05-04 Matsushita Electric Industrial Co., Ltd. Ultrafast laser machining system and method for forming diffractive structures in optical fibers
CN113189847A (zh) * 2021-04-21 2021-07-30 之江实验室 基于光纤选模耦合器的多通道并行式超分辨直写光刻***
CN113189848A (zh) * 2021-04-21 2021-07-30 之江实验室 一种基于光纤阵列的多通道并行式超分辨直写式光刻***
CN114488715A (zh) * 2022-02-18 2022-05-13 西湖大学 一种光纤阵列光刻机
CN114488713A (zh) * 2022-02-18 2022-05-13 西湖大学 一种光刻机以及物理光刻方法
CN115061338A (zh) * 2022-07-08 2022-09-16 西湖大学 一种声光扫描超分辨光纤光刻机
CN115128912A (zh) * 2022-07-08 2022-09-30 西湖大学 一种非机械光扫描光纤光刻机

Also Published As

Publication number Publication date
CN115061338A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
WO2024007501A1 (zh) 一种声光扫描超分辨光纤光刻机
WO2023155491A1 (zh) 一种光纤阵列光刻机
WO2024007502A1 (zh) 一种非机械光扫描光纤光刻机
US9946162B2 (en) Controller for optical device, exposure method and apparatus, and method for manufacturing device
CN114488714B (zh) 一种光纤阵列光刻机
JP3052587B2 (ja) 露光装置
EP3330798B1 (en) Maskless photolithographic system in cooperative working mode for cross-scale structure
CN109774128B (zh) 基于dmd的光刻与打印一体化设备及其构建方法
US20140071421A1 (en) Lithographic apparatus, programmable patterning device and lithographic method
TW201734663A (zh) 用於直接寫入無光罩微影之方法及裝置
JP2008182115A (ja) 露光方法及び露光装置並びにマイクロデバイスの製造方法
JP2010014797A (ja) マスクレス露光装置
TWI784135B (zh) 用於在基板上產生影像的方法、系統以及非暫態電腦可讀取媒體
KR100816494B1 (ko) 마스크리스 노광기 및 이를 이용한 표시장치용 기판의 제조방법
CN113284989A (zh) 一种Micro LED芯片剥离装置、剥离机及剥离机使用方法
US20040240813A1 (en) Pattern writing apparatus
CN114995073A (zh) 光电发射多束电子束曝光机
KR20110095571A (ko) 디지털 노광 방법 및 이를 수행하기 위한 디지털 노광 장치
CN114442440A (zh) 一种光刻机
JP4081606B2 (ja) パターン描画装置およびパターン描画方法
KR100924280B1 (ko) 광역 레이저 패터닝 시스템
WO2022220211A1 (ja) 描画装置および描画方法
JP2006178465A (ja) リソグラフィ装置用投影装置
TWI715056B (zh) 用於空間光調變器的減少資料串流的方法
US10599044B1 (en) Digital lithography with extended field size

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950059

Country of ref document: EP

Kind code of ref document: A1