WO2024007494A1 - 一种聚羟基烷酸酯成型体及其制备方法 - Google Patents

一种聚羟基烷酸酯成型体及其制备方法 Download PDF

Info

Publication number
WO2024007494A1
WO2024007494A1 PCT/CN2022/129264 CN2022129264W WO2024007494A1 WO 2024007494 A1 WO2024007494 A1 WO 2024007494A1 CN 2022129264 W CN2022129264 W CN 2022129264W WO 2024007494 A1 WO2024007494 A1 WO 2024007494A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
polyhydroxyalkanoate
hydroxybutyrate
molded body
poly
Prior art date
Application number
PCT/CN2022/129264
Other languages
English (en)
French (fr)
Inventor
王儒旭
马一鸣
李腾
张浩千
Original Assignee
北京蓝晶微生物科技有限公司
江苏蓝素生物材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京蓝晶微生物科技有限公司, 江苏蓝素生物材料有限公司 filed Critical 北京蓝晶微生物科技有限公司
Priority to EP22950053.3A priority Critical patent/EP4375048A1/en
Publication of WO2024007494A1 publication Critical patent/WO2024007494A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/24Crystallisation aids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to the technical field of polymer materials, and in particular to a polyhydroxyalkanoate molded body and a preparation method thereof.
  • PHAs Polyhydroxyalkanoates
  • PHAs have the disadvantage of slow crystallization speed during the thermal processing to prepare shaped bodies.
  • adding nucleating agents and other additives is a major way to increase the crystallization speed of PHAs.
  • polyhydroxyalkanoate molded products are prone to adhesion during processing, resulting in a decline in the quality of the molded products.
  • adhesion of molded products can be reduced by extending the processing time, but this greatly reduces the processing efficiency.
  • the invention provides a polyhydroxyalkanoate molded body and a preparation method thereof. By optimizing the processing technology, a non-adhesive molded body can be produced.
  • the preparation method is simple and controllable, and the processing and production efficiency can be improved at the same time.
  • the present invention first provides a method for preparing a polyhydroxyalkanoate molded body
  • Stretching is performed at a temperature T;
  • the temperature T refers to above the glass transition temperature of the polyhydroxyalkanoate resin and below the melting point of the polyhydroxyalkanoate resin;
  • Stretching under the temperature T conditions must meet the following requirements: the stretching ratio is more than 1.0 times, and the heating time under the temperature T conditions is more than 30s;
  • the stretching ratio is 3.0 times or more, and the heating time under the temperature T condition is 10 s or more.
  • the present invention found that through the above method, the processing time can be significantly reduced while obtaining a non-adhesive molded body.
  • the preparation method includes: mixing polyhydroxyalkanoate raw materials, processing at a first temperature, and stretching at temperature T;
  • the first temperature is 10°C to 60°C higher than the melting point of polyhydroxyalkanoate resin
  • the temperature T is the second temperature, and the second temperature is 25°C-100°C, more preferably 40°C-80°C.
  • the second temperature when the second temperature is 40°C to 80°C, it is beneficial to quickly process the non-adhesive molded body at a lower draw ratio, thereby further reducing processing time and processing costs.
  • the first temperature if the first temperature is too low, insufficient melting will occur, which will reduce the stretch ratio. If the first temperature is too high, the polyhydroxyalkanoate resin will be thermally degraded, thereby affecting the performance of the molded body.
  • the stretching ratio is 1.0 times or more, and the second temperature heating time is 30 seconds or more;
  • the stretching ratio is 3.0 times or more, and the second temperature heating time is 15 seconds or more.
  • the second temperature is 40°C-80°C.
  • the stretching ratio is 1.0 times or more, and the second temperature heating time is 60 seconds or more;
  • the stretching ratio is more than 1.5 times, and the second temperature heating time is more than 30s;
  • the stretching ratio is 3.0 times or more, and the second temperature heating time is 10 seconds or more.
  • the stretching ratio is 1.0 times or more, which means that the stretching ratio is greater than or equal to 1.0 times; the second temperature heating time is 15 seconds or more, which means the heating time is greater than or equal to 15 seconds.
  • the stretching ratio can be 1.0 times or more, and the second temperature heating time is 30s or more than 60s; or the stretching ratio can be 1.5 times or more, and the second temperature heating time is 30s or more than 60s; or , the stretching ratio is 3.0 times or more, and the second temperature heating time is 10s or 30s or 60s or more.
  • the processing can be carried out by water bath stretching and pelletizing.
  • the second temperature is the water bath temperature of the water tank.
  • the second temperature can be controlled by controlling the traction speed of each roller and the traction speed difference. Stretch ratio, control the second temperature heating time by controlling the pulling speed and the length of the water bath tank.
  • cold stretching is a stretching process in which the temperature is set below the glass transition temperature +20°C or below +10°C, or even one or more times below the glass transition temperature.
  • the second temperature used in this application utilizes the water bath temperature of the water tank in the processing equipment. Water bath stretching is performed directly after extrusion, which not only simplifies the production process, but also makes production control easier, thereby reducing cost.
  • the polyhydroxyalkanoate component constituting the main component of the polyhydroxyalkanoate molded article of the present invention may be a single polyhydroxyalkanoate, or a combination of two or more polyhydroxyalkanoates.
  • the polyhydroxyalkanoate contains 3-hydroxyalkanoate structural units and/or 4-hydroxyalkanoate structural units.
  • the polyhydroxyalkanoate contains 3-hydroxyalkanoate structural unit.
  • the molar proportion of the 3-hydroxyalkanoate structural unit is more than 50 mol%, more preferably more than 60 mol%, and even more preferably 75 mol% or more.
  • the preparation method of the present invention is suitable for resins with different 3-hydroxyalkanoate content. The different proportions mainly affect the crystallinity of the material itself. Persons in the field can choose resins with different 3-hydroxyalkanoate content based on common sense. of resin.
  • the polyhydroxyalkanoate may contain only one or more than two 3-hydroxyalkanoate structural units as structural units (especially the structural units represented by general formula (1)), or may contain only one or more 3-hydroxyalkanoate structural units.
  • other structural units for example, 4-hydroxyalkanoate structural units, etc. are included.
  • the polyhydroxyalkanoate is a polymer containing structural units represented by the following general formula (1);
  • R represents a linear or branched alkyl group represented by C p H 2p+1 , and p represents an integer of 1 to 15.
  • R represents a linear or branched alkyl group such as methyl, ethyl, propyl, butyl, isobutyl, tert-butyl, pentyl, hexyl, etc.
  • p represents an integer of 1 to 10; further preferably, p represents an integer of 1 to 8.
  • the weight average molecular weight of the polyhydroxyalkanoate component is not particularly limited.
  • the weight average molecular weight of the polyhydroxyalkanoate is 100,000 to 1,000,000, more preferably 200,000 to 900,000, and even more preferably 300,000 to 300,000. 800 000.
  • the weight average molecular weight is less than 100,000, the mechanical properties of the obtained polyhydroxyalkanoate resin molded article tend to be reduced.
  • the weight average molecular weight exceeds 1 million, the load on machinery during melt processing tends to increase and productivity tends to decrease.
  • the 3-hydroxyalkanoate structural unit exists in the form of (R) 3-hydroxyalkanoate.
  • the production method of the polyhydroxyalkanoate is not particularly limited, and may be a production method using chemical synthesis or a production method using microorganisms. Among them, a production method using microorganisms is preferred.
  • the polyhydroxyalkanoate contains a 3-hydroxybutyrate (hereinafter sometimes referred to as 3HB) structural unit.
  • 3HB 3-hydroxybutyrate
  • the 3-hydroxybutyrate structural unit exists in the form of (R) 3-hydroxybutyrate.
  • the polyhydroxyalkanoate contains poly(3-hydroxybutyrate) resin, and in the poly(3-hydroxybutyrate) resin, the average content of the 3-hydroxybutyrate structural unit is The ratio is 70 to 99 mol%; preferably 89 to 99 mol%; more preferably 94 to 99 mol%.
  • the composition Average content ratio of 3-hydroxybutyrate units and other hydroxyalkanoate units among all monomer units of the poly(3-hydroxybutyrate) resin (-hydroxybutyrate unit/other hydroxyalkanoate esters) It is 99/1 ⁇ 70/30 (mol%/mol%); research has found that when the content of 3-hydroxybutyrate in poly(3-hydroxybutyrate) resin is larger, such as 3-hydroxybutyrate
  • the acid ester ratio is 89 mol% or more, preferably 94 mol% or more, the resin has a high degree of crystallinity, a high melting point, and a tendency to be less likely to stick.
  • a molded body can be prepared at a lower draw ratio, and the resin itself is stretchable.
  • the maximum magnification is also low. For example, it is easy to form at a draw ratio of 1.0.
  • the 3-hydroxybutyrate ratio is preferably 89 mol% or less, it is easy to prepare high Raman
  • the tendency of highly oriented molded articles requires the preparation of molded articles at higher draw ratios.
  • the average content ratio refers to the molar ratio of each monomer unit among all the monomer units that constitute the poly(3-hydroxybutyrate) resin. If the poly(3-hydroxybutyrate) resin is composed of two or more poly(3-hydroxybutyrate) resins,
  • the mixture of (3-hydroxybutyrate) resin refers to the molar ratio of each monomer unit contained in the entire mixture. Those skilled in the art can use known methods to measure the average content ratio of each monomer unit among all monomer units of the poly(3-hydroxybutyrate) resin.
  • poly(3-hydroxybutyrate) resins with high crystallinity have excellent productivity but poor mechanical strength
  • poly(3-hydroxybutyrate) resins with low crystallinity have excellent mechanical properties but poor productivity. Difference.
  • the poly(3-hydroxybutyrate) resin is preferably a mixture of at least two poly(3-hydroxybutyrate) resins which differ from each other in the type of constituent monomers and/or the content of the constituent monomers.
  • the polyhydroxyalkanoate is a combination of at least one poly(3-hydroxybutyrate) with high crystallinity and at least one poly(3-hydroxybutyrate) with low crystallinity .
  • the poly(3-hydroxybutyrate) includes: a polymer containing only 3-hydroxybutyrate structural units, or/and a combination of at least one 3-hydroxybutyrate structural unit and other structural units. copolymer.
  • the poly(3-hydroxybutyrate) is selected from poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxypropionate), poly(3-hydroxybutyrate) Butyrate-co-3-hydroxyvalerate) (abbreviation: P3HB3HV), poly(3-hydroxybutyrate-co-3-hydroxyvalerate-3-hydroxycaproate), poly(3-hydroxybutyrate) Acid ester-co-3-hydroxyhexanoate) (abbreviation: P3HB3HH), poly(3-hydroxybutyrate-co-3-hydroxyheptanoate), poly(3-hydroxybutyrate-co-3- Hydroxyoctanoate), poly(3-hydroxybutyrate-co-3-hydroxynonanoate), poly(3-hydroxybutyrate-co-3-hydroxydecanoate), poly(3-hydroxybutyrate) One or more of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (abbreviation: P3HB4HB).
  • the polyhydroxyalkanoate is poly(3-hydroxybutyrate-co-3-hydroxycaproate).
  • the raw material contains a nucleating agent.
  • Adding nucleating agents can improve processing efficiency by reducing the time it takes for polyhydroxyalkanoates to become unblocked.
  • the addition amount of the nucleating agent in the raw material is 0.1%-10% by weight percentage; specific non-limiting examples include 0.3%, 0.5%, 0.7%, 1%, 1.7%, and 2%. , 3%, 4%, 5%, 8%, 9%, 10%. Adding too much nucleating agent will reduce the mechanical properties of polyhydroxyalkanoates.
  • the nucleating agent is selected from one or more of calcium carbonate, talc, titanium dioxide, uracil, galactitol, zirconium hydrogen phosphate, amide compounds, and boron nitride; wherein, the amide The compound is selected from N,N'-hexyl-1,6-bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionamide, tetramethylthiuram disulfide; tetramethyl Thioperoxydicarbonate diamide, N,N'-1,6-hexanediyldi[N-(2,2,6,6-tetramethyl-4-piperidine)]-carboxamide, N, N'-1,2-ethanediyl bis-9-octadecylamide, (Z,Z)-N,N'-1,2-ethanediylidenebis-9-octadecylamide, behenamide , stear
  • the nucleating agent in this application can also be selected from fatty alcohols or fatty acid nucleating agents, including medium and long chain fatty alcohols or medium and long chain fatty acids, such as stearyl alcohol, stearic acid, Eicosanol, eicosanoic acid, behenyl alcohol, behenic acid, hexacosanol, hexadecanoic acid, triacontanol, triacontanol, etc.
  • medium and long chain fatty alcohols or medium and long chain fatty acids such as stearyl alcohol, stearic acid, Eicosanol, eicosanoic acid, behenyl alcohol, behenic acid, hexacosanol, hexadecanoic acid, triacontanol, triacontanol, etc.
  • the specific preparation method of the polyhydroxyalkanoate molded body of the present invention can be prepared by various thermal processing molding methods such as extrusion molding, injection molding, calendering molding, tape casting, blow molding, and biaxial stretching molding. It can be prepared by non-thermal processing molding methods such as solution casting. Preferably it is produced by hot working forming methods.
  • the "processing" under the first temperature condition in the present invention includes processing methods when preparing various molded bodies, such as heating, melting and extrusion when preparing particle molded bodies; or heating and melting when preparing film molded bodies. , blowing or cast extrusion methods, etc.
  • the present invention also provides a polyhydroxyalkanoate molded body, which is prepared by the preparation method.
  • the polyhydroxyalkanoate molded body is a film, fiber, straw, plate or particle.
  • the polyhydroxyalkanoate molded article preferably has a crystallinity of 5% or more, more preferably 10% or more, and still more preferably 15% or more. Under the condition of a certain temperature, the orientation parameter is high, the crystallinity of the molded body is high, and the prepared product is less likely to stick. Or when the second temperature is within a more preferred range and the second time is extended, the crystallinity of the molded body is high, and the preparation Products are less likely to stick.
  • the Raman orientation parameter of the polyhydroxyalkanoate molded article is preferably 1.1 or more, more preferably 2.0 or more, and still more preferably 2.3 or more. According to the present invention, by regulating the Raman orientation parameter of the polyhydroxyalkanoate molded body within the above range, the polyhydroxyalkanoate molded body can reach a state without adhesion in a shorter molding time, thereby improving processing efficiency. The greater the stretching ratio of the polyhydroxyalkanoate molded body, the greater the Raman orientation parameter.
  • the polyhydroxyalkanoate molded body and its preparation method provided by the present invention can produce non-adhesive molded bodies by optimizing the processing technology, and the preparation method is simple and controllable, and at the same time, the processing and production efficiency can be improved.
  • Mixing equipment Use high-speed mixer to blend at room temperature.
  • Granulation equipment Parallel co-rotating twin-screw extruders with different aspect ratios, parallel counter-rotating twin-screw extruders, conical twin-screw extruders, and single-screw machines are commonly used in this field.
  • the composition in the lower hopper of the twin-screw extruder or the weight loss scale is set in the range of 10°C to 60°C higher than the melting point of the polyhydroxyalkanoate resin, and the host speed is 50 -500r/min, the feeding amount or production capacity can be adjusted according to the actual production status; subsequent pelletizing methods such as air-cooled strand cutting, water bath strand cutting, ground cutting, water ring cutting and underwater pelletizing can be used for production. particles, and maintain water bath conditions of 25°C-100°C during the production and processing process; the prepared particles are dried in a blast drying oven to eliminate the impact of moisture on the properties of the particles, and at the same time, the particles are completely crystallized.
  • test methods used in the examples are as follows:
  • Raman orientation parameter (I873 parallel/I1769 parallel)/(I873 vertical/I840 vertical);
  • I873 parallel the intensity of the 1873cm-1 Raman band under parallel conditions
  • I1769 parallel the intensity of the 1769cm-1 Raman band under parallel conditions
  • I1769 Vertical The intensity of the Raman band at 1769cm-1 under vertical conditions
  • Crystallinity 100% ⁇ (melting enthalpy-cold crystallization enthalpy)/100% crystallization melting enthalpy.
  • the average content ratio of each monomer in the entire polyhydroxyalkanoate component can be determined by a method known to those skilled in the art.
  • A-1 Poly(3-hydroxybutyrate-co-3-hydroxycaproate), Beijing Lanjing Microbial Technology Co., Ltd.; the content of 3HB (3-hydroxybutyrate unit) is 89%, and the weight average molecular weight is approximately 100,000-800,000.
  • A-2 Poly(3-hydroxybutyrate-co-3-hydroxycaproate), Beijing Lanjing Microbial Technology Co., Ltd.; the content of 3HB (3-hydroxybutyrate unit) is 94%, and the weight average molecular weight is approximately 100,000-800,000.
  • B-1 Behenic acid amide, Jiangxi Zhilian Plastic Technology Co., Ltd.
  • the production method includes the following steps:
  • Step 1 Mixing: mix the raw materials with a mixing speed of 200r/min and a mixing time of 5min; after mixing, place the mixed material in the lower hopper of the twin-screw extruder;
  • Step 2 Extrusion: Set the conditions of the extrusion granulation equipment, and perform extrusion under the condition that the melt temperature is the first temperature (10°C to 60°C higher than the melting point of the polyhydroxyalkanoate resin); poly( 3-hydroxybutyrate-co-3-hydroxyhexanoate)/abbreviation PHBH melting point 137°C.
  • Step 3 Granulation and cooling: Use a water bath to stretch and cut into granules.
  • the water bath temperature T of the water tank is the second temperature (above the glass transition temperature of the polyhydroxyalkanoate resin and below the melting point, preferably 25°C-100°C, More preferably, 40° C. to 80° C.), and the second temperature stretching ratio is controlled by controlling the pulling speed of each roller and the difference in pulling speed.
  • the second temperature heating time is controlled by controlling the pulling speed and the length of the water bath tank.
  • the stretching ratio is more than 1.0 times, and the second temperature heating time is more than 10s; and at least one of the following 1) to 2) is satisfied: 1) The stretching ratio is 3.0 times or more; 2) The second temperature heating time is more than 30s.
  • the invention provides a method for preparing a polyhydroxyalkanoate molded body that is not prone to adhesion, including:
  • the polyhydroxyalkanoate raw materials are mixed using a mixer
  • the mixed raw materials are extruded under the condition that the melt temperature is the first temperature (10°C to 60°C higher than the melting point of the polyhydroxyalkanoate resin);
  • the water bath heating temperature T (that is, the second temperature) in the water tank is above the glass transition temperature of the polyhydroxyalkanoate resin and below the melting point of the polyhydroxyalkanoate resin (preferably 25°C-100 °C, more preferably 40°C-80°C), control the second temperature stretching ratio to be more than 1.0 times, and the second temperature heating time to be more than 10s; and satisfy at least one of the following 1) to 2) : 1) The stretching ratio is more than 3.0 times; 2) The second temperature heating time is more than 30 seconds; a non-adhesive molded body can be obtained.
  • the first temperature is 10°C to 60°C higher than the melting point of the polyhydroxyalkanoate.
  • the second temperature affects the time required for the polyhydroxyalkanoate molded body to reach a state where no adhesion occurs, and is preferably between 25°C and 100°C.
  • the second temperature when the second temperature is greater than or equal to 25°C, and satisfies "the stretching ratio is more than 3.0 times" and “the second temperature heating time is more than 30s" When at least one of them is used, the non-adhesive effect can be achieved. When the above conditions are not met in 1.2, 1.3, and 1.5, adhesion will occur.
  • the heating time at the second temperature becomes shorter; for example, Experiment No. 1.1, 1.4:
  • the second temperature is 25°C
  • the second temperature is used for stretching.
  • the second temperature heating time can be shortened to 15 seconds.
  • the higher the stretch ratio the time required for the second temperature can be reduced to more than 10 seconds; it was also found that when the stretch ratio is increased to 6 times or even 10 times, the time required for the second temperature If it is less than 10s, the prepared formed body will be stuck, as shown in 2.7 and 2.8 in Table 2; preferably, when the second temperature stretching ratio is greater than 3.0, the second temperature heating time is 10s or more; similarly, as shown in the above table shows that when the second temperature heating time is extended, the stretching ratio during processing can be reduced; preferably, when the second temperature heating time is 60 seconds or more, the second temperature stretching ratio is greater than or equal to 1.0.
  • the second temperature stretching ratio is controlled at 1.5 times or more, and the molded body produced by processing will not stick.
  • the second temperature is between 40°C and 80°C
  • the heating time at the second temperature is greater than 30s
  • the stretch ratio is greater than or equal to 1.5
  • no adhesion will occur.
  • the formed body prepared under conditions outside the scope of this application is adherent, such as 3.7 and 3.8 in Table 3, when the stretching ratio and the second temperature heating time are 1.5 times, 15s and 2.0 times, 15s respectively. , the prepared shaped body is sticky.
  • the greater the stretching ratio of the molded body during the preparation process the higher the stretching ratio, the greater the orientation parameter of the prepared molded body, and the prepared molded body is less likely to adhere; research has found that, The higher the stretching ratio, the shorter the time required to process the prepared molded body, and at the same time, the prepared molded body has a higher degree of orientation and is less likely to stick.
  • Table 4 it is preferable that the stretching ratio is 1.5 or more, and the orientation degree is 2.0 or more.
  • non-adhesion can be achieved faster under the same heating temperature and stretching ratio conditions, that is, the second temperature heating time is longer. short, thus improving production efficiency faster.
  • the second temperature heating time is longer. short, thus improving production efficiency faster.
  • 1.4 when the second temperature is 25°C and the stretching ratio is 3, 1.4 means that the time required to obtain a non-adhesive molded body without adding nucleating agent B-1 is 15 seconds, and 1.6 The second temperature heating time for the resin body with the nucleating agent added can be shortened to 10 seconds.
  • the orientation parameters of the molded body do not change at the same stretch ratio. That is to say, the addition of nucleating agent does not affect the orientation parameters of the molded body, but promotes the crystallization of the molded body and makes it non-adhesive.
  • the present invention also includes molded bodies prepared by the above processing methods, which can be prepared by various thermal processing molding methods such as extrusion molding, injection molding, calendering molding, tape molding, blow molding, and biaxial stretching molding. They can also be It is prepared by non-thermal processing molding methods such as solution casting.
  • the prepared molded objects include, but are not limited to, particles, films, sheets, straws, bottles, etc.
  • film moldings are prepared by thermal processing.
  • Film production equipment Use single-layer or multi-layer film blowing machines and other common film-making or tube-making equipment in this field.
  • the screw and die temperatures are set to the first temperature (10°C to 60°C higher than the melting point of polyhydroxyalkanoate resin) ;
  • the prepared film is subjected to online crystallization using a drying tunnel before winding up under conditions above the glass transition temperature and below the melting point of the polyhydroxyalkanoate resin, preferably 25°C to 100°C, more preferably 40°C to 80°C.
  • the crystallinity of the molded body is 5% or more, more preferably 10% or more, and even more preferably 15% or more.
  • the orientation parameter is high, the crystallinity of the molded body is high, and the prepared product is less likely to stick.
  • the second temperature is within a more preferred range and the second time is extended, the crystallinity of the molded body is high, and the preparation Products are less likely to stick.
  • the Raman orientation parameter of the prepared molded body is 1.1 or more, more preferably 2.0 or more, and further preferably 2.3 or more. According to the present invention, by regulating the Raman orientation parameter of the polyhydroxyalkanoate molded body within the above range, the polyhydroxyalkanoate molded body can reach a state without adhesion in a shorter molding time, thereby improving processing efficiency.
  • the greater the stretching ratio of the polyhydroxyalkanoate molded body the greater the Raman orientation parameter.
  • the applicant also used polyhydroxyalkanoates with other structural units to conduct research. The following raw materials are also used:
  • A-3 Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P3HB3HV), with a weight average molecular weight of about 100,000-800,000.
  • A-4 Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB), with a weight average molecular weight of approximately 100,000-800,000.
  • the invention provides a polyhydroxyalkanoate molded body and a preparation method thereof.
  • the preparation method includes: mixing polyhydroxyalkanoate raw materials, processing at a first temperature, and stretching at a second temperature; wherein the first temperature is 10°C to 60°C higher than the melting point of the polyhydroxyalkanoate resin;
  • the second temperature is above the glass transition temperature of the hydroxyalkanoate resin and below the melting point of the polyhydroxyalkanoate resin; during the preparation process, under the second temperature condition, it must be satisfied: the stretching ratio is more than 1.0 times, And the heating time under the temperature T condition is 30s or more; or the stretching ratio is 3.0 times or more, and the heating time under the temperature T condition is 10s or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

本发明涉及高分子材料技术领域,尤其涉及一种聚羟基烷酸酯成型体及其制备方法。该制备方法包括:将聚羟基烷酸酯原料混合,并在第一温度加工,在第二温度下进行拉伸;其中,第一温度比聚羟基烷酸酯树脂熔点高10℃~60℃;第二温度在羟基烷酸酯树脂的玻璃化温度以上,且在聚羟基烷酸酯树脂的熔点以下;在制备过程中,在第二温度条件下,需满足:拉伸倍率为1.0倍以上,且在所述温度T条件下的加热时间为30s以上;或,拉伸倍率为3.0倍以上,且在所述温度T条件下的加热时间为10s以上。本发明通过优化加工工艺,能够制得不粘连的成型体,且制备方法简单可控,同时可以提高加工生产效率。

Description

一种聚羟基烷酸酯成型体及其制备方法
交叉引用
本申请要求2022年7月6日提交的专利名称为“一种聚羟基烷酸酯成型体及其制备方法”的第202210786480.3号中国专利申请的优先权,其全部公开内容通过引用整体并入本文。
技术领域
本发明涉及高分子材料技术领域,尤其涉及一种聚羟基烷酸酯成型体及其制备方法。
背景技术
聚羟基烷酸酯(PHAs)是一种生物基来源且在海洋环境中可生物降解的聚合物,能够解决废弃塑料引起的环境问题,且具有优异的生物相容性和机械性能,因此在包装领域和生物医药领域具有广阔的应用前景。
但是PHAs在热加工制备成型体的过程中,存在结晶速度慢的缺点。目前,添加成核剂等助剂是提高PHAs结晶速度的一种主要途径。同时,聚羟基烷酸酯成型体在加工过程中,极易发生粘连,导致成型品的品质下降。对此,本领域所熟知的是可以通过延长加工时间来降低成型品的粘连,但是却大大降低了加工效率。
发明内容
本发明提供一种聚羟基烷酸酯成型体及其制备方法,通过优化加工工艺,能够制得不粘连的成型体,且制备方法简单可控,同时可以提高加工生产效率。
具体而言,本发明首先提供一种聚羟基烷酸酯成型体的制备方法,
在温度T下进行拉伸;所述温度T是指在聚羟基烷酸酯树脂的玻璃化温度以上,且在聚羟基烷酸酯树脂的熔点以下;
在所述温度T条件下拉伸,需满足:拉伸倍率为1.0倍以上,且在所述温度T条件下的加热时间为30s以上;
或,
拉伸倍率为3.0倍以上,且在所述温度T条件下的加热时间为10s以上。
本发明发现,通过上述方法,可以在得到不粘连的成型体的同时,大幅减少加工时间。
作为优选,所述制备方法包括:将聚羟基烷酸酯原料混合,并在第一温度加工,在温度T下进行拉伸;
其中,所述第一温度比聚羟基烷酸酯树脂熔点高10℃~60℃;
所述温度T即为第二温度,所述第二温度为25℃-100℃,更优选为40℃-80℃。
在本发明中,当所述第二温度为40℃-80℃时,有利于在更低的拉伸倍率下快速加工得到不粘连的成型体,从而有利于进一步减少加工时间,降低加工成本。其中,如果第一温度过低,会出现熔融不充分,会使可拉伸倍率降低。如果第一温度过高,会使聚羟基烷酸酯树脂热降解,从而影响成型体的性能。
作为优选方案,在所述制备过程中:
所述拉伸倍率为1.0倍以上,所述第二温度加热时间为30s以上;
或,
所述拉伸倍率为3.0倍以上,所述第二温度加热时间为15s以上。
作为优选方案,所述第二温度为40℃-80℃,在所述制备过程中:
所述拉伸倍率为1.0倍以上,所述第二温度加热时间为60s以上;
或,
所述拉伸倍率为1.5倍以上,所述第二温度加热时间为30s以上;
或,
所述拉伸倍率为3.0倍以上,所述第二温度加热时间为10s以上。
本发明中所提到的“以上”均包括本数。例如,拉伸倍率为1.0倍以上,即指拉伸倍率大于等于1.0倍;第二温度加热时间为15s以上,即指加热 时间大于等于15s。典型非限制性地,例如可以是拉伸倍率为1.0倍以上,第二温度加热时间为30s或60s以上;或,拉伸倍率为1.5倍以上,第二温度加热时间为30s或60s以上;或,拉伸倍率为3.0倍以上,第二温度加热时间为10s或30s或60s以上。
在具体实施时,可以采用水浴拉条切粒的方式进行加工,在该加工方式下,第二温度即为水槽的水浴温度,可以通过控制各个辊的牵引速度以及牵引速度差来控制第二温度拉伸倍率,通过控制牵引速度和水浴水槽的长度来控制第二温度加热时间。
现有技术已知冷拉伸是将温度设置在玻璃转化温度+20℃以下、+10℃以下,甚至是在玻璃转化温度以下经行一次或多次的拉伸工艺。与冷拉伸工艺不同的是,本申请采用的第二温度利用的是加工设备中水槽的水浴温度,在挤出后直接进行水浴拉伸,不仅简化生产工艺,而且更加便于生产控制,从而降低成本。
构成本发明的聚羟基烷酸酯成型体的主要成分的聚羟基烷酸酯成分可以是单一的聚羟基烷酸酯,也可以是两种以上聚羟基烷酸酯的组合。
作为优选,所述聚羟基烷酸酯中含有3-羟基烷酸酯结构单元和/或4-羟基烷酸酯结构单元。
更优选的,所述聚羟基烷酸酯中含有3-羟基烷酸酯结构单元。
作为一种优选的实施方案,在所述聚羟基烷酸酯中,所述3-羟基烷酸酯结构单元的摩尔占比为50摩尔%以上,更优选为60摩尔%以上,进一步优选为75摩尔%以上。本发明的制备方法适用于3-羟基烷酸酯的含量占比不同的树脂,其占比不同主要影响的是材料本身的结晶度,本领域人员可依照常识选用3-羟基烷酸酯含量不同的树脂。
在具体实施时,聚羟基烷酸酯可以仅含有一种或两种以上3-羟基烷酸酯结构单元作为结构单元(特别是通式(1)表示的结构单元),也可以除一种或两种以上3-羟基烷酸酯结构单元以外含有其它结构单元(例如,4-羟基烷酸酯结构单元等)。
作为优选,所述聚羟基烷酸酯为含有如下通式(1)所示的结构单元的聚合物;
[CHRCH 2COO]    (1)
在通式(1)中,R表示C pH 2p+1所示的直链或支链烷基,p表示1~15的整数。
可选的,R代表甲基、乙基、丙基、丁基、异丁基、叔丁基、戊基、己基等直链或支链状的烷基。
更优选p表示1~10的整数;进一步优选p表示1~8的整数。
聚羟基烷酸酯成分的重均分子量没有特别限定,作为优选,所述聚羟基烷酸酯的重均分子量为10万~100万,更优选为20万~90万,进一步优选为30万~80万。重均分子量小于10万时,存在得到的聚羟基烷酸酯系树脂成型体的机械特性变低的倾向。另一方面,重均分子量超过100万时,存在熔融加工时对机械的负荷变高、生产性变低的倾向。
作为优选,所述3-羟基烷酸酯结构单元以(R)3-羟基烷酸酯的形式存在。
所述聚羟基烷酸酯的制造方法没有特别限定,可以是利用化学合成的制造方法,可以是利用微生物的制造方法。其中优选利用微生物的制造方法。
作为优选,所述聚羟基烷酸酯中含有3-羟基丁酸酯(以下有时称为3HB)结构单元。
更优选地,所述3-羟基丁酸酯结构单元以(R)3-羟基丁酸酯的形式存在。
更优选地,所述聚羟基烷酸酯中含有聚(3-羟基丁酸酯)树脂,在所述聚(3-羟基丁酸酯)树脂中,3-羟基丁酸酯结构单元的平均含量比为70~99摩尔%;优选为89~99摩尔%;更优选为94~99摩尔%。
在构成本发明的聚羟基烷酸酯成型体的聚羟基烷酸酯成分包含含有3-羟基丁酸酯结构单元的树脂的情况下,从兼顾拉伸过程的强度和生产率 的观点出发,在构成聚(3-羟基丁酸酯)系树脂的全部单体单元中3-羟基丁酸酯单元和其他羟基烷酸酯单元的平均含量比(3-羟基丁酸酯单元/其他羟基烷酸酯)为99/1~70/30(摩尔%/摩尔%);研究发现,当在聚(3-羟基丁酸酯)树脂中的3-羟基丁酸酯的含量越大时,如3-羟基丁酸酯比率为89%摩尔以上,优选94%摩尔以上时,树脂的结晶度较高,熔点高,存在不易粘连的倾向,在较低的拉伸倍率下可以制备成型体,本身可拉伸的最大倍率也低,如在拉伸倍率为1.0的条件下,也容易成型。相对应的,当在聚(3-羟基丁酸酯)树脂中的3-羟基丁酸酯的含量越低时,3-羟基丁酸酯比率优选89摩尔%以下时,存在易制备高拉曼取向度成型体的倾向,需要在更高的拉伸倍率下制备成型体。
平均含量比是指构成聚(3-羟基丁酸酯)树脂的所有单体单元中每个单体单元的摩尔比,如果聚(3-羟基丁酸酯)树脂是两种或两种以上聚(3-羟基丁酸酯)树脂的混合物,则是指整个混合物中所含的每个单体单元的摩尔比。本领域技术人员能够采用已知的方法来测量聚(3-羟基丁酸酯)树脂的所有单体单元中每个单体单元的平均含量比。
通常,具有结晶度高的聚(3-羟基丁酸酯)树脂具有优良的生产率,但机械强度差,具有低结晶度聚(3-羟基丁酸酯)树脂具有优良的机械性能,但生产率较差。当与两种树脂组合使用时,可以提高拉伸的强度和生产率。因此,所述聚(3-羟基丁酸酯)树脂优选为至少两种聚(3-羟基丁酸酯)树脂的混合物,其组成单体的类型和/或组成单体的含量彼此不同。在这种情况下,优选所述聚羟基烷酸酯为至少一种结晶度高的聚(3-羟基丁酸酯)与至少一种结晶度低的聚(3-羟基丁酸酯)的组合。
作为优选,所述聚(3-羟基丁酸酯)包含:仅含有3-羟基丁酸酯结构单元的聚合物,或/和,至少一种3-羟基丁酸酯结构单元与其他结构单元的共聚物。
作为优选,所述聚(3-羟基丁酸酯)选自聚(3-羟基丁酸酯)、聚(3-羟基丁酸酯-共-3-羟基丙酸酯)、聚(3-羟基丁酸酯-共-3-羟基戊酸酯)(简称: P3HB3HV)、聚(3-羟基丁酸酯共-3-羟基戊酸酯-3-羟基己酸酯)、聚(3-羟基丁酸酯-共-3-羟基己酸酯)(简称:P3HB3HH)、聚(3-羟基丁酸酯-共-3-羟基庚酸酯)、聚(3-羟基丁酸酯-共-3-羟基辛酸酯)、聚(3-羟基丁酸酯-共-3-羟基壬酸酯)、聚(3-羟基丁酸酯-共-3-羟基癸酸酯)、聚(3-羟基丁酸酯-共-3-羟基十一烷酸酯)、聚(3-羟基丁酸酯-共-4-羟基丁酸酯)(简称:P3HB4HB)中的一种或多种。
特别是从加工性及机械特性等方面考虑,优选所述聚羟基烷酸酯为聚(3-羟基丁酸酯-共-3-羟基己酸酯)。
在具体实施时,本领域人员可以依照常识在所述原料中加入添加剂。
作为优选,所述原料中含有成核剂。添加成核剂可以降低聚羟基烷酸酯不粘连所需的时间,从而提高加工效率。
更优选的,按重量百分比计,所述成核剂在原料中的添加量为0.1%-10%;具体非限制性的包括0.3%、0.5%、0.7%、1%、1.7%、2%、3%、4%、5%、8%、9%、10%。成核剂添加量过高会降低聚羟基烷酸酯的机械性能。
更优选的,所述成核剂选自碳酸钙、滑石粉、二氧化钛、尿嘧啶、半乳糖醇、磷酸氢锆、酰胺类化合物、氮化硼中的一种或几种;其中,所述酰胺类化合物选自N,N’-己基-1,6-二[3-(3,5-二叔丁基-4-羟苯基)丙酰胺、二硫化四甲基秋兰姆;四甲基硫代过氧化二碳酸二酰胺、N,N’-1,6-己二基二[N-(2,2,6,6-四甲基-4-哌啶)]-甲酰胺、N,N’-1,2-乙二基双十八(碳)酰胺、(Z,Z)-N,N’-1,2-乙二亚基双-9-十八烯酰胺、二十二酰胺、十八酰胺、芥酸酰胺、油酸酰胺、硬脂基芥酸酰胺、N,N’-双(2,2,6,6-四甲基-4-哌啶基)-1,3-苯二甲酰胺、N,N-二(羟基乙基)椰油酰胺中的一种或几种。除此之外,本申请中的成核剂还可以选自脂肪醇或脂肪酸类成核剂,包括中长链的脂肪醇或中长链的脂肪酸,例如十八烷醇、十八烷酸、二十烷醇、二十烷酸、二十二烷醇、二十二烷酸、二十六烷醇、二十六烷酸、三十烷醇、三十烷酸等。
本发明的聚羟基烷酸酯成型体具体的制备方法可以通过挤出成型、注塑成型、压延成型、流延成型、吹塑成型、双向拉伸成型等各种热加工成型方法制备而成,也可以通过溶液浇筑等非热加工成型方法制备而成。优选通过热加工成型方法制备。
本发明在第一温度条件下的“加工”包括制备各种成型体时的加工方式,如制备粒子成型体时等的加热熔融、挤出的方式;或如制备薄膜成型体时等的加热熔融、吹出或流延挤出的方式等。
本领域人员可依照常识对上述方案进行组合,得到有关本发明的聚羟基烷酸酯成型体的制备方法的较优实施例。
进一步的,本发明还提供一种聚羟基烷酸酯成型体,其由所述的制备方法制得。
优选所述聚羟基烷酸酯成型体为薄膜、纤维、吸管、板材或颗粒。
优选所述聚羟基烷酸酯成型体的结晶度为5%以上,更优选为10%以上,进一步优选为15%以上。在温度一定的条件下,取向参数高,成型体的结晶度高,制备的产品更不易粘连,或当第二温度在更优选的范围内,延长第二时间,成型体的结晶度高,制备的产品更不易粘连。
聚羟基烷酸酯成型体的结晶度越高,聚羟基烷酸酯成型体的刚性提高,表面粗糙度提高,成型体表面越不容易发生粘连。
优选所述聚羟基烷酸酯成型体的拉曼取向参数为1.1以上,更优选为2.0以上,进一步优选为2.3以上。根据本发明,通过调控聚羟基烷酸酯成型体的拉曼取向参数在上述范围,聚羟基烷酸酯成型体可以在更短的成型时间内达到不发生粘连的状态,从而提高加工效率。聚羟基烷酸酯成型体被拉伸的倍率越大,拉曼取向参数越大。
基于上述技术方案,本发明的有益效果如下:
本发明提供的聚羟基烷酸酯成型体及其制备方法,通过优化加工工艺,能够制得不粘连的成型体,且制备方法简单可控,同时可以提高加工生产效率。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件,或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可通过正规渠道商购买得到的常规产品。
采用设备:
混料设备:采用高速混料机中在室温下共混。
造粒设备:可使用不同长径比的平行同向双螺杆挤出机、平行异向双螺杆挤出机、锥形双螺杆挤出机,以及单螺杆机等本领域常用挤出造粒设备;将组合物置于双螺杆挤出机的下料斗或失重秤中;挤出造粒设备的温度设定在比聚羟基烷酸酯树脂熔点高10℃~60℃的范围内,主机转速为50-500r/min,喂料量或产能根据实际生产状态进行调整;后续可使风冷拉条切粒、水浴拉条切粒、磨面热切、水环切和水下切粒等切粒方式进行制粒,并在生产加工的过程中保持25℃-100℃的水浴条件;制备的粒子使用鼓风干燥箱,烘干,排除水分对粒子性能的影响,同时使粒子结晶完全。
实施例中使用的测试方法如下:
拉曼取向参数=(I873平行/I1769平行)/(I873垂直/I840垂直);
其中,I873平行:平行条件时的1873cm-1的拉曼谱带的强度;
I873垂直:垂直条件时的873cm-1的拉曼谱带的强度;
I1769平行:平行条件时的1769cm-1的拉曼谱带的强度;
I1769垂直:垂直条件时的1769cm-1的拉曼谱带的强度;
平行条件:与成型体拉伸方向平行;
垂直条件:与成型体拉伸方向垂直。
结晶度
使用差示扫描量热计(TA Instrument公司制DSC25型),计量聚羟基烷酸酯成型体2-10mg,以10℃/min的升温速度从-50℃升温至180℃,通过TA软件积分得到升温熔融焓和冷结晶焓。
结晶度=100%×(熔融焓-冷结晶焓)/100%结晶熔融焓。
重均分子量
使用了氯仿溶液的凝胶渗透色谱仪(岛津制作所株式会社制HPLCGPC system)并通过聚苯乙烯换算来测定。作为该凝胶渗透色谱仪中的色谱柱,使用适于测定重均分子量的色谱柱即可。
聚羟基烷酸酯成分整体中的各单体的平均含量比可以通过本领域技术人员公知的方法而求出。
粘连测试
将2个以上的聚羟基烷酸酯成型体叠放1min,并施加5kg的压力。聚羟基烷酸酯成型体自身不粘连,则通过粘连测试。
实施例与对比例中使用的原料如下:
<聚羟基烷酸酯树脂>
A-1:聚(3-羟基丁酸酯-共-3-羟基己酸酯),北京蓝晶微生物科技有限公司;3HB(3-羟基丁酸酯单元)的含量89%,重均分子量约10-80万。
A-2:聚(3-羟基丁酸酯-共-3-羟基己酸酯),北京蓝晶微生物科技有限公司;3HB(3-羟基丁酸酯单元)的含量94%,重均分子量约10-80万。
<成核剂>
B-1:山嵛酸酰胺,江西智联塑化科技有限公司。
B-2:硬脂基酰胺,江西智联塑化科技有限公司。
制作方法包括如下步骤:
步骤1.混料:将原料通过使用混料转速200r/min,混料时间5min; 混料后,将混料置于双螺杆挤出机的下料斗中;
步骤2.挤出:设定挤出造粒设备的条件,在熔体温度为第一温度(比聚羟基烷酸酯树脂熔点高10℃~60℃)的条件下,进行挤出;聚(3-羟基丁酸酯-共-3-羟基己酸酯)/简称PHBH熔点137℃。
步骤3.造粒冷却:采用水浴拉条切粒的方式,水槽的水浴温度T,即为第二温度(聚羟基烷酸酯树脂的玻璃化温度以上,熔点以下,优选25℃-100℃,更优选40℃-80℃),并通过控制各个辊的牵引速度以及牵引速度差来控制第二温度拉伸倍率。通过控制牵引速度和水浴水槽的长度来控制第二温度加热时间。在制备过程中,在所述第二温度条件下,拉伸倍率为1.0倍以上,第二温度加热时间为10s以上;且满足以下1)~2)中的至少一个:1)拉伸倍率为3.0倍以上;2)第二温度加热时间为30s以上。
然后对所得的样条进行各种性能的测试,结果通过下面的实验例进行逐步展示与分析。
本发明提供一种制备不易粘连的聚羟基烷酸酯成型体的方法,包括:
第一步,将聚羟基烷酸酯原料通过使用混料机进行混料;
第二步,将混合后的原料在熔体温度为第一温度(比聚羟基烷酸酯树脂熔点高10℃~60℃)的条件下,进行挤出;
第三步,在水槽的水浴加热温度T(即为第二温度)为在聚羟基烷酸酯树脂的玻璃化温度以上,且在聚羟基烷酸酯树脂的熔点以下(优选为25℃-100℃,更优选40℃-80℃)的条件下进行拉伸,控制第二温度拉伸倍率为1.0倍以上,第二温度加热时间为10s以上;且满足以下1)~2)中的至少一个:1)拉伸倍率为3.0倍以上;2)第二温度加热时间为30s以上;即可得到不粘连的成型体。
其中,在第一温度下加热,熔融后成型为聚羟基烷酸酯成型体;在所述成型体玻璃化转变温度至熔点温度下所述成型体熔点的温度T(即为第二温度)下冷却、拉伸,使成型体不发生粘连。第一温度越低,成型体在 第二温度下不发生粘连的所需时间越短;第一温度越高,但是聚羟基烷酸酯的流动性增加,利于成型。优选第一温度为比聚羟基烷酸酯熔点高10℃~60℃。第二温度影响聚羟基烷酸酯成型体达到不发生粘连的状态的所需时间,优选在25℃-100℃。
表1
Figure PCTCN2022129264-appb-000001
在一些实施例中,如上表1所示,按本发明的方法,在第二温度大于等于25℃、且满足“拉伸倍率为3.0倍以上”、“第二温度加热时间为30s以上”中的至少一个时,即可实现不粘连的效果。而1.2、1.3、1.5中未满足上述条件时,则会出现粘连。
同时,在第二温度一定的情况下,随着拉伸倍率的升高,所用的第二温度加热时间越短;例如实验编号1.1、1.4:在第二温度为25℃,采用第二温度拉伸倍率3的情况,可以使得第二温度加热时间缩短至15s。
表2
Figure PCTCN2022129264-appb-000002
在一些实施例中,如上表2所示,拉伸倍率越高,第二温度所需时间可降低至10s以上;还发现,当拉伸倍率在提高至6倍甚至10倍时,第二温度如果低于10s,制备的成形体会出现粘连,如表2中2.7、2.8;优选为当第二温度拉伸倍率大于3.0时,所述第二温度加热时间10s及以上;同样的,如上表所示,当延长第二温度加热时间时,可以降低加工过程中的拉伸倍率;优选为第二温度加热时间60s及以上时,第二温度拉伸倍率大于等于1.0。
表3
Figure PCTCN2022129264-appb-000003
Figure PCTCN2022129264-appb-000004
在一些实施例中,在所述第二温度优选为40℃-80℃的条件下,所述第二温度拉伸倍率控制在1.5倍及以上,加工生产得到的成型体不会粘连。如上表3所示,第二温度在40℃-80℃,且第二温度加热时间大于30s的时候,拉伸倍率大于等于1.5时,不会产生粘连。同时也验证了在本申请范围之外的条件下制备的成形体是粘连的,如表3中3.7、3.8,当拉伸倍率与第二温度加热时间分别是1.5倍、15s和2.0倍、15s时,制备的成形体是粘连的。
在一些实施例中,所述成型体在制备过程的拉伸率越大时,拉伸倍率越高制备的成型体的取向参数越大,且制备的所述成型体不易粘连;经研究发现,拉伸倍率越高时,加工制备的成型体所需时间越短,同时制备的成型体取向度越高,不易粘连。通过上述优化的加工工艺,能够制得不粘连的成型体,且制备方法简单可控,同时可以提高加工生产效率。如下表4所示,优选拉伸倍率在1.5以上,且其取向度在2.0以上。
表4
Figure PCTCN2022129264-appb-000005
Figure PCTCN2022129264-appb-000006
在一些实施例中,当加入其他辅助性制剂时,如成核剂时,在相同的加热温度、拉伸倍率的条件下,可以更快地实现不粘连,即所述第二温度加热时间更短,从而可以更快的提高生产效率。例如实验编号为1.4、1.6的实施例,在第二温度25℃、拉伸倍率为3的情况下,1.4为不加入成核剂B-1得到不粘连的成型体所需时间为15s,1.6为加入成核剂的树脂体的第二温度加热时间可以缩短至10s。
在一些实施例中,如下表5所示,当使用不同成核剂以及使用某种成核剂不同的量时,所述成型体在同样的拉伸倍率下,对于成型体的取向参数没有变化。即成核剂的添加并不影响成型体的取向参数,但是促进了成型体的结晶,使之不粘连。
表5
Figure PCTCN2022129264-appb-000007
Figure PCTCN2022129264-appb-000008
本发明还包括通过上述加工方法制备的成型体,可以通过挤出成型、注塑成型、压延成型、流延成型、吹塑成型、双向拉伸成型等各种热加工成型方法制备而成,也可以通过溶液浇筑等非热加工成型方法制备而成。制备的成型体包括不限于粒子、薄膜、片材、吸管、瓶等。
如通过热加工成型方法制备薄膜成型体。
薄膜制作设备:采用单层或多层吹膜机等本领域常用制膜或制管设备,螺杆与模头温度设定第一温度(比聚羟基烷酸酯树脂熔点高10℃~60℃);制备的薄膜在收卷前使用烘道在聚羟基烷酸酯树脂的玻璃化温度以上,熔点以下,优选25℃-100℃,更优选40℃-80℃的条件下进行在线结晶。
在本实施例中,如上表1-表5所示,成型体的结晶度为5%以上,更优选为10%以上,进一步优选为15%以上。在温度一定的条件下,取向参数高,成型体的结晶度高,制备的产品更不易粘连,或当第二温度在更优选的范围内,延长第二时间,成型体的结晶度高,制备的产品更不易粘连。这里也验证了,聚羟基烷酸酯成型体的结晶度越高,聚羟基烷酸酯成型体的刚性提高,表面粗糙度提高,成型体表面越不容易发生粘连。
如上表1-5所示,制备的成型体的拉曼取向参数为1.1以上,更优选为2.0以上,进一步优选为2.3以上。根据本发明,通过调控聚羟基烷酸酯成型体的拉曼取向参数在上述范围,聚羟基烷酸酯成型体可以在更短的成型时间内达到不发生粘连的状态,从而提高加工效率。聚羟基烷酸酯成型体被拉伸的倍率越大,拉曼取向参数越大。在探究拉伸倍率以及第二温 度加热时间之间的关系时,本申请人还采用了具有其他结构单元的聚羟基烷酸酯进行研究。还采用了以下原料:
A-3:聚(3-羟基丁酸酯-共-3-羟基戊酸酯)(P3HB3HV),重均分子量约10-80万。
A-4:聚(3-羟基丁酸酯-共-4-羟基丁酸酯)(P3HB4HB),重均分子量约10-80万。
通过采用上述同样的制备粒料成形体的方法,具体加工参数以及成形体的物性数值见下表:
表6
Figure PCTCN2022129264-appb-000009
结果显示,在第二温度50℃的条件下,如实施例6.1至6.2所示,拉伸倍率为1倍,第二温度加热时间为30s;实施例6.3至6.4所示,拉伸倍率为3倍,第二温度加热时间为10s;实施例6.5至6.6所示,拉伸倍 率为3倍,第二温度加热时间为15s,制备的成形体都不粘黏连。也就是对于采用的不同单体的聚羟基烷酸酯、采用这些聚羟基烷酸酯的组合在本发明实施例的范围内,也能够制备得到不粘连的成形体。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
工业实用性
本发明提供一种聚羟基烷酸酯成型体及其制备方法。该制备方法包括:将聚羟基烷酸酯原料混合,并在第一温度加工,在第二温度下进行拉伸;其中,第一温度比聚羟基烷酸酯树脂熔点高10℃~60℃;第二温度在羟基烷酸酯树脂的玻璃化温度以上,且在聚羟基烷酸酯树脂的熔点以下;在制备过程中,在第二温度条件下,需满足:拉伸倍率为1.0倍以上,且在所述温度T条件下的加热时间为30s以上;或,拉伸倍率为3.0倍以上,且在所述温度T条件下的加热时间为10s以上。本发明通过优化加工工艺,能够制得不粘连的成型体,且制备方法简单可控,同时可以提高加工生产效率,具有较好的经济价值和应用前景。

Claims (10)

  1. 一种聚羟基烷酸酯成型体的制备方法,其特征在于,
    所述制备方法包括:将聚羟基烷酸酯原料混合,并在第一温度加工,在第二温度下进行拉伸;其中,所述第一温度比聚羟基烷酸酯树脂熔点高10℃~60℃;所述第二温度是指在聚羟基烷酸酯树脂的玻璃化温度以上,且在聚羟基烷酸酯树脂的熔点以下;
    在所述第二温度的条件下拉伸,需满足:拉伸倍率为1.0倍以上,且在所述第二温度的条件下的加热时间为30s以上;
    或,
    拉伸倍率为3.0倍以上,且在所述第二温度的条件下的加热时间为10s以上。
  2. 根据权利要求1所述的聚羟基烷酸酯成型体的制备方法,其特征在于,所述第二温度为25℃-100℃。
  3. 根据权利要求2所述的聚羟基烷酸酯成型体的制备方法,其特征在于,在所述制备过程中:
    所述拉伸倍率为1.0倍以上,第二温度加热时间为30s以上;
    或,
    所述拉伸倍率为3.0倍以上,第二温度加热时间为15s以上。
  4. 根据权利要求3所述的聚羟基烷酸酯成型体的制备方法,其特征在于,所述第二温度为40℃-80℃,在所述制备过程中:
    所述拉伸倍率为1.0倍以上,所述第二温度加热时间为60s以上;
    或,
    所述拉伸倍率为1.5倍以上,所述第二温度加热时间为30s以上;
    或,
    所述拉伸倍率为3.0倍以上,所述第二温度加热时间为10s以上。
  5. 根据权利要求1~4中任一项所述的聚羟基烷酸酯成型体的制备方法,其特征在于,所述聚羟基烷酸酯中含有3-羟基烷酸酯结构单元和/或 4-羟基烷酸酯结构单元。
  6. 根据权利要求5所述的聚羟基烷酸酯成型体的制备方法,其特征在于,所述聚羟基烷酸酯中含有3-羟基丁酸酯结构单元。
  7. 根据权利要求6所述的聚羟基烷酸酯成型体的制备方法,其特征在于,所述聚(3-羟基丁酸酯)包含:仅含有3-羟基丁酸酯结构单元的聚合物,或/和,至少一种3-羟基丁酸酯结构单元与其他结构单元的共聚物。
  8. 根据权利要求7所述的聚羟基烷酸酯成型体的制备方法,其特征在于,所述聚(3-羟基丁酸酯)选自聚(3-羟基丁酸酯)、聚(3-羟基丁酸酯-共-3-羟基丙酸酯)、聚(3-羟基丁酸酯-共-3-羟基戊酸酯)、聚(3-羟基丁酸酯共-3-羟基戊酸酯-3-羟基己酸酯)、聚(3-羟基丁酸酯-共-3-羟基己酸酯)、聚(3-羟基丁酸酯-共-3-羟基庚酸酯)、聚(3-羟基丁酸酯-共-3-羟基辛酸酯)、聚(3-羟基丁酸酯-共-3-羟基壬酸酯)、聚(3-羟基丁酸酯-共-3-羟基癸酸酯)、聚(3-羟基丁酸酯-共-3-羟基十一烷酸酯)或聚(3-羟基丁酸酯-共-4-羟基丁酸酯)中的一种或多种。
  9. 根据权利要求6~8任一项所述的聚羟基烷酸酯成型体的制备方法,其特征在于,在制备过程中,在聚羟基烷酸酯原料中还加入成核剂,所述成核剂的添加量占总质量的0.1%-10%。
  10. 一种聚羟基烷酸酯成型体,其特征在于,其有权利要求1~9中任一项所述的制备方法制得。
PCT/CN2022/129264 2022-07-06 2022-11-02 一种聚羟基烷酸酯成型体及其制备方法 WO2024007494A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22950053.3A EP4375048A1 (en) 2022-07-06 2022-11-02 Polyhydroxyalkanoate molded body and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210786480.3 2022-07-06
CN202210786480.3A CN114851528B (zh) 2022-07-06 2022-07-06 一种聚羟基烷酸酯成型体及其制备方法

Publications (1)

Publication Number Publication Date
WO2024007494A1 true WO2024007494A1 (zh) 2024-01-11

Family

ID=82626417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129264 WO2024007494A1 (zh) 2022-07-06 2022-11-02 一种聚羟基烷酸酯成型体及其制备方法

Country Status (4)

Country Link
EP (1) EP4375048A1 (zh)
CN (1) CN114851528B (zh)
TW (1) TW202408769A (zh)
WO (1) WO2024007494A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114851528B (zh) * 2022-07-06 2022-09-23 北京蓝晶微生物科技有限公司 一种聚羟基烷酸酯成型体及其制备方法
CN115044180B (zh) * 2022-08-12 2022-12-06 北京蓝晶微生物科技有限公司 包含结晶促进剂的聚羟基烷酸酯组合物和成型体
CN115157478B (zh) * 2022-09-02 2022-12-06 北京蓝晶微生物科技有限公司 一种可降解材料的造粒加工方法及其制备的成型体

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003311825A (ja) * 2002-04-25 2003-11-06 Inst Of Physical & Chemical Res ポリヒドロキシアルカン酸からなる高強度フィルムおよびその製造法
JP2003328230A (ja) * 2002-02-28 2003-11-19 Japan Science & Technology Corp ポリヒドロキシアルカン酸の高強度繊維およびその製造法
JP2006168159A (ja) * 2004-12-15 2006-06-29 Kaneka Corp 生分解性フィルムの製造方法
CN101027352A (zh) * 2004-09-15 2007-08-29 宝洁公司 用于聚羟基链烷酸酯的成核剂
CN103443339A (zh) * 2011-03-25 2013-12-11 国立大学法人东京大学 热稳定性和强度优异的生物分解性聚酯系纤维及其制造方法
CN109825892A (zh) * 2018-12-24 2019-05-31 江苏杜为新材料科技有限公司 一种中空高强大直径聚(3-羟基丁酸酯-co-3-羟基戊酸酯)单丝及其制备方法
CN113185822A (zh) * 2021-05-24 2021-07-30 冯明文 一种基于pha的改善降解塑料及其生产工艺
CN113573869A (zh) * 2019-03-22 2021-10-29 株式会社钟化 聚(3-羟基丁酸酯)系热成型用树脂片、其成型体、及制造方法
CN113631657A (zh) * 2019-03-28 2021-11-09 株式会社钟化 聚羟基烷酸酯系树脂组合物、其成型体及膜或片
CN114851528A (zh) * 2022-07-06 2022-08-05 北京蓝晶微生物科技有限公司 一种聚羟基烷酸酯成型体及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200635991A (en) * 2005-03-28 2006-10-16 Kaneka Corp Method for producing extruded P3HA resin foam
CN101538750A (zh) * 2008-03-18 2009-09-23 天津国韵生物材料有限公司 聚羟基脂肪酸酯纤维及其制备方法
US20110024954A1 (en) * 2009-07-28 2011-02-03 E. I. Du Pont De Nemours And Company Modified poly(hydroxyalkanoic acid) composition
CN102108562B (zh) * 2010-11-16 2013-02-13 清华大学 一种聚羟基脂肪酸酯纤维的制备方法
JPWO2021206154A1 (zh) * 2020-04-09 2021-10-14

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328230A (ja) * 2002-02-28 2003-11-19 Japan Science & Technology Corp ポリヒドロキシアルカン酸の高強度繊維およびその製造法
JP2003311825A (ja) * 2002-04-25 2003-11-06 Inst Of Physical & Chemical Res ポリヒドロキシアルカン酸からなる高強度フィルムおよびその製造法
CN101027352A (zh) * 2004-09-15 2007-08-29 宝洁公司 用于聚羟基链烷酸酯的成核剂
JP2006168159A (ja) * 2004-12-15 2006-06-29 Kaneka Corp 生分解性フィルムの製造方法
CN103443339A (zh) * 2011-03-25 2013-12-11 国立大学法人东京大学 热稳定性和强度优异的生物分解性聚酯系纤维及其制造方法
CN109825892A (zh) * 2018-12-24 2019-05-31 江苏杜为新材料科技有限公司 一种中空高强大直径聚(3-羟基丁酸酯-co-3-羟基戊酸酯)单丝及其制备方法
CN113573869A (zh) * 2019-03-22 2021-10-29 株式会社钟化 聚(3-羟基丁酸酯)系热成型用树脂片、其成型体、及制造方法
CN113631657A (zh) * 2019-03-28 2021-11-09 株式会社钟化 聚羟基烷酸酯系树脂组合物、其成型体及膜或片
CN113185822A (zh) * 2021-05-24 2021-07-30 冯明文 一种基于pha的改善降解塑料及其生产工艺
CN114851528A (zh) * 2022-07-06 2022-08-05 北京蓝晶微生物科技有限公司 一种聚羟基烷酸酯成型体及其制备方法

Also Published As

Publication number Publication date
TW202408769A (zh) 2024-03-01
EP4375048A1 (en) 2024-05-29
CN114851528B (zh) 2022-09-23
CN114851528A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
WO2024007494A1 (zh) 一种聚羟基烷酸酯成型体及其制备方法
WO2008028344A1 (fr) Composition contenant un copolymère de polyhydroxyalcanoate et de l&#39;acide polylactique, utilisée en tant que mousse
TW202346472A (zh) 聚羥基烷酸酯的酸類成核劑及聚羥基烷酸酯成型體
CN115232456B (zh) 含羟基酸类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法
WO2024045338A1 (zh) 一种可降解材料的造粒加工方法及其制备的成型体
WO2023231732A1 (zh) 含醇类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法
CN115058108B (zh) 可海洋降解的聚羟基烷酸酯组合物、成型体及其制备方法
CN115044180B (zh) 包含结晶促进剂的聚羟基烷酸酯组合物和成型体
TW201333101A (zh) 包含聚左旋乳酸以及聚右旋乳酸之組合物
CN113956630A (zh) 一种完全生物降解薄膜及其制备方法
WO2024031897A1 (zh) 聚羟基烷酸酯组合物及其成型体
TW202407020A (zh) 含多元酸的聚羥基烷酸酯組合物及聚羥基烷酸酯成型體
WO2024060636A1 (zh) 含酯类成核剂的聚羟基烷酸酯组合物、聚羟基烷酸酯成型体及其制备方法
JP5989946B2 (ja) ステレオコンプレックスポリ乳酸成形品の製造方法及び製造装置
CN107474495B (zh) 改性pbat树脂组合物及其制备方法
CN117209980B (zh) 一种聚羟基脂肪酸酯组合物、聚羟基脂肪酸酯成型体及其制备方法
WO2013141126A1 (ja) ポリ乳酸系樹脂組成物およびそれを成形してなるポリ乳酸系フィルム
CN115890962B (zh) 一种低熔指可降解材料的造粒加工方法及其制备的成型体
WO2023090176A1 (ja) 延伸フィルム及びその製造方法
WO2024128150A1 (ja) 延伸フィルム成形用樹脂組成物
WO2023090175A1 (ja) 延伸フィルムの製造方法
CN108384200B (zh) 一种快速结晶的pbat材料及其制备方法
CN116535835A (zh) 一种可降解复合热封料、热封膜及其制备方法
JP2023073820A (ja) 延伸フィルムの製造方法
WO2024111463A1 (ja) ポリ(3-ヒドロキシアルカノエート)系樹脂の成形体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2024508608

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950053

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022950053

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022950053

Country of ref document: EP

Effective date: 20240221