WO2024007427A1 - 制备超强耐蚀钢复杂零件的超强耐蚀钢粉末及制备工艺 - Google Patents

制备超强耐蚀钢复杂零件的超强耐蚀钢粉末及制备工艺 Download PDF

Info

Publication number
WO2024007427A1
WO2024007427A1 PCT/CN2022/114683 CN2022114683W WO2024007427A1 WO 2024007427 A1 WO2024007427 A1 WO 2024007427A1 CN 2022114683 W CN2022114683 W CN 2022114683W WO 2024007427 A1 WO2024007427 A1 WO 2024007427A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistant steel
corrosion
super
blank
complex parts
Prior art date
Application number
PCT/CN2022/114683
Other languages
English (en)
French (fr)
Inventor
苏绍华
Original Assignee
江苏精研科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏精研科技股份有限公司 filed Critical 江苏精研科技股份有限公司
Publication of WO2024007427A1 publication Critical patent/WO2024007427A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • B22F3/1025Removal of binder or filler not by heating only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment

Definitions

  • the invention relates to the field of powder molding, and in particular to super-corrosion-resistant steel powder and a preparation process for preparing complex parts of super-corrosion-resistant steel.
  • Super corrosion-resistant steel is a special metal material with excellent performance, high strength, high toughness, corrosion resistance and easy processing, forming and welding. It is mainly used in energy development, petrochemical industry and aircraft landing gear, main beams, turbine engine spindles, etc.
  • the traditional preparation method of ultra-high-strength corrosion-resistant steel parts is by casting. The preparation efficiency, product dimensional accuracy and complexity are low.
  • ultra High-strength, corrosion-resistant steel became the material of choice for this part.
  • traditional preparation methods of ultra-high-strength corrosion-resistant steel parts cannot prepare complex parts, especially micro-parts and micro-complex parts.
  • complex parts, micro parts and micro-complex parts there are particularly many complex parts, micro parts and micro-complex parts in the products of the electronics industry, so there has always been a question of how to apply ultra-high-strength corrosion-resistant steel to the preparation of these parts.
  • the first object of the present invention is to provide a super-corrosion-resistant steel powder for preparing complex parts of super-corrosion-resistant steel, which can prepare parts with better performance and complex structures based on the powder molding process.
  • the super-corrosion-resistant steel powder for preparing complex super-corrosion-resistant steel parts in the present invention contains the following components in mass percentage: C ⁇ 0.3%, Cr: 6-13%, Ni: 5-12%, Mo: 4-10%, Co: 5-15%, Si ⁇ 1.5%, Mn ⁇ 1.5%, O ⁇ 1%, and the rest is Fe.
  • the particle size D50 is 3-10 microns. This particle size design can increase the surface brightness of super corrosion-resistant steel powder, increase the sintering window, and improve sintering performance.
  • the present invention conducted a large amount of technical research when developing corrosion-resistant steel powder, and the interaction between the contents of various elements is one of the difficulties of the present invention. According to a large number of studies, the mechanism is as follows:
  • C carbon: It is the basic element that has the greatest impact on the properties of steel. It is an austenite-forming element that can very effectively inhibit the formation of ferrite at high temperatures and increase the solid solution strengthening of the martensite phase induced by cold working. . Different carbon contents have different effects on the properties of steel depending on the content of impurity elements in the steel and the cooling conditions after rolling. As the carbon content in the steel increases, the hardness, plasticity and toughness of carbon steel in the hot-rolled state rise linearly. reduce.
  • Cr chromium
  • Ni nickel
  • Mo (molybdenum) Molybdenum and chromium are both elements that form and stabilize ferrite and expand the ferrite phase area. Molybdenum’s ability to form ferrite is equivalent to that of chromium, and it has solid solution strengthening effect on ferrite and resistance to hydrogen corrosion. effect. Molybdenum also promotes the intermetallic phase in austenitic stainless steel. The addition of molybdenum has little effect on its room temperature mechanical properties. However, as the molybdenum content increases, the high-temperature strength of the steel increases, such as durability, creep and other properties. Improvement, while also improving the hardenability of steel.
  • Co (cobalt) Cobalt, like nickel and manganese, forms a continuous solid solution with iron. Cobalt inhibits and delays the precipitation and aggregation of special carbides of other elements during tempering or use. Cobalt is the matrix of strengthened steel. It increases the hardness and strength of carbon steel in the annealed or normalized state, but it will cause a decrease in plasticity and impact toughness, significantly improve the thermal strength and high-temperature hardness of special-purpose steels and alloys, and improve the machinability of steel. The comprehensive mechanical properties of aging steel make it super tough.
  • cobalt reduces the solid solubility of Mo in martensite, thereby promoting the formation of Mo2C precipitation phase, promoting the complete transformation of austenite into martensite, and reducing the transformation of martensite into reverse austenite. tendency.
  • Si (silicon): usually plays the role of deoxidation, increasing the strength and cold work hardening of solid solutions in steel and reducing the toughness and plasticity of steel. By hardening the strain-induced martensite phase and also hardening it by entering austenite in a solid solution state to promote the improvement of post-aging strength, excessive addition of silicon will worsen the weldability of the steel.
  • Mn manganese: As an element that controls the stability of the austenite phase, it can improve the hardenability of steel, has a significant effect on improving the strength of low-carbon and medium-carbon pearlitic steel, and at the same time improves the high-temperature instantaneous strength of steel. , but not as good as Mo; in addition, Mn, like other austenite phases, cannot be added in excess, which is not conducive to the formation of martensite phase induced during cold working.
  • the second object of the present invention is to provide a preparation process for preparing complex parts of ultra-high corrosion-resistant steel. This process can obtain high-performance ultra-high corrosion-resistant steel through a unique sintering process, heat treatment process and surface treatment process. Steel complex parts.
  • the preparation process of complex parts of super corrosion-resistant steel in the present invention includes the following steps:
  • Feeding preparation uniformly mix the super corrosion-resistant steel powder described in claim 1 or 2 with the binder to obtain the super-corrosion-resistant steel feed; wherein the optimal loading amount of the super-corrosion-resistant steel powder is ⁇ 2 Obtained by the following formula:
  • ⁇ Z represents the tap density of super corrosion-resistant steel powder
  • ⁇ L represents the theoretical density of super corrosion-resistant steel powder
  • ⁇ 1 represents the loading capacity
  • ⁇ 2 represents the optimal loading capacity
  • Molding Obtain the molded blank through injection molding or dry pressing molding; when injection molding is used, the super corrosion-resistant steel feed material prepared in step S1 is placed in the powder injection molding machine and injected into the mold cavity to form the mold. Blank; when dry pressing is used, the super corrosion-resistant steel feed material prepared in step S1 is placed in a dry press and dry-pressed into the mold cavity to form a molded blank;
  • step S2 when injection molding is used, the super corrosion-resistant steel feed prepared in step S1 is placed in a powder injection molding machine and injected under the conditions of a low injection pressure of 80-100MPa and an injection temperature of 150-190°C. After entering the mold cavity, the molding blank is formed. Two mold temperature controllers are used to control the insulation mold temperature at 100-120°C to ensure that the appearance of the green blank is free of underfill and welding marks, and that there are no holes inside. At the same time, the density and size of the product are stable, etc. ; When dry pressing is used, the super corrosion-resistant steel feed prepared in step S1 is placed in a dry press and dry pressed into the mold cavity under a pressure of 10 to 20 MPa to form a molding blank.
  • nitric acid catalyzed degreasing is performed on the molded blank through injection molding to form a degreased blank.
  • the flow rate of nitric acid is 4ml/min
  • the catalytic temperature is 80-90°C
  • the degreasing time t ⁇ (240+60*H )min the acid flows into the internal circulation in an alternating and reciprocating manner, where H is the maximum wall thickness of the complex part, in mm
  • the molded blank formed by dry pressing is thermally degreased to form a degreased blank
  • the thermal degreasing time t ⁇ (600+60*H)min where H is the maximum wall thickness of complex parts, in mm.
  • the degreased billet is placed in a continuous sintering furnace and sintered in an H2 atmosphere to obtain a sintered billet; the sintering temperature T is controlled at 1330-1380°C, and the holding time is 2 hours.
  • the heat treatment is to subject the sintered billet to solid solution heat treatment at a temperature of 980-1020°C; and then perform cryogenic cooling - 150°C to normal temperature, and finally undergo aging treatment at a temperature of 480-530°C; adding cryogenics to conventional heat treatment can better improve the hardness, strength, wear resistance, fatigue strength and corrosion resistance of the product; among them, surface treatment
  • the method is to raise the temperature to 530 to 550°C, turn off the vacuum pump, supply ammonia gas, and then evacuate. The cycle is repeated until the product reaches the thickness of the nitrided layer and then the temperature is lowered to 300°C and released. This mainly improves the wear resistance of the material.
  • the binder when injection molding is used, includes POM, framework agent, dispersant, lubricant, toughening agent and stabilizer.
  • the binder when dry pressing is used for molding, the binder includes a dispersant and a lubricant.
  • the present invention has positive effects: (1) In order to meet the performance requirements of high-precision complex parts molded from ultra-high-strength corrosion-resistant steel powder, the present invention conducts in-depth research on the impact of the element content of ultra-high-strength corrosion-resistant steel powder on product performance. Through strict By controlling element content, high-performance complex parts of ultra-high-strength corrosion-resistant steel are obtained.
  • this invention uses a powder molding process to prepare complex parts of ultra-high-strength corrosion-resistant steel. Through a unique sintering process, heat treatment process and surface treatment process, high-performance ultra-high-strength corrosion-resistant steel complex parts are obtained.
  • the ultra-high-strength corrosion-resistant steel complex parts prepared by the present invention can be used in 3C products, which is a revolutionary innovation for promoting the expansion of powder molding material systems and the development of the consumer electronics industry.
  • the super corrosion-resistant steel powder in the present invention contains the following components in mass percentage: C: 0.02%, Cr: 6%, Ni: 5%, Mo: 9.5%, Co: 15%, Si: 1%, Mn: 1.2%, O: 0.2%, the rest is Fe; the particle size is D50 6 microns.
  • the super-corrosion-resistant steel feed in the present invention includes the above-mentioned super-corrosion-resistant steel powder and a binder uniformly mixed; the binder includes POM, framework agent, dispersant, lubricant, and stabilizer; the binder
  • the specific ingredients are as follows:
  • the optimal loading amount ⁇ 2 of the super corrosion-resistant steel powder is obtained by the following formula:
  • ⁇ Z represents the tap density of super corrosion-resistant steel powder
  • ⁇ L represents the theoretical density of super corrosion-resistant steel powder
  • ⁇ 1 represents the loading capacity
  • ⁇ 2 represents the optimal loading capacity. According to calculations, the optimal loading capacity ⁇ 2 is 61.2%.
  • the preparation process of complex parts of super corrosion-resistant steel in the present invention includes the following steps:
  • step S2 Molding: Place the super corrosion-resistant steel feed material prepared in step S1 in a powder injection molding machine and inject it into the mold cavity to form a molded blank;
  • step S2 the super corrosion-resistant steel feed material prepared in step S1 is placed in a powder injection molding machine, and injected into the mold cavity under the conditions of an injection pressure of 100 to 180MPa and an injection temperature of 150 to 200°C to form a mold. blank;
  • nitric acid catalyzed degreasing is performed on the molded blank to form a degreased blank.
  • the flow rate of nitric acid is 2 to 5 ml/min.
  • the acid flows into the molded blank in an alternating and reciprocating manner.
  • the catalytic temperature is 80 to 120°C, and the degreasing time is t. ⁇ (240+60*H)min, where H is the maximum wall thickness of complex parts, in mm.
  • step S4 the degreased billet is placed in a continuous sintering furnace and sintered in an H2 atmosphere to obtain a sintered billet; the sintering temperature T is controlled at 1360-1390°C, and the heat preservation time is 2 hours.
  • test data of the parts prepared in this example are as follows:
  • the super corrosion-resistant steel powder in the present invention contains the following components in mass percentage: C: 0.03%, Cr: 7%, Ni: 6%, Mo: 8%, Co: 13%, Si: 0.8%, Mn: 1.4%, O: 0.4%, the rest is Fe; the particle size is D50 4 microns.
  • the super-corrosion-resistant steel feed in the present invention includes the above-mentioned super-corrosion-resistant steel powder and binder evenly mixed, and the specific composition is as follows:
  • the preparation process of complex parts of super corrosion-resistant steel in the present invention includes the following steps:
  • step S2 Forming: Place the super corrosion-resistant steel feed material prepared in step S1 in a dry press, and dry press it into the mold cavity to form a molded blank;
  • step S2 the super corrosion-resistant steel feedstock prepared in step S1 is placed in a dry press, and dry-pressed into the mold cavity under a pressure of 20 MPa to form a molding blank.
  • step S3 the molded blank is thermally degreased to form a degreased blank; the thermal degreasing time t ⁇ (600+60*H)min, where H is the maximum wall thickness of the complex part, in mm.
  • step S4 the degreased billet is placed in a continuous sintering furnace and sintered in an H2 atmosphere to obtain a sintered billet; the sintering temperature T is controlled at 1360-1390°C, and the heat preservation time is 2 hours.
  • test data of the parts prepared in this example are as follows:
  • the super corrosion-resistant steel powder in the present invention contains the following components in mass percentage: C: 0.03%, Cr: 9%, Ni: 7%, Mo: 7%, Co: 11%, Si: 0.5%, Mn: 1%, O: 0.3%, the rest is Fe; the particle size is D50 7 microns.
  • the super-corrosion-resistant steel feed in the present invention includes the above-mentioned super-corrosion-resistant steel powder and a binder uniformly mixed; the binder includes POM, framework agent, dispersant, lubricant, and stabilizer; the binder
  • the specific ingredients are as follows:
  • the optimal loading amount ⁇ 2 of the super corrosion-resistant steel powder is obtained by the following formula:
  • ⁇ Z represents the tap density of super corrosion-resistant steel powder
  • ⁇ L represents the theoretical density of super corrosion-resistant steel powder
  • ⁇ 1 represents the loading capacity
  • ⁇ 2 represents the optimal loading capacity. According to calculations, the optimal loading capacity ⁇ 2 is 61.2%.
  • the preparation process of complex parts of super corrosion-resistant steel in the present invention includes the following steps:
  • step S2 Molding: Place the super corrosion-resistant steel feed material prepared in step S1 in a powder injection molding machine and inject it into the mold cavity to form a molded blank;
  • step S2 the super corrosion-resistant steel feed prepared in step S1 is placed in a powder injection molding machine, and injected into the mold cavity under the conditions of an injection pressure of 100 to 180MPa and an injection temperature of 150 to 200°C to form a mold. blank;
  • nitric acid catalyzed degreasing is performed on the molded blank to form a degreased blank.
  • the flow rate of nitric acid is 2 to 5 ml/min.
  • the acid flows into the molded blank in an alternating and reciprocating manner.
  • the catalytic temperature is 80 to 120°C, and the degreasing time is t. ⁇ (240+60*H)min, where H is the maximum wall thickness of complex parts, in mm.
  • step S4 the degreased billet is placed in a continuous sintering furnace and sintered in an H2 atmosphere to obtain a sintered billet; the sintering temperature T is controlled at 1360-1390°C, and the heat preservation time is 2 hours.
  • test data of the parts prepared in this example are as follows:
  • the super corrosion-resistant steel powder in the present invention contains the following components in mass percentage: C: 0.04%, Cr: 10%, Ni: 8%, Mo: 6%, Co: 6%, Si: 0.3%, Mn: 0.8%, O: 0.5%, the rest is Fe; the particle size is D50 8 microns.
  • the super-corrosion-resistant steel feed in the present invention includes the above-mentioned super-corrosion-resistant steel powder and binder evenly mixed, and the specific composition is as follows:
  • the preparation process of complex parts of super corrosion-resistant steel in the present invention includes the following steps:
  • step S2 Forming: Place the super corrosion-resistant steel feed material prepared in step S1 in a dry press, and dry press it into the mold cavity to form a molded blank;
  • step S2 the super corrosion-resistant steel feedstock prepared in step S1 is placed in a dry press, and dry-pressed into the mold cavity under a pressure of 20 MPa to form a molding blank.
  • step S3 the molded blank is thermally degreased to form a degreased blank; the thermal degreasing time t ⁇ (600+60*H)min, where H is the maximum wall thickness of the complex part, in mm.
  • step S4 the degreased billet is placed in a continuous sintering furnace and sintered in an H2 atmosphere to obtain a sintered billet; the sintering temperature T is controlled at 1360-1390°C, and the heat preservation time is 2 hours.
  • test data of the parts prepared in this example are as follows:
  • the super corrosion-resistant steel powder in the present invention contains the following components in mass percentage: C: 0.02%, Cr: 12%, Ni: 11%, Mo: 4%, Co: 14%, Si: 0.7%, Mn: 0.5%, O: 0.1%, the rest is Fe; the particle size is D50 9 microns.
  • the super-corrosion-resistant steel feed in the present invention includes the above-mentioned super-corrosion-resistant steel powder and a binder uniformly mixed; the binder includes POM, framework agent, dispersant, lubricant, stabilizer, and toughening agent.
  • the binder includes POM, framework agent, dispersant, lubricant, stabilizer, and toughening agent.
  • POE binder is added to improve the overall feeding formula system. This binder can improve the binding force between powder and binder, improve the density of the material during integral sintering, thereby improving the overall yield and elongation of the material. Performance, the specific ingredients of the binder are as follows:
  • the optimal loading amount ⁇ 2 of the super corrosion-resistant steel powder is obtained by the following formula:
  • ⁇ Z represents the tap density of super corrosion-resistant steel powder
  • ⁇ L represents the theoretical density of super corrosion-resistant steel powder
  • ⁇ 1 represents the loading capacity
  • ⁇ 2 represents the optimal loading capacity. According to calculations, the optimal loading capacity ⁇ 2 is 61.2%.
  • the preparation process of complex parts of super corrosion-resistant steel in the present invention includes the following steps:
  • step S2 Molding: Place the super corrosion-resistant steel feed material prepared in step S1 in a powder injection molding machine and inject it into the mold cavity to form a molded blank;
  • step S2 the super corrosion-resistant steel feed prepared in step S1 is placed in a powder injection molding machine, and injected into the mold cavity under the conditions of an injection pressure of 100 to 180MPa and an injection temperature of 150 to 200°C to form a mold. blank;
  • nitric acid catalyzed degreasing is performed on the molded blank to form a degreased blank.
  • the flow rate of nitric acid is 2 to 5 ml/min.
  • the acid flows into the molded blank in an alternating and reciprocating manner.
  • the catalytic temperature is 80 to 120°C and the degreasing time is t. ⁇ (240+60*H)min, where H is the maximum wall thickness of complex parts, in mm.
  • step S4 the degreased billet is placed in a continuous sintering furnace and sintered in an H2 atmosphere to obtain a sintered billet; the sintering temperature T is controlled at 1360-1390°C, and the heat preservation time is 2 hours.
  • test data of the parts prepared in this example are as follows:
  • the super corrosion-resistant steel powder in the present invention contains the following components in mass percentage:
  • the super-corrosion-resistant steel feed in the present invention includes uniformly mixed super-corrosion-resistant steel powder and a binder; the binder includes POM, framework agent, dispersant, lubricant, and stabilizer; the specific details of the binder
  • the ingredients are as follows:
  • the optimal loading amount ⁇ 2 of the super corrosion-resistant steel powder is obtained by the following formula:
  • ⁇ Z represents the tap density of super corrosion-resistant steel powder
  • ⁇ L represents the theoretical density of super corrosion-resistant steel powder
  • ⁇ 1 represents the loading capacity
  • ⁇ 2 represents the optimal loading capacity. According to calculations, the optimal loading capacity ⁇ 2 is 61.2%.
  • the preparation process of complex parts of super corrosion-resistant steel in the present invention includes the following steps:
  • step S2 Molding: Place the super corrosion-resistant steel feed material prepared in step S1 in a powder injection molding machine and inject it into the mold cavity to form a molded blank;
  • step S2 the super corrosion-resistant steel feed prepared in step S1 is placed in a powder injection molding machine, and injected into the mold cavity under the conditions of an injection pressure of 100 to 180MPa and an injection temperature of 150 to 200°C to form a mold. blank;
  • nitric acid catalyzed degreasing is performed on the molded blank to form a degreased blank.
  • the flow rate of nitric acid is 2 to 5 ml/min.
  • the acid flows into the molded blank in an alternating and reciprocating manner.
  • the catalytic temperature is 80 to 120°C, and the degreasing time is t. ⁇ (240+60*H)min, where H is the maximum wall thickness of complex parts, in mm.
  • step S4 the degreased billet is placed in a continuous sintering furnace and sintered in an H2 atmosphere to obtain a sintered billet; the sintering temperature T is controlled at 1360-1390°C, and the heat preservation time is 2 hours.
  • test data of the parts prepared in this example are as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种制备超强耐蚀钢复杂零件的超强耐蚀钢粉末及其制备工艺,其中超强耐蚀钢粉末以质量百分比包含如下成分:C<0.3%,Cr:6-13%,Ni:5-12%,Mo:4-10%,Co:5-15%,Si<1.5%,Mn<1.5%,O<1%,其余为Fe。其中制备工艺包括如下步骤:S1、制备喂料;S2、成型:通过注射成型或干压成型获得成型坯;S3、脱脂:对于成型坯进行脱脂,形成脱脂坯;S4、烧结:将脱脂坯置于连续烧结炉中,进行烧结获得烧结坯。通过粉末成型技术拓展了超高强钢零件的制备方式,同时基于粉末成型工艺能够制备获得性能更佳、结构复杂的零件。

Description

制备超强耐蚀钢复杂零件的超强耐蚀钢粉末及制备工艺 技术领域
本发明涉及粉末成型领域,特别涉及用于制备超强耐蚀钢复杂零件的超强耐蚀钢粉末及制备工艺。
背景技术
超强耐蚀钢作为一款性能优异的高强度、高韧性、耐蚀且易加工成型和焊接的特种金属材料,主要用于能源开发、石油化工及飞机起落架、主梁、涡轮发动机主轴、发动机壳体和承力螺栓等关键承力构件,传统的超高强耐蚀钢零部件的制备方法是采用熔铸的方法制备,制备的效率和产品尺寸精度及复杂性均较低。
随着消费电子行业对金属材料力学性能的要求日益严苛,特别是目前折叠手机铰链的高精密度、复杂性,所以对铰链要求高强度、韧性、耐磨、耐蚀等特性,因此,超高强耐蚀钢成为该零件的首选材料。但是传统的超高强耐蚀钢零部件的制备方法无法制备复杂零件,尤其是微型零件和微型复杂零件。而电子行业的产品中,复杂零件、微型零件和微型复杂零件又尤其多,因此一直存在如何将超高强耐蚀钢应用到这些零部件的制备上。
发明内容
本发明的第一个目的是提供一种用于制备超强耐蚀钢复杂零件的超强耐蚀钢粉末,其基于粉末成型工艺能够制备获得性能更佳、结构复杂的零件。
实现本发明第一个目的的技术方案是:本发明中制备超强耐蚀钢复杂零件的超强耐蚀钢粉末,以质量百分比包含如下成分:C<0.3%,Cr:6-13%,Ni:5-12%,Mo:4-10%,Co:5-15%,Si<1.5%,Mn<1.5%,O<1%,其余为Fe。
其中粒度为D50为3-10微米。该粒度设计可以增加超强耐蚀钢粉末的表面亮度,提高烧结窗口,提高烧结性能。
由于,耐蚀钢粉末的成分(元素)含量控制,会直接影响后期产品的影响,因此对 于成分含量控制尤为重要。本发明在研发耐蚀钢粉末时,进行了大量了技术研究,其各元素之间含量的相互影响是本发明的难点之一。根据大量研究,其机理如下:
C(碳):是对钢的性能影响最大的基本元素,是一种奥氏体形成元素,能非常有效的抑制铁素体在高温下形成并增加冷加工诱发的马氏体相的固溶强化。不同的碳含量依据钢中杂质元素含量和轧后冷却条件的不同对于钢的性能影响是不同的,随着钢中碳含量的增加,碳钢在热轧状态下的硬度直线上升,塑性和韧性降低。
Cr(铬):是一种保证耐腐蚀所要求的的元素,可以提高钢的强度和硬度,提高钢的高温机械性能和淬透性,使钢具有良好的抗腐蚀性和抗氧化性,但是一种铁素体元素,当其含量较高时,铁素体相较易在高温区形成,需添加奥氏体元素(C、N、Mn、Ni等)来消除,但奥氏体元素过量则会使奥氏体相稳定化,不利于马氏体相在冷加工中诱发形成,所以因综合评估而定。
Ni(镍):作为高温及室温下的奥氏体元素,可以提高钢的强度而不显著降低其韧性,改善钢的加工性和可焊性,还可以提高钢的抗腐蚀能力,不仅能耐酸,而且能抗碱和大气的腐蚀。但过了的加入不利于马氏体相在冷加工中诱发形成。
Mo(钼):钼和铬都是形成和稳定铁素体并扩大铁素体相区的元素,钼形成铁素体的能力与铬相当,对铁素体有固溶强化作用和抗氢侵蚀作用。钼还促进奥氏体不锈钢中金属间相,钼的加入对其室温力学性能影响不大,但是,随着钼含量的增加,钢的高温强度提高,比如持久,蠕变等性能均获较大改善,同时还能提高钢的淬透性。
Co(钴):钴和镍、锰一样,和铁形成连续固溶体,钴在回火或使用过程中阻抑、延缓其他元素特殊碳化物的析出和聚集。钴是强化钢的基体,在退火或正火状态的碳素钢中提高硬度和强度,但会引起塑性和冲击韧性的下降,显著提高特殊用途钢和合金的热强性和高温硬度,提高马氏体时效钢的综合力学性能,使其具有超强韧性。钴作为非碳化物形成元素,降低Mo在马氏体中的固溶度,从而促进Mo2C沉淀相的形成,促进奥氏体完全转变为马氏体,减少马氏体转变为逆转奥氏体的倾向。
Si(硅):通常起到脱氧的作用,提高钢中固溶体的强度和冷加工硬化程度使钢的 韧性和塑性降低。通过对应变诱发马氏体相进行硬化并且还通过以固溶态进入奥氏体相对其进行硬化来促进时效后强度的提高,过多的加入硅会使钢的焊接性能恶化。
Mn(锰):作为控制奥氏体相稳定性元素,可提高钢的淬透性,对提高低碳和中碳珠光体钢的强度有显著的作用,同时对钢的高温瞬时强度有所提高,但不如Mo;另外Mn和其他奥氏体相一样不可加入过量,不利于马氏体相在冷加工中诱发形成。
由此可见,为了获得本发明中的耐蚀钢粉末,需要进行大量的研究。
本发明的第二个目的是提供一种用于制备超强耐蚀钢复杂零件的制备工艺,该工艺通过独特的烧结工艺、热处理工艺及表面处理工艺,能够获得了高性能的超高强耐蚀钢复杂零件。
实现本发明第二个目的的技术方案是:本发明中制备超强耐蚀钢复杂零件的制备工艺,包括如下步骤:
S1、喂料制备:将权利要求1或2所述的超强耐蚀钢粉末与粘结剂均匀混合,获得超强耐蚀钢喂料;其中超强耐蚀钢粉末的最佳装载量φ2以如下公式获得:
式1:
Figure PCTCN2022114683-appb-000001
式2:φ2=0.96φ1
式1中,ρ Z表示超强耐蚀钢粉末的振实密度,ρ L表示超强耐蚀钢粉末的理论密度,φ1表示装载量;式2中φ2表示最佳装载量;
S2、成型:通过注射成型或干压成型获得成型坯;当采用注射成型时,将S1步骤制备的超强耐蚀钢喂料置于粉末注射成型机中,注射到模具型腔内,形成成型坯;当采用干压成型时,将S1步骤制备的超强耐蚀钢喂料置于干压机中,干压至模具型腔内,形成成型坯;
S3、脱脂:对于成型坯进行脱脂,形成脱脂坯;
S4、烧结:将脱脂坯置于连续烧结炉中,进行烧结获得烧结坯。
进一步,上述步骤S2,当采用注射成型时,将S1步骤制备的超强耐蚀钢喂料置于粉末注射成型机中,在80-100MPa低注射压力和150~190℃的注射温度条件下注射到模具型腔内,形成成型坯,选用2个模温机,保温模具温度控制在100-120℃,保证生坯外观无欠注、熔接痕,内部无孔洞,同时产品的密度、尺寸稳定等;当采用干压成型 时,将S1步骤制备的超强耐蚀钢喂料置于干压机中,在10~20Mpa的压力下干压至模具型腔内,形成成型坯。
进一步,上述步骤S3中,对通过注射成型的成型坯进行硝酸催化精脱,形成脱脂坯,硝酸的流量为4ml/min,催化温度为80-90℃,脱脂时间t≥(240+60*H)min,采用内循环交替往复的方式进行流入酸,其中H为复杂零件的最大壁厚,单位为mm;对通过干压成型的成型坯,进行热脱,形成脱脂坯;热脱时间t≥(600+60*H)min,其中H为复杂零件的最大壁厚,单位为mm。
进一步,上述步骤S4中,将脱脂坯置于连续烧结炉中,在H2气氛下进行烧结,得到烧结坯;烧结温度T控制在1330—1380℃,保温时间为2小时。
同时还包括如下步骤:对烧结坯进行热处理和/或整形和/或机加工和/或表面处理;其中热处理是将烧结坯进行固溶热处理,其温度为980-1020℃;然后进行深冷-150℃至常温,最后后进行时效处理,其温度为480-530℃;通过常规热处理中增加深冷可以更好提高产品的硬度、强度、耐磨性、疲劳强度及耐腐蚀性能;其中表面处理方式为将温度升至530至550℃,关闭真空泵通氨气再抽真空,循环往复使产品达到渗氮层厚度后开始降温至300℃出炉,主要使提高材料的耐磨性能。
进一步,当采用注射成型时,所述粘结剂包括POM、骨架剂、分散剂、润滑剂、增韧剂和稳定剂。
进一步,当采用干压成型时,所述粘结剂包括分散剂和润滑剂。
本发明具有积极的效果:(1)为满足超高强耐蚀钢粉末成型高精度复杂零件的性能要求,本发明深入研究了超强耐蚀钢粉末的元素含量对产品性能的影响,通过严格的元素含量控制,获得了高性能的超高强耐蚀钢复杂零件。
(2)本发明首次用粉末成型工艺制备超高强耐蚀钢复杂零件,通过独特的烧结工艺、热处理工艺及表面处理工艺,获得了高性能的超高强耐蚀钢复杂零件。
(3)通过本发明制备的超高强耐蚀钢复杂零件,能够运用在3C类产品中,对于促进粉末成型材料体系扩展以及消费电子行业的发展,具有革命性的创新。
具体实施方式
(实施例1)
本发明中超强耐蚀钢粉末以质量百分比包含如下成分:C:0.02%,Cr:6%,Ni: 5%,Mo:9.5%,Co:15%,Si:1%,Mn:1.2%,O:0.2%,其余为Fe;粒度为D50为6微米。
本发明中超强耐蚀钢喂料,包括均匀混合的上述超强耐蚀钢粉末和粘结剂;所述粘结剂包括POM、骨架剂、分散剂、润滑剂、稳定剂;粘结剂的具体成分如下表:
Figure PCTCN2022114683-appb-000002
所述超强耐蚀钢粉末的最佳装载量φ2以如下公式获得:
式1:
Figure PCTCN2022114683-appb-000003
式2:φ2=0.96φ1
式1中,ρ Z表示超强耐蚀钢粉末的振实密度,ρ L表示超强耐蚀钢粉末的理论密度,φ1表示装载量;式2中φ2表示最佳装载量。根据计算,最佳装载量φ2为61.2%。
本发明中制备超强耐蚀钢复杂零件的制备工艺,包括如下步骤:
S1、制备上述超强耐蚀钢喂料:通过将超强耐蚀钢粉末与粘结剂放入喂料制备机内混合制备获得;
S2、成型:将S1步骤制备的超强耐蚀钢喂料置于粉末注射成型机中,注射到模具型腔内,形成成型坯;
S3、脱脂:对于成型坯进行脱脂,形成脱脂坯;
S4、烧结:将脱脂坯置于连续烧结炉中,进行烧结获得烧结坯;
S5、热处理:将烧结坯加热至1000℃,并在该温度下保持一小时,然后迅速降至950℃,保持1小时,然后降温到室温(CT),再将钢材加热至530℃,重复2次各保持5个小时;
S6、整形/机加工:将烧结好的零件按照客户给定的标准加工至最佳尺寸;
S7、其他后处理方式:表面处理。
所述步骤S2,将S1步骤制备的超强耐蚀钢喂料置于粉末注射成型机中,在100~ 180MPa注射压力和150~200℃的注射温度条件下注射到模具型腔内,形成成型坯;
所述步骤S3中,对成型坯进行硝酸催化脱脂,形成脱脂坯,硝酸的流量为2~5ml/min,采用内循环交替往复的方式进行流入酸,催化温度为80~120℃,脱脂时间t≥(240+60*H)min,其中H为复杂零件的最大壁厚,单位为mm。
所述步骤S4中,将脱脂坯置于连续烧结炉中,在H 2气氛下进行烧结,得到烧结坯;烧结温度T控制在1360—1390℃,保温时间为2小时。
本实施例制备的零件的测试数据如下表:
Figure PCTCN2022114683-appb-000004
(实施例2)
本发明中超强耐蚀钢粉末以质量百分比包含如下成分:C:0.03%,Cr:7%,Ni:6%,Mo:8%,Co:13%,Si:0.8%,Mn:1.4%,O:0.4%,其余为Fe;粒度为D50为4微米。
本发明中超强耐蚀钢喂料,包括均匀混合的上述超强耐蚀钢粉末和粘结剂,具体组成如下表:
Figure PCTCN2022114683-appb-000005
本发明中超强耐蚀钢复杂零件的制备工艺,包括如下步骤:
S1、制备上述超强耐蚀钢喂料:通过将超强耐蚀钢粉末与粘结剂放入喂料制备机内混合制备获得;
S2、成型:将S1步骤制备的超强耐蚀钢喂料置于干压机中,干压至模具型腔内,形成成型坯;
S3、脱脂:对于成型坯进行脱脂,形成脱脂坯;
S4、烧结:将脱脂坯置于连续烧结炉中,进行烧结获得烧结坯。
S5、热处理:将烧结坯加热至1000℃,并在该温度下保持一小时,然后迅速降至950℃,保持1小时,然后降温到室温(CT),再将钢材加热至530℃,重复2次各保持5个小时;
S6、整形/机加工:将烧结好的零件按照客户给定的标准加工至最佳尺寸;
S7、其他后处理方式:表面处理。
所述步骤S2,将S1步骤制备的超强耐蚀钢喂料置于干压机中,在20Mpa的压力下干压至模具型腔内,形成成型坯。
所述步骤S3中,对成型坯,进行热脱,形成脱脂坯;热脱时间t≥(600+60*H)min,其中H为复杂零件的最大壁厚,单位为mm。
所述步骤S4中,将脱脂坯置于连续烧结炉中,在H 2气氛下进行烧结,得到烧结坯;烧结温度T控制在1360—1390℃,保温时间为2小时。
本实施例制备的零件的测试数据如下表:
Figure PCTCN2022114683-appb-000006
(实施例3)
本发明中超强耐蚀钢粉末以质量百分比包含如下成分:C:0.03%,Cr:9%,Ni:7%,Mo:7%,Co:11%,Si:0.5%,Mn:1%,O:0.3%,其余为Fe;粒度为D50为7微米。
本发明中超强耐蚀钢喂料,包括均匀混合的上述超强耐蚀钢粉末和粘结剂;所述粘结剂包括POM、骨架剂、分散剂、润滑剂、稳定剂;粘结剂的具体成分如下表:
粘结剂种类 聚甲醛 骨架剂 分散剂 润滑剂 稳定性
牌号 POM PE SA PW 1010
所述超强耐蚀钢粉末的最佳装载量φ2以如下公式获得:
式1:
Figure PCTCN2022114683-appb-000007
式2:φ2=0.96φ1
式1中,ρ Z表示超强耐蚀钢粉末的振实密度,ρ L表示超强耐蚀钢粉末的理论密度,φ1表示装载量;式2中φ2表示最佳装载量。根据计算,最佳装载量φ2为61.2%。
本发明中超强耐蚀钢复杂零件的制备工艺,包括如下步骤:
S1、制备上述超强耐蚀钢喂料:通过将超强耐蚀钢粉末与粘结剂放入喂料制备机内混合制备获得;
S2、成型:将S1步骤制备的超强耐蚀钢喂料置于粉末注射成型机中,注射到模具型腔内,形成成型坯;
S3、脱脂:对于成型坯进行脱脂,形成脱脂坯;
S4、烧结:将脱脂坯置于连续烧结炉中,进行烧结获得烧结坯;
S5、热处理:将烧结坯加热至1000℃,并在该温度下保持一小时,然后迅速降至950℃,保持1小时,然后降温到室温(CT),再将钢材加热至560℃,重复2次各保持5个小时;
S6、整形/机加工:将烧结好的零件按照客户给定的标准加工至最佳尺寸;
S7、其他后处理方式:表面处理。
所述步骤S2,将S1步骤制备的超强耐蚀钢喂料置于粉末注射成型机中,在100~180MPa注射压力和150~200℃的注射温度条件下注射到模具型腔内,形成成型坯;
所述步骤S3中,对成型坯进行硝酸催化脱脂,形成脱脂坯,硝酸的流量为2~5ml/min,采用内循环交替往复的方式进行流入酸,催化温度为80~120℃,脱脂时间t≥(240+60*H)min,其中H为复杂零件的最大壁厚,单位为mm。
所述步骤S4中,将脱脂坯置于连续烧结炉中,在H 2气氛下进行烧结,得到烧结坯;烧结温度T控制在1360—1390℃,保温时间为2小时。
本实施例制备的零件的测试数据如下表:
Figure PCTCN2022114683-appb-000008
Figure PCTCN2022114683-appb-000009
(实施例4)
本发明中超强耐蚀钢粉末以质量百分比包含如下成分:C:0.04%,Cr:10%,Ni:8%,Mo:6%,Co:6%,Si:0.3%,Mn:0.8%,O:0.5%,其余为Fe;粒度为D50为8微米。
本发明中超强耐蚀钢喂料,包括均匀混合的上述超强耐蚀钢粉末和粘结剂,具体组成如下表:
Figure PCTCN2022114683-appb-000010
本发明中超强耐蚀钢复杂零件的制备工艺,包括如下步骤:
S1、制备上述超强耐蚀钢喂料:通过将超强耐蚀钢粉末与粘结剂放入喂料制备机内混合制备获得;
S2、成型:将S1步骤制备的超强耐蚀钢喂料置于干压机中,干压至模具型腔内,形成成型坯;
S3、脱脂:对于成型坯进行脱脂,形成脱脂坯;
S4、烧结:将脱脂坯置于连续烧结炉中,进行烧结获得烧结坯。
S5、热处理:将烧结坯加热至1000℃,并在该温度下保持一小时,然后迅速降至950℃,保持1小时,然后降温到室温(CT),再将钢材加热至560℃,重复2次各保持5个小时;
S6、整形/机加工:将烧结好的零件按照客户给定的标准加工至最佳尺寸;
S7、其他后处理方式:表面处理。
所述步骤S2,将S1步骤制备的超强耐蚀钢喂料置于干压机中,在20Mpa的压力下干压至模具型腔内,形成成型坯。
所述步骤S3中,对成型坯,进行热脱,形成脱脂坯;热脱时间t≥(600+60*H)min,其中H为复杂零件的最大壁厚,单位为mm。
所述步骤S4中,将脱脂坯置于连续烧结炉中,在H 2气氛下进行烧结,得到烧结坯;烧结温度T控制在1360—1390℃,保温时间为2小时。
本实施例制备的零件的测试数据如下表:
Figure PCTCN2022114683-appb-000011
(实施例5)
本发明中超强耐蚀钢粉末以质量百分比包含如下成分:C:0.02%,Cr:12%,Ni:11%,Mo:4%,Co:14%,Si:0.7%,Mn:0.5%,O:0.1%,其余为Fe;粒度为D50为9微米。
本发明中超强耐蚀钢喂料,包括均匀混合的上述超强耐蚀钢粉末和粘结剂;所述粘结剂包括POM、骨架剂、分散剂、润滑剂、稳定剂、增韧剂,对比其他案例增加POE粘结剂来改善整体喂料的配方体系,该粘结剂可以提高粉末和粘结剂的结合力,在整体烧结中提高材料的致密性,从而改善材料整体屈服和延伸率性能,粘结剂的具体成分如下表:
Figure PCTCN2022114683-appb-000012
所述超强耐蚀钢粉末的最佳装载量φ2以如下公式获得:
式1:
Figure PCTCN2022114683-appb-000013
式2:φ2=0.96φ1
式1中,ρ Z表示超强耐蚀钢粉末的振实密度,ρ L表示超强耐蚀钢粉末的理论密度,φ1表示装载量;式2中φ2表示最佳装载量。根据计算,最佳装载量φ2为61.2%。
本发明中超强耐蚀钢复杂零件的制备工艺,包括如下步骤:
S1、制备上述超强耐蚀钢喂料:通过将超强耐蚀钢粉末与粘结剂放入喂料制备机内混合制备获得;
S2、成型:将S1步骤制备的超强耐蚀钢喂料置于粉末注射成型机中,注射到模具型腔内,形成成型坯;
S3、脱脂:对于成型坯进行脱脂,形成脱脂坯;
S4、烧结:将脱脂坯置于连续烧结炉中,进行烧结获得烧结坯;
S5、热处理:将烧结坯加热至1000℃,并在该温度下保持一小时,然后迅速降至950℃,保持1小时,然后降温到室温(CT),再将钢材加热至530℃,重复2次各保持5个小时;
S6、整形/机加工:将烧结好的零件按照客户给定的标准加工至最佳尺寸;
S7、其他后处理方式:表面处理。
所述步骤S2,将S1步骤制备的超强耐蚀钢喂料置于粉末注射成型机中,在100~180MPa注射压力和150~200℃的注射温度条件下注射到模具型腔内,形成成型坯;
所述步骤S3中,对成型坯进行硝酸催化脱脂,形成脱脂坯,硝酸的流量为2~5ml/min,采用内循环交替往复的方式进行流入酸,催化温度为80~120℃,脱脂时间t≥(240+60*H)min,其中H为复杂零件的最大壁厚,单位为mm。
所述步骤S4中,将脱脂坯置于连续烧结炉中,在H 2气氛下进行烧结,得到烧结坯;烧结温度T控制在1360—1390℃,保温时间为2小时。
本实施例制备的零件的测试数据如下表:
Figure PCTCN2022114683-appb-000014
(实施例6)
本发明中超强耐蚀钢粉末以质量百分比包含如下成分:
C:0.05%,Cr:8%,Ni:10%,Mo:5%,Co:12%,Si:0.9%,Mn:0.3%,O:0.6%, 其余为Fe;粒度为D50为6微米。
本发明中超强耐蚀钢喂料,包括均匀混合的超强耐蚀钢粉末和粘结剂;所述粘结剂包括POM、骨架剂、分散剂、润滑剂、稳定剂;粘结剂的具体成分如下表:
Figure PCTCN2022114683-appb-000015
所述超强耐蚀钢粉末的最佳装载量φ2以如下公式获得:
式1:
Figure PCTCN2022114683-appb-000016
式2:φ2=0.96φ1
式1中,ρ Z表示超强耐蚀钢粉末的振实密度,ρ L表示超强耐蚀钢粉末的理论密度,φ1表示装载量;式2中φ2表示最佳装载量。根据计算,最佳装载量φ2为61.2%。
本发明中超强耐蚀钢复杂零件的制备工艺,包括如下步骤:
S1、制备上述超强耐蚀钢喂料:通过将超强耐蚀钢粉末与粘结剂放入喂料制备机内混合制备获得;
S2、成型:将S1步骤制备的超强耐蚀钢喂料置于粉末注射成型机中,注射到模具型腔内,形成成型坯;
S3、脱脂:对于成型坯进行脱脂,形成脱脂坯;
S4、烧结:将脱脂坯置于连续烧结炉中,进行烧结获得烧结坯;
S5、热处理:将烧结坯加热至1000℃,并在该温度下保持一小时,然后迅速降至950℃,保持1小时,然后降温到室温(CT),再将钢材加热至530℃,重复2次各保持5个小时;
S6、整形/机加工:将烧结好的零件按照客户给定的标准加工至最佳尺寸;
S7、其他后处理方式:表面处理。
所述步骤S2,将S1步骤制备的超强耐蚀钢喂料置于粉末注射成型机中,在100~180MPa注射压力和150~200℃的注射温度条件下注射到模具型腔内,形成成型坯;
所述步骤S3中,对成型坯进行硝酸催化脱脂,形成脱脂坯,硝酸的流量为2~5ml/min,采用内循环交替往复的方式进行流入酸,催化温度为80~120℃,脱脂时间t≥(240+60*H)min,其中H为复杂零件的最大壁厚,单位为mm。
所述步骤S4中,将脱脂坯置于连续烧结炉中,在H 2气氛下进行烧结,得到烧结坯;烧结温度T控制在1360—1390℃,保温时间为2小时。
本实施例制备的零件的测试数据如下表:
Figure PCTCN2022114683-appb-000017
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种制备超强耐蚀钢复杂零件的超强耐蚀钢粉末,其特征在于:以质量百分比包含如下成分:C<0.3%,Cr:6-13%,Ni:5-12%,Mo:4-10%,Co:5-15%,Si<1.5%,Mn<1.5%,O<1%,其余为Fe。
  2. 根据权利要求1所述的制备超强耐蚀钢复杂零件的超强耐蚀钢粉末,其特征在于:其中粒度为D50为3-10微米。
  3. 制备超强耐蚀钢复杂零件的制备工艺,其特征在于:包括如下步骤:
    S1、喂料制备:将权利要求1或2所述的超强耐蚀钢粉末与粘结剂均匀混合,获得超强耐蚀钢喂料;其中超强耐蚀钢粉末的最佳装载量φ2以如下公式获得:
    式1:
    Figure PCTCN2022114683-appb-100001
    式2:φ2=0.96φ1
    式1中,ρ Z表示超强耐蚀钢粉末的振实密度,ρ L表示超强耐蚀钢粉末的理论密度,φ1表示装载量;式2中φ2表示最佳装载量;
    S2、成型:通过注射成型或干压成型获得成型坯;当采用注射成型时,将S1步骤制备的超强耐蚀钢喂料置于粉末注射成型机中,注射到模具型腔内,形成成型坯;当采用干压成型时,将S1步骤制备的超强耐蚀钢喂料置于干压机中,干压至模具型腔内,形成成型坯;
    S3、脱脂:对于成型坯进行脱脂,形成脱脂坯;
    S4、烧结:将脱脂坯置于连续烧结炉中,进行烧结获得烧结坯。
  4. 根据权利要求3所述的制备超强耐蚀钢复杂零件的制备工艺,其特征在于:所述步骤S2,当采用注射成型时,将S1步骤制备的超强耐蚀钢喂料置于粉末注射成型机中,在80-100MPa低注射压力和150~190℃的注射温度条件下注射到模具型腔内,形成成型坯,选用2个模温机,保温模具温度控制在100-120℃;当采用干压成型时,将S1步骤制备的超强耐蚀钢喂料置于干压机中,在10~20Mpa的压力下干压至模具型腔内,形成成型坯。
  5. 根据权利要求3所述的制备超强耐蚀钢复杂零件的制备工艺,其特征在于:所 述步骤S3中,对通过注射成型的成型坯进行硝酸催化精脱,形成脱脂坯,硝酸的流量为4ml/min,催化温度为80-90℃,脱脂时间t≥(240+60*H)min,采用内循环交替往复的方式进行流入酸,其中H为复杂零件的最大壁厚,单位为mm;对通过干压成型的成型坯,进行热脱,形成脱脂坯;热脱时间t≥(600+60*H)min,其中H为复杂零件的最大壁厚,单位为mm。
  6. 根据权利要求3所述的制备超强耐蚀钢复杂零件的制备工艺,其特征在于:所述步骤S4中,将脱脂坯置于连续烧结炉中,在H2气氛下进行烧结,得到烧结坯;烧结温度T控制在1330—1380℃,保温时间为2小时。
  7. 根据权利要求3所述的制备超强耐蚀钢复杂零件的制备工艺,其特征在于:还包括如下步骤:对烧结坯进行热处理和/或整形和/或机加工和/或表面处理;其中热处理是将烧结坯进行固溶热处理,其温度为980-1020℃;然后进行深冷-150℃至常温,最后后进行时效处理,其温度为480-530℃;其中表面处理方式为将温度升至530至550℃,关闭真空泵通氨气再抽真空,循环往复使产品达到渗氮层厚度后开始降温至300℃出炉。
  8. 根据权利要求3所述的制备超强耐蚀钢复杂零件的制备工艺,其特征在于:当采用注射成型时,所述粘结剂包括POM、骨架剂、分散剂、润滑剂、增韧剂和稳定剂。
  9. 根据权利要求3所述的制备超强耐蚀钢复杂零件的制备工艺,其特征在于:当采用干压成型时,所述粘结剂包括分散剂和润滑剂。
PCT/CN2022/114683 2022-07-04 2022-08-25 制备超强耐蚀钢复杂零件的超强耐蚀钢粉末及制备工艺 WO2024007427A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210785712.3A CN115255348A (zh) 2022-07-04 2022-07-04 制备超强耐蚀钢复杂零件的超强耐蚀钢粉末及制备工艺
CN202210785712.3 2022-07-04

Publications (1)

Publication Number Publication Date
WO2024007427A1 true WO2024007427A1 (zh) 2024-01-11

Family

ID=83763936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114683 WO2024007427A1 (zh) 2022-07-04 2022-08-25 制备超强耐蚀钢复杂零件的超强耐蚀钢粉末及制备工艺

Country Status (2)

Country Link
CN (1) CN115255348A (zh)
WO (1) WO2024007427A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116926440A (zh) * 2022-03-30 2023-10-24 荣耀终端有限公司 注射成型合金材料及加工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822306A (ja) * 1981-08-04 1983-02-09 Mitsubishi Metal Corp 耐食性および耐摩耗性にすぐれたFe基焼結含浸材料
US20050095163A1 (en) * 2003-09-30 2005-05-05 Hitachi Powdered Metals Co., Ltd. Production method for sintered component made of stainless steel with high corrosion resistance
CN109848420A (zh) * 2019-04-02 2019-06-07 湖南英捷高科技有限责任公司 一种440c不锈钢金属粉末注射成形方法及其制品
CN111299589A (zh) * 2020-03-20 2020-06-19 江苏精研科技股份有限公司 用于制备耐蚀钢复杂零件的耐蚀钢粉末、喂料及工艺
CN111299588A (zh) * 2020-03-20 2020-06-19 江苏精研科技股份有限公司 一种耐蚀钢粉末及喂料及耐蚀钢复杂零件的制备工艺
CN111992704A (zh) * 2020-08-22 2020-11-27 江苏精研科技股份有限公司 耐蚀钢粉末、超高强钢喂料及耐蚀钢复杂零件制备工艺
CN112077313A (zh) * 2020-09-06 2020-12-15 江苏精研科技股份有限公司 采用粉末冶金制备低密度钢复杂零件的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822306A (ja) * 1981-08-04 1983-02-09 Mitsubishi Metal Corp 耐食性および耐摩耗性にすぐれたFe基焼結含浸材料
US20050095163A1 (en) * 2003-09-30 2005-05-05 Hitachi Powdered Metals Co., Ltd. Production method for sintered component made of stainless steel with high corrosion resistance
CN109848420A (zh) * 2019-04-02 2019-06-07 湖南英捷高科技有限责任公司 一种440c不锈钢金属粉末注射成形方法及其制品
CN111299589A (zh) * 2020-03-20 2020-06-19 江苏精研科技股份有限公司 用于制备耐蚀钢复杂零件的耐蚀钢粉末、喂料及工艺
CN111299588A (zh) * 2020-03-20 2020-06-19 江苏精研科技股份有限公司 一种耐蚀钢粉末及喂料及耐蚀钢复杂零件的制备工艺
CN111992704A (zh) * 2020-08-22 2020-11-27 江苏精研科技股份有限公司 耐蚀钢粉末、超高强钢喂料及耐蚀钢复杂零件制备工艺
CN112077313A (zh) * 2020-09-06 2020-12-15 江苏精研科技股份有限公司 采用粉末冶金制备低密度钢复杂零件的方法

Also Published As

Publication number Publication date
CN115255348A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
CN111408724A (zh) 耐蚀钢粉末、喂料及耐蚀钢复杂零件制备工艺
CN111299588A (zh) 一种耐蚀钢粉末及喂料及耐蚀钢复杂零件的制备工艺
CN111992704A (zh) 耐蚀钢粉末、超高强钢喂料及耐蚀钢复杂零件制备工艺
WO2020098306A1 (zh) 一种大厚度nm500耐磨钢及生产方法
CN111299589A (zh) 用于制备耐蚀钢复杂零件的耐蚀钢粉末、喂料及工艺
CN109609848B (zh) 高强韧抗疲劳纳米析出物增强马-奥复相钢及其制备方法
CN102086494B (zh) 高铬马氏体系耐热钢及其制造方法
CN104928586A (zh) 一种热冲压模具钢及其生产方法
US6030469A (en) Fully martensitic steel alloy
CN111304535A (zh) 耐蚀钢粉末、超高强钢喂料及耐蚀钢复杂零件制备工艺
JP2023538680A (ja) 超高降伏比を有するギガパスカル級ベイナイト鋼およびその製造方法
CN105039862B (zh) Co-free复合强化二次硬化超高强度钢及制备方法
US20130149188A1 (en) C+n austenitic stainless steel having good low-temperature toughness and a fabrication method thereof
CN113755753A (zh) 一种基于异质结构多类型强化奥氏体不锈钢及制造方法
WO2024007427A1 (zh) 制备超强耐蚀钢复杂零件的超强耐蚀钢粉末及制备工艺
CN111500928A (zh) 一种低温高韧高温高强及高淬透性热模钢及制备技术
CN105154793B (zh) 一种高强度、高耐蚀双相耐热钢
CN107761007A (zh) 低碳冷轧超高强双相钢及其制备方法
CN103233171A (zh) 一种nm400级抗裂纹高强度耐磨钢及生产方法
CN103805909A (zh) 一种奥氏体热作模具钢的制备方法
CN106282847A (zh) 一种锻造余热淬火用钢
CN114058973B (zh) 一种nm450级低碳低合金贝氏体耐磨钢及其制备方法
CN109321829B (zh) 一种屈服强度900MPa级不锈钢板及制造方法
CN108866435B (zh) 一种汽车用复合微合金化中锰钢及其制造方法
KR101894848B1 (ko) 오스테나이트계 내열합금 및 이를 이용한 내열볼트의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949991

Country of ref document: EP

Kind code of ref document: A1