WO2024007187A1 - 电化学装置及电子装置 - Google Patents

电化学装置及电子装置 Download PDF

Info

Publication number
WO2024007187A1
WO2024007187A1 PCT/CN2022/104074 CN2022104074W WO2024007187A1 WO 2024007187 A1 WO2024007187 A1 WO 2024007187A1 CN 2022104074 W CN2022104074 W CN 2022104074W WO 2024007187 A1 WO2024007187 A1 WO 2024007187A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
composite oxide
active material
nickel composite
electrochemical device
Prior art date
Application number
PCT/CN2022/104074
Other languages
English (en)
French (fr)
Inventor
郎野
彭刚
徐磊敏
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to CN202280010637.1A priority Critical patent/CN116802826A/zh
Priority to PCT/CN2022/104074 priority patent/WO2024007187A1/zh
Publication of WO2024007187A1 publication Critical patent/WO2024007187A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and specifically to an electrochemical device and an electronic device.
  • Lithium-ion batteries are widely used in various fields such as portable electronic devices, power tools, electrical energy storage, and electric vehicles due to their high energy density, high operating voltage, low self-discharge rate, small size, and light weight.
  • higher requirements have been put forward for the power density, energy density, low temperature performance, high temperature cycle life, etc. of lithium-ion batteries.
  • taking into account the power density The improvement of energy density and high temperature cycle life is one of the key technical issues that need to be solved.
  • the present application provides an electrochemical device and an electronic device to at least partially solve the above problems existing in the prior art.
  • the present application provides an electrochemical device, which includes a positive electrode.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer disposed on the surface of the positive electrode current collector.
  • the positive electrode active material layer includes a base portion and a a protruding portion located on a surface of the base portion away from the current collector, the thickness of the base portion is d microns, the height of the protruding portion is a micron, and the cathode active material layer includes a cathode active material , the positive active material includes a lithium nickel composite oxide, and the molar ratio of the nickel element in the lithium nickel composite oxide to the metal elements other than lithium in the lithium nickel composite oxide is x, satisfying: 0.2d ⁇ x ⁇ a ⁇ 1.15d ⁇ x.
  • the prepared electrochemical device can not only achieve high-rate discharge, but also provide Longer high temperature cycle life and full life cycle safety performance.
  • the positive active material layer has N number of protrusions per square centimeter, and N ranges from 1 to 25. In some embodiments, N ranges from 4 to 25.
  • the protrusions can provide sufficient support, thereby reserving enough space for expansion, thereby improving the high-temperature cycle life of the electrochemical device without making the processing process too cumbersome. and complex.
  • the electrochemical device satisfies at least one of the following conditions: (1) 5 ⁇ a ⁇ 70; (2) 30 ⁇ d ⁇ 100; (3) 0.4 ⁇ x ⁇ 0.95; (4) a ⁇ 0.95d.
  • the cathode active material includes first primary particles and secondary particles formed by aggregation of second primary particles, wherein the nickel element in the first primary particles accounts for The molar ratio of metal elements other than lithium in the particles is x1, and the molar ratio of the nickel element in the secondary particles to the metal elements other than lithium in the secondary particles is x2, satisfying: 0.02 ⁇ x1-x2 ⁇ 0.35 .
  • the first primary particles and appropriately reducing the Ni content of the secondary particles the breakage of the secondary particles can be effectively suppressed.
  • the deintercalation rate and distribution of Li ions are balanced. , thereby further alleviating the expansion of the pole piece and improving the high-temperature cycle life of the electrochemical device.
  • the electrochemical device satisfies at least one of the following conditions: (a) the first primary particles have an average particle diameter of 1 micron to 6 microns; (b) the second primary particles The average particle diameter of the particles is 100 nanometers to 2 micrometers; (c) the average particle diameter of the secondary particles is 8 micrometers to 15 micrometers.
  • the electrochemical device satisfies at least one of the following conditions: (1) the lithium nickel composite oxide also includes Co element, and the Co element in the lithium nickel composite oxide accounts for the lithium nickel The molar ratio of metal elements other than lithium in the composite oxide is y, and 0.01 ⁇ y ⁇ 0.5; (2) The lithium nickel composite oxide also includes Mn element, and the Mn element accounts for 10% of the lithium nickel composite oxide.
  • the molar ratio of metal elements other than lithium in the lithium-nickel composite oxide is z, and 0.01 ⁇ z ⁇ 0.5; (3) the lithium-nickel composite oxide also includes M elements, and the M elements include Al, Nb, At least one of Mg, Ti, W, Ga, Zr, W, Y, V, Sr, Mo, Ru, Ag, Sn, Au, La, Ce, Pr, Nd, Sm or Gd, the lithium-nickel composite
  • the molar ratio of the M element in the oxide to the metal elements other than lithium in the lithium-nickel composite oxide is a1, 0.1% ⁇ a1 ⁇ 2%.
  • the lithium nickel composite oxide includes Lim Nix Co y Mnz M a1 O 2 ⁇ q T q , where M includes Al, Nb, Mg, Ti, W, Ga, Zr, At least one of W, Y, V, Sr, Mo, Ru, Ag, Sn, Au, La, Ce, Pr, Nd, Sm or Gd, T includes F, Cl, Br, I, N or S At least one of them, 0.2 ⁇ m ⁇ 1.2, 0.4 ⁇ x ⁇ 0.95, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.5, 0 ⁇ a1 ⁇ 0.02 and 0 ⁇ q ⁇ 0.2. In some embodiments, 0.6 ⁇ m ⁇ 1.2, 0.4 ⁇ x ⁇ 0.95, 0.01 ⁇ y ⁇ 0.5, 0.01 ⁇ z ⁇ 0.5, 0.001 ⁇ a1 ⁇ 0.02, and 0 ⁇ q ⁇ 0.2.
  • the cathode active material layer includes a first layer and a second layer, the first layer is located between the cathode current collector and the second layer, based on the mass of the first layer,
  • the mass percentage of the binder in the first layer is b1.
  • the mass percentage of the binder in the second layer is b2, which satisfies: b2/b1 ⁇ 1.2.
  • the present application provides an electronic device including the electrochemical device according to any of the preceding embodiments.
  • FIG. 1A is a photograph of a positive electrode plate according to Example 2 of the present application.
  • Figure 1B is a partial enlarged view of Figure 1A.
  • Figure 2 is a schematic diagram of a positive electrode plate according to an embodiment of the present application.
  • a list of items connected by the term "at least one of,” “at least one of,” “at least one of,” or other similar terms may mean that the listed items any combination of.
  • the phrase “at least one of A and B” means only A; only B; or A and B.
  • the phrase “at least one of A, B, and C” means only A; or only B; only C; A and B (excluding C); A and C (excluding B); B and C (excluding A); or all of A, B and C.
  • Item A may contain a single component or multiple components.
  • Item B may contain a single component or multiple components.
  • Item C may contain a single component or multiple components.
  • the present application provides an electrochemical device, which includes a positive electrode.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer disposed on the surface of the positive electrode current collector.
  • the positive electrode active material layer includes a base part and a layer located on the surface of the positive electrode current collector. a protrusion on the surface of the base part away from the current collector, the thickness of the base part is d microns, the height of the protrusion is a micron, the cathode active material layer includes a cathode active material, the The positive active material includes a lithium nickel composite oxide.
  • the molar ratio of the nickel element in the lithium nickel composite oxide to the metal elements other than lithium in the lithium nickel composite oxide is x, satisfying: 0.2d ⁇ x ⁇ a ⁇ 1.15d ⁇ x.
  • 1A and 1B are photos of the positive electrode sheet according to Embodiment 2 of the present application, which show that the surface of the base portion in the positive electrode active material layer has protrusions. Referring to Figure 2, it shows a base portion located on the current collector and a protruding portion disposed on a surface of the base portion away from the current collector, wherein the height of the protruding portion is a micron and the thickness of the base portion is d micron.
  • the present application improves this problem through the above design, that is, by constructing a protruding portion on the base portion of the positive electrode active material layer, which can reserve a gap for the expansion of the electrode piece and provide a stress relief space.
  • the positive active material layer has N number of protrusions per square centimeter, and N ranges from 1 to 25. In some embodiments, N is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or the range between any two values mentioned above.
  • N ranges from 4 to 25. Too many protrusions per unit area will be detrimental to processing. If the number of protrusions per unit area is too small, the supporting effect will be limited and the space reserved for expansion will be small. Therefore, the expansion of the battery core will be affected. Improvement is limited. By setting the number N of the protrusions within the above range, the protrusions can provide sufficient support, thereby reserving enough space for expansion, thereby improving the high-temperature cycle life of the electrochemical device without making the processing process too cumbersome. and complex.
  • the electrochemical device satisfies at least one of the following conditions: (1) 5 ⁇ a ⁇ 70; (2) 30 ⁇ d ⁇ 100; (3) 0.4 ⁇ x ⁇ 0.95; (4) a ⁇ 0.95d.
  • a is 10, 15, 20, 25, 30, 40, 45, 50, 55, 60, 65 or a range between any two of the aforementioned values.
  • d is 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or a range between any two of the aforementioned values.
  • x is 0.5, 0.6, 0.7, 0.8, 0.9, or a range between any two of the aforementioned values.
  • 0.15d ⁇ a ⁇ 0.55d 0.15d ⁇ a ⁇ 0.55d.
  • the cathode active material includes first primary particles and secondary particles formed by aggregation of second primary particles, wherein the nickel element in the first primary particles accounts for The molar ratio of metal elements other than lithium in the particles is x1, and the molar ratio of the nickel element in the secondary particles to the metal elements other than lithium in the secondary particles is x2, satisfying: 0.02 ⁇ x1-x2 ⁇ 0.35 .
  • the electrochemical device satisfies at least one of the following conditions: (a) the first primary particles have an average particle diameter of 1 micron to 6 microns; (b) the second primary particles The average particle diameter of the particles is 100 nanometers to 2 micrometers; (c) the average particle diameter of the secondary particles is 8 micrometers to 15 micrometers.
  • the Ni content is >0.8
  • the c-axis shrinkage extreme value is more than 5%
  • the Ni content is below 0.6
  • the c-axis shrinkage decreases. to 3%.
  • blending lithium-nickel composite oxide with primary particle morphology can effectively prevent particle breakage. Therefore, this application can effectively suppress the breakage of the secondary particles by blending the first primary particles and appropriately reducing the Ni content of the secondary particles.
  • the removal of Li ions is balanced.
  • the embedding rate and distribution further alleviate the expansion of the pole piece and improve the high-temperature cycle life of the electrochemical device.
  • the lithium nickel composite oxide also includes Co element, and the molar ratio of the Co element in the lithium nickel composite oxide to the metal elements other than lithium in the lithium nickel composite oxide is y, 0.01 ⁇ y ⁇ 0.5.
  • the lithium nickel composite oxide also includes Mn element, and the molar ratio of the Mn element in the lithium nickel composite oxide to the metal elements other than lithium in the lithium nickel composite oxide is z, 0.01 ⁇ z ⁇ 0.5.
  • the lithium nickel composite oxide further includes M elements, including Al, Nb, Mg, Ti, W, Ga, Zr, W, Y, V, Sr, Mo, Ru, Ag , at least one of Sn, Au, La, Ce, Pr, Nd, Sm or Gd, the M element in the lithium nickel composite oxide accounts for 30% of the metal elements other than lithium in the lithium nickel composite oxide.
  • the molar ratio is a1, 0.1% ⁇ a1 ⁇ 2%.
  • the temperature of lithium-nickel composite oxide increases during high-rate charge and discharge. Doping with M element can improve the interface stability at high temperatures and improve cycle performance. On the other hand, M element doping can increase the interface resistance during fast charging, slow down lithium deposition on the negative electrode plane and corners, and improve safety performance at the end of the life cycle.
  • the lithium nickel composite oxide includes Lim Nix Co y Mnz M a1 O 2 ⁇ q T q , where M includes Al, Nb, Mg, Ti, W, Ga, Zr, At least one of W, Y, V, Sr, Mo, Ru, Ag, Sn, Au, La, Ce, Pr, Nd, Sm or Gd, T includes F, Cl, Br, I, N or S At least one of them, 0.2 ⁇ m ⁇ 1.2, 0.4 ⁇ x ⁇ 0.95, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.5, 0 ⁇ a1 ⁇ 0.02 and 0 ⁇ q ⁇ 0.2. In some embodiments, 0.6 ⁇ m ⁇ 1.2, 0.4 ⁇ x ⁇ 0.95, 0.01 ⁇ y ⁇ 0.5, 0.01 ⁇ z ⁇ 0.5, 0.001 ⁇ a1 ⁇ 0.02, and 0 ⁇ q ⁇ 0.2.
  • the cathode active material layer includes a first layer and a second layer, the first layer is located between the cathode current collector and the second layer, based on the mass of the first layer,
  • the mass percentage content of the adhesive in the first layer is b1.
  • the mass percentage content of the adhesive in the second layer is b2, which satisfies: b2/b1 ⁇ 1.2 .
  • the present application relates to an electronic device comprising an electrochemical device according to any of the preceding embodiments.
  • the preparation method of the electrochemical device of the present application is described in detail below by taking a lithium-ion battery as an example.
  • Preparation of the negative electrode Disperse the negative electrode active material (at least one of carbon material, silicon material or lithium titanate) and the negative electrode binder in the solvent system according to a certain mass ratio, stir and mix evenly, and then apply it on the negative electrode assembly. On the fluid, after drying and cold pressing, the negative electrode is obtained.
  • the negative electrode active material at least one of carbon material, silicon material or lithium titanate
  • Step (1) Prepare the first precursor and lithium hydroxide (LiOH) with the required average particle size according to a certain stoichiometric ratio, mix them evenly, and perform a calcination at 600°C-1000°C for 10 hours-20 Hours later, the first particles are obtained.
  • LiOH lithium hydroxide
  • Step (2) Prepare the second precursor and lithium hydroxide with the required average particle size according to a certain stoichiometric ratio, mix them evenly, and perform a calcination at 600°C-1000°C for 10 hours to 20 hours to obtain Secondary particles formed from second primary particles.
  • Step (3) uniformly mix the first primary particles and the secondary particles according to a certain mass ratio to form a positive active material.
  • Step (4) Mix the positive active material, conductive agent, and binder in a solvent system according to a certain weight ratio and mix them thoroughly, then apply them on the positive current collector, control the coating quality, and dry to obtain the positive electrode. Spare parts.
  • Step (5) Use a circular point-shaped rolling roller with the required bump height to cold-press the above-mentioned positive electrode piece.
  • the circular diameter control range is 0.5mm ⁇ 5mm. The longest intercept of other shapes is controlled here.
  • the positive electrode pieces after cold pressing are divided into strips and cut to obtain the positive electrode.
  • the above-mentioned steps (1) and/or (2) may further include doping and/or coating steps, and the above-mentioned step (4) may be controlled to form one or more layers of the cathode active material layer.
  • examples of the solvent include, but are not limited to, N-methylpyrrolidone, acetone, or water. In some embodiments, the amount of solvent can be adjusted appropriately.
  • the binder may assist in bonding between the positive active material and the conductive agent, or assist in bonding between the positive active material and the positive current collector.
  • binders include, but are not limited to, polyvinylidene fluoride, polyvinylidene chloride, carboxymethylcellulose, polyvinyl acetate, polyvinylpyrrolidone, polypropylene, polyethylene, and various polymers.
  • the amount of the binder ranges from 1 to 30 parts by weight based on 100 parts by weight of the total amount of the cathode active material, the conductive agent and the binder.
  • Isolation film In some embodiments, a polyethylene (PE) porous polymer film is used as the isolation film.
  • the isolation membrane may be made of fiberglass, polyester, polyethylene, polypropylene, polytetrafluoroethylene or combinations thereof.
  • the pores in the isolation film have a diameter in the range of 0.01 micron to 1 micron, and the thickness of the isolation film ranges from 5 micron to 100 micron.
  • the lithium salt includes at least one of an organic lithium salt or an inorganic lithium salt.
  • the lithium salt includes lithium hexafluorophosphate (LiPF 6 ), lithium bis(fluorosulfonyl)imide LiN(CF 3 5O 2 ) 2 (LiTFSI), lithium bis(fluorosulfonyl)imide Li(N(SO 2 F) 2 ) (LiFSI), lithium bisoxalatoborate LiB(C 2 O 4 ) 2 (LiBOB) or lithium difluoroxalatoborate LiBF 2 (C 2 O 4 ) (LiDFOB).
  • LiPF 6 lithium hexafluorophosphate
  • LiTFSI lithium bis(fluorosulfonyl)imide LiN(CF 3 5O 2 ) 2
  • LiFSI lithium bis(fluorosulfonyl)imide Li(N(SO 2 F) 2 )
  • LiBOB lithium bisoxalatoborate LiB(C 2 O
  • the lithium salt content is 5%-30% based on the quality of the electrolyte. In some embodiments, the content of the lithium salt is 6%-25% based on the quality of the electrolyte.
  • the additives include fluoroethylene carbonate, vinylene carbonate, vinyl ethylene carbonate, 1,3-propane sultone, vinyl sulfate, adiponitrile, succinonitrile, glutaronitrile , at least one of 1,3,6-hexanetrinitrile, 1,2,6-hexanetrinitrile, succinic anhydride, lithium difluorophosphate, and lithium tetrafluoroborate.
  • the bare battery core obtained by winding is placed in an outer package, electrolyte is injected and packaged, and a lithium-ion battery is obtained through processes such as formation, degassing, and trimming.
  • the electronic devices include, but are not limited to: notebook computers, pen-input computers, mobile computers, e-book players, portable telephones, portable fax machines, portable copiers, portable printers, head-mounted Stereo headphones, video recorders, LCD TVs, portable cleaners, portable CD players, mini discs, transceivers, electronic notepads, calculators, memory cards, portable recorders, radios, backup power supplies, motors, cars, motorcycles, power-assisted bicycles , bicycles, lighting equipment, toys, game consoles, clocks, power tools, flashlights, cameras, large household batteries, etc.
  • Step (1) Prepare the precursor and lithium hydroxide with an average particle size of 10.1 microns according to the stoichiometric ratio of LiNi 0.82 Co 0.12 Mn 0.06 O 2 , and mix them evenly to obtain a mixture, and control the total molar ratio of Li to other metals. is 1.04. After drying, it is calcined once at 860°C for 16 hours to obtain secondary particles (average particle size: 9.5 microns) formed by aggregation of primary particles (average particle size: 0.5 microns).
  • Negative electrode Combine the negative electrode active material artificial graphite, conductive agent acetylene black, binder styrene-butadiene rubber (SBR), and thickener sodium carboxymethylcellulose (CMC) in a deionized solution according to a mass ratio of 95:2:2:1. After thoroughly stirring and mixing in the water solvent system, it is coated on a Cu foil, dried, and cold pressed to obtain a negative electrode.
  • SBR binder styrene-butadiene rubber
  • CMC thickener sodium carboxymethylcellulose
  • Electrolyte In an argon atmosphere glove box with a water content of ⁇ 10 ppm, mix ethylene carbonate (abbreviated as EC), diethyl carbonate (abbreviated as DEC), and propylene carbonate (abbreviated as PC) according to 2:6: Mix evenly with a weight ratio of 2, then dissolve the fully dried lithium salt LiPF 6 in the above solvent, the content of LiPF 6 is 12.5%, then add 1.5% 1,3-propane sultone and 3% fluoroethylene carbonate ester, 2% adiponitrile. The content of each substance is based on the total weight of the electrolyte.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • the preparation methods of Examples 2-22 and Comparative Examples 1-3 can be referred to Example 1, and the differences are referred to the parameters in Table 1.
  • the preparation methods of Examples 2-4 differ from Example 1 only in the spacing b of the protrusions and the number N of protrusions per square centimeter of the positive active material layer.
  • the protrusions of Example 2 The pitch b is 5 microns and N is 9.
  • the pitch b of the protrusions in Example 3 is 16. This can be achieved by controlling the parameters of the rolling roller.
  • the difference between the preparation methods of Examples 5-9 and Example 3 is that the composition/morphology of the lithium-nickel composite oxide is different, and the difference in Ni content can be achieved by the stoichiometric ratio of the raw materials.
  • the difference between Examples 15-16 and 18-19 and Example 2 is that the sizes of the primary particles and the secondary particles of the secondary particles of the positive electrode active material were adjusted.
  • the difference between Examples 17, 20-22 and Example 2 is that primary particles are mixed, and the mass ratio of primary particles to secondary particles in the positive active material is 1:1.
  • the preparation method of the primary particles is as follows: According to lithium Prepare the precursor and lithium hydroxide (LiOH) in the stoichiometric ratio of the nickel composite oxide, and mix them uniformly to obtain a mixture. After drying, perform primary calcination at 800°C for 16 hours to obtain primary particles.
  • Example 23 the cathode active material was doped.
  • Example 23 is taken as an example for explanation below.
  • the difference between Example 23 and Example 2 is that in step (2), Al 2 O 3 is added to the mixture according to the stoichiometric ratio of LiNi 0.82 Co 0.115 Mn 0.06 Al 0.005 O 2 .
  • Super-P conductive carbon black
  • CNT carbon nanotube
  • PVDF binder
  • Super-P conductive carbon black
  • CNT carbon nanotube
  • PVDF binder
  • Table 1 below details the differences between Examples 1-30 and Comparative Examples 1-3.
  • Table 2 shows various electrochemical properties of Examples 1-30 and Comparative Examples 1-3.
  • Degree of lithium precipitation after 10 cycles of charge and discharge at 0°C 0.5C Take the battery under test and let it stand for 30 minutes at the test temperature of 0°C. Charge the battery with a constant current of 0.5C to the full charge cut-off voltage (when Ni content x ⁇ 0.8, the full charge cut-off voltage is 4.25V, and the rest is 4.35V), then charge with a constant voltage of 0.05C at the full charge cut-off voltage, so that the battery reaches a fully charged state; let it stand for 5 minutes, and then charge with a constant current of 0.5C Discharge to 3.0V and let it sit for 5 minutes. Repeat the above charging and discharging process 10 times. At the 10th cycle, charge the battery to a fully charged state, disassemble the battery, take out the negative electrode piece, and observe and determine the degree of lithium deposition on the negative electrode piece.
  • Corner lithium precipitation test after 500 cycles of 1C at 25°C Take the battery under test and let it stand for 30 minutes at the test temperature of 25°C. Charge the battery with a constant current of 1C to the full charge cut-off voltage (when Ni content x ⁇ 0.8, the full charge cut-off voltage is 4.25V, and the rest is 4.35V), then charge with a constant voltage of 0.05C at the full charge cut-off voltage, so that the battery reaches a fully charged state; let it stand for 5 minutes, and then charge with a constant current of 1C Discharge to 3.0V and let stand for 5 minutes. Repeat the above charging and discharging process 500 times. At the 500th cycle, charge the battery to a fully charged state, disassemble the battery, take out the negative electrode piece, and observe and determine the lithium precipitation at the corners of the negative electrode piece.
  • Average particle size of particles Use a scanning electron microscope to take photos of the cross-section of the positive electrode of the battery under test, randomly select 50 first primary particles, count their longest diameters, and take the average value as the first primary particle size. Average particle size; randomly select 50 secondary particles, count the longest diameter, and take the average value as the average particle size of the secondary particles; randomly select the second primary particle among the 50 secondary particles, count the longest diameter diameter, and take the average value as the average particle size of the second primary particle.
  • a mixed solvent to dissolve the positive active material of the battery under test for example, 0.4g of positive active material uses a mixed solvent of 10ml (nitric acid and hydrochloric acid mixed at a ratio of 1:1) aqua regia and 2ml HF), and adjust the volume to 100mL, and then use ICP-OES (inductively coupled plasma-emission spectrometer, equipment model: ICAP6300) to test and determine the contents of Ni element, Co element, Mn element and M element in the positive electrode active material. The respective element contents of the primary particles and secondary particles in the positive active material were tested by SEM-EDS.
  • ICP-OES inductively coupled plasma-emission spectrometer, equipment model: ICAP6300
  • Test of binder content Take samples of the upper and lower layers of the positive active material layer of the battery under test, and obtain the respective binder contents of the upper and lower layers of the positive active material layer through thermogravimetric analysis.
  • the cathode active material layers of Examples 1-30 all include a base part and a protruding part, and the thickness of the base part is d micron, the height of the protruding part is a micron, and the nickel element in the lithium nickel composite oxide accounts for The molar ratio x of metal elements other than lithium all satisfies the relational expression 0.2d ⁇ x ⁇ a ⁇ 1.15d ⁇ x, while the cathode active material layer of Comparative Example 1 does not contain protrusions, and in Comparative Example 2, a ⁇ 0.2dx, In Comparative Example 3, a>1.15dx.
  • the lithium-ion battery prepared by it can not only achieve high-rate discharge, but also provide longer high-temperature cycle life and full life cycle safety performance.
  • Example 11 From the comparison between Example 11 and other examples, it can be seen that when 0.2d ⁇ x ⁇ a ⁇ 0.7d ⁇ x, the lithium-ion battery has improved rate performance and high-temperature cycle life. This is because when a>0.7d ⁇ x, the impedance of the lithium-ion battery will increase, thereby reducing its rate performance and high-temperature cycle life.
  • Embodiment 4 when the number of protrusions per square centimeter of the positive active material layer is N ⁇ 4, the low-temperature discharge performance and high-temperature cycle life of the lithium-ion battery can be further improved. This is due to the protrusions. When the number of parts N ⁇ 4, it can provide effective support and reserve enough space for expansion, thereby improving the low-temperature discharge performance and high-temperature cycle life of lithium-ion batteries.
  • the cathode active materials in Examples 17 and 20-22 of the present application include first primary particles and secondary particles formed by aggregation of second primary particles, wherein the nickel element in the first primary particles accounts for the first
  • the molar ratio of metals other than lithium in the primary particles is x1
  • the molar ratio of the nickel element in the secondary particles to the metals other than lithium in the secondary particles is x2.
  • 0.02 ⁇ x1-x2 ⁇ 0.35 the higher the Ni content, the more Li ions are released under the same voltage, and the c-axis changes more obviously. For example, when Ni>80, the c-axis shrinks to the extreme value Above 5%, and when the Ni content is below 60, it is reduced to 3%.

Abstract

本申请公开一种电化学装置,其包括正极,所述正极包括正极集流体和设置于所述正极集流体表面上的正极活性材料层,所述正极活性材料层包含基体部和位于所述基体部的远离所述集流体的表面上的凸起部,所述基体部的厚度为d微米,所述凸起部的高度为a微米,所述正极活性材料层包括正极活性材料,所述正极活性材料包括锂镍复合氧化物,所述锂镍复合氧化物中镍元素占所述锂镍复合氧化物中除锂以外的金属元素的摩尔比例为x,满足:0.2d×x≤a≤1.15d×x。

Description

电化学装置及电子装置 技术领域
本申请涉及电池技术领域,具体涉及一种电化学装置及电子装置。
背景技术
锂离子电池因具有能量密度大、工作电压高、自放电率低、体积小、重量轻等特点,广泛应用于便携式电子设备、电动工具、电能储存和电动汽车等各个领域。近年来,随着电动工具、电动汽车以及无人机装备市场的快速发展,对锂离子电池的功率密度、能量密度、低温性能、高温循环寿命等提出了更高的要求,其中,兼顾功率密度提升与能量密度、高温循环寿命提升是需要解决的关键技术问题之一。
发明内容
有鉴于此,本申请提供一种电化学装置及电子装置,以至少部分解决现有技术存在的上述问题。
一方面,本申请提供了一种电化学装置,其包括正极,所述正极包括正极集流体和设置于所述正极集流体表面上的正极活性材料层,所述正极活性材料层包含基体部和位于所述基体部的远离所述集流体的表面上的凸起部,所述基体部的厚度为d微米,所述凸起部的高度为a微米,所述正极活性材料层包括正极活性材料,所述正极活性材料包括锂镍复合氧化物,所述锂镍复合氧化物中镍元素占所述锂镍复合氧化物中除锂以外的金属元素的摩尔比例为x,满足:0.2d×x≤a≤1.15d×x。通过在正极活性材料层的基体部上构造凸起部,可以为极片膨胀预留空隙,提供应力释放空间,进一步满足上述关系,所制备的电化学装置既可以实现大倍率放电,又可以提供更长的高温循环寿命和全生命周期的安全性能。
在一些实施例中,其中,每平方厘米的所述正极活性材料层具有N个所述 凸起部,N为1至25。在一些实施例中,N为4至25。通过将凸起部的数量N设置在上述范围内,凸起部能够提供充足的支撑,从而为膨胀预留足够的空间,进而提高电化学装置的高温循环寿命,同时不会使得加工工艺过于繁琐和复杂。
在一些实施例中,所述电化学装置满足下列条件中的至少一者:(1)5≤a≤70;(2)30≤d≤100;(3)0.4≤x≤0.95;(4)a≤0.95d。
在一些实施例中,5≤a≤40。在一些实施例中,0.15d≤a≤0.55d。
在一些实施例中,所述正极活性材料包括第一一次颗粒和由第二一次颗粒聚集形成的二次颗粒,其中,所述第一一次颗粒中镍元素占所述第一一次颗粒中除锂以外的金属元素的摩尔比例为x1,所述二次颗粒中镍元素占所述二次颗粒中除锂以外的金属元素的摩尔比例为x2,满足:0.02≤x1-x2≤0.35。通过掺混第一一次颗粒,并适当降低二次颗粒的Ni含量,可以有效抑制二次颗粒的破碎,同时通过增加第一一次颗粒的Ni含量,均衡了Li离子的脱嵌速率和分布,从而进一步缓解了极片膨胀,改善电化学装置的高温循环寿命。
在一些实施例中,所述电化学装置满足下列条件中的至少一者:(a)所述第一一次颗粒的平均粒径为1微米至6微米;(b)所述第二一次颗粒的平均粒径为100纳米至2微米;(c)所述二次颗粒的平均粒径为8微米至15微米。
在一些实施例中,所述电化学装置满足下列条件中的至少一者:(1)所述锂镍复合氧化物还包括Co元素,所述锂镍复合氧化物中Co元素占所述锂镍复合氧化物中除锂以外的金属元素的摩尔比例为y,且0.01≤y≤0.5;(2)所述锂镍复合氧化物还包括Mn元素,所述锂镍复合氧化物中Mn元素占所述锂镍复合氧化物中除锂以外的金属元素的摩尔比例为z,且0.01≤z≤0.5;(3)所述锂镍复合氧化物还包括M元素,所述M元素包括Al、Nb、Mg、Ti、W、Ga、Zr、W、Y、V、Sr、Mo、Ru、Ag、Sn、Au、La、Ce、Pr、Nd、Sm或Gd中的至少一者,所述锂镍复合氧化物中所述M元素占所述锂镍复合氧化物中除锂以外的金属元素的摩尔比例为a1,0.1%≤a1≤2%。
在一些实施例中,所述锂镍复合氧化物包括Li mNi xCo yMn zM a1O 2±qT q的,其中,M包括Al、Nb、Mg、Ti、W、Ga、Zr、W、Y、V、Sr、Mo、Ru、Ag、Sn、 Au、La、Ce、Pr、Nd、Sm或Gd中的至少一者,T包括F、Cl、Br、I、N或S中的至少一者,0.2≤m≤1.2、0.4≤x≤0.95、0≤y≤0.5、0≤z≤0.5、0≤a1≤0.02以及0≤q≤0.2。在一些实施例中,0.6≤m≤1.2、0.4≤x≤0.95、0.01≤y≤0.5、0.01≤z≤0.5、0.001≤a1≤0.02以及0≤q≤0.2。
在一些实施例中,所述正极活性材料层包括第一层和第二层,所述第一层位于所述正极集流体和所述第二层之间,基于所述第一层的质量,所述第一层中粘结剂的质量百分含量为b1,基于所述第二活性层的质量,所述第二层中粘结剂的质量百分含量为b2,满足:b2/b1≥1.2。随着锂镍复合氧化物的膨胀和收缩,远离集流体的第二层所受到的应变较大,通过使得远离集流体处的第二层中的粘结剂更多,有利于抑制极片的厚度变化,从而改善电化学装置的高温循环寿命。
根据本申请的另一方面,本申请提供包含根据前述任一实施例所述的电化学装置的电子装置。
附图说明
图1A是根据本申请的实施例2的正极极片的照片。
图1B是图1A的局部放大图。
图2是根据本申请的实施例的正极极片的示意图。
具体实施方式
下文中,对本申请进行详细说明。应当理解,在说明书和所附权利要求中使用的术语不应被解释为限于一般和词典的含义,而是在发明人被允许适当定义术语以进行最佳解释的原则的基础上基于与本申请的技术方面相对应的含义和概念来解释。因此,说明书中所述的实施方案中所示的描述仅仅是用于说明的目的的具体实例,而不旨在显示本申请的所有技术方面,并且应当理解,在提交本申请时可以对其完成多种可选等价体和变体。
在具体实施方式及权利要求书中,由术语“中的至少一者”、“中的至少一个”、“中的至少一种”或其他相似术语所连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A及B,那么短语“A及B中的至少一者”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及 C中的至少一者”意味着仅A;或仅B;仅C;A及B(排除C);A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。
另外,有时在本文中以范围格式呈现量、比率和其它数值。应理解,此类范围格式是用于便利及简洁起见,且应灵活地理解,不仅包含明确地指定为范围限制的数值,而且包含涵盖于所述范围内的所有个别数值或子范围,如同明确地指定每一数值及子范围一般。
一、电化学装置
本申请提供了一种电化学装置,其包括正极,所述正极包括正极集流体和设置于所述正极集流体表面上的正极活性材料层,所述正极活性材料层包含基体部和位于所述基体部的远离所述集流体的表面上的凸起部,所述基体部的厚度为d微米,所述凸起部的高度为a微米,所述正极活性材料层包括正极活性材料,所述正极活性材料包括锂镍复合氧化物,所述锂镍复合氧化物中镍元素占所述锂镍复合氧化物中除锂以外的金属元素的摩尔比例为x,满足:0.2d×x≤a≤1.15d×x。图1A和1B是根据本申请实施例2的正极极片的照片,其示出了正极活性材料层中的基体部表面具有凸起部。参见图2,其显示了位于集流体上的基体部以及设置在基体部的远离集流体的表面上的凸起部,其中凸起部的高度为a微米、基体部的厚度d微米。
本申请研究发现,锂镍复合氧化物在充放电过程中,c轴先膨胀后收缩,并且锂镍复合氧化物中镍元素的含量越高,在充放电过程中,其c轴的膨胀收缩程度越大,这导致了正极极片会先膨胀后收缩,呈现出跟负极极片不同的界面应力变化,这种变化将导致卷绕结构电芯中卷绕层之间的不规则界面变化。这种不规则界面变化在非平面区域(例如,卷绕拐角处)更加突出。由此产生的不均匀的界面张力将导致电芯出现波浪形变,影响外观、安全性及客户使用。而本申请通过上述设计,即,在正极活性材料层的基体部上构造凸起部,可以为极片膨胀预留空隙,提供应力释放空间,从而改善这一问题。经研究,当正极极片中凸起部的高度a微米、基体部的厚度d微米和锂镍复合氧化物中镍元素占锂镍复合氧化物中除锂以外的金属元素的摩尔比例x满足关系式 0.2d×x≤a≤1.15d×x时,由其制备的锂离子电池既可以实现大倍率放电,又可以提供更长的高温循环寿命和全生命周期的安全性能,从而满足终端苛刻应用场景的需要。
在一些实施例中,每平方厘米的所述正极活性材料层具有N个所述凸起部,N为1至25。在一些实施例中,N为2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或前述任意两数值之间的范围。
在一些实施例中,N为4至25。单位面积中的凸起部的数量过多将不利于加工,单位面积中的凸起部的数量过少,则其支撑效果有限、为膨胀预留的空间较小,因此,对电芯膨胀的改善有限。通过将凸起部的数量N设置在上述范围内,凸起部能够提供充足的支撑,从而为膨胀预留足够的空间,进而提高电化学装置的高温循环寿命,同时不会使得加工工艺过于繁琐和复杂。
在一些实施例中,所述电化学装置满足下列条件中的至少一者:(1)5≤a≤70;(2)30≤d≤100;(3)0.4≤x≤0.95;(4)a≤0.95d。在一些实施例中,a为10、15、20、25、30、40、45、50、55、60、65或前述任意两数值之间的范围。在一些实施例中,5≤a≤40。在一些实施例中,d为35、40、45、50、55、60、65、70、75、80、85、90、95或前述任意两数值之间的范围。在一些实施例中,x为0.5、0.6、0.7、0.8、0.9或前述任意两数值之间的范围。
在一些实施例中,0.15d≤a≤0.55d。通过在正极活性材料层的基体部上构造凸起部,可以为极片膨胀预留空隙,提供应力释放空间。然而,当凸起部的高度过高(例如,a>0.55d)时,会降低电化学装置的能量密度,同时会导致电化学装置的阻抗增加,降低电化学装置的倍率性能,而当凸起部的高度过低(例如,a<0.15d)时,为正极极片膨胀预留的空间有限,从而会降低电化学装置的高温循环寿命。通过将凸起部的高度a调整到上述范围,可以在实现大倍率放电、更长的高温循环寿命和全生命周期的安全性能的同时,提高电化学装置的能量密度。
在一些实施例中,所述正极活性材料包括第一一次颗粒和由第二一次颗粒聚集形成的二次颗粒,其中,所述第一一次颗粒中镍元素占所述第一一次颗粒中 除锂以外的金属元素的摩尔比例为x1,所述二次颗粒中镍元素占所述二次颗粒中除锂以外的金属元素的摩尔比例为x2,满足:0.02≤x1-x2≤0.35。
在一些实施例中,所述电化学装置满足下列条件中的至少一者:(a)所述第一一次颗粒的平均粒径为1微米至6微米;(b)所述第二一次颗粒的平均粒径为100纳米至2微米;(c)所述二次颗粒的平均粒径为8微米至15微米。
Ni含量越高,相同电压下脱出的Li离子越多,c轴变化越明显,比如Ni含量>0.8时,c轴收缩极值在5%以上,而当Ni含量在0.6以下时,则减小至3%。另外,掺混一次颗粒形貌的锂镍复合氧化物可以有效防止颗粒破碎。因此,本申请通过掺混第一一次颗粒,并适当降低二次颗粒的Ni含量,可以有效抑制二次颗粒的破碎,同时通过增加第一一次颗粒的Ni含量,均衡了Li离子的脱嵌速率和分布,从而进一步缓解了极片膨胀,改善电化学装置的高温循环寿命。
在一些实施例中,所述锂镍复合氧化物还包括Co元素,所述锂镍复合氧化物中Co元素占所述锂镍复合氧化物中除锂以外的金属元素的摩尔比例为y,0.01≤y≤0.5。
在一些实施例中,所述锂镍复合氧化物还包括Mn元素,所述锂镍复合氧化物中Mn元素占所述锂镍复合氧化物中除锂以外的金属元素的摩尔比例为z,0.01≤z≤0.5。
在一些实施例中,所述锂镍复合氧化物还包括M元素,所述M元素包括Al、Nb、Mg、Ti、W、Ga、Zr、W、Y、V、Sr、Mo、Ru、Ag、Sn、Au、La、Ce、Pr、Nd、Sm或Gd中的至少一者,所述锂镍复合氧化物中所述M元素占所述锂镍复合氧化物中除锂以外的金属元素的摩尔比例为a1,0.1%≤a1≤2%。锂镍复合氧化物在大倍率充放电过程中,温升高,通过采用M元素掺杂可以提高高温下的界面稳定性,改善循环性能。另一方面,通过M元素掺杂可以增加快充时的界面阻抗,减缓负极平面及拐角处析锂,改善生命周期末期的安全性能。
在一些实施例中,所述锂镍复合氧化物包括Li mNi xCo yMn zM a1O 2±qT q的,其中,M包括Al、Nb、Mg、Ti、W、Ga、Zr、W、Y、V、Sr、Mo、Ru、Ag、Sn、Au、La、Ce、Pr、Nd、Sm或Gd中的至少一者,T包括F、Cl、Br、I、N或S中的至少一者,0.2≤m≤1.2、0.4≤x≤0.95、0≤y≤0.5、0≤z≤0.5、0≤a1≤0.02以及0≤q≤0.2。 在一些实施例中,0.6≤m≤1.2、0.4≤x≤0.95、0.01≤y≤0.5、0.01≤z≤0.5、0.001≤a1≤0.02以及0≤q≤0.2。
在一些实施例中,所述正极活性材料层包括第一层和第二层,所述第一层位于所述正极集流体和所述第二层之间,基于所述第一层的质量,所述第一层中粘结剂的质量百分含量为b1,基于所述第二层的质量,所述第二层中粘结剂的质量百分含量为b2,满足:b2/b1≥1.2。随着锂镍复合氧化物的膨胀和收缩,远离集流体的第二层所受到的应变较大,本申请通过使得远离集流体处的第二层中的粘结剂更多,有利于抑制极片的厚度变化,从而改善电化学装置的高温循环寿命。
根据本申请的另一方面,本申请涉及包含根据前述任一实施例所述的电化学装置的电子装置。
二、一种制备前述电化学装置的方法
如下以锂离子电池为例详细描述了本申请的电化学装置的制备方法。
负极的制备:将负极活性材料(碳材料、硅材料或钛酸锂中的至少一种)和负极粘结剂按一定的质量比分散于溶剂体系中充分搅拌混合均匀后,涂覆于负极集流体上,经过烘干、冷压,得到负极。
正极的制备:
步骤(1):按照一定的化学计量比准备所需平均粒径的第一前驱体、氢氧化锂(LiOH),并将其均匀混合,在600℃-1000℃下进行一次煅烧10小时-20小时,得到第一一次颗粒。
步骤(2):按照一定的化学计量比准备所需平均粒径的第二前驱体、氢氧化锂,并将其均匀混合在600℃-1000℃下进行一次煅烧10小时-20小时,得到由第二一次颗粒形成的二次颗粒。
步骤(3):将第一一次颗粒与二次颗粒按照一定的质量比均匀混合,以形成正极活性材料。
步骤(4):将正极活性材料与导电剂、粘结剂按照一定的重量比在溶剂 体系中充分搅拌混合均匀后,涂覆于正极集流体上,控制涂布质量,经烘干得到正极极片备用。
步骤(5):使用具有所需凸点高度的圆形点状的辊压辊对上述正极极片进行冷压处理,圆形直径控制范围0.5mm~5mm,其它形状控制最长截距在此范围,冷压处理后的正极极片,经分条、裁切,得到正极。
其中,根据需要,上述步骤(1)和/或(2)可进一步包含掺杂和/或包覆的步骤,上述步骤(4)可经控制以形成正极活性材料层的一或多层。
在一些实施例中,导电剂以通过向正极活性材料提供导电路径来改善正极活性材料层的导电性。所述导电剂可以包括如下中的至少一种:乙炔黑、科琴黑、天然石墨、导电炭黑、石墨烯、碳纳米管、碳纤维、金属粉末或金属纤维(例如铜、镍、铝或银),但所述导电剂的示例并不限于此。在一些实施例中,可适宜的调节导电剂的量。基于100重量份的正极活性材料、导电剂和粘结剂的总量,所述导电剂的量的范围为1重量份至30重量份。
在一些实施例中,所述溶剂的示例包括但不限于N-甲基吡咯烷酮、丙酮或水。在一些实施例中,可适当的调节溶剂的量。
在一些实施例中,所述粘结剂可以帮助所述正极活性材料和导电剂之间的粘结,或者帮助所述正极活性材料和所述正极集流体之间的粘结。所述粘结剂的示例包括但不限于聚偏氟乙烯、聚偏氯乙烯、羧甲基纤维素、聚乙酸乙烯酯、聚乙烯基吡咯烷酮、聚丙烯、聚乙烯和各种聚合物。基于100重量份的正极活性材料、导电剂和粘结剂的总量,所述粘结剂的量的范围为1重量份至30重量份。
在一些实施例中,所述正极集流体具有3微米至20微米范围内的厚度,但本公开内容不限于此。所述正极集流体是导电的,且不在所制造的电池中引起不利的化学变化。所述正极集流体的实施例包括铜、不锈钢、铝、镍、钛或合金(例如铜-镍合金),但不限于此。在一些实施例中,所述正极集流体的表面上可包括细小的不规则物(例如,表面粗糙度)以增强所述正极集流体的表面对正极活性材料的粘合。在一些实施例中,集流体可以多种形式使用,其实施例包括膜、片、箔、网、多孔结构体或泡沫体,但本公开内容 不限于此。
隔离膜:在一些实施例中,以聚乙烯(PE)多孔聚合薄膜作为隔离膜。在一些实施例中,所述隔离膜的材质可包括玻璃纤维、聚酯、聚乙烯、聚丙烯、聚四氟乙烯或其组合。在一些实施例中,所述隔离膜中的孔具有在0.01微米至1微米范围的直径,所述隔离膜的厚度在5微米至100微米范围内。
电解液:在一些实施例中,所述电解液包括有机溶剂、锂盐和添加剂。在一些实施例中,有机溶剂包括碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸二甲酯(DMC)、丙酸丙酯或丙酸乙酯中的至少一种。
在一些实施例中,锂盐包括有机锂盐或无机锂盐中的至少一种。在一些实施例中,锂盐包括六氟磷酸锂(LiPF 6)、双三氟甲烷磺酰亚胺锂LiN(CF 35O 2) 2(LiTFSI)、双(氟磺酰)亚胺锂Li(N(SO 2F) 2)(LiFSI)、双草酸硼酸锂LiB(C 2O 4) 2(LiBOB)或二氟草酸硼酸锂LiBF 2(C 2O 4)(LiDFOB)中的至少一种。
在一些实施例中,基于所述电解液的质量,所述锂盐含量为5%-30%。在一些实施例中,基于所述电解液的质量,所述锂盐的含量为6%-25%。
在一些实施例中,添加剂包含氟代碳酸乙烯酯、碳酸亚乙烯酯、乙烯基碳酸亚乙酯、1,3-丙烷磺内酯、硫酸乙烯酯、已二腈、丁二腈、戊二腈、1,3,6-己烷三腈、1,2,6-己烷三腈、琥珀酸酐、二氟磷酸锂、四氟硼酸锂中的至少一者。
将正极、隔离膜、负极按顺序叠好,使隔离膜处于正负极中间起到隔离的作用,并卷绕得到裸电芯。将经卷绕所得裸电芯置于外包装中,注入电解液并封装,经过化成、脱气、切边等工艺流程获得锂离子电池。
三、电子装置
本申请提供了一种电子装置,其包含根据前述内容所述的电化学装置。
根据本申请的一些实施例,所述电子装置包括,但不限于:笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式 复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池等。
四、具体的实施例
下面结合实施例,对本申请做进一步详细的描述。然而,应理解,以下实施例仅是示例,本申请的实施例方式不限于此。
实施例1至30和对比例1至3
实施例1
正极:
步骤(1):按照LiNi 0.82Co 0.12Mn 0.06O 2的化学计量比准备平均粒径为10.1微米的前驱体、氢氧化锂,并将其均匀混合得到混合物,控制Li与其他金属总摩尔的比例为1.04,干燥后在860℃下进行一次煅烧16h,得到由一次颗粒(平均粒径为0.5微米)聚集形成的二次颗粒(平均粒径为9.5微米)。
步骤(2):将上述正极活性材料与导电炭黑(Super-P)、碳纳米管(CNT)、粘结剂(PVDF)按照重量比97∶1.3∶0.2∶1.5在NMP溶剂体系中充分搅拌混合均匀后,涂覆于10微米的铝箔上,控制涂布质量为15mg/cm 2,经105℃烘干得到初级正极极片。
步骤(3):使用凸点高度为20微米的圆形点状的辊压辊对上述初级正极极片进行冷压处理,圆形直径控制在0.5mm~5mm之间的范围内,冷压处理后的极片,经分条、裁切,得到所需的正极。其中,将正极活性材料层中,凸起部的高度a设置为20微米,基体部的厚度d设置为75微米,凸起部间距b设置为10毫米。
隔膜:以PE多孔聚合薄膜作为隔离膜。
负极:将负极活性材料人造石墨、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照质量比为95∶2∶2∶1在去离子水溶剂体系中 充分搅拌混合均匀后,涂覆于Cu箔上烘干、冷压,得到负极。
电解液:在含水量<10ppm的氩气气氛手套箱中,将碳酸乙烯酯(简写为EC)、碳酸二乙酯(简写为DEC)、碳酸丙烯酯(简写为PC)、按照2∶6∶2的重量比混合均匀,再将充分干燥的锂盐LiPF 6溶解于上述溶剂,LiPF 6的含量为12.5%,再加入1.5%的1,3-丙烷磺内酯、3%的氟代碳酸乙烯酯、2%的己二腈。其中各物质含量是以电解液的总重量计。
锂离子电池的制备:将正极、隔膜、负极按顺序叠好,使隔膜处于正负极中间起到隔离的作用,并卷绕、置于外包装铝塑膜中,注入配好的电解液并封装,经过化成、脱气、切边等工艺得到锂离子电池。
实施例2-22与对比例1-3的制备方法可以参考实施例1,其不同之处参考表1中的参数。例如,实施例2-4的制备方法与实施例1的不同仅在于凸起部的间距b和每平方厘米正极活性材料层中的凸起部个数N,例如,实施例2的凸起部的间距b为5微米、N为9个,实施例3的凸起部的间距b为3微米、N为16个,这可以通过控制辊压辊的参数来实现。再例如,实施例5-9的制备方法与实施例3的区别在于锂镍复合氧化物的组成/形貌不同,其中Ni含量的不同可以通过原料化学计量比来实现。
实施例15-16、18-19与实施例2的区别在于,对正极活性材料的二次颗粒的一次颗粒和二次颗粒的大小进行调整。实施例17、20-22与实施例2的区别在于,掺混了一次颗粒,正极活性材料中一次颗粒与二次颗粒的质量比为1∶1,其中,一次颗粒的制备方法如下:按照锂镍复合氧化物的化学计量比准备前驱体、氢氧化锂(LiOH),并将其均匀混合得到混合物,干燥后在800℃下进行一次煅烧16h,得到一次颗粒。
实施例23-27
实施例23-27则对正极活性材料进行了掺杂。如下以实施例23为例进行说明,实施例23与实施例2的区别在于,步骤(2)中按照LiNi 0.82Co 0.115Mn 0.06Al 0.005O 2的化学计量比在混合物中加入Al 2O 3
实施例28-30
实施例28-30对正极活性材料层中的粘结剂进行了研究。如下以实施例28为例进行说明,实施例28与实施例2的区别在于,将步骤(2)替换为如下步骤(2a)和步骤(2b),使得b2/b1=1.2;实施例29-30则在实施例28的基础上,调整步骤(2b)中粘结剂的含量,以使得b2/b1分别为1.2、2。
步骤(2a):将上述正极活性材料与导电炭黑(Super-P)、碳纳米管(CNT)、粘结剂(PVDF)按照重量比97∶1.3∶0.2∶1.5在NMP溶剂体系中充分搅拌混合均匀后,涂覆于10微米的铝箔上,控制涂布质量为10mg/cm 2,经105℃烘干得到初级正极极片备用。
步骤(2b):将上述正极活性材料与导电炭黑(Super-P)、碳纳米管(CNT)、粘结剂(PVDF)按照重量比96.7∶1.3∶0.2∶1.8在NMP溶剂体系中充分搅拌混合均匀后,涂覆于步骤(4a)获得的初级正极极片上,控制涂布质量为5mg/cm 2,经105℃烘干得到正极极片备用。
如下表1详细示出了实施例1-30与对比例1-3的不同之处。表2则展示了实施例1-30与对比例1-3的各项电化学性能。
Figure PCTCN2022104074-appb-000001
Figure PCTCN2022104074-appb-000002
表2:
Figure PCTCN2022104074-appb-000003
测试方法
0℃ 0.5C 10圈充放电循环后析锂程度:取被测电池在0℃测试温度下,静 置30分钟,以0.5C的电流将电池恒流充电至满充截止电压(当Ni含量x≥0.8时,满充截止电压为4.25V,其余为4.35V),再以满充截止电压恒压充电至0.05C,使电池达到满充状态;静置5分钟,再以0.5C的电流恒流放电至3.0V,静置5分钟。重复上述充放电流程10次。在第10次循环时,将电池充电至满充状态,拆解电池,取出负极极片,观测确定负极极片的析锂程度。
25℃条件下1C循环500圈后的拐角析锂测试:取被测电池在25℃测试温度下,静置30分钟,以1C的电流将电池恒流充电至满充截止电压(当Ni含量x≥0.8时,满充截止电压为4.25V,其余为4.35V),再以满充截止电压恒压充电至0.05C,使电池达到满充状态;静置5分钟,再以1C的电流恒流放电至3.0V,静置5分钟。重复上述充放电流程500次。在第500次循环时,将电池充电至满充状态,拆解电池,取出负极极片,观测确定负极极片拐角处的析锂情况。
倍率性能(10C/0.2C)测试
在(25±3)℃的环境下,电池用0.5C电流进行恒流充电至满充截止电压(当Ni含量x≥0.8时,满充截止电压为4.25V,其余为4.35V),再以满充截止电压恒压充电至截止电流0.05C,然后分别以0.2C和10C恒流放电至3.0V,分别得到0.2C和10C的放电容量,倍率性能=10C放电容量/0.2C放电容量×100%。
45℃/10C循环容量达80%时的循环次数:
取被测电池在45℃测试温度下,静置30分钟,以10C的电流将电池恒流充电至满充截止电压(当Ni含量x≥0.8时,满充截止电压为4.25V,其余为4.35V),再以满充截止电压恒压充电至0.05C;静置5分钟,再以10C的电流恒流放电至3.0V,记录放电容量C1,静置5分钟。重复上述充放电流程,直到放电容量为80%C1,记录此时的循环次数。
颗粒的平均粒径:利用扫描电子显微镜,拍摄被测电池正极极片横截面的照片,随机选取50个第一一次颗粒,统计其最长直径,取其平均值作为第一一次颗粒的平均粒径;随机选取50个二次颗粒,统计其最长直径,取其平均值作为二次颗粒的平均粒径;随机选取50个二次颗粒中的第二一次颗粒,统计其最 长直径,取其平均值作为第二一次颗粒的平均粒径。
元素及其含量的测试:使用混合溶剂溶解被测电池正极活性材料(例如,0.4g正极活性材料使用10ml(硝酸与盐酸按照1∶1混合)王水与2ml HF的混合溶剂),定容至100mL,然后使用ICP-OES(电感耦合等离子-发射光谱仪,设备型号:ICAP6300)测试确定正极活性材料中Ni元素、Co元素、Mn元素和M元素的含量。正极活性材料中一次颗粒和二次颗粒各自的元素含量则通过SEM-EDS进行测试。
粘结剂含量的测试:分别取被测电池正极活性材料层的上层和下层样品,通过热重分析获得正极活性材料层中上层和下层各自的粘结剂含量。
正极活性层的基体部厚度d和凸起部高度a的测试:取被测电池正极极片,用切片机进行加工,获得垂直于正极集流体表面的截面,利用扫描电子显微镜,在基体部表面随机选取20处,测量其厚度,取其平均值,即为基体部的厚度d;随机选取20个凸起部,测量其顶点至集流体的高度,取其平均值为H,凸起部的高度a=H-d。
参见上表1和2:
实施例1-30的正极活性材料层均包含基体部和凸起部,且基体部的厚度d微米、凸起部的高度a微米和锂镍复合氧化物中镍元素占锂镍复合氧化物中除锂以外的金属元素的摩尔比例x均满足关系式0.2d×x≤a≤1.15d×x,而对比例1的正极活性材料层不含凸起部,对比例2中a<0.2dx,对比例3中a>1.15dx。结合表2中的电化学性能数据可知,相比对比例1-3,实施例1-30的各项电化学性能(0℃ 0.5C 10圈充放电循环后析锂程度、25℃/1C循环500圈后拐角析锂程度、10C的放电保持率以及45℃/10C倍率下循环到初始容量的80%时的循环次数)均显著改善。这主要是因为:锂镍复合氧化物在充放电过程中,c轴先膨胀后收缩,并且锂镍复合氧化物中镍元素的含量越高,在充放电过程中,其c轴的膨胀程度越大,这导致正极极片会先膨胀后收缩,呈 现出跟负极极片不同的界面应力变化,这种变化将导致卷绕结构电芯中卷绕层之间的不规则界面变化。这种不规则界面变化在非平面区域(例如,卷绕拐角处)更加突出。由此产生的不均匀的界面张力将导致电芯出现波浪形变,影响外观、安全性及客户使用等。而本申请通过上述设计,即,在正极极片的正极活性材料层的基体部上构造凸起部,可以为极片膨胀预留空隙,提供应力释放空间,从而改善这一问题。经研究,当凸起部的高度a微米、基体部的厚度d微米和锂镍复合氧化物中镍元素占锂镍复合氧化物中除锂以外的金属元素的摩尔比例x满足关系式0.2d×x≤a≤1.15d×x时,由其制备的锂离子电池既可以实现大倍率放电,又可以提供更长的高温循环寿命和全生命周期的安全性能。
进一步地,由实施例11与其他实施例的比较可以看出,0.2d×x≤a≤0.7d×x时,锂离子电池具有改善的倍率性能和高温循环寿命。这是由于,a>0.7d×x时,锂离子电池的阻抗将增加,从而降低其倍率性能和高温循环寿命。
由实施例4与其他实施例的比较可知,当每平方厘米正极活性材料层的凸起部数目N≥4时,能够进一步改善锂离子电池的低温放电性能和高温循环寿命,这是由于凸起部的数目N≥4时,可以提供有效的支撑,能够为膨胀预留足够的空间,从而改善锂离子电池的低温放电性能和高温循环寿命。
本申请实施例17、20-22的正极活性材料包括第一一次颗粒和由第二一次颗粒聚集形成的二次颗粒,其中,所述第一一次颗粒中镍元素占所述第一一次颗粒中除锂外的金属的摩尔比例为x1,所述二次颗粒中镍元素占所述二次颗粒中除锂外的金属的摩尔比例为x2。参考表2中实施例20-22,0.02≤x1-x2≤0.35,Ni含量越高,相同电压下脱出的Li离子越多,c轴变化越明显,比如Ni>80时,c轴收缩极值在5%以上,而当Ni含量在60以下时,则减小至3%。因此,通过将粒径较大的二次颗粒的Ni含量设置为低于粒径较小的第一一次颗粒的Ni含量,可以有效缓解不均匀的极片膨胀。另一方面,通过掺混一次颗粒和二次颗粒可以有效防止颗粒破碎。因此,本申请通过设置不同的颗粒形貌以及对不同颗粒形貌颗粒的Ni含量区别设置,即,适当降低大粒径二次颗粒的Ni含量且增加小粒径一次颗粒的Ni含量,均衡了Li离子的脱嵌速率和分布,从而进一步缓解了 极片膨胀,改善电化学装置的高温循环寿命。
实施例23-27对掺杂元素进行了探讨。锂镍复合氧化物在大倍率应用过程中,温升高,通过采用掺杂可以提高高温下的界面稳定性,改善循环性能。另一方面,通过掺杂可以增加快充时的界面阻抗,减缓正极平面及拐角处析锂,改善生命周期末期的安全性能。当掺杂元素选自Al、Nb、Mg、Ti、W、Ga、Zr、W、Y、V、Sr、Mo、Ru、Ag、Sn、Au、La、Ce、Pr、Nd、Sm或Gd中的至少一者,且掺杂元素占所述锂镍复合氧化物中除锂以外的金属元素的摩尔比例a1满足0.1%≤a1≤2%时,可以获得较好的高温循环寿命。
实施例28-30对正极活性层中的粘结剂进行了探讨。在这些实施例中,所述正极活性材料层包括第一层和第二层,所述第一层位于所述正极集流体和所述第二层之间,基于所述第一层的质量,所述第一层中粘结剂的质量百分含量为b1,基于所述第二层的质量,所述第二层中粘结剂的质量百分含量为b2,满足:b2/b1≥1.2。本申请改变所述正极活性材料层的第一层和第二层中的粘结剂含量,使得远离集流体处的第二层中的粘结剂更多,更有利于抑制极片的厚度变化,从而改善锂离子电池的高温循环寿命。
尽管已经演示和描述了说明性实施例,本领域技术人员应该理解上述实施例不能被解释为对本申请的限制,并且可以在不脱离本申请的精神、原理及范围的情况下对实施例进行改变,替代和修改。

Claims (10)

  1. 一种电化学装置,其包括正极,所述正极包括正极集流体和设置于所述正极集流体表面上的正极活性材料层,
    所述正极活性材料层包含基体部和位于所述基体部的远离所述集流体的表面上的凸起部,所述基体部的厚度为d微米,所述凸起部的高度为a微米,
    所述正极活性材料层包括正极活性材料,所述正极活性材料包括锂镍复合氧化物,所述锂镍复合氧化物中镍元素占所述锂镍复合氧化物中除锂以外的金属元素的摩尔比例为x,满足:0.2d×x≤a≤1.15d×x。
  2. 根据权利要求1所述的电化学装置,其中,0.2d×x≤a≤0.7d×x。
  3. 根据权利要求1所述的电化学装置,其中,每平方厘米的所述正极活性材料层具有N个所述凸起部,N为1至25,优选地,N为4至25。
  4. 根据权利要求1所述的电化学装置,其中,所述电化学装置满足下列条件中的至少一者:
    (1)5≤a≤70;
    (2)30≤d≤100;
    (3)0.4≤x≤0.95;
    (4)a≤0.95d。
  5. 根据权利要求4所述的电化学装置,其中,所述电化学装置满足下列条件中的至少一者:
    (1)5≤a≤40;
    (2)0.15d≤a≤0.55d。
  6. 根据权利要求1所述的电化学装置,其中,所述正极活性材料包括第一一次颗粒和由第二一次颗粒聚集形成的二次颗粒,其中,所述第一一次颗粒中镍元素占 所述第一一次颗粒中除锂以外的金属元素的摩尔比例为x1,所述二次颗粒中镍元素占所述二次颗粒中除锂以外的金属元素的摩尔比例为x2,满足:0.02≤x1-x2≤0.35。
  7. 根据权利要求6所述的电化学装置,其中,所述电化学装置满足下列条件中的至少一者:
    (a)所述第一一次颗粒的平均粒径为1微米至6微米;
    (b)所述第二一次颗粒的平均粒径为100纳米至2微米;
    (c)所述二次颗粒的平均粒径为8微米至15微米。
  8. 根据权利要求1所述的电化学装置,其中,所述电化学装置满足下列条件中的至少一者:
    (1)所述锂镍复合氧化物还包括Co元素,所述锂镍复合氧化物中Co元素占所述锂镍复合氧化物中除锂以外的金属元素的摩尔比例为y,且0.01≤y≤0.5;
    (2)所述锂镍复合氧化物还包括Mn元素,所述锂镍复合氧化物中Mn元素占所述锂镍复合氧化物中除锂以外的金属元素的摩尔比例为z,且0.01≤z≤0.5;
    (3)所述锂镍复合氧化物还包括M元素,所述M元素包括Al、Nb、Mg、Ti、W、Ga、Zr、W、Y、V、Sr、Mo、Ru、Ag、Sn、Au、La、Ce、Pr、Nd、Sm或Gd中的至少一者,所述锂镍复合氧化物中所述M元素占所述锂镍复合氧化物中除锂以外的金属元素的摩尔比例为a1,0.1%≤a1≤2%;
    (4)所述锂镍复合氧化物包括Li mNi xCo yMn zM a1O 2±qT q的,其中,M包括Al、Nb、Mg、Ti、W、Ga、Zr、W、Y、V、Sr、Mo、Ru、Ag、Sn、Au、La、Ce、Pr、Nd、Sm或Gd中的至少一者,T包括F、Cl、Br、I、N或S中的至少一者,0.2≤m≤1.2、0.4≤x≤0.95、0≤y≤0.5、0≤z≤0.5、0≤a1≤0.02以及0≤q≤0.2。
  9. 根据权利要求1所述的电化学装置,其中,所述正极活性材料层包括第一层和第二层,所述第一层位于所述正极集流体和所述第二层之间,基于所述第一层的质量,所述第一层中粘结剂的质量百分含量为b1,基于所述第二层的质量,所述第二层中粘结剂的质量百分含量为b2,满足:b2/b1≥1.2。
  10. 一种电子装置,其包括根据权利要求1-9中任一权利要求所述的电化学装置。
PCT/CN2022/104074 2022-07-06 2022-07-06 电化学装置及电子装置 WO2024007187A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280010637.1A CN116802826A (zh) 2022-07-06 2022-07-06 电化学装置及电子装置
PCT/CN2022/104074 WO2024007187A1 (zh) 2022-07-06 2022-07-06 电化学装置及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/104074 WO2024007187A1 (zh) 2022-07-06 2022-07-06 电化学装置及电子装置

Publications (1)

Publication Number Publication Date
WO2024007187A1 true WO2024007187A1 (zh) 2024-01-11

Family

ID=88046476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104074 WO2024007187A1 (zh) 2022-07-06 2022-07-06 电化学装置及电子装置

Country Status (2)

Country Link
CN (1) CN116802826A (zh)
WO (1) WO2024007187A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202633449U (zh) * 2012-03-06 2012-12-26 宁德新能源科技有限公司 一种锂离子电池及其正极片
JP2013062105A (ja) * 2011-09-13 2013-04-04 Hitachi Ltd リチウムイオン二次電池
CN103367702A (zh) * 2013-07-18 2013-10-23 东莞新能源科技有限公司 锂离子电池极片及包含该极片的锂离子电池
CN107437623A (zh) * 2016-05-27 2017-12-05 宁德时代新能源科技股份有限公司 锂离子电池正极片及其制备方法
CN111613770A (zh) * 2019-02-26 2020-09-01 中信国安盟固利动力科技有限公司 一种锂离子电池极片
CN111640912A (zh) * 2020-05-13 2020-09-08 力神动力电池***有限公司 一种正极极片及其制备方法和锂离子二次电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062105A (ja) * 2011-09-13 2013-04-04 Hitachi Ltd リチウムイオン二次電池
CN202633449U (zh) * 2012-03-06 2012-12-26 宁德新能源科技有限公司 一种锂离子电池及其正极片
CN103367702A (zh) * 2013-07-18 2013-10-23 东莞新能源科技有限公司 锂离子电池极片及包含该极片的锂离子电池
CN107437623A (zh) * 2016-05-27 2017-12-05 宁德时代新能源科技股份有限公司 锂离子电池正极片及其制备方法
CN111613770A (zh) * 2019-02-26 2020-09-01 中信国安盟固利动力科技有限公司 一种锂离子电池极片
CN111640912A (zh) * 2020-05-13 2020-09-08 力神动力电池***有限公司 一种正极极片及其制备方法和锂离子二次电池

Also Published As

Publication number Publication date
CN116802826A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
JP7354231B2 (ja) 負極活性材料、その製造方法及び該負極活性材料を用いた装置
WO2022206877A1 (zh) 电化学装置及电子装置
CN110416543A (zh) 负极材料及包含其的电化学装置和电子装置
US9023521B2 (en) Nonaqueous electrolyte secondary battery
WO2022142241A1 (zh) 负极活性材料、电化学装置和电子装置
WO2020253144A1 (en) Porous material and preparation methods thereof, and anodes and devices including the same
US20220223850A1 (en) Negative electrode, electrochemical device containing same, and electronic device
CN113161532A (zh) 负极活性材料及包含该负极活性材料的负极、二次电池和电子设备
WO2023070992A1 (zh) 电化学装置及包括其的电子装置
WO2023102766A1 (zh) 电极、电化学装置和电子装置
WO2023082245A1 (zh) 电极及其制作方法、电化学装置和电子装置
CN111146433A (zh) 负极及包含其的电化学装置和电子装置
WO2023184230A1 (zh) 一种正极及使用其的电化学装置及电子装置
CN113594456B (zh) 正极浆料及其制备方法、正极片和锂离子电池
WO2022198614A1 (zh) 负极材料及其制备方法、电化学装置及电子装置
WO2022205154A1 (zh) 负极活性材料、电化学装置和电子装置
WO2024007187A1 (zh) 电化学装置及电子装置
WO2021102847A1 (zh) 负极材料及包含其的电化学装置和电子装置
WO2023070668A1 (zh) 负极活性材料、电化学装置和电子装置
WO2015027691A1 (zh) 一种锂离子电池负极材料及其制备方法、锂离子电池负极片和锂离子电池
WO2021217423A1 (zh) 电化学装置以及包括所述电化学装置的电子装置
WO2024000477A1 (zh) 一种电化学装置及包含该电化学装置的电子装置
WO2023077357A1 (zh) 负极活性材料、电化学装置和电子装置
WO2023184104A1 (zh) 负极活性材料、负极极片、电化学装置及电子装置
WO2024000486A1 (zh) 一种电化学装置及包含该电化学装置的电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949775

Country of ref document: EP

Kind code of ref document: A1