WO2024005011A1 - Reflection structure, method for manufacturing reflection structure, and frequency-selective reflection plate set - Google Patents

Reflection structure, method for manufacturing reflection structure, and frequency-selective reflection plate set Download PDF

Info

Publication number
WO2024005011A1
WO2024005011A1 PCT/JP2023/023785 JP2023023785W WO2024005011A1 WO 2024005011 A1 WO2024005011 A1 WO 2024005011A1 JP 2023023785 W JP2023023785 W JP 2023023785W WO 2024005011 A1 WO2024005011 A1 WO 2024005011A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency selective
reflective
dielectric layer
reflection
base material
Prior art date
Application number
PCT/JP2023/023785
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 朝倉
厚生 中村
祐一 宮崎
優佑 井澤
真 阿部
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2023553394A priority Critical patent/JP7405316B1/en
Priority to JP2023178755A priority patent/JP7456546B2/en
Publication of WO2024005011A1 publication Critical patent/WO2024005011A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/10Refracting or diffracting devices, e.g. lens, prism comprising three-dimensional array of impedance discontinuities, e.g. holes in conductive surfaces or conductive discs forming artificial dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures

Definitions

  • the present disclosure relates to a reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction.
  • Patent Documents 1 and 2 Non-Patent Document 1
  • high frequencies such as those used in fifth generation communication systems (5G) tend to travel in a straight line, so eliminating coverage holes (areas where radio waves cannot reach) is an important issue.
  • the reflect array be capable of reflecting electromagnetic waves of a specific frequency incident from a base station in a predetermined direction in a desired direction.
  • a reflect array for example, a plurality of reflection elements are arranged, and by changing the dimensions and shapes of the reflection elements, the resonance frequency of each reflection element is changed, and the reflection phase of electromagnetic waves is controlled.
  • techniques for controlling the direction of incidence and direction of reflection of electromagnetic waves have been developed.
  • the present disclosure has been made in view of the above circumstances, and provides a reflection structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction, which has good reflection characteristics.
  • the main purpose is to provide a reflective structure that can be made into a large area.
  • One embodiment of the present disclosure is a reflective structure including a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from a direction of specular reflection, which includes a base material having a first alignment mark, and a base material having a first alignment mark; a plurality of frequency-selective reflectors arranged side by side on one surface of a material, the distance between adjacent frequency-selective reflectors being less than 1/2 of the wavelength of the electromagnetic wave; I will provide a.
  • a reflection structure including a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from a specular reflection direction, the structure including a base material and one surface of the base material. a plurality of the frequency selective reflection plates arranged in parallel, and two adjacent sides of at least one of the frequency selective reflection plates are aligned with two adjacent sides of the base material, and the adjacent frequency selective reflection plates are arranged in parallel.
  • a reflective structure is provided in which the distance between the plates is less than 1/2 of the wavelength of the electromagnetic wave.
  • Another embodiment of the present disclosure is a reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction, the base material having a first alignment mark; the frequency selective reflecting plate disposed on one surface of the base material, the frequency selective reflecting plate disposed on one surface of the base material, a reflecting member that reflects the electromagnetic waves, and the base material.
  • the dielectric layer has an uneven structure in which a plurality of unit structures having a thickness distribution increasing in a predetermined direction are arranged, and the unit structure of the dielectric layer has a plurality of unit structures having different thicknesses.
  • the horizontal axis is the length of the unit structure in the predetermined direction, and the electromagnetic wave is transmitted through the dielectric layer and reflected by the reflective member, and the electromagnetic wave is transmitted through the dielectric layer and reflected by the reflective member.
  • the vertical axis is the relative reflection phase when the electromagnetic wave passes through the dielectric layer again and is emitted to the incident side, and each cell is plotted in a graph where the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees.
  • each point is on the same straight line
  • the dielectric layer has at least a first unit structure having three or more cell regions having different thicknesses as the unit structure, and the dielectric layer has a thickness of
  • the present invention provides a reflective structure that controls the direction of reflection of the electromagnetic waves by controlling the relative reflection phase distribution of the electromagnetic waves based on the phase distribution.
  • a reflection structure including a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from a specular reflection direction, the structure including a base material and one surface of the base material.
  • the frequency-selective reflector disposed on one side of the base, the frequency-selective reflector is disposed on one surface of the base material, and a reflective member that reflects the electromagnetic waves; and the reflective member side of the base material.
  • the dielectric layer has an uneven structure in which a plurality of unit structures having a thickness distribution increasing in a predetermined direction are arranged.
  • the unit structure of the dielectric layer has a plurality of cell regions having different thicknesses, and in each unit structure of the dielectric layer, the length of the unit structure in the predetermined direction is the horizontal axis.
  • the vertical axis is the relative reflection phase when the electromagnetic wave passes through the dielectric layer, is reflected by the reflective member, passes through the dielectric layer again, and is emitted to the incident side of the electromagnetic wave, and the relative reflection phase of the electromagnetic wave is Plot the center position of each cell region in the above-mentioned predetermined direction and the points corresponding to the relative reflection phase of the electromagnetic wave in each cell region on a graph in which the value of the reflection phase is more than -360 degrees and less than 0 degrees, and calculate the minimum thickness.
  • a straight line is drawn through the points corresponding to the minimum thickness cell area having a thickness, each point is on the same straight line, and the dielectric layer is formed as the unit structure in three or more cells having different thicknesses.
  • a reflective structure which has at least a first unit structure having a region, and controls the direction of reflection of the electromagnetic wave by controlling the relative reflection phase distribution of the electromagnetic wave by the thickness distribution of the dielectric layer. .
  • Another embodiment of the present disclosure is a method for manufacturing a reflective structure that includes a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction, the method comprising: The plurality of frequency selective reflectors are arranged side by side on one surface of a support having a first alignment mark such that the distance between the frequency selective reflectors is less than 1/2 of the wavelength of the electromagnetic wave.
  • a method for manufacturing a reflective structure is provided, the method comprising a positioning step.
  • a frequency selective reflector set including a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from a specular reflection direction, wherein the plurality of frequency selective reflectors are , provides a frequency selective reflector set which is used by being arranged side by side on an installation surface, and wherein the frequency selective reflector has a second identification mark for identifying the frequency selective reflector.
  • a frequency selective reflector set including a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from a specular reflection direction, wherein the plurality of frequency selective reflectors are , the frequency selective reflection plate has a reflection member that reflects the electromagnetic waves, and the reflection member has a plurality of reflection elements of different sizes arranged, and the plurality of A set of frequency selective reflectors is provided, in which the arrangement of the reflective elements in the frequency selective reflectors is different from each other.
  • a frequency selective reflector set including a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from a specular reflection direction, wherein the plurality of frequency selective reflectors are , the frequency selective reflector plate is arranged side by side on an installation surface and includes, in order from the installation surface side, a reflective member that reflects the electromagnetic waves and a dielectric layer that transmits the electromagnetic waves, and A frequency selective reflector set is provided in which a plurality of cell regions having different thicknesses are arranged in the body layer, and the arrangement of the cell regions in the plurality of frequency selective reflectors is different from each other.
  • the reflective structure according to the present disclosure has good reflective properties and has the advantage of being able to have a large area.
  • FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure.
  • FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure.
  • FIG. 2 is a schematic plan view and a cross-sectional view illustrating a reflective structure according to the present disclosure.
  • FIG. 2 is a schematic plan view and a cross-sectional view illustrating a reflective structure according to the present disclosure.
  • FIG. 2 is a schematic diagram illustrating reflection characteristics of a frequency selective reflector according to the present disclosure.
  • FIG. 2 is a schematic perspective view and a plan view illustrating a unit structure of a dielectric layer in a frequency selective reflector according to the present disclosure.
  • FIG. 2 is a schematic plan view illustrating a unit structure of a dielectric layer in a frequency selective reflector according to the present disclosure.
  • FIG. 2 is a schematic plan view illustrating a frequency selective reflector according to the present disclosure.
  • FIG. 2 is a schematic cross-sectional view illustrating a frequency selective reflector according to the present disclosure, and a schematic diagram for explaining the relative reflection phase of electromagnetic waves in each cell region of a unit structure of a dielectric layer in the frequency selective reflector according to the present disclosure.
  • FIG. 2 is a schematic diagram illustrating reflection characteristics of a frequency selective reflector according to the present disclosure.
  • FIG. 2 is a schematic plan view illustrating a frequency selective reflector according to the present disclosure.
  • FIG. 2 is a schematic cross-sectional view illustrating a frequency selective reflector according to the present disclosure, and a schematic diagram for explaining the relative reflection phase of electromagnetic waves in each cell region of a unit structure of a dielectric layer in the frequency selective reflector according to the present disclosure.
  • FIG. 2 is a schematic diagram illustrating reflection characteristics of a frequency selective reflector according to the present disclosure.
  • FIG. 2 is a schematic cross-sectional view illustrating a frequency selective reflector according to the present disclosure.
  • FIG. 2 is a schematic plan view and a cross-sectional view illustrating a frequency selective reflector according to the present disclosure.
  • FIG. 2 is a schematic plan view and a cross-sectional view illustrating a frequency selective reflector according to the present disclosure.
  • FIG. 2 is a schematic cross-sectional view illustrating a frequency selective reflector according to the present disclosure.
  • FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure.
  • FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure.
  • FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure.
  • FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure.
  • FIG. 2 is a schematic cross-sectional view illustrating a reflective structure in the present disclosure.
  • FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure.
  • FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure.
  • FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure.
  • FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure.
  • FIG. 2 is a schematic cross-sectional view illustrating a reflective structure in the present disclosure.
  • FIG. 2 is a schematic plan view and a cross-sectional view illustrating a reflective structure according to the present disclosure.
  • FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure.
  • FIG. 2 is a schematic plan view and a cross-sectional view illustrating a reflective structure according to the present disclosure.
  • FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure.
  • FIG. 3 is a received power distribution diagram showing simulation results of Comparative Example 1.
  • FIG. 3 is a received power distribution diagram showing simulation results of Example 1.
  • FIG. 2 is a schematic perspective view showing a simulation model of Reference Example 1 and a graph showing simulation results.
  • 3 is a schematic perspective view showing a simulation model of Reference Example 2 and a graph showing simulation results.
  • FIG. 2 is a schematic diagram illustrating a transmission line equivalent circuit.
  • the reflective structure in this disclosure has four embodiments. Each embodiment will be explained separately below.
  • the first embodiment of the reflective structure in the present disclosure is a reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. , a base material having a first alignment mark, and a plurality of the frequency selective reflectors arranged side by side on one surface of the base material, and the distance between the adjacent frequency selective reflectors is such that the electromagnetic wave It is less than 1/2 of the wavelength of .
  • the base material 21 has a cross-shaped first alignment mark 22, and the edge of the frequency selective reflector 1 is aligned with the first alignment mark 22 of the base material 21 as a reference.
  • the plurality of frequency selective reflectors 1 are aligned.
  • the distance between adjacent subarrays is usually set in order to align the phase of the electromagnetic waves in each subarray and increase the strength of the electromagnetic waves. is said to be less than 1/2 of the wavelength of electromagnetic waves.
  • the distance between adjacent frequency selective reflectors be less than 1/2 of the wavelength of the electromagnetic waves.
  • the base material since the base material has the first alignment mark, it is possible to accurately align the plurality of frequency selective reflectors. Therefore, the accuracy of the distance between adjacent frequency selective reflectors can be ensured. Therefore, a plurality of frequency selective reflectors can be tiled with high positional accuracy so that the distance between adjacent frequency selective reflectors is less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band. Therefore, it is possible to suppress the disturbance of the wavefront of the reflected wave in the entire reflecting structure, to obtain desired reflection characteristics, and to increase the area of the reflecting structure.
  • the base material in this embodiment is a member that supports the frequency selective reflection plate, and has a first alignment mark.
  • the base material is not particularly limited as long as it is a base material that can support the frequency selective reflector, and examples thereof include resin base materials and metal base materials.
  • the resin base material may be, for example, a resin film, a resin sheet, or a resin plate. Further, the resin base material may have a hollow structure such as plastic cardboard, or may have a multilayer structure.
  • Examples of the metal base material include metal plates such as aluminum and stainless steel, and plywood such as aluminum plywood.
  • the metal base material has excellent rigidity and durability, and also reflects electromagnetic waves, so it is suitably used when the frequency selective reflector has a ground layer on the base side surface, as described later. If the frequency selective reflector does not have a ground layer, an interference mitigation layer (described later) may be placed between the base material and the frequency selective reflector, or a frequency selective reflector may be provided in consideration of the characteristics of the metal base material.
  • a reflective member may be designed.
  • the shape of the base material is not particularly limited, but is generally rectangular.
  • the direction of the surface of the reflective structure within the installation surface is often determined in advance, but if it is difficult to determine the direction of the surface due to the design of the reflective structure, , the base material has a surface such as a corner cut part where one corner of the base material is cut, a notch-like cut part, or a part of a curved part such as a so-called orientation flat. It may have a portion indicating the direction.
  • the base material may be optically transparent or optically opaque.
  • the optical properties of these base materials are appropriately selected depending on the method of detecting the first alignment mark, the arrangement of the first alignment mark, and the like.
  • the base material when detecting the first alignment mark using transmitted light, the base material has light transmittance.
  • the base material when detecting the first alignment mark using reflected light, the base material may be light-transmissive or light-opaque. Further, as described later, for example, when the first alignment mark is arranged on the surface of the base material opposite to the frequency selective reflection plate, the base material has light transmittance.
  • light transparency means transparency to visible light.
  • light opacity means opacity to visible light.
  • the base material may have X-ray transparency.
  • the first alignment mark can be detected by transmitted X-rays.
  • the transmittance of the base material is not particularly limited as long as the first alignment mark can be detected by transmitted light or reflected light, and can be set as appropriate depending on the material, thickness, etc. of the base material.
  • the resin constituting the resin base material is not particularly limited, and examples include engineering plastics.
  • the resin base material may contain additives such as ultraviolet absorbers, light stabilizers, antioxidants, and colorants, as necessary.
  • the thickness of the base material is not particularly limited.
  • the first alignment mark is a mark for aligning the frequency selective reflector.
  • the first alignment mark may be optically opaque. Furthermore, the first alignment mark may have light reflectivity. The optical characteristics of these first alignment marks are appropriately selected depending on whether the first alignment mark is detected using transmitted light or reflected light. For example, when detecting the first alignment mark using transmitted light, the first alignment mark is opaque to light. Further, for example, when detecting the first alignment mark using reflected light, the first alignment mark has light reflectivity.
  • light reflectivity means reflectivity to visible light.
  • the first alignment mark may have X-ray transparency.
  • the first alignment mark can be detected by transmitted X-rays.
  • the transmittance and reflectance of the first alignment mark are not particularly limited as long as the first alignment mark can be detected by transmitted light or reflected light, and can be appropriately set according to the material, thickness, etc. of the first alignment mark.
  • the first alignment mark may be a through hole that penetrates the base material.
  • the shape of the first alignment mark in plan view is not particularly limited, and is similar to the shape of a general alignment mark in plan view.
  • the shape of the first alignment mark in plan view is, for example, a cross shape, an Examples include a circular shape, a hollow square shape, and a combination thereof.
  • the size and line width of the first alignment mark are not particularly limited as long as the first alignment mark can be detected and do not prevent the distance between adjacent frequency selective reflectors from falling within a predetermined range.
  • the number of first alignment marks is not particularly limited as long as it is possible to align a plurality of frequency selective reflectors.
  • the position of the first alignment mark on the base material is appropriately set according to the desired position where the plurality of frequency selective reflectors are arranged.
  • the first alignment mark may be arranged on the surface of the base material on the frequency selective reflection plate side, or may be arranged on the surface of the base material on the opposite side to the frequency selective reflection plate. Moreover, some kind of covering layer such as a protective layer may be disposed on the first alignment mark as long as it does not interfere with the detection of the first alignment mark.
  • the thickness of the first alignment mark is not particularly limited as long as the first alignment mark can be formed with high precision, and is adjusted as appropriate depending on the optical characteristics of the first alignment mark.
  • the material of the first alignment mark examples include metal materials such as metals, alloys, metal oxides, and metal nitrides, and resins.
  • metal materials such as metals, alloys, metal oxides, and metal nitrides
  • resins colorants can be added.
  • resin is preferable in consideration of the influence of reflection of electromagnetic waves by the first alignment mark.
  • the method for forming the first alignment mark is appropriately selected depending on the material of the first alignment mark.
  • examples of the method for forming the first alignment mark include a photolithography method, a mask vapor deposition method, a lift-off method, and a printing method.
  • examples of the method for forming the first alignment mark include a photolithography method and a printing method.
  • the printing method general methods such as an inkjet method, a silk screen printing method, and a transfer method can be used.
  • the base material 21 may have a first identification mark 23 for identifying the position of the frequency selective reflector 1.
  • the base material 21 has first identification marks 23 of "No. 1", “No. 2", “No. 3", and "No. 4". Since the base material has the first identification mark, the position of each frequency selective reflector can be easily identified, so that each frequency selective reflector can be reliably and easily arranged at the correct position. This is particularly useful when the reflection characteristics of a plurality of frequency selective reflectors are different from each other, as will be described later.
  • the first identification mark may be optically opaque. Furthermore, the first identification mark may have light reflectivity. The optical characteristics of these first identification marks are appropriately selected depending on whether the first identification mark is detected using transmitted light or reflected light, similarly to the first alignment mark described above.
  • the transmittance and reflectance of the first identification mark are not particularly limited as long as the first identification mark can be detected by transmitted light or reflected light, and can be appropriately set according to the material, thickness, etc. of the first identification mark.
  • the first identification mark is not particularly limited as long as it is an identifiable mark, and examples thereof include letters, symbols, and figures. A specific example is a code. Further, the first identification mark may be data that can be optically recognized (OCR).
  • OCR optically recognized
  • the size and line width of the first identification mark are not particularly limited as long as the first identification mark can be detected.
  • the first identification mark may be arranged on the surface of the base material on the side of the frequency selective reflector, or may be arranged on the surface of the base material on the opposite side to the frequency selective reflector. Furthermore, some kind of covering layer such as a protective layer may be disposed on the first identification mark as long as it does not interfere with the detection of the first identification mark.
  • the thickness, material, and formation method of the first identification mark are the same as those of the first alignment mark.
  • the first alignment mark and the first identification mark can be formed at the same time.
  • Frequency Selective Reflector The frequency selective reflector in this embodiment is a member that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction.
  • the distance between adjacent frequency selective reflectors is less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band, preferably 1/5 or less. , more preferably 1/10 or less.
  • the frequency band of the electromagnetic waves is preferably 2.5 GHz or higher, more preferably 24 GHz or higher. That is, the wavelength of the electromagnetic waves in the air is preferably 119.92 mm or less, more preferably 12.49 mm or less.
  • the distance between adjacent frequency selective reflectors is preferably about 59.96 mm or less, more preferably about 6.245 mm or less. Moreover, the shorter the distance between adjacent frequency selective reflectors, the better, and the lower limit is not particularly limited.
  • the frequency selective reflector is not particularly limited as long as it is a member that reflects electromagnetic waves in a specific frequency band in a direction different from the direction of specular reflection; for example, it reflects the electromagnetic waves mentioned above.
  • the reflecting member may have a reflection phase control function of controlling the reflection phase of the electromagnetic wave, or the reflecting member that reflects the electromagnetic wave and a predetermined It may have a concavo-convex structure in which a plurality of unit structures having a thickness distribution increasing in the direction are arranged, and a dielectric layer that transmits the electromagnetic waves.
  • the frequency selective reflector plate has a reflection member that reflects the electromagnetic wave, and the reflection member has a reflection phase control function that controls the reflection phase of the electromagnetic wave;
  • a second aspect comprising a reflective member that reflects electromagnetic waves, and a dielectric layer that has an uneven structure in which a plurality of unit structures having a thickness distribution increasing in a predetermined direction is arranged and that transmits the electromagnetic waves. I will explain it separately.
  • the first aspect of the frequency selective reflector in this embodiment has a reflective member that reflects the electromagnetic waves, and this reflective member controls the reflection phase of the electromagnetic waves. It has a reflection phase control function.
  • the reflection member in this embodiment is a member having a reflection phase control function of reflecting electromagnetic waves in a specific frequency band and controlling the reflection phase of the electromagnetic waves.
  • the reflecting member usually has a wavelength selection function that reflects only electromagnetic waves in a specific frequency band.
  • a reflecting member is a frequency selection plate.
  • the frequency selection plate has a frequency selective surface (FSS) that controls reflection and transmission of electromagnetic waves in a specific frequency band, and functions as a reflector for electromagnetic waves in a specific frequency band.
  • FSS frequency selective surface
  • a plurality of reflective elements (scattering elements) are arranged in a plane.
  • Examples of the frequency selection board include one having a dielectric substrate and a plurality of reflective elements arranged on the surface of the dielectric substrate on the electromagnetic wave incident side.
  • FIGS. 3(a) and 3(b) are a schematic plan view and a sectional view showing an example of a reflective structure having a frequency selective reflector according to the present embodiment
  • FIG. 3(b) is an A-- It is an A-line sectional view
  • the frequency selective reflector 1 has a reflective member 2 that reflects electromagnetic waves in a specific frequency band
  • the reflective member 2 has a plurality of ring-shaped reflective It has a dielectric substrate 4 and a plurality of reflective elements 3 arranged on the surface of the dielectric substrate 4 opposite to the base material 21 (the surface on the electromagnetic wave incident side). ing.
  • FIGS. 1 has a reflective member 2 that reflects electromagnetic waves in a specific frequency band
  • the reflective member 2 has a plurality of ring-shaped reflective It has a dielectric substrate 4 and a plurality of reflective elements 3 arranged on the surface of the dielectric substrate 4 opposite to the base material 21 (the surface on the electromagnetic wave incident side).
  • the reflecting member 2 is a frequency selection plate.
  • the reflecting member 2 has a reflection phase control function that controls the reflection phase of electromagnetic waves.
  • the reflection phase of the target electromagnetic wave can be controlled.
  • the direction of reflection of electromagnetic waves relative to a predetermined incident direction can be controlled in any direction.
  • FIGS. 4(a) to 4(c) are a schematic plan view and a cross-sectional view showing another example of a reflective structure having a frequency selective reflector according to the present embodiment, and FIG. 4(a) shows one of the frequency selective reflectors.
  • 4(b) is a plan view seen from the other surface Sf2 of the frequency selective reflector
  • FIG. 4(c) is a plan view seen from the surface Sf1 of FIG. 4(a) and FIG. 4(b). It is an A-line sectional view. As shown in FIGS.
  • the frequency selective reflector 1 has a reflective member 2 that reflects electromagnetic waves in a specific frequency band, and the reflective member 2 has a plurality of ring-shaped reflective Elements 3 are arranged, including a dielectric substrate 4, a plurality of reflective elements 3a arranged on the surface of the dielectric substrate 4 opposite to the base material 21 (the surface on the electromagnetic wave incident side), and a dielectric substrate 4. It has a plurality of reflective elements 3b arranged on the surface of the substrate 4 on the base material 21 side.
  • 4(a) to (c) are examples in which the reflecting member 2 is a frequency selection plate.
  • the reflecting member 2 has a reflection phase control function that controls the reflection phase of electromagnetic waves. For example, in the reflecting member 2 shown in FIGS.
  • the reflection phase of the target electromagnetic wave can be controlled.
  • the direction of reflection of electromagnetic waves relative to a predetermined incident direction can be controlled in any direction.
  • the frequency selection plate can be appropriately selected from known frequency selection plates.
  • the shape of the reflective element forming the frequency selective surface is not particularly limited, and examples include a ring shape, a cross shape, a square shape, a rectangular shape, a circular shape, an elliptical shape, a rod shape, and a pattern divided into a plurality of adjacent regions. Any shape can be mentioned, such as a planar pattern such as , a three-dimensional structure with through-hole vias, etc.
  • the reflective element may be, for example, a single layer or a multilayer.
  • the frequency selection plate may include, for example, one in which a plurality of reflective elements are arranged on one side of a dielectric substrate as shown in FIGS. 3(a) and 3(b).
  • the frequency selection plate may be one in which a plurality of reflective elements are arranged on both sides of a dielectric substrate as shown in FIGS. 4(a) to (c), a dielectric substrate, etc.
  • Examples include one in which a plurality of reflective elements, a dielectric substrate, and a plurality of reflective elements are arranged in this order, and one in which a one-sided conductor is arranged on the surface farthest from the surface on the electromagnetic wave incident side.
  • this one-sided conductor has the function of a ground layer, which will be described later, the plurality of reflective elements located on the surface closer to the electromagnetic wave incident side than the ground layer are designed on the premise that the ground layer exists.
  • the reflection member has a reflection phase control function that controls the reflection phase of electromagnetic waves.
  • the resonance frequency can be changed for each reflecting element and the reflection phase of electromagnetic waves can be controlled. You can control the direction.
  • a general frequency-selective surface can be used as the reflection member having a reflection phase control function.
  • the different dimensions of the reflective element are appropriately selected depending on the shape of the reflective element.
  • the dielectric substrate may be optically transparent or optically opaque.
  • the frequency selective reflection plate of this embodiment may have other configurations as necessary.
  • the frequency selective reflector of this embodiment may have a protective member on the surface of the reflective member opposite to the base material.
  • the reflective member can be protected by the protective member. Further, the protective member can also add design properties.
  • the frequency selective reflector of this embodiment may have a ground layer on the surface of the reflecting member on the base material side.
  • the ground layer can block interference with objects on the back side of the frequency selective reflector and suppress the generation of noise.
  • the ground layer only needs to have conductivity, and for example, a general conductive layer such as a metal layer, metal mesh, carbon film, ITO film, etc. can be used.
  • the frequency selective reflection plate of this aspect may have a flattening layer on the surface of the reflective member opposite to the base material.
  • the reflective member is a member in which a plurality of reflective elements are arranged
  • the unevenness caused by the reflective elements can be flattened by the flattening layer, and the unevenness caused by the reflective elements can be flattened when a protective member is placed on the reflective member. The impact of this can be suppressed.
  • An example of the flattening layer is an ionizing radiation-cured resin layer disposed so as to embed the reflective element.
  • the flattening layer may have a function of protecting the reflective element.
  • the second aspect of the frequency selective reflector in this embodiment includes, in order from the base material side, a reflective member that reflects the electromagnetic waves and a thickness in a predetermined direction.
  • the dielectric layer has an uneven structure in which a plurality of unit structures having an increasing thickness distribution are arranged, and transmits the electromagnetic waves.
  • the unit structure of the dielectric layer has a plurality of cell regions having different thicknesses, and each unit structure of the dielectric layer has a plurality of cell regions arranged in the predetermined direction of the unit structure.
  • the horizontal axis is the length
  • the vertical axis is the relative reflection phase when the electromagnetic wave is transmitted through the dielectric layer, reflected by the reflective member, transmitted through the dielectric layer again, and emitted to the incident side of the electromagnetic wave.
  • a point corresponding to the center position of each cell area in the above predetermined direction and the relative reflection phase of the electromagnetic wave in each cell area When plotting and drawing a straight line passing through the points corresponding to the minimum thickness cell region having the minimum thickness, each point is on the same straight line, and the dielectric layer has different thicknesses as the unit structure. It has at least a first unit structure having three or more cell regions, and controls the direction of reflection of the electromagnetic wave by controlling the relative reflection phase distribution of the electromagnetic wave according to the thickness distribution of the dielectric layer. It is.
  • the frequency selective reflector 1 includes, in order from the base material 21 side, a reflecting member 2 that reflects a specific electromagnetic wave, and a thickness t1 to t6 in a predetermined direction D1. It has an uneven structure in which a plurality of unit structures 10 having an increasing thickness distribution are arranged, and a dielectric layer 5 that transmits a specific electromagnetic wave.
  • the frequency selective reflector 1 can have an adhesive layer 6 between the reflective member 2 and the dielectric layer 5.
  • the unit structure 10 of the dielectric layer 5 has a plurality of cell regions 11a to 11f having different thicknesses t1 to t6.
  • the unit structure 10 of the dielectric layer 5 has a step shape in which the thicknesses t1 to t6 increase stepwise in a predetermined direction D1, and the number of steps in the step shape is 6.
  • the unit structure 10 of the dielectric layer 5 has six cell regions 11a to 11f.
  • the electromagnetic waves are transmitted through the dielectric layer 5, reflected by the reflective member 2, and transmitted through the dielectric layer 5 again.
  • the round trip optical path lengths when the electromagnetic waves are emitted to the incident side are different, and the difference in the round trip optical path lengths between these dielectric layers, that is, the optical path difference, creates a difference in relative reflection phase.
  • optical path length is used because the wavelength of the frequency band targeted in this disclosure is closer to light than the conventional pre-LTE frequency band, and has a higher straightness. Therefore, it is easier to explain if the behavior is similar to that of light, and in reality it means the effective distance that electromagnetic waves travel through a dielectric layer.
  • the length L in the predetermined direction D1 of the unit structure 10 is taken as the horizontal axis, and the electromagnetic wave is transmitted through the dielectric layer 5, reflected by the reflective member 2, and then the dielectric layer 5 is recirculated.
  • the vertical axis is the relative reflection phase when the electromagnetic wave is transmitted and emitted to the incident side, and the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees.
  • the horizontal axis is the length L in a predetermined direction D1 of the unit structure 10 of the dielectric layer 5, and the electromagnetic wave is transmitted through the dielectric layer 5, reflected by the reflective member 2, and then the dielectric layer 5 is recirculated.
  • the vertical axis is the relative reflection phase when the electromagnetic wave is transmitted and emitted to the incident side, and the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees.
  • ) is an example of the relative reflection phase of electromagnetic waves in each cell region of the unit structure of the dielectric layer in the frequency selective reflector shown in FIG. As shown in FIG.
  • the relative reflection phases of the electromagnetic waves in each cell region 11a to 11f of the unit structure 10 of the dielectric layer 5 are 0 degrees, -60 degrees, -120 degrees, -180 degrees, respectively. -240 degrees and -300 degrees, and the absolute value of the difference in relative reflection phases of electromagnetic waves in adjacent cell regions is 60 degrees.
  • the thicknesses t1 to t6 of the six cell regions 11a to 11f of the unit structure 10 of the dielectric layer 5 are such that the absolute value of the difference in the relative reflection phase of electromagnetic waves in adjacent cell regions is 360 degrees. It is designed to be the value obtained by dividing the angle, that is, 60 degrees. As shown in FIG.
  • each point is aligned with the same straight line. It's on the line.
  • reflection phase refers to the amount of change in the phase of a reflected wave with respect to the phase of an incident wave that is incident on a certain surface.
  • reflection phase refers to the amount of change in the phase of a reflected wave when the incident wave passes through the dielectric layer, is reflected by the reflective member, passes through the dielectric layer again, and is emitted, with respect to the phase of the incident wave.
  • the term "relative reflection phase” refers to the reflection phase in a cell region where the delay in reflection phase is the least in one unit structure of the dielectric layer as a reference with respect to that reference reflection phase.
  • the delay in the reflection phase in the cell region is indicated by a negative sign.
  • the relative reflection phase in a cell region where the reflection phase is -40 degrees is - It will be 30 degrees.
  • the relative reflection phase of the electromagnetic wave in the cell region is a value that also combines the reflection phases in the reflection member.
  • a "cell region” refers to a region in which the relative reflection phase of electromagnetic waves is the same in a unit structure of a dielectric layer.
  • the reflection phase is within the range of more than -360 degrees and less than 360 degrees, and -360 degrees and +360 degrees return to 0 degrees. Further, unless otherwise specified, the relative reflection phase is within the range of more than -360 degrees and less than or equal to 0 degrees, and -360 degrees returns to 0 degrees.
  • the reflection phase can be delayed or advanced.
  • the reflection phase is basically delayed by adjusting the thickness of each cell region of the unit structure of the dielectric layer. Therefore, the relative reflection phase is based on the reflection phase in the cell region where the delay in reflection phase is the least.
  • the cell region with the smallest reflection phase delay is usually the minimum thickness cell region having the minimum thickness in a predetermined direction in which the thickness increases. Therefore, in the above graph, a straight line is drawn that passes through the points corresponding to the minimum thickness cell regions having the minimum thickness.
  • the round trip optical path length in the dielectric layer 5 changes, and the relative reflection of electromagnetic waves changes. Since the phase changes, the incident electromagnetic wave W1 can be reflected in a direction different from the regular reflection (specular reflection) direction, as illustrated in FIG. In this case, the incident angle ⁇ 1 of the incident electromagnetic wave W1 is different from the reflection angle ⁇ 2 of the reflected electromagnetic wave W2.
  • the frequency selective reflector of this embodiment by changing the thickness of each cell region of the unit structure of the dielectric layer, the round trip optical path length in the dielectric layer is changed for each cell region, and the electromagnetic waves are reflected. Phase can be controlled. Thereby, the direction of reflection of electromagnetic waves relative to a predetermined incident direction can be controlled in any direction.
  • the uneven structure of the dielectric layer in this embodiment can be formed by various methods such as cutting, laser processing, molding using a mold, 3D printer, and joining of small pieces. Therefore, unlike photolithography processing of metal layers in conventional reflect arrays, a photomask is not required. Therefore, when forming the dielectric layer by designing the thickness of each cell region of the unit structure of the dielectric layer so that the reflection characteristics have the desired incident angle and reflection angle according to the situation, it is necessary to A desired dielectric layer can be formed at low cost and in a short period of time, and it is easy to meet the needs of a wide variety of products in small quantities.
  • the thickness of the dielectric layer and the size of the unit structure of the dielectric layer which affect the control of reflection characteristics, can be processed in a relatively wide range, so it is possible to increase the angle of incidence and reflection of electromagnetic waves, for example. Yes, it is possible to widen the control range of reflection characteristics.
  • the thickness of the dielectric layer and the pitch of the cell regions of the unit structure of the dielectric layer there is a relatively wide margin for dimensional processing accuracy to achieve the desired reflection phase, so it is difficult to obtain the desired reflection characteristics. The effect of dimensional variations can also be reduced. Therefore, it is easy to customize the reflection characteristics of the frequency selective reflector.
  • the reflecting member can be a frequency selective plate that reflects only specific electromagnetic waves.
  • the reflective member 2 has a plurality of ring-shaped reflective elements 3 arranged, and includes a dielectric substrate 4 and a dielectric layer 5 side of the dielectric substrate 4. It has a plurality of reflective elements 3 arranged on the surface.
  • the reflective member is a frequency selective plate that reflects only a specific electromagnetic wave, and can also be a member that has a reflection phase control function that controls the reflection phase of the electromagnetic wave.
  • the resonance frequency can be changed for each reflecting element, and the reflection phase of the target electromagnetic wave can be controlled.
  • the reflection phase of the electromagnetic wave can be controlled not only by the thickness of the dielectric layer but also by the size and shape of the reflective element, and the degree of freedom in design for controlling the reflection characteristics can be improved.
  • the degree of freedom in controlling the reflection characteristics can be expanded by combining it with the above-mentioned dielectric layer. Therefore, it is possible to more easily customize the reflection characteristics of the frequency selective reflector. For example, one example is to prepare a plurality of types of reflective members with reflective characteristics in the vertical direction and combine them with a dielectric layer that adjusts the reflective characteristics in the horizontal direction.
  • the inventors of the present disclosure have discovered that in the frequency selective reflector having the reflective member and dielectric layer of the present embodiment, when the reflective member is a frequency selective plate having a reflective element that reflects only specific electromagnetic waves, When we simulated the reflection characteristics of electromagnetic waves in a specific frequency band, we found that the shift in the reflection phase at the reflective element due to the proximity of the dielectric layer to the reflective member (frequency selection plate) was due to the unit structure of the dielectric layer. When the thickness of the cell region is changed and the round trip optical path length in the dielectric layer is changed for each cell region, the shift in the reflection phase is larger. We have found that it is possible to almost determine this by designing the structure.
  • the resonant frequency of the reflective element varies depending on the presence or absence of a dielectric layer in the vicinity, but if the design is performed on the assumption that a dielectric layer exists, this practical problem will be resolved. Furthermore, the in-plane arrangement of the uneven structure of the dielectric layer that realizes the in-plane distribution design of the reflection phase in the frequency selective reflector does not need to be in a fixed positional relationship with respect to the in-plane arrangement of the reflective elements of the reflective member. It was discovered that even if the uneven structure of the dielectric layer is shifted from the in-plane arrangement of the reflective element, it does not significantly affect the reflection characteristics.
  • the frequency selective reflector of this embodiment when the dielectric layer and the reflective member as described above are combined, it is possible to design and combine the dielectric layer and the reflective member independently. .
  • a dielectric layer that achieves reflection characteristics depending on the usage environment may be produced each time, or a plurality of specifications may be prepared in advance. Therefore, the design of the reflection direction of the frequency selective reflector, which changes depending on the usage environment, can be more easily customized, making it easier to apply it to a variety of situations.
  • the arrangement of the reflecting member and dielectric layer should be adjusted according to the required specifications. Although the accuracy of the displacement is required, when the reflection characteristics of the frequency selective reflector are adjusted only by the reflection phase distribution of the dielectric layer, the accuracy of the displacement of the reflective member and the dielectric layer is not so required.
  • multiple frequency selective reflectors can be manufactured at the same time by using multiple 3D printers. Therefore, by tiling the frequency selective reflector, the manufacturing time of the reflective structure can be shortened.
  • the reflective member in the frequency selective reflector of this embodiment, in the reflective structure of the second embodiment described below, the reflective member has a reflective layer disposed in contact with the base material, or the reflective member has a reflective layer disposed in contact with the base material. Compared to the case where a plurality of reflective elements are arranged in contact with each other, this has the advantage that there is a high degree of freedom in the thickness and size of the base material.
  • the dielectric layer in this embodiment has an uneven structure in which a plurality of unit structures having a thickness distribution increasing in a predetermined direction is arranged, and transmits electromagnetic waves in a specific frequency band. It is a member that
  • the unit structure of the dielectric layer has a plurality of cell regions with different thicknesses, and in each unit structure of the dielectric layer, the length of the unit structure in a predetermined direction is taken as the horizontal axis, and the electromagnetic wave is The vertical axis is the relative reflection phase when the electromagnetic wave passes through the body layer, is reflected by the reflective member, passes through the dielectric layer again, and is emitted to the incident side of the electromagnetic wave.
  • the dielectric layer has at least a first unit structure having three or more cell regions having different thicknesses as a unit structure.
  • the dielectric layer has an uneven structure in which a plurality of unit structures having a thickness distribution increasing in a predetermined direction are arranged.
  • the unit structure of the dielectric layer has a plurality of cell regions with different thicknesses, and in each unit structure of the dielectric layer, the length of the unit structure in the predetermined direction is taken as the horizontal axis, and electromagnetic waves are transmitted through the dielectric layer.
  • the vertical axis is the relative reflection phase when the electromagnetic wave passes through the layer, is reflected by the reflective member, passes through the dielectric layer again and is emitted to the incident side of the electromagnetic wave, and the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees. Plot the points corresponding to the center position of each cell region in the predetermined direction and the relative reflection phase of the electromagnetic waves in each cell region on the graph, and plot the point corresponding to the minimum thickness cell region having the minimum thickness. When you draw a straight line through it, each point is on the same straight line.
  • each point being on the same straight line means that the difference in the vertical axis direction of each point with respect to the straight line is within ⁇ 72 degrees.
  • the difference in the vertical axis direction of each point with respect to the above-mentioned straight line is preferably within ⁇ 54 degrees, more preferably within ⁇ 36 degrees, and still more preferably within ⁇ 18 degrees.
  • each point includes a deviation in the vertical axis direction from the above straight line and it is difficult to draw a straight line passing through each point, "point corresponding to the minimum thickness cell area having the minimum thickness” (relative reflection phase of 0 degrees) and the point corresponding to the minimum thickness cell region having the minimum thickness in the unit structure adjacent to that unit structure (considered as relative reflection phase - 360 degrees). It's good to think about it.
  • the unit structure of the dielectric layer has a thickness distribution in which the thickness increases in a predetermined direction.
  • the unit structure of the dielectric layer may have, for example, a thickness distribution in which the thickness increases in only one direction, or a thickness distribution in two directions, a first direction and a second direction perpendicular to the first direction. It may have a thickness distribution with increasing thickness.
  • FIG. 7(a) is an example in which the unit structure 10 of the dielectric layer has a thickness distribution in which the thickness increases only in the first direction D1
  • FIGS. 7(c), (e), and 8( a) is an example in which the unit structure 10 of the dielectric layer has a thickness distribution in which the thickness increases in the first direction D1 and the second direction D2.
  • each point is on the same straight line.
  • the unit structure of the dielectric layer has a thickness distribution in which the thickness increases in two directions perpendicular to each other, the above graph with the length of the unit structure in the two directions as the horizontal axis, respectively. When points are plotted, they will lie on the same straight line in each graph.
  • the absolute value of the difference in relative reflection phase of electromagnetic waves in adjacent cell regions is less than 180 degrees, preferably 120 degrees or less, and preferably 60 degrees or less. More preferred. The smaller the absolute value of the difference in relative reflection phases of electromagnetic waves in adjacent cell regions, the smoother the wavefront of the reflected waves can be. Furthermore, the absolute value of the difference in relative reflection phases of electromagnetic waves in adjacent cell regions is greater than 0 degrees.
  • the relative reflection phase of the electromagnetic wave in the minimum thickness cell region with the minimum thickness in the other unit structure is calculated for one period based on the reflection phase in the cell region with the least delay in the reflection phase in one unit structure.
  • the relative reflection phase of electromagnetic waves in the maximum thickness cell region with the maximum thickness in one unit structure and the minimum thickness in the other unit structure are expressed as The absolute value of the difference between the relative reflection phase of the electromagnetic wave and the minimum thickness cell region is less than 180 degrees, preferably 120 degrees or less, and more preferably 60 degrees or less.
  • the absolute value of the difference in relative reflection phases of electromagnetic waves in these adjacent cell regions is greater than 0 degrees.
  • the relative reflection phase of the electromagnetic waves in the maximum thickness cell region 11f having the maximum thickness t6 of one unit structure 10a is -300 degrees.
  • the relative reflection phase of the electromagnetic wave in the minimum thickness cell region 11a having the minimum thickness t1 of the other unit structure 10b is -360 degrees, and the maximum thickness cell region having the maximum thickness t6 of the one unit structure 10a.
  • the absolute value of the difference between the relative reflection phase of the electromagnetic wave at 11f and the relative reflection phase of the electromagnetic wave at the minimum thickness cell region 11a having the minimum thickness t1 of the other unit structure 10b is 60 degrees.
  • the differences in relative reflection phases of electromagnetic waves in adjacent cell regions be equal.
  • the difference in relative reflection phase of electromagnetic waves between adjacent cell regions 11a and 11b and The difference in the relative reflection phase of electromagnetic waves in the cell regions 11b and 11c, the difference in the relative reflection phase of the electromagnetic waves in the adjacent cell regions 11c and 11d, and the difference in the relative reflection phase of the electromagnetic waves in the adjacent cell regions 11d and 11e.
  • the difference in the relative reflection phase of the electromagnetic waves in the adjacent cell regions 11e and 11f be equal to each other.
  • the absolute values of the differences in the relative reflection phases of electromagnetic waves in adjacent cell regions are all 60 degrees and are equal.
  • the relative reflection phase of the electromagnetic wave in the minimum thickness cell region with the minimum thickness in the other unit structure is calculated for one period based on the reflection phase in the cell region with the least delay in the reflection phase in one unit structure.
  • the differences in the relative reflection phases of the electromagnetic waves in the cell regions are equal. For example, in FIG.
  • the relative reflection phases of electromagnetic waves in each cell region 11a to 11f of one unit structure 10a are 0 degrees, -60 degrees, and -120 degrees, respectively. degrees, -180 degrees, -240 degrees, and -300 degrees, and the relative reflection phase of the electromagnetic wave in the minimum thickness cell region 11a having the minimum thickness t1 of the other unit structure 10b is -360 degrees;
  • the absolute values of the differences are both 60 degrees and are equal.
  • the relative reflection phase of the electromagnetic wave in the minimum thickness cell region having the minimum thickness and the relative reflection phase of the electromagnetic wave in the maximum thickness cell region having the maximum thickness can be determined.
  • the absolute value of the difference is less than 360 degrees.
  • the relative reflection phase of the electromagnetic wave in the minimum thickness cell region having the minimum thickness and the relative reflection phase of the electromagnetic wave in the maximum thickness cell region having the maximum thickness can be determined.
  • the absolute value of the difference must be greater than 180 degrees, and more preferably 300 degrees or more and less than 360 degrees. For example, as shown in FIG.
  • the minimum thickness cell region 11a having the minimum thickness t1 is The absolute value of the difference between the relative reflection phase of the electromagnetic wave in the maximum thickness cell region 11f having the maximum thickness t6 is preferably less than 360 degrees.
  • the relative reflection phase of the electromagnetic wave in the minimum thickness cell region 11a having the minimum thickness t1 is 0 degrees
  • the maximum thickness The relative reflection phase of the electromagnetic wave in the maximum thickness cell region 11f having the minimum thickness t6 is -300 degrees
  • the absolute value of the difference with the relative reflection phase of the electromagnetic wave in the maximum thickness cell region 11f is 300 degrees.
  • the size of the unit structure of the dielectric layer is appropriately set according to the desired reflection characteristics.
  • the reflection angle can be adjusted. For example, by shortening the length of a unit structure in a given direction of increasing thickness, the difference in reflection angle to specular reflection angle can be increased, while for a unit structure in a given direction of increasing thickness By increasing the length of , the difference between the reflection angle and the regular reflection angle can be made smaller.
  • the cross-sectional shape of the unit structure of the dielectric layer may be, for example, a step shape in which the thickness increases stepwise in a predetermined direction, or a step shape in which the thickness increases gradually in a predetermined direction. It may also have a tapered shape.
  • FIG. 5B shows an example in which the unit structure 10 of the dielectric layer 5 has a stepped shape
  • FIG. 9 shows an example in which the unit structure 10 in the dielectric layer 5 has a tapered shape.
  • the unit structure of the dielectric layer has multiple cell regions with different thicknesses, but if the cross-sectional shape of the unit structure of the dielectric layer has a tapered shape, the number of cell regions in the unit structure can be infinitely increased. It can be considered as a thing. Even in this case, the thickness distribution of the unit structure is designed so that the relative reflection phase of the electromagnetic waves in each cell region is set as described above.
  • the pattern shape of the unit structures in plan view may be any shape that can be arranged without gaps, for example, Examples include a rectangular shape and a regular hexagonal shape.
  • FIGS. 7(a) to 7(f) and FIG. 8(a) are examples in which the pattern shape of the unit structure 10 of the dielectric layer in plan view is rectangular.
  • the difference in round trip optical path length between adjacent cell regions is designed so that the relative reflection phase of electromagnetic waves in each cell region is set as described above, and the thickness of each cell region is are set so that the difference in thickness between adjacent cell regions is the difference in round-trip optical path length between the adjacent cell regions.
  • the thickness of each cell region is appropriately set depending on the wavelength of the electromagnetic waves, the dielectric constant of the material of the dielectric layer, and the desired reflection characteristics. For example, when the effective wavelength of electromagnetic waves passing through the dielectric is ⁇ g and the thickness of the base is ⁇ , the thickness of each cell region is preferably about ⁇ +0 ⁇ g or more and ⁇ +2 ⁇ g or less.
  • the thickness ⁇ of the base may be the same as the minimum thickness of the minimum thickness cell region having the minimum thickness in one unit structure of the dielectric layer.
  • the thickness ⁇ of the base is appropriately set in consideration of overall strength, ease of formation, etc., but considering the influence on electromagnetic waves, it is usually preferably about 0.1 ⁇ g or less. Specifically, when the wavelength ⁇ 0 of electromagnetic waves in the air is 10 mm and the dielectric constant of the dielectric layer is 2.57, the thickness of each cell region is 0 mm or more and 8.6 mm or less. is preferred. Note that the case where the thickness of the cell region is 0 mm means that no dielectric layer is formed in the cell region located on the reflective member.
  • the effective wavelength of electromagnetic waves means the wavelength at which electromagnetic waves pass through a material other than air, such as a dielectric layer. Note that when simply referred to as wavelength, it means the wavelength in air.
  • the pitch and width of the cell regions are set as appropriate.
  • the pitch of the cell regions of the unit structure of the dielectric layer may be the same as or different from the pitch of the reflective elements of the reflective member. good.
  • the pitch of the cell regions of the unit structure of the dielectric layer is the same as the pitch of the reflective elements of the reflective member, design becomes easy.
  • the control range of reflection characteristics can be expanded.
  • the pitch of the cell regions be equal.
  • pitch of cell regions refers to the distance from the center of one cell region to the center of an adjacent cell region.
  • the widths of the cell regions in a predetermined direction in which the thickness increases are equal.
  • the pattern shape of the cell region in plan view includes, for example, a stripe shape, a shape obtained by dividing a concentric square into four equal parts by straight lines parallel to the sides and perpendicular to each other, a microarray shape, and a concentric circle shape.
  • shapes include concentric quadrants, curved staircase shapes, etc., which are shapes when divided into four equal parts by diameters perpendicular to each other.
  • FIG. 7(b) is an example of a striped shape
  • FIG. 7(d) is an example of one shape when concentric squares are divided into four equal parts by straight lines parallel to the sides and perpendicular to each other.
  • FIG. 8(a) is an example of a microarray shape
  • FIG. 8(b) is an example of a concentric quadrant shape
  • FIG. 8(c) is an example of a curved staircase shape
  • 7(b) is a top view of FIG. 7(a)
  • FIG. 7(d) is a top view of FIG. 7(c)
  • FIG. 7(f) is a top view of FIG. 7(e).
  • these exemplified unit structures are arranged without gaps, there is no particular restriction on the direction of arrangement; for example, rectangular unit structures may be arranged over the entire surface with the unit structures rotated 30 degrees clockwise in plan view. It is also possible to arrange the unit structures by selecting an appropriate angle and an appropriate arrangement direction according to the required reflection characteristic design.
  • the unit structure of the dielectric layer has multiple cell regions.
  • the number of cell regions is, for example, 3 or more, preferably 6 or more.
  • the larger the number of cell regions in one unit structure of the dielectric layer the smaller the difference in the relative reflection phase of electromagnetic waves between adjacent cell regions, and the smoother the wavefront of the reflected wave.
  • the number of cell regions in one unit structure of the dielectric layer is preferably as large as possible, and the upper limit is not particularly limited.
  • the cross-sectional shape of the unit structure is a staircase shape
  • the number of cell regions corresponds to the number of steps of the staircase shape.
  • the cross-sectional shape of the unit structure is tapered, as described above, the tapered shape can be regarded as infinitely increasing the number of cell regions.
  • the dielectric layer has at least a first unit structure having three or more cell regions having different thicknesses as a unit structure.
  • the dielectric layer may have only the first unit structure as a unit structure, or may further have a second unit structure different from the first unit structure. That is, the dielectric layer may have only the same unit structure as a unit structure, or may have mutually different unit structures.
  • the dielectric layer has a plurality of mutually different unit structures arranged, it is possible to influence the overall reflection characteristics of the frequency selective reflector. Specifically, adjustment of polarization characteristics, influence on beam profile (high directivity, diffusion, multi-beam, etc.) are exemplified.
  • the first unit structure and the second unit structure can have different reflection properties, such as the length of the unit structure in the direction of increasing thickness, the thickness distribution, the number of cell areas, the width, the pitch, etc. , the pattern shape of the unit structure in plan view, or the pattern shape of the cell region in plan view can be made different.
  • the dielectric layer has different unit structures as unit structures
  • the number of types of unit structures is not particularly limited.
  • the thickness distribution of the dielectric layer is appropriately selected, and multiple Although the unit structures are arranged, for example, in the case where the incident wave is reflected in a single direction, that is, as a so-called plane wave, the dielectric layer is preferably one in which a plurality of the same unit structures are arranged, It is more preferable that the unit structures have the same length in the direction in which the thickness increases, and that the pattern shape of the cell region in plan view is striped. For example, in FIGS.
  • the dielectric layer 5 has only a plurality of the same unit structures, and the length L of the unit structures 10a and 10b in the predetermined direction D1 is the same, and the cell
  • the incident wave W1 that has entered at a predetermined incident angle ⁇ 1 can be reflected at a single reflection angle ⁇ 2, and the reflected wave W2 can be made into a plane wave without spread.
  • FIG. 5 illustrates that the incident wave W1 that has entered at a predetermined incident angle ⁇ 1 can be reflected at a single reflection angle ⁇ 2, and the reflected wave W2 can be made into a plane wave without spread.
  • 5(a) shows an arrangement in which the longitudinal direction of the stripes in the cell area is parallel to the lateral direction of the frequency selective reflector, the arrangement is not limited to this, and actual frequency selection In the reflector, the longitudinal and lateral directions of the stripes in the cell region can be set arbitrarily depending on the design of the reflection characteristics.
  • the dielectric layer is preferably one in which a plurality of mutually different unit structures are arranged, and the unit structures in the direction of increasing thickness are preferable.
  • the cell regions have different lengths and the pattern shape in plan view of the cell region is striped. For example, in FIG.
  • the dielectric layer 5 has three different types of unit structures 10a and 10b, 10c and 10d, and these unit structures 10a and 10b, 10c and 10d,
  • the lengths L1, L2, and L3 of the unit structures in the predetermined direction D1 are different from each other, and the numbers of cell regions 11a to 11g, 12a to 12f, and 13a to 13e are different from each other.
  • the relative reflection phases of the electromagnetic waves in each cell region 11a to 11g of the unit structure 10a are 0 degrees, -51.4 degrees, -103 degrees, -154 degrees, respectively.
  • the relative reflection phases of the electromagnetic waves in each cell region 12a to 12f of unit structures 10b and 10c are 0 degrees, -60 degrees, -120 degrees, and -180 degrees, respectively.
  • , -240 degrees, and -300 degrees, and the relative reflection phases of the electromagnetic waves in each cell region 13a to 13e of the unit structure 10d are 0 degrees, -72 degrees, -144 degrees, -216 degrees, and -288 degrees, respectively.
  • the unit structures 10a and 10b, 10c and 10d have different reflection characteristics.
  • the pattern shape of the cell regions 11a to 11g, 12a to 12f, and 13a to 13e in plan view is striped.
  • an incident wave W1 that has entered at a predetermined incident angle ⁇ 1 can be reflected at reflection angles ⁇ 2, ⁇ 2', ⁇ 2'' depending on the unit structure, and reflected with a wide spread. Therefore, the wavefront of the reflected wave W2 can be expanded.
  • the dielectric layer has different unit structures as unit structures, multiple types of unit structures with different reflection characteristics are used, multiple unit structures are arranged for each type, and multiple unit structures of the same type are arranged.
  • the regions may be arranged in a plane.
  • two types of unit structures 10a and 10b having different reflection characteristics are used, and a first region 5a in which a plurality of unit structures 10a of one type is arranged and a plurality of unit structures 10b of the other type are arranged.
  • the dielectric layer 5 has the second regions 5b arranged in a plane. In such an embodiment, multiple coverage holes can be accommodated.
  • each unit structure may be designed depending on the characteristics, and the dielectric layer may have unit structures having mutually different reflection characteristics.
  • the arrangement may be as shown in FIG. 12, for example. In such an embodiment, it is possible to support dual bands or more bands.
  • each of the n unit structures may be shifted by n wavelengths (phase difference: n x 360 degrees) depending on the n unit structures.
  • the relative reflection phase of the electromagnetic waves in the cell region may be set.
  • n is an integer of 2 or more.
  • the dielectric layer 5 has two different types of unit structures 10a and 10b, and the two unit structures 10a and 10b cover two wavelengths (phase difference: In this example, the relative reflection phases of the electromagnetic waves in each of the cell regions 11a to 11c and 12a to 12b of the two unit structures 10a and 10b are set such that they are shifted by 720 degrees. Note that FIG.
  • 13(b) is a graph in which the range of the relative reflection phase of electromagnetic waves is expressed as more than -360 degrees and less than or equal to 0 degrees
  • FIG. This is a graph in which points of substantially the same phase with a relative reflection phase shifted by 360 degrees are complemented with the angle being 0 degrees or less.
  • These unit structures 10a and 10b have different lengths L1 and L2 in the predetermined direction D1, and different numbers of cell regions 11a to 11c and 12a to 12b.
  • one unit structure 10a has three cell regions 11a to 11c, while the other unit structure 10b has two cell regions 12a and 12b.
  • the dielectric layer has different unit structures as unit structures, it is sufficient that at least one type of unit structure has three or more cell regions with different thicknesses, and other types of unit structures have three or more cell regions with different thicknesses.
  • the number of cell regions is not necessarily three or more, and may be two.
  • the dielectric layer has a periodic structure in which unit structures are repeatedly arranged.
  • periodic structure refers to a structure in which unit structures are periodically and repeatedly arranged.
  • the length of the unit structure in the direction of increasing thickness, thickness distribution, number of cell regions, width, pitch, and pattern in plan view of the unit structure The shape, the pattern shape of the cell region in plan view, etc. can be made the same.
  • unit structures having different reflection characteristics can be combined as described above. In that case, the reflection characteristics of the unit structures to be combined are appropriately designed according to the desired reflection characteristics.
  • the length of the unit structure in the direction of increasing thickness, the thickness distribution, the cell The number of regions, the width, the pitch, the pattern shape of the unit structure in plan view, the pattern shape of the cell region in plan view, etc. are appropriately set according to the desired reflection characteristics.
  • Design is possible by converting the reflection phase distribution in the y direction and incorporating it as the thickness distribution of the unit structure.
  • the 10 ⁇ 10 size of the cell area is not necessarily the size of the unit structure.
  • ⁇ i,j 2 ⁇ p ⁇ i ⁇ (sin ⁇ out ⁇ cos ⁇ out ⁇ sin ⁇ in ⁇ cos ⁇ in )+ p ⁇ j ⁇ (sin ⁇ out ⁇ sin ⁇ out ⁇ sin ⁇ in ⁇ sin ⁇ in ) ⁇ / ⁇
  • ⁇ i,j Reflection phase of the cell region at position (i, j) with respect to the phase center (0,0)
  • Wavelength of reflected wave [m]
  • p Size of cell area [m] ⁇ in : ⁇ inclination of the incident wave ⁇ in : ⁇ inclination of the incident wave ⁇ out : ⁇ inclination of the reflected wave ⁇ out : Indicates the ⁇ inclination of the reflected wave.
  • the dielectric layer may be, for example, a single layer or a multilayer. Further, the dielectric layer may include a base material layer serving as a base and an uneven layer disposed on the base material layer. Further, the dielectric layer may be, for example, a single member in which all cell regions are formed integrally, or may be a single member in which each cell region is formed separately, or a block-shaped cell region is arranged. It may be something.
  • the dielectric layer only needs to transmit electromagnetic waves in a specific frequency band, and may or may not transmit electromagnetic waves in other frequency bands.
  • the dielectric loss tangent of the dielectric layer is relatively small. Since the dielectric loss tangent of the dielectric layer is small, dielectric loss can be reduced, and high frequency loss can be reduced. Specifically, the dielectric loss tangent of the dielectric layer with respect to electromagnetic waves of the target frequency is preferably 0.01 or less. Further, the smaller the dielectric loss tangent of the dielectric layer, the better, and the lower limit is not particularly limited.
  • the dielectric constant of the dielectric layer is relatively high.
  • the high dielectric constant of the dielectric layer can be expected to have the effect of reducing the thickness of the dielectric layer.
  • the dielectric constant of the dielectric layer in electromagnetic waves of the target frequency is preferably 2 or more, more preferably 2.5 or more, and when increasing the difference between the reflection angle and the regular reflection angle, More preferably, it is 3 or more.
  • the dielectric loss tangent and dielectric constant of the dielectric layer can be measured by a resonator method.
  • the material of the dielectric layer is not particularly limited as long as it is a dielectric that can transmit a predetermined electromagnetic wave, and for example, resin, glass, quartz, ceramics, etc. can be used. Among these, resin is preferred in view of ease of forming the uneven structure.
  • the resin is not particularly limited as long as it can transmit a predetermined electromagnetic wave, but it is preferable that the resin absorbs relatively little of the electromagnetic wave and has a relatively high transmittance to the electromagnetic wave. Further, the resin preferably satisfies the above dielectric loss tangent, and more preferably satisfies the above dielectric constant. Examples of such resins include polycarbonate, acrylic resin, ABS resin, PLA resin, olefin resin, and copolymers thereof. Among these, polycarbonate is suitable because it has excellent dimensional stability and low high frequency loss.
  • the dielectric layer can further contain a filler.
  • the dielectric constant and mechanical strength of the dielectric layer can be adjusted. It is preferable that the dielectric constant of the filler is higher than that of the resin. Thereby, the dielectric constant of the dielectric layer can be increased, and the necessary thickness of the dielectric layer can be reduced.
  • the high dielectric constant filler is not particularly limited, and examples thereof include inorganic particles such as glass and silica, fine fibers, and the like.
  • the material, shape, size, and content of the filler can be appropriately selected based on the desired dielectric constant, mechanical strength, difficulty of dispersibility, etc.
  • the size of the filler must be sufficiently smaller than the effective wavelength of the electromagnetic waves passing through the dielectric material, and if the effective wavelength of the electromagnetic waves is ⁇ g , the diameter of the filler equivalent to a sphere must be, for example, 0.01 ⁇ g or less. is preferred.
  • the size of the filler approaches the nanometer order, uniform dispersion tends to become difficult, which may increase the load on the processing process.
  • the content of the filler in the dielectric layer varies depending on the combination of the materials of the dielectric and the filler, the shape of the filler, the size of the filler, etc., and is adjusted as appropriate.
  • the uneven structure of the dielectric layer is formed by molding using a mold, for example, a release agent, an antistatic agent, etc. may be added to the dielectric layer. These can be used by appropriately selecting general ones. Further, it is preferable that the dielectric layer does not contain additives or fillers that impart conductivity, such as carbon black or metal particles.
  • the dielectric layer usually has optical transparency.
  • the method for forming the dielectric layer is not particularly limited as long as it is possible to form a predetermined uneven structure, such as cutting a resin sheet, laser processing, molding, etc. Examples include molding using a vacuum mold, vacuum casting, modeling using a 3D printer, and joining small pieces of parts. Forming methods that do not use molds, such as cutting, laser processing, and 3D printing, are easy to customize according to the desired reflection angle, so they can be used in special installation situations or on large scale where simulation is difficult. It can also be suitably used for design tuning when designing and developing a frequency selective reflector.
  • molding may be performed on a base material made of a dielectric material, and in this case, the base material and molding resin may be different from each other as long as they are materials that transmit a specified electromagnetic wave. materials may be used.
  • materials may be used.
  • Reflective member The reflective member in this embodiment is a member that reflects electromagnetic waves in a specific frequency band.
  • the reflective member is not particularly limited as long as it reflects electromagnetic waves in a specific frequency band, for example, it may reflect only electromagnetic waves in a specific frequency band, or it may reflect electromagnetic waves in a specific frequency band. In addition to this, it may also reflect electromagnetic waves in other frequency bands. Among these, it is preferable that the reflective member has a wavelength selection function that reflects only electromagnetic waves in a specific frequency band.
  • FIG. 15 shows an example in which the reflective member 2 is the reflective layer 7.
  • the reflective layer 7 is arranged on the entire surface of the frequency selective reflector 1.
  • the material of the reflective layer is not particularly limited as long as it is a material that can reflect electromagnetic waves in a specific frequency band, and examples thereof include metal materials, carbon, conductive materials such as ITO, and the like.
  • the thickness of the reflective layer is not particularly limited as long as it can reflect electromagnetic waves in a specific frequency band, and is appropriately set.
  • the reflecting member that reflects only electromagnetic waves in a specific frequency band may be any member that has a wavelength selection function that reflects only electromagnetic waves in a specific frequency band, such as a frequency selection plate.
  • FIG. 5(b) shows an example in which the reflective member 2 is a frequency selection plate, and the reflective member 2 includes a dielectric substrate 4 and a plurality of reflective members arranged on the dielectric layer 5 side surface of the dielectric substrate 4. It has a reflective element 3.
  • the shape and configuration of the reflective element are also the same as those described in the first aspect.
  • the frequency selection plate that is, the reflection member
  • the resonance frequency can be changed for each reflecting element, and the reflection phase of electromagnetic waves can be controlled. Therefore, when the frequency selection plate has a reflection phase control function, the reflection characteristics of electromagnetic waves can be controlled by controlling the reflection phase distribution of electromagnetic waves by the thickness of the dielectric layer and the dimensions and shape of the reflection element.
  • the reflection characteristics in two orthogonal directions (for example, the x-axis direction and the y-axis direction) within the plane of the frequency selective reflector can be individually designed using the frequency selective plate and the dielectric layer, and the thickness of the dielectric layer can be adjusted. It is possible to obtain the desired reflection characteristics of electromagnetic waves while suppressing the electromagnetic waves.
  • a general frequency selective surface can be used as the frequency selective plate having a reflection phase control function.
  • the dimensions of the reflective element are appropriately selected depending on the shape of the reflective element.
  • the dielectric substrate may be optically transparent or optically opaque.
  • the reflective member is a frequency selection plate and a member that has a reflection phase control function
  • the dielectric material can be applied to each cell region.
  • the resonance frequency of each reflective element can be changed and the reflection phase of the electromagnetic waves can be controlled. The degree of freedom in design regarding characteristic control can be expanded.
  • the reflection control direction in the reflection member and the reflection control direction in the dielectric layer it is also possible to separate the reflection control direction in the reflection member and the reflection control direction in the dielectric layer, and perform two-dimensional reflection direction control in the entire frequency selective reflector.
  • the reflection control directions of the reflective member and the dielectric layer overlap, for example, it is possible to realize a reflection phase distribution that causes reflection in a certain certain direction with the reflective member, and then finely adjust it with the dielectric layer. . In this case, there is an advantage that the thickness of the dielectric layer can be reduced.
  • the thickness distribution of the dielectric layer and the size distribution of the reflective elements of the reflective member change as the size of the reflective element 3 of the reflective member 2 increases.
  • the dielectric layer 5 and the reflective member 2 can be arranged so that the cell regions 11a to 11f of the unit structure 10 of the dielectric layer 5 are thicker.
  • the thickness of the dielectric layer can be reduced. This makes the dielectric layer thinner, making it possible to reduce the weight and cost of the frequency-selective reflector.Also, even when the reflection angle becomes large, the reflected waves are directed toward the uneven structure side of the dielectric layer. It becomes difficult to hit the surface.
  • the dielectric layer 5 and the reflective member 2 are arranged so that the thickness increases along the direction D2, and the thickness of the cell regions 11a to 11f of the unit structure 10 of the dielectric layer 5 increases along the direction D1 perpendicular to the direction D2. You may.
  • the dielectric layer can be rotated in the plane about the normal direction to the reflective member, and the dielectric layer can be rotated in the plane with respect to the reflective member.
  • the reflection characteristics can be controlled by adjusting the length of the unit structure in a predetermined direction in which the thickness increases. For example, by shortening the length of a unit structure in a given direction where the thickness increases, the reflection angle of electromagnetic waves can be increased; By increasing the length, the reflection angle of electromagnetic waves can be reduced.
  • the length of the unit structure in a predetermined direction in which the thickness increases is the length of the unit structure in the predetermined direction when the unit structure of the dielectric layer has a thickness distribution in which the thickness increases in the predetermined direction.
  • the thickness of the unit structure 10 of the dielectric layer 5 increases in a predetermined direction D1
  • the length of the unit structure 10 in this predetermined direction D1 is L.
  • the in-plane arrangement of the concavo-convex structure of the dielectric layer that realizes the in-plane distribution design of the reflection phase in the frequency selective reflector has a certain positional relationship with respect to the in-plane arrangement of the reflective elements of the reflective member. It is not necessary that this is the case, and even if the uneven structure of the dielectric layer is shifted from the in-plane arrangement of the reflective element, the reflection characteristics will not be significantly affected. Therefore, when the reflecting member is a frequency selection plate and a member having a reflection phase control function, it is possible to design the dielectric layer and the reflecting member independently.
  • the frequency selective reflection plate of this embodiment may have other configurations as necessary.
  • the frequency selective reflector of this embodiment may have an adhesive layer between the reflective member and the dielectric layer.
  • the reflective member and the dielectric layer can be bonded together by the adhesive layer.
  • the unevenness caused by the reflective elements can be flattened by the adhesive layer. It is possible to suppress the influence of unevenness due to For example, in FIG. 5(b), an adhesive layer 6 is disposed between the reflective member 2 and the dielectric layer 5.
  • an adhesive or a pressure-sensitive adhesive can be used, and an appropriate one can be selected from known adhesives and pressure-sensitive adhesives.
  • the adhesive or adhesive needs to be a nonconductor.
  • the adhesive or pressure-sensitive adhesive is in liquid form, it is preferable that it has enough fluidity to be able to be spread evenly and to remove trapped air bubbles.
  • the adhesive or pressure-sensitive adhesive is in the form of a sheet, it is preferable that the thickness is uniform, and that it is flexible enough to follow the unevenness of the bonding interface and suppress air bubbles from being trapped. It is preferable to have.
  • the thickness of the adhesive layer is such that a desired adhesive force can be obtained, and it is preferably uniform. Further, when the reflective member is a member in which a plurality of reflective elements are arranged, the thickness of the adhesive layer is preferably equal to or greater than the thickness of the reflective elements from the viewpoint of flattening. At this time, if the adhesive layer is thicker than the reflective element, the reflective element will be embedded in the adhesive layer. Further, the thickness of the adhesive layer is preferably sufficiently smaller than the effective wavelength of the target electromagnetic wave, and specifically, it is preferably 0.01 ⁇ g or less, where ⁇ g is the effective wavelength of the electromagnetic wave. .
  • the frequency selective reflection plate of this aspect may have a space between the reflection member and the dielectric layer.
  • a space 8 is disposed between the reflective member 2 and the dielectric layer 5.
  • the distance between the reflective member and the dielectric layer is preferably constant. This makes it possible to make the optical path lengths uniform in space.
  • the frequency selective reflector of this aspect may have a protective member on the surface of the dielectric layer opposite to the reflective member.
  • the dielectric layer can be protected by the protective member. Further, the protective member can also add design properties.
  • the frequency selective reflector of this embodiment may have a ground layer on the surface of the reflective member opposite to the dielectric layer.
  • the ground layer can block interference with objects on the back side of the frequency selective reflector and suppress the generation of noise.
  • the ground layer can also be part of a reflective member that does not have wavelength selectivity.
  • a general conductive layer such as a metal layer, metal mesh, carbon film, ITO film, etc. can be used.
  • the frequency selective reflector of this embodiment may have a flattening layer between the reflective member and the dielectric layer.
  • the reflective member is a member in which a plurality of reflective elements are arranged
  • the unevenness caused by the reflective elements can be flattened by the flattening layer.
  • the influence of unevenness can be suppressed.
  • the flattening layer here refers to a layer that is arranged separately from the adhesive layer.
  • An example is an ionizing radiation-curable resin layer disposed to embed the reflective element.
  • the planarization layer may have a function of protecting the reflective element.
  • Anti-reflection layer In the case of high frequencies, the influence of reflection at the dielectric layer interface is also considered, so in the frequency selective reflector of this embodiment, the reflection at the interface between the dielectric layer and air may be applied as necessary.
  • a protective layer may also be provided.
  • the antireflection layer may have a multilayer structure with different dielectric constants, or may have an uneven structure smaller than the effective wavelength of electromagnetic waves.
  • the first alignment marks on the base material can be used to align a plurality of frequency selective reflectors.
  • the frequency selective reflector may be aligned by aligning the edge of the frequency selective reflector with reference to the first alignment mark of the base material.
  • the frequency selective reflector has a second alignment mark, and the second alignment mark of the frequency selective reflector is aligned with the first alignment mark of the base material as a reference. Positioning may also be performed.
  • the base material 21 has a cross-shaped first alignment mark 22, and the edge of the frequency selective reflector 1 is aligned with the first alignment mark 22 of the base material 21 as a reference.
  • the frequency selective reflector 1 is aligned.
  • the outer peripheral region of the frequency selective reflector 1 is light-opaque
  • the base material 21 is light-transparent
  • the first alignment mark 22 is light-opaque
  • the first alignment mark 22 of the base material 21 and the edge of the frequency selective reflector 1 can be detected by the transmitted light, and the frequency selective reflector 1 can be aligned.
  • the first alignment mark 22 of the base material 21 and the frequency selection can be detected and the frequency selective reflector 1 can be aligned.
  • the base material of the reflective member is such that the dielectric substrate of the reflective member is light-opaque.
  • the frequency selective reflector can be improved.
  • the outer peripheral region can be made light-opaque.
  • the dielectric substrate of the reflective member is made light-opaque.
  • a ground layer is placed on the entire surface of the base material side
  • the reflective member is a reflective layer placed on the entire surface of the frequency selective reflector, or the reflective member is placed on the entire surface of the base material side or only in the outer peripheral area.
  • the outer peripheral region of the frequency selective reflector has light reflectivity
  • a ground layer is arranged on the entire surface of the base material side of the reflective member, or By arranging a light-shielding layer containing a metal material on the entire surface of the base-side surface of the reflective member or only on the outer peripheral region, the outer peripheral region of the frequency selective reflector can be made light reflective.
  • a ground layer is arranged on the entire surface of the base material side of the reflective member.
  • the member as a reflective layer disposed on the entire surface of the frequency selective reflector, or by disposing a light shielding layer containing a metal material on the entire surface of the base material side of the reflective member or only on the outer peripheral area, the frequency The outer peripheral region of the selective reflection plate can be made light reflective.
  • the base material 21 has a circular first alignment mark 22
  • the frequency selective reflector 1 has a hollow circular second alignment mark 24, and the base material 21 has a circular first alignment mark 22.
  • the frequency selective reflector 1 is aligned by aligning the second alignment mark 24 of the frequency selective reflector 1 with reference to the first alignment mark 22 of .
  • the base material 21 is light-transmissive
  • the first alignment mark 22 is light-opaque
  • the second alignment mark 24 is light-opaque
  • the frequency When the dielectric substrate of the reflective member of the selective reflector 1 has optical transparency, the first alignment mark 22 of the base material 21 and the second alignment mark 24 of the frequency selective reflector 1 are detected by transmitted light, and the frequency The selective reflection plate 1 can be aligned.
  • the dielectric substrate of the reflective member of the frequency selective reflector 1 has a light transmittance. If so, the first alignment mark 22 of the base material 21 and the second alignment mark 24 of the frequency selective reflector 1 can be detected by reflected light, and the frequency selective reflector 1 can be aligned.
  • the reflective element that constitutes the reflective member of the frequency selective reflector may be light-opaque or light-reflective. Even in such a case, for example, by making the size of the reflective element and the size of the first alignment mark and the second alignment mark significantly different, the light transmitted by the first alignment mark and the second alignment mark or It is possible to distinguish between reflected light and light transmitted or reflected by the reflective element. In addition, even in the above case, for example, by not disposing a reflective element around the second alignment mark in the frequency selective reflector, the transmitted light or reflected light by the first alignment mark and the second alignment mark can be reduced. can be distinguished from transmitted light or reflected light by the reflective element. Therefore, it is possible to align the frequency selective reflector.
  • the frequency selective reflector when no reflective element is arranged around the second alignment mark, the total area of the area where no reflective element is arranged is sufficiently small compared to the area of the entire frequency selective reflector, so the reflection It is thought that there is almost no effect on the characteristics.
  • the base material 21 has a cross-shaped first alignment mark 22
  • the frequency selective reflector 1 has a second alignment mark 24 that is a square-shaped through hole
  • the base material The frequency selective reflector 1 is aligned by aligning the second alignment mark 24 of the frequency selective reflector 1 with reference to the first alignment mark 22 of No. 21.
  • the through-hole (second alignment mark 24) of the frequency selective reflector 1 is formed by the transmitted light.
  • the first alignment mark 22 on the base material 21 can be detected through the first alignment mark 22, and the frequency selective reflector 1 can be aligned.
  • the first alignment mark 22 has light reflectivity
  • the first alignment mark 22 on the base material 21 is detected by reflected light through the through hole (second alignment mark 24) of the frequency selective reflector 1.
  • the frequency selective reflector 1 can be aligned.
  • the frequency selective reflector is aligned by aligning the second alignment mark of the selective reflector.
  • the through-hole (second alignment mark) of the frequency-selective reflector and the through-hole (first alignment mark) of the base material can be detected by transmitted light, and the frequency-selective reflector can be aligned.
  • the frequency selective reflector can be aligned by inserting a pin into the through hole (first alignment mark) of the base material and fitting the pin into the through hole (second alignment mark) of the frequency selective reflector. can.
  • the frequency selective reflector can be fixed to the base material using pins.
  • the second alignment mark is a through hole
  • the total area of the through holes, which are the second alignment marks, in which no reflective element is present is sufficiently small compared to the area of the entire frequency selective reflector, so it has almost no effect on the reflection characteristics. it is conceivable that.
  • the frequency selective reflector may have a second alignment mark.
  • the second alignment mark is a mark for aligning the frequency selective reflector.
  • the second alignment mark may be optically opaque. Further, the second alignment mark may have light reflectivity. The optical characteristics of these second alignment marks are appropriately selected depending on whether the second alignment mark is detected using transmitted light or reflected light.
  • the transmittance and reflectance of the second alignment mark are not particularly limited as long as the second alignment mark can be detected by transmitted light or reflected light, and can be appropriately set according to the material, thickness, etc. of the second alignment mark.
  • the second alignment mark may be a through hole that penetrates the frequency selective reflector.
  • the shape of the second alignment mark in plan view is not particularly limited, and is similar to the shape of a general alignment mark in plan view.
  • a specific example of the shape of the second alignment mark in plan view is the same as that of the first alignment mark.
  • the size and line width of the second alignment mark are not particularly limited as long as the second alignment mark can be detected.
  • the number of second alignment marks is not particularly limited as long as it is possible to align the frequency selective reflector.
  • the second alignment mark on the frequency selective reflector is not particularly limited, the second alignment mark is usually arranged in the outer peripheral area of the frequency selective reflector.
  • the second alignment mark may be arranged on the surface of the frequency selective reflector on the base material side, or may be arranged on the surface of the frequency selective reflector on the opposite side from the base material.
  • the thickness of the second alignment mark is not particularly limited as long as the second alignment mark can be formed with high precision, and is adjusted as appropriate depending on the optical characteristics of the second alignment mark.
  • the material and formation method of the second alignment mark are the same as those for the first alignment mark.
  • the frequency selective reflector can be aligned, a part of the reflective element constituting the reflective member of the frequency selective reflector may be used as the second alignment mark.
  • the frequency selective reflector 1 may have a second identification mark 25 for identifying the frequency selective reflector 1.
  • the frequency selective reflector 1 has second identification marks 25 of "No. 1", “No. 2", “No. 3", and "No. 4". Since the frequency selective reflector has a second identification mark, each frequency selective reflector can be easily identified, and the top, bottom, left, right, front and back of the frequency selective reflector can also be easily identified, so each frequency selective reflector can be placed in the correct position. can be placed securely and easily. This is particularly useful when the reflection characteristics of a plurality of frequency selective reflectors are different from each other.
  • the second identification mark may be optically opaque. Furthermore, the second identification mark may have light reflectivity. Similar to the second alignment mark, the optical characteristics of these second identification marks are appropriately selected depending on whether the second identification mark is detected using transmitted light or reflected light.
  • the transmittance and reflectance of the second identification mark are not particularly limited as long as the second identification mark can be detected by transmitted light or reflected light, and can be set as appropriate depending on the material, thickness, etc. of the second identification mark.
  • the second identification mark is not particularly limited as long as it is an identifiable mark, and examples thereof include letters, symbols, and figures.
  • a specific example is a code.
  • the second identification mark may be data that can be optically recognized (OCR).
  • the size and line width of the second identification mark are not particularly limited as long as the second identification mark can be detected.
  • the position of the second identification mark on the frequency selective reflector is not particularly limited as long as each frequency selective reflector can be identified. Further, depending on the position of the second identification mark on the frequency selective reflector, it is also possible to identify the top, bottom, left and right of the frequency selective reflector.
  • each frequency selective reflector can be placed in the correct position. It can be easily inspected or recorded. For example, if four frequency selective reflectors are arranged in the upper left, upper right, lower left, and lower right positions, each frequency selective reflector has a second one near the corner near the center of all four frequency selective reflectors. By collecting and arranging the identification marks, it is possible to inspect or record whether each frequency selective reflector is correctly arranged by taking a single photograph.
  • the second identification mark may be arranged on the surface of the frequency selective reflector on the base material side, or may be arranged on the surface of the frequency selective reflector on the opposite side from the base material.
  • the thickness, material, and formation method of the second identification mark are the same as those of the second alignment mark.
  • the second alignment mark and the second identification mark can be formed at the same time.
  • the base material may or may not have the first identification mark.
  • the number of frequency selective reflectors is small, by using a second identification mark that indicates the position of each frequency selective reflector, even if the base material does not have the first identification mark, each frequency selective reflector can be correctly identified. Can be placed in position.
  • second identification marks include "heaven”, “earth”, “upper right”, “upper left”, “lower right”, “lower left”, “UR”, “UL”, “LR”, and "LL”.
  • the frequency selective reflector has a second identification mark and the base material does not have a first identification mark, it is preferable that the number of frequency selective reflectors is 3 or less rows and 3 columns or less.
  • the frequency selective reflector may have a cutting portion where a part of the frequency selective reflecting plate is cut.
  • the frequency selective reflector may have a cut portion instead of the second identification mark, or may have a cut portion in addition to the second identification mark.
  • the cut portion is a mark indicating the direction of the surface of the frequency selective reflector. Since the frequency selective reflector has a cut portion, it is possible to easily identify the top, bottom, left, right, front and back of the frequency selective reflector, and therefore each frequency selective reflector can be easily placed in the correct position.
  • the cutting part is not particularly limited as long as it can indicate the direction of the surface of the frequency selective reflector by giving the frequency selective reflector an asymmetrical shape. Examples include a cut-off portion where a corner is cut, a notch-like cut portion, and a portion where a part of a curved portion is cut off, such as a so-called orientation flat.
  • the shape of the notch in plan view is not particularly limited, and examples include a V-shape and a U-shape.
  • adjacent frequency selective reflectors 1 have concave and convex portions 26 that can be fitted into each other on side surfaces facing each other. Adjacent frequency selective reflectors 1 may be arranged so that the portions 26 fit together. By fitting the concavo-convex portions, it is possible to easily align the plurality of frequency-selective reflectors. Furthermore, since the contact area between adjacent frequency selective reflectors increases, the strength can be increased.
  • each frequency selective reflector can be easily identified, and the top and bottom of the frequency selective reflector Since left and right and front and back can be easily identified, each frequency selective reflector can be placed in the correct position reliably and easily.
  • the shape of the uneven portion is not particularly limited as long as it can be fitted.
  • the number and size of the uneven portions are not particularly limited as long as the uneven portions can be formed on the side surface of the frequency selective reflector.
  • the thicknesses of the concave and convex portions in adjacent frequency selective reflectors are equal. This facilitates alignment of adjacent frequency selective reflectors.
  • concave and convex portions do not need to fit tightly together on the mutually opposing side surfaces of adjacent frequency selective reflectors. That is, there may be a gap between the fitting uneven parts.
  • no reflective element may be disposed in the end region where adjacent frequency selective reflectors face each other.
  • no reflective element 3 is disposed on the dielectric substrate 4 in the end region 27 where adjacent frequency selective reflectors 1 face each other.
  • a reflective element is not arranged in the end region where adjacent frequency selective reflectors face each other, a reflective element is not arranged in the end region where adjacent frequency selective reflectors face each other.
  • the margin for positional shift can be made smaller. As a result, the positional shift of the frequency selective reflector can be suppressed.
  • FIG. 24(a) is an example in which the reflective elements 3 are arranged in the end regions 27 where adjacent frequency selective reflectors 1 face each other.
  • FIG. 24(b) is an example in which the reflecting element 3 is not arranged in the end region 27 where adjacent frequency selective reflecting plates 1 face each other.
  • FIGS. 24(a) and 24(b) attention will be paid to the region where the reflective element 3 is arranged.
  • the reflective element 3 is arranged in the end region 27 where adjacent frequency selective reflectors 1 face each other, and the region where the reflective element 3 of the adjacent frequency selective reflector 1 is disposed. The distance between them is the distance d1, d2 between adjacent frequency selective reflectors 1.
  • FIG. 24(a) is an example in which the reflective elements 3 are arranged in the end regions 27 where adjacent frequency selective reflectors 1 face each other.
  • FIG. 24(b) is an example in which the reflecting element 3 is not arranged in the end region 27 where adjacent frequency selective reflecting plates 1 face each other.
  • no reflective element 3 is disposed in the end region 27 where adjacent frequency selective reflectors 1 face each other, and the reflective elements 3 of adjacent frequency selective reflectors 1 are
  • the distances d3 and d4 between the arranged regions are larger than the distances d1 and d2 between adjacent frequency selective reflectors 1.
  • the distance between the areas where the reflective elements 3 of adjacent frequency selective reflectors 1 are arranged is designed to be, for example, 1 mm.
  • the distance between regions where the reflective elements 3 of adjacent frequency selective reflectors 1 are arranged is set to 1 mm, for example.
  • the frequency selective reflectors 1 can be shifted by up to 1 mm from the designed position.
  • the distances d3 and d4 between the areas where the reflective elements 3 of adjacent frequency selective reflectors 1 are arranged are designed to be, for example, 1 mm, the adjacent frequency selective reflectors If the plates 1 are arranged so as not to overlap each other, the margin of positional deviation from the designed position will be smaller than 1 mm because of the existence of the end region 27. In this case, if the distances d1 and d2 between adjacent frequency selective reflectors 1 are designed to be 0.5 mm, if adjacent frequency selective reflectors 1 are arranged so that they do not overlap, frequency selective reflectors 1 The plate 1 can be displaced by up to 0.5 mm from the design position.
  • a reflective element is not arranged in the end region where adjacent frequency selective reflectors face each other, a reflective element is arranged in the end region where adjacent frequency selective reflectors face each other.
  • the margin of positional deviation of the frequency selective reflector from the designed position can be reduced compared to the case where the frequency selective reflector is shifted from the designed position. Thereby, positional shift of the frequency selective reflector can be suppressed.
  • the reflected beams from each frequency-selective reflector may overlap to form a reflected beam by the entire reflecting structure. Therefore, when the reflection characteristics of multiple frequency-selective reflectors are different from each other, compared to the case where the reflection characteristics of multiple frequency-selective reflectors are the same, the entire reflection structure due to the positional shift of the frequency-selective reflectors is has a large effect on the reflected beam profile. Therefore, if the reflection characteristics of a plurality of frequency selective reflectors are different from each other, the reflected beam profile of the entire reflective structure may be disturbed due to the positional shift of the frequency selective reflectors.
  • the reflection intensity of electromagnetic waves in the entire reflecting structure decreases.
  • the end region where adjacent frequency selective reflectors face each other when the reflection intensity of electromagnetic waves in the reflective structure in which a reflective element is arranged is 100%, the end region where adjacent frequency selective reflectors face each other.
  • the reflection intensity of electromagnetic waves in the reflection structure in which no reflection element is arranged is, for example, more than 85%. Thereby, it is possible to suppress a decrease in the reflection intensity of electromagnetic waves due to the fact that no reflective element is disposed in the end region.
  • the size of the frequency selective reflector in this embodiment is appropriately selected depending on the size of the base material, the use of the reflective structure, etc.
  • the size of the frequency selective reflector is preferably, for example, 150 mm square or more, and more preferably 200 mm square or more.
  • the reflective element may be missing at the end portion.
  • by making the size of the frequency selective reflector relatively large as described above it is possible to reduce the ratio of the area where the reflective element is missing to the entire frequency selective reflector. , it is possible to reduce the influence on the reflection characteristics due to the loss of the reflection element.
  • the reflection characteristics of the plurality of frequency selective reflectors may be the same or different from each other.
  • the reflection characteristics of each frequency selective reflector may be designed, for example, so that electromagnetic waves are diffused, or so that electromagnetic waves are converged. Further, the reflection characteristics of each frequency selective reflector may be designed to convert a spherical wave into a plane wave. Further, the reflection characteristics of each frequency selective reflection plate may be designed to provide a multi-beam reflection structure.
  • the reflective member in the reflective member, a plurality of reflective elements with different dimensions are arranged, and when the reflective elements in the plurality of frequency selective reflectors are arranged differently from each other, the plurality of frequency selective reflectors The reflection characteristics of the two become different from each other.
  • the frequency selective reflection plate 1 has a reflection member 2 in which a plurality of ring-shaped reflection elements 3 having different outer diameters are arranged.
  • the arrangement of the reflective elements 3 is different from each other. In such a case, the reflection characteristics of the plurality of frequency selective reflectors become different from each other.
  • a plurality of cell regions having different thicknesses are arranged in the dielectric layer, and when the arrangement of the cell regions in the plurality of frequency selective reflectors is different from each other, The reflection characteristics of the frequency selective reflectors become different from each other.
  • the frequency selective reflector in this embodiment reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. It is preferable that the frequency band of the electromagnetic waves is a frequency band equal to or higher than microwaves, which have strong straightness.
  • the frequency band of the electromagnetic waves is, for example, preferably 2.5 GHz or higher, more preferably 24 GHz or higher, and even more preferably 24 GHz or higher and 300 GHz or lower. If the frequency band of electromagnetic waves is within the above range, the reflective structure of this embodiment can be used in a fifth generation mobile communication system, so-called 5G.
  • the frequency selective reflector in this embodiment can be used, for example, as a frequency selective reflector for communication, and is particularly suitable as a frequency selective reflector for mobile communication.
  • the reflective structure of this embodiment may have other structures as necessary.
  • Adhesive Portion In the reflective structure of this embodiment, for example, as shown in FIG. 26, a bonding portion 28 may be disposed between adjacent frequency selective reflectors 1. The bonded portion reinforces the space between adjacent frequency selective reflectors, increasing the overall strength.
  • an adhesive or a pressure-sensitive adhesive can be used, and an appropriate one can be selected from known adhesives and pressure-sensitive adhesives.
  • the adhesive and pressure-sensitive adhesive may be in liquid form or in sheet form.
  • the thickness of the adhesive part is not particularly limited as long as the desired adhesive strength can be obtained.
  • a second adhesive layer can be disposed between the base material and the frequency selective reflector.
  • the second adhesive layer is a layer for directly or indirectly adhering the frequency selective reflector to the base material. Note that the second adhesive layer is omitted in FIG. 3(b) and FIG. 4(c).
  • an adhesive or a pressure-sensitive adhesive can be used, for example, and can be appropriately selected from known adhesives and pressure-sensitive adhesives.
  • the thickness of the second adhesive layer is not particularly limited as long as the desired adhesive strength can be obtained.
  • Fixing member When the reflective structure of this embodiment is used by being attached to a wall, etc., a mechanism for attaching the reflective structure to the surface of the base material opposite to the frequency selective reflector is provided.
  • a fixing member having the following may be arranged.
  • a metal layer may be disposed between the fixed member and the frequency selective reflector, or the fixed member may also serve as the metal layer.
  • the fixing member when attaching the reflective structure of this embodiment to a wall, etc., the fixing member has a frequency It may have a mechanism that makes the angle in the normal direction of the selective reflection plate variable.
  • the reflective structure of this embodiment has an interference layer on the surface of the base material opposite to the frequency selective reflector for mitigating changes in characteristics due to interaction with the surface on which the reflective structure is installed. It may have a relaxation layer.
  • the interference mitigation layer is not particularly limited as long as it has a dielectric constant close to that of air and can secure an appropriate distance to reduce the interaction between the ground plane and the reflecting member.
  • foam such as urethane foam with a dielectric constant close to that of air can be used.
  • Plastic cardboard containing a large amount of air can be used.
  • an interference mitigation layer is placed between the base material and the frequency selective reflector in order to suppress interference between the base material and the frequency selective reflector.
  • the base material itself may be used as an interference mitigation layer.
  • a second embodiment of the reflective structure in the present disclosure is a reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. , a base material having a first alignment mark, and the frequency selective reflection plate disposed on one surface of the base material, the frequency selective reflection plate being disposed on one surface of the base material. , comprising a reflective member that reflects the electromagnetic waves, and a plurality of dielectric layers that are arranged side by side on the surface of the base material on the reflective member side and that transmit the electromagnetic waves, and a distance between the adjacent dielectric layers.
  • the dielectric layer has an uneven structure in which a plurality of unit structures having a thickness distribution increasing in a predetermined direction is arranged, and the dielectric layer
  • the unit structure of the layer has a plurality of cell regions having different thicknesses, and in each unit structure of the dielectric layer, the length of the unit structure in the predetermined direction is taken as the horizontal axis, and the electromagnetic wave is transmitted to the dielectric layer.
  • the vertical axis is the relative reflection phase when the electromagnetic wave is transmitted through the body layer, reflected by the reflective member, transmitted through the dielectric layer again, and emitted to the incident side of the electromagnetic wave, and the value of the relative reflection phase of the electromagnetic wave is -360.
  • each point is on the same straight line, and the dielectric layer is a first unit having three or more cell regions having different thicknesses as the unit structure.
  • the reflection direction of the electromagnetic wave is controlled by controlling the relative reflection phase distribution of the electromagnetic wave by the thickness distribution of the dielectric layer.
  • FIG. 27 is a schematic plan view showing an example of the reflective structure of this embodiment.
  • the reflective structure 20 includes a frequency selective reflector 1 that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction, and includes a base material having a first alignment mark 22. 21, and a frequency selective reflection plate 1 disposed on one surface of the base material 21.
  • the frequency selective reflector 1 includes a reflective member 2 arranged on one surface of a base material 21 to reflect electromagnetic waves, and a plurality of dielectrics arranged side by side on the surface of the base material 21 on the reflective member 2 side to transmit electromagnetic waves. It has a body layer 5.
  • the distance d5, d6 between adjacent dielectric layers 5 is less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band.
  • the base material 21 has a cross-shaped first alignment mark 22, and the edge of the dielectric layer 5 is aligned with the first alignment mark 22 of the base material 21 as a reference.
  • the dielectric layer 5 is aligned.
  • the distance between the subarrays is set to be less than 1/2 of the wavelength of the electromagnetic wave.
  • the distance between adjacent dielectric layers be less than 1/2 of the wavelength of the electromagnetic wave.
  • the plurality of dielectric layers can be aligned with high accuracy. Therefore, the accuracy of the distance between adjacent dielectric layers can be ensured. Therefore, a plurality of dielectric layers can be tiled with high positional accuracy so that the distance between adjacent dielectric layers is less than 1/2 the wavelength of electromagnetic waves in a specific frequency band. Therefore, it is possible to suppress the disturbance of the wavefront of the reflected wave in the entire reflecting structure, to obtain desired reflection characteristics, and to increase the area of the reflecting structure.
  • Base Material is a member that supports the frequency selective reflection plate, and has a first alignment mark.
  • the base material is the same as in the first embodiment.
  • the first alignment mark is a mark for aligning the dielectric layer.
  • the first alignment mark is the same as in the first embodiment.
  • the dielectric substrate is the base material.
  • the dielectric substrate may also have a first alignment mark.
  • the reflective member has a dielectric substrate and a plurality of reflective elements arranged on at least one surface of the dielectric substrate.
  • the dielectric substrate may also serve as the base material, and the dielectric substrate may have the first alignment mark.
  • the base material may have a third identification mark for identifying the position of the dielectric layer. Since the base material has the third identification mark, the position of each dielectric layer can be easily identified, so that each dielectric layer can be reliably and easily arranged at the correct position. This is particularly useful in a frequency selective reflector in which a plurality of dielectric layers have different reflection characteristics.
  • the third identification mark is the same as the first identification mark in the first embodiment.
  • the frequency selective reflector in this embodiment is a member that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction.
  • the frequency selective reflector in this embodiment includes a reflective member that is placed on one surface of the base material and reflects electromagnetic waves, and a plurality of reflective members that are arranged side by side on the surface of the base material on the reflective member side and that transmit electromagnetic waves.
  • the dielectric layer has an uneven structure in which a plurality of unit structures having a thickness distribution in which the thickness increases in a predetermined direction is arranged, and the dielectric layer has a concavo-convex structure.
  • the structure has multiple cell regions with different thicknesses, and in each unit structure of the dielectric layer, the horizontal axis is the length of the unit structure in a predetermined direction, and electromagnetic waves are transmitted through the dielectric layer and reflected by the reflective member.
  • the vertical axis is the relative reflection phase when the electromagnetic wave is transmitted through the dielectric layer again and emitted to the incident side of the electromagnetic wave, and each cell area is plotted in a graph where the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees.
  • the dielectric layer has at least a first unit structure having three or more cell regions with different thicknesses as a unit structure, and the relative reflection of electromagnetic waves is determined by the thickness distribution of the dielectric layer. This controls the phase distribution.
  • the distance between adjacent dielectric layers is less than 1/2, preferably 1/5 or less, and 1/10 of the wavelength of electromagnetic waves in a specific frequency band.
  • the following are more preferable.
  • the frequency band of the electromagnetic waves is preferably 2.5 GHz or higher, more preferably 24 GHz or higher. That is, the wavelength of the electromagnetic waves in the air is preferably 119.92 mm or less, more preferably 12.49 mm or less. Therefore, specifically, the distance between adjacent dielectric layers is preferably about 59.96 mm or less, more preferably about 6.245 mm or less. Further, the shorter the distance between adjacent dielectric layers, the more preferable, and the lower limit is not particularly limited.
  • Dielectric layer is the same as the dielectric layer of the frequency selective reflector of the second embodiment in the reflection structure of the first embodiment described above.
  • the dielectric layer may be optically transparent or optically opaque. Further, the dielectric layer may have light reflective properties. The optical properties of the dielectric layer are appropriately selected depending on the method of positioning the dielectric layer using the first alignment mark.
  • the dielectric layer can be made light-opaque by, for example, containing a colorant or a filler.
  • a colorant for example, those that do not have electrical conductivity and do not have magnetism are used.
  • the dielectric layer when the dielectric layer has light reflective properties, for example, by roughening the surface of the dielectric layer or by making the dielectric layer contain fine particles having a refractive index different from that of the resin constituting the dielectric layer. , the dielectric layer can have light scattering properties.
  • a part of the dielectric layer may be made light reflective. Examples of the part of the dielectric layer include the outer peripheral part of the dielectric layer and the part of the dielectric layer near the first alignment mark. Examples of methods for imparting light reflectivity to a portion of the dielectric layer include a method of printing white pigment ink or non-conductive metallic ink.
  • Reflection member is the same as the reflection member of the frequency selective reflector of the second embodiment in the reflection structure of the first embodiment described above.
  • the reflective member may include, in order from the base material side, a dielectric substrate and a reflective layer disposed on the entire surface of the dielectric substrate; may have a reflective layer disposed in contact with the substrate.
  • the dielectric substrate may be a member different from the base material, or the dielectric substrate may also serve as the base material.
  • the dielectric substrate can have the first alignment mark.
  • the base material may include, in order from the reflective member side, the dielectric substrate and a support substrate that supports the frequency selective reflector.
  • the reflective member has a dielectric substrate and a reflective layer
  • the dielectric substrate is a member separate from the base material
  • the dielectric substrate and the reflective layer are provided on one surface of the base material.
  • a reflective member may be arranged.
  • the reflective member has a dielectric substrate and a reflective layer
  • the dielectric substrate also serves as a base material
  • the base material has a dielectric substrate and a support substrate
  • the dielectric substrate has a first alignment mark.
  • a reflective layer may be disposed on the dielectric substrate side surface of a base material having a support substrate and a dielectric substrate. Further, a reflective layer may be disposed in contact with the base material.
  • the reflective member has a dielectric substrate and a reflective layer, and the dielectric substrate is a separate member from the base material, there is an advantage that there is flexibility in the thickness and size of the base material. . Further, in this case, the manufacturing process is simpler than the frequency selective reflector of the second embodiment in the reflection structure of the first embodiment.
  • the reflective member has a dielectric substrate and a reflective layer
  • the dielectric substrate also serves as a base material
  • the base material has a dielectric substrate and a support substrate
  • the dielectric substrate is the first If it has an alignment mark and a reflective layer is placed on the dielectric substrate side of the base material, it has the advantage of having flexibility in the thickness and size of the support substrate that makes up the base material.
  • the manufacturing process is simpler than the frequency selective reflector of the second embodiment in the reflection structure of the first embodiment.
  • the reflective layer and the first alignment mark can be arranged on one surface of the dielectric substrate, that is, the reflective layer and the first alignment mark can be arranged on the same plane.
  • the first alignment mark and the reflective layer can be arranged so as not to overlap, the visibility of the first alignment mark can be improved.
  • the reflective layer and the first alignment mark may be formed simultaneously on the dielectric substrate by using the same material for the reflective layer and the first alignment mark.
  • the reflective layer and the first alignment mark can be arranged on one surface of the base material, that is, the reflective layer and the first alignment mark can be arranged on the same plane. Therefore, in this case, similarly to the above, the first alignment mark and the reflective layer can be arranged so as not to overlap, so that the visibility of the first alignment mark can be improved. Further, in this case, the reflective layer and the first alignment mark may be formed on the base material at the same time by using the same material for the reflective layer and the first alignment mark.
  • the reflective layer may or may not be disposed in the region between adjacent dielectric layers. Note that even if a reflective layer is arranged in the region between adjacent dielectric layers, the total area of the regions between adjacent dielectric layers is sufficiently small compared to the area of the entire frequency selective reflector. It is thought that there is almost no effect on reflection characteristics.
  • the reflective member may have a dielectric substrate and a plurality of reflective elements arranged on at least one surface of the dielectric substrate, or The reflective member may include a plurality of reflective elements arranged in contact with the base material.
  • the dielectric substrate may be a separate member from the base material, or the dielectric substrate may also serve as the base material.
  • the dielectric substrate can have the first alignment mark.
  • the base material may include, in order from the reflective member side, the dielectric substrate and a support substrate that supports the frequency selective reflector.
  • the reflective member 2 has a dielectric substrate 4 and a plurality of reflective elements 3, and the dielectric substrate 4 is a separate member from the base material 21.
  • a reflective member 2 having a dielectric substrate 4 and a plurality of reflective elements 3 may be arranged on one surface.
  • the reflective member 2 has a dielectric substrate 4 and a plurality of reflective elements 3, the dielectric substrate 4 also serves as a base material 21, and the base material 21 is a dielectric material.
  • a plurality of reflective elements 3 may be arranged.
  • a plurality of reflective elements 3 may be arranged in contact with the base material 21.
  • the reflective member has a dielectric substrate and a plurality of reflective elements, and the dielectric substrate is a separate member from the base material, there is flexibility in the thickness and size of the base material.
  • the manufacturing process is simpler than the frequency selective reflector of the second embodiment in the reflection structure of the first embodiment.
  • the reflective member has a dielectric substrate and a plurality of reflective elements
  • the dielectric substrate also serves as a base material
  • the base material has a dielectric substrate and a support substrate
  • the dielectric substrate If the first alignment mark is provided and a plurality of reflective elements are arranged on the surface of the base material on the dielectric substrate side, there is flexibility in the thickness and size of the support substrate constituting the base material. It has the advantage of Further, in this case, the manufacturing process is simpler than the frequency selective reflector of the second embodiment in the reflection structure of the first embodiment. In this case, for example, as shown in FIG.
  • the alignment marks 22 can be arranged on the same plane.
  • the first alignment mark and the plurality of reflective elements can be arranged so as not to overlap, the visibility of the first alignment mark can be improved.
  • the plurality of reflective elements and the first alignment mark may be formed simultaneously on the dielectric substrate by using the same material for the plurality of reflective elements and the first alignment mark.
  • the reflective member has multiple reflective elements arranged in contact with the base material, the degree of freedom of the base material is reduced, but since a dielectric substrate is not required, the manufacturing process is further simplified. be able to.
  • a plurality of reflective elements 3 and a first alignment mark 22 are arranged on one surface of the base material 21, that is, a plurality of reflective elements 3 and a first alignment mark 22 are arranged on one surface of the base material 21.
  • the marks 22 can be arranged on the same plane. Therefore, in this case, as in the above case, the first alignment mark and the plurality of reflective elements can be arranged so as not to overlap, so that the visibility of the first alignment mark can be improved. Further, in this case, the plurality of reflective elements and the first alignment mark may be formed simultaneously on the base material by using the same material for the plurality of reflective elements and the first alignment mark.
  • the reflective elements may or may not be disposed in the region between adjacent dielectric layers. Note that even if a reflective element is arranged in the region between adjacent dielectric layers, the total area of the regions between adjacent dielectric layers is sufficiently small compared to the area of the entire frequency selective reflector. It is thought that there is almost no effect on reflection characteristics.
  • control of the direction of reflection of electromagnetic waves is similar to that of the frequency selective reflector of the second aspect of the reflective structure of the first embodiment. be.
  • the frequency selective reflector in this embodiment may have other configurations as necessary.
  • Other configurations include, for example, an adhesive layer, a space, a protective member, a ground layer, a flattening layer, and an antireflection layer. These structures are the same as those of the frequency selective reflector of the second embodiment in the reflection structure of the first embodiment.
  • a second adhesive part may be arranged between adjacent dielectric layers.
  • the frequency selective reflector may have a second adhesive part similar to the adhesive part 28 shown in FIG. 26 in the first embodiment described above between adjacent dielectric layers.
  • the second adhesive portion reinforces the space between adjacent dielectric layers, thereby increasing the overall strength.
  • the second adhesive part is the same as the adhesive part in the reflective structure of the first embodiment described above.
  • a plurality of dielectric layers can be aligned using the first alignment mark on the base material.
  • the dielectric layer may be aligned by aligning the edges of the dielectric layer with reference to the first alignment mark of the base material.
  • the dielectric layer has a third alignment mark, and the dielectric layer is aligned by aligning the third alignment mark of the dielectric layer with reference to the first alignment mark of the base material. You may go.
  • the base material 21 has a cross-shaped first alignment mark 22, and the edge of the dielectric layer 5 is aligned with the first alignment mark 22 of the base material 21 as a reference.
  • the body layer 5 is aligned.
  • the dielectric layer is light-opaque
  • the base material is light-transmissive
  • the first alignment mark is light-opaque
  • the transmitted light may cause the base material to become light-opaque.
  • the first alignment mark and the edge of the dielectric layer can be detected to align the dielectric layer.
  • the dielectric layer has light reflectivity and the first alignment mark has light reflectivity
  • the first alignment mark of the base material and the edge of the dielectric layer are detected by the reflected light, and the dielectric Body layer alignment can be performed.
  • the base material has a circular first alignment mark
  • the dielectric layer has a hollow circular third alignment mark
  • the dielectric The dielectric layer can be aligned by aligning the third alignment mark on the body layer.
  • the base material has a cross-shaped first alignment mark
  • the dielectric layer has a third alignment mark that is a square-shaped through hole, and with the first alignment mark of the base material as a reference, The dielectric layer can be aligned by aligning the third alignment mark on the dielectric layer.
  • the dielectric layer may have a third alignment mark.
  • the third alignment mark is a mark for aligning the dielectric layer.
  • the third alignment mark is the same as the second alignment mark of the reflective structure of the first embodiment described above.
  • the dielectric layer may have a fourth identification mark for identifying the dielectric layer. Since the dielectric layer has the fourth identification mark, each dielectric layer can be easily identified, and the top, bottom, left, right, front and back of the dielectric layer can be easily identified, so each dielectric layer can be placed in the correct position reliably and easily. It can be placed in This is particularly useful in a frequency selective reflector in which a plurality of dielectric layers have different reflection characteristics.
  • the fourth identification mark is the same as the second identification mark of the reflective structure of the first embodiment described above.
  • adjacent dielectric layers have concave and convex portions that can be fitted into each other on side surfaces facing each other, and the adjacent dielectric layers are arranged such that the concave and convex portions fit into each other. may be placed.
  • adjacent dielectric layers may have uneven portions similar to the uneven portions 26 shown in FIGS. 21 and 22 in the first embodiment on their opposing side surfaces. By fitting the uneven portions, the plurality of dielectric layers can be easily aligned. Furthermore, since the contact area between adjacent dielectric layers increases, the strength can be increased.
  • the uneven portions are the same as those of the reflective structure of the first embodiment described above.
  • the size of the dielectric layer is appropriately selected depending on the size of the base material, the use of the reflective structure, etc.
  • the size of the dielectric layer is, for example, preferably 150 mm square or more, more preferably 200 mm square or more.
  • the reflection characteristics of the plurality of dielectric layers may be the same or different from each other.
  • the reflection characteristics of each dielectric layer may be designed, for example, so that the electromagnetic waves are diffused, or so that the electromagnetic waves are converged. Further, the reflection characteristics of each dielectric layer may be designed to convert a spherical wave into a plane wave. Further, the reflection characteristics of each dielectric layer may be designed to provide a multi-beam reflection structure.
  • the reflection characteristics in the plurality of dielectric layers will be different from each other.
  • the frequency selective reflector in this embodiment reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction.
  • the frequency band of electromagnetic waves is the same as in the first embodiment.
  • the frequency selective reflector in this embodiment can be used, for example, as a frequency selective reflector for communication, and is particularly suitable as a frequency selective reflector for mobile communication.
  • the reflective structure of this embodiment may have other structures as necessary.
  • Other configurations include, for example, a second adhesive layer, a fixing member, and an interference mitigation layer. These configurations are the same as those of the first embodiment described above.
  • a third embodiment of the reflective structure in the present disclosure is a reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. , a base material, and a plurality of frequency selective reflectors arranged side by side on one surface of the base material, wherein two adjacent sides of at least one frequency selective reflector are adjacent to each other in the base material. The distance between the adjacent frequency selective reflectors aligned on two matching sides is less than 1/2 of the wavelength of the electromagnetic wave.
  • FIG. 29(a) is a schematic plan view showing an example of the reflective structure of this embodiment
  • FIG. 29(b) is a sectional view taken along the line AA in FIG. 29(a).
  • the reflective structure 20 includes frequency selective reflectors 1A to 1D that reflect electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. It has a base material 21 and a plurality of frequency selective reflectors 1A to 1D arranged side by side on one surface of the base material 21. The distances d1 and d2 between adjacent frequency selective reflectors 1A to 1D are less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band.
  • two adjacent sides Sa1 and Sa2 of the frequency selective reflector 1A are aligned with two adjacent sides S01 and S02 of the base material 21. Therefore, regarding the frequency selective reflector 1A, the positions of the two adjacent sides Sa1 and Sa2 of the frequency selective reflector 1A are aligned based on the two adjacent sides S01 and S02 of the base material 21. Perform alignment.
  • the edge of the frequency selective reflector is brought into contact with the edge of the adjacent frequency selective reflector while using the side of the base material as a reference.
  • the frequency selective reflectors 1B to 1D may be aligned by the following. For example, for the frequency selective reflector 1B, one side Sb1 of the frequency selective reflector 1B is aligned with respect to one side S01 of the base material 21, and the edge of the frequency selective reflector 1A adjacent to the frequency selective reflector 1B is The edge of the frequency selective reflector 1B is brought into contact with the edge of the frequency selective reflector 1B to align the position of the frequency selective reflector 1B.
  • the side Sb1 of the frequency selective reflector 1B is aligned with the side S01 of the base material 21, and the side Sb2 of the frequency selective reflector 1B is aligned with the side Sb1 of the frequency selective reflector 1B. It comes into contact with the side Sa4 of the reflecting plate 1A.
  • the frequency selective reflector 1C one side Sc2 of the frequency selective reflector 1C is aligned with one side S02 of the base material 21 as a reference, and a frequency is set on the edge of the frequency selective reflector 1A adjacent to the frequency selective reflector 1C.
  • the frequency selective reflector 1C is aligned by abutting the edge of the selective reflector 1C.
  • the side Sc2 of the frequency selective reflector 1C is aligned with the side S02 of the base material 21, and the side Sc1 of the frequency selective reflector 1C is aligned with the frequency selective reflector 1C. It comes into contact with the side Sa3 of the reflection plate 1A.
  • the edge of the frequency selective reflector 1D is brought into contact with the edges of the frequency selective reflectors 1B and 1C adjacent to the frequency selective reflector 1D to align the frequency selective reflector 1D.
  • the side Sd2 of the frequency selective reflector 1D is in contact with the side Sc4 of the frequency selective reflector 1C, and the side Sd1 of the frequency selective reflector 1D is It comes into contact with the side Sb3 of the selective reflection plate 1B.
  • the positions of the frequency selective reflectors 1B to 1D may be performed using the sides of the base material as a reference, as shown in FIG. 30(b), for example.
  • the frequency selective reflector 1B the two adjacent sides Sb1 and Sb4 of the frequency selective reflector 1B are aligned based on the two adjacent sides S01 and S04 of the base material 21, and the position of the frequency selective reflector 1B is Make adjustments.
  • the two adjacent sides Sb1 and Sb4 of the frequency selective reflector 1B are aligned with the two adjacent sides S01 and S04 of the base material 21.
  • the two adjacent sides Sc2 and Sc3 of the frequency selective reflector 1C are aligned based on the two adjacent sides S02 and S03 of the base material 21, and the frequency selective reflector 1C is aligned. conduct. In this case, the two adjacent sides Sc2 and Sc3 of the frequency selective reflector 1C are aligned with the two adjacent sides S02 and S03 of the base material 21.
  • the frequency selective reflector 1D the two adjacent sides Sd3 and Sd4 of the frequency selective reflector 1D are aligned based on the two adjacent sides S03 and S04 of the base material 21, and the frequency selective reflector 1D is aligned. conduct. In this case, the two adjacent sides Sd3 and Sd4 of the frequency selective reflector 1D are aligned with the two adjacent sides S03 and S04 of the base material 21.
  • each of the frequency selective reflectors 1B to 1D has a second alignment mark, and the frequency is determined based on the second alignment mark of the frequency selective reflector 1A.
  • the frequency selective reflectors 1B and 1C are aligned by aligning the second alignment marks of the frequency selective reflectors 1B and 1C adjacent to the selective reflector 1A, and the second alignment marks of the frequency selective reflectors 1B and 1C are aligned.
  • the frequency-selective reflector 1D may be aligned by aligning the second alignment marks of the frequency-selective reflector 1D adjacent to the frequency-selective reflector 1B and 1C with reference to .
  • the frequency selective reflectors 1B to 1D alignment using the second alignment mark of the frequency selective reflector and positioning by abutting the edges of the frequency selective reflector may be used in combination.
  • the frequency selective reflectors 1B and 1C are aligned with the frequency selective reflector 1A using the second alignment marks of the frequency selective reflectors 1A to 1C, and the frequency selective reflector 1D is aligned with the frequency selective reflector 1A.
  • Positioning can be performed by abutting the edges of the frequency selective reflector 1D against the edges of 1B and 1C.
  • the reflective structure of this embodiment also has a reflective structure that, for example, aligns the phase of the reflected waves at each frequency selective reflector and increases the intensity of the reflected waves.
  • the distance between adjacent frequency selective reflectors be less than 1/2 of the wavelength of the electromagnetic waves.
  • two adjacent sides of at least one frequency selective reflector are aligned with two adjacent sides of the base material, so that the plurality of frequency selective reflectors can be aligned with high precision. . Therefore, the accuracy of the distance between adjacent frequency selective reflectors can be ensured. Therefore, a plurality of frequency selective reflectors can be tiled with high positional accuracy so that the distance between adjacent frequency selective reflectors is less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band. Therefore, it is possible to suppress the disturbance of the wavefront of the reflected wave in the entire reflecting structure, to obtain desired reflection characteristics, and to increase the area of the reflecting structure.
  • the base material in this embodiment is a member that supports the frequency selective reflection plate.
  • the base material is the same as the base material in the first embodiment described above, except that the base material does not have the first alignment mark.
  • the shape of the base material is not limited to a rectangle, but may be a polygon such as a triangle or a pentagon. Further, the shape of the base material may be a shape having corner portions that serve as a reference. If there is a corner that serves as a reference, such as a drop shape, crescent shape, or part of a circle, the outline extending from that corner to both sides is considered to be two adjacent sides of the base material. be able to.
  • the size of the base material is preferably approximately the same as the total size when all the frequency selective reflectors are arranged side by side.
  • the size of the base material is approximately the same as the total size when all the frequency selective reflectors are arranged side by side, which means that the outline of the base material and the outline of the outer shape when all the frequency selective reflectors are arranged side by side. This means that the difference in dimension between the inside and outside when the lines are overlapped is less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band.
  • the above-mentioned dimensional difference is preferably 1/5 or less, more preferably 1/10 or less.
  • the contour line of the base material and the contour line of the external shape when all the frequency selective reflectors are arranged side by side have similar shapes, but for example, due to design reasons, the contour line of the base material may be locally Even if it has a shape that protrudes outward, there is no particular problem in terms of placement of the frequency selective reflector.
  • Frequency Selective Reflector The frequency selective reflector in this embodiment is a member that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction.
  • the distance between adjacent frequency selective reflectors is the same as in the first embodiment.
  • the embodiment of the frequency selective reflector is the same as the first embodiment described above.
  • At least one frequency selective reflector can be aligned by aligning the two adjacent sides of the at least one frequency selective reflector with reference to the two adjacent sides of the base material. After aligning at least one frequency-selective reflector, for other frequency-selective reflectors, for example, use the sides of the substrate as a reference and align the edges of the frequency-selective reflectors to the adjacent frequency-selective reflectors. Other frequency selective reflectors may be aligned by abutting against the edges. Regarding other frequency selective reflectors, each frequency selective reflector has a second alignment mark, and the second alignment mark may be used to align the relative positions of the frequency selective reflectors.
  • alignment using the second alignment mark of the frequency selective reflector and positioning by abutting the edges of the frequency selective reflector may be used in combination.
  • all the frequency selective reflectors may be aligned by aligning the positions of the two adjacent sides of the frequency selective reflector with reference to the two adjacent sides of the base material.
  • the edge of the frequency selective reflector when aligning the frequency selective reflector, if the edge of the frequency selective reflector is butted against the edge of the adjacent frequency selective reflector, the edge of the frequency selective reflector should be placed between the edges of the adjacent frequency selective reflector via a spacer. You can hit it against the edge.
  • the frequency selective reflector may have a second alignment mark.
  • the second alignment mark is a mark for aligning the frequency selective reflectors, and is a mark for aligning the relative positions of the frequency selective reflectors.
  • the second alignment mark is the same as the first embodiment described above.
  • the second alignment mark is arranged in the outer peripheral region of the frequency selective reflector.
  • the frequency selective reflector may have a second identification mark for identifying the frequency selective reflector.
  • the second identification mark is the same as in the first embodiment.
  • adjacent frequency selective reflectors have concave and convex portions that can fit into each other on side surfaces facing each other, and the adjacent frequency selective reflectors are arranged so that the concave and convex portions fit together. It's okay.
  • the concavo-convex portions it is possible to easily align the plurality of frequency-selective reflectors.
  • the uneven portion substantially functions like a second alignment mark.
  • the uneven portions are the same as those of the reflective structure of the first embodiment described above.
  • the size of the frequency selective reflector is the same as in the first embodiment.
  • the base material does not have the first alignment mark, but the positions of the two adjacent sides of the at least one frequency selective reflector are determined based on the two adjacent sides of the base material. and aligning the at least one frequency selective reflector. Therefore, the variation in external dimensions of the frequency selective reflector is preferably less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band, more preferably 1/5 or less, and even more preferably 1/10 or less. For example, although it varies depending on the material, type of machine, etc., the variation in dimensions during cutting is generally about ⁇ 1 mm. Therefore, the variation in external dimensions of the frequency selective reflector can satisfy less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band.
  • the reflection characteristics of the plurality of frequency selective reflectors may be the same or different from each other.
  • the case where the reflection characteristics of the plurality of frequency selective reflectors are different from each other is the same as in the first embodiment.
  • the frequency selective reflector in this embodiment reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction.
  • the frequency band of electromagnetic waves is the same as in the first embodiment.
  • the variation in external dimensions of the frequency selective reflector is less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band. The shorter the length, the greater variation in external dimensions is allowed. Therefore, it is preferable that the frequency band of the electromagnetic waves is low within the predetermined range.
  • the frequency band of the electromagnetic waves is preferably 2.5 GHz or more and 149.9 GHz or less, more preferably 2.5 GHz or more and 60.0 GHz or less, and even more preferably 2.5 GHz or more and 30.0 GHz or less.
  • the frequency selective reflector in this embodiment can be used, for example, as a frequency selective reflector for communication, and is particularly suitable as a frequency selective reflector for mobile communication.
  • the reflective structure of this embodiment may have other structures as necessary.
  • Other configurations include, for example, an adhesive portion, a second adhesive layer, a fixing member, and an interference mitigation layer. These configurations are the same as those in the first embodiment.
  • a fourth embodiment of the reflective structure in the present disclosure is a reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. , comprising a base material and the frequency selective reflector disposed on one surface of the base material, the frequency selective reflector being disposed on one surface of the base material to reflect the electromagnetic waves.
  • a reflective member a reflective member; and a plurality of dielectric layers arranged side by side on the surface of the base material on the reflective member side and transmitting the electromagnetic waves, wherein two adjacent sides of at least one of the dielectric layers are The dielectric layers are aligned on two adjacent sides of the base material, and the distance between the adjacent dielectric layers is less than 1/2 of the wavelength of the electromagnetic wave, and the dielectric layers have a thickness that increases in a predetermined direction.
  • the unit structure of the dielectric layer has a concavo-convex structure in which a plurality of unit structures having a distribution are arranged, and the unit structure of the dielectric layer has a plurality of cell regions having different thicknesses, and each unit structure of the dielectric layer has The horizontal axis is the length of the structure in the predetermined direction, and the electromagnetic wave is transmitted through the dielectric layer, reflected by the reflective member, transmitted through the dielectric layer again, and emitted to the incident side of the electromagnetic wave.
  • the relative reflection phase is taken as the vertical axis, and the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees.
  • the graph shows the center position of each cell area in the above predetermined direction and the relative reflection phase of the electromagnetic wave in each cell area.
  • FIG. 31(a) is a schematic plan view showing an example of the reflective structure of this embodiment
  • FIG. 31(b) is a sectional view taken along the line AA in FIG. 31(a).
  • the reflective structure 20 includes a frequency selective reflector 1 that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. 21, and frequency selective reflection plates 1 arranged side by side on one surface of the base material 21.
  • the frequency selective reflector 1 includes a reflective member 2 arranged on one surface of a base material 21 to reflect electromagnetic waves, and a plurality of dielectrics arranged side by side on the surface of the base material 21 on the reflective member 2 side to transmit electromagnetic waves. It has body layers 5A to 5D. The distances d5 and d6 between adjacent dielectric layers 5A to 5D are less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band.
  • two adjacent sides Sa11 and Sa12 of the dielectric layer 5A are aligned with two adjacent sides S01 and S02 of the base material 21. Therefore, regarding the dielectric layer 5A, the two adjacent sides Sa11 and Sa12 of the dielectric layer 5A are aligned based on the two adjacent sides S01 and S02 of the base material 21, and the dielectric layer 5A is aligned. conduct.
  • Body layers 5B to 5D may be aligned.
  • one side Sb11 of the dielectric layer 5B is aligned with one side S01 of the base material 21 as a reference, and the dielectric layer is placed on the edge of the dielectric layer 5A adjacent to the dielectric layer 5B.
  • the dielectric layer 5B is aligned by abutting the edges of the dielectric layer 5B.
  • the side Sb11 of the dielectric layer 5B is aligned with the side S01 of the base material 21, and the side Sb12 of the dielectric layer 5B is aligned with the side Sb12 of the dielectric layer 5A. It will be in contact with side Sa14.
  • one side Sc12 of the dielectric layer 5C is aligned with one side S02 of the base material 21 as a reference, and the edge of the dielectric layer 5A adjacent to the dielectric layer 5C is aligned with the edge of the dielectric layer 5C.
  • the dielectric layer 5C is aligned by abutting the edges.
  • the side Sc12 of the dielectric layer 5C is aligned with the side S02 of the base material 21, and the side Sc11 of the dielectric layer 5C is aligned with the side S02 of the dielectric layer 5A. It will be in contact with side Sa13.
  • the edge of the dielectric layer 5D is brought into contact with the edges of the dielectric layers 5B and 5C adjacent to the dielectric layer 5D to align the dielectric layer 5D.
  • the side Sd12 of the dielectric layer 5D is in contact with the side Sc14 of the dielectric layer 5C, and the side Sd11 of the dielectric layer 5D is in contact with the side Sc14 of the dielectric layer 5B. It comes into contact with side Sb13.
  • the dielectric layers 5B to 5D may be aligned using the sides of the base material as a reference, as shown in FIG. 32(b), for example.
  • the dielectric layer 5B the two adjacent sides Sb11 and Sb14 of the dielectric layer 5B are aligned based on the two adjacent sides S01 and S04 of the base material 21, and the dielectric layer 5B is aligned. .
  • the two adjacent sides Sb11 and Sb14 of the dielectric layer 5B are aligned with the two adjacent sides S01 and S04 of the base material 21.
  • the two adjacent sides Sc12 and Sc13 of the dielectric layer 5C are aligned based on the two adjacent sides S02 and S03 of the base material 21, and the dielectric layer 5C is aligned. In this case, the two adjacent sides Sc12 and Sc13 of the dielectric layer 5C are aligned with the two adjacent sides S02 and S03 of the base material 21.
  • the two adjacent sides Sd13 and Sd14 of the dielectric layer 5D are aligned based on the two adjacent sides S03 and S04 of the base material 21, and the dielectric layer 5D is aligned. In this case, the two adjacent sides Sd13 and Sd14 of the dielectric layer 5D are aligned with the two adjacent sides S03 and S04 of the base material 21.
  • each dielectric layer 5A to 5D has a third alignment mark
  • the dielectric layer 5A has a third alignment mark on the dielectric layer 5A as a reference.
  • the dielectric layers 5B and 5C are aligned by aligning the third alignment marks of the dielectric layers 5B and 5C adjacent to the dielectric layers 5B and 5C.
  • the dielectric layer 5D may be aligned by aligning the third alignment marks of the dielectric layer 5D adjacent to the dielectric layers 5B and 5C.
  • the dielectric layers 5B to 5D alignment using the third alignment mark of the dielectric layer and alignment based on butting the edges of the dielectric layer may be used together.
  • the dielectric layers 5B and 5C are aligned with the dielectric layer 5A using the third alignment marks of the dielectric layers 5A to 5C, and the dielectric layer 5D is aligned with the edge of the dielectric layers 5B and 1C. Positioning can be performed by abutting the edge of the dielectric layer 5D against the edge of the dielectric layer 5D.
  • the reflective structure of this embodiment similarly to the second embodiment of the reflective structure described above, the reflective structure is In order to suppress disturbance of the wavefront of the overall reflected wave, it is considered desirable that the distance between adjacent dielectric layers be less than 1/2 of the wavelength of the electromagnetic wave.
  • two adjacent sides of at least one dielectric layer are aligned with two adjacent sides of the base material, so that the plurality of dielectric layers can be aligned with high accuracy. Therefore, the accuracy of the distance between adjacent dielectric layers can be ensured. Therefore, a plurality of dielectric layers can be tiled with high positional accuracy so that the distance between adjacent dielectric layers is less than 1/2 the wavelength of electromagnetic waves in a specific frequency band. Therefore, it is possible to suppress the disturbance of the wavefront of the reflected wave in the entire reflecting structure, to obtain desired reflection characteristics, and to increase the area of the reflecting structure.
  • Base Material The base material in this embodiment is a member that supports the frequency selective reflection plate.
  • the base material is the same as the base material in the third embodiment.
  • the size of the base material is preferably approximately the same as the total size when all the dielectric layers are arranged side by side.
  • the size of the base material is approximately the same as the total size when all the dielectric layers are arranged side by side, which means that the outline of the base material and the outline of the outer shape when all the dielectric layers are arranged side by side.
  • the difference in dimension between the inside and outside when stacked is less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band.
  • the above-mentioned dimensional difference is preferably 1/5 or less, more preferably 1/10 or less.
  • Frequency Selective Reflector The frequency selective reflector in this embodiment is a member that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction.
  • the distance between adjacent dielectric layers is the same as in the second embodiment.
  • the dielectric layer, reflective member, and other configurations are the same as in the second embodiment. Furthermore, control of the direction of reflection of electromagnetic waves is also the same as in the second embodiment.
  • At least one dielectric layer can be aligned by aligning the positions of two adjacent sides of at least one dielectric layer with reference to two adjacent sides of the base material. After aligning at least one dielectric layer, for other dielectric layers, for example, the edge of the dielectric layer is butted against the edge of an adjacent dielectric layer while using the sides of the substrate as a reference. By doing so, alignment of other dielectric layers may be performed. Regarding the other dielectric layers, each dielectric layer has a third alignment mark, and the third alignment mark may be used to align the relative positions of the respective dielectric layers. Further, for other dielectric layers, alignment using the third alignment mark of the dielectric layer and alignment based on abutment of the edge of the dielectric layer may be used in combination. Alternatively, all the dielectric layers may be aligned by aligning the positions of two adjacent sides of the dielectric layer with reference to the two adjacent sides of the base material.
  • a specific example of positioning the dielectric layer is as described above.
  • edge of the dielectric layer when aligning the dielectric layers, if the edge of the dielectric layer is butted against the edge of the adjacent dielectric layer, the edge of the dielectric layer must be butted against the edge of the adjacent dielectric layer via a spacer. Good too.
  • the dielectric layer may have a third alignment mark.
  • the third alignment mark is a mark for aligning the dielectric layers, and is a mark for aligning the relative positions of each dielectric layer.
  • the third alignment mark is the same as the second embodiment described above.
  • the third alignment mark is arranged in the outer peripheral region of the dielectric layer.
  • the dielectric layer may have a fourth identification mark for identifying the dielectric layer.
  • the fourth identification mark is the same as in the second embodiment.
  • the adjacent dielectric layers have uneven portions that can fit into each other on side surfaces facing each other, and the adjacent dielectric layers are arranged so that the uneven portions fit into each other. good.
  • the uneven portion substantially functions like a third alignment mark.
  • the uneven portions are similar to those of the reflective structure of the second embodiment described above.
  • the size of the dielectric layer is the same as in the second embodiment.
  • the base material does not have the first alignment mark, but the positions of two adjacent sides of at least one dielectric layer are aligned based on two adjacent sides of the base material. , aligning at least one dielectric layer. Therefore, the variation in the external dimensions of the dielectric layer is preferably less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band, more preferably 1/5 or less, and even more preferably 1/10 or less. For example, although it varies depending on the material, type of machine, etc., the variation in dimensions during cutting is generally about ⁇ 1 mm. Therefore, the variation in the external dimensions of the dielectric layer can satisfy less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band.
  • the reflection characteristics of the plurality of dielectric layers may be the same or different from each other.
  • the case where the reflection characteristics of the plurality of dielectric layers are different from each other is the same as in the second embodiment.
  • the frequency selective reflector in this embodiment reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction.
  • the frequency band of electromagnetic waves is the same as in the first embodiment.
  • the variation in the external dimensions of the dielectric layer be less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band. The larger the variation in external dimensions is allowed. Therefore, it is preferable that the frequency band of the electromagnetic waves is low within the predetermined range.
  • the specific frequency band of electromagnetic waves is the same as in the third embodiment.
  • the frequency selective reflector in this embodiment can be used, for example, as a frequency selective reflector for communication, and is particularly suitable as a frequency selective reflector for mobile communication.
  • the reflective structure of this embodiment may have other structures as necessary.
  • Other configurations include, for example, a second adhesive layer, a fixing member, and an interference mitigation layer. These configurations are the same as those in the first embodiment.
  • a method for manufacturing a reflective structure in the present disclosure includes a method for manufacturing a reflective structure that includes a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. , wherein the plurality of the above-mentioned frequency selective reflectors are placed on one surface of the support having a first alignment mark such that the distance between the adjacent frequency-selective reflectors is less than 1/2 of the wavelength of the electromagnetic wave.
  • the method includes an arrangement step of arranging the frequency selective reflectors side by side.
  • the frequency selective reflector is the same as the frequency selective reflector in the first embodiment of the reflective structure described above.
  • the support body is a member that supports the frequency selective reflection plate, and has a first alignment mark.
  • the support may be the base material in the first embodiment of the reflective structure, or may be a wall, window, ceiling, floor, signboard, or the like.
  • the first alignment mark is the same as the first alignment mark in the first embodiment of the reflective structure described above.
  • the first alignment mark may be formed directly on the support, or a film having the first alignment mark may be placed on one surface of the support.
  • plan view shape of the first alignment mark may include a horizontal line segment and a vertical line segment.
  • the horizontal line segment and the vertical line segment of the first alignment mark can be considered as two adjacent sides of the base material in the third embodiment of the reflective structure.
  • the arrangement process is the same as that described in the first embodiment or the third embodiment of the reflective structure.
  • Frequency Selective Reflector Set The frequency selective reflector set in the present disclosure has three embodiments. Each embodiment will be explained separately below.
  • the first embodiment of the frequency selective reflector set in the present disclosure is a frequency selective reflector set that includes a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction.
  • the frequency selective reflector in the first embodiment of the reflective structure, has a second identification mark, or in the third embodiment of the reflective structure, the frequency selective reflector has a second identification mark. The same effect as in the case of having a mark is produced.
  • the frequency selective reflector is the same as the frequency selective reflector in the first embodiment of the reflective structure or the frequency selective reflector in the third embodiment of the reflective structure.
  • the second embodiment of the frequency selective reflector set in the present disclosure is a frequency selective reflector set that includes a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction.
  • a frequency selective reflector set is provided in which a plurality of reflective elements having different dimensions are arranged, and the plurality of frequency selective reflectors have different arrangements of the reflective elements.
  • the frequency selective reflector in the first embodiment of the reflective structure, is the first aspect and the reflection characteristics of the plurality of frequency selective reflectors are different from each other, or In the embodiment, the frequency selective reflector is the first aspect, and the same effects as in the case where the plurality of frequency selective reflectors have mutually different reflection characteristics are achieved.
  • the frequency selective reflector is the same as the frequency selective reflector in the first embodiment of the reflective structure or the frequency selective reflector in the third embodiment of the reflective structure.
  • the third embodiment of the frequency selective reflector set in the present disclosure is a frequency selective reflector set that includes a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction.
  • a selective reflector set wherein the plurality of frequency selective reflectors are arranged side by side on an installation surface, and the frequency selective reflectors reflect the electromagnetic waves in order from the installation surface side; a dielectric layer that transmits the electromagnetic waves, wherein a plurality of cell regions having different thicknesses are arranged in the dielectric layer, and the arrangement of the cell regions in the plurality of frequency selective reflectors is different from each other.
  • the frequency selective reflector in the first embodiment of the reflective structure, is a second aspect, and the reflection characteristics of the plurality of frequency selective reflectors are different from each other, or In the embodiment, the frequency selective reflector is the second aspect, and the same effect as in the case where the plurality of frequency selective reflectors have mutually different reflection characteristics is achieved.
  • the frequency selective reflector is the same as the frequency selective reflector in the first embodiment of the reflective structure or the frequency selective reflector in the third embodiment of the reflective structure.
  • [Comparative example 1] We simulated the reflection characteristics of a reflection structure with a frequency selective reflector. In the simulation, a model of a reflective structure in which one frequency selective reflector was placed on an A5 size base material was used. The frequency selective reflector had a structure including, in order from the base material side, a reflective member and a dielectric layer having a predetermined thickness distribution. Further, as shown in FIG.
  • the gain of the frequency selective reflector was set to 0 dBi.
  • FIG. 33(b) shows simulation results of the distribution of received power (dBm).
  • Example 1 We simulated the reflection characteristics of a reflection structure with a frequency selective reflector.
  • a model of a reflective structure was used in which two A5-sized frequency selective reflectors were arranged side by side on an A4-sized base material.
  • the distance between adjacent frequency selective reflectors was set to 1/2 of the wavelength of electromagnetic waves of 28 GHz.
  • the frequency selective reflection plate had a structure including, in order from the base material side, a reflection member and a dielectric layer having a predetermined thickness distribution. Further, as shown in FIG.
  • the gain of the frequency selective reflector was set to 0 dBi.
  • FIG. 34 shows simulation results of the distribution of received power (dBm).
  • Example 1 In contrast to Comparative Example 1, in Example 1, the distance between adjacent frequency selective reflectors is set to 1/2 of the wavelength of the electromagnetic wave, and by tiling a plurality of frequency selective reflectors, the power in the main reflection direction is reduced. increased by 3 to 6 [dB]. This is equivalent to the behavior of the reflected power intensity due to metal flat plates of different areas, including a change in the power intensity distribution in which power is concentrated in the main reflection direction as the area of the frequency selective reflector increases. It has been found that this allows the reflected power to be obtained in accordance with the area ratio of the frequency selective reflector.
  • the unit structure of the dielectric layer has a thickness distribution in which the thickness increases in one direction, as shown in FIG. 35(a), and has six cell regions with different thicknesses.
  • a model was used in which the dielectric layer has a periodic structure in which unit structures are repeatedly arranged in one direction.
  • the reflecting member was modeled as having ring-shaped reflecting elements arranged regularly, resonating at the frequency of an incident wave, and reflecting electromagnetic waves at that frequency.
  • the following parameters were used in the simulation.
  • Incident wave frequency 28GHz Incident angle of incident wave: 0 degree, -10 degree Desired reflection angle of reflected wave: 27 degree, 37 degree Difference in relative reflection phase in adjacent cell areas: 60 degree
  • the unit structure of the dielectric layer has a thickness distribution in which the thickness increases in one direction, as shown in FIG. 36(a), and has 10 cell regions with different thicknesses.
  • a model was used in which the dielectric layer had a periodic structure in which unit structures were repeatedly arranged in one direction.
  • the reflecting member was modeled as having ring-shaped reflecting elements arranged regularly, resonating at the frequency of an incident wave, and reflecting electromagnetic waves at that frequency.
  • the following parameters were used in the simulation.
  • Incident wave frequency 28GHz Incident angle of incident wave: 0 degree Desired reflection angle of reflected wave: 16 degrees Difference in relative reflection phase in adjacent cell areas: 36 degrees
  • FIG. 36(b) The simulation results are shown in FIG. 36(b).
  • the angle of incidence is 0 degrees, that is, the reflection from the front direction 35 is shown by a solid line 36. It can be seen that when the incident angle is 0 degrees, the light is reflected in the direction of +16 degrees from the regular reflection direction.
  • the reflection direction is closer to the regular reflection direction than in FIG. 35(b), but this is due to the unit structure of the dielectric layer, whereas in FIG. This is because, on the other hand, FIG. 36A has 10 cell regions, and the length of the unit structure in the predetermined direction in which the thickness increases is long.
  • the reflection characteristics of the frequency selective reflector were measured using a compact range measurement system and a network analyzer.
  • the reflection characteristics of the frequency selective reflector of Reference Example 3 almost matched the simulation results of Reference Example 1.
  • ZVAC Indicates a transmission line with the characteristic impedance of air.
  • the line length is the length obtained by subtracting the thickness of the dielectric layer from the phase observation plane set at an arbitrary distance from the top surface of the dielectric layer.
  • ZPC Indicates a transmission line with the characteristic impedance of a dielectric layer.
  • the line length is the thickness of the dielectric layer h.
  • r Indicates the resistance of the ring-shaped reflective element of FSS.
  • L Indicates the inductance of the ring-shaped reflective element of FSS.
  • ZPET A transmission line having a dielectric constant of a dielectric substrate on which a ring-shaped reflective element of FSS is arranged. The line length is the thickness of the dielectric substrate.
  • ZL Indicates the characteristic impedance of the space (air) on the back surface of the dielectric substrate.
  • the reflection phase change due to the resonant frequency shift caused by stacking dielectric layers of different thicknesses is at most several tens of degrees, which is about 25% of the maximum reflection phase of 360 degrees. It was calculated that the other reflection phase changes are due to wavelength shortening within the dielectric layer. Furthermore, even if the position of the reflective member having a frequency selective surface and the dielectric layer is misaligned, the misalignment will be uniform throughout the frequency selective reflector, but in order for the reflected wave to be a plane wave, the difference between adjacent cell regions Considering that it is sufficient if the reflection phases of
  • a reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction, a base material having a first alignment mark; a plurality of frequency selective reflectors arranged side by side on one surface of the base material; , wherein the distance between the adjacent frequency selective reflecting plates is less than 1/2 of the wavelength of the electromagnetic wave.
  • the base material has light transmittance, The reflective structure according to [1], wherein the outer peripheral region of the frequency selective reflector is light-opaque.
  • the adjacent frequency selective reflectors have uneven portions that can fit into each other on side surfaces facing each other, and the adjacent frequency selective reflectors are arranged such that the uneven portions fit into each other.
  • the reflective structure according to any one of [1] to [4].
  • a reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction, base material and a plurality of frequency selective reflectors arranged side by side on one surface of the base material; , two adjacent sides of at least one of the frequency selective reflectors are aligned with two adjacent sides of the base material, A reflective structure in which the distance between the adjacent frequency selective reflectors is less than 1/2 of the wavelength of the electromagnetic wave.
  • the frequency selective reflection plate has a reflection member that reflects the electromagnetic waves, In the reflective member, a plurality of reflective elements with different dimensions are arranged, The reflection structure according to any one of [1] to [7], wherein the arrangement of the reflection elements in the plurality of frequency selective reflection plates is different from each other.
  • the frequency selective reflection plate includes, in order from the base material side, a reflective member that reflects the electromagnetic waves and a dielectric layer that transmits the electromagnetic waves, In the dielectric layer, a plurality of cell regions with different thicknesses are arranged, The reflective structure according to any one of [1] to [7], wherein the arrangement of the cell regions in the plurality of frequency selective reflectors is different from each other.
  • the frequency selective reflector includes, in order from the base material side: a reflective member that reflects the electromagnetic waves; a dielectric layer having an uneven structure in which a plurality of unit structures having a thickness distribution increasing in a predetermined direction are arranged, and transmitting the electromagnetic waves; and the unit structure of the dielectric layer has a plurality of cell regions having different thicknesses, In each unit structure of the dielectric layer, the horizontal axis is the length of the unit structure in the predetermined direction, and the electromagnetic wave is transmitted through the dielectric layer, reflected by the reflective member, and transmitted through the dielectric layer again.
  • the vertical axis is the relative reflection phase when the electromagnetic wave is emitted to the incident side, and the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees.
  • each point is on the same straight line.
  • the dielectric layer has at least a first unit structure having three or more cell regions having different thicknesses as the unit structure, The reflective structure according to any one of [1] to [11], wherein the reflection direction of the electromagnetic wave is controlled by controlling the relative reflection phase distribution of the electromagnetic wave by the thickness distribution of the dielectric layer.
  • the reflective structure according to [12], wherein the reflective member is a frequency selection plate that reflects only the electromagnetic waves.
  • the frequency selective reflection plate has a reflection member that reflects the electromagnetic waves, The reflective structure according to any one of [1] to [11], wherein the reflective member has a reflective phase control function that controls the reflective phase of the electromagnetic wave.
  • the reflective member includes a dielectric substrate and a plurality of reflective elements arranged on at least one surface of the dielectric substrate, The reflective structure according to [15], wherein the reflective element is not arranged in an end region where the adjacent frequency selective reflectors face each other. [17] When the reflection intensity of the electromagnetic wave in the reflection structure in which the reflection element is arranged in the end region where the adjacent frequency selective reflection plates face each other is 100%, the reflection intensity of the electromagnetic wave is 85%.
  • the dielectric layer has an uneven structure in which a plurality of unit structures having a thickness distribution increasing in a predetermined direction are arranged, The unit structure of the dielectric layer has a plurality of cell regions having different thicknesses, In each unit structure of the dielectric layer, the horizontal axis is the length of the unit structure in the predetermined direction, and the electromagnetic wave is transmitted through the dielectric layer, reflected by the reflective member, and transmitted through the dielectric layer again.
  • the vertical axis is the relative reflection phase when the electromagnetic wave is emitted to the incident side, and the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees.
  • each point is on the same straight line.
  • Located in The dielectric layer has at least a first unit structure having three or more cell regions having different thicknesses as the unit structure, A reflective structure that controls the direction of reflection of the electromagnetic waves by controlling the relative reflection phase distribution of the electromagnetic waves depending on the thickness distribution of the dielectric layer.
  • the frequency selective reflector is a reflective member disposed on one surface of the base material and reflecting the electromagnetic waves; a plurality of dielectric layers arranged side by side on the surface of the base material on the reflective member side and transmitting the electromagnetic waves; Two adjacent sides of at least one of the dielectric layers are aligned with two adjacent sides of the base material, The distance between the adjacent dielectric layers is less than 1/2 of the wavelength of the electromagnetic wave,
  • the dielectric layer has an uneven structure in which a plurality of unit structures having a thickness distribution increasing in a predetermined direction are arranged,
  • the unit structure of the dielectric layer has a plurality of cell regions having different thicknesses, In each unit structure of the dielectric layer, the horizontal axis is the length of the unit structure in the predetermined direction, and the electromagnetic wave is transmitted through the dielectric layer,
  • the vertical axis is the relative reflection phase when the electromagnetic wave is emitted to the incident side, and the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees.
  • each point is on the same straight line.
  • Located in The dielectric layer has at least a first unit structure having three or more cell regions having different thicknesses as the unit structure, A reflective structure that controls the direction of reflection of the electromagnetic waves by controlling the relative reflection phase distribution of the electromagnetic waves depending on the thickness distribution of the dielectric layer.
  • the reflective member includes a dielectric substrate and a plurality of reflective elements arranged on at least one surface of the dielectric substrate, the dielectric substrate is a member different from the base material, The reflective structure according to [18] or [19], wherein one of the dielectric substrates is arranged with respect to the base material.
  • the reflective member includes a dielectric substrate and a plurality of reflective elements arranged on at least one surface of the dielectric substrate, The reflective structure according to [18] or [19], wherein the dielectric substrate also serves as the base material.
  • the reflective structure according to [18] or [19], wherein the reflective member has a plurality of reflective elements arranged in contact with the base material.
  • a method for manufacturing a reflective structure comprising a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction, the method comprising: The plurality of frequency selective reflectors are arranged side by side on one surface of the support having the first alignment mark such that the distance between the adjacent frequency selective reflectors is less than 1/2 of the wavelength of the electromagnetic wave.
  • a method for manufacturing a reflective structure comprising a step of arranging the structure.
  • the support has light transmittance, The method for manufacturing a reflective structure according to [31], wherein the outer peripheral region of the frequency selective reflector is light-opaque.
  • a frequency selective reflector set including a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction, The plurality of frequency selective reflectors are used by being arranged side by side on the installation surface, A frequency selective reflector set, wherein the frequency selective reflector has a second identification mark for identifying the frequency selective reflector.
  • a frequency selective reflector set including a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction, The plurality of frequency selective reflectors are used by being arranged side by side on the installation surface, The frequency selective reflection plate has a reflection member that reflects the electromagnetic waves, In the reflective member, a plurality of reflective elements with different dimensions are arranged, A frequency selective reflector set, wherein the plurality of frequency selective reflectors have different arrangements of the reflective elements.
  • a frequency selective reflector set including a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction,
  • the plurality of frequency selective reflectors are used by being arranged side by side on the installation surface,
  • the frequency selective reflector includes, in order from the installation surface side, a reflective member that reflects the electromagnetic waves and a dielectric layer that transmits the electromagnetic waves, In the dielectric layer, a plurality of cell regions with different thicknesses are arranged,
  • a frequency selective reflector set wherein the arrangement of the cell regions in the plurality of frequency selective reflectors is different from each other.

Abstract

The present disclosure provides a reflection structure comprising a frequency-selective reflection plate that reflects a specific frequency band of electromagnetic waves in a different direction than a regular reflection direction. The reflection structure comprises a base material with a first alignment mark, and a plurality of the frequency-selective reflection plates that are disposed side-by-side on one surface of the base material. The distance between the adjacent frequency-selective reflection plates is less than 1/2 the wavelength of the electromagnetic waves.

Description

反射構造体、反射構造体の製造方法、および周波数選択反射板セットReflective structure, reflective structure manufacturing method, and frequency selective reflector set
 本開示は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を有する反射構造体に関する。 The present disclosure relates to a reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction.
 移動通信システムにおいては、伝搬環境およびエリアを改善するために、リフレクトアレイの技術が検討されている(例えば、特許文献1~2、非特許文献1)。特に、第5世代通信システム(5G)に使用されるような高周波では、直進性が強いため、カバレッジホール(電波が届かない領域)の解消が重要な課題である。 In mobile communication systems, reflect array technology is being studied in order to improve the propagation environment and area (for example, Patent Documents 1 and 2, Non-Patent Document 1). In particular, high frequencies such as those used in fifth generation communication systems (5G) tend to travel in a straight line, so eliminating coverage holes (areas where radio waves cannot reach) is an important issue.
 リフレクトアレイとしては、所定の方向の基地局から入射する特定の周波数の電磁波に対し、所望の方向に電磁波を反射することが可能であることが望まれている。このようなリフレクトアレイとしては、例えば、複数の反射素子が配列されており、反射素子の寸法や形状を変化させることによって、反射素子毎の共振周波数を変化させ、電磁波の反射位相を制御し、それにより、電磁波の入射方向および反射方向を制御する技術が開発されている。 It is desired that the reflect array be capable of reflecting electromagnetic waves of a specific frequency incident from a base station in a predetermined direction in a desired direction. In such a reflect array, for example, a plurality of reflection elements are arranged, and by changing the dimensions and shapes of the reflection elements, the resonance frequency of each reflection element is changed, and the reflection phase of electromagnetic waves is controlled. As a result, techniques for controlling the direction of incidence and direction of reflection of electromagnetic waves have been developed.
特許第5371633号公報Patent No. 5371633 特許第5162677号公報Patent No. 5162677
 カバレッジホールに高強度の電磁波を反射させるためには、大面積のリフレクトアレイが必要になる。しかし、製造装置の制約から、大面積のリフレクトアレイを製造するのは困難である。 In order to reflect high-intensity electromagnetic waves into the coverage hole, a large-area reflect array is required. However, it is difficult to manufacture a large-area reflector array due to restrictions on manufacturing equipment.
 ところで、リフレクトアレイを大面積化するには、例えば、リフレクトアレイを並べて配置する、タイリング技術が考えられる。しかし、リフレクトアレイのタイリングにより大面積化する場合、複数のリフレクトアレイ間における相対位置のずれが問題となる。リフレクトアレイの相対位置のずれによって、電磁波の反射強度が低下したり、電磁波の反射位相が変化したりするため、所望の反射特性が得られなくなってしまう。 By the way, in order to increase the area of the reflect array, for example, a tiling technique in which the reflect arrays are arranged side by side can be considered. However, when increasing the area by tiling reflect arrays, a problem arises in which the relative positions of a plurality of reflect arrays are shifted. Due to the deviation in the relative position of the reflect array, the reflection intensity of the electromagnetic waves decreases or the reflection phase of the electromagnetic waves changes, making it impossible to obtain desired reflection characteristics.
 なお、リフレクトアレイではないが、表示装置の分野においては、タイリング技術の開発が行われている。しかし、表示装置では、各表示装置の継ぎ目が見えることが重要な課題であるのに対して、リフレクトアレイでは、各リフレクトアレイの相対位置精度が重要な課題となる。また、リフレクトアレイでは、表示装置と比較して、高い位置精度が要求されると考えられる。そのため、リフレクトアレイに、表示装置のタイリング技術をそのまま適用することは困難であると考えられる。 Although it is not a reflect array, tiling technology is being developed in the field of display devices. However, for display devices, it is important to be able to see the seams between the display devices, whereas for reflect arrays, the relative positional accuracy of each reflect array is an important issue. Further, it is thought that reflect arrays require higher positional accuracy than display devices. Therefore, it is considered difficult to directly apply the tiling technology of display devices to reflect arrays.
 本開示は、上記実情に鑑みてなされたものであり、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を有する反射構造体において、反射特性が良好であり、大面積化が可能な反射構造体を提供することを主目的とする。 The present disclosure has been made in view of the above circumstances, and provides a reflection structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction, which has good reflection characteristics. The main purpose is to provide a reflective structure that can be made into a large area.
 本開示の一実施形態は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を有する反射構造体であって、第1アライメントマークを有する基材と、上記基材の一方の面に並べて配置された複数の上記周波数選択反射板と、を有し、隣接する上記周波数選択反射板間の距離が、上記電磁波の波長の1/2未満である、反射構造体を提供する。 One embodiment of the present disclosure is a reflective structure including a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from a direction of specular reflection, which includes a base material having a first alignment mark, and a base material having a first alignment mark; a plurality of frequency-selective reflectors arranged side by side on one surface of a material, the distance between adjacent frequency-selective reflectors being less than 1/2 of the wavelength of the electromagnetic wave; I will provide a.
 本開示の他の実施形態は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を有する反射構造体であって、基材と、上記基材の一方の面に並べて配置された複数の上記周波数選択反射板と、を有し、少なくとも1つの上記周波数選択反射板における隣り合う2辺が、上記基材における隣り合う2辺に揃い、隣接する上記周波数選択反射板間の距離が、上記電磁波の波長の1/2未満である、反射構造体を提供する。 Another embodiment of the present disclosure is a reflection structure including a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from a specular reflection direction, the structure including a base material and one surface of the base material. a plurality of the frequency selective reflection plates arranged in parallel, and two adjacent sides of at least one of the frequency selective reflection plates are aligned with two adjacent sides of the base material, and the adjacent frequency selective reflection plates are arranged in parallel. A reflective structure is provided in which the distance between the plates is less than 1/2 of the wavelength of the electromagnetic wave.
 本開示の他の実施形態は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を有する反射構造体であって、第1アライメントマークを有する基材と、上記基材の一方の面に配置された上記周波数選択反射板と、を有し、上記周波数選択反射板が、上記基材の一方の面に配置され、上記電磁波を反射する反射部材と、上記基材の上記反射部材側の面に並べて配置され、上記電磁波を透過する、複数の誘電体層と、を有し、隣接する上記誘電体層間の距離が、上記電磁波の波長の1/2未満であり、上記誘電体層は、所定の方向に厚さが増加する厚さ分布を有する単位構造が複数配置された凹凸構造を有し、上記誘電体層の上記単位構造は、厚さの異なる複数のセル領域を有し、上記誘電体層の各単位構造では、上記単位構造の上記所定の方向の長さを横軸とし、上記電磁波が上記誘電体層を透過し上記反射部材で反射され上記誘電体層を再度透過して上記電磁波の入射側に放出される際の相対反射位相を縦軸とし、上記電磁波の相対反射位相の値が-360度超0度以下であるグラフに、各セル領域の上記所定の方向の中心位置および各セル領域での上記電磁波の相対反射位相に対応する点をプロットし、最小厚さを有する最小厚さセル領域に対応する点を通る直線を引いたとき、各点が同一直線上にあり、上記誘電体層が、上記単位構造として、厚さの異なる3つ以上の上記セル領域を有する第1の単位構造を少なくとも有し、上記誘電体層の厚さ分布によって上記電磁波の相対反射位相分布を制御することにより、上記電磁波の反射方向を制御する、反射構造体を提供する。 Another embodiment of the present disclosure is a reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction, the base material having a first alignment mark; the frequency selective reflecting plate disposed on one surface of the base material, the frequency selective reflecting plate disposed on one surface of the base material, a reflecting member that reflects the electromagnetic waves, and the base material. a plurality of dielectric layers arranged side by side on the reflective member side of the material and transmitting the electromagnetic waves, the distance between adjacent dielectric layers being less than 1/2 of the wavelength of the electromagnetic waves; The dielectric layer has an uneven structure in which a plurality of unit structures having a thickness distribution increasing in a predetermined direction are arranged, and the unit structure of the dielectric layer has a plurality of unit structures having different thicknesses. In each unit structure of the dielectric layer, the horizontal axis is the length of the unit structure in the predetermined direction, and the electromagnetic wave is transmitted through the dielectric layer and reflected by the reflective member, and the electromagnetic wave is transmitted through the dielectric layer and reflected by the reflective member. The vertical axis is the relative reflection phase when the electromagnetic wave passes through the dielectric layer again and is emitted to the incident side, and each cell is plotted in a graph where the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees. When plotting points corresponding to the center position of the region in the predetermined direction and the relative reflection phase of the electromagnetic waves in each cell region, and drawing a straight line passing through the point corresponding to the minimum thickness cell region having the minimum thickness. , each point is on the same straight line, the dielectric layer has at least a first unit structure having three or more cell regions having different thicknesses as the unit structure, and the dielectric layer has a thickness of The present invention provides a reflective structure that controls the direction of reflection of the electromagnetic waves by controlling the relative reflection phase distribution of the electromagnetic waves based on the phase distribution.
 本開示の他の実施形態は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を有する反射構造体であって、基材と、上記基材の一方の面に配置された上記周波数選択反射板と、を有し、上記周波数選択反射板が、上記基材の一方の面に配置され、上記電磁波を反射する反射部材と、上記基材の上記反射部材側の面に並べて配置され、上記電磁波を透過する、複数の誘電体層と、を有し、少なくとも1つの上記誘電体層における隣り合う2辺が、上記基材における隣り合う2辺に揃い、隣接する上記誘電体層間の距離が、上記電磁波の波長の1/2未満であり、上記誘電体層は、所定の方向に厚さが増加する厚さ分布を有する単位構造が複数配置された凹凸構造を有し、上記誘電体層の上記単位構造は、厚さの異なる複数のセル領域を有し、上記誘電体層の各単位構造では、上記単位構造の上記所定の方向の長さを横軸とし、上記電磁波が上記誘電体層を透過し上記反射部材で反射され上記誘電体層を再度透過して上記電磁波の入射側に放出される際の相対反射位相を縦軸とし、上記電磁波の相対反射位相の値が-360度超0度以下であるグラフに、各セル領域の上記所定の方向の中心位置および各セル領域での上記電磁波の相対反射位相に対応する点をプロットし、最小厚さを有する最小厚さセル領域に対応する点を通る直線を引いたとき、各点が同一直線上にあり、上記誘電体層が、上記単位構造として、厚さの異なる3つ以上の上記セル領域を有する第1の単位構造を少なくとも有し、上記誘電体層の厚さ分布によって上記電磁波の相対反射位相分布を制御することにより、上記電磁波の反射方向を制御する、反射構造体を提供する。 Another embodiment of the present disclosure is a reflection structure including a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from a specular reflection direction, the structure including a base material and one surface of the base material. the frequency-selective reflector disposed on one side of the base, the frequency-selective reflector is disposed on one surface of the base material, and a reflective member that reflects the electromagnetic waves; and the reflective member side of the base material. a plurality of dielectric layers arranged side by side on the surface of the base material and transmitting the electromagnetic waves, wherein two adjacent sides of at least one of the dielectric layers are aligned with two adjacent sides of the base material, The distance between the dielectric layers is less than 1/2 of the wavelength of the electromagnetic wave, and the dielectric layer has an uneven structure in which a plurality of unit structures having a thickness distribution increasing in a predetermined direction are arranged. The unit structure of the dielectric layer has a plurality of cell regions having different thicknesses, and in each unit structure of the dielectric layer, the length of the unit structure in the predetermined direction is the horizontal axis. The vertical axis is the relative reflection phase when the electromagnetic wave passes through the dielectric layer, is reflected by the reflective member, passes through the dielectric layer again, and is emitted to the incident side of the electromagnetic wave, and the relative reflection phase of the electromagnetic wave is Plot the center position of each cell region in the above-mentioned predetermined direction and the points corresponding to the relative reflection phase of the electromagnetic wave in each cell region on a graph in which the value of the reflection phase is more than -360 degrees and less than 0 degrees, and calculate the minimum thickness. When a straight line is drawn through the points corresponding to the minimum thickness cell area having a thickness, each point is on the same straight line, and the dielectric layer is formed as the unit structure in three or more cells having different thicknesses. Provided is a reflective structure, which has at least a first unit structure having a region, and controls the direction of reflection of the electromagnetic wave by controlling the relative reflection phase distribution of the electromagnetic wave by the thickness distribution of the dielectric layer. .
 本開示の他の実施形態は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を複数有する反射構造体を製造する反射構造体の製造方法であって、隣接する上記周波数選択反射板間の距離が、上記電磁波の波長の1/2未満になるように、第1アライメントマークを有する支持体の一方の面に、上記複数の周波数選択反射板を並べて配置する配置工程を有する、反射構造体の製造方法を提供する。 Another embodiment of the present disclosure is a method for manufacturing a reflective structure that includes a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction, the method comprising: The plurality of frequency selective reflectors are arranged side by side on one surface of a support having a first alignment mark such that the distance between the frequency selective reflectors is less than 1/2 of the wavelength of the electromagnetic wave. A method for manufacturing a reflective structure is provided, the method comprising a positioning step.
 本開示の他の実施形態は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を複数有する周波数選択反射板セットであって、上記複数の周波数選択反射板は、設置面に並べて配置されて用いられ、上記周波数選択反射板が、上記周波数選択反射板を識別するための第2識別マークを有する、周波数選択反射板セットを提供する。 Another embodiment of the present disclosure is a frequency selective reflector set including a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from a specular reflection direction, wherein the plurality of frequency selective reflectors are , provides a frequency selective reflector set which is used by being arranged side by side on an installation surface, and wherein the frequency selective reflector has a second identification mark for identifying the frequency selective reflector.
 本開示の他の実施形態は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を複数有する周波数選択反射板セットであって、上記複数の周波数選択反射板は、設置面に並べて配置されて用いられ、上記周波数選択反射板が、上記電磁波を反射する反射部材を有し、上記反射部材では、寸法の異なる複数の反射素子が配列されており、上記複数の周波数選択反射板における上記反射素子の配列が互いに異なる、周波数選択反射板セットを提供する。 Another embodiment of the present disclosure is a frequency selective reflector set including a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from a specular reflection direction, wherein the plurality of frequency selective reflectors are , the frequency selective reflection plate has a reflection member that reflects the electromagnetic waves, and the reflection member has a plurality of reflection elements of different sizes arranged, and the plurality of A set of frequency selective reflectors is provided, in which the arrangement of the reflective elements in the frequency selective reflectors is different from each other.
 本開示の他の実施形態は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を複数有する周波数選択反射板セットであって、上記複数の周波数選択反射板は、設置面に並べて配置されて用いられ、上記周波数選択反射板が、上記設置面側から順に、上記電磁波を反射する反射部材と、上記電磁波を透過する誘電体層と、を有し、上記誘電体層では、厚さの異なる複数のセル領域が配列されており、上記複数の周波数選択反射板における上記セル領域の配列が互いに異なる、周波数選択反射板セットを提供する。 Another embodiment of the present disclosure is a frequency selective reflector set including a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from a specular reflection direction, wherein the plurality of frequency selective reflectors are , the frequency selective reflector plate is arranged side by side on an installation surface and includes, in order from the installation surface side, a reflective member that reflects the electromagnetic waves and a dielectric layer that transmits the electromagnetic waves, and A frequency selective reflector set is provided in which a plurality of cell regions having different thicknesses are arranged in the body layer, and the arrangement of the cell regions in the plurality of frequency selective reflectors is different from each other.
 本開示における反射構造体は、反射特性が良好であり、大面積化が可能であるという効果を奏する。 The reflective structure according to the present disclosure has good reflective properties and has the advantage of being able to have a large area.
本開示における反射構造体を例示する概略平面図である。FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure. 本開示における反射構造体を例示する概略平面図である。FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure. 本開示における反射構造体を例示する概略平面図および断面図である。FIG. 2 is a schematic plan view and a cross-sectional view illustrating a reflective structure according to the present disclosure. 本開示における反射構造体を例示する概略平面図および断面図である。FIG. 2 is a schematic plan view and a cross-sectional view illustrating a reflective structure according to the present disclosure. 本開示における反射構造体を例示する概略平面図および断面図、ならびに本開示における周波数選択反射板における誘電体層の単位構造の各セル領域での電磁波の相対反射位相を説明するための模式図である。A schematic plan view and a cross-sectional view illustrating a reflective structure according to the present disclosure, and a schematic diagram illustrating the relative reflection phase of electromagnetic waves in each cell region of a unit structure of a dielectric layer in a frequency selective reflector according to the present disclosure. be. 本開示における周波数選択反射板における反射特性を例示する模式図である。FIG. 2 is a schematic diagram illustrating reflection characteristics of a frequency selective reflector according to the present disclosure. 本開示における周波数選択反射板における誘電体層の単位構造を例示する概略斜視図および平面図である。FIG. 2 is a schematic perspective view and a plan view illustrating a unit structure of a dielectric layer in a frequency selective reflector according to the present disclosure. 本開示における周波数選択反射板における誘電体層の単位構造を例示する概略平面図である。FIG. 2 is a schematic plan view illustrating a unit structure of a dielectric layer in a frequency selective reflector according to the present disclosure. 本開示における周波数選択反射板を例示する概略平面図である。FIG. 2 is a schematic plan view illustrating a frequency selective reflector according to the present disclosure. 本開示における周波数選択反射板を例示する概略断面図、ならびに本開示における周波数選択反射板における誘電体層の単位構造の各セル領域での電磁波の相対反射位相を説明するための模式図である。FIG. 2 is a schematic cross-sectional view illustrating a frequency selective reflector according to the present disclosure, and a schematic diagram for explaining the relative reflection phase of electromagnetic waves in each cell region of a unit structure of a dielectric layer in the frequency selective reflector according to the present disclosure. 本開示における周波数選択反射板における反射特性を例示する模式図である。FIG. 2 is a schematic diagram illustrating reflection characteristics of a frequency selective reflector according to the present disclosure. 本開示における周波数選択反射板を例示する概略平面図である。FIG. 2 is a schematic plan view illustrating a frequency selective reflector according to the present disclosure. 本開示における周波数選択反射板を例示する概略断面図、ならびに本開示における周波数選択反射板における誘電体層の単位構造の各セル領域での電磁波の相対反射位相を説明するための模式図である。FIG. 2 is a schematic cross-sectional view illustrating a frequency selective reflector according to the present disclosure, and a schematic diagram for explaining the relative reflection phase of electromagnetic waves in each cell region of a unit structure of a dielectric layer in the frequency selective reflector according to the present disclosure. 本開示における周波数選択反射板における反射特性を例示する模式図である。FIG. 2 is a schematic diagram illustrating reflection characteristics of a frequency selective reflector according to the present disclosure. 本開示における周波数選択反射板を例示する概略断面図である。FIG. 2 is a schematic cross-sectional view illustrating a frequency selective reflector according to the present disclosure. 本開示における周波数選択反射板を例示する概略平面図および断面図である。FIG. 2 is a schematic plan view and a cross-sectional view illustrating a frequency selective reflector according to the present disclosure. 本開示における周波数選択反射板を例示する概略平面図および断面図である。FIG. 2 is a schematic plan view and a cross-sectional view illustrating a frequency selective reflector according to the present disclosure. 本開示における周波数選択反射板を例示する概略断面図である。FIG. 2 is a schematic cross-sectional view illustrating a frequency selective reflector according to the present disclosure. 本開示における反射構造体を例示する概略平面図である。FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure. 本開示における反射構造体を例示する概略平面図である。FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure. 本開示における反射構造体を例示する概略平面図である。FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure. 本開示における反射構造体を例示する概略平面図である。FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure. 本開示における反射構造体を例示する概略断面図である。FIG. 2 is a schematic cross-sectional view illustrating a reflective structure in the present disclosure. 本開示における反射構造体を例示する概略平面図である。FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure. 本開示における反射構造体を例示する概略平面図である。FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure. 本開示における反射構造体を例示する概略平面図である。FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure. 本開示における反射構造体を例示する概略平面図である。FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure. 本開示における反射構造体を例示する概略断面図である。FIG. 2 is a schematic cross-sectional view illustrating a reflective structure in the present disclosure. 本開示における反射構造体を例示する概略平面図および断面図である。FIG. 2 is a schematic plan view and a cross-sectional view illustrating a reflective structure according to the present disclosure. 本開示における反射構造体を例示する概略平面図である。FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure. 本開示における反射構造体を例示する概略平面図および断面図である。FIG. 2 is a schematic plan view and a cross-sectional view illustrating a reflective structure according to the present disclosure. 本開示における反射構造体を例示する概略平面図である。FIG. 2 is a schematic plan view illustrating a reflective structure in the present disclosure. 比較例1のシミュレーション結果を示す受信電力分布図である。3 is a received power distribution diagram showing simulation results of Comparative Example 1. FIG. 実施例1のシミュレーション結果を示す受信電力分布図である。3 is a received power distribution diagram showing simulation results of Example 1. FIG. 参考例1のシミュレーションモデルを示す概略斜視図およびシミュレーション結果を示すグラフである。2 is a schematic perspective view showing a simulation model of Reference Example 1 and a graph showing simulation results. 参考例2のシミュレーションモデルを示す概略斜視図およびシミュレーション結果を示すグラフである。3 is a schematic perspective view showing a simulation model of Reference Example 2 and a graph showing simulation results. 伝送線路等価回路を例示する模式図である。FIG. 2 is a schematic diagram illustrating a transmission line equivalent circuit.
 下記に、図面等を参照しながら本開示の実施の形態を説明する。ただし、本開示は多くの異なる態様で実施することが可能であり、下記に例示する実施の形態の記載内容に限定して解釈されない。また、図面は説明をより明確にするため、実際の形態に比べ、各部の幅、厚さ、形状等について模式的に表わされる場合があるが、あくまで一例であって、本開示の解釈を限定しない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。 Embodiments of the present disclosure will be described below with reference to the drawings and the like. However, the present disclosure can be implemented in many different ways, and should not be construed as being limited to the description of the embodiments exemplified below. Further, in order to make the explanation clearer, the drawings may schematically represent the width, thickness, shape, etc. of each part compared to the actual form, but this is just an example and does not limit the interpretation of the present disclosure. do not. In addition, in this specification and each figure, the same elements as those described above with respect to the previously shown figures are denoted by the same reference numerals, and detailed explanations may be omitted as appropriate.
 本明細書において、ある部材の上に他の部材を配置する態様を表現するにあたり、単に「上に」あるいは「下に」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上あるいは直下に他の部材を配置する場合と、ある部材の上あるいは下に、さらに別の部材を介して他の部材を配置する場合との両方を含む。ある部材の上方に他の部材を配置する態様を表現するにあたり、単に「上方に」あるいは「下方に」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上あるいは直下に他の部材を配置する場合と、ある部材の上あるいは下に、さらに別の部材を介して他の部材を配置する場合と、ある部材の上方あるいは下方に、空間を介して他の部材を配置する場合とのいずれも含む。また、本明細書において、ある部材の面に他の部材を配置する態様を表現するにあたり、単に「面に」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上あるいは直下に他の部材を配置する場合と、ある部材の上あるいは下に、さらに別の部材を介して他の部材を配置する場合との両方を含む。 In this specification, when expressing a mode in which another member is placed on top of a certain member, when it is simply expressed as "above" or "below", unless otherwise specified, it means that the member is in contact with a certain member. This includes both cases in which another member is placed directly above or below a certain member, and cases in which another member is placed above or below a certain member via another member. When expressing the manner in which another member is placed above a certain member, when it is simply written as “above” or “below”, unless otherwise specified, it means directly above or directly below a certain member, so as to be in contact with it. When placing another member, when placing another member above or below a certain member via another member, and when placing another member above or below a certain member through a space. This includes both cases where In addition, in this specification, when expressing the aspect of arranging another member on the surface of a certain member, when it is simply written as "on the surface", unless otherwise specified, it means that it is placed directly above or in contact with a certain member. This includes both a case where another member is placed directly below a certain member, and a case where another member is placed above or below a certain member via another member.
 以下、本開示における反射構造体、反射構造体の製造方法、および周波数選択反射板セットについて詳細に説明する。 Hereinafter, the reflective structure, the method for manufacturing the reflective structure, and the frequency selective reflector set in the present disclosure will be described in detail.
A.反射構造体
 本開示における反射構造体は、4つの実施態様を有する。以下、各実施態様に分けて説明する。
A. Reflective Structure The reflective structure in this disclosure has four embodiments. Each embodiment will be explained separately below.
I.反射構造体の第1実施態様
 本開示における反射構造体の第1実施態様は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を有する反射構造体であって、第1アライメントマークを有する基材と、上記基材の一方の面に並べて配置された複数の上記周波数選択反射板と、を有し、隣接する上記周波数選択反射板間の距離が、上記電磁波の波長の1/2未満である。
I. First embodiment of the reflective structure The first embodiment of the reflective structure in the present disclosure is a reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. , a base material having a first alignment mark, and a plurality of the frequency selective reflectors arranged side by side on one surface of the base material, and the distance between the adjacent frequency selective reflectors is such that the electromagnetic wave It is less than 1/2 of the wavelength of .
 図1は、本実施態様の反射構造体の一例を示す概略平面図である。図1に示すように、反射構造体20は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板1を有するものであり、第1アライメントマーク22を有する基材21と、基材21の一方の面に並べて配置された複数の周波数選択反射板1と、を有している。隣接する周波数選択反射板1の間の距離d1、d2は、特定の周波数帯の電磁波の波長の1/2未満となっている。 FIG. 1 is a schematic plan view showing an example of the reflective structure of this embodiment. As shown in FIG. 1, the reflective structure 20 includes a frequency selective reflector 1 that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction, and includes a base material having a first alignment mark 22. 21, and a plurality of frequency selective reflectors 1 arranged side by side on one surface of the base material 21. The distances d1 and d2 between adjacent frequency selective reflectors 1 are less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band.
 例えば図1においては、基材21が十字形状の第1アライメントマーク22を有しており、基材21の第1アライメントマーク22を基準として、周波数選択反射板1のエッジの位置を合わせて、複数の周波数選択反射板1の位置合わせを行う。 For example, in FIG. 1, the base material 21 has a cross-shaped first alignment mark 22, and the edge of the frequency selective reflector 1 is aligned with the first alignment mark 22 of the base material 21 as a reference. The plurality of frequency selective reflectors 1 are aligned.
 ここで、リフレクトアレイではないが、複数のサブアレイが並べて配置されたフェーズドアレイアンテナにおいては、各サブアレイでの電磁波の位相を揃え、電磁波の強度を強くするために、通常、隣接するサブアレイ間の距離は、電磁波の波長の1/2未満とされている。 Although it is not a reflect array, in a phased array antenna in which multiple subarrays are arranged side by side, the distance between adjacent subarrays is usually set in order to align the phase of the electromagnetic waves in each subarray and increase the strength of the electromagnetic waves. is said to be less than 1/2 of the wavelength of electromagnetic waves.
 そのため、複数の周波数選択反射板が並べて配置された反射構造体においても、例えば各周波数選択反射板での反射波の位相を揃え、反射波の強度を強くする等、反射構造体全体での反射波の波面の乱れを抑制するためには、隣接する周波数選択反射板間の距離は、電磁波の波長の1/2未満とすることが望ましいと考えられる。 Therefore, even in a reflective structure in which multiple frequency selective reflectors are arranged side by side, it is possible to improve the reflection across the entire reflective structure by, for example, aligning the phase of the reflected waves at each frequency selective reflector and increasing the intensity of the reflected waves. In order to suppress disturbances in the wave front of waves, it is considered desirable that the distance between adjacent frequency selective reflectors be less than 1/2 of the wavelength of the electromagnetic waves.
 本実施態様においては、基材が第1アライメントマークを有することにより、複数の周波数選択反射板の位置合わせを精度良く行うことができる。そのため、隣接する周波数選択反射板間の距離の精度を確保できる。よって、隣接する周波数選択反射板間の距離が、特定の周波数帯の電磁波の波長の1/2未満となるように、複数の周波数選択反射板を高い位置精度でタイリングすることができる。したがって、反射構造体全体での反射波の波面の乱れを抑制して、所望の反射特性を得ることができるとともに、反射構造体の大面積化が可能である。 In this embodiment, since the base material has the first alignment mark, it is possible to accurately align the plurality of frequency selective reflectors. Therefore, the accuracy of the distance between adjacent frequency selective reflectors can be ensured. Therefore, a plurality of frequency selective reflectors can be tiled with high positional accuracy so that the distance between adjacent frequency selective reflectors is less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band. Therefore, it is possible to suppress the disturbance of the wavefront of the reflected wave in the entire reflecting structure, to obtain desired reflection characteristics, and to increase the area of the reflecting structure.
 以下、本実施態様の反射構造体の各構成について説明する。 Hereinafter, each configuration of the reflective structure of this embodiment will be explained.
1.基材
 本実施態様における基材は、周波数選択反射板を支持する部材であり、第1アライメントマークを有する。
1. Base Material The base material in this embodiment is a member that supports the frequency selective reflection plate, and has a first alignment mark.
(1)基材
 基材は、周波数選択反射板を支持することができる基材であれば特に限定されず、例えば樹脂基材や金属基材を挙げることができる。樹脂基材は、例えば、樹脂フィルム、樹脂シート、樹脂板のいずれであってもよい。また、樹脂基材は、プラスチックダンボールのように中空構造を有するもの、または、多層構造を有するものであってもよい。金属基材は、例えばアルミニウム、ステンレス等の金属板、アルミ合板等の合板が挙げられる。
(1) Base material The base material is not particularly limited as long as it is a base material that can support the frequency selective reflector, and examples thereof include resin base materials and metal base materials. The resin base material may be, for example, a resin film, a resin sheet, or a resin plate. Further, the resin base material may have a hollow structure such as plastic cardboard, or may have a multilayer structure. Examples of the metal base material include metal plates such as aluminum and stainless steel, and plywood such as aluminum plywood.
 金属基材は、剛性や耐久性に優れる上に、電磁波を反射するため、後述するように周波数選択反射板が基材側の面にグラウンド層を持つ場合に好適に用いられる。周波数選択反射板がグラウンド層を持たない場合は、基材と周波数選択反射板との間に後述の干渉緩和層を配置してもよく、あるいは金属基材の特性を考慮して周波数選択反射板の反射部材を設計してもよい。 The metal base material has excellent rigidity and durability, and also reflects electromagnetic waves, so it is suitably used when the frequency selective reflector has a ground layer on the base side surface, as described later. If the frequency selective reflector does not have a ground layer, an interference mitigation layer (described later) may be placed between the base material and the frequency selective reflector, or a frequency selective reflector may be provided in consideration of the characteristics of the metal base material. A reflective member may be designed.
 基材の形状は特に限定されないが、一般的には矩形である。設置面に反射構造体を設置する場合において、設置面内での反射構造体の面の向きは予め決められていることが多いが、反射構造体のデザイン上、面の向きがわかりにくい場合は、基材は、基材の1つの角部が切断された角落とし部、いわゆるノッチのような切込み部、またはいわゆるオリエンテーションフラットのような曲線部の一部が切断された部分等の、面の向きを示す部分を有していてもよい。反射構造体にこのような非対称な形状を付与することにより、反射構造体の上下左右や表裏を容易に識別できるので、反射構造体を正しい向きで設置できる。 The shape of the base material is not particularly limited, but is generally rectangular. When installing a reflective structure on an installation surface, the direction of the surface of the reflective structure within the installation surface is often determined in advance, but if it is difficult to determine the direction of the surface due to the design of the reflective structure, , the base material has a surface such as a corner cut part where one corner of the base material is cut, a notch-like cut part, or a part of a curved part such as a so-called orientation flat. It may have a portion indicating the direction. By giving the reflective structure such an asymmetrical shape, it is possible to easily identify the top, bottom, left, right, front and back of the reflective structure, and therefore the reflective structure can be installed in the correct orientation.
 基材は、光透過性を有していてもよく、光不透過性を有していてもよい。これらの基材の光学特性は、第1アライメントマークの検出方法や第1アライメントマークの配置等に応じて適宜選択される。例えば、透過光により第1アライメントマークを検出する場合には、基材は光透過性を有する。また、例えば、反射光により第1アライメントマークを検出する場合には、基材は光透過性を有していてもよく、光不透過性を有していてもよい。また、後述するように、例えば、第1アライメントマークが基材の周波数選択反射板とは反対側の面に配置されている場合には、基材は光透過性を有する。 The base material may be optically transparent or optically opaque. The optical properties of these base materials are appropriately selected depending on the method of detecting the first alignment mark, the arrangement of the first alignment mark, and the like. For example, when detecting the first alignment mark using transmitted light, the base material has light transmittance. Furthermore, for example, when detecting the first alignment mark using reflected light, the base material may be light-transmissive or light-opaque. Further, as described later, for example, when the first alignment mark is arranged on the surface of the base material opposite to the frequency selective reflection plate, the base material has light transmittance.
 なお、本明細書において、「光透過性」とは、可視光に対する透過性を意味する。また、「光不透過性」とは、可視光に対する不透過性を意味する。 Note that in this specification, "light transparency" means transparency to visible light. Moreover, "light opacity" means opacity to visible light.
 また、基材は、X線透過性を有していてもよい。基材がX線透過性を有する場合には、透過X線により第1アライメントマークを検出できる。 Additionally, the base material may have X-ray transparency. When the base material has X-ray transparency, the first alignment mark can be detected by transmitted X-rays.
 基材の透過率は、第1アライメントマークを透過光または反射光によって検出可能であれば特に限定されず、基材の材料や厚さ等に応じて適宜設定できる。 The transmittance of the base material is not particularly limited as long as the first alignment mark can be detected by transmitted light or reflected light, and can be set as appropriate depending on the material, thickness, etc. of the base material.
 樹脂基材を構成する樹脂は、特に限定されず、例えば、エンジニアリングプラスチックを挙げることができる。 The resin constituting the resin base material is not particularly limited, and examples include engineering plastics.
 また、樹脂基材は、必要に応じて、紫外線吸収剤、光安定剤、酸化防止剤、着色剤等の添加剤を含有していてもよい。 Additionally, the resin base material may contain additives such as ultraviolet absorbers, light stabilizers, antioxidants, and colorants, as necessary.
 基材の厚さは、特に限定されない。 The thickness of the base material is not particularly limited.
(2)第1アライメントマーク
 第1アライメントマークは、周波数選択反射板の位置合わせを行うためのマークである。
(2) First alignment mark The first alignment mark is a mark for aligning the frequency selective reflector.
 第1アライメントマークは、光不透過性を有していてもよい。また、第1アライメントマークは、光反射性を有していてもよい。これらの第1アライメントマークの光学特性は、透過光および反射光のいずれにより第1アライメントマークを検出するのかに応じて適宜選択される。例えば、透過光により第1アライメントマークを検出する場合には、第1アライメントマークは光不透過性を有する。また、例えば、反射光により第1アライメントマークを検出する場合には、第1アライメントマークは光反射性を有する。 The first alignment mark may be optically opaque. Furthermore, the first alignment mark may have light reflectivity. The optical characteristics of these first alignment marks are appropriately selected depending on whether the first alignment mark is detected using transmitted light or reflected light. For example, when detecting the first alignment mark using transmitted light, the first alignment mark is opaque to light. Further, for example, when detecting the first alignment mark using reflected light, the first alignment mark has light reflectivity.
 なお、本明細書において、「光反射性」とは、可視光に対する反射性を意味する。 Note that in this specification, "light reflectivity" means reflectivity to visible light.
 また、第1アライメントマークは、X線透過性を有していてもよい。基材および第1アライメントマークがX線透過性を有する場合には、透過X線により第1アライメントマークを検出できる。 Additionally, the first alignment mark may have X-ray transparency. When the base material and the first alignment mark have X-ray transparency, the first alignment mark can be detected by transmitted X-rays.
 第1アライメントマークの透過率や反射率は、第1アライメントマークを透過光または反射光によって検出可能であれば特に限定されず、第1アライメントマークの材料や厚さ等に応じて適宜設定できる。 The transmittance and reflectance of the first alignment mark are not particularly limited as long as the first alignment mark can be detected by transmitted light or reflected light, and can be appropriately set according to the material, thickness, etc. of the first alignment mark.
 また、第1アライメントマークは、基材を貫通する貫通孔であってもよい。 Additionally, the first alignment mark may be a through hole that penetrates the base material.
 第1アライメントマークの平面視形状は、特に限定されず、一般的なアライメントマークの平面視形状と同様である。第1アライメントマークの平面視形状は、例えば、十字形状、X字形状、田の字形状、井の字形状、円形状、四角形状、三角形状、二重丸形状、二重四角形状、中抜きの円形状、中抜きの四角形状、およびこれらの組み合わせを挙げることができる。 The shape of the first alignment mark in plan view is not particularly limited, and is similar to the shape of a general alignment mark in plan view. The shape of the first alignment mark in plan view is, for example, a cross shape, an Examples include a circular shape, a hollow square shape, and a combination thereof.
 第1アライメントマークの大きさや線幅は、第1アライメントマークを検出可能であり、隣接する周波数選択反射板間の距離を所定の範囲とすることを妨げなければ特に限定されない。 The size and line width of the first alignment mark are not particularly limited as long as the first alignment mark can be detected and do not prevent the distance between adjacent frequency selective reflectors from falling within a predetermined range.
 第1アライメントマークの数は、複数の周波数選択反射板の位置合わせを行うことが可能であれば特に限定されない。 The number of first alignment marks is not particularly limited as long as it is possible to align a plurality of frequency selective reflectors.
 基材における第1アライメントマークの位置は、複数の周波数選択反射板を配置する所望の位置に応じて適宜設定される。 The position of the first alignment mark on the base material is appropriately set according to the desired position where the plurality of frequency selective reflectors are arranged.
 第1アライメントマークは、基材の周波数選択反射板側の面に配置されていてもよく、基材の周波数選択反射板とは反対側の面に配置されていてもよい。また、第1アライメントマークの検出を妨げなければ、第1アライメントマークの上に保護層等の何らかの被覆層が配置されていてもよい。 The first alignment mark may be arranged on the surface of the base material on the frequency selective reflection plate side, or may be arranged on the surface of the base material on the opposite side to the frequency selective reflection plate. Moreover, some kind of covering layer such as a protective layer may be disposed on the first alignment mark as long as it does not interfere with the detection of the first alignment mark.
 第1アライメントマークの厚さは、第1アライメントマークを精度良く形成することが可能な厚さであれば特に限定されず、第1アライメントマークの光学特性等に応じて適宜調整される。 The thickness of the first alignment mark is not particularly limited as long as the first alignment mark can be formed with high precision, and is adjusted as appropriate depending on the optical characteristics of the first alignment mark.
 第1アライメントマークの材料は、例えば、金属、合金、金属酸化物、金属窒化物等の金属材料や、樹脂が挙げられる。樹脂の場合、着色剤を添加できる。中でも、第1アライメントマークによる電磁波の反射の影響を考慮すると、樹脂が好ましい。 Examples of the material of the first alignment mark include metal materials such as metals, alloys, metal oxides, and metal nitrides, and resins. In the case of resins, colorants can be added. Among these, resin is preferable in consideration of the influence of reflection of electromagnetic waves by the first alignment mark.
 第1アライメントマークの形成方法は、第1アライメントマークの材料等に応じて適宜選択される。金属材料の場合、第1アライメントマークの形成方法は、例えば、フォトリソグラフィ法、マスク蒸着法、リフトオフ法、印刷法が挙げられる。また、樹脂の場合、第1アライメントマークの形成方法は、例えば、フォトリソグラフィ法、印刷法が挙げられる。印刷法としては、インクジェット法、シルクスクリーン印刷法、転写法等の一般的な方法を用いることができる。 The method for forming the first alignment mark is appropriately selected depending on the material of the first alignment mark. In the case of a metal material, examples of the method for forming the first alignment mark include a photolithography method, a mask vapor deposition method, a lift-off method, and a printing method. Furthermore, in the case of resin, examples of the method for forming the first alignment mark include a photolithography method and a printing method. As the printing method, general methods such as an inkjet method, a silk screen printing method, and a transfer method can be used.
(3)第1識別マーク
 本実施態様においては、例えば図2に示すように、基材21は、周波数選択反射板1の位置を識別するための第1識別マーク23を有していてもよい。例えば図2において、基材21は、「No1」「No2」「No3」「No4」の第1識別マーク23を有している。基材が第1識別マークを有することにより、各周波数選択反射板の位置を容易に識別できるので、各周波数選択反射板を正しい位置に確実かつ容易に配置できる。特に、後述するように、複数の周波数選択反射板の反射特性が互いに異なる場合には有用である。
(3) First identification mark In this embodiment, for example, as shown in FIG. 2, the base material 21 may have a first identification mark 23 for identifying the position of the frequency selective reflector 1. . For example, in FIG. 2, the base material 21 has first identification marks 23 of "No. 1", "No. 2", "No. 3", and "No. 4". Since the base material has the first identification mark, the position of each frequency selective reflector can be easily identified, so that each frequency selective reflector can be reliably and easily arranged at the correct position. This is particularly useful when the reflection characteristics of a plurality of frequency selective reflectors are different from each other, as will be described later.
 第1識別マークは、光不透過性を有していてもよい。また、第1識別マークは、光反射性を有していてもよい。これらの第1識別マークの光学特性は、上記第1アライメントマークと同様に、透過光および反射光のいずれにより第1識別マークを検出するのかに応じて適宜選択される。 The first identification mark may be optically opaque. Furthermore, the first identification mark may have light reflectivity. The optical characteristics of these first identification marks are appropriately selected depending on whether the first identification mark is detected using transmitted light or reflected light, similarly to the first alignment mark described above.
 第1識別マークの透過率や反射率は、第1識別マークを透過光または反射光によって検出可能であれば特に限定されず、第1識別マークの材料や厚さ等に応じて適宜設定できる。 The transmittance and reflectance of the first identification mark are not particularly limited as long as the first identification mark can be detected by transmitted light or reflected light, and can be appropriately set according to the material, thickness, etc. of the first identification mark.
 第1識別マークは、識別可能なマークであれば特に限定されず、例えば、文字、記号、図形が挙げられる。具体的には、コードが挙げられる。また、第1識別マークは、光学文字認識(Optical Character Recognition;OCR)可能なデータであってもよい。 The first identification mark is not particularly limited as long as it is an identifiable mark, and examples thereof include letters, symbols, and figures. A specific example is a code. Further, the first identification mark may be data that can be optically recognized (OCR).
 第1識別マークの大きさや線幅は、第1識別マークを検出可能であれば特に限定されない。 The size and line width of the first identification mark are not particularly limited as long as the first identification mark can be detected.
 基材における第1識別マークの位置は、各周波数選択反射板の位置を識別することが可能であれば特に限定されない。 The position of the first identification mark on the base material is not particularly limited as long as it is possible to identify the position of each frequency selective reflector.
 第1識別マークは、基材の周波数選択反射板側の面に配置されていてもよく、基材の周波数選択反射板とは反対側の面に配置されていてもよい。また、第1識別マークの検出を妨げなければ、第1識別マークの上に保護層等の何らかの被覆層が配置されていてもよい。 The first identification mark may be arranged on the surface of the base material on the side of the frequency selective reflector, or may be arranged on the surface of the base material on the opposite side to the frequency selective reflector. Furthermore, some kind of covering layer such as a protective layer may be disposed on the first identification mark as long as it does not interfere with the detection of the first identification mark.
 第1識別マークの厚さ、材料、形成方法は、第1アライメントマークの厚さ、材料、形成方法と同様である。 The thickness, material, and formation method of the first identification mark are the same as those of the first alignment mark.
 第1識別マークの材料が第1アライメントマークの材料と同一である場合には、第1アライメントマークおよび第1識別マークを同時に形成できる。 If the material of the first identification mark is the same as the material of the first alignment mark, the first alignment mark and the first identification mark can be formed at the same time.
2.周波数選択反射板
 本実施態様における周波数選択反射板は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する部材である。
2. Frequency Selective Reflector The frequency selective reflector in this embodiment is a member that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction.
(1)隣接する周波数選択反射板間の距離
 本実施態様において、隣接する周波数選択反射板間の距離は、特定の周波数帯の電磁波の波長の1/2未満であり、1/5以下が好ましく、1/10以下がより好ましい。隣接する周波数選択反射板間の距離が上記範囲であることにより、反射構造体全体での反射波の波面の乱れを抑制できる。後述するように、電磁波の周波数帯は、2.5GHz以上が好ましく、24GHz以上がより好ましい。すなわち、電磁波の空気中での波長は、119.92mm以下が好ましく、12.49mm以下がより好ましい。そのため、隣接する周波数選択反射板間の距離は、具体的には、好ましくは59.96mm以下程度、より好ましくは6.245mm以下程度である。また、隣接する周波数選択反射板間の距離は短いほど好ましく、下限値は特に限定されない。
(1) Distance between adjacent frequency selective reflectors In this embodiment, the distance between adjacent frequency selective reflectors is less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band, preferably 1/5 or less. , more preferably 1/10 or less. By setting the distance between adjacent frequency selective reflection plates within the above range, it is possible to suppress disturbance of the wavefront of reflected waves in the entire reflection structure. As will be described later, the frequency band of the electromagnetic waves is preferably 2.5 GHz or higher, more preferably 24 GHz or higher. That is, the wavelength of the electromagnetic waves in the air is preferably 119.92 mm or less, more preferably 12.49 mm or less. Therefore, specifically, the distance between adjacent frequency selective reflectors is preferably about 59.96 mm or less, more preferably about 6.245 mm or less. Moreover, the shorter the distance between adjacent frequency selective reflectors, the better, and the lower limit is not particularly limited.
(2)周波数選択反射板の実施態様
 周波数選択反射板としては、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する部材であれば特に限定されず、例えば、上記電磁波を反射する反射部材を有し、この反射部材が、上記電磁波の反射位相を制御する反射位相制御機能を有していてもよく、あるいは、基材側から順に、上記電磁波を反射する反射部材と、所定の方向に厚さが増加する厚さ分布を有する単位構造が複数配置された凹凸構造を有し、上記電磁波を透過する誘電体層とを有していてもよい。
(2) Embodiment of frequency selective reflector The frequency selective reflector is not particularly limited as long as it is a member that reflects electromagnetic waves in a specific frequency band in a direction different from the direction of specular reflection; for example, it reflects the electromagnetic waves mentioned above. The reflecting member may have a reflection phase control function of controlling the reflection phase of the electromagnetic wave, or the reflecting member that reflects the electromagnetic wave and a predetermined It may have a concavo-convex structure in which a plurality of unit structures having a thickness distribution increasing in the direction are arranged, and a dielectric layer that transmits the electromagnetic waves.
 以下、周波数選択反射板が、上記電磁波を反射する反射部材を有し、この反射部材が、上記電磁波の反射位相を制御する反射位相制御機能を有する第1態様と、基材側から順に、上記電磁波を反射する反射部材と、所定の方向に厚さが増加する厚さ分布を有する単位構造が複数配置された凹凸構造を有し、上記電磁波を透過する誘電体層とを有する第2態様とに分けて説明する。 Hereinafter, a first aspect in which the frequency selective reflector plate has a reflection member that reflects the electromagnetic wave, and the reflection member has a reflection phase control function that controls the reflection phase of the electromagnetic wave; A second aspect comprising a reflective member that reflects electromagnetic waves, and a dielectric layer that has an uneven structure in which a plurality of unit structures having a thickness distribution increasing in a predetermined direction is arranged and that transmits the electromagnetic waves. I will explain it separately.
(2-1)周波数選択反射板の第1態様
 本実施態様における周波数選択反射板の第1態様は、上記電磁波を反射する反射部材を有し、この反射部材が、上記電磁波の反射位相を制御する反射位相制御機能を有する。
(2-1) First aspect of frequency selective reflector The first aspect of the frequency selective reflector in this embodiment has a reflective member that reflects the electromagnetic waves, and this reflective member controls the reflection phase of the electromagnetic waves. It has a reflection phase control function.
(a)反射部材
 本態様における反射部材は、特定の周波数帯の電磁波を反射し、電磁波の反射位相を制御する反射位相制御機能を有する部材である。
(a) Reflection member The reflection member in this embodiment is a member having a reflection phase control function of reflecting electromagnetic waves in a specific frequency band and controlling the reflection phase of the electromagnetic waves.
 本態様において、反射部材は、通常、特定の周波数帯の電磁波のみを反射する波長選択機能を有する。このような反射部材としては、例えば、周波数選択板を挙げることができる。 In this aspect, the reflecting member usually has a wavelength selection function that reflects only electromagnetic waves in a specific frequency band. An example of such a reflecting member is a frequency selection plate.
 周波数選択板は、特定の周波数帯の電磁波に対して反射、透過を制御する周波数選択性表面(FSS;Frequency Selective Surface)を有しており、特定の周波数帯の電磁波に対する反射板として機能する場合は、面内に複数の反射素子(散乱素子)が配列されたものである。周波数選択板としては、例えば、誘電体基板と、誘電体基板の電磁波入射側の面に配列された複数の反射素子とを有するものを挙げることができる。 The frequency selection plate has a frequency selective surface (FSS) that controls reflection and transmission of electromagnetic waves in a specific frequency band, and functions as a reflector for electromagnetic waves in a specific frequency band. A plurality of reflective elements (scattering elements) are arranged in a plane. Examples of the frequency selection board include one having a dielectric substrate and a plurality of reflective elements arranged on the surface of the dielectric substrate on the electromagnetic wave incident side.
 図3(a)、(b)は、本態様の周波数選択反射板を有する反射構造体の一例を示す概略平面図および断面図であり、図3(b)は図3(a)のA-A線断面図である。図3(a)、(b)に示すように、周波数選択反射板1は、特定の周波数帯の電磁波を反射する反射部材2を有しており、反射部材2は、複数のリング状の反射素子3が配列されたものであり、誘電体基板4と、誘電体基板4の基材21とは反対側の面(電磁波入射側の面)に配置された複数の反射素子3とを有している。図3(a)、(b)は、反射部材2が周波数選択板である例である。反射部材2は、電磁波の反射位相を制御する反射位相制御機能を有しており、例えば図3(a)、(b)に示す反射部材2においては、反射素子3の寸法を変化させることによって、反射素子3毎に共振周波数を変化させ、対象とする電磁波の反射位相を制御できる。これにより、電磁波の所定の入射方向に対する反射方向を任意の方向に制御できる。 3(a) and 3(b) are a schematic plan view and a sectional view showing an example of a reflective structure having a frequency selective reflector according to the present embodiment, and FIG. 3(b) is an A-- It is an A-line sectional view. As shown in FIGS. 3(a) and 3(b), the frequency selective reflector 1 has a reflective member 2 that reflects electromagnetic waves in a specific frequency band, and the reflective member 2 has a plurality of ring-shaped reflective It has a dielectric substrate 4 and a plurality of reflective elements 3 arranged on the surface of the dielectric substrate 4 opposite to the base material 21 (the surface on the electromagnetic wave incident side). ing. FIGS. 3(a) and 3(b) are examples in which the reflecting member 2 is a frequency selection plate. The reflecting member 2 has a reflection phase control function that controls the reflection phase of electromagnetic waves. For example, in the reflecting member 2 shown in FIGS. 3(a) and 3(b), by changing the dimensions of the reflecting element 3, By changing the resonance frequency for each reflection element 3, the reflection phase of the target electromagnetic wave can be controlled. Thereby, the direction of reflection of electromagnetic waves relative to a predetermined incident direction can be controlled in any direction.
 図4(a)~(c)は、本態様の周波数選択反射板を有する反射構造体の他の例を示す概略平面図および断面図であり、図4(a)は周波数選択反射板の一方の面Sf1から見た平面図、図4(b)は周波数選択反射板の他方の面Sf2から見た平面図、図4(c)は図4(a)および図4(b)のA-A線断面図である。図4(a)~(c)に示すように、周波数選択反射板1は、特定の周波数帯の電磁波を反射する反射部材2を有しており、反射部材2は、複数のリング状の反射素子3が配列されたものであり、誘電体基板4と、誘電体基板4の基材21とは反対側の面(電磁波入射側の面)に配置された複数の反射素子3aと、誘電体基板4の基材21側の面に配置された複数の反射素子3bとを有している。図4(a)~(c)は、反射部材2が周波数選択板である例である。反射部材2は、電磁波の反射位相を制御する反射位相制御機能を有しており、例えば図4(a)~(c)に示す反射部材2においては、反射素子3aの寸法を変化させることによって、反射素子3a毎に共振周波数を変化させ、対象とする電磁波の反射位相を制御できる。これにより、電磁波の所定の入射方向に対する反射方向を任意の方向に制御できる。 FIGS. 4(a) to 4(c) are a schematic plan view and a cross-sectional view showing another example of a reflective structure having a frequency selective reflector according to the present embodiment, and FIG. 4(a) shows one of the frequency selective reflectors. 4(b) is a plan view seen from the other surface Sf2 of the frequency selective reflector, and FIG. 4(c) is a plan view seen from the surface Sf1 of FIG. 4(a) and FIG. 4(b). It is an A-line sectional view. As shown in FIGS. 4(a) to 4(c), the frequency selective reflector 1 has a reflective member 2 that reflects electromagnetic waves in a specific frequency band, and the reflective member 2 has a plurality of ring-shaped reflective Elements 3 are arranged, including a dielectric substrate 4, a plurality of reflective elements 3a arranged on the surface of the dielectric substrate 4 opposite to the base material 21 (the surface on the electromagnetic wave incident side), and a dielectric substrate 4. It has a plurality of reflective elements 3b arranged on the surface of the substrate 4 on the base material 21 side. 4(a) to (c) are examples in which the reflecting member 2 is a frequency selection plate. The reflecting member 2 has a reflection phase control function that controls the reflection phase of electromagnetic waves. For example, in the reflecting member 2 shown in FIGS. 4(a) to 4(c), by changing the dimensions of the reflecting element 3a, By changing the resonance frequency for each reflection element 3a, the reflection phase of the target electromagnetic wave can be controlled. Thereby, the direction of reflection of electromagnetic waves relative to a predetermined incident direction can be controlled in any direction.
 周波数選択板は、公知の周波数選択板の中から適宜選択して用いることができる。 The frequency selection plate can be appropriately selected from known frequency selection plates.
 周波数選択性表面を形成する反射素子の形状としては、特に限定されず、例えば、リング状、十字状、正方形状、長方形状、円形状、楕円形状、棒状、近接した複数領域に分割されたパターン等の平面パターン、及びスルーホールビア等による三次元構造等、任意の形状を挙げることができる。 The shape of the reflective element forming the frequency selective surface is not particularly limited, and examples include a ring shape, a cross shape, a square shape, a rectangular shape, a circular shape, an elliptical shape, a rod shape, and a pattern divided into a plurality of adjacent regions. Any shape can be mentioned, such as a planar pattern such as , a three-dimensional structure with through-hole vias, etc.
 また、反射素子は、例えば、単層であってもよく、多層であってもよい。反射素子が単層である場合、周波数選択板としては、例えば、図3(a)~(b)に示すような誘電体基板の片面に複数の反射素子が配列されたものを挙げることができる。また、反射素子が多層である場合、周波数選択板としては、例えば、図4(a)~(c)に示すような誘電体基板の両面に複数の反射素子が配列されたもの、誘電体基板と複数の反射素子と誘電体基板と複数の反射素子とが順に配置されたもの、電磁波の入射側の面から最も遠い面に一面導体が配置されているものを挙げることができる。この一面導体は後述のグラウンド層の機能を有するが、グラウンド層よりも電磁波の入射側の面にある複数の反射素子はグラウンド層が存在する前提で設計される。 Further, the reflective element may be, for example, a single layer or a multilayer. When the reflective element is a single layer, the frequency selection plate may include, for example, one in which a plurality of reflective elements are arranged on one side of a dielectric substrate as shown in FIGS. 3(a) and 3(b). . In addition, when the reflective element is multi-layered, the frequency selection plate may be one in which a plurality of reflective elements are arranged on both sides of a dielectric substrate as shown in FIGS. 4(a) to (c), a dielectric substrate, etc. Examples include one in which a plurality of reflective elements, a dielectric substrate, and a plurality of reflective elements are arranged in this order, and one in which a one-sided conductor is arranged on the surface farthest from the surface on the electromagnetic wave incident side. Although this one-sided conductor has the function of a ground layer, which will be described later, the plurality of reflective elements located on the surface closer to the electromagnetic wave incident side than the ground layer are designed on the premise that the ground layer exists.
 本態様において、反射部材は、電磁波の反射位相を制御する反射位相制御機能を有する。このような反射部材においては、反射素子の寸法や形状を変化させることによって、反射素子毎に共振周波数を変化させ、電磁波の反射位相を制御でき、これにより、所定の方向から入射した電磁波の反射方向を制御できる。 In this aspect, the reflection member has a reflection phase control function that controls the reflection phase of electromagnetic waves. In such a reflecting member, by changing the dimensions and shape of the reflecting element, the resonance frequency can be changed for each reflecting element and the reflection phase of electromagnetic waves can be controlled. You can control the direction.
 反射位相制御機能を有する反射部材としては、一般的な周波数選択性表面を適用することができる。これらは設計に一長一短はあるが、いずれも反射素子の寸法や形状を変化させることで電磁波の反射位相を変化させることが可能である。 A general frequency-selective surface can be used as the reflection member having a reflection phase control function. These have advantages and disadvantages in design, but all of them allow the reflected phase of electromagnetic waves to be changed by changing the dimensions and shape of the reflecting element.
 反射素子の異なる寸法としては、反射素子の形状に応じて適宜選択される。 The different dimensions of the reflective element are appropriately selected depending on the shape of the reflective element.
 誘電体基板は、光透過性を有していてもよく、光不透過性を有していてもよい。 The dielectric substrate may be optically transparent or optically opaque.
(b)他の構成
 本態様の周波数選択反射板は、上記の反射部材の他に、必要に応じて他の構成を有していてもよい。
(b) Other configurations In addition to the above-mentioned reflecting member, the frequency selective reflection plate of this embodiment may have other configurations as necessary.
(i)保護部材
 本実施態様の周波数選択反射板は、上記反射部材の上記基材とは反対側の面に保護部材を有していてもよい。保護部材によって、反射部材を保護できる。また、保護部材によって、意匠性を付与することもできる。
(i) Protective Member The frequency selective reflector of this embodiment may have a protective member on the surface of the reflective member opposite to the base material. The reflective member can be protected by the protective member. Further, the protective member can also add design properties.
(ii)グラウンド層
 本態様の周波数選択反射板は、上記反射部材の上記基材側の面にグラウンド層を有していてもよい。グラウンド層によって、周波数選択反射板の裏面に存在する物体との干渉を遮断し、ノイズの発生を抑えることができる。グラウンド層としては、導電性を有していればよく、例えば、金属層、金属メッシュ、カーボン膜、ITO膜等の一般的な導電層を用いることができる。
(ii) Ground layer The frequency selective reflector of this embodiment may have a ground layer on the surface of the reflecting member on the base material side. The ground layer can block interference with objects on the back side of the frequency selective reflector and suppress the generation of noise. The ground layer only needs to have conductivity, and for example, a general conductive layer such as a metal layer, metal mesh, carbon film, ITO film, etc. can be used.
(iii)平坦化層
 本態様の周波数選択反射板は、上記反射部材の上記基材とは反対側の面に平坦化層を有していてもよい。反射部材が複数の反射素子が配列された部材である場合には、平坦化層によって、反射素子による凹凸を平坦化することができ、反射部材上に保護部材を配置する際の反射素子による凹凸の影響を抑えることができる。平坦化層としては、反射素子を包埋する状態で配置された電離放射線硬化樹脂層を例示することができる。また、反射部材と保護部材との間に空間を設ける形態の場合は、平坦化層に反射素子を保護する機能を持たせてもよい。
(iii) Flattening layer The frequency selective reflection plate of this aspect may have a flattening layer on the surface of the reflective member opposite to the base material. When the reflective member is a member in which a plurality of reflective elements are arranged, the unevenness caused by the reflective elements can be flattened by the flattening layer, and the unevenness caused by the reflective elements can be flattened when a protective member is placed on the reflective member. The impact of this can be suppressed. An example of the flattening layer is an ionizing radiation-cured resin layer disposed so as to embed the reflective element. Furthermore, in the case of a configuration in which a space is provided between the reflective member and the protective member, the flattening layer may have a function of protecting the reflective element.
(2-2)周波数選択反射板の第2態様
 本実施態様における周波数選択反射板の第2態様は、上記基材側から順に、上記電磁波を反射する反射部材と、所定の方向に厚さが増加する厚さ分布を有する単位構造が複数配置された凹凸構造を有し、上記電磁波を透過する誘電体層と、を有する。本態様の周波数選択反射板においては、上記誘電体層の上記単位構造は、厚さの異なる複数のセル領域を有し、上記誘電体層の各単位構造では、上記単位構造の上記所定の方向の長さを横軸とし、上記電磁波が上記誘電体層を透過し上記反射部材で反射され上記誘電体層を再度透過して上記電磁波の入射側に放出される際の相対反射位相を縦軸とし、上記電磁波の相対反射位相の値が-360度超0度以下であるグラフに、各セル領域の上記所定の方向の中心位置および各セル領域での上記電磁波の相対反射位相に対応する点をプロットし、最小厚さを有する最小厚さセル領域に対応する点を通る直線を引いたとき、各点が同一直線上にあり、上記誘電体層が、上記単位構造として、厚さの異なる3つ以上の上記セル領域を有する第1の単位構造を少なくとも有し、上記誘電体層の厚さ分布によって上記電磁波の相対反射位相分布を制御することにより、上記電磁波の反射方向を制御するものである。
(2-2) Second aspect of the frequency selective reflector The second aspect of the frequency selective reflector in this embodiment includes, in order from the base material side, a reflective member that reflects the electromagnetic waves and a thickness in a predetermined direction. The dielectric layer has an uneven structure in which a plurality of unit structures having an increasing thickness distribution are arranged, and transmits the electromagnetic waves. In the frequency selective reflector of this aspect, the unit structure of the dielectric layer has a plurality of cell regions having different thicknesses, and each unit structure of the dielectric layer has a plurality of cell regions arranged in the predetermined direction of the unit structure. The horizontal axis is the length, and the vertical axis is the relative reflection phase when the electromagnetic wave is transmitted through the dielectric layer, reflected by the reflective member, transmitted through the dielectric layer again, and emitted to the incident side of the electromagnetic wave. Then, on the graph where the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees, a point corresponding to the center position of each cell area in the above predetermined direction and the relative reflection phase of the electromagnetic wave in each cell area. When plotting and drawing a straight line passing through the points corresponding to the minimum thickness cell region having the minimum thickness, each point is on the same straight line, and the dielectric layer has different thicknesses as the unit structure. It has at least a first unit structure having three or more cell regions, and controls the direction of reflection of the electromagnetic wave by controlling the relative reflection phase distribution of the electromagnetic wave according to the thickness distribution of the dielectric layer. It is.
 図5(a)、(b)は、本態様の周波数選択反射板を有する反射構造体の一例を示す概略平面図および断面図であり、図5(b)は図5(a)のA-A線断面図である。図5(a)、(b)に示すように、周波数選択反射板1は、基材21側から順に、特定の電磁波を反射する反射部材2と、所定の方向D1に厚さt1~t6が増加する厚さ分布を有する単位構造10が複数配置された凹凸構造を有し、特定の電磁波を透過する誘電体層5と、を有する。また、周波数選択反射板1は、反射部材2および誘電体層5の間に接着層6を有することができる。誘電体層5の単位構造10は、厚さt1~t6の異なる複数のセル領域11a~11fを有する。例えば図5(b)においては、誘電体層5の単位構造10は、所定の方向D1に厚さt1~t6が段階的に増加する階段形状を有しており、階段形状の段数が6段であり、誘電体層5の単位構造10は6個のセル領域11a~11fを有している。誘電体層5の単位構造10の各セル領域11a~11fでは、厚さt1~t6が異なるため、電磁波が誘電体層5を透過し反射部材2で反射され誘電体層5を再度透過して電磁波の入射側に放出される際の往復の光路長が異なることになり、これらの誘電体層での往復光路長の差、つまり光路差が相対反射位相の差を生み出すことになる。 5(a) and 5(b) are a schematic plan view and a cross-sectional view showing an example of a reflection structure having a frequency selective reflector according to the present embodiment, and FIG. 5(b) is an A-- It is an A-line sectional view. As shown in FIGS. 5(a) and 5(b), the frequency selective reflector 1 includes, in order from the base material 21 side, a reflecting member 2 that reflects a specific electromagnetic wave, and a thickness t1 to t6 in a predetermined direction D1. It has an uneven structure in which a plurality of unit structures 10 having an increasing thickness distribution are arranged, and a dielectric layer 5 that transmits a specific electromagnetic wave. Further, the frequency selective reflector 1 can have an adhesive layer 6 between the reflective member 2 and the dielectric layer 5. The unit structure 10 of the dielectric layer 5 has a plurality of cell regions 11a to 11f having different thicknesses t1 to t6. For example, in FIG. 5B, the unit structure 10 of the dielectric layer 5 has a step shape in which the thicknesses t1 to t6 increase stepwise in a predetermined direction D1, and the number of steps in the step shape is 6. The unit structure 10 of the dielectric layer 5 has six cell regions 11a to 11f. Since the cell regions 11a to 11f of the unit structure 10 of the dielectric layer 5 have different thicknesses t1 to t6, the electromagnetic waves are transmitted through the dielectric layer 5, reflected by the reflective member 2, and transmitted through the dielectric layer 5 again. The round trip optical path lengths when the electromagnetic waves are emitted to the incident side are different, and the difference in the round trip optical path lengths between these dielectric layers, that is, the optical path difference, creates a difference in relative reflection phase.
 ここで、本明細書において、「光路長」という用語を用いたのは、本開示において対象とする周波数帯の波長が従来のLTE以前の周波数帯に比べると光に近づき直進性も高くなることから、光に類似の挙動としたほうが説明しやすいためであり、実際には誘電体層の中を電磁波が通過する際の実効距離を意味する。 Here, in this specification, the term "optical path length" is used because the wavelength of the frequency band targeted in this disclosure is closer to light than the conventional pre-LTE frequency band, and has a higher straightness. Therefore, it is easier to explain if the behavior is similar to that of light, and in reality it means the effective distance that electromagnetic waves travel through a dielectric layer.
 そして、誘電体層5の単位構造10では、単位構造10の所定の方向D1の長さLを横軸とし、電磁波が誘電体層5を透過し反射部材2で反射され誘電体層5を再度透過して電磁波の入射側に放出される際の相対反射位相を縦軸とし、電磁波の相対反射位相の値が-360度超0度以下であるグラフに、各セル領域の所定の方向D1の中心位置および各セル領域での電磁波の相対反射位相に対応する点をプロットし、最小厚さを有する最小厚さセル領域に対応する点を通る直線を引いたとき、各点が同一直線上にある。 In the unit structure 10 of the dielectric layer 5, the length L in the predetermined direction D1 of the unit structure 10 is taken as the horizontal axis, and the electromagnetic wave is transmitted through the dielectric layer 5, reflected by the reflective member 2, and then the dielectric layer 5 is recirculated. The vertical axis is the relative reflection phase when the electromagnetic wave is transmitted and emitted to the incident side, and the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees. When plotting the points corresponding to the center position and the relative reflection phase of the electromagnetic waves in each cell area, and drawing a straight line passing through the point corresponding to the minimum thickness cell area with the minimum thickness, each point is on the same straight line. be.
 図5(c)は、誘電体層5の単位構造10の所定の方向D1の長さLを横軸とし、電磁波が誘電体層5を透過し反射部材2で反射され誘電体層5を再度透過して電磁波の入射側に放出される際の相対反射位相を縦軸とし、電磁波の相対反射位相の値が-360度超0度以下であるグラフであり、図5(a)、(b)に示す周波数選択反射板における誘電体層の単位構造の各セル領域での電磁波の相対反射位相の例である。図5(c)に示すように、誘電体層5の単位構造10の各セル領域11a~11fでの電磁波の相対反射位相はそれぞれ、0度、-60度、-120度、-180度、-240度、-300度であり、隣接するセル領域での電磁波の相対反射位相の差の絶対値は60度である。この場合、誘電体層5の単位構造10の6個のセル領域11a~11fの厚さt1~t6は、隣接するセル領域での電磁波の相対反射位相の差の絶対値が360度を6で除した値、つまり60度になるように、設計されている。そして、図5(c)に示すように、誘電体層5の単位構造10の各セル領域11a~11fの所定の方向D1の中心位置および各セル領域11a~11fでの電磁波の相対反射位相に対応する点をプロットし、各セル領域11a~11fのうち最小厚さt1を有する最小厚さセル領域11aに対応する点を通る直線(グラフ中の実線)を引いたとき、各点は同一直線上にある。 In FIG. 5(c), the horizontal axis is the length L in a predetermined direction D1 of the unit structure 10 of the dielectric layer 5, and the electromagnetic wave is transmitted through the dielectric layer 5, reflected by the reflective member 2, and then the dielectric layer 5 is recirculated. The vertical axis is the relative reflection phase when the electromagnetic wave is transmitted and emitted to the incident side, and the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees. ) is an example of the relative reflection phase of electromagnetic waves in each cell region of the unit structure of the dielectric layer in the frequency selective reflector shown in FIG. As shown in FIG. 5(c), the relative reflection phases of the electromagnetic waves in each cell region 11a to 11f of the unit structure 10 of the dielectric layer 5 are 0 degrees, -60 degrees, -120 degrees, -180 degrees, respectively. -240 degrees and -300 degrees, and the absolute value of the difference in relative reflection phases of electromagnetic waves in adjacent cell regions is 60 degrees. In this case, the thicknesses t1 to t6 of the six cell regions 11a to 11f of the unit structure 10 of the dielectric layer 5 are such that the absolute value of the difference in the relative reflection phase of electromagnetic waves in adjacent cell regions is 360 degrees. It is designed to be the value obtained by dividing the angle, that is, 60 degrees. As shown in FIG. 5(c), the center position of each cell region 11a to 11f of the unit structure 10 of the dielectric layer 5 in a predetermined direction D1 and the relative reflection phase of the electromagnetic waves in each cell region 11a to 11f are When the corresponding points are plotted and a straight line (solid line in the graph) passing through the point corresponding to the minimum thickness cell region 11a having the minimum thickness t1 among the cell regions 11a to 11f is drawn, each point is aligned with the same straight line. It's on the line.
 ここで、本明細書において、「反射位相」とは、ある表面に入射する入射波の位相に対する、反射波の位相の変化量をいうが、本態様の反射部材および誘電体層を有する周波数選択反射板においては、入射波の位相に対する、入射波が誘電体層を透過し反射部材で反射され誘電体層を再度透過して放出される際の反射波の位相の変化量をいう。 Here, in this specification, "reflection phase" refers to the amount of change in the phase of a reflected wave with respect to the phase of an incident wave that is incident on a certain surface. In a reflector, it refers to the amount of change in the phase of a reflected wave when the incident wave passes through the dielectric layer, is reflected by the reflective member, passes through the dielectric layer again, and is emitted, with respect to the phase of the incident wave.
 また、本明細書において、「相対反射位相」とは、誘電体層の一つの単位構造において、反射位相の遅れが最も少ないセル領域での反射位相を基準として、その基準の反射位相に対する、あるセル領域での反射位相の遅れを負号で示すものである。例えば、誘電体層の一つの単位構造において、反射位相の遅れが最も少ないセル領域での反射位相が-10度である場合、反射位相が-40度であるセル領域での相対反射位相は-30度になる。 In addition, in this specification, the term "relative reflection phase" refers to the reflection phase in a cell region where the delay in reflection phase is the least in one unit structure of the dielectric layer as a reference with respect to that reference reflection phase. The delay in the reflection phase in the cell region is indicated by a negative sign. For example, in one unit structure of the dielectric layer, if the reflection phase in a cell region with the least delay in reflection phase is -10 degrees, the relative reflection phase in a cell region where the reflection phase is -40 degrees is - It will be 30 degrees.
 なお、後述するように、反射部材が反射位相制御機能を有する場合には、セル領域での電磁波の相対反射位相は、反射部材での反射位相も合成した値とする。 Note that, as will be described later, when the reflection member has a reflection phase control function, the relative reflection phase of the electromagnetic wave in the cell region is a value that also combines the reflection phases in the reflection member.
 また、本明細書において、「セル領域」とは、誘電体層の単位構造において、電磁波の相対反射位相が同じである領域をいう。 Furthermore, in this specification, a "cell region" refers to a region in which the relative reflection phase of electromagnetic waves is the same in a unit structure of a dielectric layer.
 なお、反射位相は、特に断りのない限り、-360度超360度未満の範囲内であり、-360度および+360度は0度に戻る。また、相対反射位相は、特に断りのない限り、-360度超0度以下の範囲内であり、-360度は0度に戻る。 Note that unless otherwise specified, the reflection phase is within the range of more than -360 degrees and less than 360 degrees, and -360 degrees and +360 degrees return to 0 degrees. Further, unless otherwise specified, the relative reflection phase is within the range of more than -360 degrees and less than or equal to 0 degrees, and -360 degrees returns to 0 degrees.
 従来のような複数の反射素子が配列されたリフレクトアレイでは、例えば、反射素子の寸法や形状を調整することで、反射位相を遅らせることも、反射位相を進めることもできるが、本態様の周波数選択反射板においては、誘電体層の単位構造の各セル領域の厚さを調整することによって、基本的に反射位相が遅れることになる。そのため、相対反射位相については、反射位相の遅れが最も少ないセル領域での反射位相を基準としている。 In a conventional reflect array in which a plurality of reflective elements are arranged, for example, by adjusting the dimensions and shapes of the reflective elements, the reflection phase can be delayed or advanced. In a selective reflection plate, the reflection phase is basically delayed by adjusting the thickness of each cell region of the unit structure of the dielectric layer. Therefore, the relative reflection phase is based on the reflection phase in the cell region where the delay in reflection phase is the least.
 また、通常、誘電体層の一つの単位構造において、反射位相の遅れが最も少ないセル領域は、厚さが増加する所定の方向において最小厚さを有する最小厚さセル領域となる。そのため、上記のグラフにおいては、最小厚さを有する最小厚さセル領域に対応する点を通る直線を引くこととしている。 Further, in one unit structure of the dielectric layer, the cell region with the smallest reflection phase delay is usually the minimum thickness cell region having the minimum thickness in a predetermined direction in which the thickness increases. Therefore, in the above graph, a straight line is drawn that passes through the points corresponding to the minimum thickness cell regions having the minimum thickness.
 上述のように、誘電体層5の単位構造10の各セル領域11a~11fでは、厚さt1~t6が変化することで、誘電体層5での往復光路長が変化し、電磁波の相対反射位相が変化するため、図6に例示するように、電磁波の入射波W1を正反射(鏡面反射)方向とは異なる方向に反射させることができる。この場合、電磁波の入射波W1の入射角θ1と、電磁波の反射波W2の反射角θ2とは異なる。 As described above, in each cell region 11a to 11f of the unit structure 10 of the dielectric layer 5, by changing the thickness t1 to t6, the round trip optical path length in the dielectric layer 5 changes, and the relative reflection of electromagnetic waves changes. Since the phase changes, the incident electromagnetic wave W1 can be reflected in a direction different from the regular reflection (specular reflection) direction, as illustrated in FIG. In this case, the incident angle θ1 of the incident electromagnetic wave W1 is different from the reflection angle θ2 of the reflected electromagnetic wave W2.
 したがって、本態様の周波数選択反射板においては、誘電体層の単位構造の各セル領域の厚さを変化させることによって、セル領域毎に誘電体層での往復光路長を変化させ、電磁波の反射位相を制御できる。これにより、電磁波の所定の入射方向に対する反射方向を任意の方向に制御できる。 Therefore, in the frequency selective reflector of this embodiment, by changing the thickness of each cell region of the unit structure of the dielectric layer, the round trip optical path length in the dielectric layer is changed for each cell region, and the electromagnetic waves are reflected. Phase can be controlled. Thereby, the direction of reflection of electromagnetic waves relative to a predetermined incident direction can be controlled in any direction.
 また、本態様における誘電体層の凹凸構造は、例えば、切削、レーザー加工、金型を使用した賦型、3Dプリンタ、小片パーツの接合等の種々の手法によって形成できる。そのため、従来のリフレクトアレイにおける金属層のフォトリソグラフィ加工のように、フォトマスクを必要としない。よって、シチュエーションに合わせて目的の入射角および反射角をもつ反射特性になるように、誘電体層の単位構造の各セル領域の厚さを設計し、誘電体層を形成する場合に、比較的安価、短期に所望の誘電体層を形成することができ、少量多品種のニーズに対応することが容易である。また、反射特性の制御に影響する誘電体層の厚さや誘電体層の単位構造のサイズについては、加工可能範囲が比較的広いことから、例えば電磁波の入射・反射角を大きくすることも可能であり、反射特性の制御域を広くすることができる。さらに、誘電体層の厚さや誘電体層の単位構造のセル領域のピッチについては、所望の反射位相を実現するための寸法加工精度のマージンが比較的広いことから、所望の反射特性を得られやすく、寸法ばらつきの影響も軽減することができる。したがって、周波数選択反射板の反射特性をカスタマイズすることが容易である。 Further, the uneven structure of the dielectric layer in this embodiment can be formed by various methods such as cutting, laser processing, molding using a mold, 3D printer, and joining of small pieces. Therefore, unlike photolithography processing of metal layers in conventional reflect arrays, a photomask is not required. Therefore, when forming the dielectric layer by designing the thickness of each cell region of the unit structure of the dielectric layer so that the reflection characteristics have the desired incident angle and reflection angle according to the situation, it is necessary to A desired dielectric layer can be formed at low cost and in a short period of time, and it is easy to meet the needs of a wide variety of products in small quantities. In addition, the thickness of the dielectric layer and the size of the unit structure of the dielectric layer, which affect the control of reflection characteristics, can be processed in a relatively wide range, so it is possible to increase the angle of incidence and reflection of electromagnetic waves, for example. Yes, it is possible to widen the control range of reflection characteristics. Furthermore, regarding the thickness of the dielectric layer and the pitch of the cell regions of the unit structure of the dielectric layer, there is a relatively wide margin for dimensional processing accuracy to achieve the desired reflection phase, so it is difficult to obtain the desired reflection characteristics. The effect of dimensional variations can also be reduced. Therefore, it is easy to customize the reflection characteristics of the frequency selective reflector.
 また、本態様の周波数選択反射板においては、反射部材は、特定の電磁波のみを反射する周波数選択板とすることができる。例えば図5(a)、(b)においては、反射部材2は、複数のリング状の反射素子3が配列されたものであり、誘電体基板4と、誘電体基板4の誘電体層5側の面に配置された複数の反射素子3とを有している。 Furthermore, in the frequency selective reflecting plate of this embodiment, the reflecting member can be a frequency selective plate that reflects only specific electromagnetic waves. For example, in FIGS. 5(a) and 5(b), the reflective member 2 has a plurality of ring-shaped reflective elements 3 arranged, and includes a dielectric substrate 4 and a dielectric layer 5 side of the dielectric substrate 4. It has a plurality of reflective elements 3 arranged on the surface.
 さらに、本態様の周波数選択反射板においては、反射部材は、特定の電磁波のみを反射する周波数選択板であり、かつ、電磁波の反射位相を制御する反射位相制御機能を有する部材とすることができる。このような反射部材においては、反射素子の寸法や形状を変化させることによって、反射素子毎に共振周波数を変化させ、対象とする電磁波の反射位相を制御できる。この場合、誘電体層の厚さだけでなく反射素子の寸法や形状によっても電磁波の反射位相を制御でき、反射特性の制御についての設計自由度を向上させることができる。 Furthermore, in the frequency selective reflector of this embodiment, the reflective member is a frequency selective plate that reflects only a specific electromagnetic wave, and can also be a member that has a reflection phase control function that controls the reflection phase of the electromagnetic wave. . In such a reflecting member, by changing the size and shape of the reflecting element, the resonance frequency can be changed for each reflecting element, and the reflection phase of the target electromagnetic wave can be controlled. In this case, the reflection phase of the electromagnetic wave can be controlled not only by the thickness of the dielectric layer but also by the size and shape of the reflective element, and the degree of freedom in design for controlling the reflection characteristics can be improved.
 よって、本態様の周波数選択反射板においては、上記のような反射部材を用いる場合には、上記誘電体層と組み合わせることにより、反射特性の制御の自由度を広げることができる。そのため、周波数選択反射板の反射特性のカスタマイズをより容易にすることができる。例えば、天地方向の反射特性は反射部材で複数種類を準備しておき、水平方向の反射特性を調整する誘電体層と組み合わせるといった運用は一つの例である。 Therefore, in the frequency selective reflector of this embodiment, when the above-mentioned reflecting member is used, the degree of freedom in controlling the reflection characteristics can be expanded by combining it with the above-mentioned dielectric layer. Therefore, it is possible to more easily customize the reflection characteristics of the frequency selective reflector. For example, one example is to prepare a plurality of types of reflective members with reflective characteristics in the vertical direction and combine them with a dielectric layer that adjusts the reflective characteristics in the horizontal direction.
 また、本開示の発明者らは、本態様の反射部材および誘電体層を有する周波数選択反射板において、反射部材を、特定の電磁波のみを反射する反射素子を有する周波数選択板とした場合に、特定の周波数帯の電磁波の反射特性のシミュレーションを行ったところ、反射部材(周波数選択板)に誘電体層が近接することによる反射素子での反射位相のずれよりも、誘電体層の単位構造のセル領域の厚さを変化させて、セル領域毎に誘電体層での往復光路長を変化させたときの反射位相のずれのほうが大きく、実質的な反射特性の設計は、誘電体層の凹凸構造の設計でほぼ決めることが可能であることを見出した。このとき、反射素子の共振周波数は、近接する誘電体層の有無で変動するが、誘電体層が存在する前提で設計をしておけば、実用上の問題は解消される。さらに、周波数選択反射板における反射位相の面内分布設計を実現する誘電体層の凹凸構造の面内配置は、反射部材の反射素子の面内配置に対して一定の位置関係である必要はなく、誘電体層の凹凸構造を反射素子の面内配置に対してずらして配置しても反射特性に大きな影響を与えないことを見出した。 In addition, the inventors of the present disclosure have discovered that in the frequency selective reflector having the reflective member and dielectric layer of the present embodiment, when the reflective member is a frequency selective plate having a reflective element that reflects only specific electromagnetic waves, When we simulated the reflection characteristics of electromagnetic waves in a specific frequency band, we found that the shift in the reflection phase at the reflective element due to the proximity of the dielectric layer to the reflective member (frequency selection plate) was due to the unit structure of the dielectric layer. When the thickness of the cell region is changed and the round trip optical path length in the dielectric layer is changed for each cell region, the shift in the reflection phase is larger. We have found that it is possible to almost determine this by designing the structure. At this time, the resonant frequency of the reflective element varies depending on the presence or absence of a dielectric layer in the vicinity, but if the design is performed on the assumption that a dielectric layer exists, this practical problem will be resolved. Furthermore, the in-plane arrangement of the uneven structure of the dielectric layer that realizes the in-plane distribution design of the reflection phase in the frequency selective reflector does not need to be in a fixed positional relationship with respect to the in-plane arrangement of the reflective elements of the reflective member. It was discovered that even if the uneven structure of the dielectric layer is shifted from the in-plane arrangement of the reflective element, it does not significantly affect the reflection characteristics.
 よって、本態様の周波数選択反射板において、上記誘電体層と、上記のような反射部材とを組み合わせる場合には、誘電体層および反射部材をそれぞれ独立して設計し、組み合わせることが可能である。この場合、使用環境に応じた反射特性を実現する誘電体層をその都度作製してもよく、事前に複数仕様を準備しておいてもよい。そのため、使用環境に応じて変化する周波数選択反射板の反射方向設計をより簡便にカスタマイズすることができ、多様なシチュエーションへの適用が容易となる。なお、上述したように、反射部材および誘電体層のそれぞれの反射位相分布の組み合わせにより周波数選択反射板の全体の反射特性を調整する場合は、要求仕様に応じて反射部材および誘電体層の配置ずれの精度が求められるが、誘電体層の反射位相分布のみにより周波数選択反射板の反射特性を調整する場合は、反射部材および誘電体層の配置ずれの精度はあまり求められない。 Therefore, in the frequency selective reflector of this embodiment, when the dielectric layer and the reflective member as described above are combined, it is possible to design and combine the dielectric layer and the reflective member independently. . In this case, a dielectric layer that achieves reflection characteristics depending on the usage environment may be produced each time, or a plurality of specifications may be prepared in advance. Therefore, the design of the reflection direction of the frequency selective reflector, which changes depending on the usage environment, can be more easily customized, making it easier to apply it to a variety of situations. As mentioned above, when adjusting the overall reflection characteristics of the frequency selective reflector by combining the reflection phase distributions of the reflecting member and dielectric layer, the arrangement of the reflecting member and dielectric layer should be adjusted according to the required specifications. Although the accuracy of the displacement is required, when the reflection characteristics of the frequency selective reflector are adjusted only by the reflection phase distribution of the dielectric layer, the accuracy of the displacement of the reflective member and the dielectric layer is not so required.
 また、例えば3Dプリンタを用いて誘電体層を形成する場合、複数の3Dプリンタを使用することによって、複数の周波数選択反射板を同時に製造することができる。そのため、周波数選択反射板をタイリングすることによって、反射構造体の製造時間を短縮することができる。 Furthermore, for example, when forming a dielectric layer using a 3D printer, multiple frequency selective reflectors can be manufactured at the same time by using multiple 3D printers. Therefore, by tiling the frequency selective reflector, the manufacturing time of the reflective structure can be shortened.
 また、本態様の周波数選択反射板は、後述の第2実施態様の反射構造体において、反射部材が、基材に接して配置された反射層を有する場合、あるいは、反射部材が、基材に接して配置された複数の反射素子を有する場合と比較して、基材の厚さおよびサイズの自由度が高いという利点を有する。 Further, in the frequency selective reflector of this embodiment, in the reflective structure of the second embodiment described below, the reflective member has a reflective layer disposed in contact with the base material, or the reflective member has a reflective layer disposed in contact with the base material. Compared to the case where a plurality of reflective elements are arranged in contact with each other, this has the advantage that there is a high degree of freedom in the thickness and size of the base material.
 以下、本態様の周波数選択反射板の各構成について説明する。 Hereinafter, each configuration of the frequency selective reflector of this embodiment will be explained.
(a)誘電体層
 本実施態様における誘電体層は、所定の方向に厚さが増加する厚さ分布を有する単位構造が複数配置された凹凸構造を有し、特定の周波数帯の電磁波を透過する部材である。また、誘電体層の単位構造は、厚さの異なる複数のセル領域を有しており、誘電体層の各単位構造では、単位構造の所定の方向の長さを横軸とし、電磁波が誘電体層を透過し反射部材で反射され誘電体層を再度透過して電磁波の入射側に放出される際の相対反射位相を縦軸とし、電磁波の相対反射位相の値が-360度超0度以下であるグラフに、各セル領域の所定の方向の中心位置および各セル領域での電磁波の相対反射位相に対応する点をプロットし、最小厚さを有する最小厚さセル領域に対応する点を通る直線を引いたとき、各点が同一直線上にある。また、誘電体層は、単位構造として、厚さの異なる3つ以上のセル領域を有する第1の単位構造を少なくとも有する。
(a) Dielectric layer The dielectric layer in this embodiment has an uneven structure in which a plurality of unit structures having a thickness distribution increasing in a predetermined direction is arranged, and transmits electromagnetic waves in a specific frequency band. It is a member that In addition, the unit structure of the dielectric layer has a plurality of cell regions with different thicknesses, and in each unit structure of the dielectric layer, the length of the unit structure in a predetermined direction is taken as the horizontal axis, and the electromagnetic wave is The vertical axis is the relative reflection phase when the electromagnetic wave passes through the body layer, is reflected by the reflective member, passes through the dielectric layer again, and is emitted to the incident side of the electromagnetic wave. Plot the points corresponding to the center position of each cell region in a given direction and the relative reflection phase of electromagnetic waves in each cell region on the graph below, and plot the points corresponding to the minimum thickness cell region with the minimum thickness. When you draw a straight line through it, each point is on the same straight line. Further, the dielectric layer has at least a first unit structure having three or more cell regions having different thicknesses as a unit structure.
(i)誘電体層の構造
 誘電体層は、所定の方向に厚さが増加する厚さ分布を有する単位構造が複数配置された凹凸構造を有する。
(i) Structure of dielectric layer The dielectric layer has an uneven structure in which a plurality of unit structures having a thickness distribution increasing in a predetermined direction are arranged.
 誘電体層の単位構造は、厚さの異なる複数のセル領域を有しており、誘電体層の各単位構造では、単位構造の上記所定の方向の長さを横軸とし、電磁波が誘電体層を透過し反射部材で反射され誘電体層を再度透過して電磁波の入射側に放出される際の相対反射位相を縦軸とし、電磁波の相対反射位相の値が-360度超0度以下であるグラフに、各セル領域の上記所定の方向の中心位置および各セル領域での電磁波の相対反射位相に対応する点をプロットし、最小厚さを有する最小厚さセル領域に対応する点を通る直線を引いたとき、各点が同一直線上にある。 The unit structure of the dielectric layer has a plurality of cell regions with different thicknesses, and in each unit structure of the dielectric layer, the length of the unit structure in the predetermined direction is taken as the horizontal axis, and electromagnetic waves are transmitted through the dielectric layer. The vertical axis is the relative reflection phase when the electromagnetic wave passes through the layer, is reflected by the reflective member, passes through the dielectric layer again and is emitted to the incident side of the electromagnetic wave, and the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees. Plot the points corresponding to the center position of each cell region in the predetermined direction and the relative reflection phase of the electromagnetic waves in each cell region on the graph, and plot the point corresponding to the minimum thickness cell region having the minimum thickness. When you draw a straight line through it, each point is on the same straight line.
 なお、各点が同一直線上にあるとは、その直線に対する各点の縦軸方向の差が±72度以内であることをいう。上記の直線に対する各点の縦軸方向の差は、好ましくは±54度以内であり、より好ましくは±36度以内であり、さらに好ましくは±18度以内である。なお、各点が上記の直線に対して縦軸方向にずれを含む場合であって、各点を通る直線を引きづらい場合には、「最小厚さを有する最小厚さセル領域に対応する点(相対反射位相0度)と、その単位構造に隣接する単位構造での最小厚さを有する最小厚さセル領域に対応する点(相対反射位相-360度とみなす)とを結んだ直線」を考えるとよい。 Note that each point being on the same straight line means that the difference in the vertical axis direction of each point with respect to the straight line is within ±72 degrees. The difference in the vertical axis direction of each point with respect to the above-mentioned straight line is preferably within ±54 degrees, more preferably within ±36 degrees, and still more preferably within ±18 degrees. In addition, if each point includes a deviation in the vertical axis direction from the above straight line and it is difficult to draw a straight line passing through each point, "point corresponding to the minimum thickness cell area having the minimum thickness" (relative reflection phase of 0 degrees) and the point corresponding to the minimum thickness cell region having the minimum thickness in the unit structure adjacent to that unit structure (considered as relative reflection phase - 360 degrees). It's good to think about it.
 誘電体層の単位構造は、所定の方向に厚さが増加する厚さ分布を有する。誘電体層の単位構造は、例えば、一方向のみに厚さが増加する厚さ分布を有していてもよく、あるいは、第一方向および第一方向に垂直な第二方向の二方向に厚さが増加する厚さ分布を有していてもよい。例えば、図7(a)は、誘電体層の単位構造10が第一方向D1のみに厚さが増加する厚さ分布を有する例であり、図7(c)、(e)、図8(a)は、誘電体層の単位構造10が第一方向D1および第二方向D2に厚さが増加する厚さ分布を有する例である。 The unit structure of the dielectric layer has a thickness distribution in which the thickness increases in a predetermined direction. The unit structure of the dielectric layer may have, for example, a thickness distribution in which the thickness increases in only one direction, or a thickness distribution in two directions, a first direction and a second direction perpendicular to the first direction. It may have a thickness distribution with increasing thickness. For example, FIG. 7(a) is an example in which the unit structure 10 of the dielectric layer has a thickness distribution in which the thickness increases only in the first direction D1, and FIGS. 7(c), (e), and 8( a) is an example in which the unit structure 10 of the dielectric layer has a thickness distribution in which the thickness increases in the first direction D1 and the second direction D2.
 誘電体層の単位構造が一方向のみに厚さが増加する厚さ分布を有する場合には、その一方向での単位構造の長さを横軸とする上記グラフに上記点をプロットしたときに、各点が同一直線上にあることになる。また、誘電体層の単位構造が互いに垂直な二方向に厚さが増加する厚さ分布を有する場合には、その二方向での単位構造の長さをそれぞれ横軸とする上記グラフにそれぞれ上記点をプロットしたときに、各グラフにおいて、各点が同一直線上にあることになる。 If the unit structure of the dielectric layer has a thickness distribution in which the thickness increases in only one direction, when the above points are plotted on the above graph with the length of the unit structure in that one direction as the horizontal axis, , each point is on the same straight line. In addition, if the unit structure of the dielectric layer has a thickness distribution in which the thickness increases in two directions perpendicular to each other, the above graph with the length of the unit structure in the two directions as the horizontal axis, respectively. When points are plotted, they will lie on the same straight line in each graph.
 誘電体層の一つの単位構造において、隣接するセル領域での電磁波の相対反射位相の差の絶対値は、180度未満であり、120度以下であることが好ましく、60度以下であることがより好ましい。隣接するセル領域での電磁波の相対反射位相の差の絶対値が小さいほど、反射波の波面を滑らかにすることができる。また、隣接するセル領域での電磁波の相対反射位相の差の絶対値は、0度超である。 In one unit structure of the dielectric layer, the absolute value of the difference in relative reflection phase of electromagnetic waves in adjacent cell regions is less than 180 degrees, preferably 120 degrees or less, and preferably 60 degrees or less. More preferred. The smaller the absolute value of the difference in relative reflection phases of electromagnetic waves in adjacent cell regions, the smoother the wavefront of the reflected waves can be. Furthermore, the absolute value of the difference in relative reflection phases of electromagnetic waves in adjacent cell regions is greater than 0 degrees.
 また、隣接する単位構造において、一方の単位構造での最大厚さを有する最大厚さセル領域と、他方の単位構造での最小厚さを有する最小厚さセル領域とが隣接している場合、一方の単位構造での反射位相の遅れが最も少ないセル領域での反射位相を基準として、他方の単位構造での最小厚さを有する最小厚さセル領域での電磁波の相対反射位相を、一周期分ずらした-720度超-360度以下で示すとき、一方の単位構造での最大厚さを有する最大厚さセル領域での電磁波の相対反射位相と、他方の単位構造での最小厚さを有する最小厚さセル領域での電磁波の相対反射位相との差の絶対値は、180度未満であり、120度以下であることが好ましく、60度以下であることがより好ましい。これらの隣接するセル領域での電磁波の相対反射位相の差の絶対値が小さいほど、反射波の波面を滑らかにすることができる。また、これらの隣接するセル領域での電磁波の相対反射位相の差の絶対値は、0度超である。例えば、図5(c)においては、隣接する単位構造10a、10bにおいて、一方の単位構造10aの最大厚さt6を有する最大厚さセル領域11fでの電磁波の相対反射位相は-300度であり、他方の単位構造10bの最小厚さt1を有する最小厚さセル領域11aでの電磁波の相対反射位相は-360度であり、一方の単位構造10aの最大厚さt6を有する最大厚さセル領域11fでの電磁波の相対反射位相と、他方の単位構造10bの最小厚さt1を有する最小厚さセル領域11aでの電磁波の相対反射位相との差の絶対値は、60度である。 Further, in adjacent unit structures, when a maximum thickness cell region having the maximum thickness in one unit structure and a minimum thickness cell region having the minimum thickness in the other unit structure are adjacent to each other, The relative reflection phase of the electromagnetic wave in the minimum thickness cell region with the minimum thickness in the other unit structure is calculated for one period based on the reflection phase in the cell region with the least delay in the reflection phase in one unit structure. When shown in degrees shifted by more than -720 degrees and less than -360 degrees, the relative reflection phase of electromagnetic waves in the maximum thickness cell region with the maximum thickness in one unit structure and the minimum thickness in the other unit structure are expressed as The absolute value of the difference between the relative reflection phase of the electromagnetic wave and the minimum thickness cell region is less than 180 degrees, preferably 120 degrees or less, and more preferably 60 degrees or less. The smaller the absolute value of the difference in relative reflection phases of electromagnetic waves in these adjacent cell regions, the smoother the wavefront of the reflected waves can be. Furthermore, the absolute value of the difference in relative reflection phases of electromagnetic waves in these adjacent cell regions is greater than 0 degrees. For example, in FIG. 5(c), in the adjacent unit structures 10a and 10b, the relative reflection phase of the electromagnetic waves in the maximum thickness cell region 11f having the maximum thickness t6 of one unit structure 10a is -300 degrees. , the relative reflection phase of the electromagnetic wave in the minimum thickness cell region 11a having the minimum thickness t1 of the other unit structure 10b is -360 degrees, and the maximum thickness cell region having the maximum thickness t6 of the one unit structure 10a. The absolute value of the difference between the relative reflection phase of the electromagnetic wave at 11f and the relative reflection phase of the electromagnetic wave at the minimum thickness cell region 11a having the minimum thickness t1 of the other unit structure 10b is 60 degrees.
 また、誘電体層の一つの単位構造において、隣接するセル領域での電磁波の相対反射位相の差は、等しいことが好ましい。例えば、図5(b)に示すように、誘電体層5の単位構造10が6個のセル領域を有する場合、隣接するセル領域11a、11bでの電磁波の相対反射位相の差と、隣接するセル領域11b、11cでの電磁波の相対反射位相の差と、隣接するセル領域11c、11dでの電磁波の相対反射位相の差と、隣接するセル領域11d、11eでの電磁波の相対反射位相の差と、隣接するセル領域11e、11fでの電磁波の相対反射位相の差とは、それぞれ等しいことが好ましい。例えば、図5(c)においては、隣接するセル領域での電磁波の相対反射位相の差の絶対値はいずれも60度であり、等しくなっている。 Furthermore, in one unit structure of the dielectric layer, it is preferable that the differences in relative reflection phases of electromagnetic waves in adjacent cell regions be equal. For example, as shown in FIG. 5B, when the unit structure 10 of the dielectric layer 5 has six cell regions, the difference in relative reflection phase of electromagnetic waves between adjacent cell regions 11a and 11b, and The difference in the relative reflection phase of electromagnetic waves in the cell regions 11b and 11c, the difference in the relative reflection phase of the electromagnetic waves in the adjacent cell regions 11c and 11d, and the difference in the relative reflection phase of the electromagnetic waves in the adjacent cell regions 11d and 11e. It is preferable that the difference in the relative reflection phase of the electromagnetic waves in the adjacent cell regions 11e and 11f be equal to each other. For example, in FIG. 5C, the absolute values of the differences in the relative reflection phases of electromagnetic waves in adjacent cell regions are all 60 degrees and are equal.
 また、隣接する単位構造において、一方の単位構造での最大厚さを有する最大厚さセル領域と、他方の単位構造での最小厚さを有する最小厚さセル領域とが隣接している場合、一方の単位構造での反射位相の遅れが最も少ないセル領域での反射位相を基準として、他方の単位構造での最小厚さを有する最小厚さセル領域での電磁波の相対反射位相を、一周期分ずらした-720度超-360度以下で示すとき、一方の単位構造での全てのセル領域だけでなく、他方の単位構造での最小厚さを有する最小厚さセル領域も含めて、隣接するセル領域での電磁波の相対反射位相の差が等しいことが好ましい。例えば、図5(c)においては、隣接する単位構造10a、10bにおいて、一方の単位構造10aの各セル領域11a~11fでの電磁波の相対反射位相はそれぞれ、0度、-60度、-120度、-180度、-240度、-300度であり、他方の単位構造10bの最小厚さt1を有する最小厚さセル領域11aでの電磁波の相対反射位相は-360度であり、一方の単位構造10aでの全てのセル領域11a~11f、および、他方の単位構造10bでの最小厚さt1を有する最小厚さセル領域11aを含めて、隣接するセル領域での電磁波の相対反射位相の差の絶対値はいずれも60度であり、等しくなっている。 Further, in adjacent unit structures, when a maximum thickness cell region having the maximum thickness in one unit structure and a minimum thickness cell region having the minimum thickness in the other unit structure are adjacent to each other, The relative reflection phase of the electromagnetic wave in the minimum thickness cell region with the minimum thickness in the other unit structure is calculated for one period based on the reflection phase in the cell region with the least delay in the reflection phase in one unit structure. When shown at more than -720 degrees and less than -360 degrees shifted by 10 minutes, not only all the cell areas in one unit structure but also the minimum thickness cell area with the minimum thickness in the other unit structure are included. It is preferable that the differences in the relative reflection phases of the electromagnetic waves in the cell regions are equal. For example, in FIG. 5(c), in adjacent unit structures 10a and 10b, the relative reflection phases of electromagnetic waves in each cell region 11a to 11f of one unit structure 10a are 0 degrees, -60 degrees, and -120 degrees, respectively. degrees, -180 degrees, -240 degrees, and -300 degrees, and the relative reflection phase of the electromagnetic wave in the minimum thickness cell region 11a having the minimum thickness t1 of the other unit structure 10b is -360 degrees; The relative reflection phase of electromagnetic waves in adjacent cell regions including all the cell regions 11a to 11f in the unit structure 10a and the minimum thickness cell region 11a having the minimum thickness t1 in the other unit structure 10b. The absolute values of the differences are both 60 degrees and are equal.
 また、誘電体層の一つの単位構造において、最小厚さを有する最小厚さセル領域での電磁波の相対反射位相と、最大厚さを有する最大厚さセル領域での電磁波の相対反射位相との差の絶対値は、360度未満である。また、誘電体層の一つの単位構造において、最小厚さを有する最小厚さセル領域での電磁波の相対反射位相と、最大厚さを有する最大厚さセル領域での電磁波の相対反射位相との差の絶対値は、180度より大きい必要があり、300度以上360度未満であることがより好ましい。例えば、図5(b)に示すように、誘電体層5の単位構造10が6個のセル領域を有する場合、一つの単位構造10において、最小厚さt1を有する最小厚さセル領域11aでの電磁波の相対反射位相と、最大厚さt6を有する最大厚さセル領域11fでの電磁波の相対反射位相との差の絶対値は、360度未満であることが好ましい。例えば、図5(c)においては、誘電体層5の一つの単位構造10では、最小厚さt1を有する最小厚さセル領域11aでの電磁波の相対反射位相は0度であり、最大厚さt6を有する最大厚さセル領域11fでの電磁波の相対反射位相は-300度であり、最小厚さt1を有する最小厚さセル領域11aでの電磁波の相対反射位相と、最大厚さt6を有する最大厚さセル領域11fでの電磁波の相対反射位相との差の絶対値は、300度である。 In addition, in one unit structure of the dielectric layer, the relative reflection phase of the electromagnetic wave in the minimum thickness cell region having the minimum thickness and the relative reflection phase of the electromagnetic wave in the maximum thickness cell region having the maximum thickness can be determined. The absolute value of the difference is less than 360 degrees. In addition, in one unit structure of the dielectric layer, the relative reflection phase of the electromagnetic wave in the minimum thickness cell region having the minimum thickness and the relative reflection phase of the electromagnetic wave in the maximum thickness cell region having the maximum thickness can be determined. The absolute value of the difference must be greater than 180 degrees, and more preferably 300 degrees or more and less than 360 degrees. For example, as shown in FIG. 5B, when the unit structure 10 of the dielectric layer 5 has six cell regions, in one unit structure 10, the minimum thickness cell region 11a having the minimum thickness t1 is The absolute value of the difference between the relative reflection phase of the electromagnetic wave in the maximum thickness cell region 11f having the maximum thickness t6 is preferably less than 360 degrees. For example, in FIG. 5(c), in one unit structure 10 of the dielectric layer 5, the relative reflection phase of the electromagnetic wave in the minimum thickness cell region 11a having the minimum thickness t1 is 0 degrees, and the maximum thickness The relative reflection phase of the electromagnetic wave in the maximum thickness cell region 11f having the minimum thickness t6 is -300 degrees, and the relative reflection phase of the electromagnetic wave in the minimum thickness cell region 11a having the minimum thickness t1 and the maximum thickness t6. The absolute value of the difference with the relative reflection phase of the electromagnetic wave in the maximum thickness cell region 11f is 300 degrees.
 誘電体層の単位構造のサイズ、具体的には、厚さが増加する所定の方向における単位構造の長さは、目的の反射特性に応じて適宜設定される。厚さが増加する所定の方向における単位構造の長さによって、1波長分(位相差:360度)ずれることになるため、反射角を調整することができる。例えば、厚さが増加する所定の方向における単位構造の長さを短くすることで、正反射角に対する反射角の差を大きくすることができ、一方、厚さが増加する所定の方向における単位構造の長さを長くすることで、正反射角に対する反射角の差を小さくすることができる。 The size of the unit structure of the dielectric layer, specifically the length of the unit structure in a predetermined direction in which the thickness increases, is appropriately set according to the desired reflection characteristics. Depending on the length of the unit structure in a predetermined direction in which the thickness increases, there will be a shift of one wavelength (phase difference: 360 degrees), so the reflection angle can be adjusted. For example, by shortening the length of a unit structure in a given direction of increasing thickness, the difference in reflection angle to specular reflection angle can be increased, while for a unit structure in a given direction of increasing thickness By increasing the length of , the difference between the reflection angle and the regular reflection angle can be made smaller.
 また、誘電体層の単位構造の断面形状としては、例えば、所定の方向に厚さが段階的に増加する階段形状であってもよく、あるいは、所定の方向に厚さが漸次的に増加するテーパー形状であってもよい。例えば、図5(b)は、誘電体層5の単位構造10が階段形状を有する例であり、図9は、誘電体層5の単位構造10がテーパー形状を有する例である。 Further, the cross-sectional shape of the unit structure of the dielectric layer may be, for example, a step shape in which the thickness increases stepwise in a predetermined direction, or a step shape in which the thickness increases gradually in a predetermined direction. It may also have a tapered shape. For example, FIG. 5B shows an example in which the unit structure 10 of the dielectric layer 5 has a stepped shape, and FIG. 9 shows an example in which the unit structure 10 in the dielectric layer 5 has a tapered shape.
 なお、誘電体層の単位構造は厚さの異なる複数のセル領域を有するが、誘電体層の単位構造の断面形状がテーパー形状を有する場合は、単位構造におけるセル領域の数を無限に多くしたものとみなすことができる。この場合でも、単位構造が有する厚さ分布は、各セル領域での電磁波の相対反射位相が上述した設定になるように設計される。 Note that the unit structure of the dielectric layer has multiple cell regions with different thicknesses, but if the cross-sectional shape of the unit structure of the dielectric layer has a tapered shape, the number of cell regions in the unit structure can be infinitely increased. It can be considered as a thing. Even in this case, the thickness distribution of the unit structure is designed so that the relative reflection phase of the electromagnetic waves in each cell region is set as described above.
 また、誘電体層は、厚さ分布を有する単位構造が複数配置されたものであるため、単位構造の平面視のパターン形状は、隙間なく配列することが可能な形状であればよく、例えば、矩形状、正六角形状等を挙げることができる。例えば、図7(a)~(f)、図8(a)は、誘電体層の単位構造10の平面視のパターン形状が矩形状である例である。 Further, since the dielectric layer is composed of a plurality of unit structures arranged with a thickness distribution, the pattern shape of the unit structures in plan view may be any shape that can be arranged without gaps, for example, Examples include a rectangular shape and a regular hexagonal shape. For example, FIGS. 7(a) to 7(f) and FIG. 8(a) are examples in which the pattern shape of the unit structure 10 of the dielectric layer in plan view is rectangular.
 誘電体層の単位構造において、隣接するセル領域での往復光路長の差は、各セル領域での電磁波の相対反射位相が上述した設定になるように設計されており、各セル領域の厚さは、隣接するセル領域の厚さの差が、上記の隣接するセル領域での往復光路長の差になるように設定されている。各セル領域の厚さは、電磁波の波長、誘電体層の材料の誘電率、および目的の反射特性に応じて適宜設定される。例えば、誘電体を通過する電磁波の実効波長をλとし、ベースの厚さをαとした場合、各セル領域の厚さは、α+0λ以上、α+2λ以下程度であることが好ましい。ベースの厚さαは、誘電体層の一つの単位構造において、最小厚さを有する最小厚さセル領域の最小厚さと同一とすることができる。ベースの厚さαは、全体的な強度、形成の容易さ等を考慮して適宜設定されるが、電磁波への影響を考慮すると、通常は0.1λ以下程度であることが好ましい。具体的には、電磁波の空気中の波長λが10mmであり、誘電体層の比誘電率が2.57である場合、各セル領域の厚さは、0mm以上8.6mm以下であることが好ましい。なお、セル領域の厚さが0mmである場合とは、反射部材上に位置する当該セル領域には誘電体層が形成されていない形態を意味する。 In the unit structure of the dielectric layer, the difference in round trip optical path length between adjacent cell regions is designed so that the relative reflection phase of electromagnetic waves in each cell region is set as described above, and the thickness of each cell region is are set so that the difference in thickness between adjacent cell regions is the difference in round-trip optical path length between the adjacent cell regions. The thickness of each cell region is appropriately set depending on the wavelength of the electromagnetic waves, the dielectric constant of the material of the dielectric layer, and the desired reflection characteristics. For example, when the effective wavelength of electromagnetic waves passing through the dielectric is λ g and the thickness of the base is α, the thickness of each cell region is preferably about α+0λ g or more and α+2λ g or less. The thickness α of the base may be the same as the minimum thickness of the minimum thickness cell region having the minimum thickness in one unit structure of the dielectric layer. The thickness α of the base is appropriately set in consideration of overall strength, ease of formation, etc., but considering the influence on electromagnetic waves, it is usually preferably about 0.1λ g or less. Specifically, when the wavelength λ 0 of electromagnetic waves in the air is 10 mm and the dielectric constant of the dielectric layer is 2.57, the thickness of each cell region is 0 mm or more and 8.6 mm or less. is preferred. Note that the case where the thickness of the cell region is 0 mm means that no dielectric layer is formed in the cell region located on the reflective member.
 ここで、電磁波の実効波長とは、電磁波が誘電体層等の空気以外の材質中を通過する際の波長を意味する。なお、単に波長という場合は、空気中での波長を意味する。 Here, the effective wavelength of electromagnetic waves means the wavelength at which electromagnetic waves pass through a material other than air, such as a dielectric layer. Note that when simply referred to as wavelength, it means the wavelength in air.
 誘電体層の単位構造において、セル領域のピッチや幅は適宜設定される。 In the unit structure of the dielectric layer, the pitch and width of the cell regions are set as appropriate.
 また、反射部材が、複数の反射素子が配列された部材である場合、誘電体層の単位構造のセル領域のピッチは、反射部材の反射素子のピッチと同じであってもよく異なっていてもよい。誘電体層の単位構造のセル領域のピッチが反射部材の反射素子のピッチと同じである場合には、設計が容易となる。また、例えば、誘電体層の単位構造のセル領域のピッチを、隣接するセル領域での電磁波の相対反射位相の差を保ったまま狭くすることにより、反射部材の反射素子のピッチとは関係なく、反射特性の制御域を広げることができる。 Further, when the reflective member is a member in which a plurality of reflective elements are arranged, the pitch of the cell regions of the unit structure of the dielectric layer may be the same as or different from the pitch of the reflective elements of the reflective member. good. When the pitch of the cell regions of the unit structure of the dielectric layer is the same as the pitch of the reflective elements of the reflective member, design becomes easy. In addition, for example, by narrowing the pitch of the cell regions of the unit structure of the dielectric layer while maintaining the difference in the relative reflection phase of electromagnetic waves in adjacent cell regions, it is possible to , the control range of reflection characteristics can be expanded.
 また、誘電体層の一つの単位構造において、セル領域のピッチは等しいことが好ましい。 Furthermore, in one unit structure of the dielectric layer, it is preferable that the pitch of the cell regions be equal.
 なお、セル領域のピッチとは、1つのセル領域の中心から隣接するセル領域の中心までの距離をいう。 Note that the pitch of cell regions refers to the distance from the center of one cell region to the center of an adjacent cell region.
 また、誘電体層の一つの単位構造において、厚さが増加する所定の方向におけるセル領域の幅は等しいことが好ましい。 Furthermore, in one unit structure of the dielectric layer, it is preferable that the widths of the cell regions in a predetermined direction in which the thickness increases are equal.
 誘電体層の単位構造において、セル領域の平面視のパターン形状としては、例えば、ストライプ状、同心正方形を辺に平行で互いに垂直な直線で四等分したときの一つの形状、マイクロアレイ状、同心円を互いに垂直な直径で四等分したときの一つの形状である同心四分円状、曲線階段状等が挙げられる。例えば、図7(b)はストライプ状の例であり、図7(d)は同心正方形を辺に平行で互いに垂直な直線で四等分したときの一つの形状の例であり、図7(f)、図8(a)はマイクロアレイ状の例であり、図8(b)は同心四分円状の例であり、図8(c)は曲線階段状の例である。なお、図7(b)は図7(a)の上面図、図7(d)は図7(c)の上面図、図7(f)は図7(e)の上面図である。また、これらの例示された単位構造を隙間なく配置する場合、配列の方向には特に制限はなく、例えば矩形の単位構造を平面視で時計回りに30度回転させた状態で全面に配列させることもでき、必要とされる反射特性設計に応じて単位構造を適切な角度、適切な配列方向を選択し配置すればよい。 In the unit structure of the dielectric layer, the pattern shape of the cell region in plan view includes, for example, a stripe shape, a shape obtained by dividing a concentric square into four equal parts by straight lines parallel to the sides and perpendicular to each other, a microarray shape, and a concentric circle shape. Examples of shapes include concentric quadrants, curved staircase shapes, etc., which are shapes when divided into four equal parts by diameters perpendicular to each other. For example, FIG. 7(b) is an example of a striped shape, and FIG. 7(d) is an example of one shape when concentric squares are divided into four equal parts by straight lines parallel to the sides and perpendicular to each other. f), FIG. 8(a) is an example of a microarray shape, FIG. 8(b) is an example of a concentric quadrant shape, and FIG. 8(c) is an example of a curved staircase shape. 7(b) is a top view of FIG. 7(a), FIG. 7(d) is a top view of FIG. 7(c), and FIG. 7(f) is a top view of FIG. 7(e). Furthermore, when these exemplified unit structures are arranged without gaps, there is no particular restriction on the direction of arrangement; for example, rectangular unit structures may be arranged over the entire surface with the unit structures rotated 30 degrees clockwise in plan view. It is also possible to arrange the unit structures by selecting an appropriate angle and an appropriate arrangement direction according to the required reflection characteristic design.
 誘電体層の単位構造は、複数のセル領域を有する。誘電体層の一つの単位構造において、セル領域の数は、例えば、3以上であり、6以上であることが好ましい。誘電体層の一つの単位構造におけるセル領域の数が多いほど、隣接するセル領域での電磁波の相対反射位相の差を小さくすることができ、反射波の波面を滑らかにすることができる。また、誘電体層の一つの単位構造におけるセル領域の数は多いほど好ましく、上限は特に限定されない。なお、単位構造の断面形状が階段形状である場合、セル領域の数は、階段形状の段数に相当する。また、単位構造の断面形状がテーパー形状である場合、上述したように、テーパー形状は、セル領域の数を無限に多くしたものとみなすことができる。 The unit structure of the dielectric layer has multiple cell regions. In one unit structure of the dielectric layer, the number of cell regions is, for example, 3 or more, preferably 6 or more. The larger the number of cell regions in one unit structure of the dielectric layer, the smaller the difference in the relative reflection phase of electromagnetic waves between adjacent cell regions, and the smoother the wavefront of the reflected wave. Furthermore, the number of cell regions in one unit structure of the dielectric layer is preferably as large as possible, and the upper limit is not particularly limited. Note that when the cross-sectional shape of the unit structure is a staircase shape, the number of cell regions corresponds to the number of steps of the staircase shape. Furthermore, when the cross-sectional shape of the unit structure is tapered, as described above, the tapered shape can be regarded as infinitely increasing the number of cell regions.
 誘電体層は、単位構造として、厚さの異なる3つ以上のセル領域を有する第1の単位構造を少なくとも有する。 The dielectric layer has at least a first unit structure having three or more cell regions having different thicknesses as a unit structure.
 また、誘電体層は、単位構造として、第1の単位構造のみを有していてもよく、第1の単位構造とは異なる第2の単位構造をさらに有していてもよい。すなわち、誘電体層は、単位構造として、同一の単位構造のみを有していてもよく、互いに異なる単位構造を有していてもよい。誘電体層が、互いに異なる単位構造が複数配置されたものである場合には、周波数選択反射板の全体の反射特性に影響を与えることができる。具体的には、偏波特性の調整、ビームプロファイル(高指向性、拡散、マルチビーム等)に対する影響等が例示される。 Further, the dielectric layer may have only the first unit structure as a unit structure, or may further have a second unit structure different from the first unit structure. That is, the dielectric layer may have only the same unit structure as a unit structure, or may have mutually different unit structures. When the dielectric layer has a plurality of mutually different unit structures arranged, it is possible to influence the overall reflection characteristics of the frequency selective reflector. Specifically, adjustment of polarization characteristics, influence on beam profile (high directivity, diffusion, multi-beam, etc.) are exemplified.
 第1の単位構造および第2の単位構造においては、反射特性を異ならせることができ、例えば、厚さが増加する方向における単位構造の長さ、厚さ分布、セル領域の数、幅、ピッチ、単位構造の平面視のパターン形状、セル領域の平面視のパターン形状の少なくともいずれかを異ならせることができる。 The first unit structure and the second unit structure can have different reflection properties, such as the length of the unit structure in the direction of increasing thickness, the thickness distribution, the number of cell areas, the width, the pitch, etc. , the pattern shape of the unit structure in plan view, or the pattern shape of the cell region in plan view can be made different.
 また、誘電体層が、単位構造として、互いに異なる単位構造を有する場合、単位構造の種類の数は特に限定されない。 Furthermore, when the dielectric layer has different unit structures as unit structures, the number of types of unit structures is not particularly limited.
 誘電体層においては、所定の入射角で入射した入射波に対する反射波の同一位相面の法線ベクトルが所望の反射方向になるように、誘電体層の厚さ分布を適宜選択し、複数の単位構造を配置するが、例えば、入射波を単一の方向に反射する、いわゆる平面波として反射する場合は、誘電体層は、同一の単位構造のみが複数配置されたものであることが好ましく、厚さが増加する方向における単位構造の長さが同じであり、セル領域の平面視のパターン形状がストライプ状であることがより好ましい。例えば、図5(a)~(c)では、誘電体層5は同一の単位構造のみを複数有しており、所定の方向D1における単位構造10a、10bの長さLが同じであり、セル領域11a~11fの平面視のパターン形状がストライプ状である例である。この場合、図5に例示するように、所定の入射角θ1で入射した入射波W1を、単一の反射角θ2で反射させることができ、反射波W2を広がりのない平面波とすることができる。また、図5(a)には、周波数選択反射板の短手方向に対してセル領域のストライプの長手方向が平行である配置が示されているが、これに限定されず、実際の周波数選択反射板においては、セル領域のストライプの長手方向および短手方向は反射特性の設計に応じて任意に設定できる。 In the dielectric layer, the thickness distribution of the dielectric layer is appropriately selected, and multiple Although the unit structures are arranged, for example, in the case where the incident wave is reflected in a single direction, that is, as a so-called plane wave, the dielectric layer is preferably one in which a plurality of the same unit structures are arranged, It is more preferable that the unit structures have the same length in the direction in which the thickness increases, and that the pattern shape of the cell region in plan view is striped. For example, in FIGS. 5A to 5C, the dielectric layer 5 has only a plurality of the same unit structures, and the length L of the unit structures 10a and 10b in the predetermined direction D1 is the same, and the cell This is an example in which the pattern shape of the regions 11a to 11f in plan view is striped. In this case, as illustrated in FIG. 5, the incident wave W1 that has entered at a predetermined incident angle θ1 can be reflected at a single reflection angle θ2, and the reflected wave W2 can be made into a plane wave without spread. . Further, although FIG. 5(a) shows an arrangement in which the longitudinal direction of the stripes in the cell area is parallel to the lateral direction of the frequency selective reflector, the arrangement is not limited to this, and actual frequency selection In the reflector, the longitudinal and lateral directions of the stripes in the cell region can be set arbitrarily depending on the design of the reflection characteristics.
 また、例えば、電磁波を拡散する、すなわち円柱状の波として反射する場合は、誘電体層は、互いに異なる単位構造が複数配置されたものであることが好ましく、厚さが増加する方向における単位構造の長さが異なり、セル領域の平面視のパターン形状がストライプ状である態様を挙げることができる。例えば、図10(a)において、誘電体層5は、互いに異なる3種類の単位構造10aと10b、10cと10dとを有しており、これらの単位構造10aと10b、10cと10dとでは、所定の方向D1における単位構造の長さL1、L2、L3が互いに異なり、セル領域11a~11g、12a~12f、13a~13eの数が互いに異なっている。これにより、図10(b)に示すように、単位構造10aの各セル領域11a~11gでの電磁波の相対反射位相はそれぞれ、0度、-51.4度、-103度、-154度、-206度、-257度、-309度であり、単位構造10b、10cの各セル領域12a~12fでの電磁波の相対反射位相はそれぞれ、0度、-60度、-120度、-180度、-240度、-300度であり、単位構造10dの各セル領域13a~13eでの電磁波の相対反射位相はそれぞれ、0度、-72度、-144度、-216度、-288度であり、単位構造10aと10b、10cと10dとは、反射特性が互いに異なっている。また、図示しないが、セル領域11a~11g、12a~12f、13a~13eの平面視のパターン形状はストライプ状である。この場合、図11に例示するように、所定の入射角θ1で入射した入射波W1を、単位構造に応じて反射角θ2、θ2’、θ2”で反射させ、広がりを持って反射させることができ、反射波W2の波面を広げることができる。 Further, for example, in the case of diffusing electromagnetic waves, that is, reflecting them as cylindrical waves, the dielectric layer is preferably one in which a plurality of mutually different unit structures are arranged, and the unit structures in the direction of increasing thickness are preferable. One example is an embodiment in which the cell regions have different lengths and the pattern shape in plan view of the cell region is striped. For example, in FIG. 10A, the dielectric layer 5 has three different types of unit structures 10a and 10b, 10c and 10d, and these unit structures 10a and 10b, 10c and 10d, The lengths L1, L2, and L3 of the unit structures in the predetermined direction D1 are different from each other, and the numbers of cell regions 11a to 11g, 12a to 12f, and 13a to 13e are different from each other. As a result, as shown in FIG. 10(b), the relative reflection phases of the electromagnetic waves in each cell region 11a to 11g of the unit structure 10a are 0 degrees, -51.4 degrees, -103 degrees, -154 degrees, respectively. -206 degrees, -257 degrees, and -309 degrees, and the relative reflection phases of the electromagnetic waves in each cell region 12a to 12f of unit structures 10b and 10c are 0 degrees, -60 degrees, -120 degrees, and -180 degrees, respectively. , -240 degrees, and -300 degrees, and the relative reflection phases of the electromagnetic waves in each cell region 13a to 13e of the unit structure 10d are 0 degrees, -72 degrees, -144 degrees, -216 degrees, and -288 degrees, respectively. The unit structures 10a and 10b, 10c and 10d have different reflection characteristics. Although not shown, the pattern shape of the cell regions 11a to 11g, 12a to 12f, and 13a to 13e in plan view is striped. In this case, as illustrated in FIG. 11, an incident wave W1 that has entered at a predetermined incident angle θ1 can be reflected at reflection angles θ2, θ2', θ2'' depending on the unit structure, and reflected with a wide spread. Therefore, the wavefront of the reflected wave W2 can be expanded.
 また、誘電体層が、単位構造として、互いに異なる単位構造を有する場合、反射特性が互いに異なる複数種類の単位構造を用い、種類毎に単位構造を複数配置し、同じ種類の単位構造が複数配置された領域を平面配列してもよい。例えば、図12においては、反射特性が互いに異なる2種類の単位構造10a、10bを用い、一方の種類の単位構造10aが複数配置された第1領域5aと、他方の種類の単位構造10bが複数配置された第2領域5bとが平面配列されてなる誘電体層5としている。このような態様においては、複数のカバレッジホールに対応することができる。 In addition, when the dielectric layer has different unit structures as unit structures, multiple types of unit structures with different reflection characteristics are used, multiple unit structures are arranged for each type, and multiple unit structures of the same type are arranged. The regions may be arranged in a plane. For example, in FIG. 12, two types of unit structures 10a and 10b having different reflection characteristics are used, and a first region 5a in which a plurality of unit structures 10a of one type is arranged and a plurality of unit structures 10b of the other type are arranged. The dielectric layer 5 has the second regions 5b arranged in a plane. In such an embodiment, multiple coverage holes can be accommodated.
 また、例えば、後述の反射部材が周波数選択板であり、互いに異なる周波数帯の電磁波を選択的に反射する複数種類の周波数選択性表面(FSS)を有する場合、それらの周波数選択性表面の周波数選択性に応じて、単位構造の反射特性をそれぞれ設計し、誘電体層を、単位構造として、反射特性が互いに異なる単位構造を有するものとしてもよい。この場合も、例えば図12に示すような配置とすることができる。このような態様においては、デュアルバンドあるいはそれ以上の帯域数に対応することができる。 For example, if the reflecting member described below is a frequency selection plate and has multiple types of frequency selective surfaces (FSS) that selectively reflect electromagnetic waves in different frequency bands, the frequency selection of those frequency selective surfaces The reflection characteristics of each unit structure may be designed depending on the characteristics, and the dielectric layer may have unit structures having mutually different reflection characteristics. In this case as well, the arrangement may be as shown in FIG. 12, for example. In such an embodiment, it is possible to support dual bands or more bands.
 また、誘電体層が、単位構造として、互いに異なる単位構造を有する場合、例えば、n個の単位構造によってn波長分(位相差:n×360度)ずれるように、n個の単位構造の各セル領域での電磁波の相対反射位相が設定されていてもよい。なお、nは2以上の整数である。例えば、図13(a)~(c)は、誘電体層5は、互いに異なる2種類の単位構造10a、10bを有しており、二つの単位構造10a、10bによって2波長分(位相差:720度)ずれるように、二つの単位構造10a、10bの各セル領域11a~11c、12a~12bでの電磁波の相対反射位相が設定されている例である。なお、図13(b)は、電磁波の相対反射位相のレンジを-360度超0度以下として表記したグラフであり、図13(c)は、電磁波の相対反射位相のレンジを-720度超0度以下とし、相対反射位相が360度ずれた実質同位相の点を補完したグラフである。これらの単位構造10a、10bでは、所定の方向D1における単位構造の長さL1、L2が互いに異なり、セル領域11a~11c、12a~12bの数が互いに異なっている。 In addition, when the dielectric layer has unit structures different from each other, for example, each of the n unit structures may be shifted by n wavelengths (phase difference: n x 360 degrees) depending on the n unit structures. The relative reflection phase of the electromagnetic waves in the cell region may be set. Note that n is an integer of 2 or more. For example, in FIGS. 13A to 13C, the dielectric layer 5 has two different types of unit structures 10a and 10b, and the two unit structures 10a and 10b cover two wavelengths (phase difference: In this example, the relative reflection phases of the electromagnetic waves in each of the cell regions 11a to 11c and 12a to 12b of the two unit structures 10a and 10b are set such that they are shifted by 720 degrees. Note that FIG. 13(b) is a graph in which the range of the relative reflection phase of electromagnetic waves is expressed as more than -360 degrees and less than or equal to 0 degrees, and FIG. This is a graph in which points of substantially the same phase with a relative reflection phase shifted by 360 degrees are complemented with the angle being 0 degrees or less. These unit structures 10a and 10b have different lengths L1 and L2 in the predetermined direction D1, and different numbers of cell regions 11a to 11c and 12a to 12b.
 上記の場合、一方の単位構造10aは、3つのセル領域11a~11cを有しているが、他方の単位構造10bは、2つのセル領域12a、12bを有している。このように、誘電体層が、単位構造として、互いに異なる単位構造を有する場合、少なくとも1種類の単位構造が厚さの異なる3つ以上のセル領域を有していればよく、他の種類の単位構造ではセル領域の数が3つ以上であるとは限らず、2つであってもよい。 In the above case, one unit structure 10a has three cell regions 11a to 11c, while the other unit structure 10b has two cell regions 12a and 12b. In this way, when the dielectric layer has different unit structures as unit structures, it is sufficient that at least one type of unit structure has three or more cell regions with different thicknesses, and other types of unit structures have three or more cell regions with different thicknesses. In a unit structure, the number of cell regions is not necessarily three or more, and may be two.
 また、入射波および反射波を平面波とする場合、誘電体層は、単位構造が繰り返し配置されている周期構造を有する。なお、「周期構造」とは、単位構造が周期的に繰り返し配置された構造をいう。周期構造における単位構造において、反射特性が同一である単位構造では、厚さが増加する方向における単位構造の長さ、厚さ分布、セル領域の数、幅、ピッチ、単位構造の平面視のパターン形状、セル領域の平面視のパターン形状等を同じにすることができる。また、誘電体層が周期構造を有する場合においても、上述したように、反射特性の異なる単位構造を組み合わせることができる。その場合、組み合わせる単位構造の反射特性は、目的の反射特性に応じて適宜設計され、具体的には、組み合わせる単位構造における、厚さが増加する方向における単位構造の長さ、厚さ分布、セル領域の数、幅、ピッチ、単位構造の平面視のパターン形状、セル領域の平面視のパターン形状等は、目的の反射特性に応じて適宜設定される。 Further, when the incident wave and the reflected wave are plane waves, the dielectric layer has a periodic structure in which unit structures are repeatedly arranged. Note that the term "periodic structure" refers to a structure in which unit structures are periodically and repeatedly arranged. In unit structures in a periodic structure, for unit structures with the same reflection characteristics, the length of the unit structure in the direction of increasing thickness, thickness distribution, number of cell regions, width, pitch, and pattern in plan view of the unit structure The shape, the pattern shape of the cell region in plan view, etc. can be made the same. Further, even when the dielectric layer has a periodic structure, unit structures having different reflection characteristics can be combined as described above. In that case, the reflection characteristics of the unit structures to be combined are appropriately designed according to the desired reflection characteristics. Specifically, in the unit structures to be combined, the length of the unit structure in the direction of increasing thickness, the thickness distribution, the cell The number of regions, the width, the pitch, the pattern shape of the unit structure in plan view, the pattern shape of the cell region in plan view, etc. are appropriately set according to the desired reflection characteristics.
 一般的に、平面波を正反射方向とは異なる方向に平面波として反射させる反射特性設計においては、例えば反射板の面内x方向と面内y方向の入射・反射特性に分解したのち、x方向、y方向の反射位相分布に変換し、それを単位構造の厚さ分布として組み入れることで設計が可能である。例えば、図14に示すように、反射位相を個別に調整できる同一サイズのセル領域が10×10(i=10、j=10)配置された周波数選択反射板の一部を例として説明する。このとき、必ずしもセル領域の10×10の大きさは単位構造のサイズでないことに留意する必要がある。入射角(θin、φin)の方向から入射する平面波を、反射角(θout、φout)の方向に平面波で反射する場合の(i、j)位置のセル領域に求められる反射位相δi,jは、次式で与えられる。 Generally, when designing reflection characteristics to reflect a plane wave as a plane wave in a direction different from the regular reflection direction, for example, after decomposing the incident and reflection characteristics into the in-plane x direction and in-plane y direction of the reflector, Design is possible by converting the reflection phase distribution in the y direction and incorporating it as the thickness distribution of the unit structure. For example, as shown in FIG. 14, a part of a frequency selective reflector in which 10×10 (i=10, j=10) cell regions of the same size whose reflection phases can be individually adjusted will be explained as an example. At this time, it must be noted that the 10×10 size of the cell area is not necessarily the size of the unit structure. When a plane wave incident from the direction of the incident angle (θ in , φ in ) is reflected as a plane wave in the direction of the reflection angle (θ out , φ out ), the reflection phase δ obtained in the cell area at the (i, j) position is i and j are given by the following equations.
 δi,j=2π{p×i×(sinθout×cosφout-sinθin×cosφin)+
    p×j×(sinθout×sinφout-sinθin×sinφin)}/λ
ここで、上記式において、
δi,j:位相中心(0,0)に対して(i,j)位置にあるセル領域の反射位相
λ:反射波の波長[m]
p:セル領域の大きさ[m]
θin:入射波のθ傾き
φin:入射波のφ傾き
θout:反射波のθ傾き
φout:反射波のφ傾き
を示す。
δ i,j =2π{p×i×(sinθ out ×cosφ out −sinθ in ×cosφ in )+
p×j×(sinθ out ×sinφ out −sinθ in ×sinφ in )}/λ
Here, in the above formula,
δ i,j : Reflection phase of the cell region at position (i, j) with respect to the phase center (0,0) λ: Wavelength of reflected wave [m]
p: Size of cell area [m]
θ in : θ inclination of the incident wave φ in : φ inclination of the incident wave θ out : θ inclination of the reflected wave φ out : Indicates the φ inclination of the reflected wave.
 誘電体層は、例えば、単層であってもよく、多層であってもよい。また、誘電体層は、ベースとなる基材層と、基材層上に配置された凹凸層とを有していてもよい。また、誘電体層は、例えば、全てのセル領域が一体に形成されている単一部材であってもよく、個々のセル領域が別々に形成されており、ブロック状のセル領域が配列されたものであってもよい。 The dielectric layer may be, for example, a single layer or a multilayer. Further, the dielectric layer may include a base material layer serving as a base and an uneven layer disposed on the base material layer. Further, the dielectric layer may be, for example, a single member in which all cell regions are formed integrally, or may be a single member in which each cell region is formed separately, or a block-shaped cell region is arranged. It may be something.
(ii)誘電体層の特性
 誘電体層は、特定の周波数帯の電磁波を透過すればよく、他の周波数帯の電磁波を透過してもよく、しなくてもよい。
(ii) Characteristics of dielectric layer The dielectric layer only needs to transmit electromagnetic waves in a specific frequency band, and may or may not transmit electromagnetic waves in other frequency bands.
 誘電体層の誘電正接は、比較的小さいことが好ましい。誘電体層の誘電正接が小さいことにより、誘電損失を小さくすることができ、高周波損失を低減することができる。具体的には、対象周波数の電磁波に対する誘電体層の誘電正接は、0.01以下であることが好ましい。また、誘電体層の誘電正接は小さいほど好ましく、下限値は特に限定されない。 It is preferable that the dielectric loss tangent of the dielectric layer is relatively small. Since the dielectric loss tangent of the dielectric layer is small, dielectric loss can be reduced, and high frequency loss can be reduced. Specifically, the dielectric loss tangent of the dielectric layer with respect to electromagnetic waves of the target frequency is preferably 0.01 or less. Further, the smaller the dielectric loss tangent of the dielectric layer, the better, and the lower limit is not particularly limited.
 また、誘電体層の誘電率は、比較的高いことが好ましい。誘電体層の誘電率が高いことにより、誘電体層の厚さを薄くできる効果が期待できる。具体的には、対象周波数の電磁波における誘電体層の誘電率は、2以上であることが好ましく、2.5以上であることがより好ましく、正反射角に対する反射角の差を大きくする場合は3以上であることがさらに好ましい。 Furthermore, it is preferable that the dielectric constant of the dielectric layer is relatively high. The high dielectric constant of the dielectric layer can be expected to have the effect of reducing the thickness of the dielectric layer. Specifically, the dielectric constant of the dielectric layer in electromagnetic waves of the target frequency is preferably 2 or more, more preferably 2.5 or more, and when increasing the difference between the reflection angle and the regular reflection angle, More preferably, it is 3 or more.
 ここで、誘電体層の誘電正接および誘電率は、共振器法により測定することができる。 Here, the dielectric loss tangent and dielectric constant of the dielectric layer can be measured by a resonator method.
(iii)誘電体層の材料
 誘電体層の材料としては、所定の電磁波を透過することができる誘電体であれば特に限定されず、例えば樹脂、ガラス、石英、セラミックス等を用いることができる。中でも、凹凸構造の形成の容易さを考慮すると、樹脂が好適である。
(iii) Material of dielectric layer The material of the dielectric layer is not particularly limited as long as it is a dielectric that can transmit a predetermined electromagnetic wave, and for example, resin, glass, quartz, ceramics, etc. can be used. Among these, resin is preferred in view of ease of forming the uneven structure.
 樹脂は、所定の電磁波を透過することができるものであれば特に限定されないが、上記電磁波の吸収が比較的少なく、上記電磁波の透過率が比較的高いものであることが好ましい。また、樹脂は、上述の誘電正接を満たすものであることが好ましく、上述の誘電率を満たすものであることがより好ましい。このような樹脂としては、例えば、ポリカーボネート、アクリル樹脂、ABS樹脂、PLA樹脂、オレフィン系樹脂、あるいはそれらの共重合体等を挙げることができる。中でも、ポリカーボネートは、寸法安定性に優れ、高周波損失も少なく、好適である。 The resin is not particularly limited as long as it can transmit a predetermined electromagnetic wave, but it is preferable that the resin absorbs relatively little of the electromagnetic wave and has a relatively high transmittance to the electromagnetic wave. Further, the resin preferably satisfies the above dielectric loss tangent, and more preferably satisfies the above dielectric constant. Examples of such resins include polycarbonate, acrylic resin, ABS resin, PLA resin, olefin resin, and copolymers thereof. Among these, polycarbonate is suitable because it has excellent dimensional stability and low high frequency loss.
 また、誘電体層は、フィラーをさらに含有することができる。誘電体層がフィラーを含有することにより、誘電体層の誘電率や機械的強度を調整することができる。フィラーの誘電率は、樹脂の誘電率よりも高いことが好ましい。これにより、誘電体層の誘電率を高くすることができ、必要な誘電体層の厚さを薄くすることができる。高誘電率フィラーとしては、特に限定されず、例えば、ガラスやシリカ等の無機粒子や微細繊維等を挙げることができる。 Furthermore, the dielectric layer can further contain a filler. By containing the filler in the dielectric layer, the dielectric constant and mechanical strength of the dielectric layer can be adjusted. It is preferable that the dielectric constant of the filler is higher than that of the resin. Thereby, the dielectric constant of the dielectric layer can be increased, and the necessary thickness of the dielectric layer can be reduced. The high dielectric constant filler is not particularly limited, and examples thereof include inorganic particles such as glass and silica, fine fibers, and the like.
 フィラーの材質、形状、サイズ、含有量は、目的とする誘電率や機械的強度、分散性の難易度等から適宜選定することができる。フィラーのサイズは、誘電体を通過する電磁波の実効波長よりも十分に小さい必要があり、電磁波の実効波長をλとした場合、フィラーの球相当の直径は例えば0.01λ以下であることが好ましい。ただし、フィラーのサイズがナノメートルオーダーに近づくと均一な分散が難しくなる傾向があるため、加工プロセスの負荷が増大するおそれがある。また、誘電体層中のフィラーの含有量は、誘電体及びフィラーの材質の組み合わせ、フィラーの形状、フィラーのサイズ等に応じて異なり、適宜調整される。 The material, shape, size, and content of the filler can be appropriately selected based on the desired dielectric constant, mechanical strength, difficulty of dispersibility, etc. The size of the filler must be sufficiently smaller than the effective wavelength of the electromagnetic waves passing through the dielectric material, and if the effective wavelength of the electromagnetic waves is λ g , the diameter of the filler equivalent to a sphere must be, for example, 0.01λ g or less. is preferred. However, as the size of the filler approaches the nanometer order, uniform dispersion tends to become difficult, which may increase the load on the processing process. Further, the content of the filler in the dielectric layer varies depending on the combination of the materials of the dielectric and the filler, the shape of the filler, the size of the filler, etc., and is adjusted as appropriate.
 また、誘電体層の凹凸構造を、金型を用いた賦型等で形成する場合、誘電体層に、例えば離型剤や帯電防止剤等を添加してもよい。これらは、一般的なものを適宜選択して使用可能である。また、誘電体層は、例えばカーボンブラックや金属粒子等の導電性を付与するような添加剤やフィラーを含有しないことが好ましい。 Furthermore, when the uneven structure of the dielectric layer is formed by molding using a mold, for example, a release agent, an antistatic agent, etc. may be added to the dielectric layer. These can be used by appropriately selecting general ones. Further, it is preferable that the dielectric layer does not contain additives or fillers that impart conductivity, such as carbon black or metal particles.
 誘電体層は、通常、光透過性を有する。 The dielectric layer usually has optical transparency.
(iv)誘電体層の形成方法
 誘電体層の形成方法としては、所定の凹凸構造を形成することが可能な方法であれば特に限定されず、例えば、樹脂シートの切削、レーザー加工、金型を用いた賦型や真空注型、3Dプリンタによる造形、小片パーツの接合等を挙げることができる。切削、レーザー加工や3Dプリンタ等の、金型を用いない形成方法の場合、目的の反射角に応じたカスタマイズが容易であるため、特殊な設置のシチュエーションや、シミュレーションが困難であるような大規模な周波数選択反射板を設計、開発する場合の設計のチューニングにも好適に用いることができる。金型を用いた賦型の場合には、誘電体からなる基材の上に賦型してもよく、この場合の基材および賦型樹脂は所定の電磁波を透過する材料であれば互いに異なる材料を使用してもよい。また、例えば、反射部材および誘電体層を別々に設計し作製する場合において、所定の入射角および反射角をもつ反射特性を有する誘電体層を予め複数種類準備し、シチュエーションに合わせて誘電体層の種類を選択し、反射部材に対して誘電体層を、法線方向を軸として面内で回転させることで、電磁波の反射方向の微調整を行う場合には、同じ仕様の誘電体層をまとめて作製するほうがコスト的に有利になることがあり、その場合は金型を用いた賦型の手法が好適である。
(iv) Method for forming the dielectric layer The method for forming the dielectric layer is not particularly limited as long as it is possible to form a predetermined uneven structure, such as cutting a resin sheet, laser processing, molding, etc. Examples include molding using a vacuum mold, vacuum casting, modeling using a 3D printer, and joining small pieces of parts. Forming methods that do not use molds, such as cutting, laser processing, and 3D printing, are easy to customize according to the desired reflection angle, so they can be used in special installation situations or on large scale where simulation is difficult. It can also be suitably used for design tuning when designing and developing a frequency selective reflector. In the case of molding using a mold, molding may be performed on a base material made of a dielectric material, and in this case, the base material and molding resin may be different from each other as long as they are materials that transmit a specified electromagnetic wave. materials may be used. For example, when designing and manufacturing a reflective member and a dielectric layer separately, it is possible to prepare multiple types of dielectric layers having reflective properties with predetermined incident angles and reflection angles in advance, and then adjust the dielectric layers according to the situation. If you want to fine-tune the direction of reflection of electromagnetic waves by selecting the type of dielectric layer and rotating the dielectric layer in the plane about the normal direction to the reflecting member, use a dielectric layer with the same specifications. It may be more cost-effective to produce them all at once, and in that case, a molding method using a mold is preferable.
(b)反射部材
 本態様における反射部材は、特定の周波数帯の電磁波を反射する部材である。
(b) Reflective member The reflective member in this embodiment is a member that reflects electromagnetic waves in a specific frequency band.
 反射部材としては、特定の周波数帯の電磁波を反射するものであれば特に限定されず、例えば、特定の周波数帯の電磁波のみを反射するものであってもよく、あるいは、特定の周波数帯の電磁波だけでなく他の周波数帯の電磁波も反射するものであってもよい。中でも、反射部材は、特定の周波数帯の電磁波のみを反射する波長選択機能を有することが好ましい。 The reflective member is not particularly limited as long as it reflects electromagnetic waves in a specific frequency band, for example, it may reflect only electromagnetic waves in a specific frequency band, or it may reflect electromagnetic waves in a specific frequency band. In addition to this, it may also reflect electromagnetic waves in other frequency bands. Among these, it is preferable that the reflective member has a wavelength selection function that reflects only electromagnetic waves in a specific frequency band.
 特定の周波数帯の電磁波だけでなく他の周波数帯の電磁波も反射する反射部材としては、例えば、周波数選択反射板の全面に配置された反射層を挙げることができる。例えば、図15は、反射部材2が反射層7である例である。図15において、反射層7は、周波数選択反射板1の全面に配置されている。 An example of a reflective member that reflects not only electromagnetic waves in a specific frequency band but also electromagnetic waves in other frequency bands is a reflective layer disposed on the entire surface of a frequency selective reflector. For example, FIG. 15 shows an example in which the reflective member 2 is the reflective layer 7. In FIG. 15, the reflective layer 7 is arranged on the entire surface of the frequency selective reflector 1. In FIG.
 反射層の材料としては、特定の周波数帯の電磁波を反射することができる材料であれば特に限定されず、例えば、金属材料、カーボン、ITO等の導電性材料を挙げることができる。 The material of the reflective layer is not particularly limited as long as it is a material that can reflect electromagnetic waves in a specific frequency band, and examples thereof include metal materials, carbon, conductive materials such as ITO, and the like.
 反射層の厚さとしては、特定の周波数帯の電磁波を反射することができる厚さであれば特に限定されず、適宜設定される。 The thickness of the reflective layer is not particularly limited as long as it can reflect electromagnetic waves in a specific frequency band, and is appropriately set.
 また、特定の周波数帯の電磁波のみを反射する反射部材としては、特定の周波数帯の電磁波のみを反射する波長選択機能を有するものであればよく、例えば、周波数選択板を挙げることができる。 Furthermore, the reflecting member that reflects only electromagnetic waves in a specific frequency band may be any member that has a wavelength selection function that reflects only electromagnetic waves in a specific frequency band, such as a frequency selection plate.
 なお、周波数選択板については、上記第1態様に記載した内容と同様である。例えば、図5(b)は、反射部材2が周波数選択板である例であり、反射部材2は、誘電体基板4と、誘電体基板4の誘電体層5側の面に配列された複数の反射素子3とを有している。 Note that the frequency selection board is the same as described in the first aspect above. For example, FIG. 5(b) shows an example in which the reflective member 2 is a frequency selection plate, and the reflective member 2 includes a dielectric substrate 4 and a plurality of reflective members arranged on the dielectric layer 5 side surface of the dielectric substrate 4. It has a reflective element 3.
 また、反射素子の形状や構成についても、上記第1態様に記載した内容と同様である。 Furthermore, the shape and configuration of the reflective element are also the same as those described in the first aspect.
 また、周波数選択板は、すなわち反射部材は、電磁波の反射位相を制御する反射位相制御機能を有することが好ましい。このような反射部材においては、反射素子の寸法や形状を変化させることによって、反射素子毎に共振周波数を変化させ、電磁波の反射位相を制御できる。そのため、周波数選択板が反射位相制御機能を有する場合には、誘電体層の厚さおよび反射素子の寸法や形状によって電磁波の反射位相分布を制御することにより、電磁波の反射特性を制御できる。よって、例えば周波数選択反射板の面内の直交する2方向(例えばx軸方向、y軸方向)の反射特性を周波数選択板および誘電体層で個別に設計でき、また誘電体層の厚さを抑えつつ、所望の電磁波の反射特性を得ることができる。 Furthermore, it is preferable that the frequency selection plate, that is, the reflection member, has a reflection phase control function that controls the reflection phase of electromagnetic waves. In such a reflecting member, by changing the size and shape of the reflecting element, the resonance frequency can be changed for each reflecting element, and the reflection phase of electromagnetic waves can be controlled. Therefore, when the frequency selection plate has a reflection phase control function, the reflection characteristics of electromagnetic waves can be controlled by controlling the reflection phase distribution of electromagnetic waves by the thickness of the dielectric layer and the dimensions and shape of the reflection element. Therefore, for example, the reflection characteristics in two orthogonal directions (for example, the x-axis direction and the y-axis direction) within the plane of the frequency selective reflector can be individually designed using the frequency selective plate and the dielectric layer, and the thickness of the dielectric layer can be adjusted. It is possible to obtain the desired reflection characteristics of electromagnetic waves while suppressing the electromagnetic waves.
 反射位相制御機能を有する周波数選択板としては、一般的な周波数選択性表面を適用することができる。これらは設計に一長一短はあるが、いずれも反射素子の寸法や形状を変化させることで電磁波の反射位相を変化させることが可能である。 A general frequency selective surface can be used as the frequency selective plate having a reflection phase control function. These have advantages and disadvantages in design, but all of them allow the reflected phase of electromagnetic waves to be changed by changing the dimensions and shape of the reflecting element.
 反射素子の寸法としては、反射素子の形状に応じて適宜選択される。 The dimensions of the reflective element are appropriately selected depending on the shape of the reflective element.
 誘電体基板は、光透過性を有していてもよく、光不透過性を有していてもよい。 The dielectric substrate may be optically transparent or optically opaque.
(c)電磁波の反射方向の制御
 本態様の周波数選択反射板においては、誘電体層の単位構造の各セル領域の厚さを変えることで、セル領域毎に誘電体層での往復光路長を変化させ、電磁波の相対反射位相を制御できる。これにより、誘電体層の単位構造のサイズおよび平面視パターン、ならびに、誘電体層の単位構造のセル領域の数および厚さを調整することで、所定の方向から入射した電磁波の反射方向を制御できる。
(c) Control of the reflection direction of electromagnetic waves In the frequency selective reflector of this embodiment, by changing the thickness of each cell region of the unit structure of the dielectric layer, the round trip optical path length in the dielectric layer can be adjusted for each cell region. can be changed to control the relative reflection phase of electromagnetic waves. By adjusting the size and planar view pattern of the unit structure of the dielectric layer, as well as the number and thickness of the cell areas of the unit structure of the dielectric layer, the direction of reflection of electromagnetic waves incident from a predetermined direction can be controlled. can.
 また、反射部材が、周波数選択板であり、かつ、反射位相制御機能を有する部材である場合、誘電体層の単位構造の各セル領域の厚さを変化させることによって、セル領域毎に誘電体層での往復光路長を変化させるだけでなく、反射部材の反射素子の寸法や形状を変化させることによって、反射素子毎の共振周波数を変化させ、電磁波の反射位相を制御でき、これにより、反射特性制御に関する設計の自由度を拡大することができる。 In addition, when the reflective member is a frequency selection plate and a member that has a reflection phase control function, by changing the thickness of each cell region of the unit structure of the dielectric layer, the dielectric material can be applied to each cell region. In addition to changing the round trip optical path length in the layer, by changing the dimensions and shape of the reflective elements of the reflective member, the resonance frequency of each reflective element can be changed and the reflection phase of the electromagnetic waves can be controlled. The degree of freedom in design regarding characteristic control can be expanded.
 この場合、反射部材での反射制御方向と誘電体層での反射制御方向とを分け、周波数選択反射板の全体で二次元的な反射方向制御を行うということも可能になる。また、反射部材および誘電体層での反射制御方向をオーバーラップさせる場合は、例えば、ある程度決まった方向に反射させる反射位相分布を反射部材で実現し、さらに誘電体層で微調整することもできる。この場合、誘電体層の厚さを薄くできるという利点がある。 In this case, it is also possible to separate the reflection control direction in the reflection member and the reflection control direction in the dielectric layer, and perform two-dimensional reflection direction control in the entire frequency selective reflector. In addition, when the reflection control directions of the reflective member and the dielectric layer overlap, for example, it is possible to realize a reflection phase distribution that causes reflection in a certain certain direction with the reflective member, and then finely adjust it with the dielectric layer. . In this case, there is an advantage that the thickness of the dielectric layer can be reduced.
 誘電体層の厚さ分布および反射部材の反射素子の寸法分布の配置としては、例えば、図16(a)、(b)に示すように、反射部材2の反射素子3の寸法が大きくなるにつれて、誘電体層5の単位構造10のセル領域11a~11fの厚さが厚くなるように、誘電体層5および反射部材2を配置できる。このような態様においては、誘電体層の厚さを抑えることができる。これにより、誘電体層が薄くなるため、周波数選択反射板の軽量化や低コスト化を図ることができ、また、反射角が大きくなった場合でも、反射波が誘電体層の凹凸構造側の面に当たりにくくなる。 For example, as shown in FIGS. 16(a) and 16(b), the thickness distribution of the dielectric layer and the size distribution of the reflective elements of the reflective member change as the size of the reflective element 3 of the reflective member 2 increases. , the dielectric layer 5 and the reflective member 2 can be arranged so that the cell regions 11a to 11f of the unit structure 10 of the dielectric layer 5 are thicker. In such an embodiment, the thickness of the dielectric layer can be reduced. This makes the dielectric layer thinner, making it possible to reduce the weight and cost of the frequency-selective reflector.Also, even when the reflection angle becomes large, the reflected waves are directed toward the uneven structure side of the dielectric layer. It becomes difficult to hit the surface.
 また、誘電体層の厚さ分布および反射部材の反射素子の寸法分布の配置としては、例えば、図17(a)、(b)に示すように、反射部材2の反射素子3の寸法は方向D2に沿って大きくなり、誘電体層5の単位構造10のセル領域11a~11fの厚さは方向D2に垂直な方向D1に沿って厚くなるように、誘電体層5および反射部材2を配置してもよい。 Furthermore, regarding the arrangement of the thickness distribution of the dielectric layer and the size distribution of the reflective elements of the reflective member, for example, as shown in FIGS. The dielectric layer 5 and the reflective member 2 are arranged so that the thickness increases along the direction D2, and the thickness of the cell regions 11a to 11f of the unit structure 10 of the dielectric layer 5 increases along the direction D1 perpendicular to the direction D2. You may.
 なお、図17(a)、(b)においては、一つのセル領域において、反射素子の寸法が異なるため、反射素子の寸法に応じて、一つのセル領域での電磁波の相対反射位相が部分的に異なることになる。このような場合においても、厚さが増加する所定の方向D1に切り取った場合、上述したグラフにおいて、各点が同一直線上にあることになる。 Note that in FIGS. 17(a) and 17(b), the dimensions of the reflective elements differ in one cell region, so the relative reflection phase of the electromagnetic waves in one cell region partially changes depending on the dimensions of the reflective element. will be different. Even in such a case, when cut in the predetermined direction D1 in which the thickness increases, each point will be on the same straight line in the above graph.
 また、反射部材および誘電体層を別々に設計し組み合わせる仕様の場合、反射部材に対して、誘電体層を、法線方向を軸として面内で回転させて、反射部材に対する、誘電体層の単位構造のセル領域の配列方向の向きを調整することにより、電磁波の反射方向を微調整することもできる。 In addition, in the case of specifications in which the reflective member and the dielectric layer are designed separately and combined, the dielectric layer can be rotated in the plane about the normal direction to the reflective member, and the dielectric layer can be rotated in the plane with respect to the reflective member. By adjusting the arrangement direction of the cell regions of the unit structure, the direction in which electromagnetic waves are reflected can also be finely adjusted.
 また、上述したように、誘電体層の単位構造において、厚さが増加する所定の方向における単位構造の長さを調整することにより、反射特性を制御できる。例えば、厚さが増加する所定の方向における単位構造の長さを短くすることで、電磁波の反射角を大きくすることができ、一方、厚さが増加する所定の方向における単位構造の長さを長くすることで、電磁波の反射角を小さくすることができる。 Furthermore, as described above, in the unit structure of the dielectric layer, the reflection characteristics can be controlled by adjusting the length of the unit structure in a predetermined direction in which the thickness increases. For example, by shortening the length of a unit structure in a given direction where the thickness increases, the reflection angle of electromagnetic waves can be increased; By increasing the length, the reflection angle of electromagnetic waves can be reduced.
 なお、誘電体層の単位構造において、厚さが増加する所定の方向における単位構造の長さとは、誘電体層の単位構造が、所定の方向に厚さが増加する厚さ分布を有する場合において、その所定の方向における単位構造の長さをいう。例えば図15においては、誘電体層5の単位構造10では、所定の方向D1に厚さが増加しており、この所定の方向D1における単位構造10の長さはLである。 In addition, in the unit structure of the dielectric layer, the length of the unit structure in a predetermined direction in which the thickness increases is the length of the unit structure in the predetermined direction when the unit structure of the dielectric layer has a thickness distribution in which the thickness increases in the predetermined direction. , refers to the length of a unit structure in a given direction. For example, in FIG. 15, the thickness of the unit structure 10 of the dielectric layer 5 increases in a predetermined direction D1, and the length of the unit structure 10 in this predetermined direction D1 is L.
 なお、上述したように、周波数選択反射板における反射位相の面内分布設計を実現する誘電体層の凹凸構造の面内配置は、反射部材の反射素子の面内配置に対して一定の位置関係である必要はなく、誘電体層の凹凸構造を反射素子の面内配置に対してずらして配置しても反射特性に大きな影響を与えない。そのため、反射部材が、周波数選択板であり、かつ、反射位相制御機能を有する部材である場合、誘電体層および反射部材をそれぞれ独立して設計することが可能である。 As mentioned above, the in-plane arrangement of the concavo-convex structure of the dielectric layer that realizes the in-plane distribution design of the reflection phase in the frequency selective reflector has a certain positional relationship with respect to the in-plane arrangement of the reflective elements of the reflective member. It is not necessary that this is the case, and even if the uneven structure of the dielectric layer is shifted from the in-plane arrangement of the reflective element, the reflection characteristics will not be significantly affected. Therefore, when the reflecting member is a frequency selection plate and a member having a reflection phase control function, it is possible to design the dielectric layer and the reflecting member independently.
(d)他の構成
 本態様の周波数選択反射板は、上記の反射部材および誘電体層の他に、必要に応じて他の構成を有していてもよい。
(d) Other configurations In addition to the above-mentioned reflecting member and dielectric layer, the frequency selective reflection plate of this embodiment may have other configurations as necessary.
(i)接着層
 本態様の周波数選択反射板は、上記反射部材と上記誘電体層との間に接着層を有していてもよい。接着層によって、反射部材および誘電体層を接着することができる。また、反射部材が複数の反射素子が配列された部材である場合には、接着層によって、反射素子による凹凸を平坦化することができ、反射部材上に誘電体層を積層する際の反射素子による凹凸の影響を抑えることができる。例えば、図5(b)において、反射部材2と誘電体層5との間には接着層6が配置されている。
(i) Adhesive layer The frequency selective reflector of this embodiment may have an adhesive layer between the reflective member and the dielectric layer. The reflective member and the dielectric layer can be bonded together by the adhesive layer. In addition, when the reflective member is a member in which a plurality of reflective elements are arranged, the unevenness caused by the reflective elements can be flattened by the adhesive layer. It is possible to suppress the influence of unevenness due to For example, in FIG. 5(b), an adhesive layer 6 is disposed between the reflective member 2 and the dielectric layer 5.
 接着層には、例えば、接着剤や粘着剤を用いることができ、公知の接着剤および粘着剤の中から適宜選択して用いることができる。その場合、接着剤や粘着剤は、不導体である必要がある。また、接着剤や粘着剤が液状である場合は、均一に塗り広げることができ、気泡の噛みこみを除去できる程度の流動性を持つことが好ましい。また、接着剤や粘着剤がシート状である場合は、厚みが均一であることが好ましく、かつ貼合界面の凹凸に追従し、気泡の噛みこみを抑制することが可能な程度の柔軟性を有することが好ましい。 For the adhesive layer, for example, an adhesive or a pressure-sensitive adhesive can be used, and an appropriate one can be selected from known adhesives and pressure-sensitive adhesives. In that case, the adhesive or adhesive needs to be a nonconductor. Furthermore, when the adhesive or pressure-sensitive adhesive is in liquid form, it is preferable that it has enough fluidity to be able to be spread evenly and to remove trapped air bubbles. In addition, if the adhesive or pressure-sensitive adhesive is in the form of a sheet, it is preferable that the thickness is uniform, and that it is flexible enough to follow the unevenness of the bonding interface and suppress air bubbles from being trapped. It is preferable to have.
 接着層の厚さとしては、所望の接着力を得ることができる厚さであり、均一であることが好ましい。また、反射部材が複数の反射素子が配列された部材である場合には、接着層の厚さは、平坦化の点から、反射素子の厚さと同等以上であることが好ましい。このとき、接着層が反射素子の厚さよりも厚い場合は、反射素子が接着層に埋め込まれた状態となる。また、接着層の厚さは、対象となる電磁波の実効波長よりも十分に小さいことが好ましく、電磁波の実効波長をλとした場合、具体的には0.01λ以下であることが好ましい。 The thickness of the adhesive layer is such that a desired adhesive force can be obtained, and it is preferably uniform. Further, when the reflective member is a member in which a plurality of reflective elements are arranged, the thickness of the adhesive layer is preferably equal to or greater than the thickness of the reflective elements from the viewpoint of flattening. At this time, if the adhesive layer is thicker than the reflective element, the reflective element will be embedded in the adhesive layer. Further, the thickness of the adhesive layer is preferably sufficiently smaller than the effective wavelength of the target electromagnetic wave, and specifically, it is preferably 0.01λ g or less, where λ g is the effective wavelength of the electromagnetic wave. .
(ii)空間
 本態様の周波数選択反射板は、上記反射部材と上記誘電体層との間に空間を有していてもよい。例えば、図18において、反射部材2と誘電体層5との間には空間8が配置されている。
(ii) Space The frequency selective reflection plate of this aspect may have a space between the reflection member and the dielectric layer. For example, in FIG. 18, a space 8 is disposed between the reflective member 2 and the dielectric layer 5.
 反射部材と誘電体層との間に空間が配置されている場合、反射部材と誘電体層との距離は一定であることが好ましい。これにより、空間での光路長を揃えることができる。 When a space is provided between the reflective member and the dielectric layer, the distance between the reflective member and the dielectric layer is preferably constant. This makes it possible to make the optical path lengths uniform in space.
(iii)保護部材
 本態様の周波数選択反射板は、上記誘電体層の上記反射部材とは反対側の面に保護部材を有していてもよい。保護部材によって、誘電体層を保護することができる。また、保護部材によって、意匠性を付与することもできる。
(iii) Protective Member The frequency selective reflector of this aspect may have a protective member on the surface of the dielectric layer opposite to the reflective member. The dielectric layer can be protected by the protective member. Further, the protective member can also add design properties.
(iv)グラウンド層
 本態様の周波数選択反射板は、上記反射部材の上記誘電体層とは反対側の面にグラウンド層を有していてもよい。グラウンド層によって、周波数選択反射板の裏面に存在する物体との干渉を遮断し、ノイズの発生を抑えることができる。また、グラウンド層は、波長選択性を有しない反射部材の一部にもなり得る。グラウンド層としては、例えば、金属層、金属メッシュ、カーボン膜、ITO膜等の一般的な導電層を用いることができる。
(iv) Ground Layer The frequency selective reflector of this embodiment may have a ground layer on the surface of the reflective member opposite to the dielectric layer. The ground layer can block interference with objects on the back side of the frequency selective reflector and suppress the generation of noise. Furthermore, the ground layer can also be part of a reflective member that does not have wavelength selectivity. As the ground layer, for example, a general conductive layer such as a metal layer, metal mesh, carbon film, ITO film, etc. can be used.
(v)平坦化層
 本態様の周波数選択反射板は、上記反射部材と上記誘電体層との間に平坦化層を有していてもよい。反射部材が複数の反射素子が配列された部材である場合には、平坦化層によって、反射素子による凹凸を平坦化することができ、反射部材上に誘電体層を積層する際の反射素子による凹凸の影響を抑えることができる。なお、ここでいう平坦化層は、接着層とは別に配置するものをいう。反射素子を包埋する状態で配置された電離放射線硬化樹脂層を例示することができる。また、反射部材と誘電体層との間に空間を設ける形態の場合は、平坦化層に反射素子を保護する機能を持たせてもよい。
(v) Flattening layer The frequency selective reflector of this embodiment may have a flattening layer between the reflective member and the dielectric layer. When the reflective member is a member in which a plurality of reflective elements are arranged, the unevenness caused by the reflective elements can be flattened by the flattening layer. The influence of unevenness can be suppressed. Note that the flattening layer here refers to a layer that is arranged separately from the adhesive layer. An example is an ionizing radiation-curable resin layer disposed to embed the reflective element. Furthermore, in the case of a configuration in which a space is provided between the reflective member and the dielectric layer, the planarization layer may have a function of protecting the reflective element.
(vi)反射防止層
 高周波の場合には誘電体層界面での反射の影響も考えられるため、本態様の周波数選択反射板においては、必要に応じて、誘電体層と空気との界面に反射防止層を配置してもよい。反射防止層は、例えば、誘電率の異なる多層構造を有していてもよく、電磁波の実効波長よりも小さい凹凸構造を有していてもよい。
(vi) Anti-reflection layer In the case of high frequencies, the influence of reflection at the dielectric layer interface is also considered, so in the frequency selective reflector of this embodiment, the reflection at the interface between the dielectric layer and air may be applied as necessary. A protective layer may also be provided. For example, the antireflection layer may have a multilayer structure with different dielectric constants, or may have an uneven structure smaller than the effective wavelength of electromagnetic waves.
(3)周波数選択反射板の位置合わせ
 本実施態様においては、基材の第1アライメントマークを用いて、複数の周波数選択反射板の位置合わせを行うことができる。例えば、基材の第1アライメントマークを基準として、周波数選択反射板のエッジの位置を合わせて、周波数選択反射板の位置合わせを行ってもよい。また、例えば、周波数選択反射板が第2アライメントマークを有しており、基材の第1アライメントマークを基準として、周波数選択反射板の第2アライメントマークの位置を合わせて、周波数選択反射板の位置合わせを行ってもよい。
(3) Alignment of frequency selective reflectors In this embodiment, the first alignment marks on the base material can be used to align a plurality of frequency selective reflectors. For example, the frequency selective reflector may be aligned by aligning the edge of the frequency selective reflector with reference to the first alignment mark of the base material. Further, for example, the frequency selective reflector has a second alignment mark, and the second alignment mark of the frequency selective reflector is aligned with the first alignment mark of the base material as a reference. Positioning may also be performed.
 例えば図1においては、基材21が十字形状の第1アライメントマーク22を有しており、基材21の第1アライメントマーク22を基準として、周波数選択反射板1のエッジの位置を合わせて、周波数選択反射板1の位置合わせを行う。具体的には、周波数選択反射板1の外周領域が光不透過性を有しており、基材21が光透過性を有し、第1アライメントマーク22が光不透過性を有する場合には、透過光によって基材21の第1アライメントマーク22および周波数選択反射板1のエッジを検出し、周波数選択反射板1の位置合わせを行うことができる。また、周波数選択反射板1の外周領域が光反射性を有しており、第1アライメントマーク22が光反射性を有する場合には、反射光によって基材21の第1アライメントマーク22および周波数選択反射板1のエッジを検出し、周波数選択反射板1の位置合わせを行うことができる。 For example, in FIG. 1, the base material 21 has a cross-shaped first alignment mark 22, and the edge of the frequency selective reflector 1 is aligned with the first alignment mark 22 of the base material 21 as a reference. The frequency selective reflector 1 is aligned. Specifically, when the outer peripheral region of the frequency selective reflector 1 is light-opaque, the base material 21 is light-transparent, and the first alignment mark 22 is light-opaque, , the first alignment mark 22 of the base material 21 and the edge of the frequency selective reflector 1 can be detected by the transmitted light, and the frequency selective reflector 1 can be aligned. In addition, when the outer circumferential region of the frequency selection reflector 1 has light reflectivity and the first alignment mark 22 has light reflectivity, the first alignment mark 22 of the base material 21 and the frequency selection The edges of the reflector 1 can be detected and the frequency selective reflector 1 can be aligned.
 周波数選択反射板の外周領域が光不透過性を有する場合について、例えば第1態様の周波数選択反射板の場合には、反射部材の誘電体基板を光不透過性とする、反射部材の基材側の面の全面にグラウンド層を配置する、あるいは、反射部材の基材側の面の全面または外周領域のみに、金属材料または樹脂を含有する遮光層を配置することにより、周波数選択反射板の外周領域を光不透過性とすることができる。 Regarding the case where the outer peripheral region of the frequency selective reflector is light-opaque, for example, in the case of the frequency selective reflector of the first aspect, the base material of the reflective member is such that the dielectric substrate of the reflective member is light-opaque. By arranging a ground layer on the entire surface of the side surface, or by arranging a light shielding layer containing a metal material or resin only on the entire surface of the base material side of the reflective member or only on the outer peripheral area, the frequency selective reflector can be improved. The outer peripheral region can be made light-opaque.
 また、周波数選択反射板の外周領域が光不透過性を有する場合について、例えば第2態様の周波数選択反射板の場合には、反射部材の誘電体基板を光不透過性とする、反射部材の基材側の面の全面にグラウンド層を配置する、反射部材を、周波数選択反射板の全面に配置される反射層とする、あるいは、反射部材の基材側の面の全面または外周領域のみに、金属材料または樹脂を含有する遮光層を配置することにより、周波数選択反射板の外周領域を光不透過性とすることができる。 Regarding the case where the outer peripheral region of the frequency selective reflector is light-opaque, for example, in the case of the frequency selective reflector of the second aspect, the dielectric substrate of the reflective member is made light-opaque. A ground layer is placed on the entire surface of the base material side, the reflective member is a reflective layer placed on the entire surface of the frequency selective reflector, or the reflective member is placed on the entire surface of the base material side or only in the outer peripheral area. By arranging a light shielding layer containing a metal material or resin, the outer peripheral region of the frequency selective reflector can be rendered light-opaque.
 また、周波数選択反射板の外周領域が光反射性を有する場合について、例えば第1態様の周波数選択反射板の場合には、反射部材の基材側の面の全面にグラウンド層を配置する、あるいは、反射部材の基材側の面の全面または外周領域のみに、金属材料を含有する遮光層を配置することにより、周波数選択反射板の外周領域を光反射性とすることができる。 Further, in the case where the outer peripheral region of the frequency selective reflector has light reflectivity, for example, in the case of the frequency selective reflector of the first aspect, a ground layer is arranged on the entire surface of the base material side of the reflective member, or By arranging a light-shielding layer containing a metal material on the entire surface of the base-side surface of the reflective member or only on the outer peripheral region, the outer peripheral region of the frequency selective reflector can be made light reflective.
 また、周波数選択反射板の外周領域が光反射性を有する場合について、例えば第2態様の周波数選択反射板の場合には、反射部材の基材側の面の全面にグラウンド層を配置する、反射部材を、周波数選択反射板の全面に配置される反射層とする、あるいは、反射部材の基材側の面の全面または外周領域のみに、金属材料を含有する遮光層を配置することにより、周波数選択反射板の外周領域を光反射性とすることができる。 In addition, in the case where the outer peripheral region of the frequency selective reflector has light reflectivity, for example, in the case of the frequency selective reflector of the second aspect, a ground layer is arranged on the entire surface of the base material side of the reflective member. By using the member as a reflective layer disposed on the entire surface of the frequency selective reflector, or by disposing a light shielding layer containing a metal material on the entire surface of the base material side of the reflective member or only on the outer peripheral area, the frequency The outer peripheral region of the selective reflection plate can be made light reflective.
 また、例えば図19においては、基材21が円形状の第1アライメントマーク22を有し、周波数選択反射板1が中抜きの円形状の第2アライメントマーク24を有しており、基材21の第1アライメントマーク22を基準として、周波数選択反射板1の第2アライメントマーク24の位置を合わせて、周波数選択反射板1の位置合わせを行う。具体的には、基材21が光透過性を有し、第1アライメントマーク22が光不透過性を有しており、第2アライメントマーク24が光不透過性を有する場合であって、周波数選択反射板1の反射部材の誘電体基板が光透過性を有する場合には、透過光によって基材21の第1アライメントマーク22および周波数選択反射板1の第2アライメントマーク24を検出し、周波数選択反射板1の位置合わせを行うことができる。また、第1アライメントマーク22が光反射性を有しており、第2アライメントマーク24が光反射性を有する場合であって、周波数選択反射板1の反射部材の誘電体基板が光透過性を有する場合には、反射光によって基材21の第1アライメントマーク22および周波数選択反射板1の第2アライメントマーク24を検出し、周波数選択反射板1の位置合わせを行うことができる。 For example, in FIG. 19, the base material 21 has a circular first alignment mark 22, the frequency selective reflector 1 has a hollow circular second alignment mark 24, and the base material 21 has a circular first alignment mark 22. The frequency selective reflector 1 is aligned by aligning the second alignment mark 24 of the frequency selective reflector 1 with reference to the first alignment mark 22 of . Specifically, the base material 21 is light-transmissive, the first alignment mark 22 is light-opaque, and the second alignment mark 24 is light-opaque, and the frequency When the dielectric substrate of the reflective member of the selective reflector 1 has optical transparency, the first alignment mark 22 of the base material 21 and the second alignment mark 24 of the frequency selective reflector 1 are detected by transmitted light, and the frequency The selective reflection plate 1 can be aligned. Further, in the case where the first alignment mark 22 has a light reflectivity and the second alignment mark 24 has a light reflectivity, the dielectric substrate of the reflective member of the frequency selective reflector 1 has a light transmittance. If so, the first alignment mark 22 of the base material 21 and the second alignment mark 24 of the frequency selective reflector 1 can be detected by reflected light, and the frequency selective reflector 1 can be aligned.
 なお、周波数選択反射板の反射部材を構成する反射素子は、光不透過性や光反射性を有する場合がある。このような場合であっても、例えば、反射素子の大きさと、第1アライメントマークおよび第2アライメントマークの大きさとを、大きく異ならせることにより、第1アライメントマークおよび第2アライメントマークによる透過光または反射光と、反射素子による透過光または反射光とを区別できる。また、上記のような場合であっても、例えば、周波数選択反射板において、第2アライメントマークの周囲に反射素子を配置しないことにより、第1アライメントマークおよび第2アライメントマークによる透過光または反射光と、反射素子による透過光または反射光とを区別できる。よって、周波数選択反射板の位置合わせが可能である。 Note that the reflective element that constitutes the reflective member of the frequency selective reflector may be light-opaque or light-reflective. Even in such a case, for example, by making the size of the reflective element and the size of the first alignment mark and the second alignment mark significantly different, the light transmitted by the first alignment mark and the second alignment mark or It is possible to distinguish between reflected light and light transmitted or reflected by the reflective element. In addition, even in the above case, for example, by not disposing a reflective element around the second alignment mark in the frequency selective reflector, the transmitted light or reflected light by the first alignment mark and the second alignment mark can be reduced. can be distinguished from transmitted light or reflected light by the reflective element. Therefore, it is possible to align the frequency selective reflector.
 なお、周波数選択反射板において、第2アライメントマークの周囲に反射素子を配置しない場合、反射素子が配置されていない領域の合計面積は、周波数選択反射板全体の面積に対して十分小さいため、反射特性にはほとんど影響がないと考えられる。 In addition, in the frequency selective reflector, when no reflective element is arranged around the second alignment mark, the total area of the area where no reflective element is arranged is sufficiently small compared to the area of the entire frequency selective reflector, so the reflection It is thought that there is almost no effect on the characteristics.
 また、例えば図20においては、基材21が十字形状の第1アライメントマーク22を有し、周波数選択反射板1が四角形状の貫通孔である第2アライメントマーク24を有しており、基材21の第1アライメントマーク22を基準として、周波数選択反射板1の第2アライメントマーク24の位置を合わせて、周波数選択反射板1の位置合わせを行う。具体的には、基材21が光透過性を有し、第1アライメントマーク22が光不透過性を有する場合には、透過光によって周波数選択反射板1の貫通孔(第2アライメントマーク24)を介して基材21の第1アライメントマーク22を検出し、周波数選択反射板1の位置合わせを行うことができる。また、第1アライメントマーク22が光反射性を有する場合には、反射光によって周波数選択反射板1の貫通孔(第2アライメントマーク24)を介して基材21の第1アライメントマーク22を検出し、周波数選択反射板1の位置合わせを行うことができる。 For example, in FIG. 20, the base material 21 has a cross-shaped first alignment mark 22, the frequency selective reflector 1 has a second alignment mark 24 that is a square-shaped through hole, and the base material The frequency selective reflector 1 is aligned by aligning the second alignment mark 24 of the frequency selective reflector 1 with reference to the first alignment mark 22 of No. 21. Specifically, when the base material 21 is light-transmissive and the first alignment mark 22 is light-opaque, the through-hole (second alignment mark 24) of the frequency selective reflector 1 is formed by the transmitted light. The first alignment mark 22 on the base material 21 can be detected through the first alignment mark 22, and the frequency selective reflector 1 can be aligned. In addition, when the first alignment mark 22 has light reflectivity, the first alignment mark 22 on the base material 21 is detected by reflected light through the through hole (second alignment mark 24) of the frequency selective reflector 1. , the frequency selective reflector 1 can be aligned.
 また、図示しないが、基材が貫通孔である第1アライメントマークを有し、周波数選択反射板が貫通孔である第2アライメントマークを有する場合、基材の第1アライメントマークを基準として、周波数選択反射板の第2アライメントマークの位置を合わせて、周波数選択反射板の位置合わせを行う。具体的には、透過光によって周波数選択反射板の貫通孔(第2アライメントマーク)および基材の貫通孔(第1アライメントマーク)を検出し、周波数選択反射板の位置合わせを行うことができる。また、基材の貫通孔(第1アライメントマーク)にピンを挿入し、ピンに周波数選択反射板の貫通孔(第2アライメントマーク)を嵌めることにより、周波数選択反射板の位置合わせを行うこともできる。この場合、ピンにより、基材に周波数選択反射板を固定できる。 Furthermore, although not shown, when the base material has a first alignment mark that is a through hole, and the frequency selective reflector has a second alignment mark that is a through hole, the frequency The frequency selective reflector is aligned by aligning the second alignment mark of the selective reflector. Specifically, the through-hole (second alignment mark) of the frequency-selective reflector and the through-hole (first alignment mark) of the base material can be detected by transmitted light, and the frequency-selective reflector can be aligned. Alternatively, the frequency selective reflector can be aligned by inserting a pin into the through hole (first alignment mark) of the base material and fitting the pin into the through hole (second alignment mark) of the frequency selective reflector. can. In this case, the frequency selective reflector can be fixed to the base material using pins.
 なお、第2アライメントマークが貫通孔である場合には、周波数選択反射板において、第2アライメントマークの部分には反射素子が存在しないことになる。この場合、周波数選択反射板において、反射素子が存在しない、第2アライメントマークである貫通孔の合計面積は、周波数選択反射板全体の面積に対して十分小さいため、反射特性にはほとんど影響がないと考えられる。 Note that in the case where the second alignment mark is a through hole, there is no reflective element in the part of the second alignment mark in the frequency selective reflector. In this case, in the frequency selective reflector, the total area of the through holes, which are the second alignment marks, in which no reflective element is present, is sufficiently small compared to the area of the entire frequency selective reflector, so it has almost no effect on the reflection characteristics. it is conceivable that.
(a)第2アライメントマーク
 本実施態様において、周波数選択反射板は第2アライメントマークを有していてもよい。第2アライメントマークは、周波数選択反射板の位置合わせを行うためのマークである。
(a) Second alignment mark In this embodiment, the frequency selective reflector may have a second alignment mark. The second alignment mark is a mark for aligning the frequency selective reflector.
 第2アライメントマークは、光不透過性を有していてもよい。また、第2アライメントマークは、光反射性を有していてもよい。これらの第2アライメントマークの光学特性は、透過光および反射光のいずれにより第2アライメントマークを検出するのかに応じて適宜選択される。 The second alignment mark may be optically opaque. Further, the second alignment mark may have light reflectivity. The optical characteristics of these second alignment marks are appropriately selected depending on whether the second alignment mark is detected using transmitted light or reflected light.
 第2アライメントマークの透過率や反射率は、第2アライメントマークを透過光または反射光によって検出可能であれば特に限定されず、第2アライメントマークの材料や厚さ等に応じて適宜設定できる。 The transmittance and reflectance of the second alignment mark are not particularly limited as long as the second alignment mark can be detected by transmitted light or reflected light, and can be appropriately set according to the material, thickness, etc. of the second alignment mark.
 また、第2アライメントマークは、周波数選択反射板を貫通する貫通孔であってもよい。 Additionally, the second alignment mark may be a through hole that penetrates the frequency selective reflector.
 第2アライメントマークの平面視形状は、特に限定されず、一般的なアライメントマークの平面視形状と同様である。第2アライメントマークの平面視形状の具体例は、上記第1アライメントマークと同様である。 The shape of the second alignment mark in plan view is not particularly limited, and is similar to the shape of a general alignment mark in plan view. A specific example of the shape of the second alignment mark in plan view is the same as that of the first alignment mark.
 第2アライメントマークの大きさや線幅は、第2アライメントマークを検出可能であれば特に限定されない。 The size and line width of the second alignment mark are not particularly limited as long as the second alignment mark can be detected.
 第2アライメントマークの数は、周波数選択反射板の位置合わせを行うことが可能であれば特に限定されない。 The number of second alignment marks is not particularly limited as long as it is possible to align the frequency selective reflector.
 周波数選択反射板における第2アライメントマークの位置は、特に限定されないが、通常、第2アライメントマークは周波数選択反射板の外周領域に配置される。 Although the position of the second alignment mark on the frequency selective reflector is not particularly limited, the second alignment mark is usually arranged in the outer peripheral area of the frequency selective reflector.
 第2アライメントマークは、周波数選択反射板の基材側の面に配置されていてもよく、周波数選択反射板の基材とは反対側の面に配置されていてもよい。 The second alignment mark may be arranged on the surface of the frequency selective reflector on the base material side, or may be arranged on the surface of the frequency selective reflector on the opposite side from the base material.
 第2アライメントマークの厚さは、第2アライメントマークを精度良く形成することが可能な厚さであれば特に限定されず、第2アライメントマークの光学特性等に応じて適宜調整される。 The thickness of the second alignment mark is not particularly limited as long as the second alignment mark can be formed with high precision, and is adjusted as appropriate depending on the optical characteristics of the second alignment mark.
 第2アライメントマークの材料および形成方法は、上記第1アライメントマークと同様である。 The material and formation method of the second alignment mark are the same as those for the first alignment mark.
 また、周波数選択反射板の位置合わせが可能であれば、周波数選択反射板の反射部材を構成する反射素子の一部を、第2アライメントマークとして利用してもよい。 Furthermore, if the frequency selective reflector can be aligned, a part of the reflective element constituting the reflective member of the frequency selective reflector may be used as the second alignment mark.
(b)第2識別マーク
 本実施態様においては、例えば図2に示すように、周波数選択反射板1は、周波数選択反射板1を識別するための第2識別マーク25を有していてもよい。例えば図2において、周波数選択反射板1は、「No1」「No2」「No3」「No4」の第2識別マーク25を有している。周波数選択反射板が第2識別マークを有することにより、各周波数選択反射板を容易に識別できるとともに、周波数選択反射板の上下左右や表裏を容易に識別できるので、各周波数選択反射板を正しい位置に確実かつ容易に配置できる。特に、複数の周波数選択反射板の反射特性が互いに異なる場合には有用である。
(b) Second identification mark In this embodiment, for example, as shown in FIG. 2, the frequency selective reflector 1 may have a second identification mark 25 for identifying the frequency selective reflector 1. . For example, in FIG. 2, the frequency selective reflector 1 has second identification marks 25 of "No. 1", "No. 2", "No. 3", and "No. 4". Since the frequency selective reflector has a second identification mark, each frequency selective reflector can be easily identified, and the top, bottom, left, right, front and back of the frequency selective reflector can also be easily identified, so each frequency selective reflector can be placed in the correct position. can be placed securely and easily. This is particularly useful when the reflection characteristics of a plurality of frequency selective reflectors are different from each other.
 第2識別マークは、光不透過性を有していてもよい。また、第2識別マークは、光反射性を有していてもよい。これらの第2識別マークの光学特性は、上記第2アライメントマークと同様に、透過光および反射光のいずれにより第2識別マークを検出するのかに応じて適宜選択される。 The second identification mark may be optically opaque. Furthermore, the second identification mark may have light reflectivity. Similar to the second alignment mark, the optical characteristics of these second identification marks are appropriately selected depending on whether the second identification mark is detected using transmitted light or reflected light.
 第2識別マークの透過率や反射率は、第2識別マークを透過光または反射光によって検出可能であれば特に限定されず、第2識別マークの材料や厚さ等に応じて適宜設定できる。 The transmittance and reflectance of the second identification mark are not particularly limited as long as the second identification mark can be detected by transmitted light or reflected light, and can be set as appropriate depending on the material, thickness, etc. of the second identification mark.
 第2識別マークは、識別可能なマークであれば特に限定されず、例えば、文字、記号、図形が挙げられる。具体的には、コードが挙げられる。また、例えば、「No1」「No2」「No3」「No4」、「1」「2」「3」「4」の他に、「天」「地」、「右上」「左上」「右下」「左下」、「UR」「UL」「LR」「LL」が挙げられる。また、第2識別マークは、光学文字認識(Optical Character Recognition;OCR)可能なデータであってもよい。 The second identification mark is not particularly limited as long as it is an identifiable mark, and examples thereof include letters, symbols, and figures. A specific example is a code. For example, in addition to "No1", "No2", "No3", "No4", "1", "2", "3", "4", "Heaven", "Earth", "Top right", "Top left", "Bottom right" Examples include "lower left", "UR", "UL", "LR", and "LL". Further, the second identification mark may be data that can be optically recognized (OCR).
 第2識別マークの大きさや線幅は、第2識別マークを検出可能であれば特に限定されない。 The size and line width of the second identification mark are not particularly limited as long as the second identification mark can be detected.
 周波数選択反射板における第2識別マークの位置は、各周波数選択反射板を識別可能であれば特に限定されない。また、周波数選択反射板における第2識別マークの位置により、周波数選択反射板の上下左右を識別することもできる。 The position of the second identification mark on the frequency selective reflector is not particularly limited as long as each frequency selective reflector can be identified. Further, depending on the position of the second identification mark on the frequency selective reflector, it is also possible to identify the top, bottom, left and right of the frequency selective reflector.
 また、第2識別マークを、各周波数選択反射板の対向する辺に配置する、または各周波数選択反射板の角部に近い位置に配置すれば、各周波数選択反射板が正しい位置に配置されているかを容易に検査または記録できる。例として、4枚の周波数選択反射板を左上、右上、左下、右下の配置で並べる場合、各周波数選択反射板において、4枚の周波数選択反射板全体における中央部に近い角付近に第2識別マークを集めて配置することで、1回の写真撮影により各周波数選択反射板が正しく配置されているかを検査または記録できる。 Furthermore, if the second identification marks are placed on opposite sides of each frequency selective reflector or placed close to the corners of each frequency selective reflector, each frequency selective reflector can be placed in the correct position. It can be easily inspected or recorded. For example, if four frequency selective reflectors are arranged in the upper left, upper right, lower left, and lower right positions, each frequency selective reflector has a second one near the corner near the center of all four frequency selective reflectors. By collecting and arranging the identification marks, it is possible to inspect or record whether each frequency selective reflector is correctly arranged by taking a single photograph.
 第2識別マークは、周波数選択反射板の基材側の面に配置されていてもよく、周波数選択反射板の基材とは反対側の面に配置されていてもよい。 The second identification mark may be arranged on the surface of the frequency selective reflector on the base material side, or may be arranged on the surface of the frequency selective reflector on the opposite side from the base material.
 第2識別マークの厚さ、材料、形成方法は、第2アライメントマークの厚さ、材料、形成方法と同様である。 The thickness, material, and formation method of the second identification mark are the same as those of the second alignment mark.
 第2識別マークの材料が第2アライメントマークの材料と同一である場合には、第2アライメントマークおよび第2識別マークを同時に形成できる。 If the material of the second identification mark is the same as the material of the second alignment mark, the second alignment mark and the second identification mark can be formed at the same time.
 周波数選択反射板が第2識別マークを有する場合、上記基材は第1識別マークを有していてもよく、有していなくてもよい。周波数選択反射板の数が少ない場合、各周波数選択反射板の位置が分かる第2識別マークを用いることにより、上記基材が第1識別マークを有さない場合でも、各周波数選択反射板を正しい位置に配置できる。このような第2識別マークとしては、例えば、「天」「地」、「右上」「左上」「右下」「左下」、「UR」「UL」「LR」「LL」が挙げられる。周波数選択反射板が第2識別マークを有し、上記基材が第1識別マークを有さない場合、周波数選択反射板の数は、3行以下および3列以下であることが好ましい。 When the frequency selective reflector has a second identification mark, the base material may or may not have the first identification mark. When the number of frequency selective reflectors is small, by using a second identification mark that indicates the position of each frequency selective reflector, even if the base material does not have the first identification mark, each frequency selective reflector can be correctly identified. Can be placed in position. Examples of such second identification marks include "heaven", "earth", "upper right", "upper left", "lower right", "lower left", "UR", "UL", "LR", and "LL". When the frequency selective reflector has a second identification mark and the base material does not have a first identification mark, it is preferable that the number of frequency selective reflectors is 3 or less rows and 3 columns or less.
(c)切断部
 周波数選択反射板は、周波数選択反射板の一部が切断された切断部を有していてもよい。この場合、周波数選択反射板は、上記第2識別マークに代えて、切断部を有していてもよく、上記第2識別マークに加えて、切断部を有していてもよい。切断部は、周波数選択反射板の面の向きを示す目印である。周波数選択反射板が切断部を有することにより、周波数選択反射板の上下左右や表裏を容易に識別できるので、各周波数選択反射板を正しい位置に容易に配置できる。
(c) Cutting portion The frequency selective reflector may have a cutting portion where a part of the frequency selective reflecting plate is cut. In this case, the frequency selective reflector may have a cut portion instead of the second identification mark, or may have a cut portion in addition to the second identification mark. The cut portion is a mark indicating the direction of the surface of the frequency selective reflector. Since the frequency selective reflector has a cut portion, it is possible to easily identify the top, bottom, left, right, front and back of the frequency selective reflector, and therefore each frequency selective reflector can be easily placed in the correct position.
 切断部としては、周波数選択反射板に非対称な形状を付与することにより、周波数選択反射板の面の向きを示すことができる部分であれば特に限定されず、例えば、周波数選択反射板の1つの角部が切断された角落とし部、いわゆるノッチのような切込み部、いわゆるオリエンテーションフラットのような曲線部の一部が切断された部分が挙げられる。切込み部の平面視形状は、特に限定されず、例えば、V字、U字が挙げられる。 The cutting part is not particularly limited as long as it can indicate the direction of the surface of the frequency selective reflector by giving the frequency selective reflector an asymmetrical shape. Examples include a cut-off portion where a corner is cut, a notch-like cut portion, and a portion where a part of a curved portion is cut off, such as a so-called orientation flat. The shape of the notch in plan view is not particularly limited, and examples include a V-shape and a U-shape.
(d)凹凸部
 本実施態様においては、例えば図21および図22に示すように、隣接する周波数選択反射板1が、互いに対向する側面に、互いに嵌合可能な凹凸部26を有し、凹凸部26が嵌合するように、隣接する周波数選択反射板1が配置されていてもよい。凹凸部の嵌合によって、複数の周波数選択反射板の位置合わせを容易に行うことができる。また、隣接する周波数選択反射板の接触面積が増えるため、強度を高めることができる。
(d) Concave and convex portions In this embodiment, as shown in FIGS. 21 and 22, for example, adjacent frequency selective reflectors 1 have concave and convex portions 26 that can be fitted into each other on side surfaces facing each other. Adjacent frequency selective reflectors 1 may be arranged so that the portions 26 fit together. By fitting the concavo-convex portions, it is possible to easily align the plurality of frequency-selective reflectors. Furthermore, since the contact area between adjacent frequency selective reflectors increases, the strength can be increased.
 また、例えば図22においては、各周波数選択反射板1において、凹凸部26の数が互いに異なっている。このように、各周波数選択反射板において、凹凸部の数、形状、大きさ等が互いに異なる場合には、周波数選択反射板を識別することができる。そのため、複数の周波数選択反射板の反射特性が互いに異なる場合には、周波数選択反射板が第2識別マークを有することにより、各周波数選択反射板を容易に識別できるとともに、周波数選択反射板の上下左右や表裏を容易に識別できるので、各周波数選択反射板を正しい位置に確実かつ容易に配置できる。 Further, for example, in FIG. 22, the number of uneven portions 26 in each frequency selective reflection plate 1 is different from each other. In this manner, if the number, shape, size, etc. of the uneven portions of each frequency selective reflector differ from each other, the frequency selective reflector can be identified. Therefore, when the reflection characteristics of a plurality of frequency selective reflectors are different from each other, by having the frequency selective reflector with the second identification mark, each frequency selective reflector can be easily identified, and the top and bottom of the frequency selective reflector Since left and right and front and back can be easily identified, each frequency selective reflector can be placed in the correct position reliably and easily.
 凹凸部の形状は、嵌合可能な形状であれば特に限定されない。 The shape of the uneven portion is not particularly limited as long as it can be fitted.
 凹凸部の数や大きさは、周波数選択反射板の側面に凹凸部を形成することが可能であれば特に限定されない。 The number and size of the uneven portions are not particularly limited as long as the uneven portions can be formed on the side surface of the frequency selective reflector.
 隣接する周波数選択反射板において、凹凸部の厚さは等しいことが好ましい。隣接する周波数選択反射板の位置合わせが容易になる。 It is preferable that the thicknesses of the concave and convex portions in adjacent frequency selective reflectors are equal. This facilitates alignment of adjacent frequency selective reflectors.
 なお、隣接する周波数選択反射板の互いに対向する側面において、凹凸部は隙間なく嵌合していなくてもよい。すなわち、嵌合している凹凸部の間には隙間があってもよい。 Note that the concave and convex portions do not need to fit tightly together on the mutually opposing side surfaces of adjacent frequency selective reflectors. That is, there may be a gap between the fitting uneven parts.
(4)変形例
 本実施態様においては、第1態様の周波数選択反射板の場合、隣接する周波数選択反射板同士が対向する端部領域に、反射素子が配置されていなくてもよい。例えば図23および図24(b)においては、隣接する周波数選択反射板1同士が対向する端部領域27では、誘電体基板4上に反射素子3が配置されていない。
(4) Modification In this embodiment, in the case of the frequency selective reflector of the first aspect, no reflective element may be disposed in the end region where adjacent frequency selective reflectors face each other. For example, in FIGS. 23 and 24(b), no reflective element 3 is disposed on the dielectric substrate 4 in the end region 27 where adjacent frequency selective reflectors 1 face each other.
 このように、隣接する周波数選択反射板同士が対向する端部領域に、反射素子が配置されていない場合には、隣接する周波数選択反射板同士が対向する端部領域に、反射素子が配置されている場合と比較して、基材の一方の面に周波数選択反射板を配置する際の位置ずれのマージンを小さくすることができる。その結果、周波数選択反射板の位置ずれを抑制できる。 In this way, if a reflective element is not arranged in the end region where adjacent frequency selective reflectors face each other, a reflective element is not arranged in the end region where adjacent frequency selective reflectors face each other. Compared to the case where the frequency-selective reflector is placed on one side of the base material, the margin for positional shift can be made smaller. As a result, the positional shift of the frequency selective reflector can be suppressed.
 例えば図24(a)は、隣接する周波数選択反射板1同士が対向する端部領域27に、反射素子3が配置されている例である。一方、例えば図24(b)は、隣接する周波数選択反射板1同士が対向する端部領域27に、反射素子3が配置されていない例である。ここで、図24(a)、(b)において、反射素子3が配置されている領域について着目する。図24(a)では、隣接する周波数選択反射板1同士が対向する端部領域27に、反射素子3が配置されており、隣接する周波数選択反射板1の反射素子3が配置されている領域間の距離は、隣接する周波数選択反射板1間の距離d1、d2である。これに対し、図24(b)では、隣接する周波数選択反射板1同士が対向する端部領域27に、反射素子3が配置されておらず、隣接する周波数選択反射板1の反射素子3が配置されている領域間の距離d3、d4は、隣接する周波数選択反射板1間の距離d1、d2よりも大きくなる。 For example, FIG. 24(a) is an example in which the reflective elements 3 are arranged in the end regions 27 where adjacent frequency selective reflectors 1 face each other. On the other hand, for example, FIG. 24(b) is an example in which the reflecting element 3 is not arranged in the end region 27 where adjacent frequency selective reflecting plates 1 face each other. Here, in FIGS. 24(a) and 24(b), attention will be paid to the region where the reflective element 3 is arranged. In FIG. 24(a), the reflective element 3 is arranged in the end region 27 where adjacent frequency selective reflectors 1 face each other, and the region where the reflective element 3 of the adjacent frequency selective reflector 1 is disposed. The distance between them is the distance d1, d2 between adjacent frequency selective reflectors 1. On the other hand, in FIG. 24(b), no reflective element 3 is disposed in the end region 27 where adjacent frequency selective reflectors 1 face each other, and the reflective elements 3 of adjacent frequency selective reflectors 1 are The distances d3 and d4 between the arranged regions are larger than the distances d1 and d2 between adjacent frequency selective reflectors 1.
 これらの例において、隣接する周波数選択反射板1の反射素子3が配置されている領域間の距離が例えば1mmになるように設計した場合を考える。 In these examples, consider a case where the distance between the areas where the reflective elements 3 of adjacent frequency selective reflectors 1 are arranged is designed to be, for example, 1 mm.
 図24(a)では、隣接する周波数選択反射板1の反射素子3が配置されている領域間の距離、すなわち、隣接する周波数選択反射板1間の距離d1、d2が例えば1mmになるように設計した場合、隣接する周波数選択反射板1同士が重ならないように配置しようとすると、周波数選択反射板1は設計位置から1mmまでずれることができる。 In FIG. 24(a), the distance between regions where the reflective elements 3 of adjacent frequency selective reflectors 1 are arranged, that is, the distances d1 and d2 between adjacent frequency selective reflectors 1, is set to 1 mm, for example. When designed, if adjacent frequency selective reflectors 1 are arranged so as not to overlap each other, the frequency selective reflectors 1 can be shifted by up to 1 mm from the designed position.
 これに対し、図24(b)では、隣接する周波数選択反射板1の反射素子3が配置されている領域間の距離d3、d4が例えば1mmになるように設計した場合、隣接する周波数選択反射板1同士が重ならないように配置しようとすると、端部領域27が存在することから、設計位置からの位置ずれのマージンは1mmよりも小さくなる。この場合において、隣接する周波数選択反射板1間の距離d1、d2が0.5mmになるように設計した場合、隣接する周波数選択反射板1同士が重ならないように配置しようとすると、周波数選択反射板1は設計位置から0.5mmまでずれることができる。 On the other hand, in FIG. 24(b), if the distances d3 and d4 between the areas where the reflective elements 3 of adjacent frequency selective reflectors 1 are arranged are designed to be, for example, 1 mm, the adjacent frequency selective reflectors If the plates 1 are arranged so as not to overlap each other, the margin of positional deviation from the designed position will be smaller than 1 mm because of the existence of the end region 27. In this case, if the distances d1 and d2 between adjacent frequency selective reflectors 1 are designed to be 0.5 mm, if adjacent frequency selective reflectors 1 are arranged so that they do not overlap, frequency selective reflectors 1 The plate 1 can be displaced by up to 0.5 mm from the design position.
 よって、隣接する周波数選択反射板同士が対向する端部領域に、反射素子が配置されていない場合には、隣接する周波数選択反射板同士が対向する端部領域に、反射素子が配置されている場合と比較して、周波数選択反射板の設計位置からの位置ずれのマージンを小さくすることができる。これにより、周波数選択反射板の位置ずれを抑制できる。 Therefore, if a reflective element is not arranged in the end region where adjacent frequency selective reflectors face each other, a reflective element is arranged in the end region where adjacent frequency selective reflectors face each other. The margin of positional deviation of the frequency selective reflector from the designed position can be reduced compared to the case where the frequency selective reflector is shifted from the designed position. Thereby, positional shift of the frequency selective reflector can be suppressed.
 ここで、複数の周波数選択反射板の反射特性が互いに異なる場合には、例えば、各周波数選択反射板による反射ビームが重なり合うことで、反射構造体全体による反射ビームを形成できる。そのため、複数の周波数選択反射板の反射特性が互いに異なる場合には、複数の周波数選択反射板の反射特性が同一である場合と比較して、周波数選択反射板の位置ずれによる、反射構造体全体の反射ビームプロファイルへの影響が大きい。よって、複数の周波数選択反射板の反射特性が互いに異なる場合には、周波数選択反射板の位置ずれによって、反射構造体全体の反射ビームプロファイルが乱れる可能性がある。 Here, if the reflection characteristics of the plurality of frequency-selective reflectors are different from each other, for example, the reflected beams from each frequency-selective reflector may overlap to form a reflected beam by the entire reflecting structure. Therefore, when the reflection characteristics of multiple frequency-selective reflectors are different from each other, compared to the case where the reflection characteristics of multiple frequency-selective reflectors are the same, the entire reflection structure due to the positional shift of the frequency-selective reflectors is has a large effect on the reflected beam profile. Therefore, if the reflection characteristics of a plurality of frequency selective reflectors are different from each other, the reflected beam profile of the entire reflective structure may be disturbed due to the positional shift of the frequency selective reflectors.
 したがって、複数の周波数選択反射板の反射特性が互いに異なる場合には、隣接する周波数選択反射板同士が対向する端部領域に、反射素子が配置されていないことにより、周波数選択反射板の位置ずれを抑制することができ、その結果、反射構造体全体による反射ビームプロファイルの乱れを抑制できる。 Therefore, when the reflection characteristics of a plurality of frequency selective reflectors are different from each other, positional deviation of the frequency selective reflectors may occur due to the fact that reflective elements are not arranged in the end areas where adjacent frequency selective reflectors face each other. As a result, the disturbance of the reflected beam profile due to the entire reflecting structure can be suppressed.
 隣接する周波数選択反射板同士が対向する端部領域に、反射素子が配置されていない場合、隣接する周波数選択反射板同士が対向する端部領域に、反射素子が配置されている場合と比較して、反射構造体全体における電磁波の反射強度が低下する。隣接する周波数選択反射板同士が対向する端部領域に、反射素子が配置されている反射構造体における電磁波の反射強度を100%としたとき、隣接する周波数選択反射板同士が対向する端部領域に、反射素子が配置されていない反射構造体における電磁波の反射強度は、例えば85%超であることが好ましい。これにより、端部領域に反射素子が配置されていないことによる、電磁波の反射強度の低下を抑制できる。 When no reflective element is placed in the end area where adjacent frequency selective reflectors face each other, compared to when a reflective element is placed in the end area where adjacent frequency selective reflectors face each other. As a result, the reflection intensity of electromagnetic waves in the entire reflecting structure decreases. The end region where adjacent frequency selective reflectors face each other, when the reflection intensity of electromagnetic waves in the reflective structure in which a reflective element is arranged is 100%, the end region where adjacent frequency selective reflectors face each other. Furthermore, it is preferable that the reflection intensity of electromagnetic waves in the reflection structure in which no reflection element is arranged is, for example, more than 85%. Thereby, it is possible to suppress a decrease in the reflection intensity of electromagnetic waves due to the fact that no reflective element is disposed in the end region.
(5)周波数選択反射板のその他の点
 本実施態様における周波数選択反射板のサイズは、基材のサイズや、反射構造体の用途等に応じて適宜選択される。中でも、第1態様の周波数選択反射板の場合、周波数選択反射板のサイズは、例えば、150mm角以上が好ましく、200mm角以上がより好ましい。例えば、第1態様の周波数選択反射板の場合、周波数選択反射板を所望のサイズになるように加工する際に、端部において反射素子が欠損する場合がある。このような場合において、周波数選択反射板のサイズを、上記のように比較的大きくすることにより、周波数選択反射板全体に対して、反射素子が欠損している領域の割合を小さくすることができ、反射素子の欠損による、反射特性への影響を少なくすることができる。
(5) Other points of the frequency selective reflector The size of the frequency selective reflector in this embodiment is appropriately selected depending on the size of the base material, the use of the reflective structure, etc. Among these, in the case of the frequency selective reflector of the first aspect, the size of the frequency selective reflector is preferably, for example, 150 mm square or more, and more preferably 200 mm square or more. For example, in the case of the frequency selective reflector of the first aspect, when processing the frequency selective reflector to a desired size, the reflective element may be missing at the end portion. In such a case, by making the size of the frequency selective reflector relatively large as described above, it is possible to reduce the ratio of the area where the reflective element is missing to the entire frequency selective reflector. , it is possible to reduce the influence on the reflection characteristics due to the loss of the reflection element.
 本実施態様において、複数の周波数選択反射板の反射特性は、同一であってもよく、互いに異なっていてもよい。 In this embodiment, the reflection characteristics of the plurality of frequency selective reflectors may be the same or different from each other.
 複数の周波数選択反射板の反射特性が互いに異なる場合、各周波数選択反射板の反射特性は、例えば、電磁波が拡散するように設計してもよく、電磁波が収束するように設計してよい。また、各周波数選択反射板の反射特性は、球面波を平面波に変換するように設計してもよい。また、各周波数選択反射板の反射特性は、マルチビームの反射構造体となるように設計してもよい。 When the reflection characteristics of a plurality of frequency selective reflectors are different from each other, the reflection characteristics of each frequency selective reflector may be designed, for example, so that electromagnetic waves are diffused, or so that electromagnetic waves are converged. Further, the reflection characteristics of each frequency selective reflector may be designed to convert a spherical wave into a plane wave. Further, the reflection characteristics of each frequency selective reflection plate may be designed to provide a multi-beam reflection structure.
 周波数選択反射板の第1態様においては、反射部材において、寸法の異なる複数の反射素子が配列されており、複数の周波数選択反射板における反射素子の配列が互いに異なる場合、複数の周波数選択反射板の反射特性が互いに異なるようになる。 In the first aspect of the frequency selective reflector, in the reflective member, a plurality of reflective elements with different dimensions are arranged, and when the reflective elements in the plurality of frequency selective reflectors are arranged differently from each other, the plurality of frequency selective reflectors The reflection characteristics of the two become different from each other.
 例えば図25に示すように、周波数選択反射板1は、互いに外径が異なる複数のリング状の反射素子3が配列された反射部材2を有する。4つの周波数選択反射板1において、反射素子3の配列は互いに異なっている。このような場合、複数の周波数選択反射板の反射特性が互いに異なるようになる。 For example, as shown in FIG. 25, the frequency selective reflection plate 1 has a reflection member 2 in which a plurality of ring-shaped reflection elements 3 having different outer diameters are arranged. In the four frequency selective reflectors 1, the arrangement of the reflective elements 3 is different from each other. In such a case, the reflection characteristics of the plurality of frequency selective reflectors become different from each other.
 また、周波数選択反射板の第2態様においては、誘電体層において、厚さの異なる複数のセル領域が配列されており、複数の周波数選択反射板におけるセル領域の配列が互いに異なる場合、複数の周波数選択反射板の反射特性が互いに異なるようになる。 Furthermore, in the second aspect of the frequency selective reflector, a plurality of cell regions having different thicknesses are arranged in the dielectric layer, and when the arrangement of the cell regions in the plurality of frequency selective reflectors is different from each other, The reflection characteristics of the frequency selective reflectors become different from each other.
 複数の周波数選択反射板の反射特性が互いに異なる場合については、国際公開第2023/027195号を参照できる。 For the case where the reflection characteristics of a plurality of frequency selective reflectors are different from each other, reference can be made to International Publication No. 2023/027195.
 本実施態様における周波数選択反射板は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する。電磁波の周波数帯は、直進性が強いマイクロ波以上の周波数帯であることが好ましい。電磁波の周波数帯は、例えば、2.5GHz以上が好ましく、24GHz以上がより好ましく、24GHz以上300GHz以下がさらに好ましい。電磁波の周波数帯が上記範囲であれば、本実施態様の反射構造体を第5世代移動通信システム、いわゆる5Gに利用することができる。 The frequency selective reflector in this embodiment reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. It is preferable that the frequency band of the electromagnetic waves is a frequency band equal to or higher than microwaves, which have strong straightness. The frequency band of the electromagnetic waves is, for example, preferably 2.5 GHz or higher, more preferably 24 GHz or higher, and even more preferably 24 GHz or higher and 300 GHz or lower. If the frequency band of electromagnetic waves is within the above range, the reflective structure of this embodiment can be used in a fifth generation mobile communication system, so-called 5G.
 本実施態様における周波数選択反射板は、例えば、通信用の周波数選択反射板として用いることができ、中でも、移動通信用の周波数選択反射板として好適である。 The frequency selective reflector in this embodiment can be used, for example, as a frequency selective reflector for communication, and is particularly suitable as a frequency selective reflector for mobile communication.
3.他の構成
 本実施態様の反射構造体は、上記の周波数選択反射板および基材の他に、必要に応じて他の構成を有していてもよい。
3. Other Structures In addition to the frequency selective reflector and base material described above, the reflective structure of this embodiment may have other structures as necessary.
(1)接着部
 本実施態様の反射構造体においては、例えば図26に示すように、隣接する周波数選択反射板1の間に接着部28が配置されていてもよい。接着部によって、隣接する周波数選択反射板の間が補強され、全体として強度を高めることができる。
(1) Adhesive Portion In the reflective structure of this embodiment, for example, as shown in FIG. 26, a bonding portion 28 may be disposed between adjacent frequency selective reflectors 1. The bonded portion reinforces the space between adjacent frequency selective reflectors, increasing the overall strength.
 接着部には、例えば、接着剤や粘着剤を用いることができ、公知の接着剤および粘着剤の中から適宜選択して用いることができる。接着剤および粘着剤は、液状であってもよく、シート状であってもよい。 For the adhesive part, for example, an adhesive or a pressure-sensitive adhesive can be used, and an appropriate one can be selected from known adhesives and pressure-sensitive adhesives. The adhesive and pressure-sensitive adhesive may be in liquid form or in sheet form.
 接着部の厚さとしては、所望の接着力を得ることができれば特に限定されない。 The thickness of the adhesive part is not particularly limited as long as the desired adhesive strength can be obtained.
(2)第2の接着層
 本実施態様の反射構造体においては、基材と周波数選択反射板との間に第2の接着層を配置できる。第2の接着層は、周波数選択反射板を基材に直接的または間接的に接着させるための層である。なお、図3(b)および図4(c)において、第2の接着層は省略されている。
(2) Second adhesive layer In the reflective structure of this embodiment, a second adhesive layer can be disposed between the base material and the frequency selective reflector. The second adhesive layer is a layer for directly or indirectly adhering the frequency selective reflector to the base material. Note that the second adhesive layer is omitted in FIG. 3(b) and FIG. 4(c).
 第2の接着層には、例えば、接着剤や粘着剤を用いることができ、公知の接着剤および粘着剤の中から適宜選択して用いることができる。 For the second adhesive layer, an adhesive or a pressure-sensitive adhesive can be used, for example, and can be appropriately selected from known adhesives and pressure-sensitive adhesives.
 第2の接着層の厚さとしては、所望の接着力を得ることができれば特に限定されない。 The thickness of the second adhesive layer is not particularly limited as long as the desired adhesive strength can be obtained.
(3)固定部材
 本実施態様の反射構造体を、壁等に取り付けて使用する場合には、上記基材の上記周波数選択反射板とは反対側の面に、反射構造体を取り付けるための機構を有する固定部材を配置してもよい。また、固定部材と周波数選択反射板との干渉を抑えるために、固定部材と周波数選択反射板との間に金属層を配置してもよく、固定部材が金属層を兼ねてもよい。また、本実施態様の反射構造体を壁等に取り付ける場合に、設計した電磁波の入射方向および反射方向と、実際の電磁波の入射方向および反射方向とのずれを補正できるように、固定部材は周波数選択反射板の法線方向の角度を可変にする機構を有していてもよい。
(3) Fixing member When the reflective structure of this embodiment is used by being attached to a wall, etc., a mechanism for attaching the reflective structure to the surface of the base material opposite to the frequency selective reflector is provided. A fixing member having the following may be arranged. Further, in order to suppress interference between the fixed member and the frequency selective reflector, a metal layer may be disposed between the fixed member and the frequency selective reflector, or the fixed member may also serve as the metal layer. In addition, when attaching the reflective structure of this embodiment to a wall, etc., the fixing member has a frequency It may have a mechanism that makes the angle in the normal direction of the selective reflection plate variable.
(4)干渉緩和層
 本実施態様の反射構造体は、基材の周波数選択反射板とは反対側の面に、反射構造体を設置する面との相互作用による特性変化を緩和するための干渉緩和層を有していてもよい。干渉緩和層としては、空気に近い誘電率を持ち、接地面と反射部材との相互作用が小さくなる適切な距離を確保できれば特に限定されず、例えば、誘電率が空気に近いウレタンフォーム等の発泡体、空気を多く含むプラスチックダンボールを用いることができる。
(4) Interference Mitigation Layer The reflective structure of this embodiment has an interference layer on the surface of the base material opposite to the frequency selective reflector for mitigating changes in characteristics due to interaction with the surface on which the reflective structure is installed. It may have a relaxation layer. The interference mitigation layer is not particularly limited as long as it has a dielectric constant close to that of air and can secure an appropriate distance to reduce the interaction between the ground plane and the reflecting member. For example, foam such as urethane foam with a dielectric constant close to that of air can be used. Plastic cardboard containing a large amount of air can be used.
 また、周波数選択反射板がグラウンド層を有しない場合には、基材と周波数選択反射板との間の干渉を抑えるために、基材と周波数選択反射板との間に干渉緩和層を配置してもよく、基材自体を干渉緩和層としてもよい。基材と周波数選択反射板との間に干渉緩和層を配置する場合は、基材の第1アライメントマークに干渉しないように、干渉緩和層の形状または光透過性等を調整したり、干渉緩和層に追加のアライメントマークを配置したりする等の一般的な対応を行ってもよい。 In addition, if the frequency selective reflector does not have a ground layer, an interference mitigation layer is placed between the base material and the frequency selective reflector in order to suppress interference between the base material and the frequency selective reflector. Alternatively, the base material itself may be used as an interference mitigation layer. When placing an interference mitigation layer between the base material and the frequency selective reflector, adjust the shape or light transmittance of the interference mitigation layer so that it does not interfere with the first alignment mark of the base material, or General accommodations may be made, such as placing additional alignment marks in the layer.
II.反射構造体の第2実施態様
 本開示における反射構造体の第2実施態様は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を有する反射構造体であって、第1アライメントマークを有する基材と、上記基材の一方の面に配置された上記周波数選択反射板と、を有し、上記周波数選択反射板が、上記基材の一方の面に配置され、上記電磁波を反射する反射部材と、上記基材の上記反射部材側の面に並べて配置され、上記電磁波を透過する、複数の誘電体層と、を有し、隣接する上記誘電体層間の距離が、上記電磁波の波長の1/2未満であり、上記誘電体層は、所定の方向に厚さが増加する厚さ分布を有する単位構造が複数配置された凹凸構造を有し、上記誘電体層の上記単位構造は、厚さの異なる複数のセル領域を有し、上記誘電体層の各単位構造では、上記単位構造の上記所定の方向の長さを横軸とし、上記電磁波が上記誘電体層を透過し上記反射部材で反射され上記誘電体層を再度透過して上記電磁波の入射側に放出される際の相対反射位相を縦軸とし、上記電磁波の相対反射位相の値が-360度超0度以下であるグラフに、各セル領域の上記所定の方向の中心位置および各セル領域での上記電磁波の相対反射位相に対応する点をプロットし、最小厚さを有する最小厚さセル領域に対応する点を通る直線を引いたとき、各点が同一直線上にあり、上記誘電体層が、上記単位構造として、厚さの異なる3つ以上の上記セル領域を有する第1の単位構造を少なくとも有し、上記誘電体層の厚さ分布によって上記電磁波の相対反射位相分布を制御することにより、上記電磁波の反射方向を制御する。
II. Second embodiment of reflective structure A second embodiment of the reflective structure in the present disclosure is a reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. , a base material having a first alignment mark, and the frequency selective reflection plate disposed on one surface of the base material, the frequency selective reflection plate being disposed on one surface of the base material. , comprising a reflective member that reflects the electromagnetic waves, and a plurality of dielectric layers that are arranged side by side on the surface of the base material on the reflective member side and that transmit the electromagnetic waves, and a distance between the adjacent dielectric layers. is less than 1/2 of the wavelength of the electromagnetic wave, the dielectric layer has an uneven structure in which a plurality of unit structures having a thickness distribution increasing in a predetermined direction is arranged, and the dielectric layer The unit structure of the layer has a plurality of cell regions having different thicknesses, and in each unit structure of the dielectric layer, the length of the unit structure in the predetermined direction is taken as the horizontal axis, and the electromagnetic wave is transmitted to the dielectric layer. The vertical axis is the relative reflection phase when the electromagnetic wave is transmitted through the body layer, reflected by the reflective member, transmitted through the dielectric layer again, and emitted to the incident side of the electromagnetic wave, and the value of the relative reflection phase of the electromagnetic wave is -360. Plot the points corresponding to the center position of each cell region in the predetermined direction and the relative reflection phase of the electromagnetic wave in each cell region on a graph that is greater than 0 degrees, and plot the minimum thickness cell with the minimum thickness. When a straight line is drawn through points corresponding to the regions, each point is on the same straight line, and the dielectric layer is a first unit having three or more cell regions having different thicknesses as the unit structure. The reflection direction of the electromagnetic wave is controlled by controlling the relative reflection phase distribution of the electromagnetic wave by the thickness distribution of the dielectric layer.
 図27は、本実施態様の反射構造体の一例を示す概略平面図である。図27に示すように、反射構造体20は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板1を有するものであり、第1アライメントマーク22を有する基材21と、基材21の一方の面に配置された周波数選択反射板1と、を有している。周波数選択反射板1は、基材21の一方の面に配置され、電磁波を反射する反射部材2と、基材21の反射部材2側の面に並べて配置され、電磁波を透過する、複数の誘電体層5と、を有する。隣接する誘電体層5の間の距離d5、d6は、特定の周波数帯の電磁波の波長の1/2未満となっている。 FIG. 27 is a schematic plan view showing an example of the reflective structure of this embodiment. As shown in FIG. 27, the reflective structure 20 includes a frequency selective reflector 1 that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction, and includes a base material having a first alignment mark 22. 21, and a frequency selective reflection plate 1 disposed on one surface of the base material 21. The frequency selective reflector 1 includes a reflective member 2 arranged on one surface of a base material 21 to reflect electromagnetic waves, and a plurality of dielectrics arranged side by side on the surface of the base material 21 on the reflective member 2 side to transmit electromagnetic waves. It has a body layer 5. The distance d5, d6 between adjacent dielectric layers 5 is less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band.
 例えば図27においては、基材21が十字形状の第1アライメントマーク22を有しており、基材21の第1アライメントマーク22を基準として、誘電体層5のエッジの位置を合わせて、複数の誘電体層5の位置合わせを行う。 For example, in FIG. 27, the base material 21 has a cross-shaped first alignment mark 22, and the edge of the dielectric layer 5 is aligned with the first alignment mark 22 of the base material 21 as a reference. The dielectric layer 5 is aligned.
 ここで、上述したように、リフレクトアレイではないが、複数のサブアレイが並べて配置されたフェーズドアレイアンテナにおいては、各サブアレイでの電磁波の位相を揃え、電磁波の強度を強くするために、通常、隣接するサブアレイ間の距離は、電磁波の波長の1/2未満とされている。 As mentioned above, although it is not a reflect array, in a phased array antenna in which multiple subarrays are arranged side by side, in order to align the phase of the electromagnetic waves in each subarray and increase the strength of the electromagnetic waves, The distance between the subarrays is set to be less than 1/2 of the wavelength of the electromagnetic wave.
 そのため、複数の誘電体層が並べて配置された周波数選択反射板を有する反射構造体においても、例えば各誘電体層での反射波の位相を揃え、反射波の強度を強くする等、反射構造体全体での反射波の波面の乱れを抑制するためには、隣接する誘電体層間の距離は、電磁波の波長の1/2未満とすることが望ましいと考えられる。 Therefore, even in a reflective structure having a frequency-selective reflector in which multiple dielectric layers are arranged side by side, it is necessary to In order to suppress disturbance of the wavefront of the overall reflected wave, it is considered desirable that the distance between adjacent dielectric layers be less than 1/2 of the wavelength of the electromagnetic wave.
 本実施態様においては、基材が第1アライメントマークを有することにより、複数の誘電体層の位置合わせを精度良く行うことができる。そのため、隣接する誘電体層間の距離の精度を確保できる。よって、隣接する誘電体層間の距離が、特定の周波数帯の電磁波の波長の1/2未満となるように、複数の誘電体層を高い位置精度でタイリングすることができる。したがって、反射構造体全体での反射波の波面の乱れを抑制して、所望の反射特性を得ることができるとともに、反射構造体の大面積化が可能である。 In this embodiment, since the base material has the first alignment mark, the plurality of dielectric layers can be aligned with high accuracy. Therefore, the accuracy of the distance between adjacent dielectric layers can be ensured. Therefore, a plurality of dielectric layers can be tiled with high positional accuracy so that the distance between adjacent dielectric layers is less than 1/2 the wavelength of electromagnetic waves in a specific frequency band. Therefore, it is possible to suppress the disturbance of the wavefront of the reflected wave in the entire reflecting structure, to obtain desired reflection characteristics, and to increase the area of the reflecting structure.
 以下、本実施態様の反射構造体の各構成について説明する。 Hereinafter, each configuration of the reflective structure of this embodiment will be explained.
1.基材
 本実施態様における基材は、周波数選択反射板を支持する部材であり、第1アライメントマークを有する。基材については、上記第1実施態様と同様である。
1. Base Material The base material in this embodiment is a member that supports the frequency selective reflection plate, and has a first alignment mark. The base material is the same as in the first embodiment.
 第1アライメントマークは、誘電体層の位置合わせを行うためのマークである。第1アライメントマークについては、上記第1実施態様と同様である。 The first alignment mark is a mark for aligning the dielectric layer. The first alignment mark is the same as in the first embodiment.
 また、後述するように、反射部材が反射層を有する場合であって、反射部材が、誘電体基板と、誘電体基板の全面に配置された反射層とを有する場合、誘電体基板が基材を兼ねており、誘電体基板が第1アライメントマークを有していてもよい。 Further, as described later, in the case where the reflective member has a reflective layer, and the reflective member has a dielectric substrate and a reflective layer disposed on the entire surface of the dielectric substrate, the dielectric substrate is the base material. The dielectric substrate may also have a first alignment mark.
 また、後述するように、反射部材が複数の反射素子を有する場合であって、反射部材が、誘電体基板と、誘電体基板の少なくとも一方の面に配置された複数の反射素子とを有する場合、誘電体基板が基材を兼ねており、誘電体基板が第1アライメントマークを有していてもよい。 Further, as described later, in the case where the reflective member has a plurality of reflective elements, the reflective member has a dielectric substrate and a plurality of reflective elements arranged on at least one surface of the dielectric substrate. , the dielectric substrate may also serve as the base material, and the dielectric substrate may have the first alignment mark.
 本実施態様においては、基材は、誘電体層の位置を識別するための第3識別マークを有していてもよい。基材が第3識別マークを有することにより、各誘電体層の位置を容易に識別できるので、各誘電体層を正しい位置に確実かつ容易に配置できる。特に、周波数選択反射板において、複数の誘電体層での反射特性が互いに異なる場合には、有用である。 In this embodiment, the base material may have a third identification mark for identifying the position of the dielectric layer. Since the base material has the third identification mark, the position of each dielectric layer can be easily identified, so that each dielectric layer can be reliably and easily arranged at the correct position. This is particularly useful in a frequency selective reflector in which a plurality of dielectric layers have different reflection characteristics.
 第3識別マークについては、上記第1実施態様における第1識別マークと同様である。 The third identification mark is the same as the first identification mark in the first embodiment.
2.周波数選択反射板
 本実施態様における周波数選択反射板は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する部材である。また、本実施態様における周波数選択反射板は、基材の一方の面に配置され、電磁波を反射する反射部材と、基材の反射部材側の面に並べて配置され、電磁波を透過する、複数の誘電体層と、を有する。本実施態様においては、隣接する誘電体層間の距離が、電磁波の波長の1/2未満である。また、本実施態様における周波数選択反射板においては、誘電体層は、所定の方向に厚さが増加する厚さ分布を有する単位構造が複数配置された凹凸構造を有し、誘電体層の単位構造は、厚さの異なる複数のセル領域を有し、誘電体層の各単位構造では、単位構造の所定の方向の長さを横軸とし、電磁波が誘電体層を透過し反射部材で反射され誘電体層を再度透過して電磁波の入射側に放出される際の相対反射位相を縦軸とし、電磁波の相対反射位相の値が-360度超0度以下であるグラフに、各セル領域の所定の方向の中心位置および各セル領域での電磁波の相対反射位相に対応する点をプロットし、最小厚さを有する最小厚さセル領域に対応する点を通る直線を引いたとき、各点が同一直線上にあり、誘電体層が、単位構造として、厚さの異なる3つ以上のセル領域を有する第1の単位構造を少なくとも有し、誘電体層の厚さ分布によって電磁波の相対反射位相分布を制御するものである。
2. Frequency Selective Reflector The frequency selective reflector in this embodiment is a member that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. In addition, the frequency selective reflector in this embodiment includes a reflective member that is placed on one surface of the base material and reflects electromagnetic waves, and a plurality of reflective members that are arranged side by side on the surface of the base material on the reflective member side and that transmit electromagnetic waves. A dielectric layer. In this embodiment, the distance between adjacent dielectric layers is less than 1/2 of the wavelength of the electromagnetic wave. Furthermore, in the frequency selective reflector according to this embodiment, the dielectric layer has an uneven structure in which a plurality of unit structures having a thickness distribution in which the thickness increases in a predetermined direction is arranged, and the dielectric layer has a concavo-convex structure. The structure has multiple cell regions with different thicknesses, and in each unit structure of the dielectric layer, the horizontal axis is the length of the unit structure in a predetermined direction, and electromagnetic waves are transmitted through the dielectric layer and reflected by the reflective member. The vertical axis is the relative reflection phase when the electromagnetic wave is transmitted through the dielectric layer again and emitted to the incident side of the electromagnetic wave, and each cell area is plotted in a graph where the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees. When plotting the points corresponding to the center position in a given direction and the relative reflection phase of the electromagnetic wave in each cell region, and drawing a straight line passing through the point corresponding to the minimum thickness cell region with the minimum thickness, each point are on the same straight line, the dielectric layer has at least a first unit structure having three or more cell regions with different thicknesses as a unit structure, and the relative reflection of electromagnetic waves is determined by the thickness distribution of the dielectric layer. This controls the phase distribution.
(1)隣接する誘電体層間の距離
 本実施態様において、隣接する誘電体層間の距離は、特定の周波数帯の電磁波の波長の1/2未満であり、1/5以下が好ましく、1/10以下がより好ましい。隣接する誘電体層間の距離が上記範囲であることにより、反射構造体全体での反射波の波面の乱れを抑制できる。後述するように、電磁波の周波数帯は、2.5GHz以上が好ましく、24GHz以上がより好ましい。すなわち、電磁波の空気中での波長は、119.92mm以下が好ましく、12.49mm以下がより好ましい。そのため、隣接する誘電体層間の距離は、具体的には、好ましくは59.96mm以下程度、より好ましくは6.245mm以下程度である。また、隣接する誘電体層間の距離は短いほど好ましく、下限値は特に限定されない。
(1) Distance between adjacent dielectric layers In this embodiment, the distance between adjacent dielectric layers is less than 1/2, preferably 1/5 or less, and 1/10 of the wavelength of electromagnetic waves in a specific frequency band. The following are more preferable. By setting the distance between adjacent dielectric layers within the above range, it is possible to suppress disturbance of the wavefront of reflected waves in the entire reflecting structure. As will be described later, the frequency band of the electromagnetic waves is preferably 2.5 GHz or higher, more preferably 24 GHz or higher. That is, the wavelength of the electromagnetic waves in the air is preferably 119.92 mm or less, more preferably 12.49 mm or less. Therefore, specifically, the distance between adjacent dielectric layers is preferably about 59.96 mm or less, more preferably about 6.245 mm or less. Further, the shorter the distance between adjacent dielectric layers, the more preferable, and the lower limit is not particularly limited.
(2)誘電体層
 誘電体層については、上記の第1実施態様の反射構造体における第2態様の周波数選択反射板の誘電体層と同様である。
(2) Dielectric layer The dielectric layer is the same as the dielectric layer of the frequency selective reflector of the second embodiment in the reflection structure of the first embodiment described above.
 誘電体層は、光透過性を有していてもよく、光不透過性を有していてもよい。また、誘電体層は、光反射性を有していてもよい。誘電体層の光学特性は、第1アライメントマークを用いた誘電体層の位置合わせの方法等に応じて適宜選択される。 The dielectric layer may be optically transparent or optically opaque. Further, the dielectric layer may have light reflective properties. The optical properties of the dielectric layer are appropriately selected depending on the method of positioning the dielectric layer using the first alignment mark.
 誘電体層が光不透過性を有する場合、例えば、誘電体層が着色剤やフィラーを含有することで、誘電体層を光不透過性とすることができる。着色剤およびフィラーとしては、導電性を有さず、かつ、磁性を有さないものが用いられる。 When the dielectric layer is light-opaque, the dielectric layer can be made light-opaque by, for example, containing a colorant or a filler. As the colorant and filler, those that do not have electrical conductivity and do not have magnetism are used.
 また、誘電体層が光反射性を有する場合、例えば、誘電体層の表面を荒らす、あるいは、誘電体層に、誘電体層を構成する樹脂とは異なる屈折率を有する微粒子を含有させることで、誘電体層に光散乱性を持たせることができる。また、誘電体層の位置合わせのために、誘電体層の一部に光反射性を付与してもよい。誘電体層の一部としては、例えば、誘電体層の外周部や、誘電体層の第1アライメントマーク近傍部が挙げられる。誘電体層の一部に光反射性を付与する方法としては、例えば、白色顔料インキや非導電性メタリックインキを印刷する方法が挙げられる。 In addition, when the dielectric layer has light reflective properties, for example, by roughening the surface of the dielectric layer or by making the dielectric layer contain fine particles having a refractive index different from that of the resin constituting the dielectric layer. , the dielectric layer can have light scattering properties. Further, in order to align the dielectric layer, a part of the dielectric layer may be made light reflective. Examples of the part of the dielectric layer include the outer peripheral part of the dielectric layer and the part of the dielectric layer near the first alignment mark. Examples of methods for imparting light reflectivity to a portion of the dielectric layer include a method of printing white pigment ink or non-conductive metallic ink.
(3)反射部材
 反射部材については、上記の第1実施態様の反射構造体における第2態様の周波数選択反射板の反射部材と同様である。
(3) Reflection member The reflection member is the same as the reflection member of the frequency selective reflector of the second embodiment in the reflection structure of the first embodiment described above.
 反射部材が反射層を有する場合、例えば、反射部材は、基材側から順に、誘電体基板と、誘電体基板の全面に配置された反射層とを有していてもよく、あるいは、反射部材は、基材に接して配置された反射層を有していてもよい。また、反射部材が誘電体基板と反射層とを有する場合は、誘電体基板が基材とは別の部材であってもよく、あるいは、誘電体基板が基材を兼ねていてもよい。誘電体基板が基材を兼ねる場合は、誘電体基板が第1アライメントマークを有することができる。また、誘電体基板が基材を兼ねる場合、基材は、反射部材側から順に、誘電体基板と、周波数選択反射板を支持する支持基板とを有していてもよい。具体的には、反射部材が誘電体基板と反射層とを有し、誘電体基板が基材とは別の部材であり、基材の一方の面に、誘電体基板と反射層とを有する反射部材が配置されていてもよい。また、反射部材が誘電体基板と反射層とを有し、誘電体基板が基材を兼ねており、基材が誘電体基板と支持基板とを有し、誘電体基板が第1アライメントマークを有しており、支持基板と誘電体基板とを有する基材の誘電体基板側の面に、反射層が配置されていてもよい。また、基材に接して反射層が配置されていてもよい。 When the reflective member has a reflective layer, for example, the reflective member may include, in order from the base material side, a dielectric substrate and a reflective layer disposed on the entire surface of the dielectric substrate; may have a reflective layer disposed in contact with the substrate. Further, when the reflective member has a dielectric substrate and a reflective layer, the dielectric substrate may be a member different from the base material, or the dielectric substrate may also serve as the base material. When the dielectric substrate also serves as the base material, the dielectric substrate can have the first alignment mark. Further, when the dielectric substrate also serves as the base material, the base material may include, in order from the reflective member side, the dielectric substrate and a support substrate that supports the frequency selective reflector. Specifically, the reflective member has a dielectric substrate and a reflective layer, the dielectric substrate is a member separate from the base material, and the dielectric substrate and the reflective layer are provided on one surface of the base material. A reflective member may be arranged. Further, the reflective member has a dielectric substrate and a reflective layer, the dielectric substrate also serves as a base material, the base material has a dielectric substrate and a support substrate, and the dielectric substrate has a first alignment mark. A reflective layer may be disposed on the dielectric substrate side surface of a base material having a support substrate and a dielectric substrate. Further, a reflective layer may be disposed in contact with the base material.
 反射部材が誘電体基板と反射層とを有する場合であって、誘電体基板が基材とは別の部材である場合には、基材の厚さおよびサイズの自由度があるという利点を有する。また、この場合、上記の第1実施態様の反射構造体における第2態様の周波数選択反射板と比較して、製造工程が簡素である。 When the reflective member has a dielectric substrate and a reflective layer, and the dielectric substrate is a separate member from the base material, there is an advantage that there is flexibility in the thickness and size of the base material. . Further, in this case, the manufacturing process is simpler than the frequency selective reflector of the second embodiment in the reflection structure of the first embodiment.
 また、反射部材が誘電体基板と反射層とを有する場合であって、誘電体基板が基材を兼ねており、基材が誘電体基板と支持基板とを有し、誘電体基板が第1アライメントマークを有しており、基材の誘電体基板側の面に反射層が配置されている場合には、基材を構成する支持基板の厚さおよびサイズの自由度があるという利点を有する。また、この場合、上記の第1実施態様の反射構造体における第2態様の周波数選択反射板と比較して、製造工程が簡素である。また、この場合、誘電体基板の一方の面に反射層および第1アライメントマークを配置する、すなわち、反射層および第1アライメントマークを同一平面上に配置できる。そのため、この場合は、第1アライメントマークと反射層とが重ならないように配置できるため、第1アライメントマークの視認性を高めることができる。また、この場合、反射層および第1アライメントマークに同一材料を用いて、誘電体基板上に反射層および第1アライメントマークを同時に形成してもよい。 Further, the reflective member has a dielectric substrate and a reflective layer, the dielectric substrate also serves as a base material, the base material has a dielectric substrate and a support substrate, and the dielectric substrate is the first If it has an alignment mark and a reflective layer is placed on the dielectric substrate side of the base material, it has the advantage of having flexibility in the thickness and size of the support substrate that makes up the base material. . Further, in this case, the manufacturing process is simpler than the frequency selective reflector of the second embodiment in the reflection structure of the first embodiment. Further, in this case, the reflective layer and the first alignment mark can be arranged on one surface of the dielectric substrate, that is, the reflective layer and the first alignment mark can be arranged on the same plane. Therefore, in this case, since the first alignment mark and the reflective layer can be arranged so as not to overlap, the visibility of the first alignment mark can be improved. Further, in this case, the reflective layer and the first alignment mark may be formed simultaneously on the dielectric substrate by using the same material for the reflective layer and the first alignment mark.
 また、反射部材が、基材に接して配置された反射層を有する場合には、基材の自由度は低くなるものの、誘電体基板が不要であるため、製造工程をさらに簡素にすることができる。また、この場合、基材の一方の面に反射層および第1アライメントマークを配置する、すなわち、反射層および第1アライメントマークを同一平面上に配置できる。そのため、この場合は、上記と同様に、第1アライメントマークと反射層とが重ならないように配置できるため、第1アライメントマークの視認性を高めることができる。また、この場合、反射層および第1アライメントマークに同一材料を用いて、基材上に反射層および第1アライメントマークを同時に形成してもよい。 In addition, when the reflective member has a reflective layer placed in contact with the base material, the degree of freedom of the base material is reduced, but since a dielectric substrate is not required, the manufacturing process can be further simplified. can. Moreover, in this case, the reflective layer and the first alignment mark can be arranged on one surface of the base material, that is, the reflective layer and the first alignment mark can be arranged on the same plane. Therefore, in this case, similarly to the above, the first alignment mark and the reflective layer can be arranged so as not to overlap, so that the visibility of the first alignment mark can be improved. Further, in this case, the reflective layer and the first alignment mark may be formed on the base material at the same time by using the same material for the reflective layer and the first alignment mark.
 また、反射部材が反射層を有する場合、隣接する誘電体層間の領域には、反射層が配置されていてもよく、配置されていなくてもよい。なお、隣接する誘電体層間の領域に、反射層が配置されている場合であっても、隣接する誘電体層間の領域の合計面積は、周波数選択反射板全体の面積に対して十分小さいため、反射特性にはほとんど影響がないと考えられる。 Furthermore, when the reflective member has a reflective layer, the reflective layer may or may not be disposed in the region between adjacent dielectric layers. Note that even if a reflective layer is arranged in the region between adjacent dielectric layers, the total area of the regions between adjacent dielectric layers is sufficiently small compared to the area of the entire frequency selective reflector. It is thought that there is almost no effect on reflection characteristics.
 また、反射部材が複数の反射素子を有する場合、例えば、反射部材は、誘電体基板と、誘電体基板の少なくとも一方の面に配置された複数の反射素子とを有していてもよく、あるいは、反射部材は、基材に接して配置された複数の反射素子を有していてもよい。また、反射部材が誘電体基板と複数の反射素子とを有する場合は、誘電体基板が基材とは別の部材であってもよく、あるいは、誘電体基板が基材を兼ねていてもよい。誘電体基板が基材を兼ねる場合は、誘電体基板が第1アライメントマークを有することができる。また、誘電体基板が基材を兼ねる場合、基材は、反射部材側から順に、誘電体基板と、周波数選択反射板を支持する支持基板とを有していてもよい。例えば図28(a)に示すように、反射部材2が誘電体基板4と複数の反射素子3とを有し、誘電体基板4が基材21とは別の部材であり、基材21の一方の面に、誘電体基板4と複数の反射素子3とを有する反射部材2が配置されていてもよい。また、例えば図28(b)に示すように、反射部材2が誘電体基板4と複数の反射素子3とを有し、誘電体基板4が基材21を兼ねており、基材21が誘電体基板4と支持基板21aとを有し、誘電体基板4が第1アライメントマーク22を有しており、支持基板21aと誘電体基板4とを有する基材21の誘電体基板4側の面に、複数の反射素子3が配置されていてもよい。また、図28(c)に示すように、基材21に接して複数の反射素子3が配置されていてもよい。 Further, when the reflective member has a plurality of reflective elements, for example, the reflective member may have a dielectric substrate and a plurality of reflective elements arranged on at least one surface of the dielectric substrate, or The reflective member may include a plurality of reflective elements arranged in contact with the base material. Further, when the reflective member has a dielectric substrate and a plurality of reflective elements, the dielectric substrate may be a separate member from the base material, or the dielectric substrate may also serve as the base material. . When the dielectric substrate also serves as the base material, the dielectric substrate can have the first alignment mark. Further, when the dielectric substrate also serves as the base material, the base material may include, in order from the reflective member side, the dielectric substrate and a support substrate that supports the frequency selective reflector. For example, as shown in FIG. 28(a), the reflective member 2 has a dielectric substrate 4 and a plurality of reflective elements 3, and the dielectric substrate 4 is a separate member from the base material 21. A reflective member 2 having a dielectric substrate 4 and a plurality of reflective elements 3 may be arranged on one surface. Further, as shown in FIG. 28(b), for example, the reflective member 2 has a dielectric substrate 4 and a plurality of reflective elements 3, the dielectric substrate 4 also serves as a base material 21, and the base material 21 is a dielectric material. The surface of the base material 21 on the dielectric substrate 4 side that has the body substrate 4 and the support substrate 21a, the dielectric substrate 4 has the first alignment mark 22, and the support substrate 21a and the dielectric substrate 4. A plurality of reflective elements 3 may be arranged. Further, as shown in FIG. 28(c), a plurality of reflective elements 3 may be arranged in contact with the base material 21.
 反射部材が、誘電体基板と複数の反射素子とを有する場合であって、誘電体基板が基材とは別の部材である場合には、基材の厚さおよびサイズの自由度があるという利点を有する。また、この場合、上記の第1実施態様の反射構造体における第2態様の周波数選択反射板と比較して、製造工程が簡素である。 When the reflective member has a dielectric substrate and a plurality of reflective elements, and the dielectric substrate is a separate member from the base material, there is flexibility in the thickness and size of the base material. has advantages. Further, in this case, the manufacturing process is simpler than the frequency selective reflector of the second embodiment in the reflection structure of the first embodiment.
 また、反射部材が誘電体基板と複数の反射素子とを有する場合であって、誘電体基板が基材を兼ねており、基材が誘電体基板と支持基板とを有し、誘電体基板が第1アライメントマークを有しており、基材の誘電体基板側の面に複数の反射素子が配置されている場合には、基材を構成する支持基板の厚さおよびサイズの自由度があるという利点を有する。また、この場合、上記の第1実施態様の反射構造体における第2態様の周波数選択反射板と比較して、製造工程が簡素である。また、この場合、例えば図28(b)に示すように、誘電体基板4の一方の面に複数の反射素子3および第1アライメントマーク22を配置する、すなわち、複数の反射素子3および第1アライメントマーク22を同一平面上に配置できる。そのため、この場合は、第1アライメントマークと複数の反射素子とが重ならないように配置できるため、第1アライメントマークの視認性を高めることができる。また、この場合、複数の反射素子および第1アライメントマークに同一材料を用いて、誘電体基板上に複数の反射素子および第1アライメントマークを同時に形成してもよい。 Further, the reflective member has a dielectric substrate and a plurality of reflective elements, the dielectric substrate also serves as a base material, the base material has a dielectric substrate and a support substrate, and the dielectric substrate If the first alignment mark is provided and a plurality of reflective elements are arranged on the surface of the base material on the dielectric substrate side, there is flexibility in the thickness and size of the support substrate constituting the base material. It has the advantage of Further, in this case, the manufacturing process is simpler than the frequency selective reflector of the second embodiment in the reflection structure of the first embodiment. In this case, for example, as shown in FIG. The alignment marks 22 can be arranged on the same plane. Therefore, in this case, since the first alignment mark and the plurality of reflective elements can be arranged so as not to overlap, the visibility of the first alignment mark can be improved. Further, in this case, the plurality of reflective elements and the first alignment mark may be formed simultaneously on the dielectric substrate by using the same material for the plurality of reflective elements and the first alignment mark.
 また、反射部材が、基材に接して配置された複数の反射素子を有する場合には、基材の自由度は低くなるものの、誘電体基板が不要であるため、製造工程をさらに簡素にすることができる。また、この場合、例えば図28(c)に示すように、基材21の一方の面に複数の反射素子3および第1アライメントマーク22を配置する、すなわち、複数の反射素子3および第1アライメントマーク22を同一平面上に配置できる。そのため、この場合は、上記と同様に、第1アライメントマークと複数の反射素子とが重ならないように配置できるため、第1アライメントマークの視認性を高めることができる。また、この場合、複数の反射素子および第1アライメントマークに同一材料を用いて、基材上に複数の反射素子および第1アライメントマークを同時に形成してもよい。 In addition, when the reflective member has multiple reflective elements arranged in contact with the base material, the degree of freedom of the base material is reduced, but since a dielectric substrate is not required, the manufacturing process is further simplified. be able to. In this case, for example, as shown in FIG. 28(c), a plurality of reflective elements 3 and a first alignment mark 22 are arranged on one surface of the base material 21, that is, a plurality of reflective elements 3 and a first alignment mark 22 are arranged on one surface of the base material 21. The marks 22 can be arranged on the same plane. Therefore, in this case, as in the above case, the first alignment mark and the plurality of reflective elements can be arranged so as not to overlap, so that the visibility of the first alignment mark can be improved. Further, in this case, the plurality of reflective elements and the first alignment mark may be formed simultaneously on the base material by using the same material for the plurality of reflective elements and the first alignment mark.
 また、反射部材が複数の反射素子を有する場合、隣接する誘電体層間の領域には、反射素子が配置されていてもよく、配置されていなくてもよい。なお、隣接する誘電体層間の領域に、反射素子が配置されている場合であっても、隣接する誘電体層間の領域の合計面積は、周波数選択反射板全体の面積に対して十分小さいため、反射特性にはほとんど影響がないと考えられる。 Furthermore, when the reflective member has a plurality of reflective elements, the reflective elements may or may not be disposed in the region between adjacent dielectric layers. Note that even if a reflective element is arranged in the region between adjacent dielectric layers, the total area of the regions between adjacent dielectric layers is sufficiently small compared to the area of the entire frequency selective reflector. It is thought that there is almost no effect on reflection characteristics.
(4)電磁波の反射方向の制御
 本実施態様における周波数選択反射板において、電磁波の反射方向の制御については、上記の第1実施態様の反射構造体における第2態様の周波数選択反射板と同様である。
(4) Control of the direction of reflection of electromagnetic waves In the frequency selective reflector of this embodiment, the control of the direction of reflection of electromagnetic waves is similar to that of the frequency selective reflector of the second aspect of the reflective structure of the first embodiment. be.
(5)他の構成
 本実施態様における周波数選択反射板は、上記の反射部材および誘電体層の他に、必要に応じて他の構成を有していてもよい。他の構成としては、例えば、接着層、空間、保護部材、グラウンド層、平坦化層、反射防止層が挙げられる。これらの構成については、上記の第1実施態様の反射構造体における第2態様の周波数選択反射板と同様である。
(5) Other configurations In addition to the above-mentioned reflecting member and dielectric layer, the frequency selective reflector in this embodiment may have other configurations as necessary. Other configurations include, for example, an adhesive layer, a space, a protective member, a ground layer, a flattening layer, and an antireflection layer. These structures are the same as those of the frequency selective reflector of the second embodiment in the reflection structure of the first embodiment.
 本実施態様における周波数選択反射板においては、隣接する誘電体層の間に第2の接着部が配置されていてもよい。つまり、周波数選択反射板は、隣接する誘電体層の間に、上記第1実施態様における図26に示される接着部28と同様の第2の接着部を有していてもよい。第2の接着部によって、隣接する誘電体層の間が補強され、全体として強度を高めることができる。 In the frequency selective reflector in this embodiment, a second adhesive part may be arranged between adjacent dielectric layers. In other words, the frequency selective reflector may have a second adhesive part similar to the adhesive part 28 shown in FIG. 26 in the first embodiment described above between adjacent dielectric layers. The second adhesive portion reinforces the space between adjacent dielectric layers, thereby increasing the overall strength.
 第2の接着部については、上記の第1実施態様の反射構造体における接着部と同様である。 The second adhesive part is the same as the adhesive part in the reflective structure of the first embodiment described above.
(6)誘電体層の位置合わせ
 本実施態様においては、基材の第1アライメントマークを用いて、複数の誘電体層の位置合わせを行うことができる。例えば、基材の第1アライメントマークを基準として、誘電体層のエッジの位置を合わせて、誘電体層の位置合わせを行ってもよい。また、例えば、誘電体層が第3アライメントマークを有しており、基材の第1アライメントマークを基準として、誘電体層の第3アライメントマークの位置を合わせて、誘電体層の位置合わせを行ってもよい。
(6) Alignment of dielectric layers In this embodiment, a plurality of dielectric layers can be aligned using the first alignment mark on the base material. For example, the dielectric layer may be aligned by aligning the edges of the dielectric layer with reference to the first alignment mark of the base material. Further, for example, the dielectric layer has a third alignment mark, and the dielectric layer is aligned by aligning the third alignment mark of the dielectric layer with reference to the first alignment mark of the base material. You may go.
 例えば図27においては、基材21が十字形状の第1アライメントマーク22を有しており、基材21の第1アライメントマーク22を基準として、誘電体層5のエッジの位置を合わせて、誘電体層5の位置合わせを行う。具体的には、誘電体層が光不透過性を有しており、基材が光透過性を有し、第1アライメントマークが光不透過性を有する場合には、透過光によって基材の第1アライメントマークおよび誘電体層のエッジを検出し、誘電体層の位置合わせを行うことができる。また、誘電体層が光反射性を有しており、第1アライメントマークが光反射性を有する場合には、反射光によって基材の第1アライメントマークおよび誘電体層のエッジを検出し、誘電体層の位置合わせを行うことができる。 For example, in FIG. 27, the base material 21 has a cross-shaped first alignment mark 22, and the edge of the dielectric layer 5 is aligned with the first alignment mark 22 of the base material 21 as a reference. The body layer 5 is aligned. Specifically, if the dielectric layer is light-opaque, the base material is light-transmissive, and the first alignment mark is light-opaque, the transmitted light may cause the base material to become light-opaque. The first alignment mark and the edge of the dielectric layer can be detected to align the dielectric layer. In addition, if the dielectric layer has light reflectivity and the first alignment mark has light reflectivity, the first alignment mark of the base material and the edge of the dielectric layer are detected by the reflected light, and the dielectric Body layer alignment can be performed.
 また、例えば、基材が円形状の第1アライメントマークを有し、誘電体層が中抜きの円形状の第3アライメントマークを有しており、基材の第1アライメントマークを基準として、誘電体層の第3アライメントマークの位置を合わせて、誘電体層の位置合わせを行うことができる。 Further, for example, the base material has a circular first alignment mark, the dielectric layer has a hollow circular third alignment mark, and the dielectric The dielectric layer can be aligned by aligning the third alignment mark on the body layer.
 また、例えば、基材が十字形状の第1アライメントマークを有し、誘電体層が四角形状の貫通孔である第3アライメントマークを有しており、基材の第1アライメントマークを基準として、誘電体層の第3アライメントマークの位置を合わせて、誘電体層の位置合わせを行うことができる。 Further, for example, the base material has a cross-shaped first alignment mark, the dielectric layer has a third alignment mark that is a square-shaped through hole, and with the first alignment mark of the base material as a reference, The dielectric layer can be aligned by aligning the third alignment mark on the dielectric layer.
 なお、誘電体層の位置合わせの具体例については、上記の第1実施態様の反射構造体における周波数選択反射板の位置合わせと同様である。 Note that the specific example of alignment of the dielectric layer is the same as the alignment of the frequency selective reflector in the reflection structure of the first embodiment described above.
(a)第3アライメントマーク
 本実施態様において、誘電体層は第3アライメントマークを有していてもよい。第3アライメントマークは、誘電体層の位置合わせを行うためのマークである。
(a) Third alignment mark In this embodiment, the dielectric layer may have a third alignment mark. The third alignment mark is a mark for aligning the dielectric layer.
 第3アライメントマークについては、上記の第1実施態様の反射構造体の第2アライメントマークと同様である。 The third alignment mark is the same as the second alignment mark of the reflective structure of the first embodiment described above.
(b)第4識別マーク
 本実施態様においては、誘電体層は、誘電体層を識別するための第4識別マークを有していてもよい。誘電体層が第4識別マークを有することにより、各誘電体層を容易に識別できるとともに、誘電体層の上下左右や表裏を容易に識別できるので、各誘電体層を正しい位置に確実かつ容易に配置できる。特に、周波数選択反射板において、複数の誘電体層での反射特性が互いに異なる場合には、有用である。
(b) Fourth identification mark In this embodiment, the dielectric layer may have a fourth identification mark for identifying the dielectric layer. Since the dielectric layer has the fourth identification mark, each dielectric layer can be easily identified, and the top, bottom, left, right, front and back of the dielectric layer can be easily identified, so each dielectric layer can be placed in the correct position reliably and easily. It can be placed in This is particularly useful in a frequency selective reflector in which a plurality of dielectric layers have different reflection characteristics.
 第4識別マークについては、上記の第1実施態様の反射構造体の第2識別マークと同様である。 The fourth identification mark is the same as the second identification mark of the reflective structure of the first embodiment described above.
(c)凹凸部
 本実施態様においては、隣接する誘電体層が、互いに対向する側面に、互いに嵌合可能な凹凸部を有し、凹凸部が嵌合するように、隣接する誘電体層が配置されていてもよい。つまり、隣接する誘電体層は、互いに対向する側面に、上記第1実施態様における図21及び図22に示される凹凸部26と同様の凹凸部を有していてもよい。凹凸部の嵌合によって、複数の誘電体層の位置合わせを容易に行うことができる。また、隣接する誘電体層の接触面積が増えるため、強度を高めることができる。
(c) Concave and convex portions In this embodiment, adjacent dielectric layers have concave and convex portions that can be fitted into each other on side surfaces facing each other, and the adjacent dielectric layers are arranged such that the concave and convex portions fit into each other. may be placed. In other words, adjacent dielectric layers may have uneven portions similar to the uneven portions 26 shown in FIGS. 21 and 22 in the first embodiment on their opposing side surfaces. By fitting the uneven portions, the plurality of dielectric layers can be easily aligned. Furthermore, since the contact area between adjacent dielectric layers increases, the strength can be increased.
 凹凸部については、上記の第1実施態様の反射構造体の凹凸部と同様である。 The uneven portions are the same as those of the reflective structure of the first embodiment described above.
(7)周波数選択反射板のその他の点
 本実施態様において、誘電体層のサイズは、基材のサイズや、反射構造体の用途等に応じて適宜選択される。誘電体層のサイズは、例えば、150mm角以上であることが好ましく、200mm角以上であることがより好ましい。
(7) Other points of the frequency selective reflector In this embodiment, the size of the dielectric layer is appropriately selected depending on the size of the base material, the use of the reflective structure, etc. The size of the dielectric layer is, for example, preferably 150 mm square or more, more preferably 200 mm square or more.
 本実施態様において、複数の誘電体層での反射特性は、同一であってもよく、互いに異なっていてもよい。 In this embodiment, the reflection characteristics of the plurality of dielectric layers may be the same or different from each other.
 複数の誘電体層での反射特性が互いに異なる場合、各誘電体層での反射特性は、例えば、電磁波が拡散するように設計してもよく、電磁波が収束するように設計してよい。また、各誘電体層での反射特性は、球面波を平面波に変換するように設計してもよい。また、各誘電体層での反射特性は、マルチビームの反射構造体となるように設計してもよい。 When the reflection characteristics of the plurality of dielectric layers are different from each other, the reflection characteristics of each dielectric layer may be designed, for example, so that the electromagnetic waves are diffused, or so that the electromagnetic waves are converged. Further, the reflection characteristics of each dielectric layer may be designed to convert a spherical wave into a plane wave. Further, the reflection characteristics of each dielectric layer may be designed to provide a multi-beam reflection structure.
 誘電体層において、厚さの異なる複数のセル領域が配列されており、複数の誘電体層におけるセル領域の配列が互いに異なる場合、複数の誘電体層での反射特性が互いに異なるようになる。 If a plurality of cell regions with different thicknesses are arranged in the dielectric layer, and the arrangement of the cell regions in the plurality of dielectric layers is different from each other, the reflection characteristics in the plurality of dielectric layers will be different from each other.
 複数の誘電体層での反射特性が互いに異なる場合については、国際公開第2023/027195号を参照できる。 Regarding the case where the reflection characteristics of a plurality of dielectric layers are different from each other, reference can be made to International Publication No. 2023/027195.
 本実施態様における周波数選択反射板は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する。電磁波の周波数帯については、上記第1実施態様と同様である。 The frequency selective reflector in this embodiment reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. The frequency band of electromagnetic waves is the same as in the first embodiment.
 本実施態様における周波数選択反射板は、例えば、通信用の周波数選択反射板として用いることができ、中でも、移動通信用の周波数選択反射板として好適である。 The frequency selective reflector in this embodiment can be used, for example, as a frequency selective reflector for communication, and is particularly suitable as a frequency selective reflector for mobile communication.
3.他の構成
 本実施態様の反射構造体は、上記の周波数選択反射板および基材の他に、必要に応じて他の構成を有していてもよい。他の構成としては、例えば、第2の接着層、固定部材、干渉緩和層が挙げられる。これらの構成については、上記の第1実施態様と同様である。
3. Other Structures In addition to the frequency selective reflector and base material described above, the reflective structure of this embodiment may have other structures as necessary. Other configurations include, for example, a second adhesive layer, a fixing member, and an interference mitigation layer. These configurations are the same as those of the first embodiment described above.
III.反射構造体の第3実施態様
 本開示における反射構造体の第3実施態様は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を有する反射構造体であって、基材と、上記基材の一方の面に並べて配置された複数の上記周波数選択反射板と、を有し、少なくとも1つの上記周波数選択反射板における隣り合う2辺が、上記基材における隣り合う2辺に揃い、隣接する上記周波数選択反射板間の距離が、上記電磁波の波長の1/2未満である。
III. Third embodiment of reflective structure A third embodiment of the reflective structure in the present disclosure is a reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. , a base material, and a plurality of frequency selective reflectors arranged side by side on one surface of the base material, wherein two adjacent sides of at least one frequency selective reflector are adjacent to each other in the base material. The distance between the adjacent frequency selective reflectors aligned on two matching sides is less than 1/2 of the wavelength of the electromagnetic wave.
 図29(a)は、本実施態様の反射構造体の一例を示す概略平面図であり、図29(b)は、図29(a)のA-A線断面図である。図29(a)、(b)に示すように、反射構造体20は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板1A~1Dを有するものであり、基材21と、基材21の一方の面に並べて配置された複数の周波数選択反射板1A~1Dと、を有している。隣接する周波数選択反射板1A~1Dの間の距離d1、d2は、特定の周波数帯の電磁波の波長の1/2未満となっている。 FIG. 29(a) is a schematic plan view showing an example of the reflective structure of this embodiment, and FIG. 29(b) is a sectional view taken along the line AA in FIG. 29(a). As shown in FIGS. 29(a) and 29(b), the reflective structure 20 includes frequency selective reflectors 1A to 1D that reflect electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. It has a base material 21 and a plurality of frequency selective reflectors 1A to 1D arranged side by side on one surface of the base material 21. The distances d1 and d2 between adjacent frequency selective reflectors 1A to 1D are less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band.
 例えば図29(a)、(b)においては、周波数選択反射板1Aにおける隣り合う2辺Sa1、Sa2が、基材21における隣り合う2辺S01、S02に揃っている。そのため、周波数選択反射板1Aについては、基材21の隣り合う2辺S01、S02を基準として、周波数選択反射板1Aの隣り合う2辺Sa1、Sa2の位置を合わせて、周波数選択反射板1Aの位置合わせを行う。 For example, in FIGS. 29(a) and 29(b), two adjacent sides Sa1 and Sa2 of the frequency selective reflector 1A are aligned with two adjacent sides S01 and S02 of the base material 21. Therefore, regarding the frequency selective reflector 1A, the positions of the two adjacent sides Sa1 and Sa2 of the frequency selective reflector 1A are aligned based on the two adjacent sides S01 and S02 of the base material 21. Perform alignment.
 周波数選択反射板1B~1Dについては、例えば図30(a)に示すように、基材の辺を基準とするとともに、周波数選択反射板のエッジを隣接する周波数選択反射板のエッジに突き当てることにより、周波数選択反射板1B~1Dの位置合わせを行ってもよい。例えば、周波数選択反射板1Bについては、基材21の1辺S01を基準として、周波数選択反射板1Bの1辺Sb1の位置を合わせ、周波数選択反射板1Bに隣接する周波数選択反射板1Aのエッジに周波数選択反射板1Bのエッジを突き当てて、周波数選択反射板1Bの位置合わせを行う。この場合、周波数選択反射板1Bの隣り合う2辺Sb1、Sb2のうち、周波数選択反射板1Bの辺Sb1は、基材21の辺S01に揃い、周波数選択反射板1Bの辺Sb2は、周波数選択反射板1Aの辺Sa4に接することになる。周波数選択反射板1Cについては、基材21の1辺S02を基準として、周波数選択反射板1Cの1辺Sc2の位置を合わせ、周波数選択反射板1Cに隣接する周波数選択反射板1Aのエッジに周波数選択反射板1Cのエッジを突き当てて、周波数選択反射板1Cの位置合わせを行う。この場合、周波数選択反射板1Cの隣り合う2辺Sc1、Sc2のうち、周波数選択反射板1Cの辺Sc2は、基材21の辺S02に揃い、周波数選択反射板1Cの辺Sc1は、周波数選択反射板1Aの辺Sa3に接することになる。周波数選択反射板1Dについては、周波数選択反射板1Dに隣接する周波数選択反射板1B、1Cのエッジに周波数選択反射板1Dのエッジを突き当てて、周波数選択反射板1Dの位置合わせを行う。この場合、周波数選択反射板1Dの隣り合う2辺Sd1、Sd2のち、周波数選択反射板1Dの辺Sd2は、周波数選択反射板1Cの辺Sc4に接し、周波数選択反射板1Dの辺Sd1は、周波数選択反射板1Bの辺Sb3に接することになる。 Regarding the frequency selective reflectors 1B to 1D, for example, as shown in FIG. 30(a), the edge of the frequency selective reflector is brought into contact with the edge of the adjacent frequency selective reflector while using the side of the base material as a reference. The frequency selective reflectors 1B to 1D may be aligned by the following. For example, for the frequency selective reflector 1B, one side Sb1 of the frequency selective reflector 1B is aligned with respect to one side S01 of the base material 21, and the edge of the frequency selective reflector 1A adjacent to the frequency selective reflector 1B is The edge of the frequency selective reflector 1B is brought into contact with the edge of the frequency selective reflector 1B to align the position of the frequency selective reflector 1B. In this case, of the two adjacent sides Sb1 and Sb2 of the frequency selective reflector 1B, the side Sb1 of the frequency selective reflector 1B is aligned with the side S01 of the base material 21, and the side Sb2 of the frequency selective reflector 1B is aligned with the side Sb1 of the frequency selective reflector 1B. It comes into contact with the side Sa4 of the reflecting plate 1A. Regarding the frequency selective reflector 1C, one side Sc2 of the frequency selective reflector 1C is aligned with one side S02 of the base material 21 as a reference, and a frequency is set on the edge of the frequency selective reflector 1A adjacent to the frequency selective reflector 1C. The frequency selective reflector 1C is aligned by abutting the edge of the selective reflector 1C. In this case, of the two adjacent sides Sc1 and Sc2 of the frequency selective reflector 1C, the side Sc2 of the frequency selective reflector 1C is aligned with the side S02 of the base material 21, and the side Sc1 of the frequency selective reflector 1C is aligned with the frequency selective reflector 1C. It comes into contact with the side Sa3 of the reflection plate 1A. Regarding the frequency selective reflector 1D, the edge of the frequency selective reflector 1D is brought into contact with the edges of the frequency selective reflectors 1B and 1C adjacent to the frequency selective reflector 1D to align the frequency selective reflector 1D. In this case, after the two adjacent sides Sd1 and Sd2 of the frequency selective reflector 1D, the side Sd2 of the frequency selective reflector 1D is in contact with the side Sc4 of the frequency selective reflector 1C, and the side Sd1 of the frequency selective reflector 1D is It comes into contact with the side Sb3 of the selective reflection plate 1B.
 また、周波数選択反射板1B~1Dについては、例えば図30(b)に示すように、基材の辺を基準として、周波数選択反射板1B~1Dの位置合わせを行ってもよい。例えば、周波数選択反射板1Bについては、基材21の隣り合う2辺S01、S04を基準として、周波数選択反射板1Bの隣り合う2辺Sb1、Sb4の位置を合わせ、周波数選択反射板1Bの位置合わせを行う。この場合、周波数選択反射板1Bの隣り合う2辺Sb1、Sb4は、基材21の隣り合う2辺S01、S04に揃うことになる。周波数選択反射板1Cについては、基材21の隣り合う2辺S02、S03を基準として、周波数選択反射板1Cの隣り合う2辺Sc2、Sc3の位置を合わせ、周波数選択反射板1Cの位置合わせを行う。この場合、周波数選択反射板1Cの隣り合う2辺Sc2、Sc3は、基材21の隣り合う2辺S02、S03に揃うことになる。周波数選択反射板1Dについては、基材21の隣り合う2辺S03、S04を基準として、周波数選択反射板1Dの隣り合う2辺Sd3、Sd4の位置を合わせ、周波数選択反射板1Dの位置合わせを行う。この場合、周波数選択反射板1Dの隣り合う2辺Sd3、Sd4は、基材21の隣り合う2辺S03、S04に揃うことになる。 Further, as for the frequency selective reflectors 1B to 1D, the positions of the frequency selective reflectors 1B to 1D may be performed using the sides of the base material as a reference, as shown in FIG. 30(b), for example. For example, for the frequency selective reflector 1B, the two adjacent sides Sb1 and Sb4 of the frequency selective reflector 1B are aligned based on the two adjacent sides S01 and S04 of the base material 21, and the position of the frequency selective reflector 1B is Make adjustments. In this case, the two adjacent sides Sb1 and Sb4 of the frequency selective reflector 1B are aligned with the two adjacent sides S01 and S04 of the base material 21. Regarding the frequency selective reflector 1C, the two adjacent sides Sc2 and Sc3 of the frequency selective reflector 1C are aligned based on the two adjacent sides S02 and S03 of the base material 21, and the frequency selective reflector 1C is aligned. conduct. In this case, the two adjacent sides Sc2 and Sc3 of the frequency selective reflector 1C are aligned with the two adjacent sides S02 and S03 of the base material 21. Regarding the frequency selective reflector 1D, the two adjacent sides Sd3 and Sd4 of the frequency selective reflector 1D are aligned based on the two adjacent sides S03 and S04 of the base material 21, and the frequency selective reflector 1D is aligned. conduct. In this case, the two adjacent sides Sd3 and Sd4 of the frequency selective reflector 1D are aligned with the two adjacent sides S03 and S04 of the base material 21.
 また、周波数選択反射板1B~1Dについては、図示しないが、各周波数選択反射板1A~1Dが第2アライメントマークを有しており、周波数選択反射板1Aの第2アライメントマークを基準として、周波数選択反射板1Aに隣接する周波数選択反射板1B、1Cの第2アライメントマークの位置を合わせて、周波数選択反射板1B、1Cの位置合わせを行い、周波数選択反射板1B、1Cの第2アライメントマークを基準として、周波数選択反射板1B、1Cに隣接する周波数選択反射板1Dの第2アライメントマークの位置を合わせて、周波数選択反射板1Dの位置合わせを行ってもよい。 Although not shown, each of the frequency selective reflectors 1B to 1D has a second alignment mark, and the frequency is determined based on the second alignment mark of the frequency selective reflector 1A. The frequency selective reflectors 1B and 1C are aligned by aligning the second alignment marks of the frequency selective reflectors 1B and 1C adjacent to the selective reflector 1A, and the second alignment marks of the frequency selective reflectors 1B and 1C are aligned. The frequency-selective reflector 1D may be aligned by aligning the second alignment marks of the frequency-selective reflector 1D adjacent to the frequency-selective reflector 1B and 1C with reference to .
 また、周波数選択反射板1B~1Dについては、周波数選択反射板の第2アライメントマークによる位置合わせと、周波数選択反射板のエッジの突き当てによる位置合わせとを併用してもよい。例えば、周波数選択反射板1B、1Cは、周波数選択反射板1Aに対して周波数選択反射板1A~1Cの第2アライメントマークを用いて位置合わせを行い、周波数選択反射板1Dは、周波数選択反射板1B、1Cのエッジに周波数選択反射板1Dのエッジを突き当てることで位置合わせを行うことができる。 Furthermore, for the frequency selective reflectors 1B to 1D, alignment using the second alignment mark of the frequency selective reflector and positioning by abutting the edges of the frequency selective reflector may be used in combination. For example, the frequency selective reflectors 1B and 1C are aligned with the frequency selective reflector 1A using the second alignment marks of the frequency selective reflectors 1A to 1C, and the frequency selective reflector 1D is aligned with the frequency selective reflector 1A. Positioning can be performed by abutting the edges of the frequency selective reflector 1D against the edges of 1B and 1C.
 本実施態様の反射構造体においても、上記の反射構造体の第1実施態様と同様に、例えば各周波数選択反射板での反射波の位相を揃え、反射波の強度を強くする等、反射構造体全体での反射波の波面の乱れを抑制するためには、隣接する周波数選択反射板間の距離は、電磁波の波長の1/2未満とすることが望ましいと考えられる。 Similarly to the first embodiment of the reflective structure described above, the reflective structure of this embodiment also has a reflective structure that, for example, aligns the phase of the reflected waves at each frequency selective reflector and increases the intensity of the reflected waves. In order to suppress disturbances in the wavefront of reflected waves throughout the body, it is considered desirable that the distance between adjacent frequency selective reflectors be less than 1/2 of the wavelength of the electromagnetic waves.
 本実施態様においては、少なくとも1つの周波数選択反射板における隣り合う2辺が、基材における隣り合う2辺に揃っていることにより、複数の周波数選択反射板の位置合わせを精度良く行うことができる。そのため、隣接する周波数選択反射板間の距離の精度を確保できる。よって、隣接する周波数選択反射板間の距離が、特定の周波数帯の電磁波の波長の1/2未満となるように、複数の周波数選択反射板を高い位置精度でタイリングすることができる。したがって、反射構造体全体での反射波の波面の乱れを抑制して、所望の反射特性を得ることができるとともに、反射構造体の大面積化が可能である。 In this embodiment, two adjacent sides of at least one frequency selective reflector are aligned with two adjacent sides of the base material, so that the plurality of frequency selective reflectors can be aligned with high precision. . Therefore, the accuracy of the distance between adjacent frequency selective reflectors can be ensured. Therefore, a plurality of frequency selective reflectors can be tiled with high positional accuracy so that the distance between adjacent frequency selective reflectors is less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band. Therefore, it is possible to suppress the disturbance of the wavefront of the reflected wave in the entire reflecting structure, to obtain desired reflection characteristics, and to increase the area of the reflecting structure.
 以下、本実施態様の反射構造体の各構成について説明する。 Hereinafter, each configuration of the reflective structure of this embodiment will be explained.
1.基材
 本実施態様における基材は、周波数選択反射板を支持する部材である。基材については、基材が第1アライメントマークを有さないこと以外は、上記第1実施態様における基材と同様である。
1. Base Material The base material in this embodiment is a member that supports the frequency selective reflection plate. The base material is the same as the base material in the first embodiment described above, except that the base material does not have the first alignment mark.
 本実施態様において、基材の形状は、矩形に限定されず、三角形、五角形等の多角形であってもよい。また、基材の形状は、基準となる角部を有する形状であってもよい。しずく形、三日月状、円の一部を切り取った形状のように、基準となる角部が存在していれば、その角部から両側に伸びる輪郭線を、基材の隣り合う2辺とみなすことができる。 In this embodiment, the shape of the base material is not limited to a rectangle, but may be a polygon such as a triangle or a pentagon. Further, the shape of the base material may be a shape having corner portions that serve as a reference. If there is a corner that serves as a reference, such as a drop shape, crescent shape, or part of a circle, the outline extending from that corner to both sides is considered to be two adjacent sides of the base material. be able to.
 本実施態様において、基材のサイズは、全ての周波数選択反射板を並べて配置したときの合計サイズと略同一であることが好ましい。基材のサイズが、全ての周波数選択反射板を並べて配置したときの合計サイズと略同一であるとは、基材の輪郭線と、全ての周波数選択反射板を並べて配置したときの外形の輪郭線とを重ねた時の内外方向の寸法差が、特定の周波数帯の電磁波の波長の1/2未満であることをいう。上記寸法差は、好ましくは1/5以下であり、より好ましくは1/10以下である。なお、基材の輪郭線と、すべての周波数選択反射板を並べて配置したときの外形の輪郭線は、類似形状であることが好ましいが、例えば、デザイン上、基材の輪郭線が局所的に外側に突出するといった形状であっても、周波数選択反射板の配置の点では、特に問題はない。 In this embodiment, the size of the base material is preferably approximately the same as the total size when all the frequency selective reflectors are arranged side by side. The size of the base material is approximately the same as the total size when all the frequency selective reflectors are arranged side by side, which means that the outline of the base material and the outline of the outer shape when all the frequency selective reflectors are arranged side by side. This means that the difference in dimension between the inside and outside when the lines are overlapped is less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band. The above-mentioned dimensional difference is preferably 1/5 or less, more preferably 1/10 or less. Note that it is preferable that the contour line of the base material and the contour line of the external shape when all the frequency selective reflectors are arranged side by side have similar shapes, but for example, due to design reasons, the contour line of the base material may be locally Even if it has a shape that protrudes outward, there is no particular problem in terms of placement of the frequency selective reflector.
2.周波数選択反射板
 本実施態様における周波数選択反射板は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する部材である。
2. Frequency Selective Reflector The frequency selective reflector in this embodiment is a member that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction.
 隣接する周波数選択反射板間の距離については、上記第1実施態様と同様である。 The distance between adjacent frequency selective reflectors is the same as in the first embodiment.
 周波数選択反射板の実施態様については、上記第1実施態様と同様である。 The embodiment of the frequency selective reflector is the same as the first embodiment described above.
 本実施態様においては、基材の隣り合う2辺を基準として、少なくとも1つの周波数選択反射板の隣り合う2辺の位置を合わせ、少なくとも1つの周波数選択反射板の位置合わせを行うことができる。少なくとも1つの周波数選択反射板の位置合わせを行った後、他の周波数選択反射板については、例えば、基材の辺を基準とするとともに、周波数選択反射板のエッジを隣接する周波数選択反射板のエッジに突き当てることにより、他の周波数選択反射板の位置合わせを行ってもよい。また、他の周波数選択反射板については、各周波数選択反射板が第2アライメントマークを有しており、第2アライメントマークを用いて、各周波数選択反射板の相対位置を合わせてもよい。また、他の周波数選択反射板については、周波数選択反射板の第2アライメントマークによる位置合わせと、周波数選択反射板のエッジの突き当てによる位置合わせとを併用してもよい。また、全ての周波数選択反射板について、基材の隣り合う2辺を基準として、周波数選択反射板の隣り合う2辺の位置を合わせ、全ての周波数選択反射板の位置合わせを行ってもよい。 In this embodiment, at least one frequency selective reflector can be aligned by aligning the two adjacent sides of the at least one frequency selective reflector with reference to the two adjacent sides of the base material. After aligning at least one frequency-selective reflector, for other frequency-selective reflectors, for example, use the sides of the substrate as a reference and align the edges of the frequency-selective reflectors to the adjacent frequency-selective reflectors. Other frequency selective reflectors may be aligned by abutting against the edges. Regarding other frequency selective reflectors, each frequency selective reflector has a second alignment mark, and the second alignment mark may be used to align the relative positions of the frequency selective reflectors. Further, for other frequency selective reflectors, alignment using the second alignment mark of the frequency selective reflector and positioning by abutting the edges of the frequency selective reflector may be used in combination. Alternatively, all the frequency selective reflectors may be aligned by aligning the positions of the two adjacent sides of the frequency selective reflector with reference to the two adjacent sides of the base material.
 周波数選択反射板の位置合わせの具体例については、上述した通りである。 A specific example of positioning the frequency selective reflector is as described above.
 また、周波数選択反射板の位置合わせの際、周波数選択反射板のエッジを隣接する周波数選択反射板のエッジに突き当てる場合、周波数選択反射板のエッジをスペーサを介して隣接する周波数選択反射板のエッジに突き当ててもよい。 In addition, when aligning the frequency selective reflector, if the edge of the frequency selective reflector is butted against the edge of the adjacent frequency selective reflector, the edge of the frequency selective reflector should be placed between the edges of the adjacent frequency selective reflector via a spacer. You can hit it against the edge.
 本実施態様において、周波数選択反射板は第2アライメントマークを有していてもよい。第2アライメントマークは、周波数選択反射板の位置合わせを行うためのマークであり、各周波数選択反射板の相対位置を合わせるためのマークである。 In this embodiment, the frequency selective reflector may have a second alignment mark. The second alignment mark is a mark for aligning the frequency selective reflectors, and is a mark for aligning the relative positions of the frequency selective reflectors.
 第2アライメントマークについては、上記第1実施態様と同様である。第2アライメントマークは、周波数選択反射板の外周領域に配置されることが好ましい。周波数選択反射板のエッジを隣接する周波数選択反射板のエッジに突き当てる場合、周波数選択反射板のエッジに平行な方向のずれを調整しやすくなる。 The second alignment mark is the same as the first embodiment described above. Preferably, the second alignment mark is arranged in the outer peripheral region of the frequency selective reflector. When the edge of a frequency selective reflector is brought into contact with the edge of an adjacent frequency selective reflector, it becomes easier to adjust the deviation in the direction parallel to the edge of the frequency selective reflector.
 本実施態様においては、周波数選択反射板は、周波数選択反射板を識別するための第2識別マークを有していてもよい。第2識別マークについては、上記第1実施態様と同様である。 In this embodiment, the frequency selective reflector may have a second identification mark for identifying the frequency selective reflector. The second identification mark is the same as in the first embodiment.
 本実施態様においては、隣接する周波数選択反射板が、互いに対向する側面に、互いに嵌合可能な凹凸部を有し、凹凸部が嵌合するように、隣接する周波数選択反射板が配置されていてもよい。凹凸部の嵌合によって、複数の周波数選択反射板の位置合わせを容易に行うことができる。この場合、凹凸部は実質的に第2アライメントマークのように機能する。凹凸部については、上記の第1実施態様の反射構造体の凹凸部と同様である。 In this embodiment, adjacent frequency selective reflectors have concave and convex portions that can fit into each other on side surfaces facing each other, and the adjacent frequency selective reflectors are arranged so that the concave and convex portions fit together. It's okay. By fitting the concavo-convex portions, it is possible to easily align the plurality of frequency-selective reflectors. In this case, the uneven portion substantially functions like a second alignment mark. The uneven portions are the same as those of the reflective structure of the first embodiment described above.
 周波数選択反射板のサイズについては、上記第1実施態様と同様である。 The size of the frequency selective reflector is the same as in the first embodiment.
 本実施態様においては、上述したように、基材が第1アライメントマークを有するのではなく、基材の隣り合う2辺を基準として、少なくとも1つの周波数選択反射板の隣り合う2辺の位置を合わせ、少なくとも1つの周波数選択反射板の位置合わせを行う。よって、周波数選択反射板の外形寸法のばらつきは、特定の周波数帯の電磁波の波長の1/2未満であることが好ましく、1/5以下がより好ましく、1/10以下がさらに好ましい。例えば、材料や機械の種類等によっても異なるが、一般的には切断加工の寸法のばらつきは±1mm程度である。そのため、周波数選択反射板の外形寸法のばらつきは、特定の周波数帯の電磁波の波長の1/2未満を満たし得る。 In this embodiment, as described above, the base material does not have the first alignment mark, but the positions of the two adjacent sides of the at least one frequency selective reflector are determined based on the two adjacent sides of the base material. and aligning the at least one frequency selective reflector. Therefore, the variation in external dimensions of the frequency selective reflector is preferably less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band, more preferably 1/5 or less, and even more preferably 1/10 or less. For example, although it varies depending on the material, type of machine, etc., the variation in dimensions during cutting is generally about ±1 mm. Therefore, the variation in external dimensions of the frequency selective reflector can satisfy less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band.
 本実施態様において、複数の周波数選択反射板の反射特性は、同一であってもよく、互いに異なっていてもよい。複数の周波数選択反射板の反射特性が互いに異なる場合については、上記第1実施態様と同様である。 In this embodiment, the reflection characteristics of the plurality of frequency selective reflectors may be the same or different from each other. The case where the reflection characteristics of the plurality of frequency selective reflectors are different from each other is the same as in the first embodiment.
 本実施態様における周波数選択反射板は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する。電磁波の周波数帯については、上記第1実施態様と同様である。上述したように、周波数選択反射板の外形寸法のばらつきは、特定の周波数帯の電磁波の波長の1/2未満であることが好ましいことから、電磁波の波長が長いほど、つまり電磁波の周波数帯が短いほど、より大きな外形寸法のばらつきが許容される。そのため、電磁波の周波数帯は、所定の範囲の中でも低いことが好ましい。具体的には、電磁波の周波数帯は、2.5GHz以上149.9GHz以下が好ましく、2.5GHz以上60.0GHz以下がより好ましく、2.5GHz以上30.0GHz以下がさらに好ましい。 The frequency selective reflector in this embodiment reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. The frequency band of electromagnetic waves is the same as in the first embodiment. As mentioned above, it is preferable that the variation in external dimensions of the frequency selective reflector is less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band. The shorter the length, the greater variation in external dimensions is allowed. Therefore, it is preferable that the frequency band of the electromagnetic waves is low within the predetermined range. Specifically, the frequency band of the electromagnetic waves is preferably 2.5 GHz or more and 149.9 GHz or less, more preferably 2.5 GHz or more and 60.0 GHz or less, and even more preferably 2.5 GHz or more and 30.0 GHz or less.
 本実施態様における周波数選択反射板は、例えば、通信用の周波数選択反射板として用いることができ、中でも、移動通信用の周波数選択反射板として好適である。 The frequency selective reflector in this embodiment can be used, for example, as a frequency selective reflector for communication, and is particularly suitable as a frequency selective reflector for mobile communication.
3.他の構成
 本実施態様の反射構造体は、上記の周波数選択反射板および基材の他に、必要に応じて他の構成を有していてもよい。他の構成としては、例えば、接着部、第2の接着層、固定部材、干渉緩和層が挙げられる。これらの構成については、上記第1実施態様と同様である。
3. Other Structures In addition to the frequency selective reflector and base material described above, the reflective structure of this embodiment may have other structures as necessary. Other configurations include, for example, an adhesive portion, a second adhesive layer, a fixing member, and an interference mitigation layer. These configurations are the same as those in the first embodiment.
IV.反射構造体の第4実施態様
 本開示における反射構造体の第4実施態様は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を有する反射構造体であって、基材と、上記基材の一方の面に配置された上記周波数選択反射板と、を有し、上記周波数選択反射板が、上記基材の一方の面に配置され、上記電磁波を反射する反射部材と、上記基材の上記反射部材側の面に並べて配置され、上記電磁波を透過する、複数の誘電体層と、を有し、少なくとも1つの上記誘電体層における隣り合う2辺が、上記基材における隣り合う2辺に揃い、隣接する上記誘電体層間の距離が、上記電磁波の波長の1/2未満であり、上記誘電体層は、所定の方向に厚さが増加する厚さ分布を有する単位構造が複数配置された凹凸構造を有し、上記誘電体層の上記単位構造は、厚さの異なる複数のセル領域を有し、上記誘電体層の各単位構造では、上記単位構造の上記所定の方向の長さを横軸とし、上記電磁波が上記誘電体層を透過し上記反射部材で反射され上記誘電体層を再度透過して上記電磁波の入射側に放出される際の相対反射位相を縦軸とし、上記電磁波の相対反射位相の値が-360度超0度以下であるグラフに、各セル領域の上記所定の方向の中心位置および各セル領域での上記電磁波の相対反射位相に対応する点をプロットし、最小厚さを有する最小厚さセル領域に対応する点を通る直線を引いたとき、各点が同一直線上にあり、上記誘電体層が、上記単位構造として、厚さの異なる3つ以上の上記セル領域を有する第1の単位構造を少なくとも有し、上記誘電体層の厚さ分布によって上記電磁波の相対反射位相分布を制御することにより、上記電磁波の反射方向を制御する。
IV. Fourth embodiment of reflective structure A fourth embodiment of the reflective structure in the present disclosure is a reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. , comprising a base material and the frequency selective reflector disposed on one surface of the base material, the frequency selective reflector being disposed on one surface of the base material to reflect the electromagnetic waves. a reflective member; and a plurality of dielectric layers arranged side by side on the surface of the base material on the reflective member side and transmitting the electromagnetic waves, wherein two adjacent sides of at least one of the dielectric layers are The dielectric layers are aligned on two adjacent sides of the base material, and the distance between the adjacent dielectric layers is less than 1/2 of the wavelength of the electromagnetic wave, and the dielectric layers have a thickness that increases in a predetermined direction. The unit structure of the dielectric layer has a concavo-convex structure in which a plurality of unit structures having a distribution are arranged, and the unit structure of the dielectric layer has a plurality of cell regions having different thicknesses, and each unit structure of the dielectric layer has The horizontal axis is the length of the structure in the predetermined direction, and the electromagnetic wave is transmitted through the dielectric layer, reflected by the reflective member, transmitted through the dielectric layer again, and emitted to the incident side of the electromagnetic wave. The relative reflection phase is taken as the vertical axis, and the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees.The graph shows the center position of each cell area in the above predetermined direction and the relative reflection phase of the electromagnetic wave in each cell area. When the points corresponding to the reflection phase are plotted and a straight line passing through the point corresponding to the minimum thickness cell region having the minimum thickness is drawn, each point is on the same straight line, and the dielectric layer is connected to the unit structure. has at least a first unit structure having three or more cell regions with different thicknesses, and controls the relative reflection phase distribution of the electromagnetic waves by the thickness distribution of the dielectric layer, thereby reducing the electromagnetic waves. Control the direction of reflection.
 図31(a)は、本実施態様の反射構造体の一例を示す概略平面図であり、図31(b)は、図31(a)のA-A線断面図である。図31(a)、(b)に示すように、反射構造体20は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板1を有するものであり、基材21と、基材21の一方の面に並べて配置された周波数選択反射板1と、を有している。周波数選択反射板1は、基材21の一方の面に配置され、電磁波を反射する反射部材2と、基材21の反射部材2側の面に並べて配置され、電磁波を透過する、複数の誘電体層5A~5Dと、を有する。隣接する誘電体層5A~5Dの間の距離d5、d6は、特定の周波数帯の電磁波の波長の1/2未満となっている。 FIG. 31(a) is a schematic plan view showing an example of the reflective structure of this embodiment, and FIG. 31(b) is a sectional view taken along the line AA in FIG. 31(a). As shown in FIGS. 31(a) and 31(b), the reflective structure 20 includes a frequency selective reflector 1 that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. 21, and frequency selective reflection plates 1 arranged side by side on one surface of the base material 21. The frequency selective reflector 1 includes a reflective member 2 arranged on one surface of a base material 21 to reflect electromagnetic waves, and a plurality of dielectrics arranged side by side on the surface of the base material 21 on the reflective member 2 side to transmit electromagnetic waves. It has body layers 5A to 5D. The distances d5 and d6 between adjacent dielectric layers 5A to 5D are less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band.
 例えば図31(a)、(b)においては、誘電体層5Aにおける隣り合う2辺Sa11、Sa12が、基材21における隣り合う2辺S01、S02に揃っている。そのため、誘電体層5Aについては、基材21の隣り合う2辺S01、S02を基準として、誘電体層5Aの隣り合う2辺Sa11、Sa12の位置を合わせて、誘電体層5Aの位置合わせを行う。 For example, in FIGS. 31A and 31B, two adjacent sides Sa11 and Sa12 of the dielectric layer 5A are aligned with two adjacent sides S01 and S02 of the base material 21. Therefore, regarding the dielectric layer 5A, the two adjacent sides Sa11 and Sa12 of the dielectric layer 5A are aligned based on the two adjacent sides S01 and S02 of the base material 21, and the dielectric layer 5A is aligned. conduct.
 誘電体層5B~5Dについては、例えば図32(a)に示すように、基材の辺を基準とするとともに、誘電体層のエッジを隣接する誘電体層のエッジに突き当てることにより、誘電体層5B~5Dの位置合わせを行ってもよい。例えば、誘電体層5Bについては、基材21の1辺S01を基準として、誘電体層5Bの1辺Sb11の位置を合わせ、誘電体層5Bに隣接する誘電体層5Aのエッジに誘電体層5Bのエッジを突き当てて、誘電体層5Bの位置合わせを行う。この場合、誘電体層5Bの隣り合う2辺Sb11、Sb12のうち、誘電体層5Bの辺Sb11は、基材21の辺S01に揃い、誘電体層5Bの辺Sb12は、誘電体層5Aの辺Sa14に接することになる。誘電体層5Cについては、基材21の1辺S02を基準として、誘電体層5Cの1辺Sc12の位置を合わせ、誘電体層5Cに隣接する誘電体層5Aのエッジに誘電体層5Cのエッジを突き当てて、誘電体層5Cの位置合わせを行う。この場合、周誘電体層5Cの隣り合う2辺Sc11、Sc12のうち、誘電体層5Cの辺Sc12は、基材21の辺S02に揃い、誘電体層5Cの辺Sc11は、誘電体層5Aの辺Sa13に接することになる。誘電体層5Dについては、誘電体層5Dに隣接する誘電体層5B、5Cのエッジに誘電体層5Dのエッジを突き当てて、誘電体層5Dの位置合わせを行う。この場合、誘電体層5Dの隣り合う2辺Sd11、Sd12のち、誘電体層5Dの辺Sd12は、誘電体層5Cの辺Sc14に接し、誘電体層5Dの辺Sd11は、誘電体層5Bの辺Sb13に接することになる。 As for the dielectric layers 5B to 5D, for example, as shown in FIG. Body layers 5B to 5D may be aligned. For example, for the dielectric layer 5B, one side Sb11 of the dielectric layer 5B is aligned with one side S01 of the base material 21 as a reference, and the dielectric layer is placed on the edge of the dielectric layer 5A adjacent to the dielectric layer 5B. The dielectric layer 5B is aligned by abutting the edges of the dielectric layer 5B. In this case, of the two adjacent sides Sb11 and Sb12 of the dielectric layer 5B, the side Sb11 of the dielectric layer 5B is aligned with the side S01 of the base material 21, and the side Sb12 of the dielectric layer 5B is aligned with the side Sb12 of the dielectric layer 5A. It will be in contact with side Sa14. Regarding the dielectric layer 5C, one side Sc12 of the dielectric layer 5C is aligned with one side S02 of the base material 21 as a reference, and the edge of the dielectric layer 5A adjacent to the dielectric layer 5C is aligned with the edge of the dielectric layer 5C. The dielectric layer 5C is aligned by abutting the edges. In this case, of the two adjacent sides Sc11 and Sc12 of the peripheral dielectric layer 5C, the side Sc12 of the dielectric layer 5C is aligned with the side S02 of the base material 21, and the side Sc11 of the dielectric layer 5C is aligned with the side S02 of the dielectric layer 5A. It will be in contact with side Sa13. Regarding the dielectric layer 5D, the edge of the dielectric layer 5D is brought into contact with the edges of the dielectric layers 5B and 5C adjacent to the dielectric layer 5D to align the dielectric layer 5D. In this case, after the two adjacent sides Sd11 and Sd12 of the dielectric layer 5D, the side Sd12 of the dielectric layer 5D is in contact with the side Sc14 of the dielectric layer 5C, and the side Sd11 of the dielectric layer 5D is in contact with the side Sc14 of the dielectric layer 5B. It comes into contact with side Sb13.
 また、誘電体層5B~5Dについては、例えば図32(b)に示すように、基材の辺を基準として、誘電体層5B~5Dの位置合わせを行ってもよい。例えば、誘電体層5Bについては、基材21の隣り合う2辺S01、S04を基準として、誘電体層5Bの隣り合う2辺Sb11、Sb14の位置を合わせ、誘電体層5Bの位置合わせを行う。この場合、誘電体層5Bの隣り合う2辺Sb11、Sb14は、基材21の隣り合う2辺S01、S04に揃うことになる。誘電体層5Cについては、基材21の隣り合う2辺S02、S03を基準として、誘電体層5Cの隣り合う2辺Sc12、Sc13の位置を合わせ、誘電体層5Cの位置合わせを行う。この場合、誘電体層5Cの隣り合う2辺Sc12、Sc13は、基材21の隣り合う2辺S02、S03に揃うことになる。誘電体層5Dについては、基材21の隣り合う2辺S03、S04を基準として、誘電体層5Dの隣り合う2辺Sd13、Sd14の位置を合わせ、誘電体層5Dの位置合わせを行う。この場合、誘電体層5Dの隣り合う2辺Sd13、Sd14は、基材21の隣り合う2辺S03、S04に揃うことになる。 Furthermore, as for the dielectric layers 5B to 5D, the dielectric layers 5B to 5D may be aligned using the sides of the base material as a reference, as shown in FIG. 32(b), for example. For example, for the dielectric layer 5B, the two adjacent sides Sb11 and Sb14 of the dielectric layer 5B are aligned based on the two adjacent sides S01 and S04 of the base material 21, and the dielectric layer 5B is aligned. . In this case, the two adjacent sides Sb11 and Sb14 of the dielectric layer 5B are aligned with the two adjacent sides S01 and S04 of the base material 21. Regarding the dielectric layer 5C, the two adjacent sides Sc12 and Sc13 of the dielectric layer 5C are aligned based on the two adjacent sides S02 and S03 of the base material 21, and the dielectric layer 5C is aligned. In this case, the two adjacent sides Sc12 and Sc13 of the dielectric layer 5C are aligned with the two adjacent sides S02 and S03 of the base material 21. Regarding the dielectric layer 5D, the two adjacent sides Sd13 and Sd14 of the dielectric layer 5D are aligned based on the two adjacent sides S03 and S04 of the base material 21, and the dielectric layer 5D is aligned. In this case, the two adjacent sides Sd13 and Sd14 of the dielectric layer 5D are aligned with the two adjacent sides S03 and S04 of the base material 21.
 また、誘電体層5B~5Dについては、図示しないが、各誘電体層5A~5Dが第3アライメントマークを有しており、誘電体層5Aの第3アライメントマークを基準として、誘電体層5Aに隣接する誘電体層5B、5Cの第3アライメントマークの位置を合わせて、誘電体層5B、5Cの位置合わせを行い、誘電体層5B、5Cの第3アライメントマークを基準として、誘電体層5B、5Cに隣接する誘電体層5Dの第3アライメントマークの位置を合わせて、誘電体層5Dの位置合わせを行ってもよい。 Furthermore, although not shown in the drawings, each dielectric layer 5A to 5D has a third alignment mark, and the dielectric layer 5A has a third alignment mark on the dielectric layer 5A as a reference. The dielectric layers 5B and 5C are aligned by aligning the third alignment marks of the dielectric layers 5B and 5C adjacent to the dielectric layers 5B and 5C. The dielectric layer 5D may be aligned by aligning the third alignment marks of the dielectric layer 5D adjacent to the dielectric layers 5B and 5C.
 また、誘電体層5B~5Dについては、誘電体層の第3アライメントマークによる位置合わせと、誘電体層のエッジの突き当てによる位置合わせとを併用してもよい。例えば、誘電体層5B、5Cは、誘電体層5Aに対して誘電体層5A~5Cの第3アライメントマークを用いて位置合わせを行い、誘電体層5Dは、誘電体層5B、1Cのエッジに誘電体層5Dのエッジを突き当てることで位置合わせを行うことができる。 Furthermore, for the dielectric layers 5B to 5D, alignment using the third alignment mark of the dielectric layer and alignment based on butting the edges of the dielectric layer may be used together. For example, the dielectric layers 5B and 5C are aligned with the dielectric layer 5A using the third alignment marks of the dielectric layers 5A to 5C, and the dielectric layer 5D is aligned with the edge of the dielectric layers 5B and 1C. Positioning can be performed by abutting the edge of the dielectric layer 5D against the edge of the dielectric layer 5D.
 本実施態様の反射構造体においても、上記の反射構造体の第2実施態様と同様に、例えば各誘電体層での反射波の位相を揃え、反射波の強度を強くする等、反射構造体全体での反射波の波面の乱れを抑制するためには、隣接する誘電体層間の距離は、電磁波の波長の1/2未満とすることが望ましいと考えられる。 In the reflective structure of this embodiment, similarly to the second embodiment of the reflective structure described above, the reflective structure is In order to suppress disturbance of the wavefront of the overall reflected wave, it is considered desirable that the distance between adjacent dielectric layers be less than 1/2 of the wavelength of the electromagnetic wave.
 本実施態様においては、少なくとも1つの誘電体層における隣り合う2辺が、基材における隣り合う2辺に揃っていることにより、複数の誘電体層の位置合わせを精度良く行うことができる。そのため、隣接する誘電体層間の距離の精度を確保できる。よって、隣接する誘電体層間の距離が、特定の周波数帯の電磁波の波長の1/2未満となるように、複数の誘電体層を高い位置精度でタイリングすることができる。したがって、反射構造体全体での反射波の波面の乱れを抑制して、所望の反射特性を得ることができるとともに、反射構造体の大面積化が可能である。 In this embodiment, two adjacent sides of at least one dielectric layer are aligned with two adjacent sides of the base material, so that the plurality of dielectric layers can be aligned with high accuracy. Therefore, the accuracy of the distance between adjacent dielectric layers can be ensured. Therefore, a plurality of dielectric layers can be tiled with high positional accuracy so that the distance between adjacent dielectric layers is less than 1/2 the wavelength of electromagnetic waves in a specific frequency band. Therefore, it is possible to suppress the disturbance of the wavefront of the reflected wave in the entire reflecting structure, to obtain desired reflection characteristics, and to increase the area of the reflecting structure.
 以下、本実施態様の反射構造体の各構成について説明する。 Hereinafter, each configuration of the reflective structure of this embodiment will be explained.
1.基材
 本実施態様における基材は、周波数選択反射板を支持する部材である。基材については、上記第3実施態様における基材と同様である。
1. Base Material The base material in this embodiment is a member that supports the frequency selective reflection plate. The base material is the same as the base material in the third embodiment.
 本実施態様において、基材のサイズは、全ての誘電体層を並べて配置したときの合計サイズと略同一であることが好ましい。基材のサイズが、全ての誘電体層を並べて配置したときの合計サイズと略同一であるとは、基材の輪郭線と、全ての誘電体層を並べて配置したときの外形の輪郭線とを重ねた時の内外方向の寸法差が、特定の周波数帯の電磁波の波長の1/2未満であることをいう。上記寸法差は、好ましくは1/5以下であり、より好ましくは1/10以下である。 In this embodiment, the size of the base material is preferably approximately the same as the total size when all the dielectric layers are arranged side by side. The size of the base material is approximately the same as the total size when all the dielectric layers are arranged side by side, which means that the outline of the base material and the outline of the outer shape when all the dielectric layers are arranged side by side. The difference in dimension between the inside and outside when stacked is less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band. The above-mentioned dimensional difference is preferably 1/5 or less, more preferably 1/10 or less.
2.周波数選択反射板
 本実施態様における周波数選択反射板は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する部材である。
2. Frequency Selective Reflector The frequency selective reflector in this embodiment is a member that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction.
 隣接する誘電体層間の距離については、上記第2実施態様と同様である。 The distance between adjacent dielectric layers is the same as in the second embodiment.
 誘電体層、反射部材および他の構成については、上記第2実施態様と同様である。また、電磁波の反射方向の制御についても、上記第2実施態様と同様である。 The dielectric layer, reflective member, and other configurations are the same as in the second embodiment. Furthermore, control of the direction of reflection of electromagnetic waves is also the same as in the second embodiment.
 本実施態様においては、基材の隣り合う2辺を基準として、少なくとも1つの誘電体層の隣り合う2辺の位置を合わせ、少なくとも1つの誘電体層の位置合わせを行うことができる。少なくとも1つの誘電体層の位置合わせを行った後、他の誘電体層については、例えば、基材の辺を基準とするとともに、誘電体層のエッジを隣接する誘電体層のエッジに突き当てることにより、他の誘電体層の位置合わせを行ってもよい。また、他の誘電体層については、各誘電体層が第3アライメントマークを有しており、第3アライメントマークを用いて、各誘電体層の相対位置を合わせてもよい。また、他の誘電体層については、誘電体層の第3アライメントマークによる位置合わせと、誘電体層のエッジの突き当てによる位置合わせとを併用してもよい。また、全ての誘電体層について、基材の隣り合う2辺を基準として、誘電体層の隣り合う2辺の位置を合わせ、全ての誘電体層の位置合わせを行ってもよい。 In this embodiment, at least one dielectric layer can be aligned by aligning the positions of two adjacent sides of at least one dielectric layer with reference to two adjacent sides of the base material. After aligning at least one dielectric layer, for other dielectric layers, for example, the edge of the dielectric layer is butted against the edge of an adjacent dielectric layer while using the sides of the substrate as a reference. By doing so, alignment of other dielectric layers may be performed. Regarding the other dielectric layers, each dielectric layer has a third alignment mark, and the third alignment mark may be used to align the relative positions of the respective dielectric layers. Further, for other dielectric layers, alignment using the third alignment mark of the dielectric layer and alignment based on abutment of the edge of the dielectric layer may be used in combination. Alternatively, all the dielectric layers may be aligned by aligning the positions of two adjacent sides of the dielectric layer with reference to the two adjacent sides of the base material.
 誘電体層の位置合わせの具体例については、上述した通りである。 A specific example of positioning the dielectric layer is as described above.
 また、誘電体層の位置合わせの際、誘電体層のエッジを隣接する誘電体層のエッジに突き当てる場合、誘電体層のエッジをスペーサを介して隣接する誘電体層のエッジに突き当ててもよい。 Also, when aligning the dielectric layers, if the edge of the dielectric layer is butted against the edge of the adjacent dielectric layer, the edge of the dielectric layer must be butted against the edge of the adjacent dielectric layer via a spacer. Good too.
 本実施態様において、誘電体層は第3アライメントマークを有していてもよい。第3アライメントマークは、誘電体層の位置合わせを行うためのマークであり、各誘電体層の相対位置を合わせるためのマークである。 In this embodiment, the dielectric layer may have a third alignment mark. The third alignment mark is a mark for aligning the dielectric layers, and is a mark for aligning the relative positions of each dielectric layer.
 第3アライメントマークについては、上記第2実施態様と同様である。第3アライメントマークは、誘電体層の外周領域に配置されることが好ましい。誘電体層のエッジを隣接する誘電体層のエッジに突き当てる場合、誘電体層のエッジに平行な方向のずれを調整しやすくなる。 The third alignment mark is the same as the second embodiment described above. Preferably, the third alignment mark is arranged in the outer peripheral region of the dielectric layer. When the edge of a dielectric layer is brought into contact with the edge of an adjacent dielectric layer, it becomes easier to adjust the deviation in the direction parallel to the edge of the dielectric layer.
 本実施態様においては、誘電体層は、誘電体層を識別するための第4識別マークを有していてもよい。第4識別マークについては、上記第2実施態様と同様である。 In this embodiment, the dielectric layer may have a fourth identification mark for identifying the dielectric layer. The fourth identification mark is the same as in the second embodiment.
 本実施態様においては、隣接する誘電体層が、互いに対向する側面に、互いに嵌合可能な凹凸部を有し、凹凸部が嵌合するように、隣接する誘電体層が配置されていてもよい。凹凸部の嵌合によって、複数の誘電体層の位置合わせを容易に行うことができる。この場合、凹凸部は実質的に第3アライメントマークのように機能する。凹凸部については、上記の第2実施態様の反射構造体の凹凸部と同様である。 In this embodiment, the adjacent dielectric layers have uneven portions that can fit into each other on side surfaces facing each other, and the adjacent dielectric layers are arranged so that the uneven portions fit into each other. good. By fitting the uneven portions, the plurality of dielectric layers can be easily aligned. In this case, the uneven portion substantially functions like a third alignment mark. The uneven portions are similar to those of the reflective structure of the second embodiment described above.
 誘電体層のサイズについては、上記第2実施態様と同様である。 The size of the dielectric layer is the same as in the second embodiment.
 本実施態様においては、上述したように、基材が第1アライメントマークを有するのではなく、基材の隣り合う2辺を基準として、少なくとも1つの誘電体層の隣り合う2辺の位置を合わせ、少なくとも1つの誘電体層の位置合わせを行う。よって、誘電体層の外形寸法のばらつきは、特定の周波数帯の電磁波の波長の1/2未満であることが好ましく、1/5以下がより好ましく、1/10以下がさらに好ましい。例えば、材料や機械の種類等によっても異なるが、一般的には切断加工の寸法のばらつきは±1mm程度である。そのため、誘電体層の外形寸法のばらつきは、特定の周波数帯の電磁波の波長の1/2未満を満たし得る。 In this embodiment, as described above, the base material does not have the first alignment mark, but the positions of two adjacent sides of at least one dielectric layer are aligned based on two adjacent sides of the base material. , aligning at least one dielectric layer. Therefore, the variation in the external dimensions of the dielectric layer is preferably less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band, more preferably 1/5 or less, and even more preferably 1/10 or less. For example, although it varies depending on the material, type of machine, etc., the variation in dimensions during cutting is generally about ±1 mm. Therefore, the variation in the external dimensions of the dielectric layer can satisfy less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band.
 本実施態様において、複数の誘電体層の反射特性は、同一であってもよく、互いに異なっていてもよい。複数の誘電体層の反射特性が互いに異なる場合については、上記第2実施態様と同様である。 In this embodiment, the reflection characteristics of the plurality of dielectric layers may be the same or different from each other. The case where the reflection characteristics of the plurality of dielectric layers are different from each other is the same as in the second embodiment.
 本実施態様における周波数選択反射板は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する。電磁波の周波数帯については、上記第1実施態様と同様である。上述したように、誘電体層の外形寸法のばらつきは、特定の周波数帯の電磁波の波長の1/2未満であることが好ましいことから、電磁波の波長が長いほど、つまり電磁波の周波数帯が短いほど、より大きな外形寸法のばらつきが許容される。そのため、電磁波の周波数帯は、所定の範囲の中でも低いことが好ましい。具体的な電磁波の周波数帯については、上記第3実施態様と同様である。 The frequency selective reflector in this embodiment reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. The frequency band of electromagnetic waves is the same as in the first embodiment. As mentioned above, it is preferable that the variation in the external dimensions of the dielectric layer be less than 1/2 of the wavelength of electromagnetic waves in a specific frequency band. The larger the variation in external dimensions is allowed. Therefore, it is preferable that the frequency band of the electromagnetic waves is low within the predetermined range. The specific frequency band of electromagnetic waves is the same as in the third embodiment.
 本実施態様における周波数選択反射板は、例えば、通信用の周波数選択反射板として用いることができ、中でも、移動通信用の周波数選択反射板として好適である。 The frequency selective reflector in this embodiment can be used, for example, as a frequency selective reflector for communication, and is particularly suitable as a frequency selective reflector for mobile communication.
3.他の構成
 本実施態様の反射構造体は、上記の周波数選択反射板および基材の他に、必要に応じて他の構成を有していてもよい。他の構成としては、例えば、第2の接着層、固定部材、干渉緩和層が挙げられる。これらの構成については、上記第1実施態様と同様である。
3. Other Structures In addition to the frequency selective reflector and base material described above, the reflective structure of this embodiment may have other structures as necessary. Other configurations include, for example, a second adhesive layer, a fixing member, and an interference mitigation layer. These configurations are the same as those in the first embodiment.
B.反射構造体の製造方法
 本開示における反射構造体の製造方法は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を複数有する反射構造体を製造する反射構造体の製造方法であって、隣接する上記周波数選択反射板間の距離が、上記電磁波の波長の1/2未満になるように、第1アライメントマークを有する支持体の一方の面に、上記複数の周波数選択反射板を並べて配置する配置工程を有する。
B. Method for manufacturing a reflective structure A method for manufacturing a reflective structure in the present disclosure includes a method for manufacturing a reflective structure that includes a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. , wherein the plurality of the above-mentioned frequency selective reflectors are placed on one surface of the support having a first alignment mark such that the distance between the adjacent frequency-selective reflectors is less than 1/2 of the wavelength of the electromagnetic wave. The method includes an arrangement step of arranging the frequency selective reflectors side by side.
 本開示においては、上記反射構造体の第1実施態様と同様の効果を奏する。 In the present disclosure, the same effects as the first embodiment of the reflective structure described above are achieved.
 周波数選択反射板については、上記反射構造体の第1実施態様における周波数選択反射板と同様である。 The frequency selective reflector is the same as the frequency selective reflector in the first embodiment of the reflective structure described above.
 支持体は、周波数選択反射板を支持する部材であり、第1アライメントマークを有する。支持体は、上記反射構造体の第1実施態様における基材であってもよく、壁、窓、天井、床、看板等であってもよい。 The support body is a member that supports the frequency selective reflection plate, and has a first alignment mark. The support may be the base material in the first embodiment of the reflective structure, or may be a wall, window, ceiling, floor, signboard, or the like.
 第1アライメントマークについては、上記反射構造体の第1実施態様における第1アライメントマークと同様である。第1アライメントマークの形成方法としては、支持体に直に第1アライメントマークを形成してもよく、第1アライメントマークを有するフィルムを支持体の一方の面に配置してもよい。 The first alignment mark is the same as the first alignment mark in the first embodiment of the reflective structure described above. As a method for forming the first alignment mark, the first alignment mark may be formed directly on the support, or a film having the first alignment mark may be placed on one surface of the support.
 また、第1アライメントマークの平面視形状は、水平の線分および垂直の線分を有していてもよい。第1アライメントマークの水平の線分および垂直の線分を、上記反射構造体の第3実施態様における、基材の隣り合う2辺とみなすことができる。 Furthermore, the plan view shape of the first alignment mark may include a horizontal line segment and a vertical line segment. The horizontal line segment and the vertical line segment of the first alignment mark can be considered as two adjacent sides of the base material in the third embodiment of the reflective structure.
 配置工程については、上記反射構造体の第1実施態様あるいは第3実施態様に記載した内容と同様である。 The arrangement process is the same as that described in the first embodiment or the third embodiment of the reflective structure.
C.周波数選択反射板セット
 本開示における周波数選択反射板セットは、3つの実施態様を有する。以下、各実施態様に分けて説明する。
C. Frequency Selective Reflector Set The frequency selective reflector set in the present disclosure has three embodiments. Each embodiment will be explained separately below.
I.周波数選択反射板セットの第1実施態様
 本開示における周波数選択反射板セットの第1実施態様は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を複数有する周波数選択反射板セットであって、上記複数の周波数選択反射板は、設置面に並べて配置されて用いられ、上記周波数選択反射板が、上記周波数選択反射板を識別するための第2識別マークを有する。
I. First embodiment of frequency selective reflector set The first embodiment of the frequency selective reflector set in the present disclosure is a frequency selective reflector set that includes a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. A selective reflector set, wherein the plurality of frequency selective reflectors are arranged side by side on an installation surface, and the frequency selective reflector has a second identification mark for identifying the frequency selective reflector. .
 本開示においては、上記反射構造体の第1実施態様において、周波数選択反射板が第2識別マークを有する場合、または、上記反射構造体の第3実施態様において、周波数選択反射板が第2識別マークを有する場合と同様の効果を奏する。 In the present disclosure, in the first embodiment of the reflective structure, the frequency selective reflector has a second identification mark, or in the third embodiment of the reflective structure, the frequency selective reflector has a second identification mark. The same effect as in the case of having a mark is produced.
 周波数選択反射板については、上記反射構造体の第1実施態様における周波数選択反射板、または、上記反射構造体の第3実施態様における周波数選択反射板と同様である。 The frequency selective reflector is the same as the frequency selective reflector in the first embodiment of the reflective structure or the frequency selective reflector in the third embodiment of the reflective structure.
II.周波数選択反射板セットの第2実施態様
 本開示における周波数選択反射板セットの第2実施態様は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を複数有する周波数選択反射板セットであって、上記複数の周波数選択反射板は、設置面に並べて配置されて用いられ、上記周波数選択反射板が、上記電磁波を反射する反射部材を有し、上記反射部材では、寸法の異なる複数の反射素子が配列されており、上記複数の周波数選択反射板における上記反射素子の配列が互いに異なる、周波数選択反射板セットを提供する。
II. Second embodiment of frequency selective reflector set The second embodiment of the frequency selective reflector set in the present disclosure is a frequency selective reflector set that includes a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction. A selective reflector set, in which the plurality of frequency selective reflectors are arranged side by side on an installation surface, and the frequency selective reflector includes a reflective member that reflects the electromagnetic waves, and the reflective member includes: A frequency selective reflector set is provided in which a plurality of reflective elements having different dimensions are arranged, and the plurality of frequency selective reflectors have different arrangements of the reflective elements.
 本開示においては、上記反射構造体の第1実施態様において、周波数選択反射板が第1態様であり、複数の周波数選択反射板の反射特性が互いに異なる場合、または、上記反射構造体の第3実施態様において、周波数選択反射板が第1態様であり、複数の周波数選択反射板の反射特性が互いに異なる場合と同様の効果を奏する。 In the present disclosure, in the first embodiment of the reflective structure, the frequency selective reflector is the first aspect and the reflection characteristics of the plurality of frequency selective reflectors are different from each other, or In the embodiment, the frequency selective reflector is the first aspect, and the same effects as in the case where the plurality of frequency selective reflectors have mutually different reflection characteristics are achieved.
 周波数選択反射板については、上記反射構造体の第1実施態様における周波数選択反射板、または、上記反射構造体の第3実施態様における周波数選択反射板と同様である。 The frequency selective reflector is the same as the frequency selective reflector in the first embodiment of the reflective structure or the frequency selective reflector in the third embodiment of the reflective structure.
III.周波数選択反射板セットの第3実施態様
 本開示における周波数選択反射板セットの第3実施態様は、特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を複数有する周波数選択反射板セットであって、上記複数の周波数選択反射板は、設置面に並べて配置されて用いられ、上記周波数選択反射板が、上記設置面側から順に、上記電磁波を反射する反射部材と、上記電磁波を透過する誘電体層と、を有し、上記誘電体層では、厚さの異なる複数のセル領域が配列されており、上記複数の周波数選択反射板における上記セル領域の配列が互いに異なる。
III. Third embodiment of frequency selective reflector set The third embodiment of the frequency selective reflector set in the present disclosure is a frequency selective reflector set that includes a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction. a selective reflector set, wherein the plurality of frequency selective reflectors are arranged side by side on an installation surface, and the frequency selective reflectors reflect the electromagnetic waves in order from the installation surface side; a dielectric layer that transmits the electromagnetic waves, wherein a plurality of cell regions having different thicknesses are arranged in the dielectric layer, and the arrangement of the cell regions in the plurality of frequency selective reflectors is different from each other. .
 本開示においては、上記反射構造体の第1実施態様において、周波数選択反射板が第2態様であり、複数の周波数選択反射板の反射特性が互いに異なる場合、または、上記反射構造体の第3実施態様において、周波数選択反射板が第2態様であり、複数の周波数選択反射板の反射特性が互いに異なる場合と同様の効果を奏する。 In the present disclosure, in the first embodiment of the reflective structure, the frequency selective reflector is a second aspect, and the reflection characteristics of the plurality of frequency selective reflectors are different from each other, or In the embodiment, the frequency selective reflector is the second aspect, and the same effect as in the case where the plurality of frequency selective reflectors have mutually different reflection characteristics is achieved.
 周波数選択反射板については、上記反射構造体の第1実施態様における周波数選択反射板、または、上記反射構造体の第3実施態様における周波数選択反射板と同様である。 The frequency selective reflector is the same as the frequency selective reflector in the first embodiment of the reflective structure or the frequency selective reflector in the third embodiment of the reflective structure.
 なお、本開示は、上記実施形態に限定されない。上記実施形態は、例示であり、本開示における特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本開示における技術的範囲に包含される。 Note that the present disclosure is not limited to the above embodiments. The above-mentioned embodiments are illustrative, and any configuration that has substantially the same technical idea as the claims of the present disclosure and provides similar effects is the present invention. within the technical scope of the disclosure.
 以下、実施例を挙げて本開示を具体的に説明する。 Hereinafter, the present disclosure will be specifically described with reference to Examples.
[比較例1]
 周波数選択反射板を有する反射構造体の反射特性のシミュレーションを行った。シミュレーションでは、A5サイズの基材上に、1つの周波数選択反射板が配置された反射構造体のモデルを用いた。周波数選択反射板は、基材側から順に、反射部材と所定の厚さ分布を有する誘電体層とを有する構造とした。また、図33(a)に示すように、反射構造体20を原点に置き、(xin、yin、zin)=(-9、2、8.4)[m]方向から入射した28GHzの電磁波を、(xout、yout、zout)=(1、-0.5、14.9)に反射するよう設計した際の反射電力を、zout=14.9[m]の位置で計算した。また、周波数選択反射板の利得を0dBiとした。図33(b)に、受信電力(dBm)の分布のシミュレーション結果を示す。
[Comparative example 1]
We simulated the reflection characteristics of a reflection structure with a frequency selective reflector. In the simulation, a model of a reflective structure in which one frequency selective reflector was placed on an A5 size base material was used. The frequency selective reflector had a structure including, in order from the base material side, a reflective member and a dielectric layer having a predetermined thickness distribution. Further, as shown in FIG. 33(a), the reflection structure 20 is placed at the origin, and 28 GHz incident from the direction of (x in , y in , z in ) = (-9, 2, 8.4) [m] The reflected power when designed to reflect the electromagnetic waves at (x out , y out , z out ) = (1, -0.5, 14.9) is calculated from the position of z out = 14.9 [m]. Calculated with. Further, the gain of the frequency selective reflector was set to 0 dBi. FIG. 33(b) shows simulation results of the distribution of received power (dBm).
[実施例1]
 周波数選択反射板を有する反射構造体の反射特性のシミュレーションを行った。シミュレーションでは、A4サイズの基材上に、A5サイズの周波数選択反射板が2つ並べて配置された反射構造体のモデルを用いた。反射構造体では、隣接する周波数選択反射板間の距離を、28GHzの電磁波の波長の1/2とした。また、周波数選択反射板は、基材側から順に、反射部材と所定の厚さ分布を有する誘電体層とを有する構造とした。また、図33(a)に示すように、反射構造体20を原点に置き、(xin、yin、zin)=(-9、2、8.4)[m]方向から入射した28GHzの電磁波を、(xout、yout、zout)=(1、-0.5、14.9)に反射するよう設計した際の反射電力を、zout=14.9[m]の位置で計算した。また、周波数選択反射板の利得を0dBiとした。図34に、受信電力(dBm)の分布のシミュレーション結果を示す。
[Example 1]
We simulated the reflection characteristics of a reflection structure with a frequency selective reflector. In the simulation, a model of a reflective structure was used in which two A5-sized frequency selective reflectors were arranged side by side on an A4-sized base material. In the reflective structure, the distance between adjacent frequency selective reflectors was set to 1/2 of the wavelength of electromagnetic waves of 28 GHz. Further, the frequency selective reflection plate had a structure including, in order from the base material side, a reflection member and a dielectric layer having a predetermined thickness distribution. Further, as shown in FIG. 33(a), the reflection structure 20 is placed at the origin, and 28 GHz incident from the direction of (x in , y in , z in ) = (-9, 2, 8.4) [m] The reflected power when designed to reflect the electromagnetic waves at (x out , y out , z out ) = (1, -0.5, 14.9) is calculated from the position of z out = 14.9 [m]. Calculated with. Further, the gain of the frequency selective reflector was set to 0 dBi. FIG. 34 shows simulation results of the distribution of received power (dBm).
 比較例1に対して、実施例1においては、隣接する周波数選択反射板間の距離を電磁波の波長の1/2として、複数の周波数選択反射板をタイリングすることによって、主たる反射方向の電力が3~6[dB]増加した。これは、周波数選択反射板の面積が増すと主たる反射方向に電力が集中するという電力強度分布の変化も含め、異なる面積の金属平板による反射電力強度の挙動に等しい。これにより、周波数選択反射板の面積比に則した反射電力を得られることが分かった。 In contrast to Comparative Example 1, in Example 1, the distance between adjacent frequency selective reflectors is set to 1/2 of the wavelength of the electromagnetic wave, and by tiling a plurality of frequency selective reflectors, the power in the main reflection direction is reduced. increased by 3 to 6 [dB]. This is equivalent to the behavior of the reflected power intensity due to metal flat plates of different areas, including a change in the power intensity distribution in which power is concentrated in the main reflection direction as the area of the frequency selective reflector increases. It has been found that this allows the reflected power to be obtained in accordance with the area ratio of the frequency selective reflector.
[参考例1]
 周波数選択反射板の反射特性のシミュレーションを行った。シミュレーションでは、誘電体層の単位構造は、図35(a)に示すように、一方向に厚さが増加する厚さ分布を有し、厚さの異なる6個のセル領域を有しており、誘電体層は、単位構造が一方向に繰り返し配置された周期構造を有するモデルを用いた。また、シミュレーションでは、反射部材は、リング状の反射素子が規則的に配列されており、入射波の周波数で共振し、その周波数の電磁波を反射するモデルとした。また、シミュレーションでは下記のパラメータを用いた。
[Reference example 1]
We simulated the reflection characteristics of a frequency selective reflector. In the simulation, the unit structure of the dielectric layer has a thickness distribution in which the thickness increases in one direction, as shown in FIG. 35(a), and has six cell regions with different thicknesses. A model was used in which the dielectric layer has a periodic structure in which unit structures are repeatedly arranged in one direction. In addition, in the simulation, the reflecting member was modeled as having ring-shaped reflecting elements arranged regularly, resonating at the frequency of an incident wave, and reflecting electromagnetic waves at that frequency. In addition, the following parameters were used in the simulation.
 入射波の周波数:28GHz
 入射波の入射角:0度、-10度
 反射波の所望反射角:27度、37度
 隣接するセル領域での相対反射位相の差:60度
Incident wave frequency: 28GHz
Incident angle of incident wave: 0 degree, -10 degree Desired reflection angle of reflected wave: 27 degree, 37 degree Difference in relative reflection phase in adjacent cell areas: 60 degree
 シミュレーション結果を図35(b)に示す。入射角が0度である場合、つまり正面方向31からの入射に対する反射は符号32で示す実線で示し、また、入射角が-10度である場合、つまり-10度方向33からの入射に対する反射は符号34で示す実線で示した。入射角が0度の場合は正反射方向から+27度方向に反射し、入射角が-10度である場合は正反射方向から+37度方向に反射していることが分かる。 The simulation results are shown in FIG. 35(b). When the angle of incidence is 0 degrees, that is, the reflection from the front direction 31 is shown by a solid line 32, and when the angle of incidence is -10 degrees, that is, the reflection from the direction 33 of -10 degrees. is indicated by a solid line indicated by the reference numeral 34. It can be seen that when the incident angle is 0 degrees, the light is reflected in the direction of +27 degrees from the direction of specular reflection, and when the angle of incidence is -10 degrees, it is reflected in the direction of +37 degrees from the direction of specular reflection.
[参考例2]
 周波数選択反射板の反射特性のシミュレーションを行った。シミュレーションでは、誘電体層の単位構造は、図36(a)に示すように、一方向に厚さが増加する厚さ分布を有し、厚さの異なる10個のセル領域を有しており、誘電体層は、単位構造が一方向に繰り返し配置された周期構造を有するモデルを用いた。また、シミュレーションでは、反射部材は、リング状の反射素子が規則的に配列されており、入射波の周波数で共振し、その周波数の電磁波を反射するモデルとした。また、シミュレーションでは下記のパラメータを用いた。
[Reference example 2]
We performed a simulation of the reflection characteristics of a frequency selective reflector. In the simulation, the unit structure of the dielectric layer has a thickness distribution in which the thickness increases in one direction, as shown in FIG. 36(a), and has 10 cell regions with different thicknesses. A model was used in which the dielectric layer had a periodic structure in which unit structures were repeatedly arranged in one direction. In addition, in the simulation, the reflecting member was modeled as having ring-shaped reflecting elements arranged regularly, resonating at the frequency of an incident wave, and reflecting electromagnetic waves at that frequency. In addition, the following parameters were used in the simulation.
 入射波の周波数:28GHz
 入射波の入射角:0度
 反射波の所望反射角:16度
 隣接するセル領域での相対反射位相の差:36度
Incident wave frequency: 28GHz
Incident angle of incident wave: 0 degree Desired reflection angle of reflected wave: 16 degrees Difference in relative reflection phase in adjacent cell areas: 36 degrees
 シミュレーション結果を図36(b)に示す。入射角が0度である場合、つまり正面方向35からの入射に対する反射は符号36で示す実線で示した。入射角が0度の場合は正反射方向から+16度方向に反射していることが分かる。また、図36(b)では、図35(b)と比べて、反射方向が正反射方向に近いが、これは誘電体層の単位構造が、図35(a)では6個のセル領域を有するのに対し、図36(a)では10個のセル領域を有しており、厚さが増加する所定の方向における単位構造の長さが長いからである。 The simulation results are shown in FIG. 36(b). When the angle of incidence is 0 degrees, that is, the reflection from the front direction 35 is shown by a solid line 36. It can be seen that when the incident angle is 0 degrees, the light is reflected in the direction of +16 degrees from the regular reflection direction. In addition, in FIG. 36(b), the reflection direction is closer to the regular reflection direction than in FIG. 35(b), but this is due to the unit structure of the dielectric layer, whereas in FIG. This is because, on the other hand, FIG. 36A has 10 cell regions, and the length of the unit structure in the predetermined direction in which the thickness increases is long.
[参考例3]
 まず、参考例1の反射部材のモデルに合わせて、銅箔付きPETフィルムをエッチングして、リング状の反射素子が規則的に配列された反射部材を作製した。また、参考例1の誘電体層のモデルに合わせて、3Dプリンタで誘電体層を成形した。次に、反射部材上に誘電体層を貼り付けて、周波数選択反射板を作製した。
[Reference example 3]
First, a PET film with copper foil was etched in accordance with the model of the reflective member of Reference Example 1 to produce a reflective member in which ring-shaped reflective elements were regularly arranged. Further, a dielectric layer was molded using a 3D printer according to the model of the dielectric layer of Reference Example 1. Next, a dielectric layer was pasted on the reflective member to produce a frequency selective reflective plate.
 コンパクトレンジ測定系とネットワークアナライザを用いて、周波数選択反射板の反射特性を測定した。参考例3の周波数選択反射板の反射特性は、参考例1のシミュレーション結果とほぼ一致した。 The reflection characteristics of the frequency selective reflector were measured using a compact range measurement system and a network analyzer. The reflection characteristics of the frequency selective reflector of Reference Example 3 almost matched the simulation results of Reference Example 1.
[参考例4]
 リフレクトアレイの解析で、図37に示すような、一般的な伝送線路等価回路を用いて、周波数選択性表面(FSS)を有する反射部材と誘電体層とを有する周波数選択反射板について反射位相を算定した。なお、図37における記号は下記の通りである。
 ZVAC:空気の特性インピーダンスを持つ伝送線路を示す。線路長は、誘電体層の最上面より遠くの任意の距離に設定された位相観測面から、誘電体層の厚さを減じた長さである。
 ZPC:誘電体層の特性インピーダンスをもつ伝送線路を示す。線路長は誘電体層hの厚さである。
 r:FSSのリング状の反射素子の抵抗を示す。
 L:FSSのリング状の反射素子のインダクタンスを示す。
 C:FSSのリング状の反射素子の容量を示す。
 ZPET:FSSのリング状の反射素子を配置する誘電体基板の誘電率を持つ伝送線路を示す。線路長は誘電体基板の厚さである。
 ZL:誘電体基板の裏面の空間(空気)の特性インピーダンスを示す。
[Reference example 4]
In the analysis of the reflect array, a general transmission line equivalent circuit as shown in FIG. Calculated. Note that the symbols in FIG. 37 are as follows.
ZVAC: Indicates a transmission line with the characteristic impedance of air. The line length is the length obtained by subtracting the thickness of the dielectric layer from the phase observation plane set at an arbitrary distance from the top surface of the dielectric layer.
ZPC: Indicates a transmission line with the characteristic impedance of a dielectric layer. The line length is the thickness of the dielectric layer h.
r: Indicates the resistance of the ring-shaped reflective element of FSS.
L: Indicates the inductance of the ring-shaped reflective element of FSS.
C: Indicates the capacitance of the ring-shaped reflective element of FSS.
ZPET: A transmission line having a dielectric constant of a dielectric substrate on which a ring-shaped reflective element of FSS is arranged. The line length is the thickness of the dielectric substrate.
ZL: Indicates the characteristic impedance of the space (air) on the back surface of the dielectric substrate.
 その結果、反射位相のうち、異なる厚さの誘電体層を重ねたことで生じる共振周波数ずれによる反射位相変化はせいぜい数十度であり、これは最大反射位相360度の25%前後であり、それ以外の反射位相変化は誘電体層内の波長短縮によることが算定された。さらに、周波数選択性表面を有する反射部材と誘電体層との位置がずれたとしても、そのずれは周波数選択反射板全体を通じて均等になるが、反射波を平面波とするには隣接するセル領域との反射位相が均等であればよいことを考えれば、反射方向に対する影響はほとんどないと結論できた。 As a result, the reflection phase change due to the resonant frequency shift caused by stacking dielectric layers of different thicknesses is at most several tens of degrees, which is about 25% of the maximum reflection phase of 360 degrees. It was calculated that the other reflection phase changes are due to wavelength shortening within the dielectric layer. Furthermore, even if the position of the reflective member having a frequency selective surface and the dielectric layer is misaligned, the misalignment will be uniform throughout the frequency selective reflector, but in order for the reflected wave to be a plane wave, the difference between adjacent cell regions Considering that it is sufficient if the reflection phases of
 本開示は、以下の発明を提供する。
[1]特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を有する反射構造体であって、
 第1アライメントマークを有する基材と、
 上記基材の一方の面に並べて配置された複数の上記周波数選択反射板と、
 を有し、隣接する上記周波数選択反射板間の距離が、上記電磁波の波長の1/2未満である、反射構造体。
[2]上記周波数選択反射板が第2アライメントマークを有する、[1]に記載の反射構造体。
[3]上記基材が光透過性を有し、
 上記周波数選択反射板の外周領域が光不透過性を有する、[1]に記載の反射構造体。
[4]隣接する上記周波数選択反射板が、互いに対向する側面に、互いに嵌合可能な凹凸部を有し、上記凹凸部が嵌合するように、上記隣接する周波数選択反射板が配置されている、[1]から[4]までのいずれかに記載の反射構造体。
[5]上記隣接する周波数選択反射板の上記凹凸部の厚さが等しい、[5]に記載の反射構造体。
[6]特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を有する反射構造体であって、
 基材と、
 上記基材の一方の面に並べて配置された複数の上記周波数選択反射板と、
 を有し、少なくとも1つの上記周波数選択反射板における隣り合う2辺が、上記基材における隣り合う2辺に揃い、
 隣接する上記周波数選択反射板間の距離が、上記電磁波の波長の1/2未満である、反射構造体。
[7]隣接する上記周波数選択反射板の間に接着部が配置されている、[1]から[6]までのいずれかに記載の反射構造体。
[8]上記周波数選択反射板が、上記電磁波を反射する反射部材を有し、
 上記反射部材では、寸法の異なる複数の反射素子が配列されており、
 上記複数の周波数選択反射板における上記反射素子の配列が互いに異なる、[1]から[7]までのいずれかに記載の反射構造体。
[9]上記周波数選択反射板が、上記基材側から順に、上記電磁波を反射する反射部材と、上記電磁波を透過する誘電体層と、を有し、
 上記誘電体層では、厚さの異なる複数のセル領域が配列されており、
 上記複数の周波数選択反射板における上記セル領域の配列が互いに異なる、[1]から[7]までのいずれかに記載の反射構造体。
[10]上記周波数選択反射板が、上記周波数選択反射板を識別するための第2識別マークを有する、[1]から[9]までのいずれかに記載の反射構造体。
[11]上記基材が、上記周波数選択反射板の位置を識別するための第1識別マークを有する、[1]から[10]までのいずれかに記載の反射構造体。
[12]上記周波数選択反射板が、上記基材側から順に、
 上記電磁波を反射する反射部材と、
 所定の方向に厚さが増加する厚さ分布を有する単位構造が複数配置された凹凸構造を有し、上記電磁波を透過する誘電体層と、
 を有し、上記誘電体層の上記単位構造は、厚さの異なる複数のセル領域を有し、
 上記誘電体層の各単位構造では、上記単位構造の上記所定の方向の長さを横軸とし、上記電磁波が上記誘電体層を透過し上記反射部材で反射され上記誘電体層を再度透過して上記電磁波の入射側に放出される際の相対反射位相を縦軸とし、上記電磁波の相対反射位相の値が-360度超0度以下であるグラフに、各セル領域の上記所定の方向の中心位置および各セル領域での上記電磁波の相対反射位相に対応する点をプロットし、最小厚さを有する最小厚さセル領域に対応する点を通る直線を引いたとき、各点が同一直線上にあり、
 上記誘電体層が、上記単位構造として、厚さの異なる3つ以上の上記セル領域を有する第1の単位構造を少なくとも有し、
 上記誘電体層の厚さ分布によって上記電磁波の相対反射位相分布を制御することにより、上記電磁波の反射方向を制御する、[1]から[11]までのいずれかに記載の反射構造体。
[13]上記反射部材が、上記電磁波のみを反射する周波数選択板である、[12]に記載の反射構造体。
[14]上記反射部材が、上記電磁波の反射位相を制御する反射位相制御機能を有する、[13]に記載の反射構造体。
[15]上記周波数選択反射板が、上記電磁波を反射する反射部材を有し、
 上記反射部材が、上記電磁波の反射位相を制御する反射位相制御機能を有する、[1]から[11]までのいずれかに記載の反射構造体。
[16]上記反射部材が、誘電体基板と、上記誘電体基板の少なくとも一方の面に配置された複数の反射素子とを有し、
 隣接する上記周波数選択反射板同士が対向する端部領域に、上記反射素子が配置されていない、[15]に記載の反射構造体。
[17]隣接する上記周波数選択反射板同士が対向する端部領域に上記反射素子が配置されている反射構造体における上記電磁波の反射強度を100%としたとき、上記電磁波の反射強度が85%超である、[16]に記載の反射構造体。
The present disclosure provides the following inventions.
[1] A reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction,
a base material having a first alignment mark;
a plurality of frequency selective reflectors arranged side by side on one surface of the base material;
, wherein the distance between the adjacent frequency selective reflecting plates is less than 1/2 of the wavelength of the electromagnetic wave.
[2] The reflective structure according to [1], wherein the frequency selective reflector has a second alignment mark.
[3] The base material has light transmittance,
The reflective structure according to [1], wherein the outer peripheral region of the frequency selective reflector is light-opaque.
[4] The adjacent frequency selective reflectors have uneven portions that can fit into each other on side surfaces facing each other, and the adjacent frequency selective reflectors are arranged such that the uneven portions fit into each other. The reflective structure according to any one of [1] to [4].
[5] The reflective structure according to [5], wherein the uneven portions of the adjacent frequency selective reflectors have the same thickness.
[6] A reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction,
base material and
a plurality of frequency selective reflectors arranged side by side on one surface of the base material;
, two adjacent sides of at least one of the frequency selective reflectors are aligned with two adjacent sides of the base material,
A reflective structure in which the distance between the adjacent frequency selective reflectors is less than 1/2 of the wavelength of the electromagnetic wave.
[7] The reflective structure according to any one of [1] to [6], wherein an adhesive portion is disposed between the adjacent frequency selective reflectors.
[8] The frequency selective reflection plate has a reflection member that reflects the electromagnetic waves,
In the reflective member, a plurality of reflective elements with different dimensions are arranged,
The reflection structure according to any one of [1] to [7], wherein the arrangement of the reflection elements in the plurality of frequency selective reflection plates is different from each other.
[9] The frequency selective reflection plate includes, in order from the base material side, a reflective member that reflects the electromagnetic waves and a dielectric layer that transmits the electromagnetic waves,
In the dielectric layer, a plurality of cell regions with different thicknesses are arranged,
The reflective structure according to any one of [1] to [7], wherein the arrangement of the cell regions in the plurality of frequency selective reflectors is different from each other.
[10] The reflective structure according to any one of [1] to [9], wherein the frequency selective reflector has a second identification mark for identifying the frequency selective reflector.
[11] The reflective structure according to any one of [1] to [10], wherein the base material has a first identification mark for identifying the position of the frequency selective reflector.
[12] The frequency selective reflector includes, in order from the base material side:
a reflective member that reflects the electromagnetic waves;
a dielectric layer having an uneven structure in which a plurality of unit structures having a thickness distribution increasing in a predetermined direction are arranged, and transmitting the electromagnetic waves;
and the unit structure of the dielectric layer has a plurality of cell regions having different thicknesses,
In each unit structure of the dielectric layer, the horizontal axis is the length of the unit structure in the predetermined direction, and the electromagnetic wave is transmitted through the dielectric layer, reflected by the reflective member, and transmitted through the dielectric layer again. The vertical axis is the relative reflection phase when the electromagnetic wave is emitted to the incident side, and the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees. When plotting the points corresponding to the relative reflection phase of the electromagnetic waves at the center position and each cell area, and drawing a straight line passing through the point corresponding to the minimum thickness cell area with the minimum thickness, each point is on the same straight line. Located in
The dielectric layer has at least a first unit structure having three or more cell regions having different thicknesses as the unit structure,
The reflective structure according to any one of [1] to [11], wherein the reflection direction of the electromagnetic wave is controlled by controlling the relative reflection phase distribution of the electromagnetic wave by the thickness distribution of the dielectric layer.
[13] The reflective structure according to [12], wherein the reflective member is a frequency selection plate that reflects only the electromagnetic waves.
[14] The reflective structure according to [13], wherein the reflective member has a reflective phase control function that controls the reflective phase of the electromagnetic wave.
[15] The frequency selective reflection plate has a reflection member that reflects the electromagnetic waves,
The reflective structure according to any one of [1] to [11], wherein the reflective member has a reflective phase control function that controls the reflective phase of the electromagnetic wave.
[16] The reflective member includes a dielectric substrate and a plurality of reflective elements arranged on at least one surface of the dielectric substrate,
The reflective structure according to [15], wherein the reflective element is not arranged in an end region where the adjacent frequency selective reflectors face each other.
[17] When the reflection intensity of the electromagnetic wave in the reflection structure in which the reflection element is arranged in the end region where the adjacent frequency selective reflection plates face each other is 100%, the reflection intensity of the electromagnetic wave is 85%. The reflective structure according to [16], which is
[18]特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を有する反射構造体であって、
 第1アライメントマークを有する基材と、
 上記基材の一方の面に配置された上記周波数選択反射板と、を有し、
 上記周波数選択反射板が、
 上記基材の一方の面に配置され、上記電磁波を反射する反射部材と、
 上記基材の上記反射部材側の面に並べて配置され、上記電磁波を透過する、複数の誘電体層と、を有し、
 隣接する上記誘電体層間の距離が、上記電磁波の波長の1/2未満であり、
 上記誘電体層は、所定の方向に厚さが増加する厚さ分布を有する単位構造が複数配置された凹凸構造を有し、
 上記誘電体層の上記単位構造は、厚さの異なる複数のセル領域を有し、
 上記誘電体層の各単位構造では、上記単位構造の上記所定の方向の長さを横軸とし、上記電磁波が上記誘電体層を透過し上記反射部材で反射され上記誘電体層を再度透過して上記電磁波の入射側に放出される際の相対反射位相を縦軸とし、上記電磁波の相対反射位相の値が-360度超0度以下であるグラフに、各セル領域の上記所定の方向の中心位置および各セル領域での上記電磁波の相対反射位相に対応する点をプロットし、最小厚さを有する最小厚さセル領域に対応する点を通る直線を引いたとき、各点が同一直線上にあり、
 上記誘電体層が、上記単位構造として、厚さの異なる3つ以上の上記セル領域を有する第1の単位構造を少なくとも有し、
 上記誘電体層の厚さ分布によって上記電磁波の相対反射位相分布を制御することにより、上記電磁波の反射方向を制御する、反射構造体。
[19]特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を有する反射構造体であって、
 基材と、
 上記基材の一方の面に配置された上記周波数選択反射板と、を有し、
 上記周波数選択反射板が、
 上記基材の一方の面に配置され、上記電磁波を反射する反射部材と、
 上記基材の上記反射部材側の面に並べて配置され、上記電磁波を透過する、複数の誘電体層と、を有し、
 少なくとも1つの上記誘電体層における隣り合う2辺が、上記基材における隣り合う2辺に揃い、
 隣接する上記誘電体層間の距離が、上記電磁波の波長の1/2未満であり、
 上記誘電体層は、所定の方向に厚さが増加する厚さ分布を有する単位構造が複数配置された凹凸構造を有し、
 上記誘電体層の上記単位構造は、厚さの異なる複数のセル領域を有し、
 上記誘電体層の各単位構造では、上記単位構造の上記所定の方向の長さを横軸とし、上記電磁波が上記誘電体層を透過し上記反射部材で反射され上記誘電体層を再度透過して上記電磁波の入射側に放出される際の相対反射位相を縦軸とし、上記電磁波の相対反射位相の値が-360度超0度以下であるグラフに、各セル領域の上記所定の方向の中心位置および各セル領域での上記電磁波の相対反射位相に対応する点をプロットし、最小厚さを有する最小厚さセル領域に対応する点を通る直線を引いたとき、各点が同一直線上にあり、
 上記誘電体層が、上記単位構造として、厚さの異なる3つ以上の上記セル領域を有する第1の単位構造を少なくとも有し、
 上記誘電体層の厚さ分布によって上記電磁波の相対反射位相分布を制御することにより、上記電磁波の反射方向を制御する、反射構造体。
[20]上記反射部材が、誘電体基板と、上記誘電体基板の少なくとも一方の面に配置された複数の反射素子と、を有し、
 上記誘電体基板が上記基材とは別の部材であり、
 上記基材に対して1つの上記誘電体基板が配置されている、[18]または[19]に記載の反射構造体。
[21]上記反射部材が、誘電体基板と、上記誘電体基板の少なくとも一方の面に配置された複数の反射素子と、を有し、
 上記誘電体基板が上記基材を兼ねている、[18]または[19]に記載の反射構造体。
[22]上記反射部材が、上記基材に接して配置された複数の反射素子を有する、[18]または[19]に記載の反射構造体。
[23]上記誘電体層が第3アライメントマークを有する、[18]から[22]までのいずれかに記載の反射構造体。
[24]隣接する上記誘電体層の間に第2の接着部が配置されている、[18]から[23]までのいずれかに記載の反射構造体。
[25]隣接する上記誘電体層が、互いに対向する側面に、互いに嵌合可能な凹凸部を有し、上記凹凸部が嵌合するように、上記隣接する誘電体層が配置されている、[18]から[24]までのいずれかに記載の反射構造体。
[26]上記隣接する誘電体層の上記凹凸部の厚さが等しい、[25]に記載の反射構造体。
[27]上記誘電体層が、上記誘電体層を識別するための第4識別マークを有する、[18]から[26]までのいずれかに記載の反射構造体。
[28]上記基材が、上記誘電体層の位置を識別するための第3識別マークを有する、[18]から[27]までのいずれかに記載の反射構造体。
[29]上記反射部材が、上記電磁波のみを反射する周波数選択板である、[18]から[28]までのいずれかに記載の反射構造体。
[30]上記反射部材が、上記電磁波の反射位相を制御する反射位相制御機能を有する、[29]に記載の反射構造体。
[18] A reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the regular reflection direction,
a base material having a first alignment mark;
the frequency selective reflector disposed on one surface of the base material,
The frequency selective reflector is
a reflective member disposed on one surface of the base material and reflecting the electromagnetic waves;
a plurality of dielectric layers arranged side by side on the surface of the base material on the reflective member side and transmitting the electromagnetic waves;
The distance between the adjacent dielectric layers is less than 1/2 of the wavelength of the electromagnetic wave,
The dielectric layer has an uneven structure in which a plurality of unit structures having a thickness distribution increasing in a predetermined direction are arranged,
The unit structure of the dielectric layer has a plurality of cell regions having different thicknesses,
In each unit structure of the dielectric layer, the horizontal axis is the length of the unit structure in the predetermined direction, and the electromagnetic wave is transmitted through the dielectric layer, reflected by the reflective member, and transmitted through the dielectric layer again. The vertical axis is the relative reflection phase when the electromagnetic wave is emitted to the incident side, and the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees. When plotting the points corresponding to the relative reflection phase of the electromagnetic waves at the center position and each cell area, and drawing a straight line passing through the point corresponding to the minimum thickness cell area with the minimum thickness, each point is on the same straight line. Located in
The dielectric layer has at least a first unit structure having three or more cell regions having different thicknesses as the unit structure,
A reflective structure that controls the direction of reflection of the electromagnetic waves by controlling the relative reflection phase distribution of the electromagnetic waves depending on the thickness distribution of the dielectric layer.
[19] A reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction,
base material and
the frequency selective reflector disposed on one surface of the base material,
The frequency selective reflector is
a reflective member disposed on one surface of the base material and reflecting the electromagnetic waves;
a plurality of dielectric layers arranged side by side on the surface of the base material on the reflective member side and transmitting the electromagnetic waves;
Two adjacent sides of at least one of the dielectric layers are aligned with two adjacent sides of the base material,
The distance between the adjacent dielectric layers is less than 1/2 of the wavelength of the electromagnetic wave,
The dielectric layer has an uneven structure in which a plurality of unit structures having a thickness distribution increasing in a predetermined direction are arranged,
The unit structure of the dielectric layer has a plurality of cell regions having different thicknesses,
In each unit structure of the dielectric layer, the horizontal axis is the length of the unit structure in the predetermined direction, and the electromagnetic wave is transmitted through the dielectric layer, reflected by the reflective member, and transmitted through the dielectric layer again. The vertical axis is the relative reflection phase when the electromagnetic wave is emitted to the incident side, and the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees. When plotting the points corresponding to the relative reflection phase of the electromagnetic waves at the center position and each cell area, and drawing a straight line passing through the point corresponding to the minimum thickness cell area with the minimum thickness, each point is on the same straight line. Located in
The dielectric layer has at least a first unit structure having three or more cell regions having different thicknesses as the unit structure,
A reflective structure that controls the direction of reflection of the electromagnetic waves by controlling the relative reflection phase distribution of the electromagnetic waves depending on the thickness distribution of the dielectric layer.
[20] The reflective member includes a dielectric substrate and a plurality of reflective elements arranged on at least one surface of the dielectric substrate,
the dielectric substrate is a member different from the base material,
The reflective structure according to [18] or [19], wherein one of the dielectric substrates is arranged with respect to the base material.
[21] The reflective member includes a dielectric substrate and a plurality of reflective elements arranged on at least one surface of the dielectric substrate,
The reflective structure according to [18] or [19], wherein the dielectric substrate also serves as the base material.
[22] The reflective structure according to [18] or [19], wherein the reflective member has a plurality of reflective elements arranged in contact with the base material.
[23] The reflective structure according to any one of [18] to [22], wherein the dielectric layer has a third alignment mark.
[24] The reflective structure according to any one of [18] to [23], wherein a second adhesive portion is arranged between the adjacent dielectric layers.
[25] The adjacent dielectric layers have uneven portions that can fit into each other on side surfaces facing each other, and the adjacent dielectric layers are arranged so that the uneven portions fit together. The reflective structure according to any one of [18] to [24].
[26] The reflective structure according to [25], wherein the uneven portions of the adjacent dielectric layers have the same thickness.
[27] The reflective structure according to any one of [18] to [26], wherein the dielectric layer has a fourth identification mark for identifying the dielectric layer.
[28] The reflective structure according to any one of [18] to [27], wherein the base material has a third identification mark for identifying the position of the dielectric layer.
[29] The reflective structure according to any one of [18] to [28], wherein the reflective member is a frequency selection plate that reflects only the electromagnetic waves.
[30] The reflective structure according to [29], wherein the reflective member has a reflective phase control function that controls the reflective phase of the electromagnetic wave.
[31]特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を複数有する反射構造体を製造する反射構造体の製造方法であって、
 隣接する上記周波数選択反射板間の距離が、上記電磁波の波長の1/2未満になるように、第1アライメントマークを有する支持体の一方の面に、上記複数の周波数選択反射板を並べて配置する配置工程を有する、反射構造体の製造方法。
[32]上記周波数選択反射板が第2アライメントマークを有する、[31]に記載の反射構造体の製造方法。
[33]上記支持体が光透過性を有し、
 上記周波数選択反射板の外周領域が光不透過性を有する、[31]に記載の反射構造体の製造方法。
[31] A method for manufacturing a reflective structure comprising a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction, the method comprising:
The plurality of frequency selective reflectors are arranged side by side on one surface of the support having the first alignment mark such that the distance between the adjacent frequency selective reflectors is less than 1/2 of the wavelength of the electromagnetic wave. A method for manufacturing a reflective structure, comprising a step of arranging the structure.
[32] The method for manufacturing a reflective structure according to [31], wherein the frequency selective reflector has a second alignment mark.
[33] The support has light transmittance,
The method for manufacturing a reflective structure according to [31], wherein the outer peripheral region of the frequency selective reflector is light-opaque.
[34]特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を複数有する周波数選択反射板セットであって、
 上記複数の周波数選択反射板は、設置面に並べて配置されて用いられ、
 上記周波数選択反射板が、上記周波数選択反射板を識別するための第2識別マークを有する、周波数選択反射板セット。
[35]特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を複数有する周波数選択反射板セットであって、
 上記複数の周波数選択反射板は、設置面に並べて配置されて用いられ、
 上記周波数選択反射板が、上記電磁波を反射する反射部材を有し、
 上記反射部材では、寸法の異なる複数の反射素子が配列されており、
 上記複数の周波数選択反射板における上記反射素子の配列が互いに異なる、周波数選択反射板セット。
[36]特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を複数有する周波数選択反射板セットであって、
 上記複数の周波数選択反射板は、設置面に並べて配置されて用いられ、
 上記周波数選択反射板が、上記設置面側から順に、上記電磁波を反射する反射部材と、上記電磁波を透過する誘電体層と、を有し、
 上記誘電体層では、厚さの異なる複数のセル領域が配列されており、
 上記複数の周波数選択反射板における上記セル領域の配列が互いに異なる、周波数選択反射板セット。
[34] A frequency selective reflector set including a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction,
The plurality of frequency selective reflectors are used by being arranged side by side on the installation surface,
A frequency selective reflector set, wherein the frequency selective reflector has a second identification mark for identifying the frequency selective reflector.
[35] A frequency selective reflector set including a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction,
The plurality of frequency selective reflectors are used by being arranged side by side on the installation surface,
The frequency selective reflection plate has a reflection member that reflects the electromagnetic waves,
In the reflective member, a plurality of reflective elements with different dimensions are arranged,
A frequency selective reflector set, wherein the plurality of frequency selective reflectors have different arrangements of the reflective elements.
[36] A frequency selective reflector set including a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction,
The plurality of frequency selective reflectors are used by being arranged side by side on the installation surface,
The frequency selective reflector includes, in order from the installation surface side, a reflective member that reflects the electromagnetic waves and a dielectric layer that transmits the electromagnetic waves,
In the dielectric layer, a plurality of cell regions with different thicknesses are arranged,
A frequency selective reflector set, wherein the arrangement of the cell regions in the plurality of frequency selective reflectors is different from each other.
 1 … 周波数選択反射板
 2 … 反射部材
 3 … 反射素子
 4 … 誘電体基板
 5 … 誘電体層
 6 … 接着層
 7 … 反射層
 8 … 空間
 10、10a、10b … 単位構造
 11a~11g、12a~12f、13a~13e … セル領域
 20 … 反射構造体
 21 … 基材
 22 … 第1アライメントマーク
 23 … 第1識別マーク
 24 … 第2アライメントマーク
 25 … 第2識別マーク
 26 … 凹凸部
 27 … 端部領域
 28 … 接着部
 D1 … 所定の方向
 L … 厚さが増加する所定の方向における単位構造の長さ
 d1、d2 … 隣接する周波数選択反射板間の距離
 d5、d6 … 隣接する誘電体層間の距離
 t1、t2、t3、t4、t5、t6 … セル領域の厚さ
1... Frequency selective reflector 2... Reflective member 3... Reflective element 4... Dielectric substrate 5... Dielectric layer 6... Adhesive layer 7... Reflective layer 8... Space 10, 10a, 10b... Unit structure 11a to 11g, 12a to 12f , 13a to 13e... cell area 20... reflective structure 21... base material 22... first alignment mark 23... first identification mark 24... second alignment mark 25... second identification mark 26... uneven part 27... end area 28 ... Adhesive part D1 ... Predetermined direction L ... Length of the unit structure in a predetermined direction where the thickness increases d1, d2 ... Distance between adjacent frequency selective reflectors d5, d6 ... Distance between adjacent dielectric layers t1, t2, t3, t4, t5, t6... Thickness of cell area

Claims (36)

  1.  特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を有する反射構造体であって、
     第1アライメントマークを有する基材と、
     z基材の一方の面に並べて配置された複数の前記周波数選択反射板と、
     を有し、隣接する前記周波数選択反射板間の距離が、前記電磁波の波長の1/2未満である、反射構造体。
    A reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction,
    a base material having a first alignment mark;
    a plurality of frequency selective reflectors arranged side by side on one side of the z base material;
    , wherein the distance between the adjacent frequency selective reflectors is less than 1/2 of the wavelength of the electromagnetic wave.
  2.  前記周波数選択反射板が第2アライメントマークを有する、請求項1に記載の反射構造体。 The reflective structure according to claim 1, wherein the frequency selective reflector has a second alignment mark.
  3.  前記基材が光透過性を有し、
     前記周波数選択反射板の外周領域が光不透過性を有する、請求項1に記載の反射構造体。
    the base material has light transmittance,
    The reflective structure according to claim 1, wherein an outer peripheral region of the frequency selective reflector is optically opaque.
  4.  隣接する前記周波数選択反射板が、互いに対向する側面に、互いに嵌合可能な凹凸部を有し、前記凹凸部が嵌合するように、前記隣接する周波数選択反射板が配置されている、請求項1から請求項3までのいずれかの請求項に記載の反射構造体。 The adjacent frequency selective reflectors have uneven portions that can fit into each other on side surfaces facing each other, and the adjacent frequency selective reflectors are arranged so that the uneven portions fit into each other. A reflective structure according to any one of claims 1 to 3.
  5.  前記隣接する周波数選択反射板の前記凹凸部の厚さが等しい、請求項4に記載の反射構造体。 The reflective structure according to claim 4, wherein the uneven portions of the adjacent frequency selective reflectors have the same thickness.
  6.  特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を有する反射構造体であって、
     基材と、
     前記基材の一方の面に並べて配置された複数の前記周波数選択反射板と、
     を有し、少なくとも1つの前記周波数選択反射板における隣り合う2辺が、前記基材における隣り合う2辺に揃い、
     隣接する前記周波数選択反射板間の距離が、前記電磁波の波長の1/2未満である、反射構造体。
    A reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction,
    base material and
    a plurality of frequency selective reflectors arranged side by side on one surface of the base material;
    , two adjacent sides of at least one frequency selective reflector are aligned with two adjacent sides of the base material,
    A reflective structure, wherein a distance between the adjacent frequency selective reflectors is less than 1/2 of the wavelength of the electromagnetic wave.
  7.  隣接する前記周波数選択反射板の間に接着部が配置されている、請求項1、請求項2、請求項3または請求項6に記載の反射構造体。 The reflective structure according to claim 1, claim 2, claim 3, or claim 6, wherein an adhesive part is arranged between the adjacent frequency selective reflection plates.
  8.  前記周波数選択反射板が、前記電磁波を反射する反射部材を有し、
     前記反射部材では、寸法の異なる複数の反射素子が配列されており、
     前記複数の周波数選択反射板における前記反射素子の配列が互いに異なる、請求項1、請求項2、請求項3または請求項6に記載の反射構造体。
    The frequency selective reflection plate has a reflection member that reflects the electromagnetic waves,
    In the reflective member, a plurality of reflective elements having different dimensions are arranged,
    The reflective structure according to claim 1, claim 2, claim 3, or claim 6, wherein the arrangement of the reflective elements in the plurality of frequency selective reflectors is different from each other.
  9.  前記周波数選択反射板が、前記基材側から順に、前記電磁波を反射する反射部材と、前記電磁波を透過する誘電体層と、を有し、
     前記誘電体層では、厚さの異なる複数のセル領域が配列されており、
     前記複数の周波数選択反射板における前記セル領域の配列が互いに異なる、請求項1、請求項2、請求項3または請求項6に記載の反射構造体。
    The frequency selective reflection plate includes, in order from the base material side, a reflection member that reflects the electromagnetic waves and a dielectric layer that transmits the electromagnetic waves,
    In the dielectric layer, a plurality of cell regions having different thicknesses are arranged,
    The reflective structure according to claim 1, claim 2, claim 3, or claim 6, wherein the arrangement of the cell regions in the plurality of frequency selective reflectors is different from each other.
  10.  前記周波数選択反射板が、前記周波数選択反射板を識別するための第2識別マークを有する、請求項1、請求項2、請求項3または請求項6に記載の反射構造体。 The reflective structure according to claim 1, claim 2, claim 3, or claim 6, wherein the frequency selective reflector has a second identification mark for identifying the frequency selective reflector.
  11.  前記基材が、前記周波数選択反射板の位置を識別するための第1識別マークを有する、請求項10に記載の反射構造体。 The reflective structure according to claim 10, wherein the base material has a first identification mark for identifying the position of the frequency selective reflector.
  12.  前記周波数選択反射板が、前記基材側から順に、
     前記電磁波を反射する反射部材と、
     所定の方向に厚さが増加する厚さ分布を有する単位構造が複数配置された凹凸構造を有し、前記電磁波を透過する誘電体層と、
     を有し、前記誘電体層の前記単位構造は、厚さの異なる複数のセル領域を有し、
     前記誘電体層の各単位構造では、前記単位構造の前記所定の方向の長さを横軸とし、前記電磁波が前記誘電体層を透過し前記反射部材で反射され前記誘電体層を再度透過して前記電磁波の入射側に放出される際の相対反射位相を縦軸とし、前記電磁波の相対反射位相の値が-360度超0度以下であるグラフに、各セル領域の前記所定の方向の中心位置および各セル領域での前記電磁波の相対反射位相に対応する点をプロットし、最小厚さを有する最小厚さセル領域に対応する点を通る直線を引いたとき、各点が同一直線上にあり、
     前記誘電体層が、前記単位構造として、厚さの異なる3つ以上の前記セル領域を有する第1の単位構造を少なくとも有し、
     前記誘電体層の厚さ分布によって前記電磁波の相対反射位相分布を制御することにより、前記電磁波の反射方向を制御する、請求項1、請求項2、請求項3または請求項6に記載の反射構造体。
    The frequency selective reflector, in order from the base material side,
    a reflective member that reflects the electromagnetic waves;
    a dielectric layer having an uneven structure in which a plurality of unit structures having a thickness distribution increasing in a predetermined direction are arranged, and transmitting the electromagnetic waves;
    the unit structure of the dielectric layer has a plurality of cell regions having different thicknesses,
    In each unit structure of the dielectric layer, the horizontal axis is the length of the unit structure in the predetermined direction, and the electromagnetic wave is transmitted through the dielectric layer, reflected by the reflective member, and transmitted through the dielectric layer again. The vertical axis is the relative reflection phase when the electromagnetic wave is emitted to the incident side, and the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees. When the points corresponding to the center position and the relative reflection phase of the electromagnetic waves in each cell region are plotted, and a straight line passing through the point corresponding to the minimum thickness cell region with the minimum thickness is drawn, each point is on the same straight line. Located in
    The dielectric layer has at least a first unit structure having three or more cell regions having different thicknesses as the unit structure,
    The reflection method according to claim 1, wherein the reflection direction of the electromagnetic wave is controlled by controlling the relative reflection phase distribution of the electromagnetic wave by the thickness distribution of the dielectric layer. Structure.
  13.  前記反射部材が、前記電磁波のみを反射する周波数選択板である、請求項12に記載の反射構造体。 The reflective structure according to claim 12, wherein the reflective member is a frequency selection plate that reflects only the electromagnetic waves.
  14.  前記反射部材が、前記電磁波の反射位相を制御する反射位相制御機能を有する、請求項13に記載の反射構造体。 The reflective structure according to claim 13, wherein the reflective member has a reflective phase control function that controls the reflective phase of the electromagnetic wave.
  15.  前記周波数選択反射板が、前記電磁波を反射する反射部材を有し、
     前記反射部材が、前記電磁波の反射位相を制御する反射位相制御機能を有する、請求項1、請求項2、請求項3または請求項6に記載の反射構造体。
    The frequency selective reflection plate has a reflection member that reflects the electromagnetic waves,
    The reflective structure according to claim 1, claim 2, claim 3, or claim 6, wherein the reflective member has a reflection phase control function that controls the reflection phase of the electromagnetic wave.
  16.  前記反射部材が、誘電体基板と、前記誘電体基板の少なくとも一方の面に配置された複数の反射素子とを有し、
     隣接する前記周波数選択反射板同士が対向する端部領域に、前記反射素子が配置されていない、請求項15に記載の反射構造体。
    The reflective member includes a dielectric substrate and a plurality of reflective elements arranged on at least one surface of the dielectric substrate,
    16. The reflective structure according to claim 15, wherein the reflective element is not arranged in an end region where the adjacent frequency selective reflectors face each other.
  17.  隣接する前記周波数選択反射板同士が対向する端部領域に前記反射素子が配置されている反射構造体における前記電磁波の反射強度を100%としたとき、前記電磁波の反射強度が85%超である、請求項16に記載の反射構造体。 When the reflection intensity of the electromagnetic waves in the reflection structure in which the reflection elements are arranged in the end regions where the adjacent frequency selective reflection plates face each other is defined as 100%, the reflection intensity of the electromagnetic waves is more than 85%. 17. A reflective structure according to claim 16.
  18.  特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を有する反射構造体であって、
     第1アライメントマークを有する基材と、
     前記基材の一方の面に配置された前記周波数選択反射板と、を有し、
     前記周波数選択反射板が、
     前記基材の一方の面に配置され、前記電磁波を反射する反射部材と、
     前記基材の前記反射部材側の面に並べて配置され、前記電磁波を透過する、複数の誘電体層と、を有し、
     隣接する前記誘電体層間の距離が、前記電磁波の波長の1/2未満であり、
     前記誘電体層は、所定の方向に厚さが増加する厚さ分布を有する単位構造が複数配置された凹凸構造を有し、
     前記誘電体層の前記単位構造は、厚さの異なる複数のセル領域を有し、
     前記誘電体層の各単位構造では、前記単位構造の前記所定の方向の長さを横軸とし、前記電磁波が前記誘電体層を透過し前記反射部材で反射され前記誘電体層を再度透過して前記電磁波の入射側に放出される際の相対反射位相を縦軸とし、前記電磁波の相対反射位相の値が-360度超0度以下であるグラフに、各セル領域の前記所定の方向の中心位置および各セル領域での前記電磁波の相対反射位相に対応する点をプロットし、最小厚さを有する最小厚さセル領域に対応する点を通る直線を引いたとき、各点が同一直線上にあり、
     前記誘電体層が、前記単位構造として、厚さの異なる3つ以上の前記セル領域を有する第1の単位構造を少なくとも有し、
     前記誘電体層の厚さ分布によって前記電磁波の相対反射位相分布を制御することにより、前記電磁波の反射方向を制御する、反射構造体。
    A reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction,
    a base material having a first alignment mark;
    the frequency selective reflector disposed on one surface of the base material,
    The frequency selective reflector is
    a reflective member disposed on one surface of the base material and reflecting the electromagnetic waves;
    a plurality of dielectric layers that are arranged side by side on the surface of the base material on the reflective member side and that transmit the electromagnetic waves;
    The distance between the adjacent dielectric layers is less than 1/2 of the wavelength of the electromagnetic wave,
    The dielectric layer has an uneven structure in which a plurality of unit structures having a thickness distribution increasing in a predetermined direction are arranged,
    The unit structure of the dielectric layer has a plurality of cell regions having different thicknesses,
    In each unit structure of the dielectric layer, the horizontal axis is the length of the unit structure in the predetermined direction, and the electromagnetic wave is transmitted through the dielectric layer, reflected by the reflective member, and transmitted through the dielectric layer again. The vertical axis is the relative reflection phase when the electromagnetic wave is emitted to the incident side, and the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees. When the points corresponding to the center position and the relative reflection phase of the electromagnetic waves in each cell region are plotted, and a straight line passing through the point corresponding to the minimum thickness cell region with the minimum thickness is drawn, each point is on the same straight line. Located in
    The dielectric layer has at least a first unit structure having three or more cell regions having different thicknesses as the unit structure,
    A reflective structure that controls the direction of reflection of the electromagnetic waves by controlling the relative reflection phase distribution of the electromagnetic waves depending on the thickness distribution of the dielectric layer.
  19.  特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を有する反射構造体であって、
     基材と、
     前記基材の一方の面に配置された前記周波数選択反射板と、を有し、
     前記周波数選択反射板が、
     前記基材の一方の面に配置され、前記電磁波を反射する反射部材と、
     前記基材の前記反射部材側の面に並べて配置され、前記電磁波を透過する、複数の誘電体層と、を有し、
     少なくとも1つの前記誘電体層における隣り合う2辺が、前記基材における隣り合う2辺に揃い、
     隣接する前記誘電体層間の距離が、前記電磁波の波長の1/2未満であり、
     前記誘電体層は、所定の方向に厚さが増加する厚さ分布を有する単位構造が複数配置された凹凸構造を有し、
     前記誘電体層の前記単位構造は、厚さの異なる複数のセル領域を有し、
     前記誘電体層の各単位構造では、前記単位構造の前記所定の方向の長さを横軸とし、前記電磁波が前記誘電体層を透過し前記反射部材で反射され前記誘電体層を再度透過して前記電磁波の入射側に放出される際の相対反射位相を縦軸とし、前記電磁波の相対反射位相の値が-360度超0度以下であるグラフに、各セル領域の前記所定の方向の中心位置および各セル領域での前記電磁波の相対反射位相に対応する点をプロットし、最小厚さを有する最小厚さセル領域に対応する点を通る直線を引いたとき、各点が同一直線上にあり、
     前記誘電体層が、前記単位構造として、厚さの異なる3つ以上の前記セル領域を有する第1の単位構造を少なくとも有し、
     前記誘電体層の厚さ分布によって前記電磁波の相対反射位相分布を制御することにより、前記電磁波の反射方向を制御する、反射構造体。
    A reflective structure having a frequency selective reflector that reflects electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction,
    base material and
    the frequency selective reflector disposed on one surface of the base material,
    The frequency selective reflector is
    a reflective member disposed on one surface of the base material and reflecting the electromagnetic waves;
    a plurality of dielectric layers that are arranged side by side on the surface of the base material on the reflective member side and that transmit the electromagnetic waves;
    Two adjacent sides of at least one of the dielectric layers are aligned with two adjacent sides of the base material,
    The distance between the adjacent dielectric layers is less than 1/2 of the wavelength of the electromagnetic wave,
    The dielectric layer has an uneven structure in which a plurality of unit structures having a thickness distribution increasing in a predetermined direction are arranged,
    The unit structure of the dielectric layer has a plurality of cell regions having different thicknesses,
    In each unit structure of the dielectric layer, the horizontal axis is the length of the unit structure in the predetermined direction, and the electromagnetic wave is transmitted through the dielectric layer, reflected by the reflective member, and transmitted through the dielectric layer again. The vertical axis is the relative reflection phase when the electromagnetic wave is emitted to the incident side, and the value of the relative reflection phase of the electromagnetic wave is more than -360 degrees and less than 0 degrees. When the points corresponding to the center position and the relative reflection phase of the electromagnetic waves in each cell region are plotted, and a straight line passing through the point corresponding to the minimum thickness cell region with the minimum thickness is drawn, each point is on the same straight line. Located in
    The dielectric layer has at least a first unit structure having three or more cell regions having different thicknesses as the unit structure,
    A reflective structure that controls the direction of reflection of the electromagnetic waves by controlling the relative reflection phase distribution of the electromagnetic waves depending on the thickness distribution of the dielectric layer.
  20.  前記反射部材が、誘電体基板と、前記誘電体基板の少なくとも一方の面に配置された複数の反射素子と、を有し、
     前記誘電体基板が前記基材とは別の部材であり、
     前記基材に対して1つの前記誘電体基板が配置されている、請求項18または請求項19に記載の反射構造体。
    The reflective member includes a dielectric substrate and a plurality of reflective elements arranged on at least one surface of the dielectric substrate,
    the dielectric substrate is a member different from the base material,
    The reflective structure according to claim 18 or 19, wherein one of the dielectric substrates is arranged with respect to the base material.
  21.  前記反射部材が、誘電体基板と、前記誘電体基板の少なくとも一方の面に配置された複数の反射素子と、を有し、
     前記誘電体基板が前記基材を兼ねている、請求項18または請求項19に記載の反射構造体。
    The reflective member includes a dielectric substrate and a plurality of reflective elements arranged on at least one surface of the dielectric substrate,
    The reflective structure according to claim 18 or 19, wherein the dielectric substrate also serves as the base material.
  22.  前記反射部材が、前記基材に接して配置された複数の反射素子を有する、請求項18または請求項19に記載の反射構造体。 The reflective structure according to claim 18 or 19, wherein the reflective member has a plurality of reflective elements arranged in contact with the base material.
  23.  前記誘電体層が第3アライメントマークを有する、請求項18または請求項19に記載の反射構造体。 The reflective structure according to claim 18 or 19, wherein the dielectric layer has a third alignment mark.
  24.  隣接する前記誘電体層の間に第2の接着部が配置されている、請求項18または請求項19に記載の反射構造体。 The reflective structure according to claim 18 or 19, wherein a second bonding part is arranged between the adjacent dielectric layers.
  25.  隣接する前記誘電体層が、互いに対向する側面に、互いに嵌合可能な凹凸部を有し、前記凹凸部が嵌合するように、前記隣接する誘電体層が配置されている、請求項18または請求項19に記載の反射構造体。 18. The adjacent dielectric layers have uneven portions that can fit into each other on side surfaces facing each other, and the adjacent dielectric layers are arranged such that the uneven portions fit into each other. or the reflective structure according to claim 19.
  26.  前記隣接する誘電体層の前記凹凸部の厚さが等しい、請求項25に記載の反射構造体。 The reflective structure according to claim 25, wherein the uneven portions of the adjacent dielectric layers have the same thickness.
  27.  前記誘電体層が、前記誘電体層を識別するための第4識別マークを有する、請求項18または請求項19に記載の反射構造体。 The reflective structure according to claim 18 or 19, wherein the dielectric layer has a fourth identification mark for identifying the dielectric layer.
  28.  前記基材が、前記誘電体層の位置を識別するための第3識別マークを有する、請求項27に記載の反射構造体。 The reflective structure according to claim 27, wherein the base material has a third identification mark for identifying the position of the dielectric layer.
  29.  前記反射部材が、前記電磁波のみを反射する周波数選択板である、請求項18または請求項19に記載の反射構造体。 The reflective structure according to claim 18 or 19, wherein the reflective member is a frequency selection plate that reflects only the electromagnetic waves.
  30.  前記反射部材が、前記電磁波の反射位相を制御する反射位相制御機能を有する、請求項29に記載の反射構造体。 The reflective structure according to claim 29, wherein the reflective member has a reflective phase control function that controls the reflective phase of the electromagnetic wave.
  31.  特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を複数有する反射構造体を製造する反射構造体の製造方法であって、
     隣接する前記周波数選択反射板間の距離が、前記電磁波の波長の1/2未満になるように、第1アライメントマークを有する支持体の一方の面に、前記複数の周波数選択反射板を並べて配置する配置工程を有する、反射構造体の製造方法。
    A method for manufacturing a reflective structure comprising a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction, the method comprising:
    The plurality of frequency selective reflectors are arranged side by side on one surface of a support having a first alignment mark such that the distance between adjacent frequency selective reflectors is less than 1/2 of the wavelength of the electromagnetic wave. A method for manufacturing a reflective structure, comprising a step of arranging the structure.
  32.  前記周波数選択反射板が第2アライメントマークを有する、請求項30に記載の反射構造体の製造方法。 The method for manufacturing a reflective structure according to claim 30, wherein the frequency selective reflector has a second alignment mark.
  33.  前記支持体が光透過性を有し、
     前記周波数選択反射板の外周領域が光不透過性を有する、請求項30に記載の反射構造体の製造方法。
    the support has light transmittance,
    31. The method for manufacturing a reflective structure according to claim 30, wherein an outer peripheral region of the frequency selective reflector is light-opaque.
  34.  特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を複数有する周波数選択反射板セットであって、
     前記複数の周波数選択反射板は、設置面に並べて配置されて用いられ、
     前記周波数選択反射板が、前記周波数選択反射板を識別するための第2識別マークを有する、周波数選択反射板セット。
    A frequency selective reflector set having a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction,
    The plurality of frequency selective reflectors are used by being arranged side by side on an installation surface,
    A frequency selective reflector set, wherein the frequency selective reflector has a second identification mark for identifying the frequency selective reflector.
  35.  特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を複数有する周波数選択反射板セットであって、
     前記複数の周波数選択反射板は、設置面に並べて配置されて用いられ、
     前記周波数選択反射板が、前記電磁波を反射する反射部材を有し、
     前記反射部材では、寸法の異なる複数の反射素子が配列されており、
     前記複数の周波数選択反射板における前記反射素子の配列が互いに異なる、周波数選択反射板セット。
    A frequency selective reflector set having a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction,
    The plurality of frequency selective reflectors are used by being arranged side by side on an installation surface,
    The frequency selective reflection plate has a reflection member that reflects the electromagnetic waves,
    In the reflective member, a plurality of reflective elements having different dimensions are arranged,
    A frequency selective reflector set, wherein the plurality of frequency selective reflectors have different arrangements of the reflective elements.
  36.  特定の周波数帯の電磁波を正反射方向とは異なる方向に反射する周波数選択反射板を複数有する周波数選択反射板セットであって、
     前記複数の周波数選択反射板は、設置面に並べて配置されて用いられ、
     前記周波数選択反射板が、前記設置面側から順に、前記電磁波を反射する反射部材と、前記電磁波を透過する誘電体層と、を有し、
     前記誘電体層では、厚さの異なる複数のセル領域が配列されており、
     前記複数の周波数選択反射板における前記セル領域の配列が互いに異なる、周波数選択反射板セット。
    A frequency selective reflector set having a plurality of frequency selective reflectors that reflect electromagnetic waves in a specific frequency band in a direction different from the specular reflection direction,
    The plurality of frequency selective reflectors are used by being arranged side by side on an installation surface,
    The frequency selective reflection plate includes, in order from the installation surface side, a reflection member that reflects the electromagnetic waves and a dielectric layer that transmits the electromagnetic waves,
    In the dielectric layer, a plurality of cell regions having different thicknesses are arranged,
    A frequency selective reflector set, wherein the arrangement of the cell regions in the plurality of frequency selective reflectors is different from each other.
PCT/JP2023/023785 2022-06-27 2023-06-27 Reflection structure, method for manufacturing reflection structure, and frequency-selective reflection plate set WO2024005011A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023553394A JP7405316B1 (en) 2022-06-27 2023-06-27 Reflective structure, reflective structure manufacturing method, and frequency selective reflector set
JP2023178755A JP7456546B2 (en) 2022-06-27 2023-10-17 Reflective structure, reflective structure manufacturing method, and frequency selective reflector set

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022102694 2022-06-27
JP2022-102694 2022-06-27

Publications (1)

Publication Number Publication Date
WO2024005011A1 true WO2024005011A1 (en) 2024-01-04

Family

ID=89383133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023785 WO2024005011A1 (en) 2022-06-27 2023-06-27 Reflection structure, method for manufacturing reflection structure, and frequency-selective reflection plate set

Country Status (1)

Country Link
WO (1) WO2024005011A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208603A (en) * 1990-06-15 1993-05-04 The Boeing Company Frequency selective surface (FSS)
JP2003114317A (en) * 2001-10-03 2003-04-18 Seiko Instruments Inc Marker for color filter substrate, method for forming the same and method for using the same
US20110303885A1 (en) * 2010-06-15 2011-12-15 Cabot Corporation Metal nanoparticle compositions
WO2022186385A1 (en) * 2021-03-04 2022-09-09 大日本印刷株式会社 Frequency-selective reflector plate and reflection structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208603A (en) * 1990-06-15 1993-05-04 The Boeing Company Frequency selective surface (FSS)
JP2003114317A (en) * 2001-10-03 2003-04-18 Seiko Instruments Inc Marker for color filter substrate, method for forming the same and method for using the same
US20110303885A1 (en) * 2010-06-15 2011-12-15 Cabot Corporation Metal nanoparticle compositions
WO2022186385A1 (en) * 2021-03-04 2022-09-09 大日本印刷株式会社 Frequency-selective reflector plate and reflection structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FARHAD BAYATPUR ; KAMAL SARABANDI: "Multipole Spatial Filters Using Metamaterial-Based Miniaturized-Element Frequency-Selective Surfaces", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, IEEE, USA, vol. 56, no. 12, 1 December 2008 (2008-12-01), USA, pages 2742 - 2747, XP011238543, ISSN: 0018-9480, DOI: 10.1109/TMTT.2008.2007332 *

Similar Documents

Publication Publication Date Title
JP7448083B2 (en) Frequency selective reflectors and reflective structures
KR102110329B1 (en) Antenna and radar system including polarization-rotation layer
JP5371633B2 (en) Reflect array
EP2308128B1 (en) Planar dielectric waveguide with metal grid for antenna applications
US6545645B1 (en) Compact frequency selective reflective antenna
WO2020151074A1 (en) Broadband circularly-polarized millimeter wave multi-feed multi-beam lens antenna
KR101306787B1 (en) Reflectarray antenna comprising various patch element and its method of design
US11621495B2 (en) Antenna device including planar lens
JP2007502583A (en) Multi-beam antenna
US11482790B2 (en) Dielectric lens and electromagnetic device with same
US7233299B2 (en) Multiple-beam antenna with photonic bandgap material
CN107623184A (en) It is a kind of to realize that the multilayer dielectricity antenna with end-fire function is penetrated on side
JP7452772B1 (en) Frequency selective reflector and communication relay system
US7633457B2 (en) Cladding for a microwave antenna
US7242368B2 (en) Multibeam antenna with photonic bandgap material
JP7405316B1 (en) Reflective structure, reflective structure manufacturing method, and frequency selective reflector set
WO2024005011A1 (en) Reflection structure, method for manufacturing reflection structure, and frequency-selective reflection plate set
US11962081B2 (en) Antenna device
JP2008140216A (en) Ic tag reader
KR20200029756A (en) Phased Array Antenna System with Wide Beamwidth
WO2023210566A1 (en) Frequency-selective reflector
CN116918181A (en) Frequency selective reflector and reflective structure
US11888205B2 (en) Polarized electromagnetic device
WO2024038775A1 (en) Reflective panel, electromagnetic wave reflection device, and electromagnetic wave reflection fence
KR102661547B1 (en) Light-transmissive multispectral stealth device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831451

Country of ref document: EP

Kind code of ref document: A1