WO2024004596A1 - アクセスポイント、端末、及び通信方法 - Google Patents

アクセスポイント、端末、及び通信方法 Download PDF

Info

Publication number
WO2024004596A1
WO2024004596A1 PCT/JP2023/021596 JP2023021596W WO2024004596A1 WO 2024004596 A1 WO2024004596 A1 WO 2024004596A1 JP 2023021596 W JP2023021596 W JP 2023021596W WO 2024004596 A1 WO2024004596 A1 WO 2024004596A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
transmission
terminals
information
signal
Prior art date
Application number
PCT/JP2023/021596
Other languages
English (en)
French (fr)
Inventor
敬 岩井
智史 高田
浩幸 金谷
嘉夫 浦部
裕幸 本塚
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Publication of WO2024004596A1 publication Critical patent/WO2024004596A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • H04W72/512Allocation or scheduling criteria for wireless resources based on terminal or device properties for low-latency requirements, e.g. URLLC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present disclosure relates to an access point, a terminal, and a communication method.
  • 11ax is also called High Efficiency (HE)
  • EHT Extreme High Throughput
  • the successor standard to 11be is also called “EHT-plus” or “beyond 11be.”
  • IEEE 802.11-22/0729r1 802.11 GEN8 Study Group IEEE 802.11-22/0734r0, Next Gen After 11be: Main Directions Proposal IEEE 802.11-20/1902r0, UORA Enhancements to address RTA IEEE 802.11-22/0059r0, Beyond ‘be’ IEEE 802.11-21/1488r1, CC36 CR for Trigger frame on EHT User Info field IEEE 802.11-21/0485r3, EHT TF Clarifications
  • Non-limiting embodiments of the present disclosure contribute to providing an access point, a terminal, and a communication method that can improve transmission efficiency of uplink signals in wireless communication.
  • An access point uses identification information common to multiple terminals included in a terminal group to instruct allocation of uplink signal transmission resources for some traffic types among multiple traffic types. and a transmitting circuit that transmits the control signal.
  • the transmission efficiency of uplink signals in wireless communication can be improved.
  • 11be and Beyond 11be assume use cases such as gaming or virtual reality (VR), and propose the need for further reduction of delay (low latency) (see, for example, non-patent document 1 or 2).
  • VR virtual reality
  • Non-Patent Document 3 proposes the use of uplink orthogonal frequency division multiple access (OFDMA) random access (UORA) for the purpose of low delay.
  • An access point (AP: Access Point, also called “AP STA”, “base station”) recognizes the buffer status reports (BSR) of a terminal (STA: station, also called “non-AP STA”) If not, group multiple devices and assign a Random access - Resource unit (RA-RU) to the grouped devices.
  • AP Access Point
  • BSR buffer status reports
  • STA station
  • RA-RU Random access - Resource unit
  • the RA-RUs selected by multiple terminals overlap, the UL signals between the multiple terminals will collide, and the AP may not be able to receive all UL signals.
  • the collision rate of UL signals for example, if the number of RA-RUs scheduled by the AP is increased, if there are few terminals that have data to transmit, RA-RUs will not be used and resources will be wasted. There is a possibility that
  • the UL signal is Achieve low latency.
  • FIG. 1 is a diagram showing an example of a Trigger frame.
  • the Trigger frame is a field that contains information common to multiple terminals (for example, also called terminal common information) for multiple frequency-multiplexed terminals (common information field). ), and a field called User Info List.
  • the User Info field may include one or more fields (“User Info field”) that include information that is individual (or unique) to the terminal (for example, also referred to as terminal individual information).
  • the Trigger frame may include a field (for example, "Special User Info field") that includes information for a terminal compatible with 11be (EHT) (not shown).
  • EHT 11be
  • FIG. 2 is a diagram showing a configuration example of a Common Info field considered in 11be (e.g., EHT) (see, e.g., Non-Patent Document 4).
  • FIG. 3 is a diagram showing a configuration example of a User Info field considered in 11be (EHT) (see, for example, Non-Patent Document 5).
  • FIG. 4 is a diagram showing an example of the configuration of the Special User Info field (see, for example, Non-Patent Document 6).
  • a terminal receives a signal including a Trigger frame (e.g., PPDU: physical layer (PHY) protocol data unit), and the Association ID (AID) of the terminal is specified in the User Info field within the Trigger frame.
  • a UL signal for example, TB-PPDU: trigger-based PPDU
  • SIFS Short Interframe Space
  • each of multiple terminals executes carrier sense immediately before transmitting a UL signal on a resource that can be allocated to multiple terminals (for example, RA-RU), the carrier sense results for multiple terminals will be Idle, so UL signals of multiple terminals may collide.
  • a resource that can be allocated to multiple terminals for example, RA-RU
  • the Trigger frame uses the group identifier (for example, called Group AID) of a group that includes multiple terminals (for example, a terminal group) to identify some traffic types (for example, Low Latency Traffic). Scheduling of RUs for transmission may be performed. Furthermore, for example, collisions can be reduced by differentiating the transmission timing of UL signals between multiple terminals within a terminal group.
  • group identifier for example, called Group AID
  • the wireless communication system may include, for example, AP 100 shown in FIG. 5 and terminal (STA) 200 shown in FIG. 6. Two or more APs 100 and/or terminals 200 may exist in the wireless communication system.
  • the AP 100 groups a plurality of terminals including the terminal 200 into a terminal group, and notifies the terminal 200 of terminal group information regarding the terminal group (including, for example, the association between the AID of the terminal and the Group ID). Additionally, the AP 100 may transmit UL signals limited to some traffic types (for example, traffic requiring low latency) to a terminal group including a plurality of terminals 200 defined in advance. Sends a Trigger frame that instructs transmission.
  • some traffic types for example, traffic requiring low latency
  • the terminal 200 receives the Trigger frame and sends a UL signal to the AP 100 based on the radio resources (e.g., transmission band (e.g., RU) or signal length) and transmission timing indicated by the received Trigger frame. Send.
  • the radio resources e.g., transmission band (e.g., RU) or signal length
  • transmission timing indicated by the received Trigger frame Send.
  • traffic that requires low latency is also called, for example, Low Latency Traffic or Latency Sensitive Traffic.
  • FIG. 5 is a block diagram showing a partial configuration example of the AP 100 according to an embodiment of the present disclosure.
  • a control unit e.g., corresponding to a control circuit
  • identification information e.g., Group association ID (AID)
  • AID Group association ID
  • a control signal for example, Trigger frame
  • a transmitter transmits a control signal.
  • FIG. 6 is a block diagram illustrating a partial configuration example of the terminal 200 according to an embodiment of the present disclosure.
  • the receiving unit for example, corresponding to a receiving circuit uses identification information (Group AID) common to the plurality of terminals 200 included in the terminal group to identify some of the plurality of traffic types.
  • a control signal (Trigger frame) instructing the allocation of uplink signal transmission resources for the traffic type is received.
  • a control unit (for example, corresponding to a control circuit) controls uplink transmission based on the control signal.
  • the AP 100 transmits terminal group information to the terminal 200 and holds the terminal group information. Further, the AP 100 transmits to the terminal 200, for example, a trigger frame that instructs a terminal group including a plurality of terminals 200 to transmit predetermined traffic.
  • FIG. 7 is a block diagram showing a configuration example of the AP 100.
  • the AP 100 shown in FIG. 7 includes, for example, a terminal group generation section 101, a scheduling section 102, a Common Info generation section 103, a User Info generation section 104, a trigger frame generation section 105, an error correction encoding section 106, It may include a modulation section 107, a wireless transmission/reception section 108, a demodulation section 109, an error correction decoding section 110, and a terminal information holding section 111.
  • the terminal group generation section 101, the scheduling section 102, the Common Info generation section 103, the User Info generation section 104, the trigger frame generation section 105, and the terminal information holding section 111 are the access control section (for example, the Access Control (MAC) processing unit).
  • the access control section for example, the Access Control (MAC) processing unit.
  • the terminal group generation section 101 scheduling section 102, Common Info generation section 103, User Info generation section 104, trigger frame generation section 105, error correction encoding section 106, modulation section 107, demodulation section 109, error At least one of the correction decoding section 110 and the terminal information holding section 111 may be included in the control section shown in FIG. 5, for example.
  • the wireless transmitter/receiver 108 shown in FIG. 7 may be included in the transmitter shown in FIG. 5, for example.
  • the terminal group generation unit 101 generates a terminal group including a plurality of terminals 200 based on the terminal information input from the terminal information holding unit 111, and stores information regarding the generated terminal group (for example, terminal group information). , is output to error correction encoding section 106 and scheduling section 102.
  • the terminal information may include, for example, capability information of the terminal 200, information regarding the transmission buffer state, and reception quality information.
  • Capability information may include, for example, information indicating whether the terminal 200 supports transmission and reception of low latency traffic.
  • the information regarding the transmission buffer state may include, for example, information regarding the size or delay request (delay budget, etc.) of the uplink or downlink buffer for low latency traffic addressed to the AP 100 in the terminal 200.
  • the reception quality information may include, for example, the reception level of the signal measured by the terminal 200, the Signal to Interference and Noise Ratio (SINR), or the path loss value.
  • SINR Signal to Interference and Noise Ratio
  • the terminal group generation unit 101 may select a plurality of terminals 200 that are compatible with low latency traffic transmission and reception based on the Capability information, and group them into a terminal group.
  • the terminal group information may include at least information in which the AID of a terminal is associated with a group identifier (for example, Group AID).
  • the terminal group information includes, for example, traffic information (for example, Restricted UL Traffic ID (TID) Bitmap subfield) that indicates the traffic type in which the terminals 200 in the terminal group are permitted to transmit UL signals, as shown in FIG. , and information regarding the transmission timing of the UL signal (for example, transmission timing information) may be associated with each other.
  • traffic information for example, Restricted UL Traffic ID (TID) Bitmap subfield
  • TID Restricted UL Traffic ID
  • transmission timing information for example, transmission timing information
  • the traffic information for which transmission is permitted may be expressed, for example, in a bitmap format as shown in FIG. 9, and may indicate whether transmission is permitted for each TID.
  • the Restricted UL TID Bitmap subfield may be represented by an 8-bit bitmap.
  • Each bit of the 8-bit bitmap may correspond to eight types of traffic (eg, TID numbers 0 to 7).
  • TID numbers 0 and 1 first and second
  • TID is related to the amount of delay that can be tolerated, so by specifying TID with traffic information that is allowed to be transmitted, it is possible to transmit UL traffic that requires low latency, and prevent UL transmission of other traffic. It is now possible to set it to be disabled.
  • the UL signal transmission timing information may include, for example, information regarding the offset of the UL signal transmission timing with respect to the end timing of the PPDU including the trigger frame.
  • the terminal group generation unit 101 holds the generated terminal group information. Note that an example of the terminal group information will be described later.
  • the terminal group generation unit 101 may generate a terminal group based on a part of the terminal information input from the terminal information holding unit 111, for example.
  • a terminal group may be defined based on Capability information without considering the transmission buffer status and reception quality of the terminals 200.
  • the scheduling unit 102 may perform scheduling for the terminal 200, for example.
  • the scheduling unit 102 determines the wireless resources (for example, , transmission band, and/or signal length).
  • the transmission band allocated to a terminal group including a plurality of terminals 200 may be set to at least part of the transmission band of the PPDU including the trigger frame. Further, the transmission band may be set (or limited) to, for example, a prescribed bandwidth (for example, 20 MHz ⁇ N (N is a natural number) or a natural number times the bandwidth for carrier sensing). Furthermore, if the AP 100 does not dynamically grasp the transmission buffer status or reception quality of the terminals 200, the scheduling unit 102 allocates radio resources to a terminal group including a plurality of terminals 200 at regular intervals. Good too.
  • the scheduling unit 102 outputs, for example, information regarding the determined terminal group including the plurality of terminals 200 and radio resource allocation information to the Common Info generation unit 103 and the User Info generation unit 104.
  • the Common Info generation unit 103 may, for example, generate control information included in a Common Info field (for example, FIG. 2) common to the plurality of terminals 200.
  • the Common Info generation unit 103 may generate information on the Trigger type subfield and the CS Required subfield, for example, based on the radio resource allocation information input from the scheduling unit 102.
  • the Trigger Type subfield is, for example, a subfield that indicates the type of Trigger frame (for example, the type of signal that the AP 100 causes the terminal 200 to transmit).
  • the AP 100 may instruct Basic as the Trigger Type of the Trigger frame that instructs the allocation of radio resources for a terminal group.
  • the Trigger Type of the Trigger frame that instructs the allocation of radio resources for a terminal group may be other Trigger Types different from Basic (for example, BFRP (Beamforming Request Poll), MU-BAR (multi-user block ack request), MU-BAR (multi-user block ack request), RTS (multi-user request to send), BSRP (Buffer Status Report Poll), GCR MU-BAR (Groupcast with retries multi-user block ack request), BQRP (Bandwidth Query Report Poll), NFRP (NDP Feerback Request Poll), etc. ) is also fine.
  • the AP 100 may specify the Trigger Type of the Trigger frame as MU-RTS.
  • the radio resource allocation instructions included in the Trigger frame and the UL transmission rules of an embodiment of the present disclosure are transmitted over one or more frames (e.g., Trigger frame) over a TXOP (Transmission Opportunity) period. This can be applied to the transmission and reception of one or more data frames or Block Ack frames that are performed after the frame.
  • the Trigger frame may be a newly defined Trigger Type that clearly indicates an instruction for UL transmission limited to predetermined traffic (for example, Low Latency Traffic) by a terminal group.
  • the CS Required subfield is, for example, a subfield that instructs the terminal 200 whether to perform carrier sense (or necessity) before transmitting a UL signal in response to a Trigger frame. For example, if the value of the CS Required subfield is 0, the terminal 200 may be instructed not to perform carrier sensing, and if the value of the CS Required subfield is 1, the terminal 200 may be instructed to perform carrier sensing.
  • the Common Info generation unit 103 may output information regarding the generated Common Info field to the Trigger frame generation unit 105.
  • the User Info generation unit 104 may generate control information included in a Special User Info field or a User Info field individual to the terminal 200, for example. For example, as shown in FIGS. 3 and 4, the User Info generation unit 104 generates information regarding a Special User Info field or an individual User Info field for the terminal 200 based on a prescribed format, and Information about a User Info List including a User Info field for each of the 200 User Info Lists may be generated. The User Info generation unit 104 may output information regarding the User Info List to the Trigger frame generation unit 105, for example.
  • the User Info generation unit 104 may generate a User Info List by arranging a plurality of User Info fields in a prescribed order according to the type of assigned RU, for example. For example, the User Info generation unit 104 gives priority to a User Info field that indicates at least one of an assigned RU limited to predetermined traffic and an assigned RU for a terminal group over a User Info field that indicates other assigned RUs. (for example, in an earlier order) to generate a User Info List.
  • the AID12 subfield of the User Info field may include an identifier of a terminal group including the terminal 200 (for example, Group AID shown in FIGS. 8 and 9).
  • the User Info generation unit 104 may generate, for example, the RU Allocation subfield based on the radio resource allocation information input from the scheduling unit 102.
  • the format of the User Info field may be changed (or switched or set) depending on the value of the AID12 subfield (for example, whether it is a terminal group identifier or not).
  • the format of the User Info field corresponding to the Group AID of the terminal group may be different from the format of the User Info field corresponding to the individual AID of the terminal 200.
  • the format shown in FIG. 3 may be applied.
  • the format shown in FIG. 10 may be applied.
  • AID12 subfield indicates a terminal group, for example, even if information not included in the terminal group information (for example, MCS information or traffic information that allows transmission) is notified to the terminal 200 by the Trigger frame. good.
  • the bit positions of "UL FEC Coding Type subfield” and "UL EHT-MCS subfield” that indicate Modulation and Coding Scheme (MCS) information of the UL signal may be changed to "Transmission timing information subfield” indicating transmission timing information of the UL signal.
  • MCS Modulation and Coding Scheme
  • the terminal 200 sets the MCS included in the terminal group information, so in the Trigger frame, the UL FEC Coding Type subfield and UL EHT-MCS subfield are not required, so these subfields UL signal transmission timing information can be included in the bit position of .
  • the UL signal transmission timing information includes one timing (for example, offset) may be set.
  • a plurality of timing candidates for example, offset pattern
  • offset pattern numbers pattern 1 to 3 are set for each terminal 200 forming the terminal group.
  • the AP 100 can dynamically instruct each terminal 200's transmission timing information (for example, one of multiple pattern numbers) using the trigger frame, improving the fairness of UL transmission opportunities between the terminals 200. can.
  • the allocated band information (for example, the size of the transmission resource notified by the RU allocation subfield) for the terminal group including the terminal 200 is, for example, the frequency resource position of 20 MHz ⁇ N (for example, an integral multiple of 20 MHz) allocated to the terminal 200. (for example, limited).
  • the frequency resource notification method of a clear to send (CTS) frame using multi-user request to send (MU-RTS) used in 11ax may be applied as a notification method of the 20MHz ⁇ N frequency resource location. .
  • the Operation bandwidth may be notified to the terminal 200 by a combination of the UL BW subfield of the Common Info field and the UL Bandwidth Extension subfield of the Special User Info field.
  • the Special User Info field may include control information for the terminal 200 and a terminal group that includes the terminal 200.
  • the User Info generation unit 104 may output information regarding the generated User Info List to the Trigger frame generation unit 105.
  • the Trigger frame generation unit 105 generates Common Info field information input from the Common Info generation unit 103 and User Info List (for example, Special User A Trigger frame may be generated that includes information about an Info field and at least one User Info field.
  • the Trigger frame may include, for example, at least one of MAC header, Padding, and frame check sequence (FCS) in addition to Common Info field and User Info List.
  • Trigger frame generation section 105 may output the generated trigger frame to error correction encoding section 106, for example.
  • Error correction encoding section 106 converts, for example, a transmission data signal containing terminal group information input from terminal group generation section 101 or a transmission data signal containing a trigger frame input from trigger frame generation section 105 into error correction code. and outputs the encoded signal to modulation section 107.
  • the transmission order of terminal group information and Trigger frame may be as follows. For example, the AP 100 first notifies the terminal group information to the terminal 200. After that, the AP 100 notifies the terminal 200 of a trigger frame that instructs UL transmission to the terminal group.
  • the modulating section 107 performs modulation processing on the signal input from the error correction encoding section 106 and outputs the modulated signal to the wireless transmitting/receiving section 108.
  • the AP 100 maps the modulated signal to a specified frequency resource and performs inverse fast Fourier transform.
  • An OFDM signal may be formed by performing Inverse Fast Fourier Transform (IFFT) processing to convert the signal into a time waveform and adding a cyclic prefix (CP).
  • IFFT Inverse Fast Fourier Transform
  • CP cyclic prefix
  • the wireless transmitting/receiving section 108 performs wireless transmission processing such as D/A conversion and up-conversion to a carrier frequency on the modulated signal input from the modulation section 107, and transmits the signal after the wireless transmission processing to the antenna. is transmitted to the terminal 200 via the . Furthermore, the wireless transmitter/receiver 108 receives, for example, a signal transmitted from the terminal 200 via an antenna, and performs wireless reception processing such as down-conversion to baseband and A/D conversion on the received signal. and outputs the signal after the radio reception processing to demodulation section 109.
  • the demodulation section 109 performs demodulation processing on the signal input from the wireless transmission/reception section 108 and outputs the demodulated signal to the error correction decoding section 110.
  • AP 100 for example, demodulation section 109 may perform CP removal processing and fast Fourier transform (FFT) processing.
  • error correction decoding section 110 decodes the signal input from demodulation section 109 to obtain a received data signal from terminal 200. For example, if the decoded received data includes the above-mentioned terminal information, the error correction decoding unit 110 outputs decoded data including the terminal information to the terminal information holding unit 111.
  • the terminal information holding unit 111 acquires terminal information (for example, information regarding capability information, transmission buffer status, and reception quality of the terminal 200 may be included) from the decoded data input from the error correction decoding unit 110 ( Alternatively, the acquired terminal information may be output to the terminal group generation section 101 and the scheduling section 102.
  • terminal information for example, information regarding capability information, transmission buffer status, and reception quality of the terminal 200 may be included
  • the terminal 200 receives terminal group information from the AP 100 and holds the terminal group information. Furthermore, the terminal 200 receives a Trigger frame for scheduling an RU for transmitting Low latency Traffic using, for example, a group identifier of a terminal group (for example, Group AID), and transmits a UL signal to the AP 100 in response to the Trigger frame. do.
  • a group identifier of a terminal group for example, Group AID
  • FIG. 13 is a block diagram showing a configuration example of the terminal 200.
  • the terminal 200 shown in FIG. 13 includes, for example, a wireless transmitting/receiving section 201, a demodulating section 202, an error correction decoding section 203, a Common Info acquisition section 204, a terminal group information holding section 205, a User Info acquisition section 206, It may include a data generation section 207, an error correction encoding section 208, and a modulation section 209.
  • At least one of the Common Info acquisition unit 204, the terminal group information holding unit 205, the User Info acquisition unit 206, and the data generation unit 207 may be included in the access control unit (for example, the MAC processing unit). .
  • At least one of the units 209 may be included in the control unit shown in FIG. 6, for example.
  • the wireless transmitting/receiving section 201 shown in FIG. 13 may be included in the receiving section shown in FIG. 6, for example.
  • the wireless transmission/reception unit 201 receives a received signal using an antenna, performs wireless reception processing such as down-conversion and A/D conversion on the received signal, and outputs the signal after the wireless reception processing to the demodulation unit 202.
  • wireless reception processing such as down-conversion and A/D conversion
  • the wireless transmitting/receiving section 201 performs wireless transmission processing such as up-conversion and D/A conversion on the signal input from the modulation section 209, and transmits the signal after the wireless transmission processing from the antenna.
  • the wireless transmitting/receiving unit 201 may determine the transmission timing based on information input from the terminal group information holding unit 205 (for example, information regarding transmission timing), and may transmit the signal from the antenna in accordance with the determined transmission timing. .
  • the demodulation section 202 performs demodulation processing on the received data input from the wireless transmission/reception section 201 and outputs the demodulated signal to the error correction decoding section 203.
  • terminal 200 for example, demodulation section 202 may perform, for example, CP removal processing and FFT processing.
  • the error correction decoding section 203 may, for example, decode the demodulated signal input from the demodulation section 202 and output the decoded signal as a received data signal. Further, the error correction decoding unit 203 outputs, for example, a Trigger frame of the received data signal to the Common Info acquisition unit 204 and the User Info acquisition unit 206. Further, the error correction decoding section 203 outputs, for example, a frame including terminal group information from the received data signal to the terminal group information holding section 205.
  • the Common Info acquisition unit 204 may, for example, extract information corresponding to the Common Info field from the Trigger frame input from the error correction decoding unit 203, and acquire terminal common information.
  • the terminal common information may include, for example, information regarding channels assigned to the terminal 200. Note that information regarding the allocation period to the terminal 200 may be included as the terminal common information. Further, the terminal common information may include, for example, Trigger Type subfield and CS Required subfield. If the value of the Trigger Type subfield corresponds to a type that instructs UL transmission limited to predetermined traffic (for example, Low Latency Traffic) by a terminal group, the terminal 200 changes the format of the User Info field from the Basic type format. It can be interpreted as follows. Further, when the CS Required subfield value is 1, the terminal 200 executes carrier sense before UL transmission. The period during which carrier sensing is performed is, for example, the period from the end timing of the PPDU including the Trigger frame to a predetermined UL transmission timing instructed in advance by the AP 100 (or instructed by the Trigger frame).
  • the Common Info acquisition unit 204 may output the extracted terminal common information to the User Info acquisition unit 206.
  • the terminal group information holding unit 205 obtains and holds terminal group information from a frame including terminal group information input from the error correction decoding unit 203, for example.
  • the terminal group information may include at least information in which a terminal AID and a terminal group identifier (eg, Group AID) are associated, as shown in FIG. 8, FIG. 9, FIG. 11, or FIG. 12, for example. Further, the terminal group information may be associated with, for example, transmission timing information (Offset) of each terminal 200 in the terminal group.
  • the terminal group information holding unit 205 may output the held information to the User Info acquisition unit 206, the data generation unit 207, and the wireless transmission/reception unit 201, for example.
  • the User Info acquisition unit 206 extracts information corresponding to a User Info List (for example, at least one User Info field and Special User Info field) from the Trigger frame input from the error correction decoding unit 203, and User Info field reception processing may be performed based on terminal common information (including, for example, Trigger Type) input from the acquisition unit 204 and information input from the terminal group information holding unit 205.
  • a User Info List for example, at least one User Info field and Special User Info field
  • Terminal common information including, for example, Trigger Type
  • the User Info acquisition unit 206 compares the terminal identification information (for example, AID12 subfield) included in the User Info field and the terminal group identifier (for example, Group AID) input from the terminal group information holding unit 205. Accordingly, it is determined whether there is a UL transmission instruction to a terminal group including terminal 200.
  • the User Info acquisition unit 206 may specify the format of the User Info field depending on whether there is a UL transmission instruction to the terminal group. Then, the User Info acquisition unit 206 acquires terminal individual information (for example, radio resource allocation information, transmission power information, UL signal length, etc.) from the User Info field.
  • the signal length of the UL signal may be determined, for example, based on the time length specified in the UL Length subfield of the Trigger frame.
  • the User Info acquisition unit 206 may output, for example, terminal individual information and terminal common information to the data generation unit 207.
  • the data generation unit 207 acquires traffic information that permits UL transmission, for example, based on the information input from the terminal group information holding unit 205 and the information input from the User Info acquisition unit 206. For example, when holding traffic data permitted by the AP 100, the data generation unit 207 performs data generation processing. On the other hand, if the data generation unit 207 does not hold the traffic data permitted by the AP 100, the data generation unit 207 may stop the subsequent processing (for example, do not transmit the UL signal).
  • the data generation unit 207 when executing data generation, the data generation unit 207 outputs the generated data signal (for example, a UL signal addressed to the AP 100) to the error correction encoding unit 208.
  • the UL signal may be, for example, a response signal to a Trigger frame, and may be generated according to the TB-PPDU format.
  • the error correction encoding section 208 performs error correction encoding on the data signal input from the data generation section 207 and outputs the encoded signal to the modulation section 209.
  • the coding rate for the data signal may be determined, for example, according to terminal individual information input from the User Info acquisition unit 206.
  • the modulating section 209 modulates the signal input from the error correction encoding section 208 and outputs the modulated signal to the wireless transmitting/receiving section 201.
  • the modulation method applied in the modulation section 209 may be determined, for example, according to the terminal individual information input from the User Info acquisition section 206.
  • the terminal 200 for example, the modulating section 209 may perform IFFT processing after mapping the modulated signal to a frequency resource, and form an OFDM signal by adding a CP. .
  • the transmission timing information is not included in the terminal group information and is notified by a Trigger frame (for example, Transmission timing information subfield) in the format shown in FIG.
  • the information may be obtained (not shown) and the signal may be transmitted from the antenna according to the transmission timing indicated by the transmission timing information.
  • the AP 100 generates terminal group information and notifies the generated terminal group information to a plurality of terminals 200 (for example, non-AP terminals) included in the terminal group. Further, the AP 100 uses, for example, a trigger frame that includes terminal group information shared with the terminals 200 to instruct one or more terminals 200 to perform UL transmission at a predetermined transmission timing.
  • the AP 100 allocates the same radio resource (for example, RA-RU) to a plurality of terminals 200, permits UL transmission to the terminal 200 that maintains Low Latency Traffic, and maintains Low Latency Traffic.
  • UL transmission can be disallowed for terminals 200 that do not hold the information.
  • the terminal 200 can transmit a UL signal without transmitting a transmission buffer notification (transmission resource request) from the terminal 200 to the AP 100, so that delay can be reduced.
  • collisions of UL signals can be reduced by differentiating the transmission timing between the terminals 200 in a terminal group, and the AP 100 can, for example, Signals from terminal 200 can be received.
  • FIG. 14 shows an example of the operation of AP 100 and terminal 200 according to this embodiment.
  • the traffic information for which transmission is permitted includes Low latency Traffic.
  • STA1 does not hold Low Latency Traffic. Therefore, STA1 determines that transmission of the UL signal is not permitted based on the Restricted UL TID Bitmap, and does not transmit the UL signal.
  • the traffic types of UL transmitted signals are limited in the resources allocated to the plurality of terminals 200, so it is possible to reduce collisions of UL signals between the terminals 200.
  • the transmission timing of the UL signals set in each terminal 200 is different. Thereby, in resources allocated to a plurality of terminals 200, it is possible to reduce collisions between UL signals including Low Latency Traffic between terminals 200.
  • the allocated resource size (for example, UL signal transmission resource size) may be set to 20MHz ⁇ N (for example, an integral multiple of 20MHz).
  • the UL signal length (for example, the time length of PPDU) can be shortened, and the delay can be reduced.
  • an embodiment of the present disclosure can be applied without changing the carrier sense specifications in 20 MHz units of existing standards (for example, 11ax, 11be, etc.).
  • the allocated resource size may be set to 20MHz or less.
  • the terminal 200 performs carrier sense before UL transmission in the transmission RU, and does not need to perform carrier sense in an RU different from the transmission RU.
  • the allocated resource is 20 MHz or less, for example, UL signals with different transmission timings can be frequency multiplexed in the 20 MHz band.
  • the terminal group information may be set with information indicating at least the correspondence between the AID of each terminal and the group identifier (eg, Group AID), as shown in FIG. 8, for example.
  • the terminal group information includes, for example, traffic information indicating some traffic types that are permitted to be transmitted (e.g., Restricted UL TID Bitmap subfield), and UL signal transmission timing information (e.g., Offset), as shown in Figure 11. subfield) and MCS information (for example, MCS subfield) may be set (or may be associated).
  • traffic information indicating some traffic types that are permitted to be transmitted
  • UL signal transmission timing information e.g., Offset
  • the AP 100 may extract terminals 200 capable of transmitting and receiving low latency traffic based on the capability information of the terminals 200, and group them into a terminal group. Further, the AP 100 may, for example, extract terminals 200 that hold uplink or downlink buffers for low latency traffic from among the terminals 200 whose capabilities support transmission and reception of low latency traffic, and group them into a terminal group. Note that the upstream/downstream buffer status of Low latency traffic of the terminal 200 may be notified to the AP 100 by, for example, the terminal 200 reporting each traffic size including a delay request to the AP 100 using BSR.
  • Capability information related to Low Latency Traffic of the terminal 200 may be included in the Capability information of the Association Request frame and notified to the AP 100, for example.
  • the AP 100 can identify (or understand) the capability of a terminal from the Association Request frame, and can generate terminal group information.
  • the terminal 200 may determine whether to respond to the Trigger frame based on the Capability of the terminal 200, for example. For example, if the terminal 200 that does not support sending and receiving Low Latency Traffic detects a Trigger Type that clearly indicates an instruction for UL transmission limited to predetermined traffic by a terminal group, it will perform UL transmission processing including subsequent decoding processing for the trigger frame. may be stopped.
  • terminal group number (for example, Group AID) may contain the Reserved bit of the AID12 subfield (for example, any of 2008 - 2044, 2047 - 4094), as shown in Figures 8, 9, 11 and 12. ) may be used.
  • the AID used for Associated STA may be used as the terminal group number, without using the Reserved AID12 subfield.
  • the AP 100 assigns the AID used as the terminal group number to the terminal 200 corresponding to beyond 11be (for example, the beyond 11be terminal). Do not use it as an AID (hereinafter referred to as individual AID). Note that, as described later, the AP 100, for example, assigns the AID used as a terminal group number to a beyond 11be terminal, and assigns an individual AID to a terminal that does not have a function to acquire terminal group information (for example, a terminal conforming to existing standards). May be used as
  • the terminal group number may be set to, for example, an AID (for example, 0, 2045) that instructs RA-RU to multiple terminals 200.
  • OBO OFDMA random access backoff
  • a terminal that supports only existing standards e.g., 11ax, 11be
  • a beyond 11be terminal that supports a standard that supports operations according to this embodiment may be the same terminal. May be included in a group.
  • the Beyond 11be terminal may transmit the UL signal transmission timing later than SIFS by the set offset (for example, SIFS + 9us).
  • the transmission timing of a terminal that only supports existing standards does not support the operation of this embodiment, the transmission timing of the UL signal is fixed to SIFS. Therefore, for example, if a terminal that only supports existing standards does not transmit a UL signal, the carrier sense of the Beyond 11be terminal allows the Beyond 11be terminal to transmit a UL signal, thereby avoiding collision of UL signals. Wireless resources can be used effectively.
  • Group AIDs may be defined (defined or set) for one terminal 200.
  • a plurality of Group AIDs eg, 2008 and 2009
  • different traffic information, different transmission timing information, or different MCS information may be associated with each Group AID.
  • the AP 100 can, for example, flexibly change the type of traffic to be UL transmitted, the transmission timing that determines the priority of each terminal 200, or the MCS for the same terminal 200, depending on the Group AID included in the Trigger frame. Can instruct the transmission of UL signals.
  • the UL transmission timing is not limited to the case where it is set individually for each terminal 200 in a terminal group as shown in FIGS. 11, 12, and 16.
  • the UL transmission timing (transmission timing A plurality of candidates) may be set, and each terminal 200 may be randomly selected from the plurality of candidates.
  • the terminal 200 may randomly select (or apply) one transmission timing from a plurality of transmission timings (transmission timing candidates) and use it.
  • multiple transmission timings for example, SIFS, SIFS + 9us, and SIFS + 18us
  • the terminal 200 randomly selects and uses one transmission timing from a plurality of transmission timings defined in the terminal group information, so that the priority of transmission data is equalized among the plurality of terminals 200, Fairness between terminals 200 can be improved.
  • the number of transmission timing patterns may differ depending on the number of terminals included in the terminal group. For example, the greater the number of terminals included in a terminal group, the greater the number of UL signal transmission timing patterns (for example, the number of candidates) may be set. As an example, when the number of terminals in a terminal group is 3 or less, three patterns of transmission timing are defined as shown in FIG. 17, and when the number of terminals in a terminal group is 4 or more, as shown in FIG. Six patterns of transmission timing may be defined. In this way, by changing the number of selectable transmission timing patterns according to the number of terminals constituting a terminal group, it is possible to suppress the transmission timing within a predetermined time and improve fairness among the terminals 200.
  • the selectable transmission timing sets may differ depending on the traffic information (for example, TID) that permits transmission.
  • a transmission timing set including an earlier transmission timing may be set for a traffic type having a higher priority (for example, traffic requiring low delay).
  • a traffic type having a higher priority for example, traffic requiring low delay
  • the UL transmission timing in the range of SIFS to SIFS + 18 us is defined.
  • UL transmission timing in the range of SIFS+18us to SIFS+35us may be defined.
  • the AP 100 may instruct the terminal 200 whether to randomly select the transmission timing of the UL signal or to instruct it from the AP 100 by including it in the User Info field. For example, as shown in FIG. 20, the AP 100 generates terminal group information that specifies the random selection (pattern 4) by the terminals 200 in addition to the transmission timing (pattern 1 to pattern 3) instructed to each terminal 200 in the terminal group. It's okay. For example, the AP 100 may use 2 bits of the User Info field to instruct the terminal 200 to specify any one of pattern1 to pattern4.
  • the AP 100 can instruct the UL transmission timing of each terminal 200 according to the communication status of each terminal 200, for example, so that fairness between the terminals 200 can be improved. For example, if there is a difference in throughput between the terminals 200, by speeding up the transmission timing of the terminal 200 with a lower throughput, priority can be given to the UL transmission of the terminal 200, and the throughput can be improved. Furthermore, for example, if the difference in throughput between the terminals 200 is small, fairness between the terminals 200 can be maintained by instructing random selection.
  • the AP 100 may instruct the terminal 200 to use a timing smaller than SIFS (for example, an offset of SIFS - 6 us with respect to the end timing of the PPDU including the trigger frame) as the transmission timing of the UL signal.
  • the AP 100 can preferentially transmit a UL signal to a terminal 200 that has the capability of responding at a timing smaller than SIFS by instructing the terminal 200 to respond at a timing smaller than SIFS.
  • the transmission timing instruction does not need to be included in the terminal group information.
  • the transmission timing according to the Access Category (AC) of traffic for which UL transmission is permitted may be defined in the standard, or may be set in advance negotiation between the AP 100 and the terminal 200.
  • the transmission timings according to four types of ACs may be set as follows based on the required delay of each AC. Since there is a correspondence relationship between the traffic ID (TID) and the AC in advance, the AP 100 uses the TID to indicate the traffic to be permitted for UL transmission, so that the terminal 200 can select the transmission timing according to the TID.
  • AID refers to various IDs and values used in the AID12 subfield of the Trigger frame. AID may also be called a terminal ID or group ID. Further, the Group AID may be an ID for identifying one or more terminals 200 that instruct transmission of UL signals (including low latency traffic) in the Trigger frame. An existing frame may be used for the Group AID definition.
  • the terminal group information may be notified from the AP 100 to the plurality of terminals 200 using a management frame different from the existing frame (for example, referred to as a new management frame).
  • the new Management frame includes a field (for example, called "Membership Status field") that indicates whether the terminal 200 to be notified (destination) is included in each terminal group for each terminal group. It's fine.
  • Figure 21 shows an example of the Membership Status field.
  • Group AID 2008, 2009 is sent to the destination terminal 200. Set. In this way, in the example shown in FIG. 21, the terminal group information is individually notified to the terminals 200.
  • traffic information that allows transmission may be notified to the terminal 200 using 8 bits for each of a plurality of Group AIDs.
  • a terminal group ID (Group AID or Group ID), a set of terminal IDs belonging to the terminal group (for example, terminals whose terminal AIDs are Start AID to End AID), and permission to send Traffic information (for example, Restricted UL TID) and MCS information (for example, UL MCS) used for UL signals may be notified to multiple terminals 200 at once.
  • Traffic information for example, Restricted UL TID
  • MCS information for example, UL MCS
  • the terminal group information is notified to a plurality of terminals 200 all at once.
  • the new Management frame shown in FIG. 22 is an example, and the present invention is not limited thereto.
  • the new Management frame may include at least a Group ID and a set of terminal IDs (eg, Start AID and End AID).
  • a method of notifying each terminal individually allows terminal groups to be generated more flexibly than a method of notifying multiple terminals 200 collectively (eg, FIG. 22). Further, the method of collectively notifying the terminal group information to a plurality of terminals 200 (for example, FIG. 22) can reduce the amount of signaling compared to the method of notifying each terminal individually (for example, FIG. 21).
  • an existing frame may be used (or may be reused) for notification of terminal group information.
  • the terminal group information may be notified to the terminal 200 by using the Group ID management frame of IEEE 11ac or the Restricted Access Window (RAW) Parameter Set (RPS) element format of IEEE 11ah.
  • RAW Restricted Access Window
  • RPS Parameter Set
  • the terminal group information may be included in the beacon of the AP 100, for example, or may be broadcast as broadcast information to the plurality of terminals 200 connected to the AP 100.
  • a Low latency traffic negotiation procedure for example, Request/Response of a new Action frame or Add Block Acknowledgment (ADDBA )
  • terminal group information may be added and notified to the terminal 200.
  • Trigger frame generation example and UL transmission example Trigger frame generation processing in the AP 100 (for example, the Common Info generation unit 103, the User Info generation unit 104, and the Trigger frame generation unit 105) will be described below. Furthermore, a process for transmitting a UL signal based on terminal group information in the terminal 200 (for example, the terminal group information holding unit 205 and the wireless transmitting/receiving unit 201) will be described.
  • one Trigger frame may include multiple User Info fields (terminal individual information) corresponding to the same Group AID (for example, identification information common to multiple terminals 200).
  • the AP 100 includes transmission timing information (e.g., Transmission timing information subfield) in the User Info field to indicate that different transmission timings are used among the terminals 200 in the terminal group. It's okay.
  • transmission timing information included in the User Info field may be a transmission timing pattern number as shown in FIG. 12 or 20, for example.
  • STA1 does not hold traffic data specified by terminal group information
  • STA2 and STA3 hold traffic data specified by terminal group information.
  • STA2 and STA3 are assumed to attempt UL transmission.
  • the transmission timings in RU1 and RU2 of STA2 are "SIFS + 9us” and “SIFS + 18us", respectively.
  • the transmission timings for RU1 and RU2 of STA3 are "SIFS +18us" and "SIFS", respectively.
  • the transmission timing is smaller (earlier) among the multiple radio resources.
  • Wireless resources may be selected.
  • STA2 selects RU1 with the earlier transmission timing "SIFS + 9us” between RU1's transmission timing "SIFS + 9us” and RU2's transmission timing "SIFS + 18us”.
  • You may select and transmit a UL signal (for example, EHT TB PPDU) at the transmission timing of "SIFS + 9us" in RU1.
  • STA3 selects RU2, which is the earlier "SIFS", from among the transmission timing "SIFS + 18us" of RU1 and “SIFS” of RU2, and selects the transmission timing of "SIFS" in RU2.
  • may transmit UL signals e.g. EHT TB PPDU).
  • the carrier sense performed before UL transmission may be performed, for example, on a subchannel including the RU transmitted by each terminal 200.
  • STA2 executes carrier sense in RU1 and does not need to execute carrier sense in RU2.
  • STA3 executes carrier sense in RU2 and does not need to execute carrier sense in RU1.
  • STA2 can transmit an uplink signal in RU1 because the carrier sense result for RU1 is Idle.
  • the terminal 200 may, for example, randomly select one RU from the multiple RUs with the same transmission timing. good. Random selection maintains the fairness of transmission opportunities.
  • the following may be an example of the procedure by which the terminal 200 selects one RU from a plurality of RU candidates.
  • the terminal 200 determines the selected RU as the transmission RU and ends the selection process. If the carrier sense result is Busy, the terminal 200 excludes the selected RU from the candidate RUs.
  • the terminal 200 returns to step (1); if the candidate RU does not exist, the terminal 200 proceeds to step (4).
  • the terminal 200 updates the transmission timing by one step (for example, adds 9 us), and selects candidate RUs that can be transmitted at the updated transmission timing. If the candidate RU exists, the terminal 200 returns to step (1), and if the candidate RU does not exist, the terminal 200 proceeds to step (5). (5) The terminal 200 cancels UL transmission (if all candidate RUs for transmission timing are Busy).
  • the terminal 200 may calculate the time length of the Packet extension (PE) field, which is the last field of the TB-PPDU that constitutes the UL signal, based on the UL transmission timing (offset amount). Thereby, for example, as shown in FIG. 23, the end timings of the UL signals can be aligned among the plurality of terminals 200.
  • PE Packet extension
  • the terminal 200 will, for example, give priority to the RU specified by the User Info field in which the individual AID is set.
  • a SIFS offset may be applied to transmit the UL signal.
  • the terminal 200 will, for example, give priority to the RU specified by the User Info field in which Group AID is set.
  • the UL signal may be transmitted by applying an offset corresponding to the terminal group information.
  • signal interference between the terminals 200 may occur in the receiving process of the AP 100.
  • OFDM modulation is applied to a UL signal, if the transmission timing of terminal 200 exceeds the CP length, OFDM orthogonality may collapse and interference may occur.
  • Transmission method 1 is a method of setting a guard band on the 20MHz ⁇ N boundary in the RU specified by Group AID.
  • a guard band (for example, a non-transmission period) of a predetermined number of tones may be applied to the boundary of 242 tones (20 MHz channel).
  • the AP 100 performs reception processing for each assigned RU (for example, 20 MHz ⁇ N) of each of the plurality of terminals 200. At this time, by setting a guard band at the boundary with other resources in the assigned RU, the AP 100 reduces the influence of interference when UL signals transmitted by multiple terminals 200 at different timings are frequency multiplexed. can.
  • each assigned RU for example, 20 MHz ⁇ N
  • the AP 100 reduces the influence of interference when UL signals transmitted by multiple terminals 200 at different timings are frequency multiplexed. can.
  • Transmission method 2 is a method in which the TB-PPDU format including the UL signal that responds to the Trigger frame including the Group AID is made different from the existing TB-PPDU format (for example, a method in which the TB-PPDU format is newly defined).
  • the format of the UL signal (for example, EHT TB-PPDU for Group AID) assigned by the User Info field corresponding to Group AID (for example, identification information common to multiple terminals 200);
  • the format of the UL signal (for example, EHT TB-PPDU) assigned by the User Info field corresponding to the individual AID of the terminal 200 may be different.
  • a predetermined amount within the UL signal is A PPDU format with a different number of symbol repetitions may be applied.
  • the smaller the offset amount from the end timing of the PPDU including the Trigger frame the larger the number of repetitions of the RL-SIG symbol may be set.
  • the reception timing difference of OFDM symbols after U-SIG in AP 100 can be suppressed to within the CP length, thereby preventing the occurrence of interference.
  • the AP 100 can perform FFT processing on bands including all assigned RUs of the plurality of terminals 200 at once, for example.
  • the time length of a predetermined symbol (for example, L-STF) in the UL signal may be A different PPDU format may be applied.
  • the reception timing difference of OFDM symbols after U-SIG in AP 100 can be suppressed to within the CP length, regardless of the offset amount, so that interference can be prevented from occurring.
  • the AP 100 can perform FFT processing on bands including all assigned RUs of the plurality of terminals 200 at once, for example.
  • the transmission order of RU allocation (for example, referred to as "RU allocation by Group AID") limited to predetermined traffic (for example, Low Latency Traffic) to a terminal group may be newly defined.
  • the transmission order (or priority) of the User Info fields in the Trigger frame may be a rule of transmitting in the following order based on the RU indicated by each User Info field.
  • the User Info field that instructs RU allocation by Group AID may be set earlier than the User Info field that instructs other RUs. 1. RU allocation by Group AID 2. RU allocation based on terminal individual AID 3. RA-RU allocation by special AID (0 or 2045) 4. Unassigned RU with special AID (2046)
  • the order in which the User Info fields corresponding to the Group AID are transmitted may be earlier than the order in which the User Info fields corresponding to the individual AIDs are transmitted to the terminal 200.
  • the terminal 200 can finish the decoding process of the User Info field including the Low latency Traffic transmission instruction early, and can start preparing for UL transmission early. Therefore, the delay of Low Latency Traffic can be reduced.
  • the AP 100 may allocate an RU of 20 MHz or less to the low latency traffic.
  • the AP 100 schedules 15 terminals 200 (for example, 3 terminals / RU) in 5RU within 20MHz, as shown in Figure 29. You may do so.
  • the signal of the terminal 200 to which an earlier transmission timing is set can be frequency multiplexed.
  • the specifications may be changed so that the carrier sense immediately before UL transmission by the terminal 200 is performed in the RU band of 20 MHz or less. This allows frequency multiplexing of UL signals with different transmission timings even below 20MHz.
  • the AP 100 uses an AID (Group AID) common to multiple terminals 200 included in a terminal group to instruct transmission resource allocation for UL signals for some traffic types among multiple traffic types.
  • a Trigger frame is generated and the Trigger frame is sent to the terminal 200.
  • the terminal 200 receives a Trigger frame that instructs allocation of transmission resources for UL signals for some of the plurality of traffic types using the Group AID common to the plurality of terminals 200 included in the terminal group. and control UL transmission based on the Trigger frame.
  • the terminal 200 can perform UL transmission only for some traffic types (for example, traffic that requires low delay) in resources that can be allocated to a terminal group (for example, RA-RU). Therefore, collisions of UL signals between multiple terminals 200 can be reduced and delays can be reduced without increasing the resources that can be allocated to terminal groups.
  • traffic types for example, traffic that requires low delay
  • a terminal group for example, RA-RU
  • the transmission efficiency of UL signals in wireless communication can be improved.
  • allocation of UL transmission resources limited to UL transmission of some traffic types for example, setting of Restricted UL TID
  • setting of transmission timing of UL signal for example, setting of Offset
  • the allocation of UL transmission resources limited to UL transmission of some traffic types may be set, and the transmission timing of UL signals may not be set. Even in this case, by limiting the traffic type, collisions of UL signals can be reduced and delays can be reduced.
  • the transmission timing of the UL signal may be set, and the allocation of UL transmission resources limited to UL transmission of some traffic types may not be set. Even in this case, collisions of UL signals can be reduced and delays can be reduced due to differences in the transmission timing of UL signals.
  • traffic types are not limited to traffic that requires low delay (for example, Low latency Traffic), and may be other traffic types.
  • parameters such as transmission timing (Offset), Restricted UL TID Bitmap value, Group AID, individual AID for terminal 200, number of terminals included in a terminal group), resource size, and number of resources are just examples, and other It can also be a value.
  • the fields indicating information regarding terminal groups are not limited to the fields described above, and may be placed in other fields.
  • the number of bits for reporting each piece of control information regarding a terminal group is not limited to the example described above, and may be any other number of bits.
  • the configuration of the Trigger frame and the configurations of the Common Info field and User Info field within the Trigger frame are not limited to the examples described above.
  • other Other configurations may also be used in which at least one of subfields is added and some subfields are deleted.
  • the configuration of the management frame and the UL signal is not limited to the example described above.
  • the configuration described above addition of other fields
  • Other configurations may also be used in which at least one of some fields is deleted.
  • the format to which the embodiment of the present disclosure is applied is not limited to the 11be format.
  • An embodiment of the present disclosure may be applied, for example, to IEEE 802.11bd (NGV (Next Generation V2X)), which is the next generation standard of IEEE 802.11p, which is an in-vehicle standard.
  • NVG Next Generation V2X
  • (supplement) Information indicating whether the terminal 200 supports the functions, operations, or processes shown in each of the embodiments described above is transmitted from the terminal 200 to the AP 100, for example, as capability information or capability parameters of the terminal 200 ( or notification).
  • the capability information may include an information element (IE) that individually indicates whether the terminal 200 supports at least one of the functions, operations, or processes shown in each of the embodiments described above.
  • the capability information may include an information element indicating whether the terminal 200 supports any combination of two or more of the functions, operations, or processes shown in each of the embodiments described above.
  • Information elements are also simply called elements.
  • the AP 100 may determine (or determine or assume) the functions, operations, or processes that the capability information transmission source terminal 200 supports (or does not support). The AP 100 may perform operations, processing, or control according to the determination result based on the capability information. For example, the AP 100 may control terminal groups based on capability information received from the terminals 200.
  • the terminal 200 does not support some of the functions, operations, or processes shown in each of the embodiments described above does not mean that such some functions, operations, or processes are limited in the terminal 200. It's okay to be hit. For example, information or requests regarding such restrictions may be notified to AP 100.
  • Information regarding the capabilities or limitations of the terminal 200 may be defined in a standard, for example, or may be implicitly notified to the AP 100 in association with information known in the AP 100 or information sent to the AP 100. .
  • Each functional block used in the description of the above embodiment is partially or entirely realized as an LSI that is an integrated circuit, and each process explained in the above embodiment is partially or entirely realized as an LSI, which is an integrated circuit. It may be controlled by one LSI or a combination of LSIs.
  • the LSI may be composed of individual chips, or may be composed of a single chip that includes some or all of the functional blocks.
  • the LSI may include data input and output.
  • LSIs are sometimes called ICs, system LSIs, super LSIs, and ultra LSIs depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized using a dedicated circuit, a general-purpose processor, or a dedicated processor. Furthermore, an FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured or a reconfigurable processor that can reconfigure the connections and settings of circuit cells inside the LSI may be used.
  • FPGA Field Programmable Gate Array
  • reconfigurable processor that can reconfigure the connections and settings of circuit cells inside the LSI may be used.
  • the present disclosure may be implemented as digital or analog processing.
  • the present disclosure can be implemented in all types of devices, devices, and systems (collectively referred to as communication devices) that have communication capabilities.
  • the communication device may include a wireless transceiver and processing/control circuitry.
  • the wireless transceiver may include a receiving section and a transmitting section, or both as functions.
  • the wireless transceiver (transmitter, receiver) may include an RF (Radio Frequency) module and one or more antennas.
  • RF modules may include amplifiers, RF modulators/demodulators, or the like.
  • Non-limiting examples of communication devices include telephones (mobile phones, smart phones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital still/video cameras, etc.) ), digital players (e.g.
  • digital audio/video players wearable devices (e.g. wearable cameras, smartwatches, tracking devices), game consoles, digital book readers, telehealth/telemedicine (e.g. These include care/medicine prescription) devices, communication-enabled vehicles or mobile transportation (cars, airplanes, ships, etc.), and combinations of the various devices described above.
  • wearable devices e.g. wearable cameras, smartwatches, tracking devices
  • game consoles digital book readers
  • digital book readers e.g. These include care/medicine prescription) devices, communication-enabled vehicles or mobile transportation (cars, airplanes, ships, etc.), and combinations of the various devices described above.
  • Communication equipment is not limited to portable or movable, but also non-portable or fixed equipment, devices, systems, such as smart home devices (home appliances, lighting equipment, smart meters or It also includes measuring instruments, control panels, etc.), vending machines, and any other "things” that can exist on an Internet of Things (IoT) network.
  • IoT Internet of Things
  • Communication includes data communication using cellular systems, wireless LAN systems, communication satellite systems, etc., as well as data communication using a combination of these.
  • Communication devices also include devices such as controllers and sensors that are connected or coupled to communication devices that perform the communication functions described in this disclosure. Examples include controllers and sensors that generate control and data signals used by communication devices to perform communication functions of a communication device.
  • Communication equipment also includes infrastructure equipment, such as base stations, access points, and any other equipment, devices, or systems that communicate with or control the various equipment described above, without limitation. .
  • An access point uses identification information common to multiple terminals included in a terminal group to instruct allocation of uplink signal transmission resources for some traffic types among multiple traffic types. and a transmitting circuit that transmits the control signal.
  • some of the traffic types are traffic types that require low delay.
  • the identification information is associated with information regarding some of the traffic types.
  • the size of the transmission resource is an integer multiple of 20MHz.
  • the transmission timings of the uplink signals set to the plurality of terminals in the terminal group are different.
  • the transmission timing of the uplink signal is randomly selected from a plurality of candidates.
  • the transmission timing of the uplink signal is individually set for each terminal within the terminal group.
  • one control signal includes a plurality of terminal individual information corresponding to the identification information common to the plurality of terminals.
  • the transmission timing when a plurality of transmission resources are designated by terminal individual information corresponding to the same identification information among the plurality of terminal individual information, the transmission timing The faster transmission resources are applied.
  • a guard band is set in the transmission resource of each of the plurality of terminals at a boundary with other resources.
  • the first format of the uplink signal is assigned by terminal individual information corresponding to the identification information common to the plurality of terminals, and the terminal individual information corresponding to the identification information individual to the terminals.
  • the second format of the uplink signal to be assigned is different.
  • the number of repetitions of symbols in the uplink signal is set based on the transmission timing of the uplink signal.
  • the length of a symbol in the uplink signal is set based on the transmission timing of the uplink signal.
  • a format of terminal individual information corresponding to the identification information common to the plurality of terminals and a format of terminal individual information corresponding to identification information individual to the terminals are different.
  • the order of transmission of individual terminal information corresponding to the identification information common to the plurality of terminals is higher than the order of transmission of individual terminal information corresponding to identification information individual to the terminals. It's also early.
  • a terminal uses identification information common to a plurality of terminals included in a terminal group to instruct allocation of uplink signal transmission resources for some traffic types among a plurality of traffic types. It includes a receiving circuit that receives a control signal, and a control circuit that controls the uplink transmission based on the control signal.
  • an access point uses identification information common to a plurality of terminals included in a terminal group to obtain uplink signal transmission resources for some traffic types among a plurality of traffic types. and transmits the control signal.
  • a terminal uses identification information common to a plurality of terminals included in a terminal group to allocate uplink signal transmission resources for some traffic types among a plurality of traffic types.
  • a control signal instructing allocation is received, and the uplink transmission is controlled based on the control signal.
  • An embodiment of the present disclosure is useful for wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

アクセスポイントは、端末グループに含まれる複数の端末に共通の識別情報を用いて、複数のトラフィック種別のうち一部のトラフィック種別の上り信号の送信リソースの割り当てを指示する制御信号を生成する制御回路と、制御信号を送信する送信回路と、を具備する。

Description

アクセスポイント、端末、及び通信方法
 本開示は、アクセスポイント、端末、及び通信方法に関する。
 The Institute of Electrical and Electronics Engineers(IEEE)において、規格IEEE 802.11ax(以下、「11ax」とも呼ぶ)の後継規格として、IEEE 802.11be(以下、「11be」とも呼ぶ)の仕様策定が進められている。例えば、11axはHigh Efficiency(HE)とも呼ばれ、11beはExtreme High Throughput(EHT)とも呼ばれる。また、11beの後継規格についても要求仕様の議論が進められている(例えば、非特許文献4を参照)。例えば、11beの後継規格を「EHT-plus」又は「beyond 11be」とも呼ぶ。
IEEE 802.11-22/0729r1, 802.11 GEN8 Study Group IEEE 802.11-22/0734r0, Next Gen After 11be: Main Directions Proposal IEEE 802.11-20/1902r0, UORA Enhancements to address RTA IEEE 802.11-22/0059r0, Beyond ‘be’ IEEE 802.11-21/1488r1, CC36 CR for Trigger frame on EHT User Info field IEEE 802.11-21/0485r3, EHT TF Clarifications
 しかしながら、無線LANのような無線通信における上り信号の送信方法については十分に検討されていない。
 本開示の非限定的な実施例は、無線通信における上り信号の送信効率を向上できるアクセスポイント、端末及び通信方法の提供に資する。
 本開示の一実施例に係るアクセスポイントは、端末グループに含まれる複数の端末に共通の識別情報を用いて、複数のトラフィック種別のうち一部のトラフィック種別の上り信号の送信リソースの割り当てを指示する制御信号を生成する制御回路と、前記制御信号を送信する送信回路と、を具備する。
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一実施例によれば、例えば、無線通信における上り信号の送信効率を向上できる。
 本開示の一実施例における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
Trigger frameの一例を示す図 Common Info fieldの一例を示す図 User Info fieldの一例を示す図 Special User Info fieldの一例を示す図 アクセスポイント(AP:Access Point)の一部の構成例を示すブロック図 端末の一部の構成例を示すブロック図 アクセスポイントの構成例を示すブロック図 端末グループ情報の一例を示す図 端末グループ情報の一例を示す図 User Info fieldの一例を示す図 端末グループ情報の一例を示す図 端末グループ情報の一例を示す図 端末の構成例を示すブロック図 上り信号の送信例を示す図 端末グループ情報の一例を示す図 端末グループ情報の一例を示す図 端末グループ情報の一例を示す図 端末グループ情報の一例を示す図 端末グループ情報の一例を示す図 端末グループ情報の一例を示す図 端末グループ情報の通知例を示す図 端末グループ情報の通知例を示す図 AP及び端末の動作例を示す図 上り信号の送信例を示す図 上り信号の送信例を示す図 上り信号の送信例を示す図 Trigger frameの生成例を示す図 端末グループ情報の一例を示す図 上り信号の送信例を示すブロック図
 以下、本開示の各実施の形態について図面を参照して詳細に説明する。
 11be及びBeyond 11beでは、Gaming又はVirtual Reality(VR)といったユースケースを想定し、更なる遅延の低減(Low latency)の必要性が提案されている(例えば、非特許文献1又は2を参照)。
 例えば、非特許文献3には、低遅延を目的に、uplink orthogonal frequency division multiple access (OFDMA) random access(UORA)を用いることが提案されている。アクセスポイント(AP:Access Point。又は、「AP STA」、「基地局」とも呼ばれる)は、端末(STA:Station。又は、「non-AP STA」とも呼ばれる)のbuffer status reports(BSR)を認識していない場合、複数の端末をグループ化し、グループ化した複数の端末にRandom access - Resource unit(RA-RU)を割り当てる。これにより、例えば、送信すべきデータを有する端末は、BSRをAPに事前に通知することなく、上り(UL:uplink)信号を送信できるので、遅延を低減できる可能性がある。
 例えば、複数の端末が選択するRA-RUが重なる場合、複数の端末間のUL信号が衝突し、APは全てのUL信号を受信できない可能性がある。その一方で、UL信号の衝突率低減のため、例えば、APがスケジューリングするRA-RUを増加すると、送信すべきデータを有する端末が少ない場合、RA-RUが使用されず、リソースが無駄に消費される可能性がある。
 本開示の非限定的な実施例では、複数の端末を含むグループに割り当て可能なリソース(例えば、RA-RU)を増加させずに、複数の端末間のUL信号の衝突を低減することにより、遅延を低減できる方法の例について説明する。例えば、低遅延が要求されるデータを有する端末は、BSRをAPに事前に通知することなくUL送信可能な方法に加えて、当該データを有する端末が複数存在する場合でもUL信号の衝突を低減する方法の例について説明する。
 本開示の非限定的な実施例では、11ax及び11beにおいて用いるUL信号の送信を指示する制御信号(以下、「トリガーフレーム(TF:Trigger frame)」と呼ぶ)を改良した方法により、UL信号のLow Latencyを実現する。
 図1は、Trigger frameの一例を示す図である。図1に示すように、Trigger frameは、周波数多重する複数の端末に対して、複数の端末に共通の情報(例えば、端末共通情報とも呼ぶ)を含めるフィールド(「共通情報フィールド(Common Info field)」)、及び、User Info Listと称されるフィールドを含む。User Info fieldには、端末に個別(あるいは固有)の情報(例えば、端末個別情報とも呼ぶ)を含めるフィールド(「ユーザ情報フィールド(User Info field)」)が1つ以上含まれてよい。
 また、11beでは、例えば、Trigger frameに、11be(EHT)に対応する端末向けの情報を含めるフィールド(例えば、「Special User Info field」)が含まれてよい(図示せず)。
 図2は、11be(例えば、EHT)において検討されるCommon Info fieldの構成例を示す図である(例えば、非特許文献4を参照)。また、図3は、11be(EHT)において検討されるUser Info fieldの構成例を示す図である(例えば、非特許文献5を参照)。また、図4は、Special User Info fieldの構成例を示す図である(例えば、非特許文献6を参照)。
 11ax及び11beでは、例えば、端末は、Trigger frameを含む信号(例えば、PPDU:physical layer (PHY) protocol data unit)を受信し、Trigger frame内のUser Info fieldにおいて当該端末のAssociation ID(AID)が指定された場合、PPDU終了タイミングからSIFS(Short Interframe Space)後の送信タイミングにおいて、指示されたリソース(RU)にてUL信号(例えば、TB-PPDU:trigger-based PPDU)を送信する。
 例えば、複数の端末に割り当て可能なリソース(例えば、RA-RU)において複数の端末のそれぞれがUL信号の送信直前にキャリアセンスを実行する場合、複数の端末におけるキャリアセンス結果はIdleとなるため、複数の端末のUL信号が衝突し得る。
 本実施の形態では、Trigger frameによって、複数の端末を含むグループ(例えば、端末グループ)のグループ識別子(例えば、Group AIDと呼ぶ)を用いて、一部のトラフィック種別(例えば、Low Latency Traffic)の送信用RUのスケジューリングが行われてよい。また、例えば、端末グループ内の複数の端末間のUL信号の送信タイミングを異ならせることで、衝突を低減できる。
 [無線通信システムの構成]
 本実施の形態に係る無線通信システムは、例えば、図5に示すAP100、及び、図6に示す端末(STA)200を備えてよい。AP100及び端末200の少なくとも一方は、無線通信システムにおいて2つ以上存在してもよい。
 AP100は、例えば、端末200を含む複数の端末を端末グループにグループ化し、端末グループに関する端末グループ情報(例えば、端末のAIDとGroup IDとの関連付けを含む)を端末200へ通知する。また、AP100は、例えば、事前に定義される複数の端末200を含む端末グループに対して、一部のトラッフィク種別(例えば、低遅延(Low Latency)が要求されるトラッフィク)に限定したUL信号の送信を指示するTrigger frameを送信する。
 端末200は、例えば、Trigger frameを受信し、受信したTrigger frameによって指示される無線リソース(例えば、送信帯域(例えば、RU)又は信号長)、及び、送信タイミングに基づいて、AP100へUL信号を送信する。
 なお、低遅延が要求されるトラフィックは、例えば、Low Latency Traffic、あるいは、Latency Sensitive Trafficとも呼ばれる。
 図5は、本開示の一実施例に係るAP100の一部の構成例を示すブロック図である。図5に示すAP100において、制御部(例えば、制御回路に対応)は、端末グループに含まれる複数の端末200に共通の識別情報(例えば、Group association ID (AID))を用いて、複数のトラフィック種別のうち一部のトラフィック種別の上り信号の送信リソースの割り当てを指示する制御信号(例えば、Trigger frame)を生成する。送信部(例えば、送信回路に対応)は、制御信号を送信する。
 図6は、本開示の一実施例に係る端末200の一部の構成例を示すブロック図である。図6に示す端末200において、受信部(例えば、受信回路に対応)は、端末グループに含まれる複数の端末200に共通の識別情報(Group AID)を用いて、複数のトラフィック種別のうち一部のトラフィック種別の上り信号の送信リソースの割り当てを指示する制御信号(Trigger frame)を受信する。制御部(例えば、制御回路に対応)は、制御信号に基づいて、上り送信を制御する。
 [AP100の構成例]
 AP100は、例えば、端末200へ端末グループ情報を送信し、端末グループ情報を保持する。また、AP100は、例えば、複数の端末200を含む端末グループに対して所定のトラフィックの送信を指示するTrigger frameを端末200へ送信する。
 図7は、AP100の構成例を示すブロック図である。図7に示すAP100は、例えば、端末グループ生成部101と、スケジューリング部102と、Common Info生成部103と、User Info生成部104と、Trigger frame生成部105と、誤り訂正符号化部106と、変調部107と、無線送受信部108と、復調部109と、誤り訂正復号部110と、端末情報保持部111と、を備えてよい。
 例えば、端末グループ生成部101と、スケジューリング部102と、Common Info生成部103と、User Info生成部104と、Trigger frame生成部105と、端末情報保持部111とは、アクセス制御部(例えば、Medium Access Control(MAC)処理部)に含まれてよい。
 また、図7に示す端末グループ生成部101、スケジューリング部102、Common Info生成部103、User Info生成部104、Trigger frame生成部105、誤り訂正符号化部106、変調部107、復調部109、誤り訂正復号部110、及び、端末情報保持部111の少なくとも一つは、例えば、図5に示す制御部に含まれてよい。また、図7に示す無線送受信部108は、例えば、図5に示す送信部に含まれてよい。
 端末グループ生成部101は、例えば、端末情報保持部111から入力される端末情報に基づいて、複数の端末200を含む端末グループを生成し、生成した端末グループに関する情報(例えば、端末グループ情報)を、誤り訂正符号化部106及びスケジューリング部102へ出力する。
 端末情報には、例えば、端末200のCapability情報、送信バッファ状態に関する情報、受信品質情報が含まれてよい。Capability情報には、例えば、端末200がLow latency trafficの送受信に対応しているか否かを示す情報が含まれてよい。また、送信バッファ状態に関する情報には、例えば、端末200における、AP100宛てのLow latency trafficの上り又は下りバッファのサイズ又は遅延要求(遅延バジェット等)に関する情報が含まれてよい。また、受信品質情報には、例えば、端末200が測定した信号の受信レベル、Signal to Interference and Noise Ratio(SINR)又はパスロス値が含まれてもよい。
 端末グループ生成部101は、例えば、Capability情報に基づいて、Low latency trafficの送受信に対応している端末200を複数選択し、端末グループにグループ化してもよい。
 端末グループ情報には、例えば、図8に示すように、少なくとも、端末のAIDと、グループ識別子(例えば、Group AID)とが関連付けられた情報が含まれてよい。
 また、端末グループ情報には、例えば、図9に示すように、端末グループ内の端末200にUL信号の送信を許可するトラッフィク種別を示すトラフィック情報(例えば、Restricted UL Traffic ID (TID) Bitmap subfield)、及び、UL信号の送信タイミングに関する情報(例えば、送信タイミング情報)の少なくとも一つが関連付けられてもよい。
 送信を許可するトラッフィク情報は、例えば、図9に示すようにビットマップ形式で表され、TID毎の送信可否が指示されてもよい。例えば、図9に示すように、Restricted UL TID Bitmap subfieldは、8ビットのビットマップで表されてよい。8ビットのビットマップの各ビットは、8種類(例えば、TID番号0~7)のトラフィック種別にそれぞれ対応してよい。一例として、図9に示すように、「11000000」が指示される場合、端末200では、TID番号が0及び1(1番目及び2番目)のトラッフィクデータのUL送信が可能となり、他のTID番号に対応するトラフィックデータのUL送信が不可となる。例えば、TIDは、許容される遅延量と関係するため、送信を許可するトラフィック情報によってTIDを指定することにより、低遅延が要求されるトラッフィクのUL送信を可能とし、他のトラフィックのUL送信を不可とする設定が可能となる。
 また、UL信号の送信タイミング情報には、例えば、Trigger frameを含むPPDUの終了タイミングに対するUL信号の送信タイミングのオフセットに関する情報が含まれてよい。
 端末グループ生成部101は、生成した端末グループ情報を保持する。なお、端末グループ情報の例については後述する。
 なお、端末グループ生成部101は、例えば、端末情報保持部111から入力される端末情報の一部に基づいて端末グループを生成してもよい。例えば、端末グループは、端末200の送信バッファ状態及び受信品質を考慮せずに、Capability情報に基づいて定義されてもよい。
 スケジューリング部102は、例えば、端末200に対するスケジューリングを行ってよい。例えば、スケジューリング部102は、端末グループ生成部101から入力される端末グループ情報、及び、端末情報保持部111から入力される端末情報に基づいて、複数の端末200を含む端末グループに対する無線リソース(例えば、送信帯域、及び、信号長の少なくとも一つを含む)を割り当ててよい。
 例えば、複数の端末200を含む端末グループへ割り当てる送信帯域は、Trigger frameを含むPPDUの送信帯域の少なくとも一部に設定されてよい。また、送信帯域は、例えば、規定の帯域幅(例えば、20MHz×N(Nは自然数)、又は、キャリアセンスを行う帯域幅の自然数倍)に設定(又は、限定)されてもよい。また、AP100が端末200の送信バッファ状態又は受信品質を動的に把握していない場合、スケジューリング部102は、規定の周期毎に、複数の端末200を含む端末グループに対して無線リソースを割り当ててもよい。
 スケジューリング部102は、例えば、決定した複数の端末200を含む端末グループに関する情報及び無線リソースの割当情報を、Common Info生成部103及びUser Info生成部104に出力する。
 Common Info生成部103は、例えば、複数の端末200に共通のCommon Info field(例えば、図2)に含まれる制御情報を生成してよい。Common Info生成部103は、例えば、スケジューリング部102から入力される無線リソースの割当情報に基づいて、Trigger type subfield、及び、CS Required subfieldの情報を生成してよい。
 Trigger Type subfieldは、例えば、Trigger frameの種別(例えば、AP100が端末200に送信させる信号種別)を指示するsubfieldである。例えば、AP100は、端末グループの無線リソースの割り当てを指示するTrigger frameのTrigger TypeをBasicとして指示してもよい。なお、端末グループの無線リソースの割り当てを指示するTrigger frameのTrigger Typeは、Basicと異なる他のTrigger Type(例えば、BFRP(Beamforming Request Poll)、MU-BAR(multi-user block ack request)、MU-RTS(multi-user request to send)、BSRP(Buffer Status Report Poll)、GCR MU-BAR(Groupcast with retries multi-user block ack request)、BQRP(Bandwidth Query Report Poll)、NFRP(NDP Feerback Request Poll)等)でもよい。例えば、AP100は、Trigger frameのTrigger TypeをMU-RTSとして指定してもよい。MU-RTSを用いると、Trigger frameに含まれる無線リソースの割り当て指示及び本開示の一実施例のUL送信ルールは、TXOP(Transmission Opportunity:送信機会)期間にわたって、1または複数のフレーム(例えば、Trigger frame後に行われる1または複数のデータフレームやBlock Ackフレームの送受信)に適用され得る。また、別の一例では、Trigger frameは端末グループによる所定のトラッフィク(例えば、Low Latency Traffic)に限定したUL送信の指示を明示した、新たに定義されるTrigger Typeでもよい。
 CS Required subfieldは、例えば、Trigger frameに応答するUL信号の送信前に、キャリアセンス(Carrier Sense)の実行の要否(又は、必要性)を端末200に指示するsubfieldである。例えば、CS Required subfieldの値が0の場合、キャリアセンスを実行しないことが端末200に指示され、CS Required subfieldの値が1の場合、キャリアセンス実行が端末200に指示されてよい。キャリアセンス実行を指示する場合(CS Required subfield value = 1の場合)、端末200は、UL送信前にキャリアセンスを実行し、キャリアセンス結果がIdleであればUL信号を送信し、BusyであればUL信号の送信を中止する。AP100は、例えば、端末グループに対して、UL送信前のキャリアセンスの実行を指示するようにCS Required subfield(つまり、CS Required subfield value = 1)を設定してよい。
 Common Info生成部103は、生成したCommon Info fieldに関する情報を、Trigger frame生成部105へ出力してよい。
 なお、Trigger frame内のフィールド(例えば、subfield)の「設定」という用語は、例えば、「定義」、「解釈」などの他の用語に置き換えられてよい。
 User Info生成部104は、例えば、Special User Info field、又は、端末200に個別のUser Info fieldに含まれる制御情報を生成してよい。User Info生成部104は、例えば、図3及び図4に示すように、規定のフォーマットに基づいて、Special User Info field、又は、端末200に個別のUser Info fieldに関する情報を生成し、複数の端末200それぞれに対するUser Info fieldを含むUser Info Listに関する情報を生成してよい。User Info生成部104は、例えば、User Info Listに関する情報をTrigger frame生成部105へ出力してよい。
 また、User Info生成部104は、例えば、複数のUser Info fieldを、割当RUの種別に応じて、規定の順に並べてUser Info Listを生成してよい。例えば、User Info生成部104は、所定のトラッフィクに限定した割当RU、及び、端末グループ用の割当RUの少なくとも一つを指示するUser Info fieldを、他の割当RUを指示するUser Info fieldより優先して(例えば、より早い順序で)並べてUser Info Listを生成してもよい。
 また、User Info fieldのAID12 subfieldには、端末200を含む端末グループの識別子(例えば、図8及び図9に示すGroup AID)が含まれてよい。User Info生成部104は、例えば、RU Allocation subfieldを、スケジューリング部102から入力される無線リソースの割当情報に基づいて生成してよい。
 また、User Info fieldのフォーマットは、AID12 subfieldの値(例えば、端末グループ識別子であるか否か)に応じて変更(又は、切り替え、設定)されてもよい。例えば、端末グループのGroup AIDに対応するUser Info fieldのフォーマットと、端末200に個別のAIDに対応するUser Info fieldのフォーマットとは、異なってよい。一例として、AID12 subfieldの値が或る端末の個別のAIDを示す場合、図3に示すフォーマットが適用されてよい。また、例えば、AID12 subfieldの値が端末グループのGroup AIDを示す場合、図10に示すフォーマットが適用されてよい。
 また、AID12 subfieldの値が端末グループを示す場合、例えば、端末グループ情報に含まれない情報(例えば、MCS情報、又は、送信を許可するトラッフィク情報等)がTrigger frameによって端末200へ通知されてもよい。
 一例として、図3に示すUser Info fieldのフォーマットにおける、UL信号のModulation and Coding Scheme(MCS)情報を示す「UL FEC Coding Type subfield」及び「UL EHT-MCS subfield」のビット位置(例えば、B20-B24)は、図10に示すUser Info fieldのフォーマットでは、UL信号の送信タイミング情報を示す「Transmission timing information subfield」に変更されてよい。また、例えば、図11に示すように、端末グループ情報において、端末グループ(例えば、Group AID)毎に用いるMCSが定義され、端末200に予め通知されてよい。これにより、端末グループが指定される場合、端末200は端末グループ情報に含まれるMCSを設定するため、Trigger frameでは、UL FEC Coding Type subfield及びUL EHT-MCS subfieldは無くてよいので、これらのsubfieldのビット位置にUL信号の送信タイミング情報を含めることができる。
 なお、UL信号の送信タイミング情報としては、図11に示すように、端末グループ内の複数の端末200(例えば、STA1~STA3、及び、STA4~STA6)のそれぞれに対して1つのタイミング(例えば、オフセット)が設定されてよい。または、UL信号の送信タイミング情報としては、図12に示すように、端末グループ内の複数の端末200(例えば、STA1、STA2及びSTA3)のそれぞれに対して複数のタイミング候補(例えば、オフセットのパターン)が設定されてよい。例えば、図12では、端末グループを構成する各端末200のオフセットのパターン番号(pattern 1~3)が設定される。これにより、AP100は、Trigger frameによって、各端末200の送信タイミング情報(例えば、複数のパターン番号の何れか一つ)を動的に指示できるので、端末200間のUL送信機会の公平性を向上できる。
 端末200を含む端末グループへの割当帯域情報(例えば、RU allocation subfieldによって通知される送信リソースのサイズ)は、例えば、端末200に割り当てられる20MHz×N(例えば、20MHzの整数倍)の周波数リソース位置に設定(例えば、限定)されてもよい。例えば、20MHz×Nの周波数リソース位置の通知方法として、11axにおいて使用されるmulti-user request to send(MU-RTS)によるclear to send(CTS)フレームの周波数リソースの通知方法が適用されてもよい。
 また、11beにおいて新たにサポートされる320MHzを含むOperation帯域において、割当期間における通信用の周波数リソース位置が通知される場合、例えば、図4に示すSpecial User Info fieldに含まれる「UL Bandwidth Extension subfield」が使用されてよい。例えば、Common Info fieldのUL BW subfieldと、Special User Info fieldのUL Bandwidth Extension subfieldとの組み合わせによって、端末200に対してOperation帯域幅が通知されてよい。
 なお、Special User Info fieldには、端末200、及び、端末200を含む端末グループに対する制御情報が含まれてよい。
 User Info生成部104は、例えば、生成したUser Info Listに関する情報を、Trigger frame生成部105へ出力してよい。
 Trigger frame生成部105は、例えば、図1に示すフォーマットに基づいて、Common Info生成部103から入力されるCommon Info fieldの情報、User Info生成部104から入力されるUser Info List(例えば、Special User Info field及び少なくとも一つのUser Info field)の情報を含むTrigger frameを生成してよい。Trigger frameには、例えば、Common Info field及びUser Info Listに加え、MAC header、Padding、frame check sequence(FCS)の少なくとも一つが含まれてよい。Trigger frame生成部105は、例えば、生成したTrigger frameを、誤り訂正符号化部106へ出力してよい。
 誤り訂正符号化部106は、例えば、端末グループ生成部101から入力される端末グループ情報を含む送信データ信号、又は、Trigger frame生成部105から入力されるTrigger frameを含む送信データ信号を誤り訂正符号化し、符号化した信号を変調部107へ出力する。端末グループ情報及びTrigger frameの送信順は次の通りでよい。例えば、AP100は、端末グループ情報を先に端末200へ通知する。その後、AP100は、端末グループへUL送信を指示したTrigger frameを端末200へ通知する。
 変調部107は、例えば、誤り訂正符号化部106から入力される信号に対して変調処理を行い、変調後の信号を無線送受信部108へ出力する。
 なお、変調後のデータ信号が直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)信号である場合、AP100(例えば、変調部107)は、変調信号を規定の周波数リソースにマッピングし、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理を行って時間波形に変換し、サイクリックプリフィックス(CP:Cyclic Prefix)を付加することにより、OFDM信号を形成してよい。
 無線送受信部108は、例えば、変調部107から入力される変調信号に対して、D/A変換、及び、キャリア周波数へのアップコンバートといった無線送信処理を行い、無線送信処理後の信号を、アンテナを介して端末200へ送信する。また、無線送受信部108は、例えば、端末200から送信された信号を、アンテナを介して受信し、受信した信号に対して、ベースバンドへのダウンコンバート、及び、A/D変換といった無線受信処理を行い、無線受信処理後の信号を復調部109へ出力する。
 復調部109は、例えば、無線送受信部108から入力される信号に対して復調処理を行い、復調後の信号を誤り訂正復号部110へ出力する。なお、復調部109に入力される信号がOFDM信号の場合には、AP100(例えば、復調部109)は、CP除去処理、及び、高速フーリエ変換(FFT:Fast Fourier Transform)処理を行ってよい。
 誤り訂正復号部110は、例えば、復調部109から入力される信号を復号して、端末200からの受信データ信号を得る。誤り訂正復号部110は、例えば、復号後の受信データに上述した端末情報が含まれる場合、端末情報を含む復号データを端末情報保持部111へ出力する。
 端末情報保持部111は、例えば、誤り訂正復号部110から入力される復号データから、端末情報(例えば、端末200のCapability情報、送信バッファ状態、受信品質に関する情報が含まれてよい)を取得(又は、保持)し、取得した端末情報を端末グループ生成部101及びスケジューリング部102へ出力してよい。
 [端末200の構成例]
 端末200は、例えば、AP100から、端末グループ情報を受信し、端末グループ情報を保持する。また、端末200は、例えば、端末グループのグループ識別子(例えば、Group AID)を用いて、Low latency Traffic送信用RUをスケジューリングするTrigger frameを受信し、Trigger frameに対する応答として、UL信号をAP100へ送信する。
 図13は、端末200の構成例を示すブロック図である。図13に示す端末200は、例えば、無線送受信部201と、復調部202と、誤り訂正復号部203と、Common Info取得部204と、端末グループ情報保持部205と、User Info取得部206と、データ生成部207と、誤り訂正符号化部208と、変調部209と、を備えてよい。
 例えば、Common Info取得部204と、端末グループ情報保持部205と、User Info取得部206と、データ生成部207との少なくとも一つは、アクセス制御部(例えば、MAC処理部)に含まれてよい。
 また、図13に示す復調部202、誤り訂正復号部203、Common Info取得部204、端末グループ情報保持部205、User Info取得部206、データ生成部207、誤り訂正符号化部208、及び、変調部209の少なくとも一つは、例えば、図6に示す制御部に含まれてよい。また、図13に示す無線送受信部201は、例えば、図6に示す受信部に含まれてよい。
 無線送受信部201は、例えば、受信信号をアンテナによって受信し、受信信号に対して、ダウンコンバート及びA/D変換といった無線受信処理を行い、無線受信処理後の信号を復調部202へ出力する。
 また、無線送受信部201は、例えば、変調部209から入力される信号に対して、アップコンバート及びD/A変換といった無線送信処理を行い、無線送信処理後の信号をアンテナから送信する。例えば、無線送受信部201は、端末グループ情報保持部205から入力される情報(例えば、送信タイミングに関する情報)に基づいて、送信タイミングを決定し、決定した送信タイミングに従って信号をアンテナから送信してよい。
 復調部202は、例えば、無線送受信部201から入力される受信データに対して復調処理を行い、復調した信号を誤り訂正復号部203へ出力する。なお、復調部202へ入力される信号がOFDM信号の場合、端末200(例えば、復調部202)は、例えば、CP除去処理及びFFT処理を行ってよい。
 誤り訂正復号部203は、例えば、復調部202から入力される復調信号を復号し、復号された信号を受信データ信号として出力してよい。また、誤り訂正復号部203は、例えば、受信データ信号のうち、Trigger frameをCommon Info取得部204及びUser Info取得部206へ出力する。また、誤り訂正復号部203は、例えば、受信データ信号のうち、端末グループ情報を含むframeを端末グループ情報保持部205へ出力する。
 Common Info取得部204は、例えば、誤り訂正復号部203から入力されるTrigger frameから、Common Info fieldに対応する情報を抽出し、端末共通情報を取得してよい。
 端末共通情報には、例えば、端末200への割当channelに関する情報が含まれてよい。なお、端末200への割当期間に関する情報が端末共通情報として含まれてもよい。また、端末共通情報には、例えば、Trigger Type subfield、CS Required subfieldが含まれてもよい。Trigger Type subfieldの値が、端末グループによる所定のトラッフィク(例えば、Low Latency Traffic)に限定したUL送信を指示する種別に対応する場合、端末200は、User Info fieldのフォーマットをBasic種別のフォーマットから変更して解釈してもよい。また、CS Required subfield valueが1の場合、端末200は、UL送信前のキャリアセンスの実行をする。キャリアセンスを実行する期間は、例えば、Trigger frameを含むPPDUの終了タイミングからAP100から予め指示された(又は、Trigger frameで指示された)所定のUL送信タイミングまでの期間とする。
 Common Info取得部204は、抽出した端末共通情報をUser Info取得部206へ出力してよい。
 端末グループ情報保持部205は、例えば、誤り訂正復号部203から入力される端末グループ情報を含むframeから、端末グループ情報を取得し、保持する。端末グループ情報には、例えば、図8、図9、図11又は図12に示すように、少なくとも、端末AIDと端末グループ識別子(例えば、Group AID)とが関連付けられた情報が含まれてよい。また、端末グループ情報には、例えば、端末グループ内の各端末200の送信タイミング情報(Offset)が関連付けられてもよい。端末グループ情報保持部205は、例えば、保持する情報を、User Info取得部206、データ生成部207及び無線送受信部201へ出力してよい。
 User Info取得部206は、例えば、誤り訂正復号部203から入力されるTrigger frameから、User Info List(例えば、少なくとも一つのUser Info field及びSpecial User Info field)に対応する情報を抽出し、Common Info取得部204から入力される端末共通情報(例えば、Trigger Typeを含む)、及び、端末グループ情報保持部205から入力される情報に基づいて、User Info fieldの受信処理を行ってよい。
 例えば、User Info取得部206は、User Info fieldに含まれる端末識別情報(例えば、AID12 subfield)と、端末グループ情報保持部205から入力される端末グループ識別子(例えば、Group AID)とを比較することにより、端末200を含む端末グループへのUL送信指示が有るか否かを判断する。User Info取得部206は、端末グループへのUL送信指示が有るか否かに応じて、User Info fieldのフォーマットを特定してもよい。そして、User Info取得部206は、端末個別情報(例えば、無線リソースの割当情報、送信電力情報、UL信号長等)をUser Info fieldから取得する。なお、UL信号の信号長は、例えば、Trigger frameのUL Length subfieldで指示された時間長に基づいて決定されてもよい。
 User Info取得部206は、例えば、端末個別情報、及び、端末共通情報を、データ生成部207へ出力してよい。
 データ生成部207は、例えば、端末グループ情報保持部205から入力される情報、及び、User Info取得部206から入力される情報に基づいて、UL送信を許可するトラフィック情報を取得する。データ生成部207は、例えば、AP100から許可されたトラフィックデータを保持する場合、データ生成処理を行う。その一方で、データ生成部207は、AP100から許可されたトラフィックデータを保持しない場合、データ生成部207における以降の処理を停止してよい(例えば、UL信号を送信しない)。
 例えば、データ生成部207は、データ生成を実行する場合、生成したデータ信号(例えば、AP100宛てのUL信号)を誤り訂正符号化部208へ出力する。UL信号は、例えば、Trigger frameに対する応答信号でよく、TB-PPDUフォーマットによって生成されてもよい。
 誤り訂正符号化部208は、データ生成部207から入力されるデータ信号を誤り訂正符号化し、符号化した信号を変調部209へ出力する。なお、データ信号に対する符号化率は、例えば、User Info取得部206から入力される端末個別情報に従って決定されてよい。
 変調部209は、誤り訂正符号化部208から入力される信号を変調し、変調信号を無線送受信部201へ出力する。なお、変調部209において適用される変調方式は、例えば、User Info取得部206から入力される端末個別情報に従って決定されてよい。また、変調信号がOFDM信号の場合には、端末200(例えば、変調部209)は、周波数リソースに変調信号をマッピング後にIFFT処理を行い、CPを付加することにより、OFDM信号を形成してよい。
 なお、送信タイミング情報が端末グループ情報に含まれず、図10に示すフォーマットのTrigger frame(例えば、Transmission timing information subfield)によって通知される場合、端末200は、例えば、User Info取得部206から、送信タイミング情報を取得し(図示せず)、送信タイミング情報に示される送信タイミングに従って信号をアンテナから送信してよい。
 [AP100及び端末200の動作例]
 次に、本実施の形態に係るAP100及び端末200の動作例について説明する。
 AP100は、端末グループ情報を生成し、生成した端末グループ情報を、端末グループに含まれる複数の端末200(例えば、Non-AP端末)に通知する。また、AP100は、例えば、端末200と共有した端末グループ情報を含むTrigger frameを用いて、1つ以上の端末200に所定の送信タイミングのUL送信を指示する。
 本実施の形態により、AP100は、例えば、複数の端末200に同じ無線リソース(例えば、RA-RU)を割り当て、Low Latency Trafficを保持する端末200に対してUL送信を許可し、Low latency Trafficを保持しない端末200に対してUL送信を不許可とすることができる。これにより、例えば、端末200は、端末200からAP100へ送信バッファの通知(送信リソースの要求)の送信無しに、UL信号を送信できるため、遅延を低減できる。
 また、例えば、Low Latency Trafficを保持する端末200が複数存在する場合でも、端末グループ内の端末200間の送信タイミングを異ならせることにより、UL信号の衝突を低減でき、AP100は、例えば、1つの端末200からの信号を受信できる。
 図14は、本実施の形態に係るAP100及び端末200の動作例を示す。図14に示す例では、AP100は、3つの端末200(STA1、STA2、及び、STA3)にUL送信を指示する。また、AP100は、例えば、図9に示す端末グループ情報(Group AID=2008)を生成し、複数の端末200へ事前に通知する。図14に示すSTA1、STA2及びSTA3のそれぞれには、端末グループに含まれる複数の端末200に共通のGroup AID=2008が設定される。
 一例として、図14では、送信を許可するトラッフィク情報(例えば、Restricted UL TID Bitmap subfield)に、Low latency Trafficが含まれる例について説明する。
 図14において、STA1はLow Latency Trafficを保持しない。このため、STA1は、Restricted UL TID Bitmapに基づいて、UL信号の送信が許可されないと判断し、UL信号を送信しない。
 また、図14において、STA2は、Low Latency Trafficを保持する。このため、STA2は、Restricted UL TID Bitmapに基づいて、UL信号の送信が許可されると判断する。また、STA2は、図9に示す端末グループ情報においてSTA2に対して定義(又は、規定)される送信タイミング(Offset = SIFS + 9us)を用いる。図14において、STA2は、送信タイミングまでのキャリアセンス結果がIdleであるため、UL信号を送信する。
 また、図14において、STA3は、Low Latency Trafficを保持する。このため、STA3は、Restricted UL TID Bitmapに基づいて、UL信号の送信が許可されると判断する。また、STA3は、図9に示す端末グループ情報においてSTA3に対して定義された送信タイミング(Offset = SIFS + 18us)を用いる。図14において、STA3は、送信タイミングまでのキャリアセンスによってSTA2の信号を検出するため、キャリアセンス結果がBusyとなるため、UL信号を送信しない。
 図14に示すように、複数の端末200に割り当てられるリソースにおいて、複数のトラフィック種別のうち、一部の(規定の)トラフィック種別(例えば、Low latency Traffic)の送信が許可され、他のトラフィック種別の送信は許可されない。これにより、複数の端末200に割り当てられるリソースにおいて、UL送信される信号のトラフィック種別が限定されるので、UL信号が端末200間で衝突することを低減できる。
 また、規定のトラフィック種別のUL信号を保持する端末200が複数存在する場合でも、各端末200に設定されるUL信号の送信タイミングは異なる。これにより、複数の端末200に割り当てられるリソースにおいて、Low Latency Trafficを含むUL信号が端末200間で衝突することを低減できる。
 なお、割当リソースサイズ(例えば、UL信号の送信リソースサイズ)は、20MHz×N(例えば、20MHzの整数倍)に設定されてよい。この場合、端末200は、広帯域に信号を送信できるため、UL信号長(例えば、PPDUの時間長)を短縮でき、遅延を低減できる。また、割当リソースを20MHz×Nに設定することにより、既存の規格(例えば、11ax、11be等)の20MHz単位のキャリアセンスの仕様を変えることなく、本開示の一実施例を適用できる。
 また、割当リソースサイズは、20MHz以下に設定されてよい。この場合、端末200は、送信RUにおいてUL送信前のキャリアセンスを実行し、送信RUと異なるRUにおいてキャリアセンスを実行しなくてよい。これにより、割当リソースが20MHz以下の場合、例えば、20MHz帯域において異なる送信タイミングのUL信号を周波数多重できる。
 以下では、端末グループ情報の設定方法、端末200への端末グループ情報の通知方法、Trigger frameの生成方法、及び、UL送信方法について説明する。
 [端末グループ情報の設定例]
 上述したように、端末グループ情報には、例えば、図8に示すように、少なくとも端末毎のAIDとグループ識別子(例えば、Group AID)との対応関係を示す情報が設定されてよい。
 また、端末グループ情報には、例えば、図11に示すように、送信を許可する一部のトラフィック種別を示すトラッフィク情報(例えば、Restricted UL TID Bitmap subfield)、UL信号の送信タイミング情報(例えば、Offset subfield)、及び、MCS情報(例えば、MCS subfield)の少なくとも一つが設定されてもよい(又は、対応付けられてもよい)。
 AP100は、例えば、端末200のCapability情報に基づいて、Low latency trafficの送受信に対応する端末200を抽出し、端末グループにグループ化してもよい。また、AP100は、例えば、CapabilityがLow latency trafficの送受信をサポートする端末200のうち、Low latency trafficの上り又は下りバッファを保持する端末200を抽出し、端末グループにグループ化してもよい。なお、端末200のLow latency trafficの上り/下りバッファ状態は、例えば、端末200が遅延要求を含めた各トラッフィクサイズをBSRによってAP100に報告することで、AP100に通知されてもよい。
 なお、端末200のLow Latency Trafficに関連するCapability情報は、例えば、Association Request frameのCapability情報に含めてAP100へ通知されてもよい。AP100は、例えば、Association Request frameから端末のCapabilityを特定(又は、把握)でき、端末グループ情報を生成できる。
 また、端末200は、例えば、当該端末200のCapabilityに基づいて、Trigger frameへの応答の可否を判断してもよい。例えば、Low Latency Trafficの送受信に未対応の端末200は、端末グループによる所定のトラッフィクに限定したUL送信の指示を明示したTrigger Typeを検出した場合、Trigger frameに対する以降の復号処理を含むUL送信処理を停止してもよい。
 また、端末グループ番号(例えば、Group AID)には、例えば、図8、図9、図11及び図12に示すように、AID12 subfieldのReservedビット(例えば、2008 - 2044、2047 - 4094の何れか)が使用されてよい。
 または、端末グループ番号には、例えば、AID12 subfieldのReservedを使用せずに、Associated STAに使用されるAID(例えば、1 - 2007の何れか)が使用されてもよい。Associated STAに使用されるAIDを端末グループ番号に用いる場合、AP100は、端末グループ番号として使用されるAIDを、beyond 11beに対応する端末200(例えば、beyond 11be端末)には、端末200に個別のAID(以下、個別AIDと呼ぶ)として使用しない。なお、後述するように、AP100は、例えば、beyond 11be端末に、端末グループ番号として用いたAIDを、端末グループ情報を取得する機能を有さない端末(例えば、既存規格の端末)に、個別AIDとして使用してもよい。
 また、端末グループ番号は、例えば、複数の端末200に対してRA-RUを指示するAID(例えば、0, 2045)に設定されてもよい。例えば、AP100に接続済の端末200(Associated STA)の端末グループにはAID=0が設定され、AP100に未接続の端末200(Unassociated STA)の端末グループにはAID=2045が設定されてもよい。RA-RUを割り当ててLow Latency trafficのUL信号が指示される場合、端末200は、例えば、既存のRandom accessで用いるOBO(OFDMA random access backoff)を考慮せず、所定の送信タイミングでUL信号を送信してもよい(例えば、常にOBO = 0として動作してもよい)。
 また、例えば、既存の規格(例えば、11ax、11be)のみをサポートする端末と、本実施の形態に係る動作をサポートする規格(例えば、Beyond 11be)をサポートするbeyond 11be端末とが、同一の端末グループに含まれてもよい。例えば、図15に示すように、AP100は、beyond 11be端末にGroup AIDとして設定したAID(例えば、AID=2007)を、端末グループ情報を取得する機能を有さない端末(例えば、11beに対応する端末。図15ではSTA1)の個別AIDとして設定してもよい。これにより、AP100は、1つのAIDによって、beyond 11beに対応しない端末とbeyond 11be端末とに対して共通のRUをスケジューリングできる。
 この場合、Beyond 11be端末は、UL信号の送信タイミングを、設定されるオフセット分だけSIFSより遅らせて(例えば、SIFS + 9us)送信してもよい。その一方で、既存の規格のみをサポートする端末の送信タイミングは、本実施の形態の動作をサポートしないため、UL信号の送信タイミングは、SIFSに固定となる。よって、例えば、既存の規格のみをサポートする端末がUL信号を送信しない場合、Beyond 11be端末のキャリアセンスにより、Beyond 11be端末によるUL信号の送信が可能となるので、UL信号の衝突を回避でき、無線リソースを有効利用できる。
 また、1つの端末200に対して、複数のGroup AIDが定義(規定又は設定)されてもよい。例えば、図16に示すように、1つの端末200(例えば、STA1、STA2及びSTA3のそれぞれ)に対して、複数のGroup AID(例えば、2008及び2009)が定義されてよい。例えば、図16に示すように、各Group AIDに対して、異なるトラッフィク情報、異なる送信タイミング情報、あるいは、異なるMCS情報が対応付けられてもよい。これにより、AP100は、例えば、同じ端末200に対して、Trigger frameに含めるGroup AIDによって、UL送信させるトラッフィク種別、各端末200の優先度を決める送信タイミング、あるいは、MCSを柔軟に変更して、UL信号の送信を指示できる。
 また、UL送信タイミングは、図11、図12、図16のように、端末グループ内の端末200に個別に設定される場合に限定されず、例えば、端末グループ情報にUL送信タイミング(送信タイミングの候補)が複数設定され、各端末200に対して複数の候補からランダムに選択されてもよい。端末200は、例えば、複数の送信タイミング(送信タイミング候補)から、ランダムに1つの送信タイミングを選択(又は、適用)して用いてもよい。例えば、図17に示すように、端末グループ情報において、端末200が選択可能な送信タイミングを複数(例えば、SIFS、SIFS + 9us、及び、SIFS + 18us)定義されてよい。端末200は、例えば、端末グループ情報にて定義される複数の送信タイミングからランダムに1つの送信タイミングを選択し、用いることにより、複数の端末200間において、送信データの優先度が均一化され、端末200間の公平性を向上できる。
 また、上述したように、複数の送信タイミングから端末200がランダムに1つの送信タイミングを選択する動作の場合、端末グループに含まれる端末数に応じて、送信タイミングのパターン数が異なってもよい。例えば、端末グループに含まれる端末数が多いほど、UL信号の送信タイミングのパターン数(例えば、候補数)が多く設定されてもよい。一例として、端末グループの端末数が3以下の場合は、図17に示すように、3パターンの送信タイミングが定義され、端末グループの端末数が4以上の場合は、図18に示すように、6パターンの送信タイミングが定義されてもよい。このように、端末グループを構成する端末数に応じて選択可能な送信タイミングのパターン数を変えることにより、送信タイミングを所定時間内に抑え、また、端末200間の公平性を向上できる。
 また、送信を許可するトラッフィク情報(例えば、TID)に応じて、選択可能な送信タイミングセットが異なってもよい。例えば、優先度の高いトラフィック種別(例えば、低遅延が要求されるトラフィック)ほど、早い送信タイミングを含む送信タイミングセットが設定されてもよい。一例として、図19に示すように、優先度がより高い(例えば、低遅延が要求される)トラッフィク種別(図19では、11000000)の場合、SIFS~SIFS+18usの範囲のUL送信タイミングが定義され、優先度がより低いトラッフィク種別(図19では、00110000)の場合、SIFS+18us~SIFS+35usの範囲のUL送信タイミングが定義されてもよい。これにより、優先度が高いトラッフィク種別ほど、UL送信タイミングが早くなる確率が高くなるため、UL送信の遅延を低減できる。
 また、例えば、AP100は、端末200に対して、UL信号の送信タイミングをランダムに選択させるか、AP100から指示するかをUser Info fieldに含めて、指示してもよい。例えば、AP100は、図20に示すように、端末グループ内の各端末200に指示する送信タイミング(pattern1~pattern3)に加えて、端末200によるランダム選択(pattern4)を明示した端末グループ情報を生成してもよい。例えば、AP100は、User Info fieldの2ビットを用いて、pattern1~pattern4の何れかを端末200へ指示してもよい。
 これにより、AP100は、例えば、各端末200の通信状況に応じて、各端末200のUL送信タイミングを指示できるので、端末200間の公平性を向上できる。例えば、端末200間のスループットに差がある場合には、スループットが低い端末200の送信タイミングを早くすることにより、当該端末200のUL送信を優先させ、スループットを向上できる。また、例えば、端末200間のスループットの差が小さい場合は、ランダム選択を指示することにより、端末200間の公平性を維持できる。
 なお、AP100は、例えば、UL信号の送信タイミングとして、SIFSより小さいタイミング(例えば、Trigger frameを含むPPDUの終了タイミングに対して、SIFS - 6usのオフセット)を端末200に指示してもよい。例えば、AP100は、SIFSより小さいタイミングで応答可能なCapabilityを有する端末200には、SIFSより小さいタイミングを指示することで、UL信号を優先的に送信させることができる。
 また、送信タイミングの指示は端末グループ情報に含まれなくてもよい。例えば、UL送信を許可するトラッフィクのAccess Category(AC)に応じた送信タイミングが規格において定義されてもよく、あるいは、AP100と端末200との事前のネゴシエーションにおいて設定されてもよい。
 例えば、4種別のAC(例えば、Video、Voice、Best Effort、及び、Background)に応じた送信タイミングは、各ACの要求遅延から、以下のように設定されてもよい。トラッフィクID(TID)とACとは予め対応関係があるため、AP100は、UL送信を許可するトラッフィクをTIDで指示することで、端末200は、TIDに応じた送信タイミングを選択できる。
 Video:SIFS
 Voice:SIFS+9us
 Best Effort:SIFS+18us
 Background:SIFS+18us
 なお、本開示の一実施例で説明するAID、Group AIDの「AID」は、AP100がNon-AP端末に設定するAssociation identifierに限定されない。例えば、本開示の一実施例において、AIDは、Trigger frameのAID12 subfieldで使用される各種ID及び値を示すこともある。また、AIDは、端末のID、Group IDと呼ばれてもよい。また、Group AIDとは、Trigger frameでUL信号(Low latency trafficを含む)の送信を指示する1つ以上の端末200を特定するためのIDでもよい。Group AIDの定義は、既存のframeを流用してもよい。
 以上、端末グループ情報の設定例について説明した。
 [端末グループ情報の通知例]
 AP100から端末200への端末グループ情報の通知方法の例について説明する。
 端末グループ情報は、例えば、AP100から複数の端末200に対して、既存のframeとは異なるManagement frame(例えば、新Management frameと呼ぶ)を用いて通知されてもよい。
 例えば、新Management frameには、複数の端末グループ毎に、通知対象(送信先)の端末200が各端末グループに含まれるか否かを示すField(例えば、「Membership Status field」と呼ぶ)が含まれてよい。
 図21は、Membership Status fieldの一例を示す。図21の例では、64個のGroup AID(例えば、AID=2008~2071)毎に1ビットを用いて、送信先の端末200が各端末グループに含まれるか否か(例えば、メンバであるか、非メンバであるか)が通知される。例えば、図21において、B0及びB1の値が1(メンバ)であり、B0及びB1以外のビットが0(非メンバ)の場合、送信先の端末200に対して、Group AID = 2008, 2009が設定される。このように、図21に示す例では、端末グループ情報は、端末200に個別に通知される。
 また、Membership Statusと同様に、複数のGroup AID毎に8ビットを用いて、送信を許可するトラッフィク情報(例えば、Restricted UL TID Bitmap)が端末200へ通知されてもよい。
 また、例えば、図22に示すように、端末グループID(Group AID又はGroup ID)、当該端末グループに属する端末IDのセット(例えば、端末AIDがStart AID~End AIDの端末)、送信を許可するトラッフィク情報(例えば、Restricted UL TID)、及び、UL信号に用いるMCS情報(例えば、UL MCS)が、複数の端末200へまとめて通知されてもよい。このように、図22に示す例では、端末グループ情報は、複数の端末200にまとめて通知される。なお、図22に示す新Management frameは一例であり、これに限定されない。例えば、新Management frameには、少なくとも、Group ID、及び、端末IDのセット(例えば、Start AID及びEnd AID)が含まれてよい。
 例えば、端末個別に通知する方法(例えば、図21)は、端末グループ情報を複数の端末200にまとめて通知する方法(例えば、図22)と比較して、端末グループを柔軟に生成できる。また、端末グループ情報を複数の端末200にまとめて通知する方法(例えば、図22)は、端末個別に通知する方法(例えば、図21)と比較して、シグナリング量を低減できる。
 また、例えば、端末グループ情報の通知には、既存のframeを用いてもよい(流用してもよい)。
 例えば、IEEE 11acのGroup ID management frame、又は、IEEE 11ahのRestricted Access Window (RAW) Parameter Set (RPS) element formatを流用して、端末グループ情報が端末200に通知されてもよい。
 また、端末グループ情報は、例えば、AP100のビーコンに含まれてもよく、ブロードキャスト情報として、AP100に接続する複数の端末200へ報知されてもよい。
 また、例えば、TIDと、当該TIDのトラッフィクの遅延要求(例えば、遅延バジェット)との対応付けを行うLow latency trafficのネゴシエーション手順(例えば、新しいAction frameのRequest/Response、又は、Add Block Acknowledgment (ADDBA)などの拡張)において、端末グループ情報が追加され、端末200へ通知されてもよい。
 以上、端末グループ情報の通知例について説明した。
 [Trigger frameの生成例、及び、UL送信例]
 以下、AP100(例えば、Common Info生成部103、User Info生成部104、及び、Trigger frame生成部105)におけるTrigger frame生成処理について説明する。また、端末200(例えば、端末グループ情報保持部205、及び、無線送受信部201)における端末グループ情報に基づくUL信号の送信処理について説明する。
 例えば、1つのTrigger frameに、同一のGroup AID(例えば、複数の端末200に共通の識別情報)に対応するUser Info field(端末個別情報)が複数含まれてもよい。
 例えば、図10に示すように、AP100は、User Info fieldに、送信タイミング情報(例えば、Transmission timing information subfield)を含め、端末グループ内の端末200間で異なる送信タイミングが使用されるように指示してもよい。例えば、User Info fieldに含める送信タイミング情報は、例えば、図12又は図20に示すような送信タイミングのpattern番号でもよい。
 一例として、AP100は、図12に示す端末グループ情報を用いる場合、Group AID = 2008を設定したUser Info fieldを2つ含むTrigger frameを生成し、複数の端末200(例えば、STA1、STA2及びSTA3)に送信してよい。例えば、AP100は、2つのUser Info fieldにおいて、異なる2つの無線リソース(例えば、RU1及びRU2)をそれぞれ指示し、送信タイミングのpattern番号=1, 3をそれぞれ指示してよい。
 ここでは、一例として、STA1は、端末グループ情報によって指示されるトラッフィクのデータを保持せず、STA2及びSTA3は、端末グループ情報によって指示されるトラフィックデータを保持する場合について説明する。この場合、STA2、及び、STA3は、UL送信を試みることを想定する。この場合、STA2のRU1及びRU2における送信タイミングは、それぞれ、「SIFS + 9us」、「SIFS + 18us」となる。また、STA3のRU1、RU2における送信タイミングは、それぞれ、「SIFS +18us」、「SIFS」となる。
 STA2及びSTA3は、同一Group AID(図12では2008)に対応するUser Info fieldによって複数の無線リソース(RU)を指示される場合、複数の無線リソースのうち、送信タイミングがより小さい(より早い)無線リソースを選択してよい。例えば、上述した例では、図23に示すように、STA2は、RU1の送信タイミング「SIFS + 9us」及びRU2の送信タイミング「SIFS + 18us」のうち、より早い「SIFS + 9us」となるRU1を選択し、RU1において「SIFS + 9us」の送信タイミングでUL信号(例えば、EHT TB PPDU)を送信してよい。また、図23に示すように、STA3は、RU1の送信タイミング「SIFS + 18us」及びRU2の「SIFS」のうち、より早い「SIFS」となるRU2を選択し、RU2において「SIFS」の送信タイミングでUL信号(例えば、EHT TB PPDU)を送信してよい。
 ここで、UL送信前に実行するキャリアセンスは、例えば、各端末200が送信するRUを含むサブチャネルにおいて実行されてよい。図23に示す例では、STA2は、RU1においてキャリアセンスを実行し、RU2においてキャリアセンスを実行しなくてよい。また、図23に示す例では、STA3は、RU2においてキャリアセンスを実行し、RU1においてキャリアセンスを実行しなくてよい。これにより、図23に示すように、STA2は、RU2がSTA3に使用される場合でも、RU1に対するキャリアセンスの結果がIdleとなるので、RU1において上り信号を送信できる。
 このように、例えば、Low Latency Trafficに限定した無線リソースにおける端末200間の信号の衝突を低減し、また、複数の端末200のUL信号を周波数多重できるため、遅延を低減できる。
 なお、端末200は、同一Group AIDの複数の無線リソース(RU)において、同じ送信タイミングとなるRUが複数存在する場合、例えば、同一送信タイミングの複数RUからランダムに1つのRUを選択してもよい。ランダム選択により、送信機会の公平性を維持できる。
 例えば、端末200が複数のRU候補から1つのRUを選択する手順の例は以下でもよい。
 (1)端末200は、所定の送信タイミング(例えば、初期値 = SIFS)で送信可能なRU候補から1つのRUをランダムに選択する。
 (2)端末200は、手順(1)で選択したRUの帯域におけるキャリアセンス結果がIdleであれば、選択したRUを送信RUに決定し、選択処理を終了する。端末200は、キャリアセンス結果がBusyであれば、選択したRUを候補RUから除外する。
 (3)端末200は、候補RUが存在する場合、手順(1)に戻り、候補RUが存在しない場合、手順(4)に進む。
 (4)端末200は、送信タイミングを1 step更新し(例えば、9usを加算し)、更新後の送信タイミングで送信可能な候補RUを選択する。端末200は、候補RUが存在する場合、手順(1)に戻り、候補RUが存在しない場合、手順(5)に進む。
 (5)端末200は、UL送信を中止する(送信タイミングの候補RUが全てBusyの場合)。
 なお、端末200は、UL信号を構成するTB-PPDUの末尾のfieldであるPacket extension(PE)fieldの時間長を、UL送信タイミング(オフセット量)に基づいて算出してよい。これにより、例えば、図23に示すように、UL信号の終了タイミングを複数の端末200間で揃えることができる。
 また、個別AID及びGroup AIDにより、同一の端末200に対して指示するUser Info fieldが複数存在する場合、端末200は、例えば、個別AIDが設定されたUser Info fieldで指示されるRUを優先し、SIFSのオフセットを適用してUL信号を送信してもよい。これにより、AP100が端末200のバッファ量を把握している場合、端末200に対して個別AIDによって無線リソースを個別に割り当てることで遅延を低減できる。
 なお、個別AID及びGroup AIDにより、同一の端末200に対して指示するUser Info fieldが複数存在する場合、端末200は、例えば、Group AIDが設定されたUser Info fieldで指示されるRUを優先し、端末グループ情報に対応するオフセットを適用してUL信号を送信してもよい。
 ここで、図23に示すように、複数の端末200からそれぞれ異なるタイミングで送信されるUL信号が周波数多重される場合、AP100の受信処理において、端末200間の信号の干渉が発生する場合がある。例えば、UL信号にOFDM変調が適用される場合、端末200の送信タイミングがCP長を超える場合にOFDMの直交性が崩れ、干渉が発生し得る。
 そこで、以下、干渉を低減するUL送信方法(例えば、送信方法1及び送信方法2)の例について説明する。
 <送信方法1>
 送信方法1は、Group AIDで指示されるRUにおいて、20MHz×Nの境界にガードバンドを設定する方法である。
 例えば、図24に示すように、242 tone(20 MHzチャネル)の境界に所定Tone数のガードバンド(例えば、無送信区間)が適用されてもよい。
 AP100は、例えば、複数の端末200それぞれの割当RU(例えば、20MHz×N)毎に受信処理を実施する。このとき、割当RUにおいて、他のリソースとの境界にガードバンドが設定されることにより、AP100では、複数の端末200が異なるタイミングで送信したUL信号が周波数多重される場合の干渉の影響を低減できる。
 <送信方法2>
 送信方法2は、Group AIDを含むTrigger frameに応答するUL信号を含むTB-PPDUフォーマットを、既存のTB-PPDUフォーマットと異ならせる方法(例えば、新たに定義する方法)である。
 例えば、図25に示すように、Group AID(例えば、複数の端末200に共通の識別情報)に対応するUser Info fieldによって割り当てられるUL信号(例えば、Group AID向けEHT TB-PPDU)のフォーマットと、端末200に個別のAIDに対応するUser Info fieldによって割り当てられるUL信号(例えば、EHT TB-PPDU)のフォーマットとは、異なってよい。
 一例として、図25に示すように、Group AID向けのEHT TB-PPDUのフォーマットにおいて、端末グループ内の各端末200に設定されるオフセット量(又は、送信タイミング)に応じて、UL信号内の所定シンボルのRepetition数を変えたPPDUフォーマットが適用されてよい。図25の例では、Trigger frameを含むPPDUの終了タイミングからのオフセット量が小さいほど、RL-SIGシンボルのRepetition数が多く設定されてよい。これにより、オフセット量に依らず、AP100におけるU-SIG以降のOFDMシンボルの受信タイミング差をCP長以内に抑えられるので干渉の発生を防止できる。また、AP100は、例えば、複数の端末200の全ての割当RUを含む帯域を一括でFFT処理できる。
 また、例えば、図26に示すように、端末グループ内の各端末200に設定されるオフセット量(又は、送信タイミング)に応じて、UL信号内の所定シンボル(例えば、L-STF)の時間長を変えたPPDUフォーマットが適用されてよい。図26の例では、Trigger frameを含むPPDUの終了タイミングからのオフセット量が小さいほど、所定の系列を繰り返すことにより、L-STFシンボル長が大きく設定されてよい。これにより、図25の例と同様に、オフセット量に依らず、AP100におけるU-SIG以降のOFDMシンボルの受信タイミング差をCP長以内に抑えられるので干渉の発生を防止できる。また、AP100は、例えば、複数の端末200の全ての割当RUを含む帯域を一括でFFT処理できる。
 以上、干渉を低減するUL送信方法の例について説明した。
 11ax及び11beでは、Trigger frameにおけるUser Info fieldの送信順(又は、優先度)は、各User Info fieldが指示するRUに基づいて、以下の順に送信するルールがある。AP100は、このルールに従ってTrigger frameでUser Info fieldの情報を送信する。これにより、端末200は、優先度が高いUL信号の生成処理を早期に開始できる。
 1.端末200に個別のAIDによるRU割当
 2.特別AID(0、或いは、2045)によるRA-RU割当
 3.特別AID(2046)によるUnassigned RU
 本実施の形態では、例えば、端末グループに対する所定のトラッフィク(例えば、Low Latency Traffic)に限定したRU割当(例えば、「Group AIDによるRU割当」と呼ぶ)の送信順が新たに定義されてもよい。例えば、図27に示すように、Trigger frameにおけるUser Info fieldの送信順(又は、優先度)は、各User Info fieldが指示するRUに基づいて、以下の順に送信するルールでもよい。以下のルールでは、Group AIDによるRU割当を指示するUser Info fieldは、他のRUを指示するUser Info fieldよりも早く設定されてよい。
 1.Group AIDによるRU割当
 2.端末個別AIDによるRU割当
 3.特別AID(0、或いは、2045)によるRA-RU割当
 4.特別AID(2046)によるUnassigned RU
 このように、Trigger frameにおいて、Group AIDに対応するUser Info fieldの送信順は、端末200に個別のAIDに対応するUser Info fieldの送信順よりも早くてよい。これにより、端末200では、Low latency Trafficの送信指示を含むUser Info fieldの復号処理を早期に終えることができ、UL送信の準備を早期に開始できる。よって、Low Latency Trafficの遅延を低減できる。
 また、例えば、AP100の運用環境においてLow latency Trafficの発生率が低い場合、AP100は、Low latency Trafficに対して20MHz以下のRUを割り当ててもよい。
 例えば、図28に示すように、15個の端末200(AID=1~15)について5個の端末グループ(Group AID=2008~2012)が生成される場合について説明する。例えば、AP100の運用環境においてLow latency Trafficの発生率が低い場合、AP100は、図29に示すように、20MHz内の5RUに、15個の端末200(例えば、3個の端末 / RU)をスケジューリングしてよい。
 例えば、端末200によるUL送信直前のキャリアセンスが、20MHz単位で実行される場合、データを有する端末200のうち、より早い送信タイミングが設定される端末200の信号は周波数多重が可能となる。例えば、図28において、STA1(Group AID=2008、Offset=SIFS)、及び、STA10(Group AID=2011、Offset=SIFS)がLow latency Trafficを有する場合、STA1及びSTA10は、各端末グループ(例えば、Group AID=2008及び2011)の他の端末200と比較して、より早い送信タイミングが設定される。よって、例えば、図29に示すように、STA1及びSTA10は、20MHz以下のRU(例えば、RU1及びRU4)において周波数多重が可能となる。
 Low latency Trafficの発生率が低い場合(送信を許可する端末数が少ない場合)には、Low latency Trafficに対して20MHz以下のRUが割り当てられることにより、例えば、他の端末200の送信が優先されるので、キャリアセンスがBusyとなり、UL信号が送信できない影響が小さい。これにより、多数の端末200を少ない無線リソースにおいて効率的に割当できる。
 なお、20MHz以下のRU割当の場合、端末200によるUL送信直前のキャリアセンスは、20MHz以下のRU帯域で実行するように仕様が変更されてもよい。これにより、20MHz以下においても、異なる送信タイミングのUL信号を周波数多重できる
 以上、Trigger frameの生成例、及び、UL送信例について説明した。
 本実施の形態では、AP100は、端末グループに含まれる複数の端末200に共通のAID(Group AID)を用いて、複数のトラフィック種別のうち一部のトラフィック種別のUL信号の送信リソース割り当てを指示するTrigger frameを生成し、Trigger frameを端末200へ送信する。また、端末200は、端末グループに含まれる複数の端末200に共通のGroup AIDを用いて、複数のトラフィック種別のうち一部のトラフィック種別のUL信号の送信リソースの割り当てを指示するTrigger frameを受信し、Trigger frameに基づいて、UL送信を制御する。
 これにより、例えば、端末グループに割り当て可能なリソース(例えば、RA-RU)において、端末200は、一部のトラフィック種別(例えば、低遅延が要求されるトラフィック)に限定してUL送信を行うことができるので、端末グループに割り当て可能なリソースを増加させずに、複数の端末200間のUL信号の衝突を低減でき、遅延を低減できる。
 よって、本実施の形態によれば、無線通信におけるUL信号の送信効率を向上できる。
 以上、本開示の一実施の形態について説明した。
 なお、上記実施の形態において、一部のトラフィック種別のUL送信に限定したUL送信リソースの割当(例えば、Restricted UL TIDの設定)、及び、UL信号の送信タイミングの設定(例えば、Offsetの設定)の双方が端末グループ情報に対応付けられる場合に限定されない。例えば、一部のトラフィック種別のUL送信に限定したUL送信リソースの割当(例えば、Restricted UL TIDの設定)が設定され、UL信号の送信タイミングが設定されなくてもよい。この場合でも、トラフィック種別の制限により、UL信号の衝突を低減でき、遅延を低減できる。または、UL信号の送信タイミングが設定され、一部のトラフィック種別のUL送信に限定したUL送信リソースの割り当てが設定されなくてもよい。この場合でも、UL信号の送信タイミングの違いにより、UL信号の衝突を低減でき、遅延を低減できる。
 また、一部のトラフィック種別は、低遅延が要求されるトラフィック(例えば、Low latency Traffic)に限定されず、他のトラフィック種別でもよい。
 また、送信タイミング(Offset)、Restricted UL TID Bitmapの値、Group AID、端末200に個別のAID、端末グループに含まれる端末数)、リソースサイズ、リソース数といったパラメータは、一例であって、他の値でもよい。
 上述した実施の形態において、端末グループに関する情報を指示するフィールドは、上述したフィールドに限定されず、他のフィールドに配置されてもよい。また、端末グループに関する各制御情報を通知するためのビット数は、上述した例に限定されず、他のビット数でもよい。
 また、上述した各実施の形態において、Trigger frameの構成、及び、Trigger frame内のCommon Info field及びUser Info fieldの構成は、上述した例に限定されず、例えば、上述した各fieldにおいて、他のsubfieldの追加及び一部のsubfieldの削除の少なくとも一方が行われた他の構成でもよい。
 同様に、上述した各実施の形態において、Management frame、及び、UL信号(例えば、EHT TB-PPDU)の構成は、上述した例に限定されず、例えば、上述した構成において、他のfieldの追加及び一部のfieldの削除の少なくとも一方が行われた他の構成でもよい。
 また、上記実施の形態では、一例として、11beのフォーマットに基づいて説明したが、本開示の一実施例を適用するフォーマットは、11beのフォーマットに限定されない。本開示の一実施例は、例えば、車載向け規格であるIEEE 802.11pの次世代規格であるIEEE 802.11bd(NGV(Next Generation V2X))向けに適用されてもよい。
 (補足)
 上述した各実施の形態に示した機能、動作又は処理を端末200がサポートするか否かを示す情報が、例えば、端末200の能力(capability)情報あるいは能力パラメータとして、端末200からAP100へ送信(あるいは通知)されてもよい。
 能力情報は、上述した各実施の形態に示した機能、動作又は処理の少なくとも1つを端末200がサポートするか否かを個別に示す情報要素(IE)を含んでもよい。あるいは、能力情報は、上述した各実施の形態に示した機能、動作又は処理の何れか2以上の組み合わせを端末200がサポートするか否かを示す情報要素を含んでもよい。情報要素は単に要素(element)とも呼ばれる。
 AP100は、例えば、端末200から受信した能力情報に基づいて、能力情報の送信元端末200がサポートする(あるいはサポートしない)機能、動作又は処理を判断(あるいは決定または想定)してよい。AP100は、能力情報に基づく判断結果に応じた動作、処理又は制御を実施してよい。例えば、AP100は、端末200から受信した能力情報に基づいて、端末グループを制御してよい。
 なお、上述した各実施の形態に示した機能、動作又は処理の一部を端末200がサポートしないことは、端末200において、そのような一部の機能、動作又は処理が制限されることに読み替えられてもよい。例えば、そのような制限に関する情報あるいは要求が、AP100に通知されてもよい。
 端末200の能力あるいは制限に関する情報は、例えば、規格において定義されてもよいし、AP100において既知の情報あるいはAP100へ送信される情報に関連付けられて暗黙的(implicit)にAP100に通知されてもよい。
 本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置は無線送受信機(トランシーバー)と処理/制御回路を含んでもよい。無線送受信機は受信部と送信部、またはそれらを機能として、含んでもよい。無線送受信機(送信部、受信部)は、RF(Radio Frequency)モジュールと1または複数のアンテナを含んでもよい。RFモジュールは、増幅器、RF変調器/復調器、またはそれらに類するものを含んでもよい。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。
 また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサー等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサーが含まれる。
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。
 本開示の一実施例に係るアクセスポイントは、端末グループに含まれる複数の端末に共通の識別情報を用いて、複数のトラフィック種別のうち一部のトラフィック種別の上り信号の送信リソースの割り当てを指示する制御信号を生成する制御回路と、前記制御信号を送信する送信回路と、を具備する。
 本開示の一実施例において、前記一部のトラフィック種別は、低遅延が要求されるトラフィック種別である。
 本開示の一実施例において、前記識別情報に、前記一部のトラフィック種別に関する情報が対応付けられる。
 本開示の一実施例において、前記送信リソースのサイズは、20MHzの整数倍である。
 本開示の一実施例において、前記端末グループ内の前記複数の端末に設定される前記上り信号の送信タイミングは異なる。
 本開示の一実施例において、前記上り信号の送信タイミングは、複数の候補からランダムに選択される。
 本開示の一実施例において、前記上り信号の送信タイミングは、前記端末グループ内の端末に個別に設定される。
 本開示の一実施例において、1つの前記制御信号に、前記複数の端末に共通の前記識別情報に対応する端末個別情報が複数含まれる。
 本開示の一実施例において、前記複数の端末個別情報のうち、同一の前記識別情報に対応する端末個別情報によって複数の前記送信リソースが指示される場合、前記複数の送信リソースのうち、送信タイミングがより早い送信リソースが適用される。
 本開示の一実施例において、前記複数の端末それぞれの前記送信リソースにおいて、他のリソースとの境界にガードバンドが設定される。
 本開示の一実施例において、前記複数の端末に共通の前記識別情報に対応する端末個別情報によって割り当てられる前記上り信号の第1のフォーマットと、端末に個別の識別情報に対応する端末個別情報によって割り当てられる前記上り信号の第2のフォーマットとは、異なる。
 本開示の一実施例において、前記第1のフォーマットにおいて、前記上り信号の送信タイミングに基づいて、前記上り信号内のシンボルのレピティション数が設定される。
 本開示の一実施例において、前記第1のフォーマットにおいて、前記上り信号の送信タイミングに基づいて、前記上り信号内のシンボルの長さが設定される。
 本開示の一実施例において、前記複数の端末に共通の前記識別情報に対応する端末個別情報のフォーマットと、端末に個別の識別情報に対応する端末個別情報のフォーマットとは、異なる。
 本開示の一実施例において、前記制御信号において、前記複数の端末に共通の前記識別情報に対応する端末個別情報の送信順は、端末に個別の識別情報に対応する端末個別情報の送信順よりも早い。
 本開示の一実施例に係る端末は、端末グループに含まれる複数の端末に共通の識別情報を用いて、複数のトラフィック種別のうち一部のトラフィック種別の上り信号の送信リソースの割り当てを指示する制御信号を受信する受信回路と、前記制御信号に基づいて、前記上り送信を制御する制御回路と、を具備する。
 本開示の一実施例に係る通信方法において、アクセスポイントは、端末グループに含まれる複数の端末に共通の識別情報を用いて、複数のトラフィック種別のうち一部のトラフィック種別の上り信号の送信リソースの割り当てを指示する制御信号を生成し、前記制御信号を送信する。
 本開示の一実施例に係る通信方法において、端末は、端末グループに含まれる複数の端末に共通の識別情報を用いて、複数のトラフィック種別のうち一部のトラフィック種別の上り信号の送信リソースの割り当てを指示する制御信号を受信し、前記制御信号に基づいて、前記上り送信を制御する。
 2022年6月29日出願の特願2022-104711の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示の一実施例は、無線通信システムに有用である。
 100 AP
 101 端末グループ生成部
 102 スケジューリング部
 103 Common Info生成部
 104 User Info生成部
 105 Trigger frame生成部
 106,208 誤り訂正符号化部
 107,209 変調部
 108,201 無線送受信部
 109,202 復調部
 110,203 誤り訂正復号部
 111 端末情報保持部
 200 端末
 204 Common Info取得部
 205 端末グループ情報保持部
 206 User Info取得部
 207 データ生成部
 

Claims (18)

  1.  端末グループに含まれる複数の端末に共通の識別情報を用いて、複数のトラフィック種別のうち一部のトラフィック種別の上り信号の送信リソースの割り当てを指示する制御信号を生成する制御回路と、
     前記制御信号を送信する送信回路と、
     を具備するアクセスポイント。
  2.  前記一部のトラフィック種別は、低遅延が要求されるトラフィック種別である、
     請求項1に記載のアクセスポイント。
  3.  前記識別情報に、前記一部のトラフィック種別に関する情報が対応付けられる、
     請求項1に記載のアクセスポイント。
  4.  前記送信リソースのサイズは、20MHzの整数倍である、
     請求項1に記載のアクセスポイント。
  5.  前記端末グループ内の前記複数の端末に設定される前記上り信号の送信タイミングは異なる、
     請求項1に記載のアクセスポイント。
  6.  前記上り信号の送信タイミングは、複数の候補からランダムに選択される、
     請求項5に記載のアクセスポイント。
  7.  前記上り信号の送信タイミングは、前記端末グループ内の端末に個別に設定される、
     請求項5に記載のアクセスポイント。
  8.  1つの前記制御信号に、前記複数の端末に共通の前記識別情報に対応する端末個別情報が複数含まれる、
     請求項1に記載のアクセスポイント。
  9.  前記複数の端末個別情報のうち、同一の前記識別情報に対応する端末個別情報によって複数の前記送信リソースが指示される場合、前記複数の送信リソースのうち、送信タイミングがより早い送信リソースが適用される、
     請求項8に記載のアクセスポイント。
  10.  前記複数の端末それぞれの前記送信リソースにおいて、他のリソースとの境界にガードバンドが設定される、
     請求項5に記載のアクセスポイント。
  11.  前記複数の端末に共通の前記識別情報に対応する端末個別情報によって割り当てられる前記上り信号の第1のフォーマットと、端末に個別の識別情報に対応する端末個別情報によって割り当てられる前記上り信号の第2のフォーマットとは、異なる、
     請求項1に記載のアクセスポイント。
  12.  前記第1のフォーマットにおいて、前記上り信号の送信タイミングに基づいて、前記上り信号内のシンボルのレピティション数が設定される、
     請求項11に記載のアクセスポイント。
  13.  前記第1のフォーマットにおいて、前記上り信号の送信タイミングに基づいて、前記上り信号内のシンボルの長さが設定される、
     請求項11に記載のアクセスポイント。
  14.  前記複数の端末に共通の前記識別情報に対応する端末個別情報のフォーマットと、端末に個別の識別情報に対応する端末個別情報のフォーマットとは、異なる、
     請求項1に記載のアクセスポイント。
  15.  前記制御信号において、前記複数の端末に共通の前記識別情報に対応する端末個別情報の送信順は、端末に個別の識別情報に対応する端末個別情報の送信順よりも早い、
     請求項1に記載のアクセスポイント。
  16.  端末グループに含まれる複数の端末に共通の識別情報を用いて、複数のトラフィック種別のうち一部のトラフィック種別の上り信号の送信リソースの割り当てを指示する制御信号を受信する受信回路と、
     前記制御信号に基づいて、前記上り送信を制御する制御回路と、
     を具備する端末。
  17.  アクセスポイントは、
     端末グループに含まれる複数の端末に共通の識別情報を用いて、複数のトラフィック種別のうち一部のトラフィック種別の上り信号の送信リソースの割り当てを指示する制御信号を生成し、
     前記制御信号を送信する、
     通信方法。
  18.  端末は、
     端末グループに含まれる複数の端末に共通の識別情報を用いて、複数のトラフィック種別のうち一部のトラフィック種別の上り信号の送信リソースの割り当てを指示する制御信号を受信し、
     前記制御信号に基づいて、前記上り送信を制御する、
     通信方法。
PCT/JP2023/021596 2022-06-29 2023-06-09 アクセスポイント、端末、及び通信方法 WO2024004596A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-104711 2022-06-29
JP2022104711 2022-06-29

Publications (1)

Publication Number Publication Date
WO2024004596A1 true WO2024004596A1 (ja) 2024-01-04

Family

ID=89382050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021596 WO2024004596A1 (ja) 2022-06-29 2023-06-09 アクセスポイント、端末、及び通信方法

Country Status (1)

Country Link
WO (1) WO2024004596A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180192372A1 (en) * 2017-01-02 2018-07-05 Lg Electronics Inc. Method for performing power management in wireless lan system and wireless device using the same
JP2018530222A (ja) * 2015-09-11 2018-10-11 インターデイジタル パテント ホールディングス インコーポレイテッド 無線ローカルエリアネットワーク(wlan)についてのマルチユーザ同時ランダムアクセスのための方法および装置
JP2021193809A (ja) * 2016-03-04 2021-12-23 パナソニックIpマネジメント株式会社 無線局、通信方法および集積回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018530222A (ja) * 2015-09-11 2018-10-11 インターデイジタル パテント ホールディングス インコーポレイテッド 無線ローカルエリアネットワーク(wlan)についてのマルチユーザ同時ランダムアクセスのための方法および装置
JP2021193809A (ja) * 2016-03-04 2021-12-23 パナソニックIpマネジメント株式会社 無線局、通信方法および集積回路
US20180192372A1 (en) * 2017-01-02 2018-07-05 Lg Electronics Inc. Method for performing power management in wireless lan system and wireless device using the same

Similar Documents

Publication Publication Date Title
CN107637005B (zh) 用于多用户上行链路传输的无线通信终端和无线通信方法
US11930535B2 (en) Trigger-based random access for wireless device
US11290900B2 (en) Method for transmitting and receiving channel measurement information in wireless LAN system and device for same
CN112217759B (zh) 发送关于缓冲状态信息的无线通信方法和无线通信终端
US11191093B2 (en) Method for wireless communication with wireless communication terminal for long range transmission and wireless communication terminal using same
KR20220142358A (ko) 무선 통신 시스템에서 펑처링 패턴들을 설정하는 방법 및 장치
CN115333908B (zh) 无线局域网中的发射器及由其执行的方法
US20180176789A1 (en) Spatial reuse ppdu indication
WO2024004596A1 (ja) アクセスポイント、端末、及び通信方法
KR20220170780A (ko) 무선 통신 시스템에서 사운딩 프로토콜 시퀀스에서 a-ppdu 전송을 지원하는 방법 및 장치
WO2021020083A1 (ja) 基地局、送信方法及び受信方法
WO2023243568A1 (ja) アクセスポイント、端末、及び通信方法
WO2022249633A1 (ja) 端末、基地局、及び、通信方法
WO2023228566A1 (ja) アクセスポイント、端末、及び通信方法
WO2024038905A1 (ja) 通信装置、及び通信方法
WO2022264571A1 (ja) アクセスポイント、端末、及び通信方法
WO2023013254A1 (ja) 通信装置及び通信方法
RU2816991C2 (ru) Базовая станция, способ передачи и способ приема
WO2023176523A1 (ja) 通信装置及び通信方法
WO2022239426A1 (ja) 基地局、端末、及び通信方法
JP2024503916A (ja) 情報伝送方法、通信装置、コンピュータ可読記憶媒体およびチップ
JP2024509061A (ja) 拡張ランダムアクセスに対応する通信装置および通信方法
WO2020011677A1 (en) Acknowledgement of direct link and downlink transmissions in trigger-based multi-user transmissions
JP2018524901A (ja) ワイヤレスネットワークシステムにおけるofdmaベースのデータack/baフレーム交換の改善されたシグナリング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831045

Country of ref document: EP

Kind code of ref document: A1