WO2024004543A1 - Flow passage control valve - Google Patents

Flow passage control valve Download PDF

Info

Publication number
WO2024004543A1
WO2024004543A1 PCT/JP2023/020910 JP2023020910W WO2024004543A1 WO 2024004543 A1 WO2024004543 A1 WO 2024004543A1 JP 2023020910 W JP2023020910 W JP 2023020910W WO 2024004543 A1 WO2024004543 A1 WO 2024004543A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
control valve
spool valve
path control
plug member
Prior art date
Application number
PCT/JP2023/020910
Other languages
French (fr)
Japanese (ja)
Inventor
雄太 相馬
祐樹 條
直樹 及川
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2024004543A1 publication Critical patent/WO2024004543A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given

Definitions

  • the present invention relates to a flow path control valve.
  • This flow path control valve switches and controls the flow path for supplying and discharging fluid to and from equipment in a vehicle, and includes a body formed in a cylindrical shape made of synthetic resin and provided on the inner circumferential surface of this body. It has a metal sleeve and a spool valve that is movable in the axial direction inside the sleeve.
  • the body has a drive section at one axial end for moving the spool valve in one axial direction, and a sensor unit at the other end for detecting the moving position of the spool valve.
  • the spool valve is biased in the other direction in the axial direction by a coil spring on the sensor side of the body, and the tip of the shaft connected to the plunger of the drive unit and the rod of the sensor unit are located at the center of the upper and lower surfaces. Abutment surfaces are respectively formed on which the tips of the two abut. Further, the spool valve has a plurality of breathing holes formed through the spool valve in the internal axial direction away from each of the contact surfaces.
  • the breathing holes are each formed as a long and narrow passage hole with a uniform inner diameter, one end in the axial direction opens inside the drive part, the other end opens inside the sensor unit, and the shaft of the spool valve is opened. It is designed to ensure smooth movement in direction.
  • the spool valve is moved in the axial direction by the pressing force of the drive unit and the spring force of the coil spring, and depending on this movement position, the cooling water inlet port and the first and second outlet ports provided in the body are moved. It is designed to switch.
  • the spool valve is made of solid material in the internal axial direction of the spool valve in order to ensure contact surfaces with the drive section and the sensor unit.
  • the solid portion is left as a solid portion, and the elongated breathing hole is formed around this solid portion.
  • the present invention was devised in view of the technical problems of the prior art, and aims to provide a flow path control valve that can reduce the weight of the spool valve and improve movement responsiveness.
  • One aspect of the present invention particularly includes a spool valve that is disposed inside a body so as to be movable in the axial direction, and that moves in the axial direction to switch the communication state between an inlet port and an outlet port; a communication hole formed in the internal axial direction of the spool valve and communicating with one end of the spool valve in the axial direction and the other end thereof; a drive part that biases the spool valve in one of the axial directions; and a drive part of the spool valve.
  • a detector that is provided on the opposite side in the axial direction to the part and detects the moving position of the spool valve; and a contact part that is inserted into a part of the communication hole and comes into contact with the drive part or the detector. and a plug member having a communication path that communicates the inside and outside of the communication hole.
  • FIG. 1 is a longitudinal cross-sectional view of a flow path control valve according to a first embodiment of the present invention.
  • FIG. 3 is a perspective view showing a plug member used in the flow path control valve of the present embodiment. It is a perspective view of the stopper member used for the flow path control valve. It is a front view of the stopper member used for the flow path control valve.
  • FIG. 7 is a longitudinal cross-sectional view of a flow path control valve according to a second embodiment.
  • FIG. 3 is a longitudinal cross-sectional view showing a plug member used in the flow path control valve of the present embodiment.
  • FIG. 3 is a longitudinal cross-sectional view showing a state in which a plug member is press-fitted and held in a spool valve.
  • FIG. 2 is an enlarged sectional view of a main part of a spool valve used in the flow path control valve.
  • FIG. 1 is a longitudinal sectional view of a flow path control valve according to a first embodiment of the present invention
  • FIG. 2 is a perspective view showing a plug member provided for the flow path control valve of this embodiment
  • FIG. 3 is a view showing the same flow path control valve
  • FIG. 4 is a perspective view of the plug member used in the valve
  • FIG. 4 is a front view of the plug member used in the flow path control valve.
  • the side in the direction of arrow A in the axial direction in FIG. 1 will be described as an upper end, and the side in the direction of arrow B will be described as a lower end.
  • the flow path control valve 1 in the first embodiment includes a cylindrical body 2, and a spool valve 3 provided inside the body 2 so as to be movable along the directions of arrows A and B. , a drive unit 4 provided at the upper end of the body 2 in the axial direction, a sensor unit 5 serving as a detector provided at the lower end of the body 2 in the axial direction, and attached to the sensor unit 5 side of the spool valve 3. and a plug member 6.
  • the body 2 is formed into a cylindrical shape from an aluminum alloy material as a metal material, and has an outer circumferential surface formed to have the same diameter along the axial direction, and has a tubular introduction port 7 and a tubular introduction port 7 protruding radially outward on the outer circumferential surface.
  • First and second outlet ports 8 and 9 are provided, respectively.
  • the introduction port 7 protrudes toward one side at approximately the center in the axial direction, and the first and second outlet ports 8 and 9 protrude toward the other side in the radial direction, which is opposite to the introduction port 7.
  • the first outlet port 8 is arranged on the upper end side of the body 2 in the axial direction
  • the second outlet port 9 is arranged on the lower end side of the body 2 in the axial direction. They are separated by a predetermined distance in the direction.
  • the introduction port 7 and the first and second outlet ports 8 and 9 are each connected to piping (not shown).
  • the introduction port 7 is supplied with fluid from a supply source (not shown), such as an electric pump, through the piping.
  • the first and second outlet ports 8 and 9 are each connected to a device to which the cooling water is supplied, such as a power circuit control device, through piping (not shown).
  • the body 2 has a housing hole 10 formed therein that has a substantially constant diameter and extends along the axial direction.
  • This accommodation hole 10 communicates with the introduction port 7 and the first and second outlet ports 8 and 9 through first to third openings 7a, 8a, and 9a, and the spool valve 3 is located inside. It is housed so as to be movable in the axial direction (A, B direction).
  • the body 2 has a first cylindrical groove 11 that communicates with the first outlet port 8 formed at the upper position of the inner circumferential surface 10a of the accommodation hole 10, and a second outlet port 11 that communicates with the first outlet port 8 at the lower position of the inner circumferential surface 10a.
  • a second cylindrical groove 12 communicating with the port 9 is formed respectively.
  • the spool valve 3 is integrally formed of an aluminum alloy material, which is a metal material, and is moved in the downward direction (B direction) in the axial direction by the driving action of the drive unit 4, and is provided on the other end side in the axial direction. It is adapted to move upward in the axial direction (direction A) by the spring force of a valve spring 13, which is a coil spring described later.
  • the spool valve 3 includes a first land portion 14 formed on the outer periphery of the upper end portion in the axial direction, a second land portion 15 formed on the outer periphery of the lower end portion, and the first land portion 14 and the second land portion 15. It has a connecting shaft portion 16 formed therebetween, and a cylindrical groove passage 17 formed on the outer periphery of the connecting shaft portion 16. Further, in the spool valve 3, a disk-shaped upper wall portion 14a is integrally provided at the upper end portion of the first land portion 14 in FIG.
  • the first land portion 14 and the second land portion 15 are formed to have the same outer diameter, approximately the same length in the axial direction, and the outer peripheral surface of each of them is the inner peripheral surface 10a of the accommodation hole 10. It is provided so as to be slidable in the axial direction.
  • the maximum upward movement position of the spool valve 3 is regulated at the maximum raised position of the shaft 27 (described later) of the drive unit 4 that is in contact with the first land portion 14, and the spool valve 3 is restricted in its maximum upward movement position by a cap portion 36 (described later) provided on the sensor unit 5.
  • the lower end surface of the second land portion 15 in the axial direction comes into contact with the second land portion 15 to restrict the maximum downward movement position.
  • the first land part 14 communicates the first cylindrical groove 11 of the body 2 with the groove passage 17, and at the maximum downward movement position, the second land part 15 communicates with the body 2.
  • the second cylindrical groove 12 of No. 2 and the groove passage 17 are communicated with each other.
  • the introduction port 7 is selectively communicated with the first outlet port 8 and the second outlet port 9.
  • the first land portion 14 blocks or connects the first cylindrical groove 11 with the groove passage 17, while the second land portion 15 connects the first cylindrical groove 11 with the groove passage 17, depending on its movement position. Communication between the cylindrical groove 12 and the groove passage 17 is cut off or communicated with each other.
  • the second land portion 15 blocks communication between the second cylindrical groove 12 and the groove passage 17, In a state where communication between the first cylindrical groove 11 and the groove passage 17 is interrupted, the second cylindrical groove 12 and the groove passage 17 are communicated with each other.
  • a communication hole 18 is formed inside the spool valve 3 between the upper end surface of the first land portion 14 and the lower end surface of the second land portion 15 .
  • the communication hole 18 is formed along the small diameter hole 19 formed on the radially outer side of the upper wall portion 14a of the first land portion 14, and along the internal axis direction of the spool valve 3. It has a main passage hole 20 whose upper end communicates with the small diameter hole 19, and an opening hole 21 formed inside the second land portion 15 and whose lower end communicates with the main passage hole 20.
  • the communication hole 18 functions as a breathing hole that allows the spool valve 3 to move up and down smoothly.
  • the small diameter hole 19 is formed in an inclined shape toward the inner axis from a position on the outside in the radial direction of the upper wall portion 14a of the first land portion 14, and one end portion 19a in the axial direction is connected to the casing of the drive portion 4, which will be described later.
  • An opening is formed inside the main passage hole 22, and the other end portion 19b is formed as an opening at the upper end portion of the main passage hole 20.
  • the main passage hole 20 has an inner diameter d that is approximately constant in the vertical direction, and the inner diameter d is slightly smaller than the outer diameter of the connecting shaft portion 16, so that the main passage hole 20 is relatively large as a whole. It is formed.
  • the opening hole 21 has an inner diameter d1 larger than the inner diameter d of the main passage hole 20, and a passage cross-sectional area larger than that of the main passage hole 20.
  • the opening hole 21 has an upper end open to the lower end of the main passage hole 20, and a lower end communicating with the outside via a communication path 43 of the plug member 6, which will be described later.
  • the drive unit 4 is, for example, a solenoid that generates a magnetic force and obtains an axial thrust when the coil 24 is energized, and includes a casing 22 and a bobbin 23 housed inside the casing 22. a fixed core 25 provided at the bottom of the bobbin 23, and a movable core provided inside the bobbin 23 and urged toward the fixed core 25 by the excitation action of the coil 24. It has a plunger 26, a shaft 27 connected to the center of the plunger 26, and a resin molded part 28 that covers the outer peripheral sides of the bobbin 23 and the coil 24.
  • the casing 22 is formed into a cylindrical shape with a bottom, and its open lower end is caulked and fixed to a fixing part 2a integrally provided at the upper end of the body 2.
  • the bobbin 23 is formed into a cylindrical shape with one end and the other end enlarged in diameter, and is molded together with the coil 24 inside the casing 22 by a resin mold section 28 .
  • the fixed core 25 is formed of a metal material into a cylindrical shape, and a part of the fixed core 25 is inserted into the bobbin 23, and a flange 25a on the outer peripheral surface connects the resin molded part 28 and the other end of the fixed part 2a. It is clamped and fixed in between.
  • the plunger 26 is made of a magnetic material and has a cylindrical shape, and is disposed on the inner peripheral side of the bobbin 23 and on the upper end side of the fixed core 25.
  • the shaft 27 is connected to the axial center of the plunger 26 and extends in the direction of the spool valve 3 by a predetermined length, so that the tip end 27a is connected to the first land portion 14 of the spool valve 3 through the shaft hole 2b of the fixed portion 2a. It is in contact with the center position of the upper surface of the upper wall portion 14a. Since this shaft 27 is urged against the spool valve 3 by the spring force of the valve spring 13, the tip end 27a is in contact with the center of the upper surface of the upper wall portion 14a.
  • a first coupler 29 is integrally provided on the outer side of the resin molded part 28, and a connection terminal 29a provided inside the first coupler 29 is connected to a connection terminal of a power connector (not shown) to supply electricity to the coil 24. It looks like this.
  • the sensor unit 5 detects the movement position of the spool valve 3 along the axial direction, and is provided to be movable along the sensor case 30, a board 31 housed inside the sensor case 30, and the board 31.
  • the sensor spring 33 that urges the detection object 32 toward the spool valve 3 side, the terminal 34 that is electrically connected to the board 31, and the lower end opening of the sensor case 30 are closed. It has a lid part 35 and a cap part 36 provided at the upper end opening of the sensor case 30.
  • the sensor case 30 is formed of a synthetic resin material and has an internal hollow shape, and has an open cylindrical upper end 30a accommodated in a second housing part 37 provided at the lower end of the body 2, and a flange part provided on the outer periphery. 30b is fixed to the body 2 by a screw (not shown) while abutting the opening edge of the second accommodating portion 37. Furthermore, the interior of the sensor case 30 is partitioned by a partition wall 30c into a substrate storage chamber that stores the substrate 31 and a detection object storage chamber that stores the detection object 32.
  • the upper end portion 30a has an annular groove 30d formed on the inner periphery to accommodate and hold the cap portion 36, and three anti-rotation protrusions (not shown) are provided on the outer periphery of the annular groove 30d.
  • the substrate 31 is electrically connected by connecting three terminals 34 constituting a second coupler 38 formed in a plate shape to an electrode portion (not shown), and is also electrically connected to a detection object 32 disposed in close proximity.
  • a sensor coil sensor is provided to detect the approach of the terminal 34, and generates a magnetic field based on a control current from the terminal 34.
  • the detection body 32 includes a block-shaped detection body 32a, first and second rods 32b and 32c, which are pin portions that respectively protrude in the axial direction with respect to the detection body 32a, and are attached to the side surface of the detection body 32a. It has a detection piece 32d.
  • the detection main body 32a is guided so as to be displaceable along the axial direction when one side surface perpendicular to the moving direction of the detection object 32 comes into contact with the inner wall surface of the detection object storage chamber.
  • the first rod 32b protrudes from one axial end surface of the detection main body 32a in the direction of arrow B, and a sensor spring 33 is inserted into the outer peripheral side.
  • One end of the sensor spring 33 contacts the axial end surface of the detection body 32a via the first rod 32b, and the other end is held in elastic contact with a spring seat in the detection object storage chamber, so that the sensor spring 33 moves the detection object 32 by the spring force. It is biased toward the spool valve 3 side (in the direction of arrow A).
  • the second rod 32c is formed in a straight line with the first rod 32b with the detection body 32a in between, protrudes from the axial end surface of the detection body 32a by a predetermined length along the axial direction, and is located in the center of the cap portion 36.
  • the rod is inserted through the rod insertion hole 36c, and its tip abuts the center of the outer bottom surface 40d of the bottom 40c, which is a contact portion of the plug member 6, which will be described later.
  • the tip of the second rod 32c is always in contact with the outer bottom surface 40d of the bottom 40c of the plug member 6. become a state.
  • the detection piece 32d is formed into a plate shape from a metal material, is arranged substantially parallel to the other end surface of the detection body 32a and the partition wall 32d, and is moved along the partition wall 32d together with the detection body 32 in the directions of arrows A and B. It is movably provided, and when it approaches the magnetic field generated around the sensor coil S of the substrate 31 through the partition wall 32d, an overcurrent flows and the inductance (capacitance) changes. is detected and output as a detection signal from the terminal 34 to a controller (not shown).
  • the terminal 34 is composed of three terminals: a pair of power supply terminals and a signal terminal provided between the two power supply terminals. Each terminal 34 has a tip end exposed inside the second coupler 38 and a base end connected to the sensor case 30.
  • the mold is fixed.
  • the base end portion is electrically connected to the electrode portion of the substrate 31 via the joint member, and a control signal from the controller is supplied to the substrate 31 via the terminal 34, and a detection object detected on the substrate 31 is transmitted to the base end portion.
  • the position of 32 is output to the controller as a detection signal.
  • the cap portion 36 is integrally formed of a synthetic resin material, and includes a cylindrical base 36a and a trilobal projection protruding radially outward on the outer periphery of the upper end of the cylindrical base 36a. It has a portion 36b.
  • the cylindrical base 36a has a rod insertion hole 36c vertically formed in the center thereof through which the second rod 32c is slidably inserted, and a circular shape in which the lower end of the valve spring 13 is held at the upper end.
  • An annular spring holding groove 36d is formed.
  • the protrusions 36b are provided at equal intervals in the circumferential direction, and are disposed between the anti-rotation protrusions formed on the outer circumferential side of the annular groove 30d of the sensor case 30. rotation is now regulated.
  • the plug member 6 includes a cylindrical body 40 that is formed of a synthetic resin material into a cylindrical shape with a bottom, and has a disc-shaped bottom portion 40c on the lower side. a passage portion 41 formed along the internal axial direction of the cylindrical body 40 and communicating with the main passage hole 20; a flange portion 42 extending in the radial direction on the outer periphery of the upper end portion 40a of the cylindrical body 40;
  • the cylindrical main body 40 has a plurality of (three in this embodiment) communication passages 43 that are formed at the lower end 40b and communicate the passage part 41 with the outside.
  • the outer diameter D of the cylindrical body 40 is slightly smaller than the inner diameter d of the main passage hole 20, so that the upper end 40a can be inserted into the lower end of the main passage hole 20.
  • a press-fit protrusion 44 serving as a press-fit crush rib is integrally provided on the outer surface of the upper end portion 40a at a position directly above the flange portion 42.
  • the press-fit protrusions 44 are formed in a rectangular shape along the vertical direction, and are provided in plurality (three in this embodiment) at equal intervals in the circumferential direction of the upper end portion 40a.
  • each press-fit protrusion 44 comes into pressure contact with the inner circumferential surface of the main passage hole 20 to hold the plug member 6.
  • the reason for providing the three press-fit protrusions 44 is to ensure coaxiality between the plug member 6 and the main passage hole 20 by supporting at least three points.
  • the flange portion 42 has an outer diameter slightly smaller than the inner diameter of the opening hole 21 so that it can be inserted into the inner peripheral surface of the opening hole 21, and when assembled into the opening hole 21, the flange portion 42 has an annular upper surface. 42a is formed so as to be able to come into contact with a stepped surface 21a formed between the opening hole 21 and the main passage hole 20.
  • the flange portion 42 functions as a spring retainer in which an annular lower surface 42b elastically holds the upper end portion of the valve spring 13, and the spring force of the valve spring 13 presses the upper surface 42a against the step surface 21a, thereby removing the spool.
  • the entire valve 3 is biased toward the drive section 4. Further, the valve spring 13 is extendably fitted onto the outer periphery of the lower end portion 40b of the cylindrical body 40, so that the lower end portion 40b has a guide function of guiding the inner periphery of the valve spring 13.
  • the flange portion 42 has three recesses 45 formed at positions corresponding to the formation positions of the press-fit protrusions 44 on the upper surface 42a, that is, at positions that overlap each press-fit protrusion 44 in the axial direction.
  • Each of the recesses 45 is formed in the shape of an arcuate groove along the outer circumferential surface of the upper end portion 40a with each press-fit protrusion 44 at the center on the upper surface 42a.
  • each communication passage 43 is located radially outward from the center portion of the outer bottom surface 40d, which is a portion of the bottom portion 40c of the lower end portion 40b of the cylindrical main body 40 that is in contact with the second rod 32c of the sensor unit 5, and is axially Openings are formed in the direction and the radial direction.
  • Each of the communication passages 43 has a vertical cross-sectional shape that is approximately I-shaped, with the circumferential wall of the lower end 40b of the cylindrical body 40 being cut out in the axial direction, and the bottom wall of the bottom portion 40c being cut out in the radial direction. It is formed. Thereby, each communication passage 43 communicates with the passage portion 41 in the cylindrical body 40 and the inside of the opening hole 21, that is, with the outside.
  • the total passage cross-sectional area of these three communicating passages 43 is smaller than the passage cross-sectional area of the main passage hole 20.
  • the passage cross-sectional area of the main passage hole 20 is smaller than the passage cross-sectional area of each communicating passage 43. It is formed larger than the total cross-sectional area.
  • valve spring 13 has a lower end portion elastically held in the spring holding groove 36d of the cap portion 36, and an upper end portion elastically held in the lower surface 42b of the flange portion 42 of the plug member 6, so that the spool valve 3
  • This spring force is set in accordance with the mass of the spool valve 3 and the driving force of the drive unit 4.
  • the groove passage 17 of the spool valve 3 faces the introduction port 7, and the second land portion 15 blocks communication between the second cylindrical groove 12 and the groove passage 17, thereby closing the second outlet port 9.
  • the first land portion 14 communicates the first cylindrical groove 11 with the groove passage 17 to open the first outlet port 8.
  • the cooling water that has flowed into the introduction port 7 passes through the groove passage 17 of the spool valve 3 and the first cylindrical groove 11, and is supplied only to the first outlet port 8, from which it is supplied to predetermined equipment. .
  • the detection body 32 in contact with the spool valve 3 is raised together with the spool valve 3 by the spring force of the sensor spring 33. Then, electricity is applied to the board 31 from the controller via the terminal 34 of the second coupler 38, and a change in inductance corresponding to the approach distance of the detection piece 32d with respect to the magnetic field generated in the sensor coil S is detected. By outputting a detection signal corresponding to this inductance change from the board 31 to the controller via the terminal 34, the axial movement position of the spool valve 3 in contact with the detection body 32, that is, the maximum upward position is detected. .
  • the first land portion 14 cuts off the communication between the groove passage 17 and the first cylindrical groove 11 and closes the communication with the first outlet port 8, and the second land portion 15 closes the communication with the first outlet port 8.
  • the groove passage 17 and the second cylindrical groove 12 are communicated with each other to open the open end of the second outlet port 9.
  • the cooling water that has flowed into the introduction port 7 passes through the groove passage 17 of the spool valve 3 and the second cylindrical groove 12, and is supplied only to the second outlet port 9, from which it is supplied to predetermined equipment. .
  • the detection body 32 is pushed down in the direction of arrow B against the spring force of the sensor spring 33, and the detection body 32 is pushed down against the magnetic field generated in the sensor coil S.
  • the inductance changes as the approach distance of 32d changes, and a detection signal based on this change is output to the controller via the terminal 34.
  • the movement position of the spool valve 3, that is, the maximum downward movement position is detected.
  • the spool valve 3 in this embodiment is capable of good movement in the axial direction because the communication hole 18 functions as a so-called breathing hole.
  • the spool valve 3 has a contact area with which the second rod 32c of the sensor unit 5 comes into contact with the bottom part 40c of the cylindrical body 40 of the plug member 6 provided at the lower end in the axial direction of the main passage hole 20 of the communication hole 18. Since the inner diameter of the main passage hole 20 can be secured as much as possible, it becomes possible to make the inner diameter of the main passage hole 20 as large as possible. Thereby, the weight of the spool valve 3 as a whole can be reduced.
  • the spool valve when the weight of the spool valve is large as in the prior art, the spool valve reduces the urging force of the valve spring that urges the spool valve in the other direction in the axial direction in order to suppress vibrations caused by, for example, vehicle vibration.
  • this biasing force it is necessary to increase the coil diameter of the valve spring, or to increase the output of the drive unit that biases the spool valve in one direction against the spring's biasing force. For example, larger flow path control valves and changes in specifications are required.
  • the main passage hole 20 of the spool valve 3 has a passage cross-sectional area larger than the total passage cross-sectional area of the communication passages 43 of the plug member 6, and the passage of the opening hole 21 of the spool valve 3. Since the cross-sectional area is larger than that of the main passage hole 20, the weight of the spool valve 3 is further reduced.
  • the plug member 6 is made of a synthetic resin material, the weight of the entire spool valve 3 to which the plug member 6 is attached can be reduced from this point of view as well.
  • both the plug member 6 and the second rod 32c which is the pin portion of the sensor unit 5 that comes into contact with the bottom portion 40c, are made of synthetic resin, it is possible to suppress the occurrence of wear on one of the rods due to the difference in material between them. .
  • the surface is abraded and the base material of the aluminum alloy material is exposed, thereby suppressing the occurrence of pitting corrosion.
  • each communication passage 43 is formed in an I-shape in the axial and radial directions of the lower end 40b and bottom 40c of the cylindrical main body 40. Therefore, when molding the plug member 6 with resin, no undercut portion is generated, so that the resin molding work is facilitated.
  • the plug member 6 performs both a positioning function for the spool valve 3 and a spring retainer function for the valve spring 13 by the flange portion 42 coming into contact with the stepped surface 21a of the spool valve 3.
  • the plug member 6 When the plug member 6 inserts the upper end portion 40a into the inner circumferential surface of the main passage hole 20, the three press-fit protrusions 44 come into pressure contact with the inner circumferential surface of the main passage hole 20, so that the plug member 6 has a core with the spool valve 3. You can get the soup stock effect. Moreover, since the plug member 6 is stably fixed to the spool valve 3 by each press-fit protrusion 44, it is possible to suppress the occurrence of wear due to rattling of the plug member 6 with the inner circumferential surface of the main passage hole 20. .
  • the three recesses 45 are formed on the upper surface 42a of the flange portion 42, cut pieces such as burrs generated when each press-fit protrusion 44 is press-fitted can be accommodated in each recess 45. Further, the weight reduction of the plug member 6 is also facilitated by the three recesses 45 due to the thinning effect.
  • each press-fit protrusion 44 is press-fitted into the inner peripheral surface of the main passage hole 20. Even if the pressing force is applied, the accuracy of the outer diameter of the second land portion 15 is not affected. As a result, the spool valve 3 can smoothly slide against the inner circumferential surface 10a of the accommodation hole 10.
  • FIG. 5 to 8 show a second embodiment of the flow path control valve according to the present invention, the basic configuration of the flow path control valve is the same as the first embodiment, but mainly the configuration of the plug member 6 is changed. It is.
  • FIG. 5 is a longitudinal sectional view of a flow path control valve according to the second embodiment
  • FIG. 6 is a longitudinal sectional view showing a plug member provided for the flow path control valve of this embodiment
  • FIG. FIG. 8 is a vertical sectional view showing a state in which the spool valve is press-fitted and held.
  • FIG. 8 is an enlarged sectional view of a main part of the spool valve used in the flow path control valve.
  • the plug member 6 does not have the flange portion 42 as in the first embodiment, and is formed of an aluminum alloy material into a straight bottomed cylindrical shape with a constant outer diameter.
  • This plug member 6 has a passage portion 41 that communicates with the main passage hole 20 of the spool valve 3 in the internal axial direction, and has a relatively thick bottom portion 40c at the lower end portion 41b in the axial direction.
  • Two communication passages 43 communicating with the passage portion 41 are formed through the passage portion 41 in the radial direction.
  • the two communicating passages 43 are formed to penetrate the lower end portion 41b in the diametrical direction, and the sum of their respective passage cross-sectional areas is smaller than the passage cross-sectional area of the main passage hole 20.
  • the plug member 6 is inserted into the main passage hole 20 with its upper end 40a in the axial direction. It is adapted to be press-fitted into the portion 50.
  • the press-fitting part 50 is formed in the shape of a cylindrical projection at a position corresponding to the connecting shaft part 16 on the inner circumferential surface of the main passage hole 20 of the spool valve 3. It protrudes inward from the inner peripheral surface of the hole 20 at a height of, for example, several tens of microns.
  • the aluminum alloy material of the plug member 6 is different from the aluminum alloy material of the spool valve 3 in number and surface treatment material. That is, the number of the aluminum alloy material of the plug member 6 is, for example, A5052-H34, while the number of the aluminum alloy material of the spool valve 3 is, for example, A6061-T6 or T8. Further, the surface treatment for the aluminum alloy base material of the plug member 6 is, for example, sulfuric acid alumite, while the surface treatment for the aluminum alloy base material of the spool valve 3 is, for example, oxalate alumite. These respective surface treatment materials can also be changed as appropriate.
  • the lower end of the valve spring 13 is in elastic contact with the bottom surface of the spring holding groove 36d of the cap portion 36, while the upper end is elastic in contact with the stepped surface 21a of the opening hole 21 of the spool valve 3.
  • the entire spool valve 3 including the stopper member 6 is urged in the direction of the drive section 4 .
  • the tip of the second rod 32c of the sensor unit 5 is in elastic contact with the outer bottom surface 40d of the bottom 40c of the plug member 6 due to the spring force of the sensor spring 33.
  • the plug member 6 is press-fitted into the inner circumferential surface of the main passage hole 41 by the press-fitting part 50 at a position corresponding to the connecting shaft part 16, the second land part 15 of the spool valve 3 is It does not affect the accuracy of the outer diameter. Therefore, the spool valve 3 can obtain good slidability with respect to the inner circumferential surface 10a of the accommodation hole 10 via the land portions 14 and 15.
  • the weight of the spool valve 3 as a whole can be reduced, and the vibration resistance can be improved.
  • the material of the plug member 6 it is also possible to use a stainless steel alloy material in addition to the aluminum alloy material. When a stainless steel alloy material is used, corrosion of the plug member 6 can be suppressed.
  • the plug member 6 of the second embodiment is made of a synthetic resin material like that of the first embodiment, it becomes possible to simplify the structure and further promote weight reduction. .
  • the present invention is not limited to the configurations of the first and second embodiments, and for example, the material of the plug member 6 of the first embodiment may be changed from a synthetic resin material to a metal material such as an aluminum alloy material. It is also possible to change the structure of the plug member 6 as desired.
  • the flow path control valve is used for switching the flow path of vehicle cooling water, but it is not limited to this, and it is also possible to apply it to ships and other equipment, for example. Besides water, it is also possible to apply it to oils and other liquids.
  • First rod pin part
  • 32c...Second rod pin part
  • 33 Sensor spring 40...Cylindrical body, 40a...Upper end, 40b...Lower end, 40c...Bottom (contact part), 40d...Outer bottom surface, 41...Passway part , 42...Flange portion, 43...Communication path, 44...Press-fit protrusion, 45...Recess, 50...Press-fit portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multiple-Way Valves (AREA)
  • Sliding Valves (AREA)

Abstract

The present invention comprises: a spool valve 3 that is disposed inside a body 2 such that the spool valve can move in the axial direction, and that switches a communication state between an inlet port 7 and first and second outlet ports 8, 9 by moving in the axial direction; a communication hole 18 that has a main passage hole 20 formed in the interior axial direction of the spool valve, and that establishes communication between one end and another end in the axial direction of the spool valve; a drive unit 4 that biases the spool valve in one direction of the axial direction; a sensor unit 5 that detects a movement position of the spool valve; and a plug member 6 that is inserted and disposed in a lower end section of the main passage hole, and that has a bottom section 40c, which is contacted by a second rod 32c of the sensor unit, and a communication passage 43 that establishes communication between the inside and the outside of the communication hole. Due to the above configuration, the weight of the spool valve can be reduced, and good movement responsiveness can be ensured.

Description

流路制御弁flow path control valve
 本発明は、流路制御弁に関する。 The present invention relates to a flow path control valve.
 従来の流路制御弁としては、例えば以下の特許文献1に記載されたものが知られている。この流路制御弁は、車両の機器類に流体を給排する流路を切り替え制御するものであって、合成樹脂材によって円筒状に形成されたボディと、このボディの内周面に設けられた金属製のスリーブと、このスリーブの内部に軸方向へ移動可能なスプール弁と、を有している。ボディは、軸方向の一端部にスプール弁を軸方向の一方に移動させる駆動部を有している一方、他端部にスプール弁の移動位置を検出するセンサユニットを有している。スプール弁は、ボディのセンサ側に有するコイルスプリングによって軸方向の他方へ付勢されており、上下面の中央位置には、駆動部のプランジャに連結されたシャフトの先端部と、センサユニットのロッドの先端部が当接する当接面がそれぞれ形成されている。また、スプール弁は、前記各当接面を避けた内部軸方向に複数の呼吸孔が貫通形成されている。 As a conventional flow path control valve, for example, one described in Patent Document 1 below is known. This flow path control valve switches and controls the flow path for supplying and discharging fluid to and from equipment in a vehicle, and includes a body formed in a cylindrical shape made of synthetic resin and provided on the inner circumferential surface of this body. It has a metal sleeve and a spool valve that is movable in the axial direction inside the sleeve. The body has a drive section at one axial end for moving the spool valve in one axial direction, and a sensor unit at the other end for detecting the moving position of the spool valve. The spool valve is biased in the other direction in the axial direction by a coil spring on the sensor side of the body, and the tip of the shaft connected to the plunger of the drive unit and the rod of the sensor unit are located at the center of the upper and lower surfaces. Abutment surfaces are respectively formed on which the tips of the two abut. Further, the spool valve has a plurality of breathing holes formed through the spool valve in the internal axial direction away from each of the contact surfaces.
 この呼吸孔は、それぞれ内径が均一の細長い通路孔として形成されて、軸方向の一端部が駆動部の内部に開口し、他端部がセンサユニットの内部に開口形成されて、スプール弁の軸方向の円滑な移動を確保するようになっている。 The breathing holes are each formed as a long and narrow passage hole with a uniform inner diameter, one end in the axial direction opens inside the drive part, the other end opens inside the sensor unit, and the shaft of the spool valve is opened. It is designed to ensure smooth movement in direction.
 そして、スプール弁は、駆動部の押圧力とコイルスプリングのばね力によって軸方向へ移動して、この移動位置に応じて、ボディに設けられた冷却水の導入ポートと第1、第2導出ポートを切り替えるようになっている。 The spool valve is moved in the axial direction by the pressing force of the drive unit and the spring force of the coil spring, and depending on this movement position, the cooling water inlet port and the first and second outlet ports provided in the body are moved. It is designed to switch.
特開2020-165479号公報Japanese Patent Application Publication No. 2020-165479
 しかしながら、特許文献1に記載の従来の流路制御弁にあっては、スプール弁は、駆動部やセンサユニットとの各当接面を確保するために、スプール弁の内部軸心方向を中実な部位として残し、この中実な部位の周りに前記細長い呼吸孔を形成するようになっている。 However, in the conventional flow path control valve described in Patent Document 1, the spool valve is made of solid material in the internal axial direction of the spool valve in order to ensure contact surfaces with the drive section and the sensor unit. The solid portion is left as a solid portion, and the elongated breathing hole is formed around this solid portion.
 このように、スプール弁の内部軸心方向に中実な部位を残すことによって、スプール弁全体の質量が大きくなってしまい、この結果、駆動部やコイルスプリングによるスプール弁の移動応答性が低下する。 In this way, by leaving a solid part in the direction of the internal axis of the spool valve, the mass of the entire spool valve increases, and as a result, the responsiveness of the spool valve's movement by the drive unit and coil spring decreases. .
 このスプール弁の良好な移動応答性を確保するために、駆動部のソレノイド出力(推力)を大きくするとともに、コイルスプリングのコイル径を大きくすると、流路制御弁全体の大型化や重量の増加を招いていわゆる耐振性が低下するおそれがある。 In order to ensure good movement response of this spool valve, the solenoid output (thrust) of the drive part is increased and the coil diameter of the coil spring is increased, which increases the size and weight of the entire flow path control valve. This may lead to a decrease in so-called vibration resistance.
 本発明は、従来技術の技術的課題に鑑みて案出されたもので、スプール弁の軽量化を図って移動応答性を向上し得る流路制御弁を提供することを目的としている。 The present invention was devised in view of the technical problems of the prior art, and aims to provide a flow path control valve that can reduce the weight of the spool valve and improve movement responsiveness.
 本発明の一態様として、とりわけ、ボディの内部に軸方向へ移動可能に配置され、軸方向に移動することで導入ポートと導出ポートとの連通状態を切り替えるスプール弁と、一部が前記スプール弁の内部軸心方向に形成され、前記スプール弁の軸方向の一端と他端を連通する連通孔と、前記スプール弁を前記軸方向の一方に付勢する駆動部と、前記スプール弁の前記駆動部に対して軸方向の反対側に設けられ、前記スプール弁の移動位置を検出する検出器と、前記連通孔の一部に挿入されて、前記駆動部または前記検出器が当接する当接部及び前記連通孔の内部と外部を連通する連通路を有する栓部材と、を有することを特徴としている。 One aspect of the present invention particularly includes a spool valve that is disposed inside a body so as to be movable in the axial direction, and that moves in the axial direction to switch the communication state between an inlet port and an outlet port; a communication hole formed in the internal axial direction of the spool valve and communicating with one end of the spool valve in the axial direction and the other end thereof; a drive part that biases the spool valve in one of the axial directions; and a drive part of the spool valve. a detector that is provided on the opposite side in the axial direction to the part and detects the moving position of the spool valve; and a contact part that is inserted into a part of the communication hole and comes into contact with the drive part or the detector. and a plug member having a communication path that communicates the inside and outside of the communication hole.
 本発明の態様によれば、スプール弁の軽量化を図って該スプール弁の移動応答性を向上することができる。 According to the aspect of the present invention, it is possible to reduce the weight of the spool valve and improve the movement responsiveness of the spool valve.
本発明の第1実施形態に係る流路制御弁の縦断面図である。FIG. 1 is a longitudinal cross-sectional view of a flow path control valve according to a first embodiment of the present invention. 本実施形態の流路制御弁に供される栓部材を示す斜視図である。FIG. 3 is a perspective view showing a plug member used in the flow path control valve of the present embodiment. 同流路制御弁に供される栓部材の斜視図である。It is a perspective view of the stopper member used for the flow path control valve. 同流路制御弁に供される栓部材の正面図である。It is a front view of the stopper member used for the flow path control valve. 第2実施形態に係る流路制御弁の縦断面図である。FIG. 7 is a longitudinal cross-sectional view of a flow path control valve according to a second embodiment. 本実施形態の流路制御弁に供される栓部材を示す縦断面図である。FIG. 3 is a longitudinal cross-sectional view showing a plug member used in the flow path control valve of the present embodiment. スプール弁に栓部材に圧入保持されている状態を示す縦断面図である。FIG. 3 is a longitudinal cross-sectional view showing a state in which a plug member is press-fitted and held in a spool valve. 同流路制御弁に供されるスプール弁の要部拡大断面図である。FIG. 2 is an enlarged sectional view of a main part of a spool valve used in the flow path control valve.
 以下、本発明に係る流路制御弁の実施形態を図面に基づいて説明する。なお、本実施形態では、流路制御弁を従来と同様の自動車の機器類に供給する冷却水の循環系に適用したものを例に説明する。 Hereinafter, embodiments of the flow path control valve according to the present invention will be described based on the drawings. In this embodiment, an example will be described in which a flow path control valve is applied to a cooling water circulation system that supplies the same conventional automobile equipment.
 図1は本発明の第1実施形態に係る流路制御弁の縦断面図、図2は本実施形態の流路制御弁に供される栓部材を示す斜視図、図3は同流路制御弁に供される栓部材の斜視図、図4は同流路制御弁に供される栓部材の正面図である。なお、説明の便宜上、図1中の軸方向の矢印A方向側を上端部、矢印B方向側を下端部として説明する。 FIG. 1 is a longitudinal sectional view of a flow path control valve according to a first embodiment of the present invention, FIG. 2 is a perspective view showing a plug member provided for the flow path control valve of this embodiment, and FIG. 3 is a view showing the same flow path control valve. FIG. 4 is a perspective view of the plug member used in the valve, and FIG. 4 is a front view of the plug member used in the flow path control valve. For convenience of explanation, the side in the direction of arrow A in the axial direction in FIG. 1 will be described as an upper end, and the side in the direction of arrow B will be described as a lower end.
 第1実施形態における流路制御弁1は、図1に示すように、円筒状のボディ2と、該ボディ2の内部に矢印A,B方向に沿って移動可能に設けられたスプール弁3と、ボディ2の軸方向の上端部に設けられた駆動部4と、ボディ2の軸方向の下端部に設けられた検出器であるセンサユニット5と、前記スプール弁3のセンサユニット5側に取り付けられた栓部材6と、を有している。 As shown in FIG. 1, the flow path control valve 1 in the first embodiment includes a cylindrical body 2, and a spool valve 3 provided inside the body 2 so as to be movable along the directions of arrows A and B. , a drive unit 4 provided at the upper end of the body 2 in the axial direction, a sensor unit 5 serving as a detector provided at the lower end of the body 2 in the axial direction, and attached to the sensor unit 5 side of the spool valve 3. and a plug member 6.
 ボディ2は、金属材としてアルミニウム合金材によって円筒状に形成され、外周面が軸方向に沿って同一径に形成されており、外周面に径方向外側に向かって突出した管状の導入ポート7及び第1、第2導出ポート8、9がそれぞれ設けられている。前記導入ポート7は、軸方向のほぼ中央で一方側へ突出し、第1、第2導出ポート8、9は、導入ポート7とは反対方向となる径方向他方側へ突出している。第1導出ポート8は、ボディ2の軸方向の上端部側に配置され、第2導出ポート9は、ボディ2の軸方向の下端部側に配置されて、第1導出ポート8とは互いに軸方向へ所定距離だけ離間している。 The body 2 is formed into a cylindrical shape from an aluminum alloy material as a metal material, and has an outer circumferential surface formed to have the same diameter along the axial direction, and has a tubular introduction port 7 and a tubular introduction port 7 protruding radially outward on the outer circumferential surface. First and second outlet ports 8 and 9 are provided, respectively. The introduction port 7 protrudes toward one side at approximately the center in the axial direction, and the first and second outlet ports 8 and 9 protrude toward the other side in the radial direction, which is opposite to the introduction port 7. The first outlet port 8 is arranged on the upper end side of the body 2 in the axial direction, and the second outlet port 9 is arranged on the lower end side of the body 2 in the axial direction. They are separated by a predetermined distance in the direction.
 導入ポート7と第1、第2導出ポート8、9には、それぞれ図外の配管が接続され、例えば、導入ポート7には、図外の供給源である電動ポンプなどから配管を介して流体である冷却水が供給され、第1、第2導出ポート8、9には、それぞれ図外の配管を通じて前記冷却水が供給される機器である例えば電源回路制御装置などが接続されている。 The introduction port 7 and the first and second outlet ports 8 and 9 are each connected to piping (not shown). For example, the introduction port 7 is supplied with fluid from a supply source (not shown), such as an electric pump, through the piping. The first and second outlet ports 8 and 9 are each connected to a device to which the cooling water is supplied, such as a power circuit control device, through piping (not shown).
 ボディ2は、内部にほぼ一定径で軸方向に沿って延びる収容孔10が形成されている。この収容孔10は、導入ポート7や第1、第2導出ポート8、9に第1~第3開口部7a、8a、9aを介して連通していると共に、内部には前記スプール弁3が軸方向(A,B方向)に移動可能に収容されている。 The body 2 has a housing hole 10 formed therein that has a substantially constant diameter and extends along the axial direction. This accommodation hole 10 communicates with the introduction port 7 and the first and second outlet ports 8 and 9 through first to third openings 7a, 8a, and 9a, and the spool valve 3 is located inside. It is housed so as to be movable in the axial direction (A, B direction).
 また、ボディ2は、収容孔10の内周面10aの上部位置に第1導出ポート8と連通する第1筒状溝11が形成されている一方、内周面10aの下部位置に第2導出ポート9と連通する第2筒状溝12がそれぞれ形成されている。 Further, the body 2 has a first cylindrical groove 11 that communicates with the first outlet port 8 formed at the upper position of the inner circumferential surface 10a of the accommodation hole 10, and a second outlet port 11 that communicates with the first outlet port 8 at the lower position of the inner circumferential surface 10a. A second cylindrical groove 12 communicating with the port 9 is formed respectively.
 スプール弁3は、金属材であるアルミニウム合金材によって一体に形成され、駆動部4の駆動作用によって軸方向の下方向(B方向)へ移動する一方、軸方向の他端部側に設けられた後述するコイルばねであるバルブスプリング13のばね力によって軸方向の上方向(A方向)へ移動するようになっている。 The spool valve 3 is integrally formed of an aluminum alloy material, which is a metal material, and is moved in the downward direction (B direction) in the axial direction by the driving action of the drive unit 4, and is provided on the other end side in the axial direction. It is adapted to move upward in the axial direction (direction A) by the spring force of a valve spring 13, which is a coil spring described later.
 スプール弁3は、軸方向の上端部の外周に形成された第1ランド部14と、下端部の外周に形成された第2ランド部15と、第1ランド部14と第2ランド部15の間に形成された連結軸部16と、該連結軸部16の外周に形成された円筒状の溝通路17と、を有している。また、スプール弁3は、第1ランド部14の図1中、上端部に円盤状の上壁部14aが一体に設けられている。 The spool valve 3 includes a first land portion 14 formed on the outer periphery of the upper end portion in the axial direction, a second land portion 15 formed on the outer periphery of the lower end portion, and the first land portion 14 and the second land portion 15. It has a connecting shaft portion 16 formed therebetween, and a cylindrical groove passage 17 formed on the outer periphery of the connecting shaft portion 16. Further, in the spool valve 3, a disk-shaped upper wall portion 14a is integrally provided at the upper end portion of the first land portion 14 in FIG.
 第1ランド部14と第2ランド部15は、外径が同一に形成され、軸方向の長さがそれぞれほぼ同一に形成されていると共に、それぞれの外周面が収容孔10の内周面10aに軸方向へ摺動可能に設けられている。 The first land portion 14 and the second land portion 15 are formed to have the same outer diameter, approximately the same length in the axial direction, and the outer peripheral surface of each of them is the inner peripheral surface 10a of the accommodation hole 10. It is provided so as to be slidable in the axial direction.
 また、スプール弁3は、第1ランド部14に当接する駆動部4の後述するシャフト27の最大上昇位置で最大上方の移動位置が規制され、センサユニット5に設けられた後述するキャップ部36に第2ランド部15の軸方向の下端面が当接して最大下方向の移動位置が規制されるようになっている。 Further, the maximum upward movement position of the spool valve 3 is regulated at the maximum raised position of the shaft 27 (described later) of the drive unit 4 that is in contact with the first land portion 14, and the spool valve 3 is restricted in its maximum upward movement position by a cap portion 36 (described later) provided on the sensor unit 5. The lower end surface of the second land portion 15 in the axial direction comes into contact with the second land portion 15 to restrict the maximum downward movement position.
 そして、スプール弁3は、最大上方移動位置で、第1ランド部14がボディ2の第1筒状溝11と溝通路17とを連通させ、最大下方移動位置で、第2ランド部15がボディ2の第2筒状溝12と溝通路17とを連通させる。これによって、導入ポート7は、第1導出ポート8と第2導出ポート9に選択的に連通されるようになっている。換言すれば、スプール弁3は、その移動位置に応じて、第1ランド部14が第1筒状溝11と溝通路17との連通を遮断あるいは連通させる一方、第2ランド部15が第2筒状溝12と溝通路17との連通を遮断あるいは連通させるようになっている。つまり、第1ランド部14が、第1筒状溝11と溝通路17が連通している状態では、第2ランド部15が、第2筒状溝12と溝通路17の連通を遮断し、第1筒状溝11と溝通路17の連通が遮断されている状態では、第2筒状溝12と溝通路17とを連通するようになっている。 In the spool valve 3, at the maximum upward movement position, the first land part 14 communicates the first cylindrical groove 11 of the body 2 with the groove passage 17, and at the maximum downward movement position, the second land part 15 communicates with the body 2. The second cylindrical groove 12 of No. 2 and the groove passage 17 are communicated with each other. Thereby, the introduction port 7 is selectively communicated with the first outlet port 8 and the second outlet port 9. In other words, in the spool valve 3, the first land portion 14 blocks or connects the first cylindrical groove 11 with the groove passage 17, while the second land portion 15 connects the first cylindrical groove 11 with the groove passage 17, depending on its movement position. Communication between the cylindrical groove 12 and the groove passage 17 is cut off or communicated with each other. That is, in a state where the first land portion 14 communicates with the first cylindrical groove 11 and the groove passage 17, the second land portion 15 blocks communication between the second cylindrical groove 12 and the groove passage 17, In a state where communication between the first cylindrical groove 11 and the groove passage 17 is interrupted, the second cylindrical groove 12 and the groove passage 17 are communicated with each other.
 また、スプール弁3は、内部に第1ランド部14の上端面から第2ランド部15の下端面までの間に連通孔18が貫通形成されている。 Furthermore, a communication hole 18 is formed inside the spool valve 3 between the upper end surface of the first land portion 14 and the lower end surface of the second land portion 15 .
 具体的に説明すれば、連通孔18は、第1ランド部14の上壁部14aの径方向外側に形成された小径孔19と、スプール弁3の内部軸心方向に沿って形成されて、上端が小径孔19に連通するメイン通路孔20と、第2ランド部15の内部に形成されて、メイン通路孔20の下端が連通する開口孔21と、を有している。連通孔18は、スプール弁3の上下移動を円滑に移動させる呼吸孔として機能している。 To be more specific, the communication hole 18 is formed along the small diameter hole 19 formed on the radially outer side of the upper wall portion 14a of the first land portion 14, and along the internal axis direction of the spool valve 3. It has a main passage hole 20 whose upper end communicates with the small diameter hole 19, and an opening hole 21 formed inside the second land portion 15 and whose lower end communicates with the main passage hole 20. The communication hole 18 functions as a breathing hole that allows the spool valve 3 to move up and down smoothly.
 小径孔19は、第1ランド部14の上壁部14aの径方向外側の位置から内部軸心方向に向かって傾斜状に形成されて、軸方向の一端部19aが駆動部4の後述するケーシング22の内部に開口形成されていると共に、他端部19bがメイン通路孔20の上端部に開口形成されている。 The small diameter hole 19 is formed in an inclined shape toward the inner axis from a position on the outside in the radial direction of the upper wall portion 14a of the first land portion 14, and one end portion 19a in the axial direction is connected to the casing of the drive portion 4, which will be described later. An opening is formed inside the main passage hole 22, and the other end portion 19b is formed as an opening at the upper end portion of the main passage hole 20.
 メイン通路孔20は、内径dが上下方向でほぼ一定の大きさに形成されて、その内径dの大きさは連結軸部16の外径よりも僅かに小さく形成されて全体としては比較的大きく形成されている。 The main passage hole 20 has an inner diameter d that is approximately constant in the vertical direction, and the inner diameter d is slightly smaller than the outer diameter of the connecting shaft portion 16, so that the main passage hole 20 is relatively large as a whole. It is formed.
 開口孔21は、内径d1がメイン通路孔20の内径dよりもさらに大きく形成されて、通路断面積がメイン通路孔20のそれよりも大きく形成されている。この開口孔21は、上端がメイン通路孔20の下端に開口している一方、下端が栓部材6の後述する連通路43を介して外部に連通している。 The opening hole 21 has an inner diameter d1 larger than the inner diameter d of the main passage hole 20, and a passage cross-sectional area larger than that of the main passage hole 20. The opening hole 21 has an upper end open to the lower end of the main passage hole 20, and a lower end communicating with the outside via a communication path 43 of the plug member 6, which will be described later.
 駆動部4は、図1に示すように、例えば、コイル24への通電時に磁力を発生して軸方向の推力を得るソレノイドであり、ケーシング22と、該ケーシング22の内部に収納されてボビン23に巻回されたコイル24と、前記ボビン23の下部に設けられる固定コア25と、前記ボビン23の内側に設けられ、前記コイル24の励磁作用によって固定コア25側へ付勢される可動コアであるプランジャ26と、該プランジャ26の中心に連結されるシャフト27と、ボビン23とコイル24の外周側を覆う樹脂モールド部28と、を有している。 As shown in FIG. 1, the drive unit 4 is, for example, a solenoid that generates a magnetic force and obtains an axial thrust when the coil 24 is energized, and includes a casing 22 and a bobbin 23 housed inside the casing 22. a fixed core 25 provided at the bottom of the bobbin 23, and a movable core provided inside the bobbin 23 and urged toward the fixed core 25 by the excitation action of the coil 24. It has a plunger 26, a shaft 27 connected to the center of the plunger 26, and a resin molded part 28 that covers the outer peripheral sides of the bobbin 23 and the coil 24.
 ケーシング22は、有底円筒状に形成され、開口した下端部がボディ2の上端部に一体に有する固定部2aにかしめ固定されている。ボビン23は、一端部と他端部が拡径して円筒状に形成されて、ケーシング22の内部でコイル24とともに樹脂モールド部28によってモールドされている。固定コア25は、金属材によって円筒状に形成され、その一部がボビン23の内部に挿通されていると共に、外周面の鍔部25aが樹脂モールド部28と固定部2aの他端部との間に挟持固定されている。プランジャ26は、磁性材によって円筒状に形成されて、ボビン23の内周側に配置されていると共に、固定コア25の上端部側に位置している。 The casing 22 is formed into a cylindrical shape with a bottom, and its open lower end is caulked and fixed to a fixing part 2a integrally provided at the upper end of the body 2. The bobbin 23 is formed into a cylindrical shape with one end and the other end enlarged in diameter, and is molded together with the coil 24 inside the casing 22 by a resin mold section 28 . The fixed core 25 is formed of a metal material into a cylindrical shape, and a part of the fixed core 25 is inserted into the bobbin 23, and a flange 25a on the outer peripheral surface connects the resin molded part 28 and the other end of the fixed part 2a. It is clamped and fixed in between. The plunger 26 is made of a magnetic material and has a cylindrical shape, and is disposed on the inner peripheral side of the bobbin 23 and on the upper end side of the fixed core 25.
 シャフト27は、プランジャ26の軸中心に連結され、所定長さだけスプール弁3方向へ向かって延びて、先端部27aが固定部2aのシャフト孔2bを介してスプール弁3の第1ランド部14の上壁部14aの上面中心位置に当接している。このシャフト27は、バルブスプリング13のばね力でスプール弁3に付勢されていることから、先端部27aが上壁部14aの上面中央に当接している。 The shaft 27 is connected to the axial center of the plunger 26 and extends in the direction of the spool valve 3 by a predetermined length, so that the tip end 27a is connected to the first land portion 14 of the spool valve 3 through the shaft hole 2b of the fixed portion 2a. It is in contact with the center position of the upper surface of the upper wall portion 14a. Since this shaft 27 is urged against the spool valve 3 by the spring force of the valve spring 13, the tip end 27a is in contact with the center of the upper surface of the upper wall portion 14a.
 樹脂モールド部28は、外側部に第1カプラ29が一体に設けられ、第1カプラ29の内部に有する接続端子29aが図外の電源コネクタの接続端子に接続されてコイル24に電気を供給するようになっている。 A first coupler 29 is integrally provided on the outer side of the resin molded part 28, and a connection terminal 29a provided inside the first coupler 29 is connected to a connection terminal of a power connector (not shown) to supply electricity to the coil 24. It looks like this.
 センサユニット5は、スプール弁3の軸方向に沿った移動位置を検出するもので、センサケース30と、センサケース30の内部に収納された基板31と、該基板31に沿って移動可能に設けられた検出体32と、該検出体32をスプール弁3側に向かって付勢するセンサスプリング33と、基板31に対して電気的に接続されるターミナル34と、センサケース30の下端開口を塞ぐ蓋部35と、センサケース30上端開口部に設けられたキャップ部36と、を有している。 The sensor unit 5 detects the movement position of the spool valve 3 along the axial direction, and is provided to be movable along the sensor case 30, a board 31 housed inside the sensor case 30, and the board 31. The sensor spring 33 that urges the detection object 32 toward the spool valve 3 side, the terminal 34 that is electrically connected to the board 31, and the lower end opening of the sensor case 30 are closed. It has a lid part 35 and a cap part 36 provided at the upper end opening of the sensor case 30.
 センサケース30は、合成樹脂材で内部中空状に形成され、開口した円筒状の上端部30aがボディ2の下端部に有する第2収容部37内に収容されていると共に、外周に有するフランジ部30bが第2収容部37の開口縁に当接しつつ図外のねじによってボディ2に固定されている。また、センサケース30は、内部が仕切壁30cによって基板31を収納する基板収納室と検出体32を収納する検出体収容室に仕切られている。前記上端部30aは、内周に前記キャップ部36を収容保持する円環溝30dが形成されていると共に、円環溝30dの外周部に図外の3つの回り止め突起が設けられている。 The sensor case 30 is formed of a synthetic resin material and has an internal hollow shape, and has an open cylindrical upper end 30a accommodated in a second housing part 37 provided at the lower end of the body 2, and a flange part provided on the outer periphery. 30b is fixed to the body 2 by a screw (not shown) while abutting the opening edge of the second accommodating portion 37. Furthermore, the interior of the sensor case 30 is partitioned by a partition wall 30c into a substrate storage chamber that stores the substrate 31 and a detection object storage chamber that stores the detection object 32. The upper end portion 30a has an annular groove 30d formed on the inner periphery to accommodate and hold the cap portion 36, and three anti-rotation protrusions (not shown) are provided on the outer periphery of the annular groove 30d.
 基板31は、板状に形成された第2カプラ38を構成する3本のターミナル34が図外の電極部に接続されることによって電気的に接続されていると共に、近接配置された検出体32の接近を検知するためのセンサコイル(センサ)が設けられ、ターミナル34からの制御電流に基づいて磁界を発生させる。 The substrate 31 is electrically connected by connecting three terminals 34 constituting a second coupler 38 formed in a plate shape to an electrode portion (not shown), and is also electrically connected to a detection object 32 disposed in close proximity. A sensor coil (sensor) is provided to detect the approach of the terminal 34, and generates a magnetic field based on a control current from the terminal 34.
 検出体32は、ブロック状の検出本体32aと、該検出本体32aに対して軸方向にそれぞれ突出したピン部である第1、第2ロッド32b、32cと、検出本体32aの側面に装着された検出片32dと、を有している。検出本体32aは、検出体32の移動方向と直交する一側面が検出体収納室の内壁面に当接することで軸方向に沿って変位可能に案内される。 The detection body 32 includes a block-shaped detection body 32a, first and second rods 32b and 32c, which are pin portions that respectively protrude in the axial direction with respect to the detection body 32a, and are attached to the side surface of the detection body 32a. It has a detection piece 32d. The detection main body 32a is guided so as to be displaceable along the axial direction when one side surface perpendicular to the moving direction of the detection object 32 comes into contact with the inner wall surface of the detection object storage chamber.
 第1ロッド32bは、検出本体32aの軸方向一端面から矢印B方向に向かって突出し、外周側にはセンサスプリング33が挿通されている。センサスプリング33は、第1ロッド32bを介して一端が検出本体32aの軸方向端面に当接し、他端が検出体収納室のスプリング座に弾接保持されて、そのばね力によって検出体32をスプール弁3側(矢印A方向)に付勢している。 The first rod 32b protrudes from one axial end surface of the detection main body 32a in the direction of arrow B, and a sensor spring 33 is inserted into the outer peripheral side. One end of the sensor spring 33 contacts the axial end surface of the detection body 32a via the first rod 32b, and the other end is held in elastic contact with a spring seat in the detection object storage chamber, so that the sensor spring 33 moves the detection object 32 by the spring force. It is biased toward the spool valve 3 side (in the direction of arrow A).
 第2ロッド32cは、検出本体32aを挟んで第1ロッド32bと一直線上に形成されて、検出本体32aの軸方向端面から軸方向に沿って所定長さだけ突出し、キャップ部36の中央に有するロッド挿通孔36cを挿通して、その先端が栓部材6の後述する当接部である底部40cの外底面40d中央に当接している。この際、検出体32は、センサスプリング33のばね力によってスプール弁3方向へ付勢されていることから、第2ロッド32cの先端が常に栓部材6の底部40cの外底面40dに当接した状態になる。 The second rod 32c is formed in a straight line with the first rod 32b with the detection body 32a in between, protrudes from the axial end surface of the detection body 32a by a predetermined length along the axial direction, and is located in the center of the cap portion 36. The rod is inserted through the rod insertion hole 36c, and its tip abuts the center of the outer bottom surface 40d of the bottom 40c, which is a contact portion of the plug member 6, which will be described later. At this time, since the detection body 32 is urged in the direction of the spool valve 3 by the spring force of the sensor spring 33, the tip of the second rod 32c is always in contact with the outer bottom surface 40d of the bottom 40c of the plug member 6. become a state.
 検出片32dは、金属材によってプレート状に形成され、検出本体32aの他端面及び仕切壁32dに対してほぼ平行に配置されて、検出体32と共に仕切壁32dに沿って矢印A、B方向に移動可能に設けられており、仕切壁32dを介して基板31のセンサコイルSの周辺に生じた磁界に接近することで、過電流が流れてインダクタンス(静電容量)が変化して、この変化が検出されて検出信号としてターミナル34から図外のコントローラへと出力される。 The detection piece 32d is formed into a plate shape from a metal material, is arranged substantially parallel to the other end surface of the detection body 32a and the partition wall 32d, and is moved along the partition wall 32d together with the detection body 32 in the directions of arrows A and B. It is movably provided, and when it approaches the magnetic field generated around the sensor coil S of the substrate 31 through the partition wall 32d, an overcurrent flows and the inductance (capacitance) changes. is detected and output as a detection signal from the terminal 34 to a controller (not shown).
 ターミナル34は、一対の電源端子と、両電源端子の間に設けられた信号端子の3本で構成され、各先端部が第2カプラ38内で露出し、各基端部がセンサケース30にモールド固定されている。基端部は、ジョイント部材を介して基板31の電極部と電気的に接続されて、コントローラからの制御信号がターミナル34を介して基板31に供給されると共に、基板31で検出された検出体32の位置が検出信号としてコントローラに出力されるようになっている。 The terminal 34 is composed of three terminals: a pair of power supply terminals and a signal terminal provided between the two power supply terminals. Each terminal 34 has a tip end exposed inside the second coupler 38 and a base end connected to the sensor case 30. The mold is fixed. The base end portion is electrically connected to the electrode portion of the substrate 31 via the joint member, and a control signal from the controller is supplied to the substrate 31 via the terminal 34, and a detection object detected on the substrate 31 is transmitted to the base end portion. The position of 32 is output to the controller as a detection signal.
 前記キャップ部36は、図1に示すように、合成樹脂材によって一体に形成されており、筒状基部36aと、該筒状基部36aの上端部外周に径方向外側へ突出した3葉状の突起部36bと、を有している。筒状基部36aは、中央位置に前記第2ロッド32cが摺動可能に挿通されるロッド挿通孔36cが上下に貫通形成されていると共に、上端部にバルブスプリング13の下端部が保持される円環状のスプリング保持溝36dが形成されている。各突起部36bは、円周方向の等間隔位置に設けられて、センサケース30の円環溝30dの外周側に形成された各回り止め突起の間に配置されて、キャップ部36全体の無用な回転が規制されるようになっている。 As shown in FIG. 1, the cap portion 36 is integrally formed of a synthetic resin material, and includes a cylindrical base 36a and a trilobal projection protruding radially outward on the outer periphery of the upper end of the cylindrical base 36a. It has a portion 36b. The cylindrical base 36a has a rod insertion hole 36c vertically formed in the center thereof through which the second rod 32c is slidably inserted, and a circular shape in which the lower end of the valve spring 13 is held at the upper end. An annular spring holding groove 36d is formed. The protrusions 36b are provided at equal intervals in the circumferential direction, and are disposed between the anti-rotation protrusions formed on the outer circumferential side of the annular groove 30d of the sensor case 30. rotation is now regulated.
 そして、前記栓部材6は、図1及び図2~図4に示すように、合成樹脂材によって有底円筒状に形成され、下側に円盤状の底部40cを有する筒状本体40と、該筒状本体40の内部軸方向に沿って形成されて、前記メイン通路孔20に連通する通路部41と、筒状本体40の上端部40aの外周に径方向へ延びたフランジ部42と、前記筒状本体40の下端部40bに形成されて、通路部41と外部とを連通する複数(本実施形態では3つ)の連通路43と、を有している。 As shown in FIGS. 1 and 2 to 4, the plug member 6 includes a cylindrical body 40 that is formed of a synthetic resin material into a cylindrical shape with a bottom, and has a disc-shaped bottom portion 40c on the lower side. a passage portion 41 formed along the internal axial direction of the cylindrical body 40 and communicating with the main passage hole 20; a flange portion 42 extending in the radial direction on the outer periphery of the upper end portion 40a of the cylindrical body 40; The cylindrical main body 40 has a plurality of (three in this embodiment) communication passages 43 that are formed at the lower end 40b and communicate the passage part 41 with the outside.
 筒状本体40は、外径Dが前記メイン通路孔20の内径dよりもわずかに小さく形成されて、上端部40aがメイン通路孔20の下端部に挿入可能になっている。また、前記上端部40aのフランジ部42の直上位置の外面には、圧入用クラッシュリブとしての圧入突起部44が一体に設けられている。この圧入突起部44は、上下方向に沿って長方形状に形成されていると共に、上端部40aの円周方向の等間隔位置に複数(本実施形態では3つ)設けられており、筒状本体40の上端部40aをメイン通路孔20に挿入した際に、該メイン通路孔20の内周面に各圧入突起部44の各外面が圧接して栓部材6を保持するようになっている。なお、圧入突起部44を3つ設けたのは、少なくとも3点支持によって栓部材6とメイン通路孔20との同軸性を確保するためである。なお、前記同軸性を確保ためには圧入突起部44を、4つ以上設けることも可能である。 The outer diameter D of the cylindrical body 40 is slightly smaller than the inner diameter d of the main passage hole 20, so that the upper end 40a can be inserted into the lower end of the main passage hole 20. Further, a press-fit protrusion 44 serving as a press-fit crush rib is integrally provided on the outer surface of the upper end portion 40a at a position directly above the flange portion 42. The press-fit protrusions 44 are formed in a rectangular shape along the vertical direction, and are provided in plurality (three in this embodiment) at equal intervals in the circumferential direction of the upper end portion 40a. When the upper end 40a of the plug member 40 is inserted into the main passage hole 20, the outer surface of each press-fit protrusion 44 comes into pressure contact with the inner circumferential surface of the main passage hole 20 to hold the plug member 6. The reason for providing the three press-fit protrusions 44 is to ensure coaxiality between the plug member 6 and the main passage hole 20 by supporting at least three points. In addition, in order to ensure the coaxiality, it is also possible to provide four or more press-fit protrusions 44.
 フランジ部42は、外径が開口孔21の内径より僅かに小さく形成されて、該開口孔21の内周面に挿入可能になっていると共に、開口孔21内への組み付け時に円環状の上面42aが開口孔21のメイン通路孔20との間に形成された段差面21aに当接可能に形成されている。フランジ部42は、円環状の下面42bが前記バルブスプリング13の上端部を弾接保持するスプリングリテーナとして機能して、このバルブスプリング13のばね力で上面42aを段差面21aに押し付けることによって、スプール弁3全体を駆動部4の方向へ付勢している。また、筒状本体40の下端部40bの外周にバルブスプリング13が伸縮可能に嵌挿されており、したがって、前記下端部40bがバルブスプリング13の内周をガイドするガイド機能を有している。 The flange portion 42 has an outer diameter slightly smaller than the inner diameter of the opening hole 21 so that it can be inserted into the inner peripheral surface of the opening hole 21, and when assembled into the opening hole 21, the flange portion 42 has an annular upper surface. 42a is formed so as to be able to come into contact with a stepped surface 21a formed between the opening hole 21 and the main passage hole 20. The flange portion 42 functions as a spring retainer in which an annular lower surface 42b elastically holds the upper end portion of the valve spring 13, and the spring force of the valve spring 13 presses the upper surface 42a against the step surface 21a, thereby removing the spool. The entire valve 3 is biased toward the drive section 4. Further, the valve spring 13 is extendably fitted onto the outer periphery of the lower end portion 40b of the cylindrical body 40, so that the lower end portion 40b has a guide function of guiding the inner periphery of the valve spring 13.
 また、フランジ部42は、上面42aの前記各圧入突起部44の形成位置と対応した位置、つまり各圧入突起部44とそれぞれ軸方向でオーバーラップする位置に3つの凹部45が形成されている。この各凹部45は、上面42aに各圧入突起部44を中心として上端部40aの外周面に沿った円弧溝状に形成されている。 Furthermore, the flange portion 42 has three recesses 45 formed at positions corresponding to the formation positions of the press-fit protrusions 44 on the upper surface 42a, that is, at positions that overlap each press-fit protrusion 44 in the axial direction. Each of the recesses 45 is formed in the shape of an arcuate groove along the outer circumferential surface of the upper end portion 40a with each press-fit protrusion 44 at the center on the upper surface 42a.
 3つの連通路43は、図1及び図2~図4に示すように、筒状本体40の下端部40bの円周方向の等間隔位置に設けられている。すなわち各連通路43は、それぞれ筒状本体40の下端部40bに有する底部40cのセンサユニット5の第2ロッド32cが当接する部位である外底面40dの中央部よりも径方向外側で、かつ軸方向及び径方向に開口形成されている。各連通路43は、それぞれが筒状本体40の下端部40bの周壁が軸方向に切り欠かれ、また底部40cの底壁が径方向から切り欠かれて、縦断面形状がほぼI字形状に形成されている。これによって、各連通路43は、筒状本体40内の通路部41と開口孔21の内部、つまり外部と連通している。 The three communicating passages 43 are provided at equal intervals in the circumferential direction of the lower end portion 40b of the cylindrical main body 40, as shown in FIGS. 1 and 2 to 4. That is, each communication passage 43 is located radially outward from the center portion of the outer bottom surface 40d, which is a portion of the bottom portion 40c of the lower end portion 40b of the cylindrical main body 40 that is in contact with the second rod 32c of the sensor unit 5, and is axially Openings are formed in the direction and the radial direction. Each of the communication passages 43 has a vertical cross-sectional shape that is approximately I-shaped, with the circumferential wall of the lower end 40b of the cylindrical body 40 being cut out in the axial direction, and the bottom wall of the bottom portion 40c being cut out in the radial direction. It is formed. Thereby, each communication passage 43 communicates with the passage portion 41 in the cylindrical body 40 and the inside of the opening hole 21, that is, with the outside.
 この3つの連通路43の通路断面積の合計は、前記メイン通路孔20の通路断面積よりも小さく形成されており、換言すれば、メイン通路孔20の通路断面積が各連通路43の通路断面積の合計よりも大きく形成されている。 The total passage cross-sectional area of these three communicating passages 43 is smaller than the passage cross-sectional area of the main passage hole 20. In other words, the passage cross-sectional area of the main passage hole 20 is smaller than the passage cross-sectional area of each communicating passage 43. It is formed larger than the total cross-sectional area.
 バルブスプリング13は、前述のように、下端部がキャップ部36のスプリング保持溝36dに弾接保持され、上端部が栓部材6のフランジ部42の下面42bに弾接保持されて、スプール弁3を駆動部4の方向へ付勢しているが、このばね力はスプール弁3の質量や駆動部4の駆動力に対応して設定されている。
〔本実施形態の流路制御弁の作用効果〕
 まず、流路制御弁1の作用を簡単に説明すると、図1に示す初期位置では、駆動部4のコイル24に通電されないので、スプール弁3はバルブスプリング13のばね力によって駆動部4の方向へ最大上昇位置に移動している。
As described above, the valve spring 13 has a lower end portion elastically held in the spring holding groove 36d of the cap portion 36, and an upper end portion elastically held in the lower surface 42b of the flange portion 42 of the plug member 6, so that the spool valve 3 This spring force is set in accordance with the mass of the spool valve 3 and the driving force of the drive unit 4.
[Operations and effects of the flow path control valve of this embodiment]
First, to briefly explain the operation of the flow path control valve 1, in the initial position shown in FIG. is moving to the maximum raised position.
 この状態では、スプール弁3の溝通路17が導入ポート7に臨み、第2ランド部15が第2筒状溝12と溝通路17との連通を遮断して、第2導出ポート9を閉止している一方、第1ランド部14が第1筒状溝11と溝通路17を連通させて第1導出ポート8を開成している。 In this state, the groove passage 17 of the spool valve 3 faces the introduction port 7, and the second land portion 15 blocks communication between the second cylindrical groove 12 and the groove passage 17, thereby closing the second outlet port 9. On the other hand, the first land portion 14 communicates the first cylindrical groove 11 with the groove passage 17 to open the first outlet port 8.
 このため、導入ポート7に流入した冷却水は、スプール弁3の溝通路17と第1筒状溝11を通って第1導出ポート8のみに供給され、ここから、所定の機器に供給される。 Therefore, the cooling water that has flowed into the introduction port 7 passes through the groove passage 17 of the spool valve 3 and the first cylindrical groove 11, and is supplied only to the first outlet port 8, from which it is supplied to predetermined equipment. .
 ここで、センサユニット5は、スプール弁3に当接した検出体32がセンサスプリング33のばね力によってスプール弁3と共に上昇している。そして、コントローラから第2カプラ38のターミナル34を介して基板31に通電され、センサコイルSにおいて生じる磁界に対して検出片32dの接近距離に応じたインダクタンス変化が検出される。このインダクタンス変化に応じた検出信号が基板31からターミナル34を介してコントローラへ出力されることによって、検出体32に当接したスプール弁3の軸方向の移動位置、つまり最大上昇位置が検出される。 Here, in the sensor unit 5, the detection body 32 in contact with the spool valve 3 is raised together with the spool valve 3 by the spring force of the sensor spring 33. Then, electricity is applied to the board 31 from the controller via the terminal 34 of the second coupler 38, and a change in inductance corresponding to the approach distance of the detection piece 32d with respect to the magnetic field generated in the sensor coil S is detected. By outputting a detection signal corresponding to this inductance change from the board 31 to the controller via the terminal 34, the axial movement position of the spool valve 3 in contact with the detection body 32, that is, the maximum upward position is detected. .
 一方、駆動部4のコイル24に通電されると、励磁されて磁束が発生する。この磁束は、固定コア25、コイル24、ケーシング22及びプランジャ26を回って流れる。これにより、プランジャ26は、シャフト27とともに固定コア25側(矢印B方向)へ吸引され、これによってシャフトクランクシャフトの先端部が、スプール弁3をバルブスプリング13のばね力に抗してセンサユニット5側へ押圧して、最大下方に移動位置に移動させる。 On the other hand, when the coil 24 of the drive unit 4 is energized, it is excited and generates magnetic flux. This magnetic flux flows around the fixed core 25, coil 24, casing 22, and plunger 26. As a result, the plunger 26 is attracted to the fixed core 25 side (in the direction of arrow B) together with the shaft 27, so that the tip of the shaft crankshaft pushes the spool valve 3 against the spring force of the valve spring 13 and pushes the sensor unit 5. Press to the side to move it to the maximum downward movement position.
 これによって、スプール弁3は、第1ランド部14が溝通路17と第1筒状溝11との連通を遮断して第1導出ポート8との連通を閉止すると共に、第2ランド部15が溝通路17と第2筒状溝12を連通させて第2導出ポート9の開口端を開成する。 As a result, in the spool valve 3, the first land portion 14 cuts off the communication between the groove passage 17 and the first cylindrical groove 11 and closes the communication with the first outlet port 8, and the second land portion 15 closes the communication with the first outlet port 8. The groove passage 17 and the second cylindrical groove 12 are communicated with each other to open the open end of the second outlet port 9.
 これによって、導入ポート7に流入した冷却水は、スプール弁3の溝通路17と第2筒状溝12を通って第2導出ポート9のみに供給され、ここから、所定の機器に供給される。 As a result, the cooling water that has flowed into the introduction port 7 passes through the groove passage 17 of the spool valve 3 and the second cylindrical groove 12, and is supplied only to the second outlet port 9, from which it is supplied to predetermined equipment. .
 ここで、センサユニット5は、スプール弁3の下降に伴って検出体32がセンサスプリング33のばね力に抗して矢印B方向へ押し下げられて、センサコイルSにおいて発生する磁界に対して検出片32dの接近距離が変化することでインダクタンスが変化し、この変化に基づいた検出信号がターミナル34を介してコントローラに出力される。これによって、スプール弁3の移動位置、つまり最大下方への移動位置が検出される。 Here, in the sensor unit 5, as the spool valve 3 descends, the detection body 32 is pushed down in the direction of arrow B against the spring force of the sensor spring 33, and the detection body 32 is pushed down against the magnetic field generated in the sensor coil S. The inductance changes as the approach distance of 32d changes, and a detection signal based on this change is output to the controller via the terminal 34. As a result, the movement position of the spool valve 3, that is, the maximum downward movement position is detected.
 そして、本実施形態におけるスプール弁3は、連通孔18がいわゆる呼吸孔として機能することから軸方向の良好な移動が可能になる。 The spool valve 3 in this embodiment is capable of good movement in the axial direction because the communication hole 18 functions as a so-called breathing hole.
 またスプール弁3は、連通孔18のメイン通路孔20の軸方向の下端部に設けられた栓部材6の筒状本体40の底部40cによって、センサユニット5の第2ロッド32cが当接する当接部を確保できることから、メイン通路孔20の内径を可及的に大きくすることが可能になる。これによって、スプール弁3全体の軽量化が図れる。 In addition, the spool valve 3 has a contact area with which the second rod 32c of the sensor unit 5 comes into contact with the bottom part 40c of the cylindrical body 40 of the plug member 6 provided at the lower end in the axial direction of the main passage hole 20 of the communication hole 18. Since the inner diameter of the main passage hole 20 can be secured as much as possible, it becomes possible to make the inner diameter of the main passage hole 20 as large as possible. Thereby, the weight of the spool valve 3 as a whole can be reduced.
 つまり、従来技術のように、スプール弁の重量が大きい場合には、例えば車両の振動などによってスプール弁が振動を抑制するためにスプール弁を軸方向の他方へ付勢するバルブスプリングの付勢力を大きく必要があるが、この付勢力を大きくするためにバルブスプリングのコイル径を大きくするとか、スプール弁をスプリングの付勢力に抗して一方へ付勢する駆動部の出力を大きくしなければならないなど、流路制御弁の大型化や仕様の変更などが要求される。 In other words, when the weight of the spool valve is large as in the prior art, the spool valve reduces the urging force of the valve spring that urges the spool valve in the other direction in the axial direction in order to suppress vibrations caused by, for example, vehicle vibration. In order to increase this biasing force, it is necessary to increase the coil diameter of the valve spring, or to increase the output of the drive unit that biases the spool valve in one direction against the spring's biasing force. For example, larger flow path control valves and changes in specifications are required.
 しかし、本実施形態のように、スプール弁3の軽量化が図れることによって、バルブスプリング13の付勢力や駆動部4のソレノイド出力を大きくする必要がなくなるので、流路制御弁1の小型化や仕様の変更が不要になる。つまり、スプール弁3は、軽量化に伴っていわゆる耐振性が向上する。 However, as in the present embodiment, by reducing the weight of the spool valve 3, there is no need to increase the biasing force of the valve spring 13 or the solenoid output of the drive unit 4, so the flow path control valve 1 can be made smaller. No need to change specifications. In other words, the so-called vibration resistance of the spool valve 3 is improved as the weight is reduced.
 また、スプール弁3のメイン通路孔20は、その通路断面積を前記栓部材6の各連通路43の合計の通路断面積よりも大きく取られていると共に、スプール弁3の開口孔21の通路断面積が、メイン通路孔20の通路断面積よりさらに大きく取られていることから、スプール弁3の軽量化がさらに促進される。 Further, the main passage hole 20 of the spool valve 3 has a passage cross-sectional area larger than the total passage cross-sectional area of the communication passages 43 of the plug member 6, and the passage of the opening hole 21 of the spool valve 3. Since the cross-sectional area is larger than that of the main passage hole 20, the weight of the spool valve 3 is further reduced.
 また、栓部材6は、合成樹脂材によって形成れていることから、この点からしても、栓部材6が取り付けられるスプール弁3全体の軽量化が図れる。 Furthermore, since the plug member 6 is made of a synthetic resin material, the weight of the entire spool valve 3 to which the plug member 6 is attached can be reduced from this point of view as well.
 栓部材6と、この底部40cに当接するセンサユニット5のピン部である第2ロッド32cの両方が合成樹脂材によって形成されていることから、互いの材質相違による一方の摩耗の発生を抑制できる。特に、一方を、例えば、表面がアルマイト処理されたアルミニウム合金材を用いた場合には、表面が摩耗してアルミニウム合金材の母材が露出して孔食の発生を抑制できる。 Since both the plug member 6 and the second rod 32c, which is the pin portion of the sensor unit 5 that comes into contact with the bottom portion 40c, are made of synthetic resin, it is possible to suppress the occurrence of wear on one of the rods due to the difference in material between them. . In particular, when one is made of an aluminum alloy material whose surface is alumite-treated, for example, the surface is abraded and the base material of the aluminum alloy material is exposed, thereby suppressing the occurrence of pitting corrosion.
 さらに、各連通路43は、筒状本体40の下端部40bと底部40cの軸方向及び径方向にI字形状に形成されている。このため、栓部材6を樹脂成形する際に、アンダーカット部が発生しないので樹脂成形作業が容易になる。 Furthermore, each communication passage 43 is formed in an I-shape in the axial and radial directions of the lower end 40b and bottom 40c of the cylindrical main body 40. Therefore, when molding the plug member 6 with resin, no undercut portion is generated, so that the resin molding work is facilitated.
 また、前記底部40cの第2ロッド32cが当接する部位が、連通路43の開口端縁やその周縁に位置していないことから、開口端縁やその周縁の破損などを抑制できる。 Furthermore, since the portion of the bottom portion 40c that the second rod 32c comes into contact with is not located on the opening edge of the communication path 43 or its periphery, damage to the opening edge or its periphery can be suppressed.
 また、栓部材6は、スプール弁3の開口孔21とメイン通路孔20に組み付ける際に、フランジ部42がバルブスプリング13によってスプール弁3の段差面21aに押し付けられて保持されることから、組み付け作業が容易になる。 Furthermore, when the plug member 6 is assembled into the opening hole 21 and the main passage hole 20 of the spool valve 3, the flange portion 42 is pressed against and held by the stepped surface 21a of the spool valve 3 by the valve spring 13. Work becomes easier.
 栓部材6は、下端部40bの外周面がバルブスプリング13をガイドする機能を発揮することから、バルブスプリング13の伸縮変形時における該バルブスプリング13の傾きなどの発生を抑制できる。 Since the outer circumferential surface of the lower end portion 40b of the plug member 6 exhibits the function of guiding the valve spring 13, it is possible to suppress the occurrence of inclination of the valve spring 13 when the valve spring 13 expands and contracts.
 さらに、栓部材6は、フランジ部42がスプール弁3の段差面21aに当接することによってスプール弁3に対する位置決め機能と、バルブスプリング13のスプリングリテーナ機能の両方の機能を発揮する。 Further, the plug member 6 performs both a positioning function for the spool valve 3 and a spring retainer function for the valve spring 13 by the flange portion 42 coming into contact with the stepped surface 21a of the spool valve 3.
 栓部材6は、上端部40aをメイン通路孔20の内周面に挿入する際に、3つの圧入突起部44がメイン通路孔20の内周面に圧接することから、スプール弁3との芯だし効果が得られる。しかも、各圧入突起部44によってスプール弁3に対する栓部材6の安定した固定状態が得られることから、栓部材6のメイン通路孔20の内周面とのがたつきによる摩耗の発生を抑制できる。 When the plug member 6 inserts the upper end portion 40a into the inner circumferential surface of the main passage hole 20, the three press-fit protrusions 44 come into pressure contact with the inner circumferential surface of the main passage hole 20, so that the plug member 6 has a core with the spool valve 3. You can get the soup stock effect. Moreover, since the plug member 6 is stably fixed to the spool valve 3 by each press-fit protrusion 44, it is possible to suppress the occurrence of wear due to rattling of the plug member 6 with the inner circumferential surface of the main passage hole 20. .
 また、フランジ部42の上面42aに3つの凹部45が形成されていることから、各圧入突起部44の圧入時に発生するバリなどの切断片を各凹部45に収容することができる。また、3つの凹部45によって肉抜き効果による栓部材6の軽量化も促進される。 Furthermore, since the three recesses 45 are formed on the upper surface 42a of the flange portion 42, cut pieces such as burrs generated when each press-fit protrusion 44 is press-fitted can be accommodated in each recess 45. Further, the weight reduction of the plug member 6 is also facilitated by the three recesses 45 due to the thinning effect.
 また、栓部材6は、各圧入突起部44を含む全体が金属よりも剛性に低い合成樹脂材で形成されていることから、該各圧入突起部44をメイン通路孔20の内周面に圧入しても、この圧入力によって第2ランド部15の外径精度に影響を与えることがない。この結果、スプール弁3は、収容孔10の内周面10aに対して円滑な摺動性が得られる。 In addition, since the entire plug member 6 including each press-fit protrusion 44 is formed of a synthetic resin material having lower rigidity than metal, each press-fit protrusion 44 is press-fitted into the inner peripheral surface of the main passage hole 20. Even if the pressing force is applied, the accuracy of the outer diameter of the second land portion 15 is not affected. As a result, the spool valve 3 can smoothly slide against the inner circumferential surface 10a of the accommodation hole 10.
 さらに、栓部材6と第2ロッド32cは、同じ合成樹脂材によって形成されていることから、長期に渡る使用に際しても、一方が異なる材料である場合に比較して、互いに摩耗の発生を抑制することが可能になる。
〔第2実施形態〕
 図5~図8は本発明に係る流路制御弁の第2実施形態を示し、流路制御弁の基本構成は第1実施形態と同じであるが、主として栓部材6の構成を変更したものである。
Furthermore, since the plug member 6 and the second rod 32c are made of the same synthetic resin material, they are less likely to wear out against each other than when one is made of a different material, even during long-term use. becomes possible.
[Second embodiment]
5 to 8 show a second embodiment of the flow path control valve according to the present invention, the basic configuration of the flow path control valve is the same as the first embodiment, but mainly the configuration of the plug member 6 is changed. It is.
 図5は第2実施形態に係る流路制御弁の縦断面図、図6は本実施形態の流路制御弁に供される栓部材を示す縦断面図、図7はスプール弁に栓部材に圧入保持されている状態を示す縦断面図、図8は、同流路制御弁に供されるスプール弁の要部拡大断面図である。 FIG. 5 is a longitudinal sectional view of a flow path control valve according to the second embodiment, FIG. 6 is a longitudinal sectional view showing a plug member provided for the flow path control valve of this embodiment, and FIG. FIG. 8 is a vertical sectional view showing a state in which the spool valve is press-fitted and held. FIG. 8 is an enlarged sectional view of a main part of the spool valve used in the flow path control valve.
 栓部材6は、第1実施形態のようなフランジ部42を有さず、アルミニウム合金材によって外径が一定のストレートな有底円筒状に形成されている。この栓部材6は、内部軸方向にスプール弁3のメイン通路孔20と連通する通路部41が形成されていると共に、軸方向の下端部41bに有する比較的肉厚な底部40cよりも上側の位置に通路部41と連通する2つの連通路43が径方向に沿って貫通形成されている。 The plug member 6 does not have the flange portion 42 as in the first embodiment, and is formed of an aluminum alloy material into a straight bottomed cylindrical shape with a constant outer diameter. This plug member 6 has a passage portion 41 that communicates with the main passage hole 20 of the spool valve 3 in the internal axial direction, and has a relatively thick bottom portion 40c at the lower end portion 41b in the axial direction. Two communication passages 43 communicating with the passage portion 41 are formed through the passage portion 41 in the radial direction.
 2つの連通路43は、下端部41bの直径方向に貫通形成されて、そのそれぞれの通路断面積の合計がメイン通路孔20の通路断面積よりも小さく形成されている。 The two communicating passages 43 are formed to penetrate the lower end portion 41b in the diametrical direction, and the sum of their respective passage cross-sectional areas is smaller than the passage cross-sectional area of the main passage hole 20.
 栓部材6は、軸方向の上端部40aがメイン通路孔20の内部に挿入されるが、この際、上端部40aの外周面の一部がメイン通路孔20の内周面に形成された圧入部50に圧入されるようになっている。 The plug member 6 is inserted into the main passage hole 20 with its upper end 40a in the axial direction. It is adapted to be press-fitted into the portion 50.
 すなわち、圧入部50は、図8中の斜線で示すように、スプール弁3のメイン通路孔20の内周面のうち連結軸部16に対応した位置に円筒突起状に形成されて、メイン通路孔20の内周面に例えば数十ミクロンの高さで内方へ突出している。 That is, as shown by diagonal lines in FIG. 8, the press-fitting part 50 is formed in the shape of a cylindrical projection at a position corresponding to the connecting shaft part 16 on the inner circumferential surface of the main passage hole 20 of the spool valve 3. It protrudes inward from the inner peripheral surface of the hole 20 at a height of, for example, several tens of microns.
 また、栓部材6のアルミニウム合金材は、スプール弁3のアルミニウム合金材とは番数と表面処理材が異なっている。すなわち、栓部材6のアルミニウム合金材の番数は、例えばA5052-H34であるのに対して、スプール弁3のアルミニウム合金材の番数は、例えばA6061-T6またはT8を用いている。また栓部材6のアルミニウム合金材の母材に対する表面処理は、例えば硫酸アルマイトであるのに対して、スプール弁3のアルミニウム合金材の母材に対する表面処理は、例えばシュウ酸アルマイトである。このそれぞれの表面処理材は、適宜変更することも可能である。 Further, the aluminum alloy material of the plug member 6 is different from the aluminum alloy material of the spool valve 3 in number and surface treatment material. That is, the number of the aluminum alloy material of the plug member 6 is, for example, A5052-H34, while the number of the aluminum alloy material of the spool valve 3 is, for example, A6061-T6 or T8. Further, the surface treatment for the aluminum alloy base material of the plug member 6 is, for example, sulfuric acid alumite, while the surface treatment for the aluminum alloy base material of the spool valve 3 is, for example, oxalate alumite. These respective surface treatment materials can also be changed as appropriate.
 また、バルブスプリング13は、図5に示すように、下端部がキャップ部36のスプリング保持溝36dの底面に弾接している一方、上端部がスプール弁3の開口孔21の段差面21aに弾接して、栓部材6を含めたスプール弁3全体を駆動部4方向に付勢している。また、栓部材6の底部40cの外底面40dには、センサユニット5の第2ロッド32cの先端部がセンサスプリング33のばね力によって弾接している。 Further, as shown in FIG. 5, the lower end of the valve spring 13 is in elastic contact with the bottom surface of the spring holding groove 36d of the cap portion 36, while the upper end is elastic in contact with the stepped surface 21a of the opening hole 21 of the spool valve 3. The entire spool valve 3 including the stopper member 6 is urged in the direction of the drive section 4 . Further, the tip of the second rod 32c of the sensor unit 5 is in elastic contact with the outer bottom surface 40d of the bottom 40c of the plug member 6 due to the spring force of the sensor spring 33.
 したがって、この第2実施形態では、栓部材6の構造が簡素化されていることから、製造作業が容易である。また、栓部材6のアルミニウム合金材とスプール弁3のアルミニウム合金材とは異なる番数になっていて硬度差を設けていることから、互いのいわゆるかじり現象を抑制することができる。 Therefore, in this second embodiment, since the structure of the plug member 6 is simplified, manufacturing work is easy. Further, since the aluminum alloy material of the plug member 6 and the aluminum alloy material of the spool valve 3 have different numbers and have a hardness difference, it is possible to suppress the so-called galling phenomenon.
 また、栓部材6は、メイン通路孔41の内周面に対して圧入部50によって連結軸部16に対応する位置で圧入されることから、この圧入力によってスプール弁3の第2ランド部15の外径精度に影響を与えることがない。したがって、スプール弁3は、各ランド部14,15を介して収容孔10の内周面10aに対して良好な摺動性が得られる。 Furthermore, since the plug member 6 is press-fitted into the inner circumferential surface of the main passage hole 41 by the press-fitting part 50 at a position corresponding to the connecting shaft part 16, the second land part 15 of the spool valve 3 is It does not affect the accuracy of the outer diameter. Therefore, the spool valve 3 can obtain good slidability with respect to the inner circumferential surface 10a of the accommodation hole 10 via the land portions 14 and 15.
 他の構成は、第1実施形態と同じであるから、スプール弁3全体の軽量化を図ることができると共に、耐振性の向上が図れる。 Since the other configurations are the same as in the first embodiment, the weight of the spool valve 3 as a whole can be reduced, and the vibration resistance can be improved.
 また、栓部材6の材質として、アルミニウム合金材以外にステンレス合金材を用いることも可能である。ステンレス合金材を用いた場合には、栓部材6の腐食の発生を抑制できる。 Furthermore, as the material of the plug member 6, it is also possible to use a stainless steel alloy material in addition to the aluminum alloy material. When a stainless steel alloy material is used, corrosion of the plug member 6 can be suppressed.
 さらに、第2実施形態の栓部材6は、その材質を第1実施形態のものと同じく合成樹脂材とすれば、構造の簡素化と相俟って軽量化をさらに促進することが可能になる。 Furthermore, if the plug member 6 of the second embodiment is made of a synthetic resin material like that of the first embodiment, it becomes possible to simplify the structure and further promote weight reduction. .
 本発明は、第1、第2実施形態の構成に限定されるものではなく、例えば、第1実施形態の栓部材6の材質を合成樹脂材からアルミニウム合金材などの金属材などに変更することも可能であり、また栓部材6の構造も任意に変更することが可能である。 The present invention is not limited to the configurations of the first and second embodiments, and for example, the material of the plug member 6 of the first embodiment may be changed from a synthetic resin material to a metal material such as an aluminum alloy material. It is also possible to change the structure of the plug member 6 as desired.
 また、ボディに対して駆動部を下端部にセンサユニットを上端部に配置することも可能である。 It is also possible to arrange the drive section at the lower end and the sensor unit at the upper end of the body.
 さらに、各実施形態では、流路制御弁を車両の冷却水の流路切替用としたが、これに限らず、例えば船舶や他の機器類に適用することも可能であり、さらに流体として冷却水の他に、オイルや他の液体に適用することも可能である。 Furthermore, in each embodiment, the flow path control valve is used for switching the flow path of vehicle cooling water, but it is not limited to this, and it is also possible to apply it to ships and other equipment, for example. Besides water, it is also possible to apply it to oils and other liquids.
 1…流路制御弁、2…ボディ、3…スプール弁、4…駆動部、5…センサユニット(検出器)、6…栓部材、7…導入ポート、8…第1導出ポート、9…第2導出ポート、10…収容孔、10a…内周面、13…バルブスプリング(コイルばね)、14…第1ランド部、15…第2ランド部、16…軸部、17…溝通路、18…連通孔、19…小径孔、20…メイン通路孔、21…開口孔、24…コイル、30…センサケース、31…基板、32…検出体、32a…検出本体、32b…第1ロッド(ピン部)、32c…第2ロッド(ピン部)、33センサスプリング、40…筒状本体、40a…上端部、40b…下端部、40c…底部(当接部)、40d…外底面、41…通路部、42…フランジ部、43…連通路、44…圧入突起部、45…凹部、50…圧入部。 DESCRIPTION OF SYMBOLS 1...Flow path control valve, 2...Body, 3...Spool valve, 4...Drive unit, 5...Sensor unit (detector), 6...Plug member, 7...Introduction port, 8...First outlet port, 9...No. 2 Derivation port, 10... Accommodation hole, 10a... Inner peripheral surface, 13... Valve spring (coil spring), 14... First land portion, 15... Second land portion, 16... Shaft portion, 17... Groove passage, 18... Communication hole, 19... Small diameter hole, 20... Main passage hole, 21... Opening hole, 24... Coil, 30... Sensor case, 31... Board, 32... Detection body, 32a... Detection body, 32b... First rod (pin part ), 32c...Second rod (pin part), 33 Sensor spring, 40...Cylindrical body, 40a...Upper end, 40b...Lower end, 40c...Bottom (contact part), 40d...Outer bottom surface, 41...Passway part , 42...Flange portion, 43...Communication path, 44...Press-fit protrusion, 45...Recess, 50...Press-fit portion.

Claims (12)

  1.  流体を導入する導入ポート及び流体を導出する導出ポートを有するボディと、
     前記ボディの内部に軸方向へ移動可能に配置され、軸方向に移動することで前記導入ポートと導出ポートとの連通状態を切り替えるスプール弁と、
     一部が前記スプール弁の内部軸心方向に形成され、前記スプール弁の軸方向の一端と他端を連通する連通孔と、
     前記スプール弁を前記軸方向の一方に付勢する駆動部と、
     前記スプール弁の前記駆動部に対して軸方向の反対側に設けられ、前記スプール弁の移動位置を検出する検出器と、
     前記連通孔の一部に挿入されて、前記駆動部または前記検出器が当接する当接部及び前記連通孔の内部と外部を連通する連通路を有する栓部材と、
     を有することを特徴とする流路制御弁。
    a body having an introduction port for introducing fluid and an exit port for leading out the fluid;
    a spool valve disposed inside the body so as to be movable in the axial direction, and switching a communication state between the introduction port and the outlet port by moving in the axial direction;
    a communication hole, a portion of which is formed in the direction of the internal axis of the spool valve, and which communicates one end and the other end of the spool valve in the axial direction;
    a drive unit that biases the spool valve in one direction in the axial direction;
    a detector provided on the opposite side of the spool valve in the axial direction with respect to the drive section, and detects the movement position of the spool valve;
    a plug member that is inserted into a part of the communication hole and has a contact part with which the drive part or the detector comes into contact, and a communication path that communicates between the inside and the outside of the communication hole;
    A flow path control valve characterized by having:
  2.  請求項1に記載の流路制御弁であって、
     前記連通孔の一部は、前記スプール弁の内部軸心方向に沿って形成されたメイン通路孔であって、このメイン通路孔の通路断面積は、前記栓部材の連通路の通路断面積よりも大きいことを特徴とする流路制御弁。
    The flow path control valve according to claim 1,
    A portion of the communication hole is a main passage hole formed along the internal axis direction of the spool valve, and the passage cross-sectional area of the main passage hole is larger than the passage cross-sectional area of the communication passage of the plug member. A flow path control valve characterized by its large size.
  3.  請求項1に記載の流路制御弁であって、
     前記栓部材は、合成樹脂材によって成形されていることを特徴とする流路制御弁。
    The flow path control valve according to claim 1,
    A flow path control valve characterized in that the plug member is molded from a synthetic resin material.
  4.  請求項3に記載の流路制御弁であって、
     前記栓部材は、前記検出器が当接し、
     前記検出器は、前記栓部材と当接するピン部が合成樹脂材によって成形されていることを特徴とする流路制御弁。
    The flow path control valve according to claim 3,
    The plug member is in contact with the detector,
    The flow path control valve is characterized in that, in the detector, a pin portion that comes into contact with the plug member is molded from a synthetic resin material.
  5.  請求項3に記載の流路制御弁であって、
     前記栓部材は、有底筒状に形成され、
     この底部が前記駆動部または前記検出器が当接する当接部として構成され、
    前記連通路は、前記底部の前記駆動部又は前記検出器が当接する部位よりも径方向外側で、かつ軸方向及び径方向に開口していることを特徴とする流路制御弁。
    The flow path control valve according to claim 3,
    The plug member is formed in a cylindrical shape with a bottom,
    This bottom part is configured as a contact part with which the drive part or the detector comes into contact,
    The flow path control valve is characterized in that the communication path is radially outer than a portion of the bottom portion that is in contact with the drive portion or the detector and is open in the axial and radial directions.
  6.  請求項1に記載の流路制御弁であって、
     前記栓部材は、前記スプール弁を軸方向の他方向へ付勢するコイルばねによって前記スプール弁の方向に押し付けられていることを特徴とする流路制御弁。
    The flow path control valve according to claim 1,
    The flow path control valve is characterized in that the plug member is pressed toward the spool valve by a coil spring that biases the spool valve in the other axial direction.
  7.  請求項6に記載の流路制御弁であって、
     前記栓部材は、有底円筒状に形成され、外周に前記コイルばねが被嵌して前記コイルばねの内周をガイドするガイド機能を有することを特徴とする流路制御弁。
    The flow path control valve according to claim 6,
    The flow path control valve is characterized in that the plug member is formed in a cylindrical shape with a bottom, and has a guide function in which the coil spring is fitted on the outer periphery and guides the inner periphery of the coil spring.
  8.  請求項7に記載の流路制御弁であって、
     前記栓部材は、軸方向の一端部の外周に、径方向外側に延びるフランジ部を有し、
     前記フランジ部は、軸方向の一端面が前記スプール弁の軸方向の一端に当接する一方、軸方向の他端面が前記コイルばねの軸方向の一端部が着座する座面になっていることを特徴とする流路制御弁。
    The flow path control valve according to claim 7,
    The plug member has a flange portion extending radially outward on the outer periphery of one end in the axial direction,
    One axial end surface of the flange portion contacts one axial end of the spool valve, while the other axial end surface serves as a seating surface on which one axial end of the coil spring is seated. Characteristic flow path control valve.
  9.  請求項2に記載の流路制御弁であって、
     前記栓部材は、前記連通孔のメイン通路孔に挿入される軸方向の一端部の外周に、前記メイン通路孔の軸方向の一端部の内周面に圧入される複数の圧入突起部が設けられていることを特徴とする流路制御弁。
    The flow path control valve according to claim 2,
    The plug member is provided with a plurality of press-fit protrusions that are press-fitted into the inner peripheral surface of the one axial end of the main passage hole on the outer periphery of one axial end that is inserted into the main passage hole of the communication hole. A flow path control valve characterized by:
  10.  請求項9に記載の流路制御弁であって、
     前記栓部材は、前記スプール弁と軸方向から当接するフランジ部を有し、
     前記フランジ部の前記スプール弁との当接面であって、前記各圧入突起部と軸方向でオーバーラップする位置に、複数の凹部を有することを特徴とする流路制御弁。
    The flow path control valve according to claim 9,
    The plug member has a flange portion that comes into contact with the spool valve from the axial direction,
    A flow path control valve comprising a plurality of recesses on a contact surface of the flange portion with the spool valve and at positions overlapping each of the press-fit protrusions in the axial direction.
  11.  請求項1に記載の流路制御弁であって、
     前記スプール弁は、アルミニウム合金材によって成形され、
     前記栓部材は、前記スプール弁と異なる材質のアルミニウム合金材で有底円筒状に形成されて、前記スプール弁の連通孔の一部に圧入されていることを特徴とする流路制御弁。
    The flow path control valve according to claim 1,
    The spool valve is molded from an aluminum alloy material,
    The flow path control valve is characterized in that the plug member is formed into a bottomed cylindrical shape from an aluminum alloy material different from that of the spool valve, and is press-fitted into a part of the communication hole of the spool valve.
  12.  請求項11に記載の流路制御弁であって、
     前記栓部材は、ステンレス合金材によって形成されていると共に、一部が前記スプール弁の連通孔の一部に軸方向から内部に圧入されていることを特徴とする流路制御弁。
    The flow path control valve according to claim 11,
    The flow path control valve is characterized in that the plug member is made of a stainless steel alloy material, and a portion of the plug member is press-fitted into a portion of the communication hole of the spool valve from the axial direction.
PCT/JP2023/020910 2022-06-30 2023-06-06 Flow passage control valve WO2024004543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022105242 2022-06-30
JP2022-105242 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024004543A1 true WO2024004543A1 (en) 2024-01-04

Family

ID=89382779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020910 WO2024004543A1 (en) 2022-06-30 2023-06-06 Flow passage control valve

Country Status (1)

Country Link
WO (1) WO2024004543A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030292B1 (en) * 1971-06-23 1975-09-30
JPS6091862U (en) * 1983-11-29 1985-06-22 豊田工機株式会社 Pilot type relief valve
JP2014027026A (en) * 2012-07-24 2014-02-06 Sumitomo Electric Ind Ltd Reactor, converter and electric power conversion apparatus
JP2017089777A (en) * 2015-11-12 2017-05-25 日立オートモティブシステムズ株式会社 solenoid valve
JP2020165479A (en) * 2019-03-29 2020-10-08 株式会社ケーヒン Flow passage selector valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030292B1 (en) * 1971-06-23 1975-09-30
JPS6091862U (en) * 1983-11-29 1985-06-22 豊田工機株式会社 Pilot type relief valve
JP2014027026A (en) * 2012-07-24 2014-02-06 Sumitomo Electric Ind Ltd Reactor, converter and electric power conversion apparatus
JP2017089777A (en) * 2015-11-12 2017-05-25 日立オートモティブシステムズ株式会社 solenoid valve
JP2020165479A (en) * 2019-03-29 2020-10-08 株式会社ケーヒン Flow passage selector valve

Similar Documents

Publication Publication Date Title
KR19990006297A (en) Three-way solenoid valve
US10145488B2 (en) Solenoid valve
JP2010065780A (en) Solenoid on-off valve
JP2011033181A (en) Solenoid proportional control valve
JP5409686B2 (en) Normally open solenoid valve
JP5128224B2 (en) solenoid valve
JP7308642B2 (en) Flow switching valve
WO2024004543A1 (en) Flow passage control valve
JP4058604B2 (en) Solenoid valve device
JP5351603B2 (en) Linear solenoid and valve device using the same
JP2006250144A (en) Electromagnetic driving device and fuel injection valve using the same
CN111344511B (en) Solenoid valve device
JP2020165791A (en) Position detector
JP7311997B2 (en) Position detector
US11320061B2 (en) Solenoid valve
JP6736330B2 (en) Solenoid valve cartridge assembly, solenoid valve solenoid and solenoid valve
US11959560B2 (en) Solenoid valve
JP7463356B2 (en) Solenoid valve
JP5583807B2 (en) Solenoid proportional control valve
JP4458282B2 (en) solenoid valve
JP2013117314A (en) Solenoid proportional control valve
JP2010223085A (en) Injection quantity adjusting method of fluid injection valve and fluid injection valve
CN115427716A (en) Electromagnetic valve
JP2013139883A (en) Electromagnetic proportional control valve
JP2019143701A (en) Movement failure detection device of plunger of solenoid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830993

Country of ref document: EP

Kind code of ref document: A1