WO2024004525A1 - Boron nitride material, product with same applied thereto, and method for producing boron nitride material - Google Patents

Boron nitride material, product with same applied thereto, and method for producing boron nitride material Download PDF

Info

Publication number
WO2024004525A1
WO2024004525A1 PCT/JP2023/020739 JP2023020739W WO2024004525A1 WO 2024004525 A1 WO2024004525 A1 WO 2024004525A1 JP 2023020739 W JP2023020739 W JP 2023020739W WO 2024004525 A1 WO2024004525 A1 WO 2024004525A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
silicon
containing polymer
nitride material
polydopamine
Prior art date
Application number
PCT/JP2023/020739
Other languages
French (fr)
Japanese (ja)
Inventor
和輝 会田
輝彦 齊藤
鉄平 細川
穂波 伊延
貴裕 濱田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024004525A1 publication Critical patent/WO2024004525A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/10Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L87/00Compositions of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present disclosure relates to boron nitride materials, applied products thereof, and methods for producing boron nitride materials.
  • 5G 5th generation mobile communication system
  • 5G uses higher frequency bands to provide faster communication speeds than previous generations. Therefore, high frequency compatible wiring boards are required for electronic devices.
  • the transmission loss in the transmission path of a wiring board depends on the frequency, and increases as the signal frequency increases. Transmission loss depends on dielectric constant and dielectric loss tangent. Therefore, in order to reduce the transmission loss of high-frequency signals, the material constituting the insulating layer of the wiring board is required to have a low dielectric constant and a low dielectric loss tangent.
  • the transmission distance of radio waves is short because high frequency bands are used. Therefore, it is necessary to increase the output of electronic devices.
  • the packaging density of circuits will also increase. Attempting to satisfy these needs increases the amount of heat generated per unit area of the wiring board. Therefore, wiring boards are required to have high heat dissipation properties.
  • the material that makes up the insulating layer of wiring boards contains fillers with excellent thermal conductivity to increase the thermal conductivity of wiring boards. .
  • the boron nitride material of the present disclosure includes: boron nitride, polydopamine attached to the boron nitride; A silicon-containing polymer.
  • the heat resistance of the filler can be improved.
  • FIG. 1 is a diagram showing a schematic configuration of a boron nitride material in Embodiment 1.
  • FIG. 2 is a flowchart illustrating an example of a method for manufacturing a boron nitride material according to the first embodiment.
  • FIG. 3 is a diagram showing a schematic structure of a resin composition in Embodiment 4.
  • FIG. 4 is a cross-sectional view of a resin-coated film in Embodiment 6.
  • FIG. 5 is a cross-sectional view of the resin-coated metal foil in Embodiment 7.
  • FIG. 6 is a cross-sectional view of a metal-clad laminate in Embodiment 8.
  • FIG. 7 is a cross-sectional view of a wiring board in Embodiment 9.
  • FIG. 8 is a diagram showing an example of a transmission electron microscope (TEM) image of a cross section perpendicular to the thickness direction of particles of the boron nitride material in the first embodiment.
  • filler in the resin composition If the content of filler in the resin composition is increased in order to improve the heat dissipation of the wiring board, mechanical properties such as flexibility are impaired and the insulating layer tends to become brittle. This is considered to be because the filler aggregates in the resin composition. Chemical modification of the filler surface is effective in improving dispersibility while suppressing filler aggregation.
  • Boron nitride is a material with high thermal conductivity, excellent heat dissipation, and excellent electrical insulation. Therefore, in recent years, boron nitride has attracted attention as a filler for insulating layers of wiring boards (for example, Patent Document 1). However, the amount of functional groups present on the surface of boron nitride particles is small, and most of the surface is inert. Therefore, it has been difficult to directly treat the surface of boron nitride particles by a method such as silane coupling to improve the dispersibility of the particles in a resin composition.
  • the dopamine-containing protein secreted from the byssus gland of the mussel exhibits stable adhesive strength even in seawater and is known as a natural adhesive.
  • Non-Patent Document 1 when a substrate is immersed in an aqueous dopamine solution, a thin film of polydopamine is formed on the surface of the substrate due to self-oxidation polymerization of dopamine.
  • Non-Patent Document 2 describes that by utilizing this property and coating boron nitride with polydopamine, the dispersibility of boron nitride as a filler was improved.
  • the present inventors have conducted extensive research into improving the heat resistance of boron nitride. As a result, we came up with the boron nitride material of the present disclosure.
  • a boron nitride material according to a first aspect of the present disclosure includes boron nitride, polydopamine attached to the boron nitride, and a silicon-containing polymer. According to the above configuration, the heat resistance of the boron nitride material can be improved.
  • the silicon-containing polymer may be attached to the polydopamine. According to the above configuration, the heat resistance of the boron nitride material can be improved.
  • the silicon-containing polymer includes a first side chain containing a silicon atom and an oxygen atom
  • the silicon-containing polymer includes a first side chain containing a silicon atom and an oxygen atom. It may be bonded to the polydopamine via an oxygen atom. According to the above configuration, the heat resistance of the boron nitride material can be improved.
  • the silicon-containing polymer is selected from the group consisting of carbon-carbon double bonds and carbon-carbon triple bonds.
  • a second side chain containing at least one selected side chain may be included.
  • the second side chain may consist only of a chain structure. According to the above configuration, when a boron nitride material is used as a filler, the heat dissipation properties of the filler are improved.
  • the silicon-containing polymer is selected from the group consisting of styrene units, butadiene units, ethylene units, and siloxane units.
  • the main chain may include at least one selected one. According to the above configuration, the heat resistance of the boron nitride material is improved.
  • the silicon-containing polymer may include a main chain containing the butadiene unit. According to the above configuration, the heat resistance of the boron nitride material is improved.
  • the silicon-containing polymer may include a copolymer containing the styrene unit and the butadiene unit. According to the above configuration, the heat resistance of the boron nitride material is further improved.
  • the silicon-containing polymer does not contain a functional group represented by -SiR 3-n (OX) n .
  • n is an integer from 1 to 3
  • X is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, a moiety bonded to the polydopamine, or a silicon atom other than the silicon atom of the functional group. Represents connected parts. At least one of X is a moiety that binds to the polydopamine. R represents a hydrocarbon group having 1 to 10 carbon atoms.
  • the silicon-containing polymer may be represented by the following formula (1) containing a plurality of repeating units.
  • a and d represent a number greater than or equal to 0, and b and c represent a number greater than 0.
  • the order of the plurality of repeating units is arbitrary. According to the above configuration, the heat resistance of the boron nitride material is further improved.
  • the boron nitride material according to the tenth aspect may satisfy 0.050 ⁇ c/(b+c+d) in the formula (1). According to the above configuration, the heat resistance of the boron nitride material is further improved.
  • the filler according to the twelfth aspect of the present disclosure includes the boron nitride material according to any one of the first to eleventh aspects. According to the above configuration, the heat resistance of the filler can be improved.
  • the resin composition according to the thirteenth aspect of the present disclosure includes the filler according to the twelfth aspect. According to the thirteenth aspect, it is possible to provide a resin composition that exhibits a low dielectric loss tangent and has excellent heat resistance.
  • the prepreg according to the fourteenth aspect of the present disclosure includes the resin composition of the thirteenth aspect or a semi-cured product of the resin composition.
  • the resin-coated film according to the fifteenth aspect of the present disclosure is A resin layer containing the resin composition of the thirteenth aspect or a semi-cured product of the resin composition, a support film; It is equipped with
  • the resin-coated metal foil according to the sixteenth aspect of the present disclosure includes: A resin layer containing the resin composition of the thirteenth aspect or a semi-cured product of the resin composition, metal foil and It is equipped with
  • the metal clad laminate according to the seventeenth aspect of the present disclosure includes: an insulating layer comprising a cured product of the resin composition of the thirteenth aspect or a cured product of the prepreg of the fourteenth aspect; metal foil and It is equipped with
  • an insulating layer comprising a cured product of the resin composition of the thirteenth aspect or a cured product of the prepreg of the fourteenth aspect; wiring and We are prepared.
  • a method for producing a boron nitride material includes preparing a base material containing boron nitride and polydopamine attached to the surface of the boron nitride, and applying a silicon-containing polymer to the base material. contacting. According to the above configuration, a boron nitride material with excellent heat resistance can be manufactured.
  • the number average molecular weight of the silicon-containing polymer may be 1200 or more. According to the above configuration, the heat resistance of the boron nitride material is improved.
  • Embodiment 1 Embodiment 1 will be described below with reference to FIGS. 1 and 2.
  • FIG. 1 is a diagram showing a schematic configuration of a boron nitride material 10 in the first embodiment.
  • Boron nitride material 10 includes boron nitride 1, polydopamine 2 attached to boron nitride 1, and silicon-containing polymer 3.
  • Boron nitride material 10 contains silicon-containing polymer 3 in addition to polydopamine 2, and polydopamine 2 is attached to boron nitride 1, so that adsorption of atmospheric moisture to polydopamine 2 is suppressed. Ru.
  • the silicon-containing polymer 3 itself is less likely to evaporate by heating than, for example, a silicon-containing low-molecular compound such as methacrylsilane.
  • the boron nitride material 10 is less likely to generate bubbles due to heating in the solder reflow process, and as a result has high heat resistance.
  • "silicon-containing low molecular compound” means an organosilicon compound with a molecular weight of less than 1,200.
  • Polydopamine 2 and silicon-containing polymer 3 may be attached to the surface of boron nitride 1.
  • polydopamine 2 may be attached to the surface of boron nitride 1 by chemically modifying the surface of boron nitride 1 with polydopamine 2.
  • Polydopamine 2 may cover at least a portion of the surface of boron nitride 1.
  • Polydopamine 2 may cover the entire surface of boron nitride 1, or may cover only a portion of the surface of boron nitride 1.
  • Silicon-containing polymer 3 may be attached to polydopamine 2.
  • Silicon-containing polymer 3 may be attached to polydopamine 2 attached to the surface of boron nitride 1.
  • FIG. 8 is an example of a transmission electron microscope (TEM) image of a cross section perpendicular to the thickness direction of the particles of the boron nitride material 10 (magnification: 50,000 times). Note that the TEM image in FIG. 8 is an image obtained by TEM observation of a sample of a resin composition produced by kneading particles of the boron nitride material 10 and a polyphenylene ether resin. As shown in FIG. 8, according to the TEM image, it can be confirmed that polydopamine 2 is attached to boron nitride 1, and that silicon-containing polymer 3 is attached to polydopamine 2.
  • TEM transmission electron microscope
  • boron nitride hexagonal boron nitride (h-BN) having a graphite-type layered structure, diamond-shaped cubic boron nitride (c-BN), amorphous boron nitride (a-BN), etc. can be used. . h-BN is particularly useful because it can be synthesized relatively easily and has excellent thermal conductivity, electrical insulation, chemical stability, and heat resistance.
  • boron nitride particles can be used. Boron nitride particles usually have a white color.
  • the shape of the boron nitride particles is not particularly limited. The shape of the boron nitride particles may be, for example, scale-like, spherical, ellipsoidal, rod-like, or the like.
  • the average particle size of the boron nitride particles is not particularly limited.
  • the average particle size of the boron nitride particles may be, for example, 0.05 ⁇ m or more and 100 ⁇ m or less, or 0.1 ⁇ m or more and 50 ⁇ m or less.
  • the average particle size of boron nitride particles means the median diameter.
  • the median diameter means the particle diameter (d50) when the cumulative volume in the volume-based particle size distribution is equal to 50%.
  • the volume-based particle size distribution is measured using, for example, a laser diffraction measuring device.
  • Polydopamine 2 is a polymer of dopamine, and may have, for example, one or both of two repeating units represented by the following formula (2). However, in the following formula (2), the indoline skeleton portion may be an indole skeleton.
  • n is an integer of 1 or more. In the above formula (2), n may be an integer of 2 or more.
  • Polydopamine 2 may have a thin film shape on the surface of the boron nitride 1 particles.
  • the thickness of the polydopamine 2 thin film is, for example, 1 nm to 300 nm.
  • the polydopamine 2 thin film covers at least a portion of the surface of the boron nitride 1 particles.
  • the thin film of polydopamine 2 may cover the entire surface of the particles of boron nitride 1, as illustrated in FIG.
  • the adhesion of polydopamine to boron nitride 1 can be confirmed by the fact that the surface of the particles of boron nitride 1 is colored blackish brown.
  • a polymer is treated as "polydopamine" even if some of the functional groups derived from dopamine in the polymer are changed due to bonding with other substances.
  • An example of a change in a functional group is the disappearance of a hydroxyl group due to dehydration condensation between the hydroxyl group of polydopamine and the hydroxyl group of another substance. Note that this dehydration condensation is a typical example of a chemical reaction that results in bonding with the silicon-containing polymer 3 described below.
  • Silicon-containing polymer 3 The structure of the silicon-containing polymer 3 is not particularly limited as long as it contains a silicon atom, and includes, for example, a main chain and a side chain branching from the main chain. Silicon-containing polymer 3 may include multiple side chains.
  • the main chain may include a first main chain made up of carbon atoms bonded to each other. The first main chain can function to prevent the surface of boron nitride 1 from having excessive hydrophilicity.
  • the silicon-containing polymer 3 may include a side chain containing a silicon atom together with the first main chain.
  • the silicon-containing polymer 3 may include a first side chain having a silicon atom and an oxygen atom. Silicon-containing polymer 3 may be bonded to polydopamine 2 via a silicon atom and an oxygen atom. More specifically, silicon-containing polymer 3 may contain oxygen atoms that bond to silicon atoms and polydopamine 2. The silicon-containing polymer 3 may be bonded to the benzene ring of the polydopamine 2 via an oxygen atom, for example. This bond can be formed through at least dehydration condensation. As in this example, the bond may be a chemical bond such as a covalent bond.
  • the silicon-containing polymer 3 may have a functional group represented by -SiR 3-n (OX) n .
  • n is an integer from 1 to 3
  • X is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, a bond bonded to polydopamine, or a silicon atom other than the silicon atom of the above functional group. Represents a joint that is connected.
  • the bonding portion X can also be represented by a single bond (-).
  • a hydrocarbon group having 1 to 10 carbon atoms is, for example, an alkyl group having 1 to 10 carbon atoms, especially 1 to 3 carbon atoms. At least one of X is a binding moiety that binds to polydopamine 2.
  • R represents a hydrocarbon group having 1 to 10 carbon atoms.
  • the silicon-containing polymer 3 When containing a bond bonded to another silicon atom, the silicon-containing polymer 3 includes a siloxane unit represented by Si--O--Si.
  • the silicon-containing polymer 3 may include a second main chain composed of siloxane units.
  • R may be an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms may have a linear, cyclic, or branched structure.
  • alkyl groups having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, t-butyl group, n-pentyl group, n-hexyl group.
  • aryl group having 6 to 10 carbon atoms examples include phenyl group, ⁇ -naphthyl group, ⁇ -naphthyl group, and the like.
  • the silicon-containing polymer 3 When the silicon-containing polymer 3 has a functional group represented by -SiR 3-n (OX) n and includes a bond where X is bonded to another silicon atom, the silicon-containing polymer 3 has a functional group represented by -SiR 3-n (OX) n.
  • the silicon-containing polymer 3 may include a second main chain composed of siloxane units.
  • the silicon-containing polymer 3 having such a structure may have a network structure in which siloxane units (Si--O--Si) are spread out in a network.
  • the silicon-containing polymer 3 may include a second side chain having at least one selected from the group consisting of a carbon-carbon double bond and a carbon-carbon triple bond.
  • the carbon-carbon double bond or the carbon-carbon triple bond reacts with the reactive residue of the resin of the insulating layer to form a bond, so that the adhesion between the boron nitride material 10 and the resin is improved. will improve. This reduces the thermal resistance at the interface between the boron nitride material 10 and the resin, and improves the thermal conductivity of the insulating layer. As a result, the heat dissipation of the wiring board is improved.
  • Examples of the carbon-carbon double bond include a vinyl group, methallyl group, and acryloyl group.
  • the silicon-containing polymer 3 may have one type selected from these, or may have two or more types. From the viewpoint of easy reactivity, the carbon-carbon double bond is preferably a vinyl group.
  • Examples of the reactive residue of the resin of the insulating layer include a vinyl group, a methallyl group, an acryloyl group, and the like.
  • Examples of the carbon-carbon triple bond include an ethynyl group and a propargyl group.
  • the silicon-containing polymer 3 may have one type selected from these, or may have two or more types.
  • Examples of reactive residues in the resin of the insulating layer include ethynyl groups and propargyl groups. At least one selected from the group consisting of carbon-carbon double bonds and carbon-carbon triple bonds may be located at the end of the second side chain.
  • the second side chain may consist only of a chain structure.
  • the silicon-containing polymer 3 may further include side chains other than the first side chain and the second side chain.
  • the side chains other than the first side chain and the second side chain may have, for example, a cyclic structure.
  • the cyclic structure of the side chain is, for example, an aryl group.
  • the silicon-containing polymer 3 may include a main chain having at least one selected from the group consisting of styrene units, butadiene units, ethylene units, and siloxane units. According to the above configuration, the hydrophobicity of the silicon-containing polymer 3 is improved, so that the heat resistance of the boron nitride material 10 is improved.
  • the silicon-containing polymer 3 may include a main chain having a butadiene unit. According to the above configuration, the hydrophobicity of the silicon-containing polymer 3 is further improved, so that the heat resistance of the boron nitride material 10 is further improved.
  • the silicon-containing polymer 3 may include a copolymer having styrene units and butadiene units. According to the above configuration, the hydrophobicity of the silicon-containing polymer 3 is further improved, so that the heat resistance of the boron nitride material 10 is further improved.
  • the silicon-containing polymer 3 may be represented by the following formula (1) containing multiple repeating units. According to the above configuration, the heat resistance of the boron nitride material 10 is further improved.
  • a and d represent a number greater than or equal to 0, and b and c represent a number greater than 0.
  • the order of the plurality of repeating units is arbitrary.
  • the functional group represented by -SiR 3-n (OX) n is as explained above.
  • the bond shown by the wavy line means either trans or cis, or a mixture of both.
  • the silicon-containing polymer 3 may satisfy 0 ⁇ a ⁇ 500, 1 ⁇ b ⁇ 500, 1 ⁇ c ⁇ 500, 0 ⁇ d ⁇ 500, and 5 ⁇ a ⁇ 300, 5 The following may be satisfied: ⁇ b ⁇ 300, 1 ⁇ c ⁇ 100, and 5 ⁇ d ⁇ 300.
  • the silicon-containing polymer 3 may satisfy 5 ⁇ a ⁇ 100, 5 ⁇ b ⁇ 100, 1 ⁇ c ⁇ 80, 5 ⁇ d ⁇ 100, and 5 ⁇ a ⁇ 20, 5 ⁇ b ⁇ 50, 1 ⁇ c ⁇ 60, and 5 ⁇ d ⁇ 40.
  • c represents the repeating number of butadiene units having silicon and oxygen in their side chains.
  • (b+c+d) represents the total of a butadiene unit having a repeating number b, a butadiene unit having a repeating number c, and a butadiene unit having a repeating number d.
  • the silicon-containing polymer 3 may satisfy 0.050 ⁇ c/(b+c+d) in the above formula (1).
  • the value calculated by 100 ⁇ c/(b+c+d) ⁇ may be 5.0% or more. According to the above configuration, the heat resistance of the boron nitride material 10 is further improved.
  • the dielectric properties of the boron nitride material 10 are also improved.
  • the value calculated by 100 ⁇ c/(b+c+d) ⁇ may be 15.0% or more, or may be 17.7% or more.
  • the value calculated by 100 ⁇ c/(b+c+d) ⁇ may be 30.0% or more, or may be 50.0% or more.
  • the upper limit of the value calculated by 100 ⁇ c/(b+c+d) ⁇ is, for example, 80%.
  • FIG. 2 is a flowchart illustrating an example of a method for manufacturing a boron nitride material in the first embodiment.
  • the method for manufacturing the boron nitride material 10 includes preparing a base material containing boron nitride 1 and polydopamine 2 attached to the surface of the boron nitride 1 (step S1), and applying a silicon-containing polymer 3 to the base material. contacting (step S2).
  • a base material containing boron nitride 1 and polydopamine 2 attached to the surface of boron nitride 1 can be obtained by attaching polydopamine 2 to the surface of boron nitride 1 using self-oxidation polymerization of dopamine. can. Specifically, by bringing a dopamine solution into contact with particles of boron nitride 1 and oxidatively polymerizing dopamine, polydopamine 2 is attached to the surface of the particles of boron nitride 1 to form a thin film of polydopamine 2. Can be done.
  • a dopamine solution can be obtained by adding dopamine hydrochloride to a Tris-HCl solution whose pH has been adjusted to 8.5 and stirring.
  • concentration of the dopamine solution ranges from 0.01 mg/mL to 30 mg/mL, for example.
  • the pH of the dopamine solution ranges from pH 6 to pH 11, and may range from pH 8 to pH 10.
  • the pH of the dopamine solution can be adjusted by mixing a Tris-HCl solution or the like.
  • the temperature of the dopamine solution during oxidative polymerization is, for example, 10°C to 100°C.
  • the polymerization time is, for example, 1 hour to 48 hours.
  • the thickness of the polydopamine 2 thin film is, for example, 1 nm to 300 nm. The thickness of the polydopamine 2 thin film can be controlled by controlling the polymerization time.
  • the silicon-containing polymer 3 represented by the above formula (1) is represented by the following formula (3) before being bonded to polydopamine 2.
  • R 1 and R 2 independently represent a hydrocarbon group having 1 to 10 carbon atoms.
  • m represents an integer from 1 to 3.
  • a and d represent a number greater than or equal to 0, and
  • b and c represent a number greater than 0.
  • R 1 and R 2 may independently represent an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms and the aryl group having 6 to 10 carbon atoms are as described for the functional group represented by -SiR 3-n (OX) n .
  • the alkyl group having 1 to 10 carbon atoms is preferably an alkyl group having 1 to 5 carbon atoms, and more preferably an alkyl group having 1 to 3 carbon atoms.
  • R 1 and R 2 are preferably linear alkyl groups, more preferably methyl or ethyl groups, independently of each other.
  • the dielectric loss tangent of the wiring board material largely depends on the orientation polarization of organic molecules contained in the wiring board material. Therefore, the hydroxyl group of polydopamine can increase the dielectric loss tangent.
  • the silicon-containing polymer represented by the above formula (3) binds to polydopamine by acting on the hydroxyl group of polydopamine.
  • the silicon-containing polymer after bonding is represented by the above formula (1).
  • the boron nitride material 10 since the number of hydroxyl groups of polydopamine is reduced, an increase in the dielectric loss tangent of the boron nitride material 10 is suppressed.
  • the silicon-containing polymer represented by the above formula (3) can be obtained through the reaction shown in the scheme below. Specifically, a styrene-butadiene copolymer represented by the following formula (4) and an organosilicon compound represented by the following formula (5) are combined, preferably in the presence of a platinum compound-containing catalyst and a platinum compound-containing catalyst. Hydrosilylation occurs in the presence of a cocatalyst. Thereby, a silicon-containing polymer represented by the above formula (3) can be obtained.
  • the styrene-butadiene copolymer represented by the above formula (4) can be synthesized by a known method such as emulsion polymerization or solution polymerization using butadiene and styrene as raw material monomers.
  • the styrene-butadiene copolymer represented by the above formula (4) can also be obtained as a commercial product.
  • Commercially available products include, for example, Ricon 100, Ricon 181, Ricon 184 (all manufactured by Clay Valley), L-SBR-820, L-SBR-841 (all manufactured by Kuraray), 1,2-SBS (all manufactured by Nippon Soda). (manufactured by), etc.
  • organosilicon compound represented by the above formula (5) examples include trimethoxysilane, methyldimethoxysilane, dimethylmethoxysilane, triethoxysilane, methyldiethoxysilane, and dimethylethoxysilane.
  • the silylation rate calculated by 100 x ⁇ c/(b+c+d) ⁇ is the same as the silylation rate calculated by 100 x ⁇ c/(b+c+d) ⁇ in the above equation (1). It can be considered as
  • the number average molecular weight of the silicon-containing polymer may be 1200 or more, or 5000 or more. According to the above configuration, the hydrophobicity of the silicon-containing polymer 3 is improved, so that the heat resistance of the boron nitride material 10 is improved.
  • the upper limit of the number average molecular weight of the silicon-containing polymer before binding to polydopamine is not particularly limited.
  • the upper limit of the number average molecular weight of the silicon-containing polymer before bonding to polydopamine 2 is, for example, 10,000 or less. Note that in the present disclosure, the number average molecular weight is a polystyrene-equivalent number average molecular weight calculated using gel permeation chromatography (GPC).
  • silicon-containing polymer 3 may be bonded to polydopamine 2.
  • silicon-containing polymer 3 can be bonded to polydopamine 2 by a silane coupling reaction.
  • the silane coupling reaction proceeds as follows. First, the silicon-containing polymer represented by the above formula (3) is hydrolyzed to generate silanol groups (Si-OH). Next, the silanol group is bonded to polydopamine 2 partially through dehydration condensation with the hydroxyl group of polydopamine 2. At this time, the silicon-containing polymer has siloxane units (Si-O-Si) formed by dehydration condensation. Thereafter, by applying heat treatment, dehydration condensation progresses, and silicon-containing polymer 3 is bonded to the benzene ring of polydopamine 2 via silicon atoms and oxygen atoms.
  • the heat dissipation gap filler according to the present embodiment includes the boron nitride material 10 according to the first embodiment.
  • a heat dissipation gap filler is a filler used to dissipate heat from an electronic component by applying it to an electronic component such as a substrate material to fill air pockets or gaps.
  • the heat dissipation gap filler is a hardening type heat dissipation paste that hardens from a paste form to a sheet form. According to the heat dissipation gap filler according to this embodiment, the heat resistance of the filler can be improved.
  • the heat dissipation gap filler according to the present embodiment is manufactured by, for example, kneading the boron nitride material 10 according to Embodiment 1 with an epoxy resin, a silicone resin, or a non-silicone acrylic resin or a ceramic resin. It can be done.
  • the filler for thermal grease according to the present embodiment includes the boron nitride material 10 according to the first embodiment.
  • a filler for heat-radiating grease is a filler used for heat-radiating grease.
  • Thermal grease is a non-hardening thermal paste used to dissipate heat from electronic components by applying them to electronic components, such as substrate materials, to fill air pockets or gaps. According to the filler for thermal grease according to the present embodiment, the heat resistance of the filler can be improved.
  • the filler for thermal grease according to the present embodiment is manufactured by, for example, kneading the boron nitride material 10 according to Embodiment 1 with an epoxy resin, a silicone resin, or a non-silicone acrylic resin or a ceramic resin. It can be done.
  • FIG. 3 is a diagram showing a schematic configuration of a resin composition 20 in Embodiment 4.
  • the resin composition 20 includes, for example, a filler 22 and a curable resin 24.
  • the filler 22 includes the boron nitride material 10 described in the first embodiment. According to this embodiment, it is possible to provide a resin composition 20 that exhibits a low dielectric loss tangent and has excellent heat resistance. As the filler 22, the boron nitride material 10 alone may be used, or other filler materials such as silica particles may be used in combination with the boron nitride material 10.
  • curable resin 24 examples include epoxy resins, cyanate ester compounds, maleimide compounds, phenol resins, acrylic resins, polyamide resins, polyamideimide resins, thermosetting polyimide resins, and polyphenylene ether resins.
  • epoxy resins cyanate ester compounds
  • maleimide compounds phenol resins
  • acrylic resins acrylic resins
  • polyamide resins polyamideimide resins
  • thermosetting polyimide resins thermosetting polyimide resins
  • polyphenylene ether resins examples include epoxy resins, cyanate ester compounds, maleimide compounds, phenol resins, acrylic resins, polyamide resins, polyamideimide resins, thermosetting polyimide resins, and polyphenylene ether resins.
  • the curable resin 24 one kind or a combination of two or more kinds selected from these can be used.
  • the resin composition 20 may contain other components.
  • Other ingredients include curing agents, flame retardants, ultraviolet absorbers, antioxidants, reaction initiators, silane coupling agents, optical brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, and erasers.
  • Examples include foaming agents, dispersants, leveling agents, brighteners, antistatic agents, polymerization inhibitors, and organic solvents. If necessary, one kind or a combination of two or more kinds selected from these can be used.
  • the prepreg according to Embodiment 5 includes the resin composition 20 of Embodiment 4 shown in FIG. 3 or a semi-cured product thereof, and a fibrous base material.
  • the fibrous base material is present in the matrix of the resin composition 20 or a semi-cured product thereof.
  • Prepreg is a composite material of the resin composition 20 and a fibrous base material. According to this embodiment, it is possible to provide a prepreg suitable for high-frequency wiring boards.
  • the semi-cured material refers to a material that is partially cured to the extent that the resin composition 20 can be further cured. That is, the semi-cured material is a material obtained by semi-curing the resin composition 20. For example, when the resin composition 20 is heated, its viscosity gradually decreases. If heating is continued, curing will then begin and its viscosity will gradually increase. In such a case, the semi-cured state includes the state of the resin composition 20 during the period from the time when the viscosity starts to increase until the time when it is completely cured.
  • the fibrous base material known materials used in various electrically insulating material laminates can be used.
  • the fibrous base material include glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, polyester nonwoven fabric, pulp paper, and linter paper.
  • the resin composition 20 is impregnated into the fibrous base material through treatments such as dipping and coating.
  • a pre-cured or semi-cured prepreg according to the present embodiment can be obtained.
  • FIG. 4 is a cross-sectional view of a resin-coated film 30 in Embodiment 6.
  • the resin-coated film 30 includes a resin layer 32 containing the resin composition 20 or a semi-cured product thereof, and a support film 34.
  • a resin-coated film 30 suitable for an insulating layer can be provided.
  • the resin layer 32 is supported by a support film 34.
  • a support film 34 is placed on the surface of the resin layer 32.
  • another layer such as an adhesive layer may be provided between the resin layer 32 and the support film 34.
  • the resin layer 32 contains the resin composition 20 of Embodiment 4 shown in FIG. 3 or a semi-cured product thereof, and may or may not contain a fibrous base material.
  • the fibrous base material the same material as the fibrous base material of the prepreg can be used.
  • the resin layer 32 hardens and changes into an insulating layer.
  • An example of such an insulating layer is an insulating layer of a wiring board.
  • any support film used for resin-coated films can be used without limitation.
  • the support film 34 include resin films such as polyester films and polyethylene terephthalate films.
  • FIG. 5 is a cross-sectional view of resin-coated metal foil 40 in Embodiment 7.
  • the resin-coated metal foil 40 includes a resin layer 42 containing the resin composition 20 or a semi-cured product thereof, and a metal foil 44.
  • a resin layer 42 is supported by a metal foil 44.
  • a resin-coated metal foil 40 suitable for electronic circuit components such as wiring boards can be provided.
  • a metal foil 44 is placed on the surface of the resin layer 42.
  • another layer such as an adhesive layer may be provided between the resin layer 42 and the metal foil 44.
  • the resin layer 42 contains the resin composition of Embodiment 4 shown in FIG. 3 or a semi-cured product thereof, and may or may not contain a fibrous base material.
  • the fibrous base material the same material as the fibrous base material of the prepreg can be used.
  • the resin layer 42 hardens and changes into an insulating layer.
  • An example of such an insulating layer is an insulating layer of a wiring board.
  • metal foil 44 resin-coated metal foil and metal foil used for metal-clad laminates can be used without limitation.
  • the metal foil include copper foil and aluminum foil.
  • FIG. 6 is a cross-sectional view of a metal-clad laminate 50 in Embodiment 8.
  • Metal-clad laminate 50 includes an insulating layer 52 and at least one metal foil 54 .
  • a metal-clad laminate 50 suitable for a wiring board can be provided.
  • the insulating layer 52 includes a cured product of the resin composition 20 of the fourth embodiment shown in FIG. 3 or a cured product of the prepreg of the fifth embodiment.
  • Metal foil 54 is placed on the surface of insulating layer 52. In this embodiment, metal foils 54 are placed on each of the front and back surfaces of the insulating layer 52.
  • the metal-clad laminate 50 is typically manufactured using the prepreg of Embodiment 5.
  • a laminate is formed by stacking 1 to 20 sheets of prepreg.
  • a metal-clad laminate 50 is obtained by placing metal foil on one or both sides of the prepreg laminate and heating and pressurizing the prepreg laminate.
  • the metal foil 54 include copper foil, aluminum foil, and the like.
  • the molding conditions used when manufacturing a laminate for electrically insulating materials and a multilayer board can be applied to the molding conditions when manufacturing the metal-clad laminate 50.
  • FIG. 7 is a cross-sectional view of wiring board 60 in the ninth embodiment.
  • Wiring board 60 includes an insulating layer 62 and wiring 64.
  • a wiring board 60 suitable for high frequencies can be provided.
  • the insulating layer 62 includes a cured product of the resin composition 20 of the fourth embodiment shown in FIG. 3 or a cured product of the prepreg of the fifth embodiment.
  • the wiring 64 is supported by the insulating layer 62. Specifically, the wiring 64 is arranged on the insulating layer 62. Wiring 64 may be formed by partially removing the metal foil.
  • a wiring board 60 in which wiring 64 forming a circuit is provided on the surface of the insulating layer 62 can be obtained. That is, the wiring board 60 is obtained by partially removing the metal foil 54 on the surface of the metal-clad laminate 50 so that a circuit is formed.
  • a new laminate may be formed by laminating the prepreg of Embodiment 5 on at least one surface of the wiring board 60 and applying heat and pressure.
  • a multilayer wiring board can be obtained by patterning the metal foil on the surface of the obtained laminate to form wiring.
  • boron nitride As boron nitride, h-BN (manufactured by Denka Corporation, product number: SGP, average particle size: 18 ⁇ m) was used. A dopamine solution (concentration: 23 mg/mL) was obtained by adding dopamine hydrochloride to a Tris-HCl solution whose pH was adjusted to 8.5 and stirring. 4.5 g of boron nitride was added to the obtained dopamine solution. The solution temperature was set at 80°C, and the mixture was stirred using a magnetic stirrer for 24 hours. Thereafter, a solid was obtained by filtration. The obtained solid was washed with water and then dried.
  • polydopamine-coated boron nitride As a result, boron nitride to which polydopamine was attached (hereinafter referred to as polydopamine-coated boron nitride for convenience) was obtained. Adhesion of polydopamine was confirmed by the fact that the surface of the boron nitride particles was colored blackish brown.
  • the silylation rate of the silicon-containing polymer was 6.5%.
  • the silylation rate was measured using nuclear magnetic resonance spectrometry (NMR) to determine whether the functional group represented by -SiR 2 3-m (OR 1 ) m was introduced at the end and the terminal at which no functional group was introduced. This was confirmed by calculating the terminal ratio.
  • NMR nuclear magnetic resonance spectrometry
  • 1 g of silicon-containing polymer was dissolved in toluene to obtain a toluene solution with a concentration of 100 mg/mL.
  • 2 g of polydopamine-coated boron nitride was added to the resulting solution.
  • the solution temperature was set at 100° C., and the solution was stirred using a magnetic stirrer for 3 hours. Thereafter, a solid was obtained by filtration. The obtained solid was washed with a toluene solution and then dried. As a result, particles of the boron nitride material of Example 1 were obtained.
  • the silylation rate of the silicon-containing polymer was 12.9%. Except for this, particles of the boron nitride material of Example 2 were obtained in the same manner as in Example 1.
  • the silylation rate of the silicon-containing polymer was 17.7%.
  • the number average molecular weight of the silicon-containing polymer was 5,900. Except for this, particles of the boron nitride material of Example 3 were obtained in the same manner as in Example 1.
  • the silylation rate of the silicon-containing polymer was 50.0%. Except for this, particles of the boron nitride material of Example 4 were obtained in the same manner as in Example 1.
  • the silylation rate of the silicon-containing polymer was 71.0%. Except for this, particles of the boron nitride material of Example 5 were obtained in the same manner as in Example 1.
  • the silylation rate of the silicon-containing polymer was 1.6%. Except for this, particles of the boron nitride material of Example 6 were obtained in the same manner as in Example 1.
  • the silylation rate of the silicon-containing polymer was 3.2%. Except for this, particles of the boron nitride material of Example 7 were obtained in the same manner as in Example 1.
  • ⁇ Comparative example 1 ⁇ In place of the silicon-containing polymer, 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product number: KBM-503) was used. Methacrylsilane is one of the common silane coupling agents made of a silicon-containing low-molecular compound. The molecular weight of 3-methacryloxypropyltrimethoxysilane was 248.4. 1 g of 3-methacryloxypropyltrimethoxysilane was dissolved in toluene to obtain a toluene solution having a concentration of 0.1 mg/mL.
  • ⁇ Comparative example 2 Trimethoxyvinylsilane (manufactured by Tokyo Kasei Kogyo Co., Ltd., product number: V0042) was used in place of the silicon-containing polymer. Vinylsilane is one of the common silane coupling agents made of silicon-containing low-molecular compounds. The molecular weight of trimethoxyvinylsilane was 148.2. 1 g of trimethoxyvinylsilane was dissolved in toluene to obtain a toluene solution having a concentration of 0.1 mg/mL. Particles of Comparative Example 2 were obtained by the same method as Comparative Example 1 except for this.
  • the heat resistance of each particle group was evaluated based on the measured 1% weight loss temperature. It was determined that the heat resistance was good if the 1% weight loss temperature was 220°C or higher, and particularly good if the temperature was 250°C or higher.
  • the dielectric loss tangent at a frequency of 1 GHz was measured for each particle group obtained in Examples and Comparative Examples.
  • a cavity resonator manufactured by AET, MS46122B was used as a measuring device.
  • the dielectric loss tangent of the particles of the example and other comparative examples was normalized by setting the dielectric loss tangent of Comparative Example 3 to 1. It was determined that the dielectric loss tangent was good if it was less than 1, and particularly good if it was 0.5 or less.
  • Example 1 to 5 in which the silylation rate was 5.0% or more, the 1% weight loss temperature was 250° C. or more, and the heat resistance was particularly good.
  • Examples 3 to 5 in which the silylation rate was 15.0% or more higher heat resistance and lower dielectric loss tangent were realized.
  • the silylation rate in which the silylation rate is 30.0% or more, the 1% weight loss temperature is 300°C or more, showing even higher heat resistance, and the dielectric loss tangent is 0.5 or less. The tangent was particularly good.
  • the boron nitride material of the present disclosure can realize a filler with excellent heat resistance, so it can be used for applications such as wiring boards of electronic devices used for large-capacity communications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

A boron nitride material in one embodiment of the present disclosure contains boron nitride, polydopamine adhered to the boron nitride, and a silicon-containing polymer. The silicon-containing polymer contains a functional group represented by, for example, -SiR3-n(OX)n. n denotes an integer between 1 and 3. X denotes a hydrogen atom, a hydrocarbon group having 1-10 carbon atoms, a moiety bonded to the polydopamine, or a moiety bonded to a silicon atom other than a silicon atom in the functional group. At least one X moiety is a moiety bonded to the polydopamine. R denotes a hydrocarbon group having 1-10 carbon atoms.

Description

窒化ホウ素材料、その応用製品、および窒化ホウ素材料の製造方法Boron nitride material, its applied products, and method for producing boron nitride material
 本開示は、窒化ホウ素材料、その応用製品、および窒化ホウ素材料の製造方法に関する。 The present disclosure relates to boron nitride materials, applied products thereof, and methods for producing boron nitride materials.
 近年、エレクトロニクス分野では、第5世代移動通信システム(5G)の運用拡大に向け、電子機器に要求される性能のレベルが上がっている。例えば、これまでの世代よりも通信速度を速くするために、5Gではより高い周波数帯が用いられる。そのため、電子機器には、高周波対応の配線板が求められている。 In recent years, in the electronics field, the level of performance required of electronic devices has been increasing in order to expand the use of the 5th generation mobile communication system (5G). For example, 5G uses higher frequency bands to provide faster communication speeds than previous generations. Therefore, high frequency compatible wiring boards are required for electronic devices.
 配線板の伝送路における伝送損失は、周波数に依存し、信号の周波数が高ければ高いほど増大する。伝送損失は、比誘電率および誘電正接に依存する。そのため、高周波信号の伝送損失を低減させるべく、配線板の絶縁層を構成する材料には、低い比誘電率および低い誘電正接を有することが求められる。 The transmission loss in the transmission path of a wiring board depends on the frequency, and increases as the signal frequency increases. Transmission loss depends on dielectric constant and dielectric loss tangent. Therefore, in order to reduce the transmission loss of high-frequency signals, the material constituting the insulating layer of the wiring board is required to have a low dielectric constant and a low dielectric loss tangent.
 また、5Gのような大容量通信では、高周波数帯を用いるため電波の伝送距離が短い。このため、電子機器の出力を増大する必要がある。それに加え、高集積度の実現および小型化に伴い、回路の実装密度も高まる。これらの必要性を満たそうとすると、配線板の単位面積あたりの発熱量が増大する。したがって、配線板には、高い放熱性を有することが求められる。配線板の放熱性を高めるために、配線板の絶縁層を構成する材料に熱伝導性に優れたフィラー(充填剤)を含有させて、配線板の熱伝導率を高めることが行われている。 Furthermore, in large-capacity communications such as 5G, the transmission distance of radio waves is short because high frequency bands are used. Therefore, it is necessary to increase the output of electronic devices. In addition, with the realization of high integration and miniaturization, the packaging density of circuits will also increase. Attempting to satisfy these needs increases the amount of heat generated per unit area of the wiring board. Therefore, wiring boards are required to have high heat dissipation properties. In order to improve the heat dissipation of wiring boards, the material that makes up the insulating layer of wiring boards contains fillers with excellent thermal conductivity to increase the thermal conductivity of wiring boards. .
特開2018-043899号公報Japanese Patent Application Publication No. 2018-043899
 従来技術においては、フィラーの耐熱性の改善が望まれる。 In the conventional technology, it is desired to improve the heat resistance of the filler.
 本開示の窒化ホウ素材料は、
 窒化ホウ素と、
 前記窒化ホウ素に付着したポリドーパミンと、
 ケイ素含有ポリマーと、を含む。
The boron nitride material of the present disclosure includes:
boron nitride,
polydopamine attached to the boron nitride;
A silicon-containing polymer.
 本開示によれば、フィラーの耐熱性を改善できる。 According to the present disclosure, the heat resistance of the filler can be improved.
図1は、実施の形態1における窒化ホウ素材料の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a boron nitride material in Embodiment 1. 図2は、実施の形態1における窒化ホウ素材料の製造方法の一例を示すフローチャートである。FIG. 2 is a flowchart illustrating an example of a method for manufacturing a boron nitride material according to the first embodiment. 図3は、実施の形態4における樹脂組成物の概略構成を示す図である。FIG. 3 is a diagram showing a schematic structure of a resin composition in Embodiment 4. 図4は、実施の形態6における樹脂付きフィルムの断面図である。FIG. 4 is a cross-sectional view of a resin-coated film in Embodiment 6. 図5は、実施の形態7における樹脂付き金属箔の断面図である。FIG. 5 is a cross-sectional view of the resin-coated metal foil in Embodiment 7. 図6は、実施の形態8における金属張積層板の断面図である。FIG. 6 is a cross-sectional view of a metal-clad laminate in Embodiment 8. 図7は、実施の形態9における配線板の断面図である。FIG. 7 is a cross-sectional view of a wiring board in Embodiment 9. 図8は、実施の形態1における窒化ホウ素材料の粒子の厚さ方向に垂直な断面の透過型電子顕微鏡(TEM)像の一例を示す図である。FIG. 8 is a diagram showing an example of a transmission electron microscope (TEM) image of a cross section perpendicular to the thickness direction of particles of the boron nitride material in the first embodiment.
 (本開示の基礎となった知見)
 配線板の放熱性を高めるために樹脂組成物中のフィラーの含有量を増やすと、柔軟性などの機械的特性が損なわれ、絶縁層が脆くなりやすい。これは、樹脂組成物中でフィラーが凝集するためと考えられる。フィラーの凝集を抑えつつ、分散性を向上させるためには、フィラーの表面の化学修飾が有効である。
(Findings that formed the basis of this disclosure)
If the content of filler in the resin composition is increased in order to improve the heat dissipation of the wiring board, mechanical properties such as flexibility are impaired and the insulating layer tends to become brittle. This is considered to be because the filler aggregates in the resin composition. Chemical modification of the filler surface is effective in improving dispersibility while suppressing filler aggregation.
 窒化ホウ素は、高い熱伝導性、優れた放熱性、優れた電気絶縁性を備えた材料である。そのため、近年、窒化ホウ素は、配線板の絶縁層のフィラーとして注目されている(例えば、特許文献1)。しかし、窒化ホウ素の粒子の表面に存在する官能基の量は少なく、その表面の大部分が不活性である。そのため、シランカップリング等の方法によって窒化ホウ素の粒子の表面を直接的に処理して樹脂組成物中での粒子の分散性を向上させることは困難であった。 Boron nitride is a material with high thermal conductivity, excellent heat dissipation, and excellent electrical insulation. Therefore, in recent years, boron nitride has attracted attention as a filler for insulating layers of wiring boards (for example, Patent Document 1). However, the amount of functional groups present on the surface of boron nitride particles is small, and most of the surface is inert. Therefore, it has been difficult to directly treat the surface of boron nitride particles by a method such as silane coupling to improve the dispersibility of the particles in a resin composition.
 ここで、二枚貝の1種であるムラサキイガイの足糸腺から分泌されるドーパミン含有タンパク質は、海水中でも安定した接着力を発揮し、天然の接着剤として知られている。非特許文献1によると、ドーパミン水溶液に基板を浸漬すると、ドーパミンの自己酸化重合により、基板の表面にポリドーパミンの薄膜が形成される。非特許文献2には、この性質を利用して窒化ホウ素をポリドーパミンで被覆することにより、窒化ホウ素のフィラーとしての分散性が向上したと記載されている。 Here, the dopamine-containing protein secreted from the byssus gland of the mussel, a type of bivalve, exhibits stable adhesive strength even in seawater and is known as a natural adhesive. According to Non-Patent Document 1, when a substrate is immersed in an aqueous dopamine solution, a thin film of polydopamine is formed on the surface of the substrate due to self-oxidation polymerization of dopamine. Non-Patent Document 2 describes that by utilizing this property and coating boron nitride with polydopamine, the dispersibility of boron nitride as a filler was improved.
 ところで、配線板は、通常、配線板上に電子部品を実装する際にハンダリフロー工程を経る。そのため、フィラーには高い耐熱性が必要となる。しかし、ポリドーパミンは、多くの水酸基を有するため、大気中の水分を吸着しやすいという性質、すなわち親水性を有する。そのため、ポリドーパミンを付着させた窒化ホウ素をフィラーとして用いた場合、ハンダリフロー工程における加熱によりポリドーパミンの表面に吸着した水分が蒸発し、気泡が発生することがある。この気泡が配線板の内部に溜まることにより、様々な不具合をきたすおそれがある。 By the way, wiring boards usually undergo a solder reflow process when electronic components are mounted on the wiring board. Therefore, the filler needs to have high heat resistance. However, since polydopamine has many hydroxyl groups, it has the property of easily adsorbing moisture in the atmosphere, that is, it has hydrophilicity. Therefore, when boron nitride to which polydopamine is attached is used as a filler, water adsorbed on the surface of polydopamine may evaporate due to heating in the solder reflow process, and bubbles may be generated. When these air bubbles accumulate inside the wiring board, various problems may occur.
 本発明者らは、窒化ホウ素の耐熱性の改善について鋭意研究した。その結果、本開示の窒化ホウ素材料を想到するに至った。 The present inventors have conducted extensive research into improving the heat resistance of boron nitride. As a result, we came up with the boron nitride material of the present disclosure.
 (本開示に係る一態様の概要)
 本開示の第1態様に係る窒化ホウ素材料は、窒化ホウ素と、前記窒化ホウ素に付着したポリドーパミンと、ケイ素含有ポリマーと、を含む。以上の構成によれば、窒化ホウ素材料の耐熱性を改善できる。
(Summary of one aspect of the present disclosure)
A boron nitride material according to a first aspect of the present disclosure includes boron nitride, polydopamine attached to the boron nitride, and a silicon-containing polymer. According to the above configuration, the heat resistance of the boron nitride material can be improved.
 本開示の第2態様において、例えば、第1態様に係る窒化ホウ素材料では、前記ケイ素含有ポリマーは、前記ポリドーパミンに付着していてもよい。以上の構成によれば、窒化ホウ素材料の耐熱性を改善できる。 In the second aspect of the present disclosure, for example, in the boron nitride material according to the first aspect, the silicon-containing polymer may be attached to the polydopamine. According to the above configuration, the heat resistance of the boron nitride material can be improved.
 本開示の第3態様において、例えば、第1または第2態様に係る窒化ホウ素材料では、前記ケイ素含有ポリマーは、ケイ素原子および酸素原子を含む第1の側鎖を含むと共に、前記ケイ素原子および前記酸素原子を介して前記ポリドーパミンに結合していてもよい。以上の構成によれば、窒化ホウ素材料の耐熱性を改善できる。 In a third aspect of the present disclosure, for example, in the boron nitride material according to the first or second aspect, the silicon-containing polymer includes a first side chain containing a silicon atom and an oxygen atom, and the silicon-containing polymer includes a first side chain containing a silicon atom and an oxygen atom. It may be bonded to the polydopamine via an oxygen atom. According to the above configuration, the heat resistance of the boron nitride material can be improved.
 本開示の第4態様において、例えば、第1から第3態様のいずれか1つに係る窒化ホウ素材料では、前記ケイ素含有ポリマーは、炭素-炭素二重結合および炭素-炭素三重結合からなる群から選ばれる少なくとも1つを含む第2の側鎖を含んでいてもよい。以上の構成によれば、窒化ホウ素材料をフィラーとして用いた場合に、フィラーの放熱性が向上する。 In a fourth aspect of the present disclosure, for example, in the boron nitride material according to any one of the first to third aspects, the silicon-containing polymer is selected from the group consisting of carbon-carbon double bonds and carbon-carbon triple bonds. A second side chain containing at least one selected side chain may be included. According to the above configuration, when a boron nitride material is used as a filler, the heat dissipation properties of the filler are improved.
 本開示の第5態様において、例えば、第4態様に係る窒化ホウ素材料では、前記第2の側鎖は、鎖状構造のみからなっていてもよい。以上の構成によれば、窒化ホウ素材料をフィラーとして用いた場合に、フィラーの放熱性が向上する。 In the fifth aspect of the present disclosure, for example, in the boron nitride material according to the fourth aspect, the second side chain may consist only of a chain structure. According to the above configuration, when a boron nitride material is used as a filler, the heat dissipation properties of the filler are improved.
 本開示の第6態様において、例えば、第1から第5態様のいずれか1つに係る窒化ホウ素材料では、前記ケイ素含有ポリマーは、スチレン単位、ブタジエン単位、エチレン単位、およびシロキサン単位からなる群から選択される少なくとも1つを含む主鎖を含んでいてもよい。以上の構成によれば、窒化ホウ素材料の耐熱性が向上する。 In a sixth aspect of the present disclosure, for example, in the boron nitride material according to any one of the first to fifth aspects, the silicon-containing polymer is selected from the group consisting of styrene units, butadiene units, ethylene units, and siloxane units. The main chain may include at least one selected one. According to the above configuration, the heat resistance of the boron nitride material is improved.
 本開示の第7態様において、例えば、第6態様に係る窒化ホウ素材料では、前記ケイ素含有ポリマーは、前記ブタジエン単位を含む主鎖を含んでいてもよい。以上の構成によれば、窒化ホウ素材料の耐熱性が向上する。 In a seventh aspect of the present disclosure, for example, in the boron nitride material according to the sixth aspect, the silicon-containing polymer may include a main chain containing the butadiene unit. According to the above configuration, the heat resistance of the boron nitride material is improved.
 本開示の第8態様において、例えば、第7態様に係る窒化ホウ素材料では、前記ケイ素含有ポリマーは、前記スチレン単位および前記ブタジエン単位を含むコポリマーを含んでいてもよい。以上の構成によれば、窒化ホウ素材料の耐熱性がより向上する。 In an eighth aspect of the present disclosure, for example, in the boron nitride material according to the seventh aspect, the silicon-containing polymer may include a copolymer containing the styrene unit and the butadiene unit. According to the above configuration, the heat resistance of the boron nitride material is further improved.
 本開示の第9態様において、例えば、第1から第8態様のいずれか1つに係る窒化ホウ素材料では、前記ケイ素含有ポリマーは、-SiR3-n(OX)nで示される官能基を含んでいてもよい。ここで、nは1から3の整数であり、Xは水素原子、炭素数1から10の炭化水素基、前記ポリドーパミンと結合している部分、または前記官能基のケイ素原子以外のケイ素原子と結合している部分を表す。Xのうちの少なくとも1つは前記ポリドーパミンと結合している部分である。Rは炭素数1から10の炭化水素基を表す。以上の構成によれば、窒化ホウ素材料の耐熱性がより向上する。 In a ninth aspect of the present disclosure, for example, in the boron nitride material according to any one of the first to eighth aspects, the silicon-containing polymer does not contain a functional group represented by -SiR 3-n (OX) n . It's okay to stay. Here, n is an integer from 1 to 3, and X is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, a moiety bonded to the polydopamine, or a silicon atom other than the silicon atom of the functional group. Represents connected parts. At least one of X is a moiety that binds to the polydopamine. R represents a hydrocarbon group having 1 to 10 carbon atoms. According to the above configuration, the heat resistance of the boron nitride material is further improved.
 本開示の第10態様において、例えば、第9態様に係る窒化ホウ素材料では、前記ケイ素含有ポリマーは、複数の繰り返し単位を含む下記式(1)で表されてもよい。
 前記式(1)において、aおよびdは0以上の数を表し、bおよびcは0より大きい数を表す。ただし、前記式(1)において、前記複数の繰り返し単位の順序は任意である。以上の構成によれば、窒化ホウ素材料の耐熱性がより向上する。
In the tenth aspect of the present disclosure, for example, in the boron nitride material according to the ninth aspect, the silicon-containing polymer may be represented by the following formula (1) containing a plurality of repeating units.
In the formula (1), a and d represent a number greater than or equal to 0, and b and c represent a number greater than 0. However, in the above formula (1), the order of the plurality of repeating units is arbitrary. According to the above configuration, the heat resistance of the boron nitride material is further improved.
 本開示の第11態様において、例えば、第10態様に係る窒化ホウ素材料では、前記式(1)において、0.050≦c/(b+c+d)を満たしてもよい。以上の構成によれば、窒化ホウ素材料の耐熱性がより一層向上する。 In the eleventh aspect of the present disclosure, for example, the boron nitride material according to the tenth aspect may satisfy 0.050≦c/(b+c+d) in the formula (1). According to the above configuration, the heat resistance of the boron nitride material is further improved.
 本開示の第12態様に係るフィラーは、第1から第11態様のいずれか1つに係る窒化ホウ素材料を含む。以上の構成によれば、フィラーの耐熱性を改善できる。 The filler according to the twelfth aspect of the present disclosure includes the boron nitride material according to any one of the first to eleventh aspects. According to the above configuration, the heat resistance of the filler can be improved.
 本開示の第13態様に係る樹脂組成物は、第12態様のフィラーを含む。第13態様によれば、低い誘電正接を示すとともに耐熱性に優れた樹脂組成物を提供できる。 The resin composition according to the thirteenth aspect of the present disclosure includes the filler according to the twelfth aspect. According to the thirteenth aspect, it is possible to provide a resin composition that exhibits a low dielectric loss tangent and has excellent heat resistance.
 本開示の第14態様に係るプリプレグは、第13態様の樹脂組成物または前記樹脂組成物の半硬化物を含む。 The prepreg according to the fourteenth aspect of the present disclosure includes the resin composition of the thirteenth aspect or a semi-cured product of the resin composition.
 本開示の第15態様に係る樹脂付きフィルムは、
 第13態様の樹脂組成物または前記樹脂組成物の半硬化物を含む樹脂層と、
 支持フィルムと、
 を備えている。
The resin-coated film according to the fifteenth aspect of the present disclosure is
A resin layer containing the resin composition of the thirteenth aspect or a semi-cured product of the resin composition,
a support film;
It is equipped with
 本開示の第16態様に係る樹脂付き金属箔は、
 第13態様の樹脂組成物または前記樹脂組成物の半硬化物を含む樹脂層と、
 金属箔と、
 を備えている。
The resin-coated metal foil according to the sixteenth aspect of the present disclosure includes:
A resin layer containing the resin composition of the thirteenth aspect or a semi-cured product of the resin composition,
metal foil and
It is equipped with
 本開示の第17態様に係る金属張積層板は、
 第13態様の樹脂組成物の硬化物または第14態様のプリプレグの硬化物を含む絶縁層と、
 金属箔と、
 を備えている。
The metal clad laminate according to the seventeenth aspect of the present disclosure includes:
an insulating layer comprising a cured product of the resin composition of the thirteenth aspect or a cured product of the prepreg of the fourteenth aspect;
metal foil and
It is equipped with
 本開示の第18態様に係る配線板は、
 第13態様の樹脂組成物の硬化物または第14態様のプリプレグの硬化物を含む絶縁層と、
 配線と、
 備えている。
The wiring board according to the eighteenth aspect of the present disclosure,
an insulating layer comprising a cured product of the resin composition of the thirteenth aspect or a cured product of the prepreg of the fourteenth aspect;
wiring and
We are prepared.
 第14から第18態様によれば、高周波に適した各種応用製品を提供できる。 According to the fourteenth to eighteenth aspects, various applied products suitable for high frequencies can be provided.
 本開示の第19態様に係る窒化ホウ素材料の製造方法は、窒化ホウ素と、前記窒化ホウ素の表面に付着したポリドーパミンと、を含む基材を準備することと、前記基材にケイ素含有ポリマーを接触させることと、を含む。以上の構成によれば、耐熱性に優れた窒化ホウ素材料を製造することができる。 A method for producing a boron nitride material according to a nineteenth aspect of the present disclosure includes preparing a base material containing boron nitride and polydopamine attached to the surface of the boron nitride, and applying a silicon-containing polymer to the base material. contacting. According to the above configuration, a boron nitride material with excellent heat resistance can be manufactured.
 本開示の第20態様において、例えば、第19態様に係る窒化ホウ素材料の製造方法では、前記ケイ素含有ポリマーの数平均分子量は、1200以上であってもよい。以上の構成によれば、窒化ホウ素材料の耐熱性が向上する。 In the 20th aspect of the present disclosure, for example, in the method for producing a boron nitride material according to the 19th aspect, the number average molecular weight of the silicon-containing polymer may be 1200 or more. According to the above configuration, the heat resistance of the boron nitride material is improved.
 以下、本開示の実施の形態が、図面を参照しながら説明される。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 (実施の形態1)
 以下、図1および図2を用いて、実施の形態1を説明する。
(Embodiment 1)
Embodiment 1 will be described below with reference to FIGS. 1 and 2.
 [窒化ホウ素材料]
 図1は、実施の形態1における窒化ホウ素材料10の概略構成を示す図である。窒化ホウ素材料10は、窒化ホウ素1、窒化ホウ素1に付着したポリドーパミン2、およびケイ素含有ポリマー3を含む。
[Boron nitride material]
FIG. 1 is a diagram showing a schematic configuration of a boron nitride material 10 in the first embodiment. Boron nitride material 10 includes boron nitride 1, polydopamine 2 attached to boron nitride 1, and silicon-containing polymer 3.
 窒化ホウ素材料10は、ポリドーパミン2に加えてケイ素含有ポリマー3を含み、かつ、ポリドーパミン2が窒化ホウ素1に付着していることにより、ポリドーパミン2への大気中の水分の吸着が抑制される。加えて、ケイ素含有ポリマー3は、例えば、メタクリルシランなどのケイ素含有低分子化合物と比べて、加熱によってそれ自体が蒸発しにくい。以上より、窒化ホウ素材料10は、ハンダリフロー工程における加熱により気泡が発生しにくく、結果として高い耐熱性を有する。なお、本開示において、「ケイ素含有低分子化合物」とは、分子量が1200未満の有機ケイ素化合物を意味する。 Boron nitride material 10 contains silicon-containing polymer 3 in addition to polydopamine 2, and polydopamine 2 is attached to boron nitride 1, so that adsorption of atmospheric moisture to polydopamine 2 is suppressed. Ru. In addition, the silicon-containing polymer 3 itself is less likely to evaporate by heating than, for example, a silicon-containing low-molecular compound such as methacrylsilane. As described above, the boron nitride material 10 is less likely to generate bubbles due to heating in the solder reflow process, and as a result has high heat resistance. In addition, in this disclosure, "silicon-containing low molecular compound" means an organosilicon compound with a molecular weight of less than 1,200.
 ポリドーパミン2およびケイ素含有ポリマー3が、窒化ホウ素1の表面に付着していてもよい。具体的には、窒化ホウ素1の表面がポリドーパミン2によって化学修飾されることにより、ポリドーパミン2は、窒化ホウ素1の表面に付着していてもよい。ポリドーパミン2は、窒化ホウ素1の表面の少なくとも一部を被覆していてもよい。ポリドーパミン2は、窒化ホウ素1の表面の全体を被覆していてもよく、窒化ホウ素1の表面の一部のみを被覆していてもよい。ケイ素含有ポリマー3が、ポリドーパミン2に付着していてもよい。窒化ホウ素1の表面に付着したポリドーパミン2にケイ素含有ポリマー3が付着していてもよい。ポリドーパミン2が窒化ホウ素1の表面に付着していること、およびケイ素含有ポリマー3がポリドーパミン2に付着していることは、例えば、透過型電子顕微鏡(TEM)により確認することができる。図8は、窒化ホウ素材料10の粒子の厚さ方向に垂直な断面の透過型電子顕微鏡(TEM)像の一例である(倍率:50000倍)。なお、図8のTEM像は、窒化ホウ素材料10の粒子とポリフェニレンエーテル樹脂とを混練することにより製造した樹脂組成物を薄片化したサンプルをTEM観察することにより得た像である。図8に示すように、TEM像によれば、窒化ホウ素1にポリドーパミン2が付着しており、ポリドーパミン2にケイ素含有ポリマー3が付着していることを確認できる。 Polydopamine 2 and silicon-containing polymer 3 may be attached to the surface of boron nitride 1. Specifically, polydopamine 2 may be attached to the surface of boron nitride 1 by chemically modifying the surface of boron nitride 1 with polydopamine 2. Polydopamine 2 may cover at least a portion of the surface of boron nitride 1. Polydopamine 2 may cover the entire surface of boron nitride 1, or may cover only a portion of the surface of boron nitride 1. Silicon-containing polymer 3 may be attached to polydopamine 2. Silicon-containing polymer 3 may be attached to polydopamine 2 attached to the surface of boron nitride 1. It can be confirmed by, for example, a transmission electron microscope (TEM) that polydopamine 2 is attached to the surface of boron nitride 1 and that silicon-containing polymer 3 is attached to polydopamine 2. FIG. 8 is an example of a transmission electron microscope (TEM) image of a cross section perpendicular to the thickness direction of the particles of the boron nitride material 10 (magnification: 50,000 times). Note that the TEM image in FIG. 8 is an image obtained by TEM observation of a sample of a resin composition produced by kneading particles of the boron nitride material 10 and a polyphenylene ether resin. As shown in FIG. 8, according to the TEM image, it can be confirmed that polydopamine 2 is attached to boron nitride 1, and that silicon-containing polymer 3 is attached to polydopamine 2.
 [窒化ホウ素]
 窒化ホウ素1として、黒鉛型の層状構造を有する六方晶窒化ホウ素(h-BN)、ダイヤモンド型の立方晶窒化ホウ素(c-BN)、およびアモルファス窒化ホウ素(a-BN)などを用いることができる。h-BNは、比較的容易に合成でき、かつ熱伝導性、電気絶縁性、化学的安定性、および耐熱性に優れるという特徴を有するため、特に有用である。窒化ホウ素1として、窒化ホウ素粒子を使用することができる。窒化ホウ素粒子は、通常、白色を呈している。窒化ホウ素粒子の形状は、特に限定されない。窒化ホウ素粒子の形状は、例えば、鱗片状、球状、楕円球状、ロッド状などであってもよい。
[Boron nitride]
As the boron nitride 1, hexagonal boron nitride (h-BN) having a graphite-type layered structure, diamond-shaped cubic boron nitride (c-BN), amorphous boron nitride (a-BN), etc. can be used. . h-BN is particularly useful because it can be synthesized relatively easily and has excellent thermal conductivity, electrical insulation, chemical stability, and heat resistance. As the boron nitride 1, boron nitride particles can be used. Boron nitride particles usually have a white color. The shape of the boron nitride particles is not particularly limited. The shape of the boron nitride particles may be, for example, scale-like, spherical, ellipsoidal, rod-like, or the like.
 窒化ホウ素粒子の平均粒径は、特に限定されない。窒化ホウ素粒子の平均粒径は、例えば、0.05μm以上かつ100μm以下であってもよく、0.1μm以上かつ50μm以下であってもよい。本開示において、窒化ホウ素粒子の平均粒径は、メジアン径を意味する。メジアン径とは、体積基準の粒度分布における累積体積が50%に等しい場合の粒径(d50)を意味する。体積基準の粒度分布は、例えば、レーザー回折式測定装置により測定される。 The average particle size of the boron nitride particles is not particularly limited. The average particle size of the boron nitride particles may be, for example, 0.05 μm or more and 100 μm or less, or 0.1 μm or more and 50 μm or less. In the present disclosure, the average particle size of boron nitride particles means the median diameter. The median diameter means the particle diameter (d50) when the cumulative volume in the volume-based particle size distribution is equal to 50%. The volume-based particle size distribution is measured using, for example, a laser diffraction measuring device.
 [ポリドーパミン]
 ポリドーパミン2は、ドーパミンの重合体であって、例えば下記式(2)で表される2つの繰り返し単位のうちのいずれか一方または両方を有しうる。ただし、下記式(2)において、インドリン骨格の部分は、インドール骨格であってもよい。
[Polydopamine]
Polydopamine 2 is a polymer of dopamine, and may have, for example, one or both of two repeating units represented by the following formula (2). However, in the following formula (2), the indoline skeleton portion may be an indole skeleton.
 上記式(2)において、nは1以上の整数である。上記式(2)において、nは2以上の整数であってもよい。 In the above formula (2), n is an integer of 1 or more. In the above formula (2), n may be an integer of 2 or more.
 ポリドーパミン2は、窒化ホウ素1の粒子の表面において薄膜の形状を有していてもよい。ポリドーパミン2の薄膜の厚みは、例えば、1nmから300nmである。ポリドーパミン2の薄膜は、窒化ホウ素1の粒子の表面の少なくとも一部を覆っている。ポリドーパミン2の薄膜は、図1に例示するように、窒化ホウ素1の粒子の表面の全体を覆っていてもよい。 Polydopamine 2 may have a thin film shape on the surface of the boron nitride 1 particles. The thickness of the polydopamine 2 thin film is, for example, 1 nm to 300 nm. The polydopamine 2 thin film covers at least a portion of the surface of the boron nitride 1 particles. The thin film of polydopamine 2 may cover the entire surface of the particles of boron nitride 1, as illustrated in FIG.
 窒化ホウ素1へのポリドーパミンの付着は、窒化ホウ素1の粒子の表面が黒褐色に着色していることにより確認することができる。 The adhesion of polydopamine to boron nitride 1 can be confirmed by the fact that the surface of the particles of boron nitride 1 is colored blackish brown.
 本明細書では、重合体において他の物質との結合によりドーパミンに由来する官能基の一部が変化していても、その重合体を「ポリドーパミン」として扱う。官能基の変化の一例は、ポリドーパミンの水酸基と他の物質の水酸基との脱水縮合に伴う水酸基の消失である。なお、この脱水縮合は、次に述べるケイ素含有ポリマー3との結合をもたらす化学反応の典型例である。 In this specification, a polymer is treated as "polydopamine" even if some of the functional groups derived from dopamine in the polymer are changed due to bonding with other substances. An example of a change in a functional group is the disappearance of a hydroxyl group due to dehydration condensation between the hydroxyl group of polydopamine and the hydroxyl group of another substance. Note that this dehydration condensation is a typical example of a chemical reaction that results in bonding with the silicon-containing polymer 3 described below.
 [ケイ素含有ポリマー]
 ケイ素含有ポリマー3は、ケイ素原子を含むポリマーであればその構造に特段の制限はないが、例えば、主鎖と、主鎖から枝分かれしている側鎖とを含む。ケイ素含有ポリマー3は、複数の側鎖を含んでいてもよい。主鎖は、互いに結合した炭素原子により構成された第1の主鎖を含んでいてもよい。第1の主鎖は、窒化ホウ素1の表面が過度の親水性を有しない作用を奏しうる。ケイ素含有ポリマー3は、第1の主鎖と共にケイ素原子を含む側鎖を含んでいてもよい。
[Silicon-containing polymer]
The structure of the silicon-containing polymer 3 is not particularly limited as long as it contains a silicon atom, and includes, for example, a main chain and a side chain branching from the main chain. Silicon-containing polymer 3 may include multiple side chains. The main chain may include a first main chain made up of carbon atoms bonded to each other. The first main chain can function to prevent the surface of boron nitride 1 from having excessive hydrophilicity. The silicon-containing polymer 3 may include a side chain containing a silicon atom together with the first main chain.
 ケイ素含有ポリマー3は、ケイ素原子および酸素原子を有する第1の側鎖を含んでいてもよい。ケイ素含有ポリマー3は、ケイ素原子および酸素原子を介してポリドーパミン2に結合していてもよい。より具体的には、ケイ素含有ポリマー3には、ケイ素原子とポリドーパミン2とに結合する酸素原子が含まれていてもよい。ケイ素含有ポリマー3は、例えば、ポリドーパミン2のベンゼン環に酸素原子を介して結合していてもよい。この結合は少なくとも脱水縮合を経て形成され得る。この例のように、結合は、共有結合等の化学結合であってもよい。 The silicon-containing polymer 3 may include a first side chain having a silicon atom and an oxygen atom. Silicon-containing polymer 3 may be bonded to polydopamine 2 via a silicon atom and an oxygen atom. More specifically, silicon-containing polymer 3 may contain oxygen atoms that bond to silicon atoms and polydopamine 2. The silicon-containing polymer 3 may be bonded to the benzene ring of the polydopamine 2 via an oxygen atom, for example. This bond can be formed through at least dehydration condensation. As in this example, the bond may be a chemical bond such as a covalent bond.
 ケイ素含有ポリマー3は、-SiR3-n(OX)nで示される官能基を有していてもよい。ここで、nは1から3の整数であり、Xは水素原子、炭素数1から10の炭化水素基、ポリドーパミンと結合している結合部、または上記官能基のケイ素原子以外のケイ素原子と結合している結合部を表す。結合部であるXは、単結合(-)で示すこともできる。炭素数1から10の炭化水素基は、例えば、炭素数1から10、特に1から3のアルキル基である。Xのうちの少なくとも1つは、ポリドーパミン2と結合している結合部である。Rは炭素数1から10の炭化水素基を表す。別のケイ素原子と結合している結合部を含む場合、ケイ素含有ポリマー3にはSi-O-Siで表されるシロキサン単位が含まれる。ケイ素含有ポリマー3は、シロキサン単位により構成された第2の主鎖を含んでいてもよい。 The silicon-containing polymer 3 may have a functional group represented by -SiR 3-n (OX) n . Here, n is an integer from 1 to 3, and X is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, a bond bonded to polydopamine, or a silicon atom other than the silicon atom of the above functional group. Represents a joint that is connected. The bonding portion X can also be represented by a single bond (-). A hydrocarbon group having 1 to 10 carbon atoms is, for example, an alkyl group having 1 to 10 carbon atoms, especially 1 to 3 carbon atoms. At least one of X is a binding moiety that binds to polydopamine 2. R represents a hydrocarbon group having 1 to 10 carbon atoms. When containing a bond bonded to another silicon atom, the silicon-containing polymer 3 includes a siloxane unit represented by Si--O--Si. The silicon-containing polymer 3 may include a second main chain composed of siloxane units.
 -SiR3-n(OX)nで示される官能基において、Rは炭素数1から10のアルキル基、または炭素数6から10のアリール基であってもよい。 In the functional group represented by -SiR 3-n (OX) n , R may be an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
 炭素数1から10のアルキル基は、直鎖状、環状、分枝状のいずれの構造を有していてもよい。炭素数1から10のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。炭素数6から10のアリール基としては、フェニル基、α-ナフチル基、β-ナフチル基等が挙げられる。 The alkyl group having 1 to 10 carbon atoms may have a linear, cyclic, or branched structure. Examples of alkyl groups having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, t-butyl group, n-pentyl group, n-hexyl group. group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group and the like. Examples of the aryl group having 6 to 10 carbon atoms include phenyl group, α-naphthyl group, β-naphthyl group, and the like.
 ケイ素含有ポリマー3が、-SiR3-n(OX)nで示される官能基を有し、かつXが別のケイ素原子と結合している結合部を含む場合、ケイ素含有ポリマー3は、Si-O-Siで表されるシロキサン単位を含む。ケイ素含有ポリマー3は、シロキサン単位により構成された第2の主鎖を含んでいてもよい。このような構成を有するケイ素含有ポリマー3は、シロキサン単位(Si-O-Si)が網目状に広がったネットワーク構造を有しうる。 When the silicon-containing polymer 3 has a functional group represented by -SiR 3-n (OX) n and includes a bond where X is bonded to another silicon atom, the silicon-containing polymer 3 has a functional group represented by -SiR 3-n (OX) n. Contains siloxane units represented by O-Si. The silicon-containing polymer 3 may include a second main chain composed of siloxane units. The silicon-containing polymer 3 having such a structure may have a network structure in which siloxane units (Si--O--Si) are spread out in a network.
 ケイ素含有ポリマー3は、炭素-炭素二重結合および炭素-炭素三重結合からなる群から選ばれる少なくとも1つを有する第2の側鎖を含んでいてもよい。このような構造によれば、炭素-炭素二重結合または炭素-炭素三重結合が絶縁層の樹脂の反応性残基と反応して結合を形成するので、窒化ホウ素材料10と樹脂との密着性が向上する。これにより、窒化ホウ素材料10と樹脂との界面の熱抵抗が減少し、絶縁層の熱伝導性が向上する。ひいては、配線板の放熱性が向上する。炭素-炭素二重結合としては、例えば、ビニル基、メタリル基、アクリロイル基等が挙げられる。ケイ素含有ポリマー3は、これらから選ばれる1種を有していてもよく、2種以上を有していてもよい。易反応性の観点から、炭素-炭素二重結合は、ビニル基であることが望ましい。絶縁層の樹脂の反応性残基としては、ビニル基、メタリル基、アクリロイル基等が挙げられる。炭素-炭素三重結合としては、例えば、エチニル基、プロパルギル基等が挙げられる。ケイ素含有ポリマー3は、これらから選ばれる1種を有していてもよく、2種以上を有していてもよい。絶縁層の樹脂の反応性残基としては、エチニル基、プロパルギル基等が挙げられる。炭素-炭素二重結合および炭素-炭素三重結合からなる群から選ばれる少なくとも1つは、第2の側鎖の末端に位置していてもよい。第2の側鎖は、鎖状構造のみからなっていてもよい。 The silicon-containing polymer 3 may include a second side chain having at least one selected from the group consisting of a carbon-carbon double bond and a carbon-carbon triple bond. According to such a structure, the carbon-carbon double bond or the carbon-carbon triple bond reacts with the reactive residue of the resin of the insulating layer to form a bond, so that the adhesion between the boron nitride material 10 and the resin is improved. will improve. This reduces the thermal resistance at the interface between the boron nitride material 10 and the resin, and improves the thermal conductivity of the insulating layer. As a result, the heat dissipation of the wiring board is improved. Examples of the carbon-carbon double bond include a vinyl group, methallyl group, and acryloyl group. The silicon-containing polymer 3 may have one type selected from these, or may have two or more types. From the viewpoint of easy reactivity, the carbon-carbon double bond is preferably a vinyl group. Examples of the reactive residue of the resin of the insulating layer include a vinyl group, a methallyl group, an acryloyl group, and the like. Examples of the carbon-carbon triple bond include an ethynyl group and a propargyl group. The silicon-containing polymer 3 may have one type selected from these, or may have two or more types. Examples of reactive residues in the resin of the insulating layer include ethynyl groups and propargyl groups. At least one selected from the group consisting of carbon-carbon double bonds and carbon-carbon triple bonds may be located at the end of the second side chain. The second side chain may consist only of a chain structure.
 なお、酸化による劣化を回避する観点からは、ケイ素含有ポリマー3の内部に存在する炭素-炭素二重結合および炭素-炭素三重結合の含有割合は少ないことが望ましい。 Note that from the viewpoint of avoiding deterioration due to oxidation, it is desirable that the content of carbon-carbon double bonds and carbon-carbon triple bonds present inside the silicon-containing polymer 3 is small.
 ケイ素含有ポリマー3は、第1の側鎖および第2の側鎖以外の側鎖をさらに含んでいてもよい。第1の側鎖および第2の側鎖以外の側鎖は、例えば、環状構造を有していてもよい。側鎖の環状構造は、例えば、アリール基である。 The silicon-containing polymer 3 may further include side chains other than the first side chain and the second side chain. The side chains other than the first side chain and the second side chain may have, for example, a cyclic structure. The cyclic structure of the side chain is, for example, an aryl group.
 ケイ素含有ポリマー3は、スチレン単位、ブタジエン単位、エチレン単位、およびシロキサン単位からなる群から選択される少なくとも1つを有する主鎖を含んでいてもよい。以上の構成によれば、ケイ素含有ポリマー3の疎水性が向上するため、窒化ホウ素材料10の耐熱性が向上する。 The silicon-containing polymer 3 may include a main chain having at least one selected from the group consisting of styrene units, butadiene units, ethylene units, and siloxane units. According to the above configuration, the hydrophobicity of the silicon-containing polymer 3 is improved, so that the heat resistance of the boron nitride material 10 is improved.
 ケイ素含有ポリマー3は、ブタジエン単位を有する主鎖を含んでいてもよい。以上の構成によれば、ケイ素含有ポリマー3の疎水性がより向上するため、窒化ホウ素材料10の耐熱性がより向上する。 The silicon-containing polymer 3 may include a main chain having a butadiene unit. According to the above configuration, the hydrophobicity of the silicon-containing polymer 3 is further improved, so that the heat resistance of the boron nitride material 10 is further improved.
 ケイ素含有ポリマー3は、スチレン単位およびブタジエン単位を有するコポリマーを含んでいてもよい。以上の構成によれば、ケイ素含有ポリマー3の疎水性がより向上するため、窒化ホウ素材料10の耐熱性がより向上する。 The silicon-containing polymer 3 may include a copolymer having styrene units and butadiene units. According to the above configuration, the hydrophobicity of the silicon-containing polymer 3 is further improved, so that the heat resistance of the boron nitride material 10 is further improved.
 ケイ素含有ポリマー3は、複数の繰り返し単位を含む下記式(1)で表されてもよい。以上の構成によれば、窒化ホウ素材料10の耐熱性がより向上する。 The silicon-containing polymer 3 may be represented by the following formula (1) containing multiple repeating units. According to the above configuration, the heat resistance of the boron nitride material 10 is further improved.
 上記式(1)において、aおよびdは0以上の数を表し、bおよびcは0より大きい数を表す。ただし、前記式(1)において、前記複数の繰り返し単位の順序は任意である。-SiR3-n(OX)nで示される官能基は、上記で説明した通りである。なお、上記式(1)のd部分において、波線で示される結合は、トランスもしくはシスのいずれか、または両者の混合物を意味している。 In the above formula (1), a and d represent a number greater than or equal to 0, and b and c represent a number greater than 0. However, in the above formula (1), the order of the plurality of repeating units is arbitrary. The functional group represented by -SiR 3-n (OX) n is as explained above. In addition, in the d part of the above formula (1), the bond shown by the wavy line means either trans or cis, or a mixture of both.
 ケイ素含有ポリマー3は、上記式(1)において、0≦a≦500、1≦b≦500、1≦c≦500、0≦d≦500、を満たしてもよく、5≦a≦300、5≦b≦300、1≦c≦100、5≦d≦300、を満たしてもよい。 In the above formula (1), the silicon-containing polymer 3 may satisfy 0≦a≦500, 1≦b≦500, 1≦c≦500, 0≦d≦500, and 5≦a≦300, 5 The following may be satisfied: ≦b≦300, 1≦c≦100, and 5≦d≦300.
 ケイ素含有ポリマー3は、上記式(1)において、5≦a≦100、5≦b≦100、1≦c≦80、5≦d≦100、を満たしてもよく、5≦a≦20、5≦b≦50、1≦c≦60、5≦d≦40、を満たしてもよい。 In the above formula (1), the silicon-containing polymer 3 may satisfy 5≦a≦100, 5≦b≦100, 1≦c≦80, 5≦d≦100, and 5≦a≦20, 5 ≦b≦50, 1≦c≦60, and 5≦d≦40.
 上記式(1)において、cは、ケイ素および酸素を側鎖に有するブタジエン単位の繰り返し数を表す。(b+c+d)は、繰り返し数bを有するブタジエン単位と、繰り返し数cを有するブタジエン単位と、繰り返し数dを有するブタジエン単位の合計を表す。ケイ素含有ポリマー3は、上記式(1)において、0.050≦c/(b+c+d)を満たしてもよい。言い換えると、上記式(1)において、100×{c/(b+c+d)}により算出される値は、5.0%以上であってもよい。以上の構成によれば、窒化ホウ素材料10の耐熱性がより一層向上する。また、窒化ホウ素材料10の誘電特性も向上する。上記式(1)において、100×{c/(b+c+d)}により算出される値は、15.0%以上であってもよく、17.7%以上であってもよい。100×{c/(b+c+d)}により算出される値は、30.0%以上であってもよく、50.0%以上であってもよい。100×{c/(b+c+d)}により算出される値の上限は、例えば、80%である。 In the above formula (1), c represents the repeating number of butadiene units having silicon and oxygen in their side chains. (b+c+d) represents the total of a butadiene unit having a repeating number b, a butadiene unit having a repeating number c, and a butadiene unit having a repeating number d. The silicon-containing polymer 3 may satisfy 0.050≦c/(b+c+d) in the above formula (1). In other words, in the above formula (1), the value calculated by 100×{c/(b+c+d)} may be 5.0% or more. According to the above configuration, the heat resistance of the boron nitride material 10 is further improved. Further, the dielectric properties of the boron nitride material 10 are also improved. In the above formula (1), the value calculated by 100×{c/(b+c+d)} may be 15.0% or more, or may be 17.7% or more. The value calculated by 100×{c/(b+c+d)} may be 30.0% or more, or may be 50.0% or more. The upper limit of the value calculated by 100×{c/(b+c+d)} is, for example, 80%.
 [窒化ホウ素材料の製造方法]
 次に、上述した窒化ホウ素材料10の製造方法について説明する。
[Method for producing boron nitride material]
Next, a method for manufacturing the above-mentioned boron nitride material 10 will be explained.
 図2は、実施の形態1における窒化ホウ素材料の製造方法の一例を示すフローチャートである。窒化ホウ素材料10の製造方法は、窒化ホウ素1と、窒化ホウ素1の表面に付着したポリドーパミン2と、を含む基材を準備すること(ステップS1)と、上記基材にケイ素含有ポリマー3を接触させること(ステップS2)と、を含む。 FIG. 2 is a flowchart illustrating an example of a method for manufacturing a boron nitride material in the first embodiment. The method for manufacturing the boron nitride material 10 includes preparing a base material containing boron nitride 1 and polydopamine 2 attached to the surface of the boron nitride 1 (step S1), and applying a silicon-containing polymer 3 to the base material. contacting (step S2).
 窒化ホウ素1と、窒化ホウ素1の表面に付着したポリドーパミン2と、を含む基材は、ドーパミンの自己酸化重合を利用して窒化ホウ素1の表面にポリドーパミン2を付着させることにより得ることができる。具体的には、ドーパミン溶液と窒化ホウ素1の粒子とを接触させ、ドーパミンを酸化重合させることで、窒化ホウ素1の粒子の表面へポリドーパミン2を付着させ、ポリドーパミン2の薄膜を形成することができる。 A base material containing boron nitride 1 and polydopamine 2 attached to the surface of boron nitride 1 can be obtained by attaching polydopamine 2 to the surface of boron nitride 1 using self-oxidation polymerization of dopamine. can. Specifically, by bringing a dopamine solution into contact with particles of boron nitride 1 and oxidatively polymerizing dopamine, polydopamine 2 is attached to the surface of the particles of boron nitride 1 to form a thin film of polydopamine 2. Can be done.
 pHを8.5に調整したTris-HCl溶液にドーパミン塩酸塩を加えて攪拌することにより、ドーパミン溶液を得ることができる。ドーパミン溶液の濃度に特に制限はなく、例えば、0.01mg/mLから30mg/mLの範囲である。ドーパミン溶液のpHは、pH6からpH11の範囲であり、pH8からpH10の範囲であってもよい。ドーパミン溶液のpHは、Tris-HCl溶液等を混合することにより調節することができる。酸化重合時のドーパミン溶液の温度は、例えば、10℃から100℃である。重合時間は、例えば、1時間から48時間である。ポリドーパミン2の薄膜の厚みは、例えば、1nmから300nmである。ポリドーパミン2の薄膜の厚みは、重合時間によりコントロールが可能である。 A dopamine solution can be obtained by adding dopamine hydrochloride to a Tris-HCl solution whose pH has been adjusted to 8.5 and stirring. There is no particular restriction on the concentration of the dopamine solution, and it ranges from 0.01 mg/mL to 30 mg/mL, for example. The pH of the dopamine solution ranges from pH 6 to pH 11, and may range from pH 8 to pH 10. The pH of the dopamine solution can be adjusted by mixing a Tris-HCl solution or the like. The temperature of the dopamine solution during oxidative polymerization is, for example, 10°C to 100°C. The polymerization time is, for example, 1 hour to 48 hours. The thickness of the polydopamine 2 thin film is, for example, 1 nm to 300 nm. The thickness of the polydopamine 2 thin film can be controlled by controlling the polymerization time.
 ここで、上記式(1)で表されるケイ素含有ポリマー3は、ポリドーパミン2に結合する前の状態では、下記式(3)で表される。 Here, the silicon-containing polymer 3 represented by the above formula (1) is represented by the following formula (3) before being bonded to polydopamine 2.
 上記式(3)において、R1およびR2は、互いに独立して、炭素数1から10の炭化水素基を表す。mは1から3の整数を表す。aおよびdは0以上の数を表し、bおよびcは0より大きい数を表す。 In the above formula (3), R 1 and R 2 independently represent a hydrocarbon group having 1 to 10 carbon atoms. m represents an integer from 1 to 3. a and d represent a number greater than or equal to 0, and b and c represent a number greater than 0.
 上記式(3)において、R1およびR2は、互いに独立して、炭素数1から10のアルキル基、または炭素数6から10のアリール基を表してもよい。 In the above formula (3), R 1 and R 2 may independently represent an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
 炭素数1から10のアルキル基および炭素数6から10のアリール基は、-SiR3-n(OX)nで示される官能基について説明した通りである。ただし、上記式(3)において、炭素数1から10のアルキル基としては、炭素数1から5のアルキル基が望ましく、炭素数1から3のアルキル基がより望ましい。R1およびR2としては、互いに独立して、直鎖のアルキル基が望ましく、メチル基またはエチル基がより望ましい。 The alkyl group having 1 to 10 carbon atoms and the aryl group having 6 to 10 carbon atoms are as described for the functional group represented by -SiR 3-n (OX) n . However, in the above formula (3), the alkyl group having 1 to 10 carbon atoms is preferably an alkyl group having 1 to 5 carbon atoms, and more preferably an alkyl group having 1 to 3 carbon atoms. R 1 and R 2 are preferably linear alkyl groups, more preferably methyl or ethyl groups, independently of each other.
 周波数がGHzからTHzにわたる高周波帯において、配線板の材料の誘電正接は、配線板の材料に含まれる有機分子の配向分極に大きく依存する。そのため、ポリドーパミンの水酸基は、誘電正接を上昇させうる。しかし、上記式(3)で表されるケイ素含有ポリマーは、ポリドーパミンの水酸基に作用することにより、ポリドーパミンと結合する。結合後のケイ素含有ポリマーは、上記式(1)で表される。窒化ホウ素材料10では、ポリドーパミンの水酸基の数が減らされているので、窒化ホウ素材料10の誘電正接の上昇が抑制される。 In a high frequency band ranging in frequency from GHz to THz, the dielectric loss tangent of the wiring board material largely depends on the orientation polarization of organic molecules contained in the wiring board material. Therefore, the hydroxyl group of polydopamine can increase the dielectric loss tangent. However, the silicon-containing polymer represented by the above formula (3) binds to polydopamine by acting on the hydroxyl group of polydopamine. The silicon-containing polymer after bonding is represented by the above formula (1). In the boron nitride material 10, since the number of hydroxyl groups of polydopamine is reduced, an increase in the dielectric loss tangent of the boron nitride material 10 is suppressed.
 上記式(3)で表されるケイ素含有ポリマーは、下記スキームに示される反応を経て得ることができる。具体的には、下記式(4)で表されるスチレンブタジエンコポリマーと、下記式(5)で表される有機ケイ素化合物とを、白金化合物含有触媒の存在下で、望ましくは白金化合物含有触媒および助触媒の存在下で、ヒドロシリル化する。これにより、上記式(3)で表されるケイ素含有ポリマーを得ることができる。 The silicon-containing polymer represented by the above formula (3) can be obtained through the reaction shown in the scheme below. Specifically, a styrene-butadiene copolymer represented by the following formula (4) and an organosilicon compound represented by the following formula (5) are combined, preferably in the presence of a platinum compound-containing catalyst and a platinum compound-containing catalyst. Hydrosilylation occurs in the presence of a cocatalyst. Thereby, a silicon-containing polymer represented by the above formula (3) can be obtained.
 上記式(4)で表されるスチレンブタジエンコポリマーは、ブタジエンとスチレンとを原料モノマーとし、乳化重合または溶液重合等の公知の方法により合成することができる。上記式(4)で表されるスチレンブタジエンコポリマーは、市販品として入手することもできる。市販品として、例えば、Ricon100、Ricon181、Ricon184(以上、クレイバレー社製)、L-SBR-820、L-SBR-841(以上、クラレ社製)、1,2-SBS(以上、日本曹達社製)等が挙げられる。 The styrene-butadiene copolymer represented by the above formula (4) can be synthesized by a known method such as emulsion polymerization or solution polymerization using butadiene and styrene as raw material monomers. The styrene-butadiene copolymer represented by the above formula (4) can also be obtained as a commercial product. Commercially available products include, for example, Ricon 100, Ricon 181, Ricon 184 (all manufactured by Clay Valley), L-SBR-820, L-SBR-841 (all manufactured by Kuraray), 1,2-SBS (all manufactured by Nippon Soda). (manufactured by), etc.
 上記式(5)で表される有機ケイ素化合物として、例えば、トリメトキシシラン、メチルジメトキシシラン、ジメチルメトキシシラン、トリエトキシシラン、メチルジエトキシシラン、ジメチルエトキシシラン等が挙げられる。 Examples of the organosilicon compound represented by the above formula (5) include trimethoxysilane, methyldimethoxysilane, dimethylmethoxysilane, triethoxysilane, methyldiethoxysilane, and dimethylethoxysilane.
 なお、ケイ素含有ポリマーがポリドーパミン2へ結合する前と後とで、cの値は維持される。すなわち、上記式(3)におけるcの値と上記式(1)におけるcの値とは等しい。そのため、上記式(3)において、100×{c/(b+c+d)}により算出されるシリル化率は、上記式(1)において、100×{c/(b+c+d)}により算出されるシリル化率とみなしうる。 Note that the value of c is maintained before and after the silicon-containing polymer binds to polydopamine 2. That is, the value of c in the above equation (3) and the value of c in the above equation (1) are equal. Therefore, in the above equation (3), the silylation rate calculated by 100 x {c/(b+c+d)} is the same as the silylation rate calculated by 100 x {c/(b+c+d)} in the above equation (1). It can be considered as
 ポリドーパミン2に結合する前の状態において、ケイ素含有ポリマーの数平均分子量は、1200以上であってもよく、5000以上であってもよい。以上の構成によれば、ケイ素含有ポリマー3の疎水性が向上するため、窒化ホウ素材料10の耐熱性が向上する。ポリドーパミンに結合する前のケイ素含有ポリマーの数平均分子量の上限は、特に限定されない。ポリドーパミン2に結合する前のケイ素含有ポリマーの数平均分子量の上限は、例えば、10000以下である。なお、本開示において、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて算出されるポリスチレン換算の数平均分子量である。 In the state before binding to polydopamine 2, the number average molecular weight of the silicon-containing polymer may be 1200 or more, or 5000 or more. According to the above configuration, the hydrophobicity of the silicon-containing polymer 3 is improved, so that the heat resistance of the boron nitride material 10 is improved. The upper limit of the number average molecular weight of the silicon-containing polymer before binding to polydopamine is not particularly limited. The upper limit of the number average molecular weight of the silicon-containing polymer before bonding to polydopamine 2 is, for example, 10,000 or less. Note that in the present disclosure, the number average molecular weight is a polystyrene-equivalent number average molecular weight calculated using gel permeation chromatography (GPC).
 ステップS2において、ポリドーパミン2にケイ素含有ポリマー3を結合させてもよい。例えば、ポリドーパミン2へ結合する前のケイ素含有ポリマーが上記式(3)で表される場合、シランカップリング反応により、ポリドーパミン2にケイ素含有ポリマー3を結合させることができる。シランカップリング反応は以下のように進行する。まず、上記式(3)で表されるケイ素含有ポリマーが加水分解し、シラノール基(Si-OH)が生成する。次に、シラノール基は、部分的にポリドーパミン2の水酸基との脱水縮合により、ポリドーパミン2と結合する。このとき、ケイ素含有ポリマーは、脱水縮合により形成されたシロキサン単位(Si-O-Si)を有することになる。その後、加熱処理を施すことにより、脱水縮合が進み、ケイ素原子および酸素原子を介してポリドーパミン2のベンゼン環にケイ素含有ポリマー3が結合する。 In step S2, silicon-containing polymer 3 may be bonded to polydopamine 2. For example, when the silicon-containing polymer before bonding to polydopamine 2 is represented by the above formula (3), silicon-containing polymer 3 can be bonded to polydopamine 2 by a silane coupling reaction. The silane coupling reaction proceeds as follows. First, the silicon-containing polymer represented by the above formula (3) is hydrolyzed to generate silanol groups (Si-OH). Next, the silanol group is bonded to polydopamine 2 partially through dehydration condensation with the hydroxyl group of polydopamine 2. At this time, the silicon-containing polymer has siloxane units (Si-O-Si) formed by dehydration condensation. Thereafter, by applying heat treatment, dehydration condensation progresses, and silicon-containing polymer 3 is bonded to the benzene ring of polydopamine 2 via silicon atoms and oxygen atoms.
 (実施の形態2)
 本実施形態に係る放熱ギャップフィラーは、実施の形態1における窒化ホウ素材料10を含む。
(Embodiment 2)
The heat dissipation gap filler according to the present embodiment includes the boron nitride material 10 according to the first embodiment.
 本開示において、放熱ギャップフィラーとは、基板材料等の電子部品に塗布して、空気溜まりまたは隙間などを埋めることによって、電子部品から熱を放散するために使用されるフィラーである。放熱ギャップフィラーは、ペースト状からシート状に硬化する硬化型の放熱ペーストである。本実施形態に係る放熱ギャップフィラーによれば、フィラーの耐熱性を改善できる。 In the present disclosure, a heat dissipation gap filler is a filler used to dissipate heat from an electronic component by applying it to an electronic component such as a substrate material to fill air pockets or gaps. The heat dissipation gap filler is a hardening type heat dissipation paste that hardens from a paste form to a sheet form. According to the heat dissipation gap filler according to this embodiment, the heat resistance of the filler can be improved.
 本実施形態に係る放熱ギャップフィラーは、例えば、実施の形態1における窒化ホウ素材料10と、エポキシ樹脂もしくはシリコーン系樹脂、または、非シリコーン系のアクリル系樹脂もしくはセラミック系樹脂とを混練することにより製造されうる。 The heat dissipation gap filler according to the present embodiment is manufactured by, for example, kneading the boron nitride material 10 according to Embodiment 1 with an epoxy resin, a silicone resin, or a non-silicone acrylic resin or a ceramic resin. It can be done.
 (実施の形態3)
 本実施形態に係る放熱グリース用フィラーは、実施の形態1における窒化ホウ素材料10を含む。
(Embodiment 3)
The filler for thermal grease according to the present embodiment includes the boron nitride material 10 according to the first embodiment.
 本開示において、放熱グリース用フィラーとは、放熱グリースに用いられるフィラーである。放熱グリースは、基板材料等の電子部品に塗布して、空気溜まりまたは隙間などを埋めることによって、電子部品から熱を放散するために使用される非硬化型の放熱ペーストである。本実施形態に係る放熱グリース用フィラーによれば、フィラーの耐熱性を改善できる。 In the present disclosure, a filler for heat-radiating grease is a filler used for heat-radiating grease. Thermal grease is a non-hardening thermal paste used to dissipate heat from electronic components by applying them to electronic components, such as substrate materials, to fill air pockets or gaps. According to the filler for thermal grease according to the present embodiment, the heat resistance of the filler can be improved.
 本実施形態に係る放熱グリース用フィラーは、例えば、実施の形態1における窒化ホウ素材料10と、エポキシ樹脂もしくはシリコーン系樹脂、または非シリコーン系のアクリル系樹脂もしくはセラミック系樹脂とを混練することにより製造されうる。 The filler for thermal grease according to the present embodiment is manufactured by, for example, kneading the boron nitride material 10 according to Embodiment 1 with an epoxy resin, a silicone resin, or a non-silicone acrylic resin or a ceramic resin. It can be done.
 (実施の形態4)
 図3は、実施の形態4における樹脂組成物20の概略構成を示す図である。樹脂組成物20は、例えば、フィラー22および硬化性樹脂24を含む。
(Embodiment 4)
FIG. 3 is a diagram showing a schematic configuration of a resin composition 20 in Embodiment 4. The resin composition 20 includes, for example, a filler 22 and a curable resin 24.
 フィラー22は、実施の形態1で説明した窒化ホウ素材料10を含む。本実施の形態によれば、低い誘電正接を示すとともに耐熱性に優れた樹脂組成物20を提供できる。フィラー22として、窒化ホウ素材料10のみを用いてもよく、シリカ粒子などの他のフィラー用材料を窒化ホウ素材料10と併用してもよい。 The filler 22 includes the boron nitride material 10 described in the first embodiment. According to this embodiment, it is possible to provide a resin composition 20 that exhibits a low dielectric loss tangent and has excellent heat resistance. As the filler 22, the boron nitride material 10 alone may be used, or other filler materials such as silica particles may be used in combination with the boron nitride material 10.
 硬化性樹脂24としては、エポキシ樹脂、シアン酸エステル化合物、マレイミド化合物、フェノール樹脂、アクリル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、熱硬化性ポリイミド樹脂、ポリフェニレンエーテル樹脂などが挙げられる。硬化性樹脂24としては、これらから選ばれる1種または2種以上の組み合わせを使用できる。 Examples of the curable resin 24 include epoxy resins, cyanate ester compounds, maleimide compounds, phenol resins, acrylic resins, polyamide resins, polyamideimide resins, thermosetting polyimide resins, and polyphenylene ether resins. As the curable resin 24, one kind or a combination of two or more kinds selected from these can be used.
 樹脂組成物20は、他の成分を含有していてもよい。他の成分としては、硬化剤、難燃剤、紫外線吸収剤、酸化防止剤、反応開始剤、シランカップリング剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光沢剤、帯電防止剤、重合禁止剤、有機溶媒などが挙げられる。必要に応じて、これらから選ばれる1種または2種以上の組み合わせを使用できる。 The resin composition 20 may contain other components. Other ingredients include curing agents, flame retardants, ultraviolet absorbers, antioxidants, reaction initiators, silane coupling agents, optical brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, and erasers. Examples include foaming agents, dispersants, leveling agents, brighteners, antistatic agents, polymerization inhibitors, and organic solvents. If necessary, one kind or a combination of two or more kinds selected from these can be used.
 (実施の形態5)
 実施の形態5に係るプリプレグは、図3に示す実施の形態4の樹脂組成物20またはその半硬化物と、繊維質基材とを備える。繊維質基材は、樹脂組成物20またはその半硬化物のマトリクス中に存在する。プリプレグは、樹脂組成物20と繊維質基材との複合材料である。本実施の形態によれば、高周波対応の配線板に適したプリプレグを提供できる。
(Embodiment 5)
The prepreg according to Embodiment 5 includes the resin composition 20 of Embodiment 4 shown in FIG. 3 or a semi-cured product thereof, and a fibrous base material. The fibrous base material is present in the matrix of the resin composition 20 or a semi-cured product thereof. Prepreg is a composite material of the resin composition 20 and a fibrous base material. According to this embodiment, it is possible to provide a prepreg suitable for high-frequency wiring boards.
 本実施の形態において、半硬化物は、樹脂組成物20をさらに硬化しうる程度に途中まで硬化した状態の材料を意味する。すなわち、半硬化物は、樹脂組成物20を半硬化した状態の材料である。例えば、樹脂組成物20は、加熱すると、その粘度が徐々に低下する。加熱を続けると、その後、硬化が開始し、その粘度が徐々に上昇する。このような場合、半硬化した状態としては、粘度の上昇が始まった時点から完全に硬化する時点までの期間における樹脂組成物20の状態が挙げられる。 In this embodiment, the semi-cured material refers to a material that is partially cured to the extent that the resin composition 20 can be further cured. That is, the semi-cured material is a material obtained by semi-curing the resin composition 20. For example, when the resin composition 20 is heated, its viscosity gradually decreases. If heating is continued, curing will then begin and its viscosity will gradually increase. In such a case, the semi-cured state includes the state of the resin composition 20 during the period from the time when the viscosity starts to increase until the time when it is completely cured.
 繊維質基材としては、各種の電気絶縁材料用積層板に用いられている公知の材料を使用できる。繊維質基材としては、ガラスクロス、アラミドクロス、ポリエステルクロス、ガラス不織布、アラミド不織布、ポリエステル不織布、パルプ紙、リンター紙などが挙げられる。 As the fibrous base material, known materials used in various electrically insulating material laminates can be used. Examples of the fibrous base material include glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, polyester nonwoven fabric, pulp paper, and linter paper.
 樹脂組成物20は、浸漬、塗布などの処理によって繊維質基材に含浸される。樹脂組成物20が含浸された繊維質基材を所定の加熱条件で加熱することによって、本実施の形態に係る硬化前または半硬化状態のプリプレグが得られる。 The resin composition 20 is impregnated into the fibrous base material through treatments such as dipping and coating. By heating the fibrous base material impregnated with the resin composition 20 under predetermined heating conditions, a pre-cured or semi-cured prepreg according to the present embodiment can be obtained.
 (実施の形態6)
 図4は、実施の形態6における樹脂付きフィルム30の断面図である。樹脂付きフィルム30は、樹脂組成物20またはその半硬化物を含む樹脂層32と、支持フィルム34とを備えている。本実施の形態によれば、絶縁層に適した樹脂付きフィルム30を提供できる。樹脂層32が支持フィルム34によって支持されている。図4の例では、樹脂層32の表面上に支持フィルム34が配置されている。ただし、樹脂層32と支持フィルム34との間に粘着層などの他の層が設けられていてもよい。
(Embodiment 6)
FIG. 4 is a cross-sectional view of a resin-coated film 30 in Embodiment 6. The resin-coated film 30 includes a resin layer 32 containing the resin composition 20 or a semi-cured product thereof, and a support film 34. According to this embodiment, a resin-coated film 30 suitable for an insulating layer can be provided. The resin layer 32 is supported by a support film 34. In the example of FIG. 4, a support film 34 is placed on the surface of the resin layer 32. However, another layer such as an adhesive layer may be provided between the resin layer 32 and the support film 34.
 樹脂層32は、図3に示す実施の形態4の樹脂組成物20またはその半硬化物を含み、繊維質基材を含んでいてもよく、含んでいなくてもよい。繊維質基材としては、プリプレグの繊維質基材と同じ材料を使用できる。樹脂層32は、硬化して絶縁層に変化する。そのような絶縁層の例は、配線板の絶縁層である。 The resin layer 32 contains the resin composition 20 of Embodiment 4 shown in FIG. 3 or a semi-cured product thereof, and may or may not contain a fibrous base material. As the fibrous base material, the same material as the fibrous base material of the prepreg can be used. The resin layer 32 hardens and changes into an insulating layer. An example of such an insulating layer is an insulating layer of a wiring board.
 支持フィルム34としては、樹脂付きフィルムに用いられる支持フィルムを限定なく使用できる。支持フィルム34としては、ポリエステルフィルム、ポリエチレンテレフタレートフィルムなどの樹脂フィルムが挙げられる。 As the support film 34, any support film used for resin-coated films can be used without limitation. Examples of the support film 34 include resin films such as polyester films and polyethylene terephthalate films.
 (実施の形態7)
 図5は、実施の形態7における樹脂付き金属箔40の断面図である。樹脂付き金属箔40は、樹脂組成物20またはその半硬化物を含む樹脂層42と、金属箔44とを備える。樹脂層42が金属箔44によって支持されている。本実施の形態によれば、配線板などの電子回路部品に適した樹脂付き金属箔40を提供できる。図5の例では、樹脂層42の表面上に金属箔44が配置されている。ただし、樹脂層42と金属箔44との間に粘着層などの他の層が設けられていてもよい。
(Embodiment 7)
FIG. 5 is a cross-sectional view of resin-coated metal foil 40 in Embodiment 7. The resin-coated metal foil 40 includes a resin layer 42 containing the resin composition 20 or a semi-cured product thereof, and a metal foil 44. A resin layer 42 is supported by a metal foil 44. According to this embodiment, a resin-coated metal foil 40 suitable for electronic circuit components such as wiring boards can be provided. In the example of FIG. 5, a metal foil 44 is placed on the surface of the resin layer 42. However, another layer such as an adhesive layer may be provided between the resin layer 42 and the metal foil 44.
 樹脂層42は、図3に示す実施の形態4の樹脂組成物またはその半硬化物を含み、繊維質基材を含んでいてもよく、含んでいなくてもよい。繊維質基材としては、プリプレグの繊維質基材と同じ材料を使用できる。樹脂層42は、硬化して絶縁層に変化する。そのような絶縁層の例は、配線板の絶縁層である。 The resin layer 42 contains the resin composition of Embodiment 4 shown in FIG. 3 or a semi-cured product thereof, and may or may not contain a fibrous base material. As the fibrous base material, the same material as the fibrous base material of the prepreg can be used. The resin layer 42 hardens and changes into an insulating layer. An example of such an insulating layer is an insulating layer of a wiring board.
 金属箔44としては、樹脂付き金属箔および金属張積層板に用いられる金属箔を限定なく使用できる。金属箔としては、銅箔、アルミニウム箔などが挙げられる。 As the metal foil 44, resin-coated metal foil and metal foil used for metal-clad laminates can be used without limitation. Examples of the metal foil include copper foil and aluminum foil.
 (実施の形態8)
 図6は、実施の形態8における金属張積層板50の断面図である。金属張積層板50は、絶縁層52および少なくとも1つの金属箔54を備えている。本実施の形態によれば、配線板に適した金属張積層板50を提供できる。絶縁層52は、図3に示す実施の形態4の樹脂組成物20の硬化物または実施の形態5のプリプレグの硬化物を含む。金属箔54は、絶縁層52の表面上に配置されている。本実施の形態では、絶縁層52の表面と裏面とのそれぞれに金属箔54が配置されている。
(Embodiment 8)
FIG. 6 is a cross-sectional view of a metal-clad laminate 50 in Embodiment 8. Metal-clad laminate 50 includes an insulating layer 52 and at least one metal foil 54 . According to this embodiment, a metal-clad laminate 50 suitable for a wiring board can be provided. The insulating layer 52 includes a cured product of the resin composition 20 of the fourth embodiment shown in FIG. 3 or a cured product of the prepreg of the fifth embodiment. Metal foil 54 is placed on the surface of insulating layer 52. In this embodiment, metal foils 54 are placed on each of the front and back surfaces of the insulating layer 52.
 金属張積層板50は、典型的には、実施の形態5のプリプレグを用いて製造される。例えば、1から20枚のプリプレグを重ね合わせて積層体を形成する。プリプレグの積層体の片面または両面に金属箔を配置し、加熱および加圧することによって金属張積層板50が得られる。金属箔54としては、銅箔、アルミニウム箔などが挙げられる。 The metal-clad laminate 50 is typically manufactured using the prepreg of Embodiment 5. For example, a laminate is formed by stacking 1 to 20 sheets of prepreg. A metal-clad laminate 50 is obtained by placing metal foil on one or both sides of the prepreg laminate and heating and pressurizing the prepreg laminate. Examples of the metal foil 54 include copper foil, aluminum foil, and the like.
 金属張積層板50を製造する際の成形条件には、例えば、電気絶縁材料用積層板および多層板を製造する際の成形条件が適用されうる。 For example, the molding conditions used when manufacturing a laminate for electrically insulating materials and a multilayer board can be applied to the molding conditions when manufacturing the metal-clad laminate 50.
 (実施の形態9)
 図7は、実施の形態9における配線板60の断面図である。配線板60は、絶縁層62および配線64を備えている。本実施の形態によれば、高周波に適した配線板60を提供できる。絶縁層62は、図3に示す実施の形態4の樹脂組成物20の硬化物または実施の形態5のプリプレグの硬化物を含む。配線64は、絶縁層62によって支持されている。配線64は、詳細には、絶縁層62の上に配置されている。金属箔を部分的に除去することによって配線64が形成されうる。
(Embodiment 9)
FIG. 7 is a cross-sectional view of wiring board 60 in the ninth embodiment. Wiring board 60 includes an insulating layer 62 and wiring 64. According to this embodiment, a wiring board 60 suitable for high frequencies can be provided. The insulating layer 62 includes a cured product of the resin composition 20 of the fourth embodiment shown in FIG. 3 or a cured product of the prepreg of the fifth embodiment. The wiring 64 is supported by the insulating layer 62. Specifically, the wiring 64 is arranged on the insulating layer 62. Wiring 64 may be formed by partially removing the metal foil.
 図6に示す金属張積層板50の表面の金属箔54をエッチング加工などの方法でパターニングすることによって、絶縁層62の表面上に、回路をなす配線64が設けられた配線板60が得られる。すなわち、配線板60は、回路が形成されるように金属張積層板50の表面の金属箔54を部分的に除去することによって得られる。 By patterning the metal foil 54 on the surface of the metal-clad laminate 50 shown in FIG. 6 by a method such as etching, a wiring board 60 in which wiring 64 forming a circuit is provided on the surface of the insulating layer 62 can be obtained. . That is, the wiring board 60 is obtained by partially removing the metal foil 54 on the surface of the metal-clad laminate 50 so that a circuit is formed.
 配線板60の少なくとも一方の面に実施の形態5のプリプレグを積層させて加熱および加圧することによって新たな積層板を形成してもよい。得られた積層板の表面の金属箔をパターニングして配線を形成すれば、多層の配線板が得られる。 A new laminate may be formed by laminating the prepreg of Embodiment 5 on at least one surface of the wiring board 60 and applying heat and pressure. A multilayer wiring board can be obtained by patterning the metal foil on the surface of the obtained laminate to form wiring.
 以下に実施例を示し、本開示を具体的に説明する。実施例は、本開示を説明するものであり、制限を加えるものではない。 Examples are shown below to specifically explain the present disclosure. The examples are illustrative of the disclosure and are not limiting.
 ≪実施例1≫
 窒化ホウ素として、h-BN(デンカ社製、品番:SGP、平均粒径:18μm)を用いた。pHを8.5に調整したTris-HCl溶液にドーパミン塩酸塩を加えて攪拌することにより、ドーパミン溶液(濃度:23mg/mL)を得た。得られたドーパミン溶液に、窒化ホウ素を4.5g加えた。溶液温度を80℃に設定し、マグネティックスターラーで24時間攪拌した。その後、濾過により固体を得た。得られた固体を水洗した後、乾燥させた。これにより、ポリドーパミンを付着させた窒化ホウ素(以下、便宜的にポリドーパミン被覆窒化ホウ素と呼ぶ)を得た。ポリドーパミンの付着は、窒化ホウ素の粒子の表面が黒褐色に着色していたことにより確認した。
≪Example 1≫
As boron nitride, h-BN (manufactured by Denka Corporation, product number: SGP, average particle size: 18 μm) was used. A dopamine solution (concentration: 23 mg/mL) was obtained by adding dopamine hydrochloride to a Tris-HCl solution whose pH was adjusted to 8.5 and stirring. 4.5 g of boron nitride was added to the obtained dopamine solution. The solution temperature was set at 80°C, and the mixture was stirred using a magnetic stirrer for 24 hours. Thereafter, a solid was obtained by filtration. The obtained solid was washed with water and then dried. As a result, boron nitride to which polydopamine was attached (hereinafter referred to as polydopamine-coated boron nitride for convenience) was obtained. Adhesion of polydopamine was confirmed by the fact that the surface of the boron nitride particles was colored blackish brown.
 上記式(4)で表されるスチレンブタジエンコポリマー(RICON社製、品番:RICON100、b+c=44)と、上記式(5)で表される有機ケイ素化合物(東京化成工業社製、品番:T1040、m=3、R1=エチル基)とを白金化合物含有触媒の存在下で、ヒドロシリル化した。これにより、上記式(3)で表される実施例1のケイ素含有ポリマーを得た。実施例1のケイ素含有ポリマーは、上記式(3)において、a=11、b=26、c=4、d=32、m=3、R1=エチル基、を満たしていた。ケイ素含有ポリマーのシリル化率は、6.5%であった。なお、本実施例において、シリル化率は、核磁気共鳴分析法(NMR)を用いて、-SiR2 3-m(OR1mで示される官能基の導入された末端と導入されていない末端の比率を算出することによって確認した。次に、トルエンにケイ素含有ポリマーを1g溶かして、100mg/mLの濃度を有するトルエン溶液を得た。得られた溶液に、ポリドーパミン被覆窒化ホウ素を2g加えた。溶液温度を100℃に設定し、マグネティックスターラーで3時間攪拌した。その後、濾過により固体を得た。得られた固体をトルエン溶液で洗浄した後、乾燥させた。これにより、実施例1の窒化ホウ素材料の粒子を得た。 A styrene-butadiene copolymer represented by the above formula (4) (manufactured by RICON, product number: RICON100, b+c=44) and an organosilicon compound represented by the above formula (5) (manufactured by Tokyo Kasei Kogyo Co., Ltd., product number: T1040, m=3, R 1 =ethyl group) was hydrosilylated in the presence of a platinum compound-containing catalyst. Thereby, the silicon-containing polymer of Example 1 represented by the above formula (3) was obtained. In the above formula (3), the silicon-containing polymer of Example 1 satisfied a=11, b=26, c=4, d=32, m=3, and R 1 =ethyl group. The silylation rate of the silicon-containing polymer was 6.5%. In this example, the silylation rate was measured using nuclear magnetic resonance spectrometry (NMR) to determine whether the functional group represented by -SiR 2 3-m (OR 1 ) m was introduced at the end and the terminal at which no functional group was introduced. This was confirmed by calculating the terminal ratio. Next, 1 g of silicon-containing polymer was dissolved in toluene to obtain a toluene solution with a concentration of 100 mg/mL. 2 g of polydopamine-coated boron nitride was added to the resulting solution. The solution temperature was set at 100° C., and the solution was stirred using a magnetic stirrer for 3 hours. Thereafter, a solid was obtained by filtration. The obtained solid was washed with a toluene solution and then dried. As a result, particles of the boron nitride material of Example 1 were obtained.
 ≪実施例2≫
 上記式(4)で表されるスチレンブタジエンコポリマー(RICON社製、品番:RICON100、b+c=44)と、上記式(5)で表される有機ケイ素化合物(東京化成工業社製、品番:T1040、m=3、R1=エチル基)とを白金化合物含有触媒の存在下で、ヒドロシリル化した。これにより、上記式(3)で表される実施例2のケイ素含有ポリマーを得た。実施例2のケイ素含有ポリマーは、上記式(3)において、a=11、b=23、c=8、d=31、m=3、R1=エチル基、を満たしていた。ケイ素含有ポリマーのシリル化率は、12.9%であった。これ以外は、実施例1と同様の方法により、実施例2の窒化ホウ素材料の粒子を得た。
≪Example 2≫
A styrene-butadiene copolymer represented by the above formula (4) (manufactured by RICON, product number: RICON100, b+c=44) and an organosilicon compound represented by the above formula (5) (manufactured by Tokyo Kasei Kogyo Co., Ltd., product number: T1040, m=3, R 1 =ethyl group) was hydrosilylated in the presence of a platinum compound-containing catalyst. Thereby, the silicon-containing polymer of Example 2 represented by the above formula (3) was obtained. In the above formula (3), the silicon-containing polymer of Example 2 satisfied a=11, b=23, c=8, d=31, m=3, and R 1 =ethyl group. The silylation rate of the silicon-containing polymer was 12.9%. Except for this, particles of the boron nitride material of Example 2 were obtained in the same manner as in Example 1.
 ≪実施例3≫
 上記式(4)で表されるスチレンブタジエンコポリマー(RICON社製、品番:RICON100、b+c=44)と、上記式(5)で表される有機ケイ素化合物(東京化成工業社製、品番:T1040、m=3、R1=エチル基)とを白金化合物含有触媒の存在下で、ヒドロシリル化した。これにより、上記式(3)で表される実施例3のケイ素含有ポリマーを得た。実施例3のケイ素含有ポリマーは、上記式(3)において、a=11、b=33、c=11、d=18、m=3、R1=エチル基、を満たしていた。ケイ素含有ポリマーのシリル化率は、17.7%であった。ケイ素含有ポリマーの数平均分子量は、5900であった。これ以外は、実施例1と同様の方法により、実施例3の窒化ホウ素材料の粒子を得た。
≪Example 3≫
A styrene-butadiene copolymer represented by the above formula (4) (manufactured by RICON, product number: RICON100, b+c=44) and an organosilicon compound represented by the above formula (5) (manufactured by Tokyo Kasei Kogyo Co., Ltd., product number: T1040, m=3, R 1 =ethyl group) was hydrosilylated in the presence of a platinum compound-containing catalyst. Thereby, the silicon-containing polymer of Example 3 represented by the above formula (3) was obtained. In the above formula (3), the silicon-containing polymer of Example 3 satisfied a=11, b=33, c=11, d=18, m=3, and R 1 =ethyl group. The silylation rate of the silicon-containing polymer was 17.7%. The number average molecular weight of the silicon-containing polymer was 5,900. Except for this, particles of the boron nitride material of Example 3 were obtained in the same manner as in Example 1.
 ≪実施例4≫
 上記式(4)で表されるスチレンブタジエンコポリマー(RICON社製、品番:RICON100、b+c=44)と、上記式(5)で表される有機ケイ素化合物(東京化成工業社製、品番:T1040、m=3、R1=エチル基)とを白金化合物含有触媒の存在下で、ヒドロシリル化した。これにより、上記式(3)で表される実施例4のケイ素含有ポリマーを得た。実施例4のケイ素含有ポリマーは、上記式(3)において、a=11、b=12、c=31、d=19、m=3、R1=エチル基、を満たしていた。ケイ素含有ポリマーのシリル化率は、50.0%であった。これ以外は、実施例1と同様の方法により、実施例4の窒化ホウ素材料の粒子を得た。
≪Example 4≫
A styrene-butadiene copolymer represented by the above formula (4) (manufactured by RICON, product number: RICON100, b+c=44) and an organosilicon compound represented by the above formula (5) (manufactured by Tokyo Kasei Kogyo Co., Ltd., product number: T1040, m=3, R 1 =ethyl group) was hydrosilylated in the presence of a platinum compound-containing catalyst. Thereby, the silicon-containing polymer of Example 4 represented by the above formula (3) was obtained. In the above formula (3), the silicon-containing polymer of Example 4 satisfied a=11, b=12, c=31, d=19, m=3, and R 1 =ethyl group. The silylation rate of the silicon-containing polymer was 50.0%. Except for this, particles of the boron nitride material of Example 4 were obtained in the same manner as in Example 1.
 ≪実施例5≫
 上記式(4)で表されるスチレンブタジエンコポリマー(RICON社製、品番:RICON100、b+c=44)と、上記式(5)で表される有機ケイ素化合物(東京化成工業社製、品番:T1040、m=3、R1=エチル基)とを白金化合物含有触媒の存在下で、ヒドロシリル化した。これにより、上記式(3)で表される実施例5のケイ素含有ポリマーを得た。実施例5のケイ素含有ポリマーは、上記式(3)において、a=11、b=5、c=44、d=13、m=3、R1=エチル基、を満たしていた。ケイ素含有ポリマーのシリル化率は、71.0%であった。これ以外は、実施例1と同様の方法により、実施例5の窒化ホウ素材料の粒子を得た。
≪Example 5≫
A styrene-butadiene copolymer represented by the above formula (4) (manufactured by RICON, product number: RICON100, b+c=44) and an organosilicon compound represented by the above formula (5) (manufactured by Tokyo Kasei Kogyo Co., Ltd., product number: T1040, m=3, R 1 =ethyl group) was hydrosilylated in the presence of a platinum compound-containing catalyst. Thereby, the silicon-containing polymer of Example 5 represented by the above formula (3) was obtained. In the above formula (3), the silicon-containing polymer of Example 5 satisfied a=11, b=5, c=44, d=13, m=3, and R 1 =ethyl group. The silylation rate of the silicon-containing polymer was 71.0%. Except for this, particles of the boron nitride material of Example 5 were obtained in the same manner as in Example 1.
 ≪実施例6≫
 上記式(4)で表されるスチレンブタジエンコポリマー(RICON社製、品番:RICON100、b+c=44)と、上記式(5)で表される有機ケイ素化合物(東京化成工業社製、品番:T1040、m=3、R1=エチル基)とを白金化合物含有触媒の存在下で、ヒドロシリル化した。これにより、上記式(3)で表される実施例6のケイ素含有ポリマーを得た。実施例6のケイ素含有ポリマーは、上記式(3)において、a=11、b=38、c=1、d=23、m=3、R1=エチル基、を満たしていた。ケイ素含有ポリマーのシリル化率は、1.6%であった。これ以外は、実施例1と同様の方法により、実施例6の窒化ホウ素材料の粒子を得た。
≪Example 6≫
A styrene-butadiene copolymer represented by the above formula (4) (manufactured by RICON, product number: RICON100, b+c=44) and an organosilicon compound represented by the above formula (5) (manufactured by Tokyo Kasei Kogyo Co., Ltd., product number: T1040, m=3, R 1 =ethyl group) was hydrosilylated in the presence of a platinum compound-containing catalyst. Thereby, the silicon-containing polymer of Example 6 represented by the above formula (3) was obtained. In the above formula (3), the silicon-containing polymer of Example 6 satisfied a=11, b=38, c=1, d=23, m=3, and R 1 =ethyl group. The silylation rate of the silicon-containing polymer was 1.6%. Except for this, particles of the boron nitride material of Example 6 were obtained in the same manner as in Example 1.
 ≪実施例7≫
 上記式(4)で表されるスチレンブタジエンコポリマー(RICON社製、品番:RICON100、b+c=44)と、上記式(5)で表される有機ケイ素化合物(東京化成工業社製、品番:T1040、m=3、R1=エチル基)とを白金化合物含有触媒の存在下で、ヒドロシリル化した。これにより、上記式(3)で表される実施例7のケイ素含有ポリマーを得た。実施例7のケイ素含有ポリマーは、上記式(3)において、a=11、b=27、c=2、d=33、m=3、R1=エチル基、を満たしていた。ケイ素含有ポリマーのシリル化率は、3.2%であった。これ以外は、実施例1と同様の方法により、実施例7の窒化ホウ素材料の粒子を得た。
≪Example 7≫
A styrene-butadiene copolymer represented by the above formula (4) (manufactured by RICON, product number: RICON100, b+c=44) and an organosilicon compound represented by the above formula (5) (manufactured by Tokyo Kasei Kogyo Co., Ltd., product number: T1040, m=3, R 1 =ethyl group) was hydrosilylated in the presence of a platinum compound-containing catalyst. Thereby, the silicon-containing polymer of Example 7 represented by the above formula (3) was obtained. In the above formula (3), the silicon-containing polymer of Example 7 satisfied a=11, b=27, c=2, d=33, m=3, and R 1 =ethyl group. The silylation rate of the silicon-containing polymer was 3.2%. Except for this, particles of the boron nitride material of Example 7 were obtained in the same manner as in Example 1.
 ≪比較例1≫
 ケイ素含有ポリマーに換えて、3-メタクリロキシプロピルトリメトキシシラン(信越化学工業社製、品番:KBM-503)を用いた。メタクリルシランは、ケイ素含有低分子化合物からなる一般的なシランカップリング剤の1つである。3-メタクリロキシプロピルトリメトキシシランの分子量は、248.4であった。トルエンに3-メタクリロキシプロピルトリメトキシシラン1gを溶かして、0.1mg/mLの濃度を有するトルエン溶液を得た。得られた溶液に、ポリドーパミン被覆窒化ホウ素2gを加えた。溶液温度を100℃に設定し、マグネティックスターラーで3時間攪拌した。その後、濾過により固体を得た。得られた固体をトルエン溶液で洗浄した後、乾燥させた。これにより、比較例1の粒子を得た。
≪Comparative example 1≫
In place of the silicon-containing polymer, 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product number: KBM-503) was used. Methacrylsilane is one of the common silane coupling agents made of a silicon-containing low-molecular compound. The molecular weight of 3-methacryloxypropyltrimethoxysilane was 248.4. 1 g of 3-methacryloxypropyltrimethoxysilane was dissolved in toluene to obtain a toluene solution having a concentration of 0.1 mg/mL. 2 g of polydopamine-coated boron nitride was added to the resulting solution. The solution temperature was set at 100° C., and the solution was stirred using a magnetic stirrer for 3 hours. Thereafter, a solid was obtained by filtration. The obtained solid was washed with a toluene solution and then dried. Thereby, particles of Comparative Example 1 were obtained.
 ≪比較例2≫
 ケイ素含有ポリマーに換えて、トリメトキシビニルシラン(東京化成工業社製、品番:V0042)を用いた。ビニルシランは、ケイ素含有低分子化合物からなる一般的なシランカップリング剤の1つである。トリメトキシビニルシランの分子量は、148.2であった。トルエンにトリメトキシビニルシラン1gを溶かして、0.1mg/mLの濃度を有するトルエン溶液を得た。これ以外は、比較例1と同様の方法により、比較例2の粒子を得た。
≪Comparative example 2≫
Trimethoxyvinylsilane (manufactured by Tokyo Kasei Kogyo Co., Ltd., product number: V0042) was used in place of the silicon-containing polymer. Vinylsilane is one of the common silane coupling agents made of silicon-containing low-molecular compounds. The molecular weight of trimethoxyvinylsilane was 148.2. 1 g of trimethoxyvinylsilane was dissolved in toluene to obtain a toluene solution having a concentration of 0.1 mg/mL. Particles of Comparative Example 2 were obtained by the same method as Comparative Example 1 except for this.
 ≪比較例3≫
 比較例3の粒子として、実施例1と同様の方法により得たポリドーパミン被覆窒化ホウ素を用いた。
≪Comparative example 3≫
As particles in Comparative Example 3, polydopamine-coated boron nitride obtained by the same method as in Example 1 was used.
 上述した実施例および比較例で得られた各粒子について、以下に記載の方法に基づき、耐熱性および誘電正接を評価した。 The heat resistance and dielectric loss tangent of each particle obtained in the above-mentioned Examples and Comparative Examples were evaluated based on the method described below.
 [耐熱性]
 実施例および比較例で得られた各粒子群について、窒素雰囲気下において、昇温速度5℃/分で20℃から500℃まで昇温させたときの重量変化を測定した。加熱開始時(20℃)の重量を起点とし、重量減少率が1%の時の温度(1%重量減少温度)を測定した。測定装置として、熱重量分析装置(日立ハイテクサイエンス社製、TG/DTA7200)を使用した。
[Heat-resistant]
For each particle group obtained in Examples and Comparative Examples, the weight change was measured when the temperature was raised from 20°C to 500°C at a heating rate of 5°C/min in a nitrogen atmosphere. Starting from the weight at the start of heating (20° C.), the temperature at which the weight loss rate was 1% (1% weight loss temperature) was measured. As a measuring device, a thermogravimetric analyzer (TG/DTA7200, manufactured by Hitachi High-Tech Science Co., Ltd.) was used.
 測定した1%重量減少温度に基づき、各粒子群の耐熱性を評価した。1%重量減少温度が220℃以上であれば耐熱性は良好、250℃以上であれば耐熱性は特に良好であると判断した。 The heat resistance of each particle group was evaluated based on the measured 1% weight loss temperature. It was determined that the heat resistance was good if the 1% weight loss temperature was 220°C or higher, and particularly good if the temperature was 250°C or higher.
 [誘電正接]
 実施例および比較例で得られた各粒子群について、1GHzの周波数における誘電正接を測定した。測定装置として、空洞共振機(AET社製、MS46122B)を使用した。
[Dielectric loss tangent]
The dielectric loss tangent at a frequency of 1 GHz was measured for each particle group obtained in Examples and Comparative Examples. A cavity resonator (manufactured by AET, MS46122B) was used as a measuring device.
 比較例3の誘電正接を1として実施例および他の比較例の粒子の誘電正接を規格化した。1未満であれば誘電正接は良好、0.5以下であれば誘電正接は特に良好であると判断した。 The dielectric loss tangent of the particles of the example and other comparative examples was normalized by setting the dielectric loss tangent of Comparative Example 3 to 1. It was determined that the dielectric loss tangent was good if it was less than 1, and particularly good if it was 0.5 or less.
 実施例および比較例の1%重量減少温度および誘電正接をシリル化率とともに表1に示す。 The 1% weight loss temperature and dielectric loss tangent of Examples and Comparative Examples are shown in Table 1 along with the silylation rate.
 ≪考察≫
 表1から分かるように、実施例1から7では、1%重量減少温度が220℃以上であり、耐熱性が向上していた。さらに、実施例1から7では、誘電正接が1未満であり、誘電正接も低下していた。
≪Consideration≫
As can be seen from Table 1, in Examples 1 to 7, the 1% weight loss temperature was 220° C. or higher, and the heat resistance was improved. Furthermore, in Examples 1 to 7, the dielectric loss tangent was less than 1, and the dielectric loss tangent was also decreased.
 シリル化率が5.0%以上の実施例1から5では、1%重量減少温度が250℃以上であり、耐熱性は特に良好であった。シリル化率が15.0%以上の実施例3から5では、より高い耐熱性およびより低い誘電正接が実現していた。特に、シリル化率が30.0%以上の実施例4および5では、1%重量減少温度が300℃以上であり、さらに高い耐熱性を示すとともに、誘電正接が0.5以下であり、誘電正接は特に良好であった。 In Examples 1 to 5 in which the silylation rate was 5.0% or more, the 1% weight loss temperature was 250° C. or more, and the heat resistance was particularly good. In Examples 3 to 5 in which the silylation rate was 15.0% or more, higher heat resistance and lower dielectric loss tangent were realized. In particular, in Examples 4 and 5, in which the silylation rate is 30.0% or more, the 1% weight loss temperature is 300°C or more, showing even higher heat resistance, and the dielectric loss tangent is 0.5 or less. The tangent was particularly good.
 本開示を表現するために、上述において実施形態を通して本開示を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為しうることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を逸脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 Although the present disclosure has been adequately and fully described through the embodiments above to express the present disclosure, those skilled in the art will readily be able to modify and/or improve the above-described embodiments. should be recognized as such. Therefore, unless the modification or improvement made by a person skilled in the art does not go beyond the scope of the claims stated in the claims, the modifications or improvements are within the scope of the claims. It is interpreted as encompassing.
 本開示の窒化ホウ素材料は、耐熱性に優れたフィラーを実現できるため、大容量通信に用いられる電子機器の配線板などの用途に用いることができる。 The boron nitride material of the present disclosure can realize a filler with excellent heat resistance, so it can be used for applications such as wiring boards of electronic devices used for large-capacity communications.
1 窒化ホウ素
2 ポリドーパミン
3 ケイ素含有ポリマー
10 窒化ホウ素材料
20 樹脂組成物
22 フィラー
24 硬化性樹脂
30 樹脂付きフィルム
32 樹脂層
34 支持フィルム
40 樹脂付き金属箔
42 樹脂層
44 金属箔
50 金属張積層板
52 絶縁層
54 金属箔
60 配線板
62 絶縁層
64 配線
1 Boron nitride 2 Polydopamine 3 Silicon-containing polymer 10 Boron nitride material 20 Resin composition 22 Filler 24 Curable resin 30 Resin-coated film 32 Resin layer 34 Support film 40 Resin-coated metal foil 42 Resin layer 44 Metal foil 50 Metal-clad laminate 52 Insulating layer 54 Metal foil 60 Wiring board 62 Insulating layer 64 Wiring

Claims (20)

  1.  窒化ホウ素と、
     前記窒化ホウ素に付着したポリドーパミンと、
     ケイ素含有ポリマーと、を含む、
     窒化ホウ素材料。
    boron nitride,
    polydopamine attached to the boron nitride;
    a silicon-containing polymer;
    Boron nitride material.
  2.  前記ケイ素含有ポリマーは、前記ポリドーパミンに付着している、
     請求項1に記載の窒化ホウ素材料。
    the silicon-containing polymer is attached to the polydopamine;
    The boron nitride material according to claim 1.
  3.  前記ケイ素含有ポリマーは、ケイ素原子および酸素原子を含む第1の側鎖を含むと共に、前記ケイ素原子および前記酸素原子を介して前記ポリドーパミンに結合している、
     請求項1に記載の窒化ホウ素材料。
    The silicon-containing polymer includes a first side chain containing a silicon atom and an oxygen atom, and is bonded to the polydopamine via the silicon atom and the oxygen atom.
    The boron nitride material according to claim 1.
  4.  前記ケイ素含有ポリマーは、炭素-炭素二重結合および炭素-炭素三重結合からなる群から選ばれる少なくとも1つを含む第2の側鎖を含む、
     請求項1に記載の窒化ホウ素材料。
    The silicon-containing polymer includes a second side chain containing at least one selected from the group consisting of a carbon-carbon double bond and a carbon-carbon triple bond.
    The boron nitride material according to claim 1.
  5.  前記第2の側鎖は、鎖状構造のみからなる、
     請求項4に記載の窒化ホウ素材料。
    The second side chain consists of only a chain structure,
    The boron nitride material according to claim 4.
  6.  前記ケイ素含有ポリマーは、スチレン単位、ブタジエン単位、エチレン単位、およびシロキサン単位からなる群から選択される少なくとも1つを含む主鎖を含む、
     請求項1に記載の窒化ホウ素材料。
    The silicon-containing polymer includes a main chain containing at least one selected from the group consisting of styrene units, butadiene units, ethylene units, and siloxane units.
    The boron nitride material according to claim 1.
  7.  前記ケイ素含有ポリマーは、前記ブタジエン単位を含む主鎖を含む、
     請求項6に記載の窒化ホウ素材料。
    The silicon-containing polymer includes a main chain containing butadiene units.
    The boron nitride material according to claim 6.
  8.  前記ケイ素含有ポリマーは、前記スチレン単位及び前記ブタジエン単位を含むコポリマーを含む、
     請求項7に記載の窒化ホウ素材料。
    the silicon-containing polymer comprises a copolymer comprising the styrene units and the butadiene units;
    The boron nitride material according to claim 7.
  9.  前記ケイ素含有ポリマーは、-SiR3-n(OX)nで示される官能基を含み、
     nは1から3の整数であり、
     Xは、水素原子、炭素数1から10の炭化水素基、前記ポリドーパミンと結合している部分、または前記官能基のケイ素原子以外のケイ素原子と結合している部分を表し、
     Xのうちの少なくとも1つは、前記ポリドーパミンと結合している部分であり、
     Rは炭素数1から10の炭化水素基を表す、
     請求項1に記載の窒化ホウ素材料。
    The silicon-containing polymer contains a functional group represented by -SiR 3-n (OX) n ,
    n is an integer from 1 to 3,
    X represents a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, a moiety bonded to the polydopamine, or a moiety bonded to a silicon atom other than the silicon atom of the functional group,
    At least one of X is a moiety that binds to the polydopamine,
    R represents a hydrocarbon group having 1 to 10 carbon atoms,
    The boron nitride material according to claim 1.
  10.  前記ケイ素含有ポリマーは、複数の繰り返し単位を含む下記式(1)で表される、
     請求項9に記載の窒化ホウ素材料。
     前記式(1)において、aおよびdは0以上の数を表し、bおよびcは0より大きい数を表し、
     前記式(1)において、前記複数の繰り返し単位の順序は任意である。
    The silicon-containing polymer is represented by the following formula (1) containing a plurality of repeating units,
    The boron nitride material according to claim 9.
    In the formula (1), a and d represent a number greater than or equal to 0, b and c represent a number greater than 0,
    In the formula (1), the order of the plurality of repeating units is arbitrary.
  11.  前記式(1)において、0.050≦c/(b+c+d)を満たす、
     請求項10に記載の窒化ホウ素材料。
    In the formula (1), 0.050≦c/(b+c+d) is satisfied,
    The boron nitride material according to claim 10.
  12.  請求項1に記載の窒化ホウ素材料を含む、
     フィラー。
    comprising the boron nitride material according to claim 1;
    filler.
  13.  請求項12に記載のフィラーを含む、
     樹脂組成物。
    comprising the filler according to claim 12;
    Resin composition.
  14.  請求項13に記載の樹脂組成物または前記樹脂組成物の半硬化物を含む、
     プリプレグ。
    comprising the resin composition according to claim 13 or a semi-cured product of the resin composition,
    prepreg.
  15.  請求項13に記載の樹脂組成物または前記樹脂組成物の半硬化物を含む樹脂層と、
     支持フィルムと、を備えた、
     樹脂付きフィルム。
    A resin layer comprising the resin composition according to claim 13 or a semi-cured product of the resin composition,
    a support film;
    Film with resin.
  16.  請求項13に記載の樹脂組成物または前記樹脂組成物の半硬化物を含む樹脂層と、
     金属箔と、を備えた、
     樹脂付き金属箔。
    A resin layer comprising the resin composition according to claim 13 or a semi-cured product of the resin composition,
    comprising a metal foil and
    Metal foil with resin.
  17.  請求項13に記載の樹脂組成物の硬化物または請求項14に記載のプリプレグの硬化物を含む絶縁層と、
     金属箔と、を備えた、
     金属張積層板。
    An insulating layer comprising a cured product of the resin composition according to claim 13 or a cured product of the prepreg according to claim 14,
    comprising a metal foil and
    Metal-clad laminate.
  18.  請求項13に記載の樹脂組成物の硬化物または請求項14に記載のプリプレグの硬化物を含む絶縁層と、
     配線と、備えた、
     配線板。
    An insulating layer comprising a cured product of the resin composition according to claim 13 or a cured product of the prepreg according to claim 14,
    With wiring and
    wiring board.
  19.  窒化ホウ素と、前記窒化ホウ素の表面に付着したポリドーパミンと、を含む基材を準備することと、
     前記基材にケイ素含有ポリマーを接触させることと、
     を含む、
     窒化ホウ素材料の製造方法。
    preparing a base material containing boron nitride and polydopamine attached to the surface of the boron nitride;
    Contacting the substrate with a silicon-containing polymer;
    including,
    Method for manufacturing boron nitride material.
  20.  前記ケイ素含有ポリマーの数平均分子量は、1200以上である、
     請求項19に記載の窒化ホウ素材料の製造方法。
    The number average molecular weight of the silicon-containing polymer is 1200 or more,
    A method for producing a boron nitride material according to claim 19.
PCT/JP2023/020739 2022-06-30 2023-06-05 Boron nitride material, product with same applied thereto, and method for producing boron nitride material WO2024004525A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-106348 2022-06-30
JP2022106348 2022-06-30
JP2023044734 2023-03-20
JP2023-044734 2023-03-20

Publications (1)

Publication Number Publication Date
WO2024004525A1 true WO2024004525A1 (en) 2024-01-04

Family

ID=89382726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020739 WO2024004525A1 (en) 2022-06-30 2023-06-05 Boron nitride material, product with same applied thereto, and method for producing boron nitride material

Country Status (1)

Country Link
WO (1) WO2024004525A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030124A1 (en) * 2016-08-09 2018-02-15 三菱瓦斯化学株式会社 Surface-roughened hexagonal boron nitride particles, method for producing same, composition, resin sheet, prepreg, metal-foil-clad laminate, and printed wiring board
CN109265762A (en) * 2018-08-30 2019-01-25 北京石油化工学院 A kind of core-shell structure silver-based heat-conductivity rubber composite material and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030124A1 (en) * 2016-08-09 2018-02-15 三菱瓦斯化学株式会社 Surface-roughened hexagonal boron nitride particles, method for producing same, composition, resin sheet, prepreg, metal-foil-clad laminate, and printed wiring board
CN109265762A (en) * 2018-08-30 2019-01-25 北京石油化工学院 A kind of core-shell structure silver-based heat-conductivity rubber composite material and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG JINHE; ZHAO DI; ZOU XIONG; MAO LIN; SHI LIYI: "The exfoliation and functionalization of boron nitride nanosheets and their utilization in silicone composites with improved thermal conductivity", JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS, CHAPMAN AND HALL, LONDON., GB, vol. 28, no. 17, 24 May 2017 (2017-05-24), GB , pages 12984 - 12994, XP036300833, ISSN: 0957-4522, DOI: 10.1007/s10854-017-7130-0 *
ZHANG XIAOYU; YI JUAN; YIN YANAN; SONG YIHENG; XIONG CHUANXI: "Thermal conductivity and electrical insulation properties of h-BN@PDA/silicone rubber composites", DIAMOND AND RELATED MATERIALS, ELSEVIER SCIENCE PUBLISHERS , AMSTERDAM, NL, vol. 117, 4 June 2021 (2021-06-04), NL , XP086722588, ISSN: 0925-9635, DOI: 10.1016/j.diamond.2021.108485 *

Similar Documents

Publication Publication Date Title
JP5545194B2 (en) Method for producing novel silicone polymer, silicone polymer produced by the method, thermosetting resin composition, resin film, metal foil with insulating material, insulating film with double-sided metal foil, metal-clad laminate, multilayer metal-clad Laminated board and multilayer printed wiring board
EP3569655B1 (en) Resin composition for semiconductor package, and prepreg and metal clad laminate, which use same
US20050065275A1 (en) Thermosetting resin composition of low thermal expansibility and resin film
CN114752221B (en) Insulating high-heat-conductivity flexible silica gel gasket and preparation method thereof
WO2024004528A1 (en) Composite material, application product thereof, and composite material manufacturing method
JP2005068347A (en) Polyimide composition, method for producing the same and use thereof
JP2004277726A (en) Resin composition and method for manufacturing the same
WO2024004525A1 (en) Boron nitride material, product with same applied thereto, and method for producing boron nitride material
JP4845214B2 (en) Conductive circuit forming substrate, manufacturing method thereof, conductive circuit substrate and manufacturing method thereof
CN111909483A (en) High-thermal-conductivity silicon-containing flame-retardant resin composition and application thereof
KR102167968B1 (en) A low dielectric constant polyimide film using nanosilicate particles and a method of manufacturing the same
WO2024004527A1 (en) Composite material, product resulting from applying said composite material, and method for producing composite material
JP7321952B2 (en) Transparent low-dielectric glass prepreg, transparent low-dielectric glass film, transparent low-dielectric glass substrate, and manufacturing method thereof
WO2024004664A1 (en) Composite material, articles made using same, and method for producing composite material
WO2024004526A1 (en) Boron nitride material and application of same
JP4899280B2 (en) Composite material for wiring board and manufacturing method thereof
JP2020194888A (en) Glass cloth for low-dielectric material, and prepreg and printed wiring substrate using the same
JP2904311B2 (en) Prepreg for printed wiring board, resin varnish, resin composition, and laminated board for printed wiring board manufactured using them
WO2024004663A1 (en) Composite material, articles made using same, and method for producing composite material
TW202039610A (en) Thermosetting resin composition for semiconductor package, prepreg and metal clad laminate using the same
JP4487448B2 (en) Resin material with wiring circuit, manufacturing method thereof and multilayer printed wiring board
JP2010258462A (en) Composite material for wiring board and production method thereof
CN113122181A (en) Production process of high-thermal-conductivity insulating material and insulating sheet
JP2022049915A (en) Composition for low-dielectric-constant and highly heat-resistant substrate
JP2023170310A (en) Composition for low dielectric member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830975

Country of ref document: EP

Kind code of ref document: A1