WO2024001920A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2024001920A1
WO2024001920A1 PCT/CN2023/101887 CN2023101887W WO2024001920A1 WO 2024001920 A1 WO2024001920 A1 WO 2024001920A1 CN 2023101887 W CN2023101887 W CN 2023101887W WO 2024001920 A1 WO2024001920 A1 WO 2024001920A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
terminal device
network device
capability
uplink
Prior art date
Application number
PCT/CN2023/101887
Other languages
English (en)
French (fr)
Inventor
韩小江
张佳胤
陈亮
陈取才
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024001920A1 publication Critical patent/WO2024001920A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method and device.
  • Non-terrestrial network (NTN) technology has expanded the application fields of cellular communication technology. It uses non-terrestrial network equipment such as satellites to not only support terrestrial communications, but also support space communications, integrating air, space, ground and sea. Chemical communications provide technological possibilities.
  • each time domain unit can only be reduced, such as the number of effective bits (bits) carried by the transmission time interval (TTI).
  • TTI transmission time interval
  • communication systems are designed to be compatible with the worst terminal equipment capabilities when designing, so that when devices in the communication system (such as network equipment and terminal devices) communicate, network equipment will be scheduled according to the worst terminal equipment capabilities.
  • Terminal Equipment For example, in an NTN system, when network equipment schedules terminal equipment, it can only transmit a very small number of bits in one time domain unit according to the worst terminal equipment capabilities, so the information to be transmitted may need to pass through multiple time domain units. The transmission must be completed, which results in a large resource overhead.
  • Embodiments of the present application provide a communication method and device for reducing resource overhead.
  • the first aspect provides a communication method, which can be executed by a network device, or by other devices including network device functions, or by a chip system or other functional modules that can implement the functions of the network device.
  • the chip system or functional module is set in a network device, for example.
  • the network device is located on the ground (or is a terrestrial network device), such as a terrestrial base station; or the network device is, for example, a non-terrestrial network device, such as a satellite; or the network device includes, for example, a non-terrestrial network. equipment and ground network equipment.
  • the method includes: receiving first information from a terminal device, the first information being used to indicate the transmission capability of the terminal device; determining scheduling information supported by the terminal device according to the first information, where the scheduling information includes a single The maximum number of data blocks and/or the maximum number of bits that can be transmitted within a time domain unit; the terminal device is scheduled according to the scheduling information.
  • the terminal device can indicate the transmission capability of the terminal device to the network device through the first information, so that the network device can determine the scheduling information supported by the terminal device based on the transmission capability of the terminal device, or in other words, the network device can When scheduling the terminal device, the actual transmission capability of the terminal device may be referred to for scheduling.
  • the network device can accurately determine the maximum number of data blocks and/or the maximum number of bits supported by the terminal device in a single time domain unit based on the actual transmission capability of the terminal device, thereby eliminating the need to follow unified scheduling for all types of terminal devices.
  • Policies are used to schedule uplink or downlink information transmission, which improves the flexibility of the scheduling process, so that the scheduling of terminal equipment can not only save resource overhead, but also ensure the access success rate of terminal equipment.
  • the network device does not have to schedule the terminal device according to the worst terminal device capability. If the actual transmission capability of the terminal device is better than the worst terminal device capability, the network device can determine the location of the terminal device within a single time domain unit. The maximum number of data blocks and/or the maximum number of bits supported may be greater than the maximum number of data blocks and/or the maximum number of bits supported by the terminal device corresponding to the worst terminal device capability in a single time domain unit, thereby saving resource overhead.
  • the terminal device accesses the network device through a non-terrestrial network device, or the network device is a non-terrestrial network device.
  • the network device is a terrestrial network device
  • the terminal device can access the network device through a non-terrestrial network device (such as a satellite); for another example, if the network device is a non-terrestrial network device, the terminal device can directly access the network device.
  • the first information includes one or more of the following: the equivalent isotropic radiated power (EIRP) of the terminal device, the maximum emission of the terminal device power information and/or transmit antenna gain information, First capability level information, or type information of the terminal device.
  • EIRP equivalent isotropic radiated power
  • First capability level information is used to indicate the capability level to which the transmission capability of the terminal device belongs.
  • the network device may determine the uplink scheduling information supported by the terminal device based on the first information; if the first information indicates the downlink transmission capability of the terminal device, the network device may The device may determine the downlink scheduling information supported by the terminal device according to the first information.
  • the above first information indicates the uplink transmission capability of the terminal device, and the network device can determine the uplink scheduling information of the terminal device based on the first information.
  • the EIRP of the terminal device may indicate the maximum transmit power information and/or transmit antenna gain information of the terminal device, so that the network device can obtain more parameter information (such as the maximum transmit power information and/or transmit antenna gain information) through the EIRP and other parameter information), reducing the amount of reporting and saving signaling overhead.
  • the first capability level information indicates the capability level to which the terminal device's transmitting capability belongs, so that the network device can determine the terminal device's transmitting capability based on the first capability level information. Compared with directly reporting the transmitting capability, reporting the first Capability level information helps save signaling overhead.
  • the type of the terminal device can also indirectly indicate the capabilities of the terminal device, so that the network device can also determine the capabilities of the terminal device based on the type information of the terminal device.
  • the indication method is relatively simple and is conducive to saving signaling overhead. If the maximum transmit power information and/or the transmit antenna gain information of the terminal device are indicated, the network device can directly determine these parameters based on the reports of the terminal device, which is relatively simple to implement for the network device.
  • the first information is included in a radio resource control (radio resource control, RRC) message; or, the first information is included in a media access control (media access control, MAC) message.
  • RRC radio resource control
  • MAC media access control
  • the first information is included in the third message (Msg3) of the random access process.
  • RRC radio resource control
  • Msg3 third message of the random access process.
  • RRC radio resource control
  • Msg3 third message
  • the RRC message is used to report the capability information of the terminal device, it is equivalent to reporting the first information together with other capability information of the terminal device.
  • the network device can obtain various capability information of the terminal device through one message. .
  • a new message may be added to carry the first information, such as a new MAC CE or other message, so that the reporting of the first information will not affect the format of other existing messages.
  • the first information can be reported through Msg3, so that the network device can obtain the first information faster.
  • the scheduling information includes uplink scheduling information
  • the determining the scheduling information supported by the terminal device based on the first information includes: determining the first scheduling information based on the first information.
  • Received signal strength, the first received signal strength is the received signal strength of the network device for information from the terminal device; determining a first modulation and coding scheme (modulation and coding scheme) according to the first received signal strength, MCS); determine the uplink scheduling information according to the first MCS.
  • the uplink scheduling information includes the maximum number of data blocks and/or the maximum number of bits that can be uplink transmitted within the single time domain unit. Therefore, the network device can quickly and accurately determine the uplink scheduling information.
  • the first information also includes receiving antenna gain information and/or receiving noise information of the terminal device; or, the first information also includes second capability level information, and the The second capability level information is used to indicate the capability level to which the receiving capability of the terminal device belongs.
  • the first information indicates the downlink transmission capability of the terminal device, and the network device can determine the downlink scheduling information supported by the terminal device based on the first information. Among them, if the terminal device reports the second capability level information, it will help save signaling overhead; if the terminal device reports the receiving antenna gain information and/or receiving noise information of the terminal device, the information processing volume of the network device can be reduced, and the scheduling of the terminal device can be improved. s efficiency.
  • the first information may indicate the uplink transmission capability and/or the downlink transmission capability of the terminal device, or the uplink transmission capability and downlink transmission capability of the terminal device may also be indicated by different information respectively.
  • the scheduling information includes downlink scheduling information, wherein the determining the scheduling information supported by the terminal device based on the first information includes: determining the second scheduling information based on the first information. Received signal strength, the second received signal strength is the received signal strength of the terminal device for information from the network device; determining a second MCS based on the second received signal strength; determining the second MCS based on the second MCS downlink scheduling information.
  • the downlink scheduling information includes the maximum number of data blocks and/or the maximum number of bits that can be downlink transmitted within the single time domain unit. Therefore, the network device can quickly and accurately determine the downlink scheduling information.
  • the first information is information corresponding to a first type of terminal device, and the transmission capability of the first type of terminal device is the first transmission capability.
  • the network device can determine the type of the terminal device based on the first information itself, and thus can determine the transmission capability of the terminal device based on the type of the terminal device. There is no need for the first information to carry other information to indicate, which helps to save signaling overhead.
  • the first information may be a random access preamble. Using the random access preamble as the first information allows the network device to obtain the first information faster (or in other words, earlier). In addition, since the format of the random access preamble is relatively simple and the amount of information is small, the network device can parse the random access preamble more efficiently, which also enables the network device to quickly obtain the first information.
  • the second aspect provides a communication method, which can be executed by a network device.
  • the method includes: receiving second information from a terminal device, the transmission power of the second information being a predetermined transmission power; determining uplink scheduling information supported by the terminal device according to the second information, where the uplink scheduling information includes a single time The maximum data that can be transmitted upstream within a domain unit The number of blocks and/or the maximum number of bits; scheduling the terminal device according to the uplink scheduling information.
  • the terminal device does not need to indicate the transmission capability of the terminal device to the network device, but only needs to send the second information to the network device according to the predetermined transmission power, and the network device can also determine the terminal device based on the second information. transmission capability to determine the uplink scheduling information of the terminal device.
  • the network device can determine the maximum number of data blocks and/or the maximum number of bits supported by the terminal device in a single time domain unit based on the actual transmission capability of the terminal device determined by the second information, Therefore, it is not necessary to schedule uplink transmission according to a unified scheduling policy for all types of terminal equipment, and flexible scheduling of terminal equipment can be achieved, so that the scheduling of terminal equipment can not only save resource overhead, but also ensure the access success rate of terminal equipment.
  • the network device does not have to schedule the terminal device according to the worst terminal device capability. If the actual transmission capability of the terminal device is better than the worst terminal device capability, the network device can determine the location of the terminal device within a single time domain unit.
  • the maximum number of data blocks and/or the maximum number of bits supported may be greater than the maximum number of data blocks and/or the maximum number of bits supported by the terminal device corresponding to the worst terminal device capability in a single time domain unit, thereby saving resource overhead. Furthermore, the embodiment of the present application does not require the terminal device to send corresponding information to the network device to inform the transmission capability of the terminal device, reducing the amount of reporting by the terminal device and saving resource overhead.
  • the predetermined transmission power is the maximum transmission power of the terminal device.
  • the terminal device sends the second information using the maximum transmit power, so that the network device can learn the maximum transmission capability of the terminal device, so that the network device can schedule the terminal device more accurately.
  • the terminal device accesses the network device through a non-terrestrial network device, or the network device is a non-terrestrial network device.
  • the second information is a random access preamble, or Msg3 in the random access process, or the fifth message (Msg5) in the random access process, or the physical uplink shared channel (information carried by physical uplink shared channel (PUSCH).
  • the second information may also be other uplink information, and there is no specific limitation.
  • the method further includes: sending third information, where the third information is used to instruct the terminal device to send the second information according to the predetermined transmit power.
  • the type of the second information can be preset, for example, predefined through a protocol, or determined through negotiation between the terminal device and the network device, or it can also be indicated by the network device, for example, the network device can indicate it through the third information, which is more flexible. .
  • the third information is system information, a random access response message, or information carried by a physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • determining the uplink scheduling information supported by the terminal device according to the second information includes: determining the received signal strength of the network device for the second information; according to the received signal The strength determines the MCS; the uplink scheduling information is determined according to the MCS.
  • a method for network equipment to determine uplink scheduling information is given.
  • network equipment can also determine uplink scheduling information through other methods.
  • a communication method is provided, which method can be executed by a terminal device, or by other devices including the functions of the terminal device, or by a chip system or other functional modules that can realize the functions of the terminal device.
  • the chip system or functional module is, for example, provided in a terminal device.
  • the method includes: determining the transmission capability of the terminal device; sending first information to a network device, where the first information is used to indicate the transmission capability of the terminal device.
  • the first information includes one or more of the following: EIRP of the terminal device, maximum transmit power information and/or transmit antenna gain information of the terminal device, first capability Level information, or type information of the terminal device.
  • the first capability level information is used to indicate the capability level to which the transmission capability of the terminal device belongs.
  • the first information is included in the RRC message; or the first information is included in the MAC CE; or the first information is included in Msg3 of the random access process. .
  • the RRC message is a message used to carry capability information of the terminal device.
  • the first information also includes receiving antenna gain information and/or receiving noise information of the terminal device; or, the first information also includes second capability level information, and the The second capability level information is used to indicate the capability level to which the receiving capability of the terminal device belongs.
  • the first information is information corresponding to a first type of terminal device, and the transmission capability of the first type of terminal device is the first transmission capability.
  • the first information is a random access preamble.
  • the fourth aspect provides a communication method that can be executed by a terminal device, or by other devices that include the functions of the terminal device, or by a chip system or other functional modules that can implement the functions of the terminal device.
  • the chip system or functional module is, for example, provided in a terminal device.
  • the method includes: sending second information to a network device with a predetermined transmit power, the second information being used to determine uplink scheduling information supported by the terminal device, where the uplink scheduling information includes a maximum uplink transmission rate within a single time domain unit. Number of data blocks and/or maximum number of bits.
  • the predetermined transmission power is the maximum transmission power of the terminal device.
  • the terminal device accesses the network device through a non-terrestrial network device, or the terminal device is a non-terrestrial network device.
  • the second information is a random access preamble, or Msg3 in the random access process, or Msg5 in the random access process, or information carried by the PUSCH.
  • the method further includes: receiving third information from the network device, the third information being used to instruct the terminal device to send the second information according to the predetermined transmit power. .
  • the third information is system information, a random access response message, or information carried on the PDCCH.
  • a communication device may be the network device described in the first aspect and/or the second aspect, or a communication device including the network device, or a functional module in the network device, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
  • the transceiver unit can realize the sending function and the receiving function. When the transceiver unit realizes the sending function, it can be called a sending unit (sometimes also called a sending module).
  • the transceiver unit When the transceiver unit realizes the receiving function, it can be called a receiving unit (sometimes also called a sending module). receiving module).
  • the sending unit and the receiving unit can be the same functional module, which is called the sending and receiving unit, and the functional module can realize the sending function and the receiving function; or the sending unit and the receiving unit can be different functional modules, and the sending and receiving unit is responsible for these functions.
  • the transceiver unit (or the receiving unit) is used to receive first information from a terminal device, and the first information is used to indicate the transmission capability of the terminal device; the processing unit is used to perform the transmission according to the The first information determines the scheduling information supported by the terminal device, and the scheduling information includes the maximum number of data blocks and/or the maximum number of bits that can be transmitted within a single time domain unit; the processing unit is also configured to perform the scheduling according to the scheduling information. Information schedules the terminal device.
  • the transceiver unit (or the receiving unit) is configured to receive second information from a terminal device, and the transmission power of the second information is a predetermined transmission power; and the processing unit is configured to receive the second information according to the second information.
  • the information determines the uplink scheduling information supported by the terminal device, and the uplink scheduling information includes the maximum number of data blocks and/or the maximum number of bits that can be uplink transmitted within a single time domain unit; the processing unit is also configured to determine the uplink scheduling information according to the uplink scheduling information.
  • the scheduling information schedules the terminal device.
  • the communication device further includes a storage unit (sometimes also referred to as a storage module), the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the functions of the network device described in the first aspect and/or the second aspect.
  • a storage unit sometimes also referred to as a storage module
  • the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the functions of the network device described in the first aspect and/or the second aspect.
  • the communication device may be the terminal device described in the third aspect and/or the fourth aspect, or a communication device including the terminal device, or a functional module in the terminal device, such as a baseband device or a chip system.
  • the communication device includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
  • a processing unit sometimes also called a processing module
  • a transceiver unit sometimes also called a transceiver module
  • the processing unit is used to determine the transmission capability of the terminal device; the transceiver unit (or the sending unit) is used to send first information to the network device, and the first information is used to indicate the Describe the transmission capabilities of the terminal equipment.
  • the transceiver unit (or the sending unit) is configured to send second information to the network device with a predetermined transmit power, where the second information is used to determine uplink scheduling information supported by the terminal device, and the uplink
  • the scheduling information includes the maximum number of data blocks and/or the maximum number of bits that can be uplink transmitted within a single time domain unit.
  • the communication device further includes a storage unit (sometimes also referred to as a storage module), the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the functions of the terminal device described in the third aspect and/or the fourth aspect.
  • a storage unit sometimes also referred to as a storage module
  • the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the functions of the terminal device described in the third aspect and/or the fourth aspect.
  • a seventh aspect provides a communication device.
  • the communication device may be a network device, or a chip or chip used in a network device. system.
  • the communication device includes a communication interface and a processor, and optionally, a memory.
  • the memory is used to store computer programs, and the processor is coupled to the memory and the communication interface.
  • the processor reads the computer program or instructions, the communication device causes the communication device to execute the methods performed by the network equipment in the above aspects.
  • An eighth aspect provides a communication device, which may be a terminal device, or a chip or chip system used in the terminal device.
  • the communication device includes a communication interface and a processor, and optionally, a memory.
  • the memory is used to store computer programs, and the processor is coupled to the memory and the communication interface.
  • the communication device When the processor reads the computer program or instructions, the communication device causes the communication device to execute the methods executed by the terminal device in the above aspects.
  • a ninth aspect provides a communication system, including a terminal device and a network device, wherein the terminal device is used to perform the communication method as described in the third and/or fourth aspect, and the network device is used to perform the first aspect and/or the communication method described in the second aspect.
  • a computer-readable storage medium is provided.
  • the computer-readable storage medium is used to store computer programs or instructions. When executed, the methods executed by network devices or terminal devices in the above aspects are implemented. .
  • a computer program product containing instructions which when run on a computer enables the methods described in the above aspects to be implemented.
  • a chip system including a processor and an interface.
  • the processor is configured to call and run instructions from the interface, so that the chip system implements the methods of the above aspects.
  • Figure 1 is a schematic diagram of the architecture of the NTN system (transparent transmission mode) provided by the embodiment of the present application;
  • FIG. 2 is a schematic architectural diagram of the NTN system (regeneration mode) provided by the embodiment of the present application;
  • FIG. 3 is a schematic architectural diagram of the NTN system (with ISL) provided by the embodiment of the present application;
  • Figure 4 is a schematic architectural diagram of the NTN system (network equipment includes DU and CU) provided by the embodiment of the present application;
  • Figure 5 is a schematic diagram of a base station using a CU and DU separation architecture
  • Figure 6 is a flow chart of a communication method provided by an embodiment of the present application.
  • Figure 7 is a flow chart of UE accessing the network in this embodiment of the present application.
  • Figure 8 is a flow chart of another communication method provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of a device provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of yet another device provided by an embodiment of the present application.
  • LTE long term evolution
  • NR new radio
  • NTN vehicle to everything
  • V2X vehicle to everything
  • MTC Machine type communications
  • IoT Internet of things
  • M2M machine to machine
  • 6G future mobile communication systems
  • NTN systems can include satellite systems.
  • satellite altitude that is, satellite orbit altitude
  • satellites can be divided into highly elliptical orbit (HEO) satellites, geostationary orbit (geosynchronous earth orbit, GEO) satellites, and medium earth orbit (medium earth orbit, MEO) satellites. Satellites and low earth orbit (LEO) satellites, etc.
  • the NTN system may also include non-terrestrial network equipment such as high altitude platform station (HAPS).
  • HAPS high altitude platform station
  • the non-terrestrial network equipment involved in the embodiments of this application is not limited to the above examples.
  • the non-terrestrial network equipment in this application may also be called aerial network equipment.
  • NTN systems may have many different architectures. Examples are introduced below.
  • Non-terrestrial network equipment can be satellites, such as HEO satellites, GEO satellites, MEO satellites or LEO satellites, or non-terrestrial network equipment can also be HAPS, etc., and there is no limit here.
  • the embodiment of the present application takes the non-terrestrial network device as a satellite as an example. However, the embodiment of the present application can also replace the satellite with other non-terrestrial network equipment (such as HAPS).
  • Gateway or ground station, earth station, gateway station, gateway station
  • One or more satellites can be connected to one or more ground base stations through one or more gateways, without limitation.
  • the communication mode of the satellite is transparent, that is, the satellite acts as an analog radio frequency repeater to realize wireless frequency conversion and amplification, and can transparently transmit or copy the signal between the base station and the terminal.
  • signals sent by terminal equipment can be transparently transmitted through satellites, forwarded by gateways, and entered into ground base stations.
  • Figure 2 is another structural schematic diagram of the NTN system.
  • the communication mode of the satellite is the regenerative mode.
  • the satellite can act as a base station to regenerate signals received from the ground.
  • the satellite can understand and process these signals.
  • a satellite may be a base station mounted on an artificial earth satellite or a high-altitude aircraft.
  • the gateway can forward signaling between satellites (i.e. base stations) and the core network.
  • FIG 2 only shows one satellite and one gateway. In actual use, an architecture of multiple satellites and/or multiple gateways may be adopted as needed.
  • Each satellite can provide services to one or more terminal devices, each gateway can correspond to one or more satellites, and each satellite can correspond to one or more gateways, which are not specifically limited in the embodiments of this application.
  • the embodiment of the present application does not limit the communication mode of the satellite.
  • the communication mode of the satellite may be a transparent transmission mode or a regeneration mode.
  • Figure 3 is another structural schematic diagram of the NTN system.
  • Figure 3 takes two satellites (the first satellite and the second satellite) and two gateways (the first gateway and the second gateway) as an example.
  • the communication mode of these two satellites is regenerative mode, that is, these two satellites can serve as base stations.
  • the difference between Figure 3 and Figure 2 is that there is an inter-satellite link (ISL) between the two satellites in Figure 3.
  • ISL inter-satellite link
  • Figure 3 takes as an example that different satellites are connected to different ground core networks.
  • different satellites can also be connected to the same ground core network.
  • the satellite can also serve as a distributed unit (DU) of the base station, which is separated from the centralized unit (CU) of the ground base station to form a CU-DU distributed architecture.
  • DU distributed unit
  • CU centralized unit
  • Figure 4 is another structural diagram of the NTN system.
  • the satellite serves as the DU of the base station, which can understand, process and regenerate signals from the ground, not just transparent transmission or copying; the ground base station can serve as the CU of the base station.
  • the service link between the terminal device and the satellite can transmit the NR-Uu wireless interface signal, and the feed link between the satellite and the gateway transmits the satellite radio interface (SRI) signal.
  • SRI satellite radio interface
  • the F1 interface signal between DU and CU is transmitted.
  • network equipment may include non-terrestrial network equipment such as satellites, or access network (AN) equipment located on the ground, such as a base station located on the ground.
  • Network equipment is an access device for terminal equipment to wirelessly access the mobile communication system.
  • Network equipment may also refer to equipment that communicates with terminal equipment over the air interface.
  • the access network equipment in the embodiment of this application may include an evolved base station (evolved Node B, eNB or e-NodeB) in the LTE system or advanced long term evolution (long term evolution-advanced, LTE-A); in the NR system Next generation node B (next generation node B, gNB) or access node in a wireless-fidelity (wireless-fidelity, Wi-Fi) system; alternatively, network equipment can be relay stations, vehicle-mounted equipment, and future evolved public land mobile Network (Public Land Mobile Network, PLMN) equipment, equipment in M2M networks, equipment in IoT networks, drone equipment, etc.
  • the access network equipment in the V2X system can be a road side unit (RSU).
  • RSU road side unit
  • the base station in the embodiment of the present application may include CUs and DUs, and multiple DUs may be centrally controlled by one CU.
  • CU and DU can be divided according to the protocol layer functions of the wireless network they possess, such as the packet data convergence protocol (PDCP) layer and above protocol layers (such as radio resource control (RRC) layer or service
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • the radio frequency device can be remote and not placed in the DU. It can be integrated in the DU, or partially integrated in the DU. The embodiments of this application do not impose any restrictions.
  • the control plane (CP) and user plane (CP) of the CU can also be integrated into the DU.
  • plan, UP are separated into different entities, namely the control plane CU (CU-CP) and the user plane CU (CU-UP).
  • CU-CP and CU-UP can be implemented through E1 interface communication.
  • CU-CP can include PDCP control (PDCP-control, PDCP-C) layer and RRC layer, etc.
  • CU-UP can include PDCU user (PDCP-user, PDCP-U) layer and SDAP layer, etc.
  • CU- The CP communicates with the DU through the F1 control (F1-control, F1-C) interface, and the CU-UP communicates with the DU through the F1 user (F1-user, F1-U) interface.
  • the base station can communicate with the terminal device, or can communicate with the terminal device through a relay station.
  • Terminal equipment can communicate with multiple base stations using different access technologies.
  • the satellite can be connected to the base station through a gateway. If the communication mode of the satellite is transparent transmission mode, the signal sent by the terminal device can be transparently transmitted through the satellite, forwarded by the gateway, and enter the ground base station. If the communication mode of the satellite is regenerative mode, the satellite can serve as a base station to process the signals sent by the terminal equipment.
  • the terminal device is a device with a wireless transceiver function, which can send signals to or receive signals from the network device.
  • Terminal equipment may include user equipment (UE), sometimes also called terminal, access station, UE station, remote station, wireless communication equipment, or user device, etc.
  • UE user equipment
  • the terminal equipment is used to connect people, things, machines, etc., and can be widely used in various scenarios, including but not limited to the following scenarios: cellular communication, D2D, V2X, machine-to-machine communication (machine-to-machine communication), etc.
  • the terminal device may be a mobile phone, a tablet, a computer with wireless transceiver functions, a VR terminal, or an AR terminal, or the like.
  • the various terminal devices introduced above can be considered as vehicle-mounted terminal devices if they are located on the vehicle (for example, placed or installed in the vehicle). Vehicle-mounted terminal equipment is also called on-board unit (OBU).
  • OBU on-board unit
  • the terminal device in the embodiment of the present application may also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip, or vehicle-mounted unit built into the vehicle as one or more components or units.
  • the vehicle can implement the method of the embodiment of the present application through the built-in terminal device.
  • the communication device used to realize the function of the network device or the terminal device may be the network device or the terminal device itself, or it may be a device that can support the network device or the terminal device to realize the function, such as a chip system.
  • the device may be Be installed in network equipment or terminal equipment.
  • the device used to realize the functions of the network device is a network device
  • the device used to realize the functions of the terminal device is a terminal device.
  • the terminal device will be described using a UE as an example.
  • the number of nouns means “singular noun or plural noun", that is, “one or more”, unless otherwise specified.
  • At least one means one or more
  • plural means two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • A/B means: A or B.
  • At least one of the following or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
  • the ordinal words such as "first” and “second” mentioned in the embodiment of this application are used to distinguish multiple objects and are not used to limit the size, content, order, timing, priority or importance of multiple objects.
  • the first information and the second information can be the same information, or they can be different information, and this name does not indicate the content, size, application scenario, sender/receiver, etc. of the two information. Differences in priority or importance.
  • the numbering of steps in the various embodiments introduced in this application is only to distinguish different steps and is not used to limit the order between steps. For example, S601 may occur before S602, or may occur after S602, or may occur simultaneously with S602.
  • the link attenuation is huge when the satellite communicates with the UE on the ground.
  • the UE receives poor quality signals from the satellite.
  • the link margin is, for example, the difference between the UE's reception quality and the demodulation threshold. The greater the link margin, the greater the link margin. , the higher the UE's demodulation success rate, the better the demodulation performance.
  • the link margin will become smaller if the demodulation threshold remains unchanged, thereby reducing the demodulation performance of the receiving end.
  • the UE needs to be scheduled according to a lower order MCS, so the number of effective bits carried by a single time domain unit, such as TTI, is small.
  • a UE with poorer capabilities will have worse signal reception quality.
  • the MCS determined for UEs with poor capabilities will be lower, resulting in fewer effective bits carried by a single time domain unit.
  • UEs may have different capabilities. For example, there are some dedicated UEs, which generally have strong capabilities, such as large antenna gain. If such UEs are scheduled, a single TTI can carry more effective bits, the communication delay is smaller, and the resource overhead is also smaller.
  • a dedicated UE is a UE with a high-gain antenna device that can be used in specific communication scenarios. For example, a UE with a parabolic antenna has unlimited power and high antenna gain and can be used as a vehicle-mounted terminal.
  • some ordinary UEs or non-dedicated UEs, such as handheld terminal devices (such as mobile phones, etc.) generally have poor capabilities, such as small antenna gain. If such UEs are scheduled, the number of effective bits that can be carried by a single TTI is small, resulting in multiple TTIs being required to carry the information to be transmitted, resulting in a large resource overhead and a large communication delay.
  • the design can be based on the worst UE capabilities. For example, in the NTN system, considering the link margin, the network equipment schedules UEs according to the capabilities of ordinary UEs as mentioned above as the worst UE capabilities, and uses lower-order MCS to schedule UEs so that UEs can access normally. base station and communicate.
  • a single TTI can only schedule a very small number of bits, and the information to be transmitted may require The transmission can be completed through multiple time domain units, which results in large resource overhead and relatively large communication delay.
  • the UE can send first information to the network device, and the first information indicates the transmission capability of the UE, so that the network device can determine the scheduling information supported by the UE based on the transmission capability of the UE, or in other words, the network device
  • the network device When scheduling the UE, you can refer to the actual transmission capability of the UE for scheduling, so that all types of terminal equipment do not need to be scheduled according to a unified scheduling strategy, which improves the flexibility of the scheduling process and saves resource overhead for the scheduling of the UE. , and can also ensure the access success rate of the UE.
  • the network device can determine the maximum number of data blocks and/or the maximum number of bits supported by the UE in a single time domain unit based on the actual transmission capability of the UE. Then the network device does not have to follow the worst UE ability to schedule the UE.
  • the actual transmission capability of the dedicated UE is generally better than the worst UE capability, then the maximum number of data blocks and/or the maximum number of bits supported by the UE in a single time domain unit can be greater than the worst UE.
  • the maximum number of data blocks and/or the maximum number of bits supported by the UE corresponding to the capability in a single time domain unit may enable the information to be transmitted to be completed in fewer time domain units without affecting the reception performance of the receiving end.
  • the network device can also determine the maximum number of data blocks and/or the maximum number of bits supported by the UE in a single time domain unit based on the actual transmission capability of the UE, thereby ensuring that the UE Work normally to ensure the receiving performance of the receiving end.
  • This embodiment of the present application provides a communication method. Please refer to Figure 6, which is a flow chart of the method.
  • This method can be applied to the network architecture shown in any one of Figures 1 to 4.
  • the UE involved in this method is the UE shown in any one of Figures 1 to 4.
  • the network equipment involved in this method can be located on the ground (or, in other words, a terrestrial network equipment), and the UE can access the network equipment through non-terrestrial network equipment.
  • the non-terrestrial network equipment is the satellite in Figure 1, and the network equipment is as shown in Figure 1
  • the ground base station in 1; or the network equipment involved in the method may be a non-terrestrial network equipment, for example, the network equipment is a satellite in Figure 2 or Figure 3; or the network equipment involved in the method may include a non-terrestrial network equipment And/or terrestrial network equipment, for example, the non-terrestrial network equipment is the satellite in Figure 4, and the terrestrial network equipment is the ground base station in Figure 4.
  • the UE sends the first information to the network device.
  • the network device receives the first information from the UE.
  • the first information may indicate the transmission capability of the UE, and the transmission capability of the UE may include uplink transmission capability and/or downlink transmission capability.
  • the uplink transmission capability can also be called the transmitting capability or the sending capability
  • the downlink transmission capability can also be called the receiving capability.
  • the first information should indicate the transmission capability of the UE, and there can be many different indication methods. Examples are introduced below.
  • the first instruction method The first information indicates the transmission capability of the UE through the included content, so the first indication method may also be called an explicit indication method.
  • the first information indicates the uplink transmission capability and/or downlink transmission capability of the UE.
  • the correspondence relationship between the UE type and the transmission capability of the UE may be determined in advance, which is called a first correspondence relationship, for example.
  • one UE type corresponds to one transmission capability.
  • the UE type includes a first type, and in the first correspondence relationship, the first type corresponds to the first transmission capability; for another example, the UE type includes a second type, and in the first correspondence relationship, the second type corresponds to the second transmission capability.
  • the first correspondence relationship corresponds to one transmission capability.
  • the UE type includes a first type, and in the first correspondence relationship, the first type corresponds to the first transmission capability; for another example, the UE type includes a second type, and in the first correspondence relationship, the second type corresponds to the second transmission capability.
  • the first type is a dedicated type, and the UE of the first type is the aforementioned dedicated UE; the second type is a common type, and the UE of the second type is the aforementioned common UE; or the second type is a dedicated type, and the second type
  • the UE is the aforementioned dedicated UE; the first type is a common type, and the first type of UE is the aforementioned common UE; or, the first type and/or the second type can also be other UE types in addition, and the details are not There is no restriction.
  • this application does not limit the number of UE types. That is to say, there can be more than two UE types. This application will describe the first type and the second type.
  • the first transmission capability and the second transmission capability may be the same transmission capability, or they may be different transmission capabilities.
  • the first correspondence relationship may be predefined through a protocol, or may be configured by the network device and notified to the UE, or may be determined through negotiation between the network device and the UE.
  • the first information can indicate the transmission capability of the UE.
  • the first information includes type information of the UE, and the type information may indicate the type of the UE.
  • the network device may determine that the transmission capability corresponding to the type of information is the transmission capability of the UE according to the first correspondence relationship.
  • the transmission capability includes uplink transmission capability and/or downlink transmission capability. The parameters through which uplink transmission capability and downlink transmission capability can be reflected will be introduced later.
  • the first information indicates the uplink transmission capability of the UE.
  • the first information may include the EIRP of the UE.
  • the EIRP of a UE is, for example, the product of the maximum transmit power of the UE and the gain of the transmit antenna of the UE. That is, the EIRP represents the joint effect of the transmit power and the gain of the transmit antenna.
  • the EIRP may also be the result of the joint action of the maximum transmit power of the UE, the transmit antenna gain of the UE, and other parameters of the UE, which is not limited by the embodiments of this application.
  • the network device can determine the maximum transmit power and transmit antenna gain of the UE based on the EIRP of the UE.
  • the UE reports the EIRP of the UE, it is equivalent to reporting the maximum transmit power of the UE.
  • Information and transmit antenna gain information equivalent to the UE being able to report multiple parameters by reporting one parameter, EIRP, which is beneficial to saving the transmission overhead of the first information.
  • the first information may include maximum transmit power information and/or transmit antenna gain information of the UE, and the transmit antenna gain information may indicate the transmit antenna gain of the UE. That is, the UE can also directly report the maximum transmit power information and/or the transmit antenna gain information of the UE to reduce the information processing load of the network device.
  • the first information may include first capability level information, and the first capability level information may indicate a first capability level, and the first capability level is a capability level to which the uplink transmission capability of the UE belongs.
  • first capability level information may indicate a first capability level
  • the first capability level is a capability level to which the uplink transmission capability of the UE belongs.
  • one or more uplink capability levels may be pre-divided, and a corresponding relationship between the uplink capability level and the uplink transmission capability may be determined, which is, for example, called a second correspondence relationship.
  • one uplink capability level may correspond to one uplink transmission capability
  • different uplink capability levels may correspond to the same or different uplink transmission capabilities.
  • the second corresponding relationship may be preset, for example, predefined through a protocol, or may be configured by the network device and notified to the UE, or may be determined through negotiation between the network device and the UE.
  • the uplink transmission capability can be reflected by corresponding parameters, for example, by the EIRP of the UE.
  • different uplink capability levels can correspond to different EIRPs, or correspond to different EIRP ranges.
  • Table 1 for an example of the correspondence between the uplink capability level and the EIRP range. It should be noted that Table 1 is only an example.
  • the correspondence between the uplink capability level and the EIRP range in the embodiment of the present application may include one or more items in Table 1 (wherein a row in Table 1 is regarded as one item), or the correspondence between the uplink capability level and the EIRP range in the embodiment of the present application may also include other items not included in Table 1.
  • EIRP ranges As can be seen from Table 1, different uplink capability levels correspond to corresponding EIRP ranges. For example, if the UE's uplink capability level is 1, the corresponding EIRP range is [-15, -5) decibel watt (dBW). It can be seen that the EIRP corresponding to the UE can be determined according to the uplink capability level of the UE.
  • the uplink transmission capability can also be reflected by the first parameter.
  • different uplink capability levels can correspond to different values of the first parameter, or correspond to different value ranges of the first parameter.
  • the first parameter can include the maximum transmit power of the UE. and/or transmit antenna gain.
  • the uplink transmission capability can also be reflected by other parameters, and there are no specific restrictions.
  • the first capability level is, for example, one of the one or more uplink capability levels. Once the network device determines the first capability level, it can also determine that the uplink transmission capability corresponding to the first capability level is the uplink transmission capability of the UE.
  • the first information may include the type information of the UE, or the EIRP of the UE, or the maximum transmit power information of the UE and /or transmit antenna gain information, or include first capability level information.
  • the first information may include one or more of the above information. That is to say, the first information may include UE type information, UE EIRP, UE maximum transmit power information and/or transmit antenna gain information. , or one or more items in the first ability level information.
  • the first information may include the type information of the UE and the EIRP of the UE, so that the network device can not only learn the uplink transmission capability of the UE, but also determine the type of the UE.
  • the first information indicates the downlink transmission capability of the UE.
  • the first information may include receiving antenna gain information and/or receiving noise information of the UE, and the receiving antenna gain information may indicate the receiving antenna gain of the UE.
  • the received noise information of the UE indicates, for example, the received noise power of the UE.
  • the first information may include second capability level information
  • the second capability level information may indicate a second capability level
  • the second capability level is a capability level to which the downlink transmission capability of the UE belongs.
  • one or more downlink capability levels may be pre-divided, and a correspondence relationship between the downlink capability level and the downlink transmission capability may be determined, which is called a third correspondence relationship, for example.
  • one downlink capability level can correspond to one kind of downlink transmission capability, and different downlink capability levels correspond to the same or different downlink transmission capabilities.
  • the third corresponding relationship may be preset, for example, predefined through a protocol, or may be configured by the network device and notified to the UE, or may be determined through negotiation between the network device and the UE.
  • the downlink transmission capability can be reflected by the corresponding parameter, for example, by the second parameter.
  • different downlink capability levels can correspond to different values of the second parameter, or corresponding to different values of the second parameter.
  • the second parameter may include the UE's receiving noise power and/or receiving antenna gain; or the downlink transmission capability may also be reflected by other parameters, with no specific limitation.
  • the second capability level is, for example, one of the one or more downlink capability levels. Once the network device determines the second capability level, it can also determine that the downlink transmission capability corresponding to the second capability level is the downlink transmission capability of the UE.
  • the first information may include the type information of the UE, or the receiving noise information and/or the receiving antenna gain information of the UE, Or include second ability level information.
  • the first information may include one or more of the above information. That is to say, the first information may include UE type information, UE receiving noise information and/or receiving antenna gain information, or the second capability.
  • the first information may include the type information of the UE and the second capability level information, so that the network device can not only learn the downlink transmission capability of the UE, but also determine the type of the UE.
  • the first information can indicate the transmission capability of the UE through the included information, and the network device can quickly and accurately obtain the transmission capability of the UE, thereby efficiently scheduling the UE.
  • the second instruction method The transmission capability of the UE is indicated through the first information itself.
  • the second mode of indication can also be called the implicit mode of indication.
  • the corresponding relationship between the UE type and the transmission capability of the UE may be determined in advance, such as the first corresponding relationship.
  • the first corresponding relationship For an introduction to the first corresponding relationship, please refer to the above.
  • the corresponding relationship between the first information and the UE type may also be determined in advance, which is called a fourth corresponding relationship, for example.
  • a fourth corresponding relationship one type of first information corresponds to one type of UE, and different first information is distinguished by, for example, different identifiers. For example, if the first information sent by the UE in S601 corresponds to the first type of UE, or the first information is the first information corresponding to the first type of UE, the network device may determine the first information based on the fourth corresponding relationship.
  • the first information corresponds to the first type, and the transmission capability corresponding to the first type is determined to be the transmission capability of the UE according to the first correspondence relationship, such as the first transmission capability; for another example, if the first information sent by the UE in S601 is the same as Corresponding to the second type of UE, or in other words, the first information is information corresponding to the second type of UE, then the network device can determine that the first information corresponds to the second type according to the fourth correspondence relationship, and then according to the first correspondence relationship
  • the transmission capability corresponding to the second type is determined to be the transmission capability of the UE, such as the second transmission capability, and so on.
  • the first correspondence relationship and the fourth correspondence relationship may also be replaced by the fifth correspondence relationship, that is, the first correspondence relationship and the fourth correspondence relationship are not applied, but the fifth correspondence relationship is applied.
  • the fifth correspondence is a correspondence between the UE type, the transmission capability of the UE, and the first information.
  • the network device applies the fifth correspondence in a manner similar to the application of the first correspondence and the fourth correspondence. More details.
  • the transmission capability of the UE can be indicated by the first information itself, without the need to include additional indication information in the first information, which is beneficial to saving resource overhead.
  • the first information can also indicate the transmission capability of the UE in other ways, and there are no more examples.
  • the UE if it wants to send the first information to the network device, it can send it through a message in the existing communication process, or in other words, the first information can be carried in the message in the existing communication process; or, This can be sent via a newly defined message, for example a message newly defined specifically for sending the first information.
  • the UE may send the first information to the network device during the process of accessing the network, where the UE accessing the network may include accessing the network device, and Access core network equipment. The access process of the UE and what kind of message the first information can be carried and sent during the access process will be introduced later in conjunction with Figure 7 .
  • the network device determines the scheduling information supported by the UE according to the first information.
  • the network device can determine the scheduling information supported by the UE based on the first information.
  • the scheduling information may also be called scheduling parameters, scheduling policies, etc.
  • the embodiment of the present application does not limit the name.
  • the scheduling information includes the maximum number of data blocks and/or the maximum number of bits that can be transmitted in a single time domain unit, or the maximum number of data blocks and/or the maximum number of bits that the UE supports transmission in a single time domain unit. It can be seen that according to the scheduling information and the amount of information of the UE to be transmitted, the minimum number of time domain units scheduled for the UE can be determined. Therefore, the scheduling information can also be called a fragmentation strategy.
  • the "piece" is is a time domain unit.
  • the UE information to be transmitted includes, for example, data and/or signaling.
  • the maximum number of data blocks here refers to the maximum number of valid data blocks; similarly, the maximum number of bits refers to the maximum number of valid bits.
  • the transmission capabilities of the UE include uplink transmission capabilities and/or downlink transmission capabilities.
  • the scheduling information supported by the UE may also include uplink scheduling information and/or downlink scheduling information. Wherein, if the first information indicates the uplink transmission capability of the UE, the scheduling information may include uplink scheduling information; if the first information indicates the downlink transmission capability of the UE, the scheduling information may include downlink scheduling information.
  • the uplink scheduling information includes, for example, the maximum number of uplink data blocks and/or the maximum number of bits that can be transmitted in a single time domain unit, which may also be called the maximum number of uplink data blocks that can be transmitted and/or the maximum uplink The number of bits, or the maximum number of data blocks and/or the maximum number of bits that can be transmitted in the uplink direction; the downlink scheduling information includes, for example, the maximum number of data blocks and/or the maximum number of bits that can be transmitted in the downlink within a single time domain unit, or it can It is called the maximum number of downlink data blocks that can be transmitted and/or the maximum number of downlink bits, or the maximum number of data blocks and/or the maximum number of bits that can be transmitted in the downlink direction.
  • the uplink scheduling information may include the maximum number of data blocks and/or the maximum number of bits that can be uplink transmitted in a single time domain unit, which can be understood as the maximum effective data block that the UE can send to the network device in a single time domain unit. quantity and/or the maximum number of significant bits.
  • the downlink scheduling information may include the maximum number of data blocks and/or the maximum number of bits that can be downlink transmitted in a single time domain unit, which can be understood as the maximum effective data that the network device can send to the UE in a single time domain unit. Number of blocks and/or maximum number of significant bits.
  • the maximum number of bits that the UE supports transmission in a single time domain unit means that if the number of effective bits that the UE is scheduled to send in a single time domain unit is less than or equal to the maximum number of bits, then the The network device can correctly demodulate the information from the UE, but if the number of effective bits scheduled to be sent by the UE in a single time domain unit is greater than the maximum number of bits, the network device may not be able to correctly demodulate the information from the UE. demodulation.
  • the UE sends uplink information according to the maximum number of bits
  • the difference between the received signal strength of the uplink information by the network device and the demodulation threshold of the network device ie, the link margin
  • the link margin can satisfy the requirement of the network device. Demodulation needs.
  • the maximum number of bits that the UE supports transmission in a single time domain unit means that if the number of effective bits sent by the network device to the UE in a single time domain unit is less than or equal to the maximum number of bits, the UE can Information from the network device is correctly demodulated, and if the number of valid bits sent by the network device to the UE in a single time domain unit is greater than the maximum number of bits, the UE may not be able to correctly demodulate the information from the network device. .
  • the network device sends downlink information according to the maximum number of bits
  • the difference between the UE's received signal strength for the downlink information and the UE's demodulation threshold ie, the link margin
  • the demodulation threshold of the network device is the same as or different from the demodulation threshold of the UE.
  • the understanding of the maximum number of data blocks is also similar, so no further details will be given.
  • the time domain unit is, for example, a frame, a subframe, a TTI, a slot, a mini-slot, or orthogonal frequency division multiplexing. multiplexing, OFDM) symbols, etc.
  • the first information indicates the uplink transmission capability of the UE
  • the network device may determine the uplink scheduling information of the UE based on the first information.
  • one way for the network device to determine the uplink scheduling information of the UE is that the network device can determine the first received signal strength based on the first information, and the first received signal strength is the received signal strength of the network device for information from the UE; the network device The device may determine the MCS based on the first received signal strength, for example, called the first MCS; the network device may determine the uplink scheduling information supported by the UE based on the first MCS.
  • the network device can determine the maximum signal strength at which the signal from the UE reaches the physical layer of the network device, that is, determine the maximum signal strength of the network device from the UE.
  • SNR signal-noise ratio
  • the noise figure at the receiving end refers to the signal attenuation caused by the transmission link of the system.
  • Rain attenuation refers to signal attenuation caused by rainfall.
  • Other losses include, for example, the noise figure and/or rain attenuation of the receiving end (such as network equipment), which can be determined based on the hardware indicators of the receiving end (such as network equipment).
  • Parameters such as rain attenuation can use predefined values, such as predefined If the corresponding relationship between the environmental information and the attenuation value is known, the corresponding attenuation value can be determined based on the current environmental information, and the attenuation value can be used as the current rain attenuation.
  • the antenna gain of the receiving end is now the receiving antenna gain of the network device.
  • the network device may determine the maximum number of data blocks and/or the maximum number of bits that the UE can uplink transmit in a single time domain unit according to the first MCS. For example, the network device can determine the spectral efficiency (spectral efficiency) information of the UE according to the first MCS by querying Table 2. For example, the spectral efficiency information is represented as C.
  • Table 2 is as follows, which is a 5G PUSCH MCS index table.
  • the maximum number of bits C ⁇ R, where R represents an effective resource element (resource element). , RE) number, effective REs may include all REs used to carry PUSCH within a single time domain unit. In this way, the network device determines the uplink scheduling information of the UE.
  • the network device will determine the number of bits of uplink information that the UE should send based on the number of bits of uplink information that the UE needs to send and the maximum number of bits that the UE can transmit uplink in a single time domain unit.
  • the minimum number of uplink time domain units scheduled for the UE may also be determined.
  • the number of bits scheduled for the UE to be transmitted in a single time domain unit may be less than or equal to the number of bits that the UE can transmit in a single time domain unit as indicated by the uplink scheduling information.
  • maximum number of bits Correspondingly, the number of uplink time domain units scheduled by the network device for the UE may be greater than or equal to the minimum number of uplink time domain units.
  • the network device may determine the downlink scheduling information of the UE based on the first information.
  • the network device may determine the second received signal strength based on the first information, and the second received signal strength is the received signal strength of the UE for the information from the network device; the network device The device may determine the MCS based on the second received signal strength, for example, called the second MCS; the network device may determine the downlink scheduling information supported by the UE based on the second MCS.
  • the first information sent by the UE includes the receiving antenna gain information of the UE, based on which the network device can determine the maximum signal strength of the signal from the network device reaching the physical layer of the UE, that is, determine the maximum signal strength of the UE from the network device.
  • Other losses include, for example, the noise figure and/or rain attenuation of the receiving end (e.g. UE), which can be determined based on the hardware indicators of the receiving end (e.g. UE). Parameters such as rain attenuation can use predefined values, for example, the environment is predefined.
  • the corresponding attenuation value can be determined based on the current environmental information, and the attenuation value can be used as the current rain attenuation.
  • the antenna gain of the receiving end is the receiving antenna gain of the UE at this time, that is, the gain indicated by the receiving antenna gain information from the UE.
  • the network device may determine the corresponding MCS, such as the second MCS, based on the mapping relationship between SNR and MCS and the determined SNR. Refer to the determination of the first MCS, which will not be described again.
  • the network device may determine the maximum number of data blocks and/or the maximum number of bits that the UE can downlink transmit in a single time domain unit according to the second MCS.
  • the network device can determine the spectrum efficiency information of the UE by querying Table 3 according to the second MCS.
  • the spectrum efficiency information is represented as C.
  • a kind of Table 3 is as follows, which is the 5G PDSCH MCS index table.
  • PDSCH physical downlink shared channel
  • the network device determines the number of bits of downlink information to be sent to the UE and the maximum number of bits that the UE can transmit in a single time domain unit. , can also determine the minimum number of downlink time domain units scheduled for the UE.
  • the number of bits scheduled for the UE to be transmitted in a single time domain unit may be less than or equal to the number of bits that the UE can transmit in a single time domain unit as indicated by the downlink scheduling information.
  • the maximum number of bits may be greater than or equal to the minimum number of downlink time domain units.
  • the network device schedules the UE according to the scheduling information supported by the UE.
  • the network device may schedule the uplink transmission of the UE according to the uplink scheduling information, or schedule the downlink transmission of the UE according to the downlink scheduling information, where the uplink scheduling information includes the maximum uplink transmission that the UE can transmit in a single time domain unit.
  • the downlink scheduling information includes the maximum number of data blocks and/or the maximum number of bits that the UE can downlink transmit in a single time domain unit.
  • the maximum number of bits that the UE can transmit in a single time domain unit can be used to schedule uplink/downlink signaling transmission and can also be used to schedule uplink/downlink data transmission; the UE can The maximum number of data blocks for upstream/downstream transmission can be used to schedule upstream/downstream data transmission.
  • the following is an example in which the network device schedules uplink/downlink transmission according to the maximum number of bits that the UE can transmit in a single time domain unit.
  • the network device determines the uplink scheduling information supported by the UE based on the first information. If the network device wants to schedule the UE for uplink transmission, the network device can perform scheduling according to the uplink scheduling information.
  • the uplink scheduling information includes that the maximum number of bits that the UE can transmit in uplink in a single time domain unit is C 1 , then the network device can instruct the UE to send C 2 valid bits in a single time domain unit, where C 2 Less than or equal to C 1 , C 2 effective bits can be used for uplink signaling or uplink data transmission.
  • the network device can use the The amount of uplink data and C 1 determine the minimum number of uplink time domain units Q 1 scheduled for the UE, so that the network device can determine the number Q 2 of uplink time domain units scheduled for the UE, where Q 2 is greater than or equal to Q 1 .
  • the network device sends first scheduling signaling to the UE.
  • the first scheduling signaling may indicate C 2 and Q 2 , so that the UE can send uplink data to the network device within Q 2 uplink time domain units, where each uplink time domain C 2 valid bits carrying uplink data can be sent within the unit.
  • the first scheduling signaling is, for example, downlink control information (DCI), or it may be signaling of other protocol layers.
  • DCI downlink control information
  • the network device determines the downlink scheduling information supported by the UE based on the first information. If the network device wants to schedule the UE for downlink transmission, the network device can schedule according to the downlink scheduling information.
  • the downlink scheduling information includes that the maximum number of bits that the UE can downlink transmit in a single time domain unit is C 3 , then the network device can send C 4 effective bits to the UE in a single time domain unit, where C 4 is less than Or equal to C 3 , C 4 effective bits can be used for uplink signaling or uplink data transmission.
  • the network device can determine the minimum number of downlink time domain units Q 3 scheduled for the UE based on the amount of downlink data to be sent and C 3 , so the network device can determine the number Q 4 of uplink time domain units scheduled for the UE. , where Q 4 is greater than or equal to Q 3 .
  • the network device sends second scheduling signaling to the UE.
  • the second scheduling signaling can indicate C 4 and Q 4 , so that the network device can send downlink data to the UE within Q 4 downlink time domain units, where each downlink time domain C 4 valid bits carrying downlink data can be sent within the unit.
  • the second scheduling signaling is, for example, DCI, or it may be signaling of other protocol layers.
  • the UE may send the first information to the network device during the process of accessing the network.
  • Figure 7 It is a flow chart of an access process for a UE.
  • Figure 7 takes a 4-step random access (RA) process as an example.
  • the UE sends a random access preamble (preamble) to the network device.
  • the network device receives the preamble from the UE.
  • the UE can send the preamble to the network device on the physical random access channel (PRACH).
  • PRACH physical random access channel
  • the network device sends a random access response (random access response, RAR) to the UE.
  • RAR random access response
  • the UE receives the RAR from the network device.
  • the UE sends Msg3 to the network device.
  • the network device receives Msg3 from the UE.
  • the network device sends contention resolution information to the UE.
  • the UE receives the contention resolution information from the network device.
  • the contention resolution information may be carried in the fourth message (Msg4).
  • the UE sends Msg5 to the network device.
  • the network device receives Msg5 from the UE.
  • Msg5 is the UE's response to Msg4.
  • the UE and the core network equipment perform authentication and security negotiation processes.
  • the core network device is, for example, an access and mobility management function (AMF), or it can be other devices.
  • AMF access and mobility management function
  • the authentication between the UE and the core network equipment may include the core network equipment authenticating the UE, and/or the UE authenticating the core network equipment.
  • Security negotiation can be used by the UE and core network equipment to negotiate corresponding security parameters.
  • S707 The UE and the network device perform security negotiation and other processes. This security negotiation can be used by the UE and the network device to negotiate corresponding security parameters.
  • the network device sends a query message to the UE.
  • the UE receives the query message from the network device.
  • the query message is used to inquire about the capabilities of the UE.
  • the UE sends a capability message to the network device.
  • the network device receives the capability message from the UE.
  • the capability message may be used to carry capability information of the UE.
  • the capability message is an RRC message, and the RRC message is, for example, a UE capability information (UE capability information) message; or the capability message may also be a message from other protocol layers.
  • the network device sends an RRC reconfiguration (RRC reconfiguration) message to the UE.
  • RRC reconfiguration RRC reconfiguration
  • the UE receives the RRC reconfiguration message from the network device.
  • the RRC reconfiguration message may configure corresponding resources for the UE, or configure parameters of the corresponding protocol layer, etc.
  • the UE sends an RRC reconfiguration complete message to the network device.
  • the network device receives the RRC reconfiguration complete message from the UE.
  • the UE and the core network equipment conduct corresponding non-access stratum (NAS) negotiations, so that the UE completes the connection with the core network equipment.
  • NAS non-access stratum
  • the first information in the embodiment of this application may be included in the capability message in S709.
  • a new field may be defined in the capability message to carry the first information, or an existing field of the capability message may be extended to carry the first information, or a reserved field in the capability message may be used to carry the third information.
  • the first information indicates the transmission capability of the UE, so the first information can also be regarded as a kind of capability information of the UE.
  • the first information is included in the capability message, which is equivalent to the UE reporting various capability information of the UE.
  • the network device can obtain the various capability information of the UE through one message. At this time, the first information may use the above first indication method or the second indication method to indicate the transmission capability of the UE.
  • the first information may also be included in Msg3, such as Msg3 in S703.
  • Msg3 such as Msg3 in S703.
  • a new field can be defined in Msg3 to carry the first information. Reporting the first information through Msg3 enables the network device to learn the transmission capability of the UE earlier, thereby determining the scheduling information of the UE in a more timely manner.
  • the first information may use the above first indication method or the second indication method to indicate the transmission capability of the UE.
  • the first information can also be carried through a newly defined message.
  • a MAC CE can be newly defined to carry the first information.
  • the MAC CE can be transmitted after S704, for example, or can be transmitted at other times and sent by the UE to the network device. Carrying the first information through a newly defined message does not change the structure of the original message, which is beneficial to maintaining the stability of the original message.
  • the network device can determine based on the newly defined message that the message carries the first information, and the implementation is relatively simple. At this time, the first information may use the above first indication method or the second indication method to indicate the transmission capability of the UE.
  • the first information can also be implemented through the preamble in S701.
  • the first information may use the second indication method as above to indicate the transmission capability of the UE.
  • the fourth correspondence relationship may include a correspondence relationship between a preamble and a UE type, and then the first information sent by the UE in S601 may be the preamble corresponding to the type of the UE.
  • the type of the UE is the first type, then the first information sent by the UE in S601 may be the preamble corresponding to the first type.
  • the preamble is the first message sent by the UE, and it is also the earliest message received by the network device from the UE. Therefore, using the preamble as the first information allows the network device to obtain the first information faster (or in other words, earlier).
  • the network device can parse the preamble more efficiently, which also enables the network device to obtain the first information faster and determine the scheduling information of the UE in a more timely manner.
  • the network device determines the scheduling information supported by the UE, so that the UE can be scheduled according to the scheduling information. This eliminates the need to schedule all types of terminal devices according to a unified scheduling policy, which improves scheduling.
  • the flexibility of the process enables the scheduling of UEs to save resource overhead as much as possible and ensure the access success rate of UEs. For example, if the actual transmission capability of the UE is better than the worst terminal equipment capability, the maximum number of data blocks and/or the maximum number of bits supported by the UE in a single time domain unit may be greater than the UE corresponding to the worst UE capability. The maximum number of data blocks and/or the maximum number of bits supported in a single time domain unit can save resource overhead and reduce the access delay of the UE.
  • the network device can also determine the maximum number of data blocks and/or the maximum number of bits supported by the UE in a single time domain unit based on the actual transmission capability of the UE, thereby ensuring that the The normal operation of the UE ensures the reception performance of the receiving end. It can be seen that the method provided by the embodiment of the present application can be applied to various types of UEs with different capabilities.
  • the embodiment of the present application provides another communication method.
  • Figure 8 is a flow chart of the method.
  • This method can be applied to the network architecture shown in any one of Figures 1 to 4.
  • the UE involved in this method is the UE shown in any one of Figures 1 to 4
  • the network equipment involved in this method is the ground base station in Figure 1, or the satellite in Figure 2 or Figure 3, Or the satellite and/or ground base station in Figure 4.
  • the UE sends second information to the network device.
  • the network device receives the second information from the UE.
  • the transmission power of the second information is, for example, a predetermined transmission power.
  • the predetermined transmit power may be preset, for example, predefined through a protocol, or may be configured by the network device and instruct the UE, or may also be determined through negotiation between the network device and the UE.
  • the predetermined transmit power may be less than or equal to the maximum transmit power of the UE.
  • a predetermined transmission power is the maximum transmission power of the UE.
  • the predetermined transmit power may be the same or different. For example, all UEs covered by the network device can use the same predetermined transmit power; or, different UEs can use different predetermined transmit powers, and the predetermined transmit power used by a UE can be determined based on factors such as the capabilities of the UE.
  • the second information includes, for example, one or more of preamble, Msg3, Msg5, or information carried by PUSCH.
  • the information carried by PUSCH is, for example, uplink control information (UCI).
  • the UE can send one or more uplink information to the network device according to the predetermined transmit power, so that the network device can determine the uplink scheduling information of the UE with the help of the uplink information from the UE.
  • the network device may send third information, and the third information may indicate the second information, or in other words, the third information may instruct the UE to send the second information according to the predetermined transmit power.
  • the third information may also indicate the predetermined transmission power, that is, the third information may indicate the predetermined transmission power and the second information.
  • the third information may be sent in a broadcast manner, for example.
  • the third information may be system information, or may be other broadcast information; or the third information may also be sent in a unicast manner.
  • the network device indicates through the third information that the second information should be sent according to the predetermined transmission power, then when the UE sends the second information, it can send it according to the maximum transmission power of the UE.
  • the third information is system information, information carried by RAR or PDCCH, etc.
  • the information carried by the PDCCH is, for example, downlink control information (DCI), or it may be information included in DCI, such as uplink grant (UL grant) information and/or downlink grant (DL grant) included in DCI. ) information, etc.
  • DCI downlink control information
  • UL grant uplink grant
  • DL grant downlink grant
  • the third information may be RAR, or it may be system information; for another example, if the second information is Msg5 or information carried by PUSCH, then the third information may be information carried by PDCCH, or it may be system information. It can be system information.
  • the second information may also be predefined, so the network device does not need to send the third information, and the UE can determine based on the predefined content that the second information is information that should be sent according to the predetermined transmit power.
  • the network device determines the uplink scheduling information supported by the UE according to the second information.
  • the network device can determine the uplink scheduling information supported by the UE based on the second information.
  • the uplink scheduling information may include the maximum number of data blocks and/or the maximum number of bits that can be uplink transmitted within a single time domain unit.
  • S602 for an introduction to the scheduling information and the time domain unit, please refer to S602 in the embodiment shown in FIG. 6 .
  • the network device determines the uplink scheduling information supported by the UE based on the second information. For example, one way for the network device to determine the uplink scheduling information supported by the UE based on the second information is that the network device can determine the received signal strength for the second information; based on the received signal strength, the network device can determine the corresponding MCS; based on the received signal strength, the network device can determine the corresponding MCS. MCS, the network device can determine the uplink scheduling information supported by the UE.
  • the network device can determine the received signal strength of the second information by measuring the received second information, for example, represented by SNR, where in this example, the predetermined transmission power is the maximum transmission power.
  • SNR the received second information
  • MCS the predetermined transmission power
  • the network device may determine the maximum number of data blocks and/or the maximum number of bits that the UE can uplink transmit in a single time domain unit according to the MCS.
  • the network device can determine the spectrum efficiency information of the UE according to the MCS by looking up a table (for example, the table can refer to Table 2 in the embodiment shown in Figure 6).
  • the network device will determine the number of bits of uplink information that the UE should send based on the number of bits of uplink information that the UE needs to send and the maximum number of bits that the UE can transmit uplink in a single time domain unit.
  • the minimum number of uplink time domain units scheduled for the UE may also be determined.
  • the network device schedules the UE according to the uplink scheduling information supported by the UE.
  • the network device determines the uplink scheduling information supported by the UE. If the UE is to be scheduled for uplink transmission, scheduling can be performed according to the uplink scheduling information. For more information about this step, please refer to S603 in the embodiment shown in FIG. 6 .
  • the UE does not need to indicate the transmission capability of the UE to the network device, but only needs to send the second information to the network device according to the predetermined transmission power, and the network device can also determine the transmission capability of the UE based on the second information. , thereby determining the uplink scheduling information of the UE.
  • the amount of reporting by the UE is reduced and resource overhead is saved.
  • the network device can determine the uplink scheduling strategy based on the actual transmission capability of the UE determined by the second information, which improves the flexibility of the scheduling process, so that the scheduling of the UE can not only save resource overhead as much as possible, but also ensure the access success rate of the UE. .
  • the maximum number of data blocks and/or the maximum number of bits supported by the UE in a single time domain unit may be greater than the UE corresponding to the worst UE capability.
  • the maximum number of data blocks and/or the maximum number of bits supported in a single time domain unit can save resource overhead and reduce the access delay of the UE.
  • the network device can also determine the maximum number of data blocks and/or the maximum number of bits supported by the UE in a single time domain unit based on the actual transmission capability of the UE, thereby ensuring that the The normal operation of the UE ensures the reception performance of the receiving end. It can be seen that the method provided by the embodiment of the present application can be applied to various types of UEs with different capabilities for uplink transmission.
  • Figure 9 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 900 may be the network device or the circuit system of the network device in the embodiment shown in any one of Figures 6 to 8, and is used to implement the method corresponding to the network device in the above method embodiment.
  • the communication device 900 may be the circuit system of the UE in the embodiment shown in any one of Figures 6 to 8, and is used to implement the method corresponding to the UE in the above method embodiment.
  • one circuit system is a chip system.
  • the communication device 900 includes at least one processor 901 .
  • the processor 901 can be used for internal processing of the device to implement certain control processing functions.
  • processor 901 includes instructions.
  • processor 901 can store data.
  • different processors may be independent devices, may be located in different physical locations, and may be located on different integrated circuits.
  • different processors may be integrated into one or more processors, for example, on one or more integrated circuits.
  • communication device 900 includes one or more memories 903 for storing instructions.
  • the memory 903 may also store data.
  • the processor and memory can be provided separately or integrated together.
  • the communication device 900 includes a communication line 902 and at least one communication interface 904.
  • the memory 903, the communication line 902, and the communication interface 904 are all optional, they are all represented by dotted lines in FIG. 9 .
  • the communication device 900 may also include a transceiver and/or an antenna.
  • the transceiver may be used to send information to or receive information from other devices.
  • the transceiver may be called a transceiver, a transceiver circuit, an input/output interface, etc., and is used to implement the transceiver function of the communication device 900 through an antenna.
  • the transceiver includes a transmitter and a receiver.
  • the transmitter can be used to generate a radio frequency signal from a baseband signal
  • the receiver can be used to convert the radio frequency signal into a baseband signal.
  • the processor 901 may include a general central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present application. circuit.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • Communication line 902 may include a path that carries information between the above-mentioned components.
  • Communication interface 904 uses any device such as a transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), Cable access network, etc.
  • RAN radio access network
  • WLAN wireless local area networks
  • Cable access network etc.
  • the memory 903 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory (RAM)) or other type that can store information and instructions.
  • a dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other medium for access, but not limited to this.
  • the memory 903 may exist independently and be connected to the processor 901 through a communication line 902. Alternatively, the memory 903 can also be integrated with the processor 901.
  • the memory 903 is used to store computer execution instructions for executing the solution of the present application, and is controlled by the processor 901 for execution.
  • the processor 901 is used to execute computer execution instructions stored in the memory 903, thereby implementing the steps performed by the network device described in any one of the embodiments in Figures 6 to 8, or to implement any one of Figures 6 to 8 Steps performed by the UE described in the embodiment.
  • the computer-executed instructions in the embodiments of the present application may also be called application codes, which are not specifically limited in the embodiments of the present application.
  • the processor 901 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 9 .
  • the communication device 900 may include multiple processors, such as the processor 901 and the processor 905 in FIG. 9 .
  • processors may be a single-CPU processor or a multi-CPU processor.
  • a processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the chip When the device shown in FIG. 9 is a chip, such as a chip of a network device or a chip of a UE, the chip includes a processor 901 (which may also include a processor 905), a communication line 902, a memory 903, and a communication interface 904.
  • the communication interface 904 may be an input interface, a pin or a circuit, etc.
  • Memory 903 may be a register, cache, etc.
  • the processor 901 and the processor 905 may be a general CPU, a microprocessor, an ASIC, or one or more integrated circuits for controlling program execution of the communication method of any of the above embodiments.
  • Embodiments of the present application can divide the device into functional modules according to the above method examples.
  • each functional module can be divided into corresponding functional modules, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • Figure 10 shows a schematic diagram of a device.
  • the device 1000 can be the network device or UE involved in the above method embodiments, or a network device in the network device. Chip or chip in UE.
  • the device 1000 includes a sending unit 1001, a processing unit 1002 and a receiving unit 1003.
  • the device 1000 can be used to implement the steps performed by the network device or the UE in the communication method of the embodiment of the present application.
  • the device 1000 can be used to implement the steps performed by the network device or the UE in the communication method of the embodiment of the present application.
  • the functions/implementation processes of the sending unit 1001, the receiving unit 1003 and the processing unit 1002 in Figure 10 can be implemented by the processor 901 in Figure 9 calling computer execution instructions stored in the memory 903.
  • the function/implementation process of the processing unit 1002 in Figure 10 can be implemented by the processor 901 in Figure 9 calling the computer execution instructions stored in the memory 903.
  • the functions/implementation of the sending unit 1001 and the receiving unit 1003 in Figure 10 The process can be implemented through the communication interface 904 in Figure 9.
  • the functions/implementation processes of the sending unit 1001 and the receiving unit 1003 can also be implemented through pins or circuits.
  • This application also provides a computer-readable storage medium that stores a computer program or instructions.
  • the method executed by the network device or UE in the foregoing method embodiments is implemented. .
  • the functions described in the above embodiments can be implemented in the form of software functional units and sold or used as independent products.
  • the technical solution of the present application essentially or contributes to the technical solution or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes a number of instructions. So that a computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in various embodiments of this application.
  • Storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program code.
  • the computer program product includes: computer program code.
  • the computer program code When the computer program code When the code is run on a computer, the computer is caused to perform the method performed by the network device or UE in any of the foregoing method embodiments.
  • An embodiment of the present application also provides a communication device, including a processor and an interface; the processor is configured to execute the method executed by the network device or UE involved in any of the above method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk (SSD)), etc.
  • the various illustrative logic units and circuits described in the embodiments of the present application can be programmed by general-purpose processors, digital signal processors (digital signal processors, DSPs), application specific integrated circuits (ASICs), and field programmable A field-programmable gate array (FPGA), or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to implement or operate the functions described.
  • the general-purpose processor may be a microprocessor.
  • the general-purpose processor may also be any conventional processor, controller, microcontroller or state machine.
  • a processor may also be implemented as a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration. accomplish.
  • the steps of the method or algorithm described in the embodiments of this application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM, flash memory, ROM, erasable programmable read-only memory (EPROM), EEPROM, register, hard disk, removable disk, CD-ROM or any other form in the field in the storage medium.
  • the storage medium can be connected to the processor, so that the processor can read information from the storage medium and can store and write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium can be installed in the ASIC, and the ASIC can be installed in the terminal device.
  • the processor and the storage medium may also be provided in different components in the terminal device.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.
  • the terminal device and/or the network device may perform some or all of the steps in the embodiment of the present application. These steps or operations are only examples. In the embodiment of the present application, other operations may also be performed or Variations of various operations. In addition, various steps may be performed in a different order than those presented in the embodiments of the present application, and it may not be necessary to perform all operations in the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法及装置。网络设备从终端设备接收第一信息,该第一信息指示终端设备的传输能力。网络设备根据第一信息确定该终端设备支持的调度信息,该调度信息包括单个时域单元内可传输的最大数据块数量和/或最大比特数;根据所述调度信息调度该终端设备。网络设备可以获知终端设备的实际传输能力,从而可以根据终端设备的实际传输能力来确定调度策略,提高了调度的灵活性,使得对于终端设备的调度既能节省资源开销,也能够保证终端设备的接入成功率。

Description

通信方法及装置
相关申请的交叉引用
本申请要求在2022年06月30日提交中国国家知识产权局、申请号为202210770926.3、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
非陆地网络(non-terrestrial network,NTN)技术扩展了蜂窝通信技术的应用领域,利用卫星等非地面网络设备,不仅能支持地面通信,同时也支持空间通信,为空、天、地、海一体化通信提供了技术可能性。
然而采用NTN通信技术,由于非地面网络设备与地面高度差距大,使得非地面网络设备与地面的终端设备通信时链路衰减巨大,导致终端设备对于来自非地面网络设备的信号的接收质量较差。为了提高终端设备对接收信号的解调成功率,只能减少每个时域单元,例如传输时间间隔(transmission time interval,TTI)承载的有效比特(bit)数。终端设备的能力越差,则每个时域单元承载的有效比特数越少。
目前,通信***在设计时,会按照最差的终端设备能力进行兼容设计,从而在通信***内的设备(例如网络设备和终端设备)通信时,网络设备会按照最差的终端设备能力来调度终端设备。例如在NTN***中,网络设备在调度终端设备时,按照最差的终端设备能力,在一个时域单元内只能传输极少量的比特数,则待传输的信息可能需要通过多个时域单元才能传输完毕,这导致资源开销较大。
发明内容
本申请实施例提供一种通信方法及装置,用于减小资源开销。
第一方面,提供一种通信方法,该方法可由网络设备执行,或由包括网络设备功能的其他设备执行,或由芯片***或其他功能模块执行,该芯片***或功能模块能够实现网络设备的功能,该芯片***或功能模块例如设置在网络设备中。可选的,该网络设备例如位于地面(或者说,为地面网络设备),例如为地面基站;或者,该网络设备例如为非地面网络设备,例如卫星;或者,该网络设备例如包括非地面网络设备和地面网络设备。该方法包括:从终端设备接收第一信息,所述第一信息用于指示所述终端设备的传输能力;根据所述第一信息确定所述终端设备支持的调度信息,所述调度信息包括单个时域单元内可传输的最大数据块数量和/或最大比特数;根据所述调度信息调度所述终端设备。
本申请实施例中,终端设备可以通过第一信息向网络设备指示该终端设备的传输能力,从而网络设备可以根据该终端设备的传输能力来确定该终端设备支持的调度信息,或者说,网络设备在调度该终端设备时可以参考该终端设备的实际传输能力来调度。例如网络设备可以根据该终端设备的实际传输能力准确地确定该终端设备在单个时域单元内所支持的最大数据块数量和/或最大比特数,从而不必对各类终端设备都按照统一的调度策略来调度上行或下行信息传输,提高了调度过程的灵活性,使得对于终端设备的调度既能节省资源开销,也能够保证终端设备的接入成功率。另外,网络设备不必按照最差的终端设备能力来调度该终端设备,如果该终端设备的实际传输能力优于最差的终端设备能力,则网络设备可以确定该终端设备在单个时域单元内所支持的最大数据块数量和/或最大比特数可以大于最差的终端设备能力对应的终端设备在单个时域单元内所支持的最大数据块数量和/或最大比特数,从而可以节省资源开销。
在一种可选的实施方式中,所述终端设备通过非地面网络设备接入所述网络设备,或者,所述网络设备为非地面网络设备。例如该网络设备为地面网络设备,终端设备可以通过非地面网络设备(例如卫星)接入该网络设备;又例如,该网络设备为非地面网络设备,终端设备可以直接接入该网络设备。
在一种可选的实施方式中,所述第一信息包括如下一项或多项:所述终端设备的等效全向辐射功率(effective isotropic radiated power,EIRP),所述终端设备的最大发射功率信息和/或发射天线增益信息, 第一能力等级信息,或,所述终端设备的类型信息。其中,所述第一能力等级信息用于指示所述终端设备的发射能力所属的能力等级。可选的,如果第一信息指示了终端设备的上行传输能力,则网络设备可以根据第一信息确定该终端设备支持的上行调度信息;如果第一信息指示了终端设备的下行传输能力,则网络设备可以根据第一信息确定该终端设备支持的下行调度信息。例如,如上的第一信息指示的是终端设备的上行传输能力,网络设备根据该第一信息可确定该终端设备的上行调度信息。例如,该终端设备的EIRP可以指示该终端设备的最大发射功率信息和/或发射天线增益信息,使得网络设备通过EIRP就能获得更多参数信息(例如最大发射功率信息和/或发射天线增益信息等参数信息),减小了上报量,节省信令开销。第一能力等级信息指示了该终端设备的发射能力所属的能力等级,从而网络设备根据第一能力等级信息就能确定该终端设备的发射能力,相对于直接上报该发射能力来说,上报第一能力等级信息有利于节省信令开销。终端设备的类型也可以间接指示该终端设备的能力,从而网络设备根据终端设备的类型信息也能确定该终端设备的能力,指示方式较为简单,也有利于节省信令开销。而如果指示该终端设备的最大发射功率信息和/或发射天线增益信息,则网络设备可以直接根据终端设备的上报确定这些参数,对于网络设备来说实现较为简单。
在一种可选的实施方式中,所述第一信息包括在无线资源控制(radio resource control,RRC)消息中;或,所述第一信息包括在媒体接入控制(media access control,MAC)控制元素(control element,CE)中;或,所述第一信息包括在随机接入过程的第三消息(Msg3)中。例如,该RRC消息用于上报该终端设备的能力信息,则相当于将第一信息与该终端设备的其他能力信息一并上报,网络设备通过一条消息就能获得该终端设备的各种能力信息。或者也可以新增消息来承载第一信息,例如新增MAC CE或其他消息,使得第一信息的上报不会影响其他已有消息的格式。或者也可以通过Msg3来上报第一信息,使得网络设备能够更快地获得第一信息。
在一种可选的实施方式中,所述调度信息包括上行调度信息,其中,所述根据所述第一信息确定所述终端设备支持的调度信息,包括:根据所述第一信息确定第一接收信号强度,所述第一接收信号强度为所述网络设备对于来自所述终端设备的信息的接收信号强度;根据所述第一接收信号强度确定第一调制与编码策略(modulation and coding scheme,MCS);根据所述第一MCS确定所述上行调度信息。其中,所述上行调度信息包括所述单个时域单元内可上行传输的最大数据块数量和/或最大比特数。从而,网络设备可以快速准确地确定上行调度信息。
在一种可选的实施方式中,所述第一信息还包括所述终端设备的接收天线增益信息和/或接收噪声信息;或,所述第一信息还包括第二能力等级信息,所述第二能力等级信息用于指示所述终端设备的接收能力所属的能力等级。在该实施方式中,第一信息指示了终端设备的下行传输能力,则网络设备可以根据第一信息确定该终端设备支持的下行调度信息。其中,若终端设备上报第二能力等级信息有利于节省信令开销;若终端设备上报该终端设备的接收天线增益信息和/或接收噪声信息,可以减少网络设备的信息处理量,提高调度终端设备的效率。
在一种可选的实施方式中,第一信息可以指示终端设备的上行传输能力和/或下行传输能力,或者,终端设备的上行传输能力和下行传输能力也可以分别通过不同的信息来指示。
在一种可选的实施方式中,所述调度信息包括下行调度信息,其中,所述根据所述第一信息确定所述终端设备支持的调度信息,包括:根据所述第一信息确定第二接收信号强度,所述第二接收信号强度为所述终端设备对于来自所述网络设备的信息的接收信号强度;根据所述第二接收信号强度确定第二MCS;根据所述第二MCS确定所述下行调度信息。其中,所述下行调度信息包括所述单个时域单元内可下行传输的最大数据块数量和/或最大比特数。从而,网络设备可以快速准确地确定下行调度信息。
在一种可选的实施方式中,所述第一信息为第一类型的终端设备对应的信息,所述第一类型的终端设备的传输能力为第一传输能力。网络设备根据第一信息本身就可以确定该终端设备的类型,从而能够根据该终端设备的类型确定终端设备的传输能力,无需第一信息再携带其他信息来指示,有助于节省信令开销。其中,所述第一信息可以是随机接入前导。将随机接入前导作为第一信息,可以使得网络设备更快(或者说,更早)地获得第一信息。另外,由于随机接入前导的格式较为简单,信息量较小,网络设备对于随机接入前导的解析效率较高,这也能够使得网络设备快速获得第一信息。
第二方面,提供一种通信方法,该方法可由网络设备执行,关于网络设备的介绍可参考第一方面。该方法包括:从终端设备接收第二信息,所述第二信息的发射功率为预定发射功率;根据所述第二信息确定所述终端设备支持的上行调度信息,所述上行调度信息包括单个时域单元内可上行传输的最大数据 块数量和/或最大比特数;根据所述上行调度信息调度所述终端设备。
本申请实施例中,终端设备不必向网络设备指示该终端设备的传输能力,而是按照预定发射功率向该网络设备发送第二信息即可,而网络设备根据第二信息也可以确定该终端设备的传输能力,从而确定该终端设备的上行调度信息。通过本申请实施例的技术方案,网络设备可以根据由第二信息确定的该终端设备的实际传输能力确定该终端设备在单个时域单元内所支持的最大数据块数量和/或最大比特数,从而不必对各类终端设备都按照统一的调度策略来调度上行传输,可以实现对终端设备的灵活调度,使得对于终端设备的调度既能节省资源开销,也能够保证终端设备的接入成功率。另外,网络设备不必按照最差的终端设备能力来调度该终端设备,如果该终端设备的实际传输能力优于最差的终端设备能力,则网络设备可以确定该终端设备在单个时域单元内所支持的最大数据块数量和/或最大比特数可以大于最差的终端设备能力对应的终端设备在单个时域单元内所支持的最大数据块数量和/或最大比特数,从而可以节省资源开销。再有,本申请实施例无需终端设备向网络设备发送相应的信息来告知该终端设备的传输能力,减少了终端设备的上报量,节省了资源开销。
在一种可选的实施方式中,所述预定发射功率为所述终端设备的最大发射功率。终端设备通过最大发射功率来发送第二信息,使得网络设备能够获知该终端设备的最大传输能力,从而网络设备对于终端设备的调度可以更准确。
在一种可选的实施方式中,所述终端设备通过非地面网络设备接入所述网络设备,或者,所述网络设备为非地面网络设备。
在一种可选的实施方式中,所述第二信息为随机接入前导、或随机接入过程中的Msg3、或随机接入过程中的第五消息(Msg5)、或物理上行共享信道(physical uplink shared channel,PUSCH)承载的信息。或者,第二信息也可以是其他的上行信息,具体不做限制。
在一种可选的实施方式中,所述方法还包括:发送第三信息,所述第三信息用于指示所述终端设备按照所述预定发射功率发送所述第二信息。第二信息的类型可以是预设的,例如通过协议预定义,或者由终端设备和网络设备协商确定,或者也可由网络设备指示,例如网络设备可以通过第三信息来指示,这种方式较为灵活。
在一种可选的实施方式中,所述第三信息为***信息、或随机接入响应消息、或物理下行控制信道(physical downlink control channel,PDCCH)承载的信息。对于第三信息的实现方式也不做限制。
在一种可选的实施方式中,根据所述第二信息确定所述终端设备支持的上行调度信息,包括:确定所述网络设备对所述第二信息的接收信号强度;根据所述接收信号强度确定MCS;根据所述MCS确定所述上行调度信息。给出了网络设备确定上行调度信息的一种方式,除此之外,网络设备还可以通过其他方式来确定上行调度信息。
第三方面,提供一种通信方法,该方法可由终端设备执行,或由包括终端设备功能的其他设备执行,或由芯片***或其他功能模块执行,该芯片***或功能模块能够实现终端设备的功能,该芯片***或功能模块例如设置在终端设备中。该方法包括:确定所述终端设备的传输能力;向网络设备发送第一信息,所述第一信息用于指示所述终端设备的传输能力。
在一种可选的实施方式中,所述第一信息包括如下一项或多项:所述终端设备的EIRP,所述终端设备的最大发射功率信息和/或发射天线增益信息,第一能力等级信息,或,所述终端设备的类型信息。其中,所述第一能力等级信息用于指示所述终端设备的发射能力所属的能力等级。
在一种可选的实施方式中,所述第一信息包括在RRC消息中;或,所述第一信息包括在MAC CE中;或,所述第一信息包括在随机接入过程的Msg3中。
在一种可选的实施方式中,所述RRC消息为用于承载所述终端设备的能力信息的消息。
在一种可选的实施方式中,所述第一信息还包括所述终端设备的接收天线增益信息和/或接收噪声信息;或,所述第一信息还包括第二能力等级信息,所述第二能力等级信息用于指示所述终端设备的接收能力所属的能力等级。
在一种可选的实施方式中,所述第一信息为第一类型的终端设备对应的信息,所述第一类型的终端设备的传输能力为第一传输能力。
在一种可选的实施方式中,所述第一信息为随机接入前导。
关于第三方面或各种可选的实施方式所带来的技术效果,可参考对于第一方面或相应实施方式的技术效果的介绍。
第四方面,提供一种通信方法,该方法可由终端设备执行,或由包括终端设备功能的其他设备执行,或由芯片***或其他功能模块执行,该芯片***或功能模块能够实现终端设备的功能,该芯片***或功能模块例如设置在终端设备中。该方法包括:以预定发射功率向网络设备发送第二信息,所述第二信息用于确定所述终端设备支持的上行调度信息,所述上行调度信息包括单个时域单元内可上行传输的最大数据块数量和/或最大比特数。
在一种可选的实施方式中,所述预定发射功率为所述终端设备的最大发射功率。
在一种可选的实施方式中,所述终端设备通过非地面网络设备接入所述网络设备,或者,所述终端设备为非地面网络设备。
在一种可选的实施方式中,所述第二信息为随机接入前导、或随机接入过程中的Msg3、或随机接入过程中的Msg5、或PUSCH承载的信息。
在一种可选的实施方式中,所述方法还包括:从所述网络设备接收第三信息,所述第三信息用于指示所述终端设备按照所述预定发射功率发送所述第二信息。
在一种可选的实施方式中,所述第三信息为***信息、或随机接入响应消息、或PDCCH承载的信息。
关于第四方面或各种可选的实施方式所带来的技术效果,可参考对于第二方面或相应实施方式的技术效果的介绍。
第五方面,提供一种通信装置。所述通信装置可以为上述第一方面和/或第二方面所述的网络设备,或为包括该网络设备的通信设备,或为该网络设备中的功能模块,例如基带装置或芯片***等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元(有时也称为发送模块),在收发单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能模块,该功能模块称为收发单元,该功能模块能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能模块,收发单元是对这些功能模块的统称。
其中,所述收发单元(或,所述接收单元),用于从终端设备接收第一信息,所述第一信息用于指示所述终端设备的传输能力;所述处理单元,用于根据所述第一信息确定所述终端设备支持的调度信息,所述调度信息包括单个时域单元内可传输的最大数据块数量和/或最大比特数;所述处理单元,还用于根据所述调度信息调度所述终端设备。
或者,所述收发单元(或,所述接收单元),用于从终端设备接收第二信息,所述第二信息的发射功率为预定发射功率;所述处理单元,用于根据所述第二信息确定所述终端设备支持的上行调度信息,所述上行调度信息包括单个时域单元内可上行传输的最大数据块数量和/或最大比特数;所述处理单元,还用于根据所述上行调度信息调度所述终端设备。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面和/或第二方面所述的网络设备的功能。
第六方面,提供另一种通信装置。所述通信装置可以为上述第三方面和/或第四方面所述的终端设备,或为包括该终端设备的通信设备,或为该终端设备中的功能模块,例如基带装置或芯片***等。所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块),关于收发单元的介绍可参考第五方面。
其中,所述处理单元,用于确定所述终端设备的传输能力;所述收发单元(或,所述发送单元),用于向网络设备发送第一信息,所述第一信息用于指示所述终端设备的传输能力。
或者,所述收发单元(或,所述发送单元),用于以预定发射功率向网络设备发送第二信息,所述第二信息用于确定所述终端设备支持的上行调度信息,所述上行调度信息包括单个时域单元内可上行传输的最大数据块数量和/或最大比特数。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第三方面和/或第四方面所述的终端设备的功能。
第七方面,提供一种通信装置,该通信装置可以为网络设备,或者为用于网络设备中的芯片或芯片 ***。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令时,使通信装置执行上述各方面中由网络设备所执行的方法。
第八方面,提供一种通信装置,该通信装置可以为终端设备,或者为用于终端设备中的芯片或芯片***。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令时,使通信装置执行上述各方面中由终端设备所执行的方法。
第九方面,提供一种通信***,包括终端设备以及网络设备,其中,终端设备用于执行如第三方面和/或第四方面所述的通信方法,且,网络设备用于执行如第一方面和/或第二方面所述的通信方法。
第十方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得上述各方面中网络设备或终端设备所执行的方法被实现。
第十一方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述各方面所述的方法被实现。
第十二方面,提供一种芯片***,包括处理器和接口,所述处理器用于从所述接口调用并运行指令,以使所述芯片***实现上述各方面的方法。
附图说明
图1为本申请实施例提供的NTN***(透传模式)的架构示意图;
图2为本申请实施例提供的NTN***(再生模式)的架构示意图;
图3为本申请实施例提供的NTN***(具有ISL)的架构示意图;
图4为本申请实施例提供的NTN***(网络设备包括DU和CU)的架构示意图;
图5为采用CU与DU分离架构的基站的示意图;
图6为本申请实施例提供的一种通信方法的流程图;
图7为本申请实施例中UE接入网络的流程图;
图8为本申请实施例提供的另一种通信方法的流程图;
图9为本申请实施例提供的一种装置的示意图;
图10为本申请实施例提供的又一种装置的示意图。
具体实施方式
本申请实施例提供的技术方案可以应用于长期演进(long term evolution,LTE)***,新空口(new radio,NR)通信***,NTN***,车到一切(vehicle to everything,V2X),车联网,机器类通信(machine type communications,MTC),物联网(internet of things,IoT),机器到机器(machine to machine,M2M),或者还可能应用于未来的移动通信***例如第六代(the 6th generation,6G)***。
作为一种可能的应用场景,NTN***可以包括卫星***。按照卫星高度,即卫星轨位高度,可以将卫星分为高椭圆轨道(highly elliptical orbit,HEO)卫星、对地静止轨道(geosynchronous earth orbit,GEO)卫星、中地球轨道(medium earth orbit,MEO)卫星和低地球轨道(low earth orbit,LEO)卫星等。此外,NTN***还可以包括高空平台(high altitude platform station,HAPS)等非地面网络设备,本申请实施例涉及的非地面网络设备不限于以上举例。本申请中的非地面网络设备也可以称为空中网络设备。
NTN***可能有多种不同的架构,下面举例介绍。
作为一种示例,请参见图1,为NTN***的一种结构示意图。该NTN***包括非地面网络设备、网关、地面基站、地面核心网以及终端设备。非地面网络设备可以是卫星,例如HEO卫星、GEO卫星、MEO卫星或LEO卫星,或者非地面网络设备也可以是HAPS等,这里不作限制。本申请实施例以非地面网络设备为卫星为例介绍,但本申请实施例也可以将卫星替换为其他非地面网络设备(例如HAPS)。网关(或称地面站、地球站、信关站、关口站)(gateway),可用于连接卫星和基站。一个或多个卫星可以通过一个或多个网关连接到一个或多个地面基站,在此不做限制。在图1中,卫星的通信模式为透传模式(transparent),即卫星作为一个模拟射频中继器,实现无线频率转换和放大,可透传或复制基站与终端之间的信号。例如,终端设备发送的信号可通过卫星透传,网关转发,进入地面基站。
作为另一种示例,请参见图2,为NTN***的另一种结构示意图。在图2中,卫星的通信模式为再生模式(regenerative)。在再生模式下,卫星可以作为基站,实现从地面接收的信号的再生,卫星可以理解并且处理这些信号。例如,卫星可以是搭载在人造地球卫星或高空飞行器上的基站。网关可转发卫星(即基站)与核心网之间的信令。
需要说明的是,图2仅示出了一个卫星以及一个网关,在实际使用中,可根据需要采取多个卫星和/或多个网关的架构。其中,每个卫星可向一个或多个终端设备提供服务,每个网关可对应于一个或多个卫星,每个卫星可对应于一个或多个网关,本申请实施例不予具体限定。
本申请实施例对卫星的通信模式不作限制,例如,卫星的通信模式可以是透传模式,或者也可以是再生模式。
作为又一种示例,请参见图3,为NTN***的又一种结构示意图。图3以两个卫星(第一卫星和第二卫星)和两个网关(第一网关和第二网关)为例。这两个卫星的通信模式为再生模式,即,这两个卫星可以作为基站。图3与图2的区别在于,图3中的两个卫星之间存在卫星之间的链路(inter-satellite link,ISL)。在该网络架构下,不同的卫星可以通过ISL相互通信。另外,图3是以不同的卫星连接到不同的地面核心网为例,除此之外,不同的卫星也可以连接到相同的地面核心网。
作为再一种示例,卫星还可以作为基站的分布式单元(distributed unit,DU),与地面基站的集中式单元(centralized unit,CU)分离,形成CU-DU分布式架构。请参见图4,为NTN***的再一种结构示意图。图4与图1的不同之处在于,在图4中,卫星作为基站的DU,可以理解、处理并再生来自地面的信号,而并不仅是透传或者复制;地面基站可作为基站的CU。这种网络架构下,终端设备和卫星之间的服务链路可以传输NR-Uu无线接口信号,卫星和网关之间的馈电链路传输卫星无线接口(satellite radio interface,SRI)信号,在该SRI信号之上,传输DU与CU之间的F1接口信号。
本申请实施例中,网络设备可包括卫星等非地面网络设备,或者位于地面的接入网(access network,AN)设备,例如位于地面的基站。网络设备是终端设备通过无线方式接入到移动通信***中的接入设备。网络设备也可以是指在空口与终端设备通信的设备。本申请实施例中的接入网设备可以包括LTE***或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(evolved Node B,eNB或e-NodeB);NR***中的下一代节点B(next generation node B,gNB)或者无线保真(wireless-fidelity,Wi-Fi)***中的接入节点等;或者,网络设备可以为中继站、车载设备以及未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)设备、M2M网络中的设备、IoT网络中的设备、无人机设备等。在V2X***中的接入网设备可以为路侧单元(road side unit,RSU)。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
另外,本申请实施例中的基站可以包括CU和DU,多个DU可以由一个CU集中控制。CU和DU可以根据其具备的无线网络的协议层功能进行划分,例如分组数据汇聚协议(packet data convergence protocol,PDCP)层及以上协议层(例如无线资源控制(radio resource control,RRC)层或服务数据适配协议(service data adaptation protocol,SDAP)的功能设置在CU,PDCP以下的协议层,例如无线链路控制(radio link control,RLC)层、介质访问控制(medium access control,MAC)层和物理(PHY)层等的功能设置在DU。需要说明的是,这种协议层的划分仅仅是一种举例,还可以在其它协议层划分。射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,本申请实施例不作任何限制。另外,在一些实施方式中,还可以将CU的控制面(control plan,CP)和用户面(user plan,UP)分离,分成不同实体来实现,分别为控制面CU(CU-CP)和用户面CU(CU-UP),对此可参考图5。其中,CU-CP与CU-UP可通过E1接口通信。CU-CP可以包括PDCP控制(PDCP-control,PDCP-C)层和RRC层等,CU-UP可以包括PDCU用户(PDCP-user,PDCP-U)层和SDAP层等。CU-CP通过F1控制(F1-control,F1-C)接口与DU通信,CU-UP通过F1用户(F1-user,F1-U)接口与DU通信。
以网络设备是基站为例,基站可以与终端设备进行通信,或者也可以通过中继站与终端设备进行通信。终端设备可以与采用不同接入技术的多个基站进行通信。以网络设备是卫星为例,卫星可以通过网关与基站连接。如果卫星的通信模式为透传模式,终端设备发送的信号可以通过卫星透传,网关转发,进入地面基站。如果卫星的通信模式为再生模式,卫星可以作为基站,处理终端设备发送的信号。
本申请实施例中,终端设备是一种具有无线收发功能的设备,可以向网络设备发送信号,或接收来自网络设备的信号。终端设备可包括用户设备(user equipment,UE),有时也称为终端、接入站、UE 站、远方站、无线通信设备、或用户装置等等。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、D2D、V2X、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、IoT、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通、智慧城市(smart city)、无人机、机器人等场景的终端设备。例如,所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、VR终端、或AR终端等等。如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备。车载终端设备也称为车载单元(on-board unit,OBU)。本申请实施例的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元。车辆通过内置的所述终端设备可以实施本申请实施例的方法。
本申请实施例中,用于实现网络设备或终端设备功能的通信装置可以是网络设备或终端设备本身,也可以是能够支持网络设备或终端设备实现该功能的装置,例如芯片***,该装置可以被安装在网络设备或终端设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备,以及,以用于实现终端设备的功能的装置是终端设备为例。另外为了描述方便,本申请实施例后文将终端设备以UE为例进行说明。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一信息和第二信息,可以是同一个信息,也可以是不同的信息,且,这种名称也并不是表示这两个信息的内容、大小、应用场景、发送端/接收端、优先级或者重要程度等的不同。另外,本申请所介绍的各个实施例中对于步骤的编号,只是为了区分不同的步骤,并不用于限定步骤之间的先后顺序。例如,S601可以发生在S602之前,或者可能发生在S602之后,或者也可能与S602同时发生。
在卫星通信场景下,由于卫星与地面的距离较远,使得卫星与地面的UE通信时链路衰减巨大,以下行通信为例,则导致UE对于来自卫星的信号的接收质量较差。UE要能够对接收的信号进行正确的解调,需要满足一定的链路余量,该链路余量例如为UE的接收质量与解调门限之间的差值,该链路余量越大,则UE的解调成功率越高,解调性能越好。可见,如果接收端的接收质量较差,在解调门限不变的情况下,会导致链路余量变小,从而降低了接收端的解调性能。为了提高链路余量,需按照较低阶数的MCS来调度UE,则单个时域单元,例如TTI承载的有效比特数较少。一般来说,在同样的传输距离下,能力越差的UE对于信号的接收质量也会越差。那么为了提高链路余量,为能力差的UE所确定的MCS就会更低,导致单个时域单元承载的有效比特数也就更少。
不同的UE,能力可能不同。例如有一些专用UE,一般来说能力较强,例如天线增益较大。如果调度此类UE,单个TTI能够承载的有效比特数较多,通信时延较小,资源开销也较小。其中,专用UE是具有高增益天线装置,可应用于特定通信场景的UE,例如具有抛物面天线的UE,功率不受限制,天线增益较高,可以作为车载终端使用。又例如一些普通UE或者称为非专用UE,例如手持终端设备(例如手机等),一般来说能力较差,例如天线增益较小。如果调度此类UE,单个TTI能够承载的有效比特数较少,导致要通过多个TTI才能将待传输的信息承载完毕,资源开销较大,也带来了较大的通信时延。
为了使得各类能力的UE都得到调度,或者说,为了保证能力差的UE也能正常工作,因此在设计通信***时,可以按照最差的UE能力进行设计。例如,在NTN***中,考虑到链路余量,网络设备按照如上所述的普通UE的能力作为最差的UE能力进行UE调度,采用较低阶的MCS调度UE,使得UE能够正常接入基站并进行通信。然而,单个TTI只能调度极少量的比特数,待传输的信息可能需要 通过多个时域单元才能传输完毕,这导致资源开销较大,通信时延也比较大。
本申请实施例中,UE可以向网络设备发送第一信息,通过第一信息指示UE的传输能力,从而网络设备可以根据该UE的传输能力来确定该UE支持的调度信息,或者说,网络设备在调度该UE时可以参考该UE的实际传输能力来调度,从而不必对各类终端设备都按照统一的调度策略来调度,提高了调度过程的灵活性,使得对于UE的调度既能节省资源开销,也能够保证UE的接入成功率。例如对于如上介绍的专用UE,网络设备可以根据该UE的实际传输能力确定该UE在单个时域单元内所支持的最大数据块数量和/或最大比特数,则网络设备不必按照最差的UE能力来调度该UE,专用UE的实际传输能力一般都优于最差的UE能力,则该UE在单个时域单元内所支持的最大数据块数量和/或最大比特数可以大于最差的UE能力对应的UE在单个时域单元内所支持的最大数据块数量和/或最大比特数,可能通过较少的时域单元就能将待传输的信息传输完毕,既不影响接收端的接收性能,也能节省资源开销,以及能够减小通信时延。又例如,对于如上介绍的普通UE,网络设备也能够根据该UE的实际传输能力确定该UE在单个时域单元内所支持的最大数据块数量和/或最大比特数,从而能够保证该UE的正常工作,保证接收端的接收性能。
下面结合附图介绍本申请实施例提供的技术方案。
本申请实施例提供一种通信方法,请参见图6,为该方法的流程图。该方法可应用于图1~图4中的任一个附图所示的网络架构。例如该方法所涉及的UE为图1~图4中的任一个附图所示的UE。该方法所涉及的网络设备可位于地面(或者说,为地面网络设备),UE可通过非地面网络设备接入该网络设备,例如非地面网络设备为图1中的卫星,该网络设备为图1中的地面基站;或者,该方法所涉及的网络设备可以是非地面网络设备,例如该网络设备为图2或图3中的卫星;或者,该方法所涉及的网络设备可以包括非地面网络设备和/或地面网络设备,例如该非地面网络设备为图4中的卫星,该地面网络设备为图4中的地面基站。
S601、UE向网络设备发送第一信息。相应的,网络设备从UE接收第一信息。
第一信息可指示该UE的传输能力,该UE的传输能力可包括上行传输能力和/或下行传输能力。其中,上行传输能力也可以称为发射能力或发送能力,下行传输能力也可以称为接收能力。
第一信息要指示该UE的传输能力,可以有多种不同的指示方式,下面举例介绍。
1、第一种指示方式。第一信息通过所包括的内容来指示该UE的传输能力,因此第一种指示方式也可以称为显式指示方式。
(1)第一信息指示该UE的上行传输能力和/或下行传输能力。
例如,可预先确定UE类型与UE的传输能力之间的对应关系,例如称为第一对应关系。在第一对应关系中,一种UE类型与一种传输能力对应。例如UE类型包括第一类型,在第一对应关系中,第一类型与第一传输能力对应;又例如,UE类型包括第二类型,在第一对应关系中,第二类型与第二传输能力对应,等等。例如第一类型为专用类型,第一类型的UE为前述的专用UE;第二类型为普通类型,第二类型的UE为前述的普通UE;或者,第二类型为专用类型,第二类型的UE为前述的专用UE;第一类型为普通类型,第一类型的UE为前述的普通UE;或者,第一类型和/或第二类型也可以是除此之外的其他UE类型,具体不做限制,此外,本申请也不限定UE类型的数量,也就是说,可以存在两种以上的UE类型。本申请中以第一类型与第二类型进行说明。其中,第一传输能力与第二传输能力可以是同一种传输能力,也可以是不同的传输能力。第一对应关系可以通过协议预定义,或者也可以由网络设备配置并通知UE,或者也可以由网络设备和UE协商确定。
那么,第一信息通过指示该UE的类型,就可以指示该UE的传输能力。例如,第一信息包括该UE的类型信息,该类型信息可指示该UE的类型。网络设备根据第一对应关系可以确定该类型信息所对应的传输能力为该UE的传输能力。该传输能力包括上行传输能力和/或下行传输能力。关于上行传输能力和下行传输能力可以通过何种参数体现,将在后文介绍。
(2)第一信息指示该UE的上行传输能力。
作为一种可选的实施方式,第一信息可包括该UE的EIRP。UE的EIRP,例如为该UE的最大发射功率与该UE的发射天线增益之间的乘积,即,EIRP表示了发射功率与发射天线增益的联合效果。或者,EIRP也可以是该UE的最大发射功率、该UE的发射天线增益以及该UE的其他参数联合作用的结果,本申请实施例不做限制。网络设备根据该UE的EIRP就可以相应确定该UE的最大发射功率和发射天线增益,因此也可以理解为,UE上报该UE的EIRP,也就相当于上报了该UE的最大发射功率 信息与发射天线增益信息,相当于UE通过上报EIRP这一种参数就能够实现对于多种参数的上报,有利于节省第一信息的传输开销。
作为又一种可选的实施方式,第一信息可包括该UE的最大发射功率信息和/或发射天线增益信息,该发射天线增益信息可指示该UE的发射天线增益。即,UE也可以直接上报该UE的最大发射功率信息和/或发射天线增益信息,减少网络设备的信息处理量。
作为再一种可选的实施方式,第一信息可包括第一能力等级信息,第一能力等级信息可指示第一能力等级,第一能力等级为该UE的上行传输能力所属的能力等级。例如,可预先划分一个或多个上行能力等级,并确定上行能力等级与上行传输能力之间的对应关系,例如称为第二对应关系。在第二对应关系中,一个上行能力等级可对应一种上行传输能力,不同的上行能力等级对应的上行传输能力相同或不同。第二对应关系可以是预设的,例如通过协议预定义,或者也可以由网络设备配置并通知UE,或者也可以由网络设备和UE协商确定的。在第二对应关系中,上行传输能力可以通过相应的参数来体现,例如通过UE的EIRP体现,则不同的上行能力等级可以对应不同的EIRP,或对应不同的EIRP范围。例如请参考表1,为上行能力等级与EIRP范围之间的对应关系的一种示例。需要注意的是,表1只是示例,例如本申请实施例中的上行能力等级与EIRP范围之间的对应关系可包括表1中的一项或多项(其中,表1中的一行视为一项),或者本申请实施例中的上行能力等级与EIRP范围之间的对应关系还可以包括表1未包括的其他项。
表1
从表1可以看到,不同的上行能力等级分别对应相应的EIRP范围,例如UE的上行能力等级为1,则对应的EIRP范围为[-15,-5)分贝瓦(dBW)。可见,根据UE的上行能力等级就能确定该UE对应的EIRP。
或者,上行传输能力也可以通过第一参数体现,则不同的上行能力等级可以对应第一参数的不同取值,或对应第一参数的不同取值范围,第一参数可包括UE的最大发射功率和/或发射天线增益。或者,上行传输能力还可以通过其他参数体现,具体不做限制。第一能力等级例如为这一个或多个上行能力等级中的一个,网络设备确定了第一能力等级,也就能确定第一能力等级对应的上行传输能力就是该UE的上行传输能力。
根据第(1)条和第(2)条的介绍可知,如果要指示UE的上行传输能力,第一信息可包括UE的类型信息,或者包括UE的EIRP,或者包括UE的最大发射功率信息和/或发射天线增益信息,或者包括第一能力等级信息。可选的,第一信息可包括如上信息中的一项或多项,也就是说,第一信息可包括UE的类型信息、UE的EIRP、UE的最大发射功率信息和/或发射天线增益信息、或第一能力等级信息中的一项或多项。例如,第一信息可包括UE的类型信息和UE的EIRP,从而网络设备既能够获知该UE的上行传输能力,也能确定该UE的类型。
(3)第一信息指示该UE的下行传输能力。
作为一种可选的实施方式,第一信息可包括该UE的接收天线增益信息和/或接收噪声信息,该接收天线增益信息可指示该UE的接收天线增益。该UE的接收噪声信息例如指示该UE的接收噪声功率。
作为又一种可选的实施方式,第一信息可包括第二能力等级信息,第二能力等级信息可指示第二能力等级,第二能力等级为该UE的下行传输能力所属的能力等级。例如,可预先划分一个或多个下行能力等级,并确定下行能力等级与下行传输能力之间的对应关系,例如称为第三对应关系。在第三对应关系中,一个下行能力等级可对应一种下行传输能力,不同的下行能力等级对应的下行传输能力相同或不同。第三对应关系可以是预设的,例如通过协议预定义,或者也可以由网络设备配置并通知UE,或者也可以由网络设备和UE协商确定。在第三对应关系中,下行传输能力可以通过相应的参数来体现,例如通过第二参数体现,则不同的下行能力等级可以对应第二参数的不同取值,或对应第二参数的不同取 值范围,第二参数可包括UE的接收噪声功率和/或接收天线增益;或者下行传输能力还可以通过其他参数体现,具体不做限制。第二能力等级例如为这一个或多个下行能力等级中的一个,网络设备确定了第二能力等级,也就能确定第二能力等级对应的下行传输能力就是该UE的下行传输能力。
根据第(1)条和第(3)条的介绍可知,如果要指示UE的下行传输能力,第一信息可包括UE的类型信息,或者包括UE的接收噪声信息和/或接收天线增益信息,或者包括第二能力等级信息。可选的,第一信息可包括如上信息中的一项或多项,也就是说,第一信息可包括UE的类型信息、UE的接收噪声信息和/或接收天线增益信息、或第二能力等级信息中的一项或多项。例如,第一信息可包括UE的类型信息和第二能力等级信息,从而网络设备既能够获知该UE的下行传输能力,也能确定该UE的类型。
在第一种指示方式中,第一信息可通过所包括的信息来指示UE的传输能力,网络设备能够快速准确得获取UE的传输能力,从而高效地进行UE调度。
2、第二种指示方式。通过第一信息本身来指示该UE的传输能力。第二种指示方式也可以称为隐式指示方式。
例如,可预先确定UE类型与UE的传输能力之间的对应关系,例如第一对应关系,关于第一对应关系的介绍可参考前文。
另外,还可预先确定第一信息与UE类型之间的对应关系,例如称为第四对应关系。在第四对应关系中,一种第一信息与一种UE类型对应,不同的第一信息例如通过不同的标识区分。例如,如果S601中UE所发送的第一信息与第一类型的UE对应,或者说,第一信息是与第一类型的UE对应的第一信息,则网络设备根据第四对应关系可以确定该第一信息对应于第一类型,再根据第一对应关系确定第一类型对应的传输能力为该UE的传输能力,例如第一传输能力;又例如,如果S601中UE所发送的第一信息与第二类型的UE对应,或者说,第一信息是与第二类型的UE对应的信息,则网络设备根据第四对应关系可以确定该第一信息对应于第二类型,再根据第一对应关系确定第二类型对应的传输能力为该UE的传输能力,例如第二传输能力,以此类推。
或者,第一对应关系和第四对应关系也可以用第五对应关系替换,即,不应用第一对应关系和第四对应关系,而是应用第五对应关系。例如第五对应关系为UE类型、UE的传输能力以及第一信息之间的对应关系,网络设备对于第五对应关系的应用方式与对第一对应关系和第四对应关系的应用方式类似,不多赘述。
在第二种指示方式中,通过第一信息本身就可指示UE的传输能力,无需在第一信息中包括额外的指示信息,有利于节省资源开销。
除了如上两种指示方式外,第一信息还可以通过其他方式来指示UE的传输能力,不多举例。
本申请实施例中,UE要向网络设备发送第一信息,可以通过现有通信流程中的消息来发送,或者说,可将第一信息携带在现有通信流程中的消息中;或者,也可以通过新定义的消息来发送,例如新定义专用于发送第一信息的消息。为了使得网络设备能够尽早获知该UE的传输能力,可选的,UE可以在接入网络的过程中向该网络设备发送第一信息,其中,UE接入网络可包括接入该网络设备,以及接入核心网设备。关于UE的接入过程,以及第一信息可以携带在接入过程中的何种消息里发送,将在后文结合图7进行介绍。
S602、网络设备根据第一信息确定该UE支持的调度信息。
网络设备获得了第一信息,就可以根据第一信息确定该UE支持的调度信息,该调度信息也可以称为调度参数、调度策略等,本申请实施例对于名称不做限制。例如该调度信息包括单个时域单元内可传输的最大数据块数量和/或最大比特数,或者说,包括该UE在单个时域单元内支持传输的最大数据块数量和/或最大比特数。可见,根据该调度信息,结合待传输的UE的信息量,可以确定为该UE调度的最少时域单元的数量,因此该调度信息也可以称为分片策略,所述的“片”,即为时域单元。其中,待传输的UE的信息,例如包括数据和/或信令等。另外,这里的最大数据块数量,是指最大有效数据块数量;同理,最大比特数是指最大有效比特数。在前文介绍了,UE的传输能力包括上行传输能力和/或下行传输能力,相应的,该UE支持的调度信息也可以包括上行调度信息和/或下行调度信息。其中,如果第一信息指示了UE的上行传输能力,该调度信息可以包括上行调度信息;如果第一信息指示了UE的下行传输能力,该调度信息可以包括下行调度信息。上行调度信息例如包括,单个时域单元内,可上行传输的最大数据块数量和/或最大比特数,也可称为可传输的最大上行数据块数量和/或最大上行 比特数、或者在上行方向可传输的最大数据块数量和/或最大比特数;下行调度信息例如包括,单个时域单元内,可下行传输的最大数据块数量和/或最大比特数,也可称为可传输的最大下行数据块数量和/或最大下行比特数、或者在下行方向可传输的最大数据块数量和/或最大比特数。
例如,上行调度信息可包括单个时域单元内可上行传输的最大数据块数量和/或最大比特数,可以理解为,是该UE在单个时域单元内能够向网络设备发送的最大有效数据块数量和/或最大有效比特数。同理,下行调度信息可包括单个时域单元内可下行传输的最大数据块数量和/或最大比特数,可以理解为,是该网络设备在单个时域单元内能够向UE发送的最大有效数据块数量和/或最大有效比特数。
可选的,对于上行调度信息,UE在单个时域单元内支持传输的最大比特数是指,如果在单个时域单元内调度该UE发送的有效比特数小于或等于该最大比特数,则该网络设备能够对来自该UE的信息进行正确解调,而如果在单个时域单元内调度该UE发送的有效比特数大于该最大比特数,则该网络设备可能无法对来自该UE的信息进行正确解调。例如,如果UE按照该最大比特数来发送上行信息,则网络设备对该上行信息的接收信号强度与网络设备的解调门限之间的差值(即,链路余量)能够满足网络设备的解调需求。对于下行调度信息,UE在单个时域单元内支持传输的最大比特数是指,如果网络设备在单个时域单元内向该UE发送的有效比特数小于或等于该最大比特数,则该UE能够对来自该网络设备的信息进行正确解调,而如果网络设备在单个时域单元内向该UE发送的有效比特数大于该最大比特数,则该UE可能无法对来自该网络设备的信息进行正确解调。例如,如果网络设备按照该最大比特数来发送下行信息,则UE对该下行信息的接收信号强度与UE的解调门限之间的差值(即,链路余量)能够满足UE的解调需求。其中,网络设备的解调门限与UE的解调门限相同或不同。另外对于最大数据块数量的理解也是类似的,不多赘述。
本申请实施例中,时域单元例如为帧(frame)、子帧(subframe)、TTI、时隙(slot)、迷你时隙(mini-slot)、或正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(symbol)等。
例如第一信息指示了UE的上行传输能力,则网络设备可以根据第一信息确定该UE的上行调度信息。例如网络设备确定该UE的上行调度信息的一种方式为,网络设备可根据第一信息确定第一接收信号强度,第一接收信号强度为网络设备对于来自该UE的信息的接收信号强度;网络设备根据第一接收信号强度可确定MCS,例如称为第一MCS;网络设备可根据第一MCS确定该UE支持的上行调度信息。
举例来说,UE发送的第一信息包括该UE的EIRP,该EIRP=A,网络设备据此可以确定来自该UE的信号到达该网络设备物理层的最大信号强度,即,确定网络设备对于来自该UE的信号的接收信号强度(例如第一接收信号强度),例如第一接收信号强度用信噪比(signal-noise ratio,SNR)表示,该SNR=A–PL-其他损耗(包括接收端的噪声系数(noise factor)、雨衰(rain fade)等)+接收端天线增益。其中,接收端的噪声系数是指***的传输链路所带来的信号衰减。雨衰是指降雨引起的信号衰减。
其中,PL表示路损,可以根据卫星到地面的距离来计算,例如PL=20log10(f)+20log10(d)+92.45,其中f表示网络设备与UE之间的通信频率,d表示卫星到地面的距离。其他损耗例如包括接收端(例如网络设备)的噪声系数和/或雨衰等,可以根据接收端(例如网络设备)的硬件指标确定,例如雨衰等参数可以使用预定义的值,例如预定义了环境信息与衰减值之间的对应关系,则可根据当前的环境信息确定对应的衰减值,该衰减值即可作为当前的雨衰。接收端的天线增益此时为网络设备的接收天线增益。
网络设备确定了SNR,而SNR与MCS之间具有的映射关系,例如网络设备可根据该网络设备的解调门限来定义SNR与MCS之间的映射关系。该映射关系的含义为,在SNR=x的信道条件下,MCS最大为y时可以解调成功。从而,网络设备根据该映射关系与已确定的SNR,可以确定对应的MCS,例如第一MCS。
网络设备根据第一MCS可以确定该UE在单个时域单元内可上行传输的最大数据块数量和/或最大比特数。例如,网络设备根据第一MCS,通过查询表2可以确定该UE的频谱效率(spectral efficiency)信息,例如该频谱效率信息表示为C。可选的,一种表2如下所示,该表2为5G PUSCH MCS索引表(index table)。
表2
例如,第一MCS的索引为表2中的10,则网络设备通过查询表2可以确定该UE的频谱效率信息C=1.3281。在确定该UE的频谱效率信息C后,则网络设备可确定该UE在单个时域单元内可上行传输的最大比特数,该最大比特数=C×R,其中R表示有效资源单元(resource element,RE)数量,有效RE可包括单个时域单元内用于承载PUSCH的所有RE。这样网络设备就确定了该UE的上行调度信息。另外,如果网络设备已经确定了该UE应发送的上行信息的比特数,则网络设备根据该UE待发送的上行信息的比特数以及该UE在单个时域单元内可上行传输的最大比特数,还可以确定为该UE调度的最少上行时域单元的数量。可选的,网络设备在实际调度UE时,为该UE调度的在单个时域单元内传输的比特数,可以小于或等于上行调度信息所指示的该UE在单个时域单元内可上行传输的最大比特数, 相应地,网络设备为该UE调度的上行时域单元的数量可以大于或等于该最少上行时域单元的数量。
又例如,第一信息指示了UE的下行传输能力,则网络设备可以根据第一信息确定该UE的下行调度信息。例如网络设备确定该UE的下行调度信息的一种方式为,网络设备可根据第一信息确定第二接收信号强度,第二接收信号强度为UE对于来自该网络设备的信息的接收信号强度;网络设备根据第二接收信号强度可确定MCS,例如称为第二MCS;网络设备可根据第二MCS确定该UE支持的下行调度信息。
举例来说,UE发送的第一信息包括UE的接收天线增益信息,网络设备可以据此确定来自该网络设备的信号到达该UE物理层的最大信号强度,即,确定该UE对于来自该网络设备的信号的接收信号强度(例如第二接收信号强度),例如该接收信号强度用SNR表示,该SNR=该网络设备的EIRP–PL-其他损耗+接收端天线增益。
其中,PL表示路损,可以根据卫星到地面的距离来计算,例如PL=20log10(f)+20log10(d)+92.45,其中f表示通信频率,d表示卫星到地面的距离。其他损耗例如包括接收端(例如UE)的噪声系数和/或雨衰等,可以根据接收端(例如UE)的硬件指标确定,例如雨衰等参数可以使用预定义的值,例如预定义了环境信息与衰减值之间的对应关系,则可根据当前的环境信息确定对应的衰减值,该衰减值即可作为当前的雨衰。接收端的天线增益此时为UE的接收天线增益,即来自UE的接收天线增益信息所指示的增益。
网络设备可以根据SNR与MCS之间的映射关系与已确定的SNR,确定对应的MCS,例如第二MCS,参考第一MCS的确定,不做赘述。
进一步,网络设备根据第二MCS可以确定该UE在单个时域单元内可下行传输的最大数据块数量和/或最大比特数。例如,网络设备根据第二MCS,通过查询表3可以确定该UE的频谱效率信息,例如该频谱效率信息表示为C。可选的,一种表3如下所示,该表3为5G PDSCH MCS index table。
表3

例如,第二MCS的索引为表3中的6,则网络设备通过查询表3可以确定该UE的频谱效率信息C=0.8770。在确定该UE的频谱效率信息C后,则网络设备可确定则该UE在单个时域单元内可传输的最大比特数,该最大比特数=C×R,其中R表示有效RE数量,有效RE可包括该时域单元内用于承载物理下行共享信道(physical downlink shared channel,PDSCH)的所有RE。这样网络设备就确定了该UE的下行调度信息。另外,如果网络设备已经确定了待向该UE发送的下行信息的比特数,则网络设备根据待向该UE发送的下行信息的比特数以及该UE在单个时域单元内可传输的最大比特数,还可以确定为该UE调度的最少下行时域单元的数量。可选的,网络设备在实际调度UE时,为该UE调度的在单个时域单元内传输的比特数,可以小于或等于下行调度信息所指示的该UE在单个时域单元内可下行传输的最大比特数,相应地,网络设备为该UE调度的下行时域单元的数量可以大于或等于该最少下行时域单元的数量。
S603、网络设备按照该UE支持的调度信息调度该UE。
具体地,网络设备可以根据上行调度信息来调度该UE的上行传输,或者根据下行调度信息来调度该UE的下行传输,其中,上行调度信息包括该UE在单个时域单元内可上行传输的最大数据块数量和/或最大比特数,下行调度信息包括该UE在单个时域单元内可下行传输的最大数据块数量和/或最大比特数。可以理解,UE在单个时域单元内可上行/下行传输的最大比特数既可以用于调度上行/下行信令传输,也可以用于调度上行/下行数据传输;UE在单个时域单元内可上行/下行传输的最大数据块数量可以用于调度上行/下行数据传输。以下以网络设备根据UE在单个时域单元内可上行/下行传输的最大比特数来调度上行/下行传输进行举例说明。
例如网络设备根据第一信息确定了该UE支持的上行调度信息,则网络设备如果要调度该UE进行上行传输,就可按照该上行调度信息来进行调度。例如,该上行调度信息包括该UE在单个时域单元内可上行传输的最大比特数为C1,则网络设备可以指示该UE在单个时域单元内发送C2个有效比特,其中,C2小于或等于C1,C2个有效比特可以用于上行信令或上行数据传输。另外,如果网络设备已知该UE待发送的上行数据量,例如UE已通过缓存状态报告(buffer status report,BSR)等信息向网络设备指示了待发送的上行数据量,则网络设备可以根据该上行数据量和C1确定为该UE调度的最少上行时域单元的数量Q1,从而网络设备可以确定为该UE调度的上行时域单元的数量Q2,其中Q2大于或等于Q1。例如网络设备向该UE发送第一调度信令,第一调度信令可指示C2和Q2,从而UE可以在Q2个上行时域单元内向网络设备发送上行数据,其中每个上行时域单元内可发送承载了上行数据的C2个有效比特。第一调度信令例如为下行控制信息(downlink control information,DCI),或者也可以是其他协议层的信令。
又例如,网络设备根据第一信息确定了该UE支持的下行调度信息,则网络设备如果要调度该UE进行下行传输,就可按照该下行调度信息来进行调度。例如,该下行调度信息包括该UE在单个时域单元内可下行传输的最大比特数为C3,则网络设备可以在单个时域单元内向该UE发送C4个有效比特,其中,C4小于或等于C3,C4个有效比特可以用于上行信令或上行数据传输。另外,网络设备根据待发送的下行数据量和C3,可以确定为该UE调度的最少下行时域单元的数量Q3,从而网络设备可以确定为该UE调度的上行时域单元的数量Q4,其中Q4大于或等于Q3。例如网络设备向该UE发送第二调度信令,第二调度信令可指示C4和Q4,从而网络设备可以在Q4个下行时域单元内向UE发送下行数据,其中每个下行时域单元内可发送承载了下行数据的C4个有效比特。第二调度信令例如为DCI,或者也可以是其他协议层的信令。
另外,在前文介绍了,UE可以在接入网络的过程中向该网络设备发送第一信息。例如参考图7, 为UE的一种接入过程的流程图,图7以4步(step)随机接入(random access,RA)流程为例。
S701、UE向网络设备发送随机接入前导(preamble)。相应的,网络设备接收来自UE的preamble。例如,UE可以在物理随机接入信道(physical random access channel,PRACH)上向网络设备发送该preamble。
S702、网络设备向UE发送随机接入响应(random access response,RAR)。相应的,UE接收来自网络设备的RAR。
S703、UE向网络设备发送Msg3。相应的,网络设备从UE接收Msg3。
S704、网络设备向UE发送竞争解决(contention resolution)信息。相应的,UE从网络设备接收该竞争解决信息。该竞争解决信息可承载在第四消息(Msg4)中。
S705、UE向网络设备发送Msg5。相应的,网络设备从UE接收Msg5。例如Msg5是UE对于Msg4的响应。
S706、UE与核心网设备进行鉴权以及安全协商等过程。该核心网设备例如为接入和移动性管理功能(access and mobility management function,AMF),或者也可以是其他设备。
UE与核心网设备进行鉴权,可包括核心网设备对UE进行鉴权,和/或UE对核心网设备进行鉴权。安全协商可用于UE与核心网设备协商相应的安全参数。
S707、UE与网络设备进行安全协商等过程。该安全协商可用于UE与网络设备协商相应的安全参数。
S708、网络设备向UE发送查询消息。相应的,UE接收来自网络设备的查询消息。该查询消息用于询问该UE的能力。
S709、UE向网络设备发送能力消息。相应的,网络设备接收来自UE的能力消息。该能力消息可用于承载该UE的能力信息,例如该能力消息为RRC消息,该RRC消息例如为UE能力信息(UE capability information)消息;或者,该能力消息也可以是其他协议层的消息。
S710、网络设备向UE发送RRC重配置(RRC reconfiguration)消息。相应的,UE接收来自网络设备的RRC重配置消息。该RRC重配置消息可以为该UE配置相应的资源,或配置相应协议层的参数等。
S711、UE向网络设备发送RRC重配置完成(RRC reconfiguration complete)消息。相应的,网络设备接收来自UE的RRC重配置完成消息。
接着,UE与核心网设备再进行相应的非接入层(non-access stratum,NAS)协商,从而UE完成与核心网设备的连接。
可选的,本申请实施例中的第一信息可以包括在S709中的能力消息中。例如可以在该能力消息中新定义字段来承载第一信息,或者也可以对该能力消息的已有字段进行扩展来承载第一信息,或者也可以利用该能力消息中的预留字段来承载第一信息。第一信息指示该UE的传输能力,因此第一信息也可视为该UE的一种能力信息。第一信息包括在能力消息中,相当于UE一并上报了该UE的各种能力信息,网络设备通过一条消息就能获得该UE的各种能力信息。此时,第一信息可采用如上的第一种指示方式或第二种指示方式来指示该UE的传输能力。
或者,第一信息也可以包括在Msg3中,例如S703中的Msg3。例如可以在该Msg3中新定义字段来承载第一信息。通过Msg3来上报第一信息,可以使得网络设备能够更早地获知该UE的传输能力,从而能够更为及时地确定该UE的调度信息。此时,第一信息可采用如上的第一种指示方式或第二种指示方式来指示该UE的传输能力。
或者,也可以通过新定义的消息来承载第一信息。例如可以新定义MAC CE来承载第一信息,该MAC CE例如在S704之后传输,或者也可以在其他时机传输,由UE发送给网络设备。通过新定义的消息来承载第一信息,可以不改变原有消息的结构,有利于维护原有消息的稳定性。而且网络设备根据新定义的消息就可确定该消息承载的是第一信息,实现较为简单。此时,第一信息可采用如上的第一种指示方式或第二种指示方式来指示该UE的传输能力。
或者,第一信息也可以通过S701中的preamble实现。此时,第一信息可采用如上的第二种指示方式来指示该UE的传输能力。例如在第四对应关系中,可以包括preamble与UE类型之间的对应关系,则S601中UE所发送的第一信息可以是该UE的类型所对应的preamble。例如该UE的类型为第一类型,则S601中UE所发送的第一信息可以是第一类型所对应的preamble。在UE与网络设备建立连接的过 程中,通常preamble是UE所发送的第一条消息,也是网络设备从该UE最早接收的消息。因此,将preamble作为第一信息,可以使得网络设备更快(或者说,更早)地获得第一信息。另外,由于preamble的格式较为简单,信息量较小,网络设备对于preamble的解析效率较高,这也能够使得网络设备更快地获得第一信息,以更为及时地确定该UE的调度信息。
通过如上所介绍的方法,网络设备就确定了该UE所支持的调度信息,从而可以根据该调度信息来调度该UE,从而不必对各类终端设备都按照统一的调度策略来调度,提高了调度过程的灵活性,使得对于UE的调度既能尽量节省资源开销,也能够保证UE的接入成功率。例如,如果UE的实际传输能力优于最差的终端设备能力,则该UE在单个时域单元内所支持的最大数据块数量和/或最大比特数可以大于最差的UE能力对应的UE在单个时域单元内所支持的最大数据块数量和/或最大比特数,从而可以节省资源开销,也减小了该UE的接入时延。又例如,如果UE的实际传输能力较差,网络设备也能够根据该UE的实际传输能力确定该UE在单个时域单元内所支持的最大数据块数量和/或最大比特数,从而能够保证该UE的正常工作,保证接收端的接收性能。可见,本申请实施例提供的方法能够适用于各种不同类型不同能力的UE。
为了解决相同的技术问题,本申请实施例再提供另一种通信方法,请参见图8,为该方法的流程图。该方法可应用于图1~图4中的任一个附图所示的网络架构。例如该方法所涉及的UE为图1~图4中的任一个附图所示的UE,该方法所涉及的网络设备为图1中的地面基站,或为图2或图3中的卫星,或为图4中的卫星和/或地面基站。
S801、UE向网络设备发送第二信息。相应的,网络设备接收来自UE的第二信息。其中,第二信息的发射功率例如为预定发射功率。该预定发射功率可以是预设的,例如通过协议预定义,或者由网络设备配置并指示UE,或者也可由网络设备与UE协商确定。可选的,该预定发射功率可以小于或等于该UE的最大发射功率。例如一种预定发射功率为该UE的最大发射功率。对于不同的UE来说,预定发射功率可以相同或不同。例如该网络设备覆盖的全部UE可以使用相同的预定发射功率;或者,不同的UE可以使用不同的预定发射功率,一个UE使用的预定发射功率可根据该UE的能力等因素确定。
第二信息例如包括preamble、Msg3、Msg5、或PUSCH所承载的信息中的一个或多个。可选的,PUSCH承载的信息例如为上行控制信息(uplink control information,UCI)。相当于,UE可以按照预定发射功率向网络设备发送一个或多个上行信息,从而网络设备可以借助于来自UE的上行信息确定该UE的上行调度信息。
在一个实施方式中,在S801之前,网络设备可以发送第三信息,第三信息可指示第二信息,或者说,第三信息可以指示UE按照预定发射功率发送第二信息。可选的,如果预定发射功率由网络设备配置并指示UE,那么第三信息还可以指示该预定发射功率,即,第三信息可以指示该预定发射功率以及第二信息。第三信息例如通过广播方式发送,例如第三信息为***信息,或者也可以是其他广播信息;或者,第三信息也可以通过单播方式发送。相当于,网络设备通过第三信息指示了第二信息应该按照预定发射功率来发送,则UE在发送第二信息时,就可以按照该UE的最大发射功率来发送。例如第三信息为***信息、RAR或PDCCH承载的信息等。其中,PDCCH承载的信息,例如为下行控制信息(downlink control information,DCI),或者也可以是DCI所包括的信息,例如DCI所包括的上行授权(UL grant)信息和/或下行授权(DL grant)信息等。
例如,第二信息为Msg3,则第三信息可以是RAR,或者也可以是***信息;又例如,第二信息为Msg5或PUSCH承载的信息,则第三信息可以是PDCCH承载的信息,或者也可以是***信息。
或者,第二信息也可以是预定义的,则网络设备不必发送第三信息,UE根据预定义的内容就可以确定第二信息是应该按照预定发射功率所发送的信息。
S802、网络设备根据第二信息确定该UE支持的上行调度信息。
网络设备获得了第二信息,就可以根据第二信息确定该UE支持的上行调度信息。该上行调度信息可包括单个时域单元内可上行传输的最大数据块数量和/或最大比特数。对于该调度信息的相关介绍以及对于时域单元等内容的介绍均可参考图6所示的实施例中的S602。
本申请实施例中,网络设备知晓UE是按照预定发射功率来发送第二信息,则网络设备根据第二信息所确定的该UE支持的上行调度信息。例如网络设备根据第二信息确定该UE支持的上行调度信息的一种方式为,网络设备可以确定对第二信息的接收信号强度;根据该接收信号强度,网络设备可以确定对应的MCS;根据该MCS,网络设备就可确定该UE支持的上行调度信息。
举例来说,网络设备通过测量所接收的第二信息,可以确定对第二信息的接收信号强度,例如用SNR表示,其中在本示例中,以预定发射功率是最大发射功率为例。SNR与MCS之间具有映射关系,例如网络设备可根据该网络设备的解调门限来定义SNR与MCS之间的映射关系。该映射关系的含义为,在SNR=x的信道条件下,MCS最大为y时可以解调成功。从而,网络设备根据该映射关系与已确定的SNR,可以确定对应的MCS。
进一步,网络设备根据该MCS可以确定该UE在单个时域单元内可上行传输的最大数据块数量和/或最大比特数。例如,网络设备根据该MCS,通过查表(例如,该表格可参考图6所示的实施例中的表2)可以确定该UE的频谱效率信息,例如该频谱效率信息表示为C,则该UE在单个时域单元内可上行传输的最大比特数=C×R,其中R表示有效RE数量,有效RE可包括该时域单元内用于承载PUSCH的所有RE。这样网络设备就确定了该UE的上行调度信息。另外,如果网络设备已经确定了该UE应发送的上行信息的比特数,则网络设备根据该UE待发送的上行信息的比特数以及该UE在单个时域单元内可上行传输的最大比特数,还可以确定为该UE调度的最少上行时域单元的数量。
S803、网络设备按照该UE支持的上行调度信息调度该UE。
网络设备确定了该UE支持的上行调度信息,如果要调度该UE进行上行传输,则可以按照该上行调度信息来进行调度。关于该步骤的更多介绍可参考图6所示的实施例中的S603。
本申请实施例中,UE不必向网络设备指示该UE的传输能力,而是按照预定发射功率向该网络设备发送第二信息即可,而网络设备根据第二信息也可以确定该UE的传输能力,从而确定该UE的上行调度信息。通过本申请实施例的技术方案,减少了UE的上报量,节省了资源开销。网络设备可以根据由第二信息确定的UE的实际传输能力来确定上行调度策略,提高了调度过程的灵活性,使得对于UE的调度既能尽量节省资源开销,也能够保证UE的接入成功率。例如,如果UE的实际传输能力优于最差的终端设备能力,则该UE在单个时域单元内所支持的最大数据块数量和/或最大比特数可以大于最差的UE能力对应的UE在单个时域单元内所支持的最大数据块数量和/或最大比特数,从而可以节省资源开销,也能减小该UE的接入时延。又例如,如果UE的实际传输能力较差,网络设备也能够根据该UE的实际传输能力确定该UE在单个时域单元内所支持的最大数据块数量和/或最大比特数,从而能够保证该UE的正常工作,保证接收端的接收性能。可见,本申请实施例提供的方法能够适用于各种不同类型不同能力的UE进行上行传输。
图9给出了本申请实施例提供的一种通信装置的结构示意图。所述通信装置900可以是图6至图8中的任一个附图所示的实施例中的网络设备或该网络设备的电路***,用于实现上述方法实施例中对应于网络设备的方法。或者,所述通信装置900可以是图6至图8中的任一个附图所示的实施例中的UE的电路***,用于实现上述方法实施例中对应于UE的方法。具体的功能可以参见上述方法实施例中的说明。其中,例如一种电路***为芯片***。
该通信装置900包括至少一个处理器901。处理器901可以用于装置的内部处理,实现一定的控制处理功能。可选地,处理器901包括指令。可选地,处理器901可以存储数据。可选地,不同的处理器可以是独立的器件,可以位于不同物理位置,可以位于不同的集成电路上。可选地,不同的处理器可以集成在一个或多个处理器中,例如,集成在一个或多个集成电路上。
可选地,通信装置900包括一个或多个存储器903,用以存储指令。可选地,所述存储器903中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选地,通信装置900包括通信线路902,以及至少一个通信接口904。其中,因为存储器903、通信线路902以及通信接口904均为可选项,因此在图9中均以虚线表示。
可选地,通信装置900还可以包括收发器和/或天线。其中,收发器可以用于向其他装置发送信息或从其他装置接收信息。所述收发器可以称为收发机、收发电路、输入输出接口等,用于通过天线实现通信装置900的收发功能。可选地,收发器包括发射机(transmitter)和接收机(receiver)。示例性地,发射机可以用于将基带信号生成射频(radio frequency)信号,接收机可以用于将射频信号转换为基带信号。
处理器901可以包括一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路902可包括一通路,在上述组件之间传送信息。
通信接口904,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器903可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器903可以是独立存在,通过通信线路902与处理器901相连接。或者,存储器903也可以和处理器901集成在一起。
其中,存储器903用于存储执行本申请方案的计算机执行指令,并由处理器901来控制执行。处理器901用于执行存储器903中存储的计算机执行指令,从而实现图6~图8中的任一个实施例所述的网络设备所执行的步骤,或,实现图6~图8中的任一个实施例所述的UE所执行的步骤。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器901可以包括一个或多个CPU,例如图9中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置900可以包括多个处理器,例如图9中的处理器901和处理器905。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
当图9所示的装置为芯片时,例如是网络设备的芯片,或UE的芯片,则该芯片包括处理器901(还可以包括处理器905)、通信线路902、存储器903和通信接口904。具体地,通信接口904可以是输入接口、管脚或电路等。存储器903可以是寄存器、缓存等。处理器901和处理器905可以是一个通用的CPU,微处理器,ASIC,或一个或多个用于控制上述任一实施例的通信方法的程序执行的集成电路。
本申请实施例可以根据上述方法示例对装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。比如,在采用对应各个功能划分各个功能模块的情况下,图10示出了一种装置示意图,该装置1000可以是上述各个方法实施例中所涉及的网络设备或UE,或者为网络设备中的芯片或UE中的芯片。该装置1000包括发送单元1001、处理单元1002和接收单元1003。
应理解,该装置1000可以用于实现本申请实施例的通信方法中由网络设备或UE执行的步骤,相关特征可以参照上文图6-图8所示实施例,此处不再赘述。
可选的,图10中的发送单元1001、接收单元1003以及处理单元1002的功能/实现过程可以通过图9中的处理器901调用存储器903中存储的计算机执行指令来实现。或者,图10中的处理单元1002的功能/实现过程可以通过图9中的处理器901调用存储器903中存储的计算机执行指令来实现,图10中的发送单元1001和接收单元1003的功能/实现过程可以通过图9中的通信接口904来实现。
可选的,当该装置1000是芯片或电路时,则发送单元1001和接收单元1003的功能/实现过程还可以通过管脚或电路等来实现。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,当该计算机程序或指令被运行时,实现前述方法实施例中由网络设备或UE所执行的方法。这样,上述实施例中所述功能可以软件功能单元的形式实现并作为独立的产品销售或使用。基于这样的理解,本申请的技术方案本质上或者说对做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代 码在计算机上运行时,使得该计算机执行前述任一方法实施例中由网络设备或UE所执行的方法。
本申请实施例还提供了一种通信装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例所涉及的网络设备或UE所执行的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application specific integrated circuit,ASIC),现场可编程门阵列(field-programmable gate array,FPGA),或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)、EEPROM、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本申请的各个实施例中的内容可以相互参考,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的,本申请实施例中,终端设备和/或网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例中,还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。

Claims (38)

  1. 一种通信方法,其特征在于,应用于网络设备,所述方法包括:
    从终端设备接收第一信息,所述第一信息用于指示所述终端设备的传输能力;
    根据所述第一信息确定所述终端设备支持的调度信息,所述调度信息包括单个时域单元内可传输的最大数据块数量和/或最大比特数;
    根据所述调度信息,调度所述终端设备。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备通过非地面网络设备接入所述网络设备,或者,所述网络设备为非地面网络设备。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一信息包括所述终端设备的等效全向辐射功率EIRP;或,
    所述第一信息包括所述终端设备的最大发射功率信息和/或发射天线增益信息;或,
    所述第一信息包括第一能力等级信息,所述第一能力等级信息用于指示所述终端设备的发射能力所属的能力等级;或,
    所述第一信息包括所述终端设备的类型信息。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第一信息包括在无线资源控制RRC消息中;或,
    所述第一信息包括在媒体接入控制控制元素MAC CE中;或,
    所述第一信息包括在随机接入过程的第三消息Msg3中。
  5. 根据权利要求4所述的方法,其特征在于,所述RRC消息用于承载所述终端设备的能力信息。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,所述调度信息包括上行调度信息,
    所述根据所述第一信息确定所述终端设备支持的调度信息,包括:
    根据所述第一信息确定第一接收信号强度,所述第一接收信号强度为所述网络设备对于来自所述终端设备的信息的接收信号强度;
    根据所述第一接收信号强度确定第一调制编码策略MCS;
    根据所述第一MCS确定所述上行调度信息,
    其中,所述上行调度信息包括所述单个时域单元内可上行传输的最大数据块数量和/或最大比特数。
  7. 根据权利要求1~6任一项所述的方法,其特征在于,
    所述第一信息还包括所述终端设备的接收天线增益信息和/或接收噪声信息;或,
    所述第一信息还包括第二能力等级信息,所述第二能力等级信息用于指示所述终端设备的接收能力所属的能力等级。
  8. 根据权利要求7所述的方法,其特征在于,所述调度信息包括下行调度信息,
    所述根据所述第一信息确定所述终端设备支持的调度信息,包括:
    根据所述第一信息确定第二接收信号强度,所述第二接收信号强度为所述终端设备对于来自所述网络设备的信息的接收信号强度;
    根据所述第二接收信号强度确定第二MCS;
    根据所述第二MCS确定所述下行调度信息,
    其中,所述下行调度信息包括所述单个时域单元内可下行传输的最大数据块数量和/或最大比特数。
  9. 根据权利要求1所述的方法,其特征在于,
    所述第一信息为第一类型的终端设备对应的信息,所述第一类型的终端设备的传输能力为第一传输能力。
  10. 根据权利要求9所述的方法,其特征在于,所述第一信息为随机接入前导。
  11. 一种通信方法,其特征在于,应用于终端设备,所述方法包括:
    确定所述终端设备的传输能力;
    向网络设备发送第一信息,所述第一信息用于指示所述终端设备的传输能力。
  12. 根据权利要求11所述的方法,其特征在于,所述终端设备通过非地面网络设备接入所述网络设备,或者,所述终端设备为非地面网络设备。
  13. 根据权利要求11或12所述的方法,其特征在于,
    所述第一信息包括所述终端设备的EIRP;或,
    所述第一信息包括所述终端设备的最大发射功率信息和/或发射天线增益信息;或,
    所述第一信息包括第一能力等级信息,所述第一能力等级信息用于指示所述终端设备的发射能力所属的能力等级;或,
    所述第一信息包括所述终端设备的类型信息。
  14. 根据权利要求13所述的方法,其特征在于,
    所述第一信息包括在RRC消息中;或,
    所述第一信息包括在MAC CE中;或,
    所述第一信息包括在随机接入过程的第三消息Msg3中。
  15. 根据权利要求14所述的方法,其特征在于,所述RRC消息为用于承载所述终端设备的能力信息的消息。
  16. 根据权利要求11~15任一项所述的方法,其特征在于,
    所述第一信息还包括所述终端设备的接收天线增益信息和/或接收噪声信息;或,
    所述第一信息还包括第二能力等级信息,所述第二能力等级信息用于指示所述终端设备的接收能力所属的能力等级。
  17. 根据权利要求11所述的方法,其特征在于,
    所述第一信息为第一类型的终端设备对应的信息,所述第一类型的终端设备的传输能力为第一传输能力。
  18. 根据权利要求17所述的方法,其特征在于,所述第一信息为随机接入前导。
  19. 一种通信方法,其特征在于,应用于网络设备,所述方法包括:
    从终端设备接收第二信息,所述第二信息的发射功率为预定发射功率;
    根据所述第二信息确定所述终端设备支持的上行调度信息,所述上行调度信息包括单个时域单元内可上行传输的最大数据块数量和/或最大比特数;
    根据所述上行调度信息调度所述终端设备。
  20. 根据权利要求19所述的方法,其特征在于,所述预定发射功率为所述终端设备的最大发射功率。
  21. 根据权利要求19或20所述的方法,其特征在于,所述终端设备通过非地面网络设备接入所述网络设备,或者,所述网络设备为非地面网络设备。
  22. 根据权利要求19~21任一项所述的方法,其特征在于,所述第二信息为随机接入前导、或随机接入过程中的Msg3、或随机接入过程中的第五消息Msg5、或物理上行共享信道PUSCH承载的信息。
  23. 根据权利要求19~22任一项所述的方法,其特征在于,所述方法还包括:
    发送第三信息,所述第三信息用于指示所述终端设备按照所述预定发射功率发送所述第二信息。
  24. 根据权利要求23所述的方法,其特征在于,所述第三信息为***信息、或随机接入响应消息、或物理下行控制信道PDCCH承载的信息。
  25. 根据权利要求19~24任一项所述的方法,其特征在于,根据所述第二信息确定所述终端设备支持的上行调度信息,包括:
    确定所述网络设备对所述第二信息的接收信号强度;
    根据所述接收信号强度确定MCS;根据所述MCS确定所述上行调度信息。
  26. 一种通信方法,其特征在于,应用于终端设备,所述方法包括:
    以预定发射功率向网络设备发送第二信息,所述第二信息用于确定所述终端设备支持的上行调度信息,所述上行调度信息包括单个时域单元内可上行传输的最大数据块数量和/或最大比特数。
  27. 根据权利要求26所述的方法,其特征在于,所述预定发射功率为所述终端设备的最大发射功率。
  28. 根据权利要求26或27所述的方法,其特征在于,所述终端设备通过非地面网络设备接入所述网络设备,或者,所述终端设备为非地面网络设备。
  29. 根据权利要求26~28任一项所述的方法,其特征在于,所述第二信息为随机接入前导、或随机接入过程中的Msg3、或随机接入过程中的Msg5、或PUSCH承载的信息。
  30. 根据权利要求26~29任一项所述的方法,其特征在于,所述方法还包括:
    从所述网络设备接收第三信息,所述第三信息用于指示所述终端设备按照所述预定发射功率发送所述第二信息。
  31. 根据权利要求30所述的方法,其特征在于,所述第三信息为***信息、或随机接入响应消息、或PDCCH承载的信息。
  32. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行如权利要求1~10任一项所述的方法,或用于执行如权利要求19~25任一项所述的方法。
  33. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行如权利要求11~18任一项所述的方法,或用于执行如权利要求26~31任一项所述的方法。
  34. 一种通信装置,其特征在于,所述通信装置包括处理单元和收发单元,所述处理单元与所述收发单元耦合,以执行如权利要求1~10中任一项所述的方法,或执行如权利要求19~25中任一项所述的方法。
  35. 一种通信装置,其特征在于,所述通信装置包括处理单元和收发单元,所述处理单元与所述收发单元耦合,以执行如权利要求11~18中任一项所述的方法,或执行如权利要求26~31中任一项所述的方法。
  36. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~10任一项所述的方法,或使得所述计算机执行如权利要求11~18任一项所述的方法,或使得所述计算机执行如权利要求19~25任一项所述的方法,或使得所述计算机执行如权利要求26~31任一项所述的方法。
  37. 一种芯片***,其特征在于,所述芯片***包括:
    处理器和接口,所述处理器用于从所述接口调用并运行指令,当所述处理器执行所述指令时,实现如权利要求1~10任一项所述的方法,或实现如权利要求11~18任一项所述的方法,或实现如权利要求19~25任一项所述的方法,或实现如权利要求26~31任一项所述的方法。
  38. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~10任一项所述的方法,或使得所述计算机执行如权利要求11~18任一项所述的方法,或使得所述计算机执行如权利要求19~25任一项所述的方法,或使得所述计算机执行如权利要求26~31任一项所述的方法。
PCT/CN2023/101887 2022-06-30 2023-06-21 通信方法及装置 WO2024001920A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210770926.3 2022-06-30
CN202210770926.3A CN117395645A (zh) 2022-06-30 2022-06-30 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024001920A1 true WO2024001920A1 (zh) 2024-01-04

Family

ID=89383218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101887 WO2024001920A1 (zh) 2022-06-30 2023-06-21 通信方法及装置

Country Status (2)

Country Link
CN (1) CN117395645A (zh)
WO (1) WO2024001920A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889098A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 终端能力的协调处理、协调方法及装置、终端、基站
CN109089322A (zh) * 2017-06-14 2018-12-25 维沃移动通信有限公司 一种上行多波束传输方法、终端及网络设备
WO2021008710A1 (en) * 2019-07-18 2021-01-21 Nokia Technologies Oy Power exposure reporting for wireless networks
CN110115053B (zh) * 2016-12-28 2022-02-15 Oppo广东移动通信有限公司 信息发送方法、信息接收方法、装置及***
WO2022082757A1 (zh) * 2020-10-23 2022-04-28 华为技术有限公司 通信方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889098A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 终端能力的协调处理、协调方法及装置、终端、基站
CN110115053B (zh) * 2016-12-28 2022-02-15 Oppo广东移动通信有限公司 信息发送方法、信息接收方法、装置及***
CN109089322A (zh) * 2017-06-14 2018-12-25 维沃移动通信有限公司 一种上行多波束传输方法、终端及网络设备
WO2021008710A1 (en) * 2019-07-18 2021-01-21 Nokia Technologies Oy Power exposure reporting for wireless networks
WO2022082757A1 (zh) * 2020-10-23 2022-04-28 华为技术有限公司 通信方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Single Rx antenna capability and TBS limitation for unicast transmission", 3GPP TSG RAN WG2 #86, R2-142541, 18 May 2014 (2014-05-18), XP050790384 *

Also Published As

Publication number Publication date
CN117395645A (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
US11564181B2 (en) Method and apparatus for reporting power headroom report, and method and apparatus for obtaining power headroom report
CN113573355B (zh) 通信方法和装置
WO2020220359A1 (zh) 确定harq码本的方法和设备
WO2020164518A1 (zh) 功率控制方法及功率控制装置
WO2022082754A1 (zh) 一种通信方法及装置
US20240064655A1 (en) Power Control Method and Apparatus
KR20220151648A (ko) Nr v2x에서 릴레이를 위한 전송 자원을 요청하는 방법 및 장치
KR102590907B1 (ko) 차량 통신을 지원하는 무선통신 시스템에서 무선 통신을 수행하는 방법 및 장치
WO2024103798A1 (zh) 无线通信的方法及装置
WO2023051324A1 (zh) 一种随机接入前导的发送方法、接收方法及通信装置
WO2024001920A1 (zh) 通信方法及装置
WO2020097935A1 (zh) 一种通信方法及装置
WO2020192360A1 (zh) 通信方法及装置
WO2021226850A1 (zh) Harq-ack码本的反馈方法、终端设备和网络设备
JP2023526459A (ja) バッファ状態報告の強化
WO2022079955A1 (ja) 端末、基地局及び通信方法
WO2023206251A1 (zh) 随机接入资源配置方法、随机接入方法、装置及存储介质
EP4376480A1 (en) Method and device for controlling traffic flow through sidelink relay in wireless communication system
EP4329407A1 (en) Information transmission method and apparatus
WO2023011372A1 (zh) 数据传输方法及装置
WO2024087746A1 (en) Configured grant transmission
WO2024109154A1 (en) Sidelink wake up signal transmission
WO2022030069A1 (ja) 端末、基地局及び通信方法
WO2024022486A1 (zh) 通信方法及装置、存储介质、网络设备、终端设备
WO2024109120A1 (en) Pusch retransmissions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830099

Country of ref document: EP

Kind code of ref document: A1