WO2024001854A1 - 一种洗涤设备自动投液装置及洗涤设备 - Google Patents

一种洗涤设备自动投液装置及洗涤设备 Download PDF

Info

Publication number
WO2024001854A1
WO2024001854A1 PCT/CN2023/101192 CN2023101192W WO2024001854A1 WO 2024001854 A1 WO2024001854 A1 WO 2024001854A1 CN 2023101192 W CN2023101192 W CN 2023101192W WO 2024001854 A1 WO2024001854 A1 WO 2024001854A1
Authority
WO
WIPO (PCT)
Prior art keywords
mover
diaphragm
liquid
sleeve
force
Prior art date
Application number
PCT/CN2023/101192
Other languages
English (en)
French (fr)
Inventor
赵志强
许升
吕佩师
Original Assignee
青岛海尔洗衣机有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210772467.2A external-priority patent/CN117364431A/zh
Priority claimed from CN202210771206.9A external-priority patent/CN117364429A/zh
Priority claimed from CN202210770050.2A external-priority patent/CN117364423A/zh
Priority claimed from CN202210770803.XA external-priority patent/CN117364426A/zh
Application filed by 青岛海尔洗衣机有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔洗衣机有限公司
Publication of WO2024001854A1 publication Critical patent/WO2024001854A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/02Devices for adding soap or other washing agents

Definitions

  • the invention belongs to the field of washing equipment, and specifically relates to an automatic liquid feeding device for washing equipment and washing equipment.
  • the detergent used in traditional washing machines during the washing process is placed separately from the washing machine. There is no detergent adding device on the washing machine. Detergent cannot be added automatically, and the washing process of the washing machine cannot be fully automated. With the improvement of the automation of washing machines, most washing machines are designed so that the detergent box containing detergent or/and softener is connected to the water inlet pipe, and the detergent or/and softener in the detergent box is flushed into the washing tub through the incoming water. However, in this structure, detergent or/and softener must be put into the detergent box before each washing, and the washing process is also not fully automated.
  • Chinese patent application number 200610136059.9 discloses a detergent supply device for a washing machine, including a detergent basin having a plurality of chambers and a siphon unit installed in at least one of the plurality of chambers, wherein the The siphon unit includes: a siphon tube formed at the bottom of the chamber; and a cover component installed above the siphon tube, and the cover component includes a siphon cap and a bypass channel, the siphon A cap surrounds the outer circumferential surface of the siphon tube to provide a siphon channel between the siphon tube and the siphon cap, and the bypass channel is used to circulate water overflowing the siphon channel to the siphon channel.
  • Pour detergent into the detergent basin then pour wash water into the detergent basin, dilute the detergent in the basin and discharge it from the siphon unit into the washing tank.
  • This invention solves the problem of damaging the laundry caused by direct entry of concentrated detergent into the washing tub, but it cannot control the automatic and precise addition of the detergent.
  • the Chinese patent application number 201410303597.7 discloses an automatic liquid dosing device: it includes a washing liquid storage box, a water inlet box and a micropump connecting the two.
  • the top of the washing liquid storage box is provided with a liquid adding port.
  • the bottom of the storage box is provided with a liquid level sensor.
  • the liquid inlet pipe of the micro pump is directly connected to the washing liquid storage box.
  • the drain pipe of the micro pump is connected to the water inlet box.
  • the drain pipe of the micro pump is connected in sequence.
  • a one-way valve and a flow sensor are provided, the liquid level sensor and the flow sensor are connected to the input end of the control system, and the micro pump is connected to the output end of the control system.
  • the object of the present invention is to provide an automatic liquid feeding device for washing equipment, so as to realize rapid automatic addition of detergent liquid, reduce the configuration of the liquid feeding device, and simplify the structure of the liquid feeding device.
  • Another object of the present invention is to provide a washing device to achieve the purpose of controlling the automatic and precise addition of detergent.
  • An automatic liquid feeding device for washing equipment including a driving device 5 and a liquid suction device 6.
  • the liquid suction device 6 includes a liquid suction chamber 602 for accommodating liquid, and also includes: a diaphragm 1.
  • the diaphragm 1 constitutes part of the side of the liquid suction chamber 602. Wall, the diaphragm 1 has elasticity and can change the air pressure difference between the inside and the outside of the liquid suction chamber 602 through elastic deformation, so that the liquid suction device 6 can enter and discharge liquid; the mover 4 is used to apply force to the diaphragm 1 The force causes the diaphragm 1 to elastically deform, and the mover 4 and the diaphragm 1 are not connected.
  • the mover 4 and the diaphragm 1 are two separate components, and the driving device 5 provides driving force to make the mover 4 move.
  • the moving mover 4 has kinetic energy and can cause the diaphragm 1 to elastically deform when it hits the diaphragm 1 .
  • the kinetic energy of mover 4 continues to decrease until it reaches zero.
  • the speed of mover 4 is zero, the deformation of diaphragm 1 reaches the maximum.
  • the diaphragm 1 is a side wall that forms the liquid suction chamber 602.
  • the elastic deformation of the diaphragm 1 will change the air pressure in the liquid suction chamber 602, causing the relationship between the air pressure in the liquid suction chamber 602 and the external air pressure to change, generating pressure. Difference.
  • the diaphragm 1 deforms toward the inside of the liquid suction chamber 602 after being struck by the actuator 4, so that the volume in the liquid suction chamber 602 becomes smaller, the pressure in the chamber increases, and the liquid is discharged to the outside.
  • Diaphragm 1 is elastic, and the deformed diaphragm 1 will generate an elastic restoring force. Under the action of the elastic restoring force, the deformed part of diaphragm 1 will return to the original position and continue to move in the opposite direction of the original deformation direction beyond the original position.
  • the outer direction of the liquid suction chamber 602 is deformed, thereby constantly reciprocating on both sides of the original position, which means that the diaphragm 1 will be in a vibrating state.
  • the initial position of the mover 4 is far away from the diaphragm 1, and is driven by the driving device 5 to move toward the diaphragm 1, and hits the diaphragm 1 to elastically deform, and the diaphragm 1 undergoes elastic deformation. After elastic deformation, the mover 4 has a rebound force that can bounce back to the initial position.
  • the initial position of the mover 4 is a certain distance from the diaphragm 1.
  • the mover 4 gradually accelerates under the traction of the driving force. A certain amount of kinetic energy can be accumulated within this distance, so that the diaphragm 1 can obtain more energy after being hit. Large amount of deformation.
  • the deformed diaphragm 1 will generate an elastic restoring force. Under the action of the elastic restoring force, the mover 4 will be returned to the initial position, waiting for the next impact action.
  • the mover 4 also includes an elastic element 3 arranged on the side of the mover 4 away from the diaphragm 1.
  • the mover 4 is in contact with the diaphragm 1 in the initial position.
  • the mover 4 is driven by the driving device 5. Moving away from the diaphragm 1 and compressing the elastic element 3, the elastic potential energy of the elastic element 3 causes the mover 4 to hit the diaphragm 1 through rebound force.
  • one end of the elastic element 3 is fixed on the driving device 5 , and the other end is connected to the mover 4 . Furthermore, the mover continuously reciprocates under the action of the driving force of the driving device 5 and the resilience of the diaphragm 1 and/or the elastic element 3 , causing the diaphragm 1 to elastically deform.
  • the driving device 5 includes a coil 501 that can generate a magnetic field.
  • the centroid of the mover 4 is always set away from the centroid of the coil 501.
  • the magnetic field of the coil 501 generates a magnetic force on the mover 4.
  • the magnetic force The direction is toward the centroid of the coil 501 and drives the mover 4 to move.
  • a one-way magnetic force appears and disappears, or strengthens and weakens, at a certain frequency.
  • the mover 4 When the mover 4 is driven by the one-way magnetic force, it continuously compresses the elastic element 3 and converts the kinetic energy it generates into the elastic potential energy of the elastic element 3.
  • the elastic element 3 that is compressed when the magnetic force disappears squeezes the mover 4, releasing the elastic potential energy of the elastic element 3 onto the mover 4, and converts it into the kinetic energy of the mover 4, completing the action of hitting the diaphragm 1.
  • the magnetic field generated is a changing magnetic field, and the magnitude of the magnetic force experienced by the mover 4 changes with the intensity of the magnetic field.
  • alternating current is passed through the coil 501, and the number of winding turns of the coil 501 is fixed. Since the positive and negative poles of the alternating current are constantly alternating and the current intensity is constantly changing, the magnetic field intensity generated by the coil 501 changes with the current. changes accordingly with changes in intensity. At this time, the magnetic field has a frequency related to the alternating current, and the magnetic force received by the mover 4 in the magnetic field also has a certain frequency. The magnetic force is the excitation force that excites the mover 4 to vibrate. The mover 4 will continue to move repeatedly under the action of the exciting force and hit the diaphragm 1.
  • the magnetic force strengthens and weakens at a certain frequency.
  • the mover 4 When the mover 4 is driven by a strong magnetic force, it continuously compresses the elastic element 3 and converts the kinetic energy generated into the elastic potential energy of the elastic element 3.
  • the magnetic force weakens it is squeezed by the compressed elastic element 3. Pressing the mover 4 releases the elastic potential energy of the elastic element 3 to the mover 4 and converts it into the kinetic energy of the mover 4 to complete the action of hitting the diaphragm 1.
  • the driving device 5 includes a housing 2 and a sleeve 202.
  • the driving device 5 is arranged inside the housing 2.
  • the axial centerline of the sleeve 202 coincides with the axial centerline of the coil 501.
  • the shape of the mover 4 is the same as the shape of the cavity of the sleeve 202 and the mover 4 can slide in the sleeve 202 .
  • the driving device 5 and the sleeve 202 are fixed together through the housing 2, and the coil 501 is placed outside the sleeve 202.
  • the mover 4 moves in the sleeve cavity 203, which is beneficial to maintaining the mover 4.
  • the position and attitude of the mover 4 during repeated movement can be made to move along the direction of the magnetic field generated by the coil 501, which is beneficial to increasing the force of the mover 4 hitting the diaphragm 1.
  • making the central axis of the coil 501 coincide with the central axis of the sleeve cavity 203 is conducive to maximizing the driving force received by the mover 4 in the magnetic field generated by the coil 501.
  • the driving device 5 and the sleeve 202 are fixed through the housing 2 to ensure the stability of the movement of the mover 4 and prevent the reciprocating movement of the mover 4 from causing vibration of the automatic liquid feeding device, thereby causing damage, which is beneficial to the long-term use of the liquid feeding device. use.
  • the present invention also provides a washing equipment with the above-mentioned automatic liquid feeding device.
  • the present invention has the following beneficial effects compared with the prior art.
  • the automatic liquid dosing device of the washing equipment can drive the mover to repeatedly hit the diaphragm at a certain frequency, causing the diaphragm to vibrate and causing the relationship between the air pressure inside and outside the suction chamber to continuously change, thereby changing the pressure inside and outside the suction chamber.
  • the air pressure difference achieves the purpose of dispensing liquid.
  • the liquid feeding device only includes a mover and a liquid suction chamber, which greatly reduces the The structural parts of the liquid dosing device can speed up the liquid dosing by accelerating the impact frequency of the mover, and can adjust the speed of adding detergent liquid.
  • the automatic liquid dosing device driven by magnetic force can ensure that the mover is always subject to one-way magnetic force, which can cause the mover to reciprocate left and right at the equilibrium position to avoid the occurrence of a magnetic field generated by the coil when the coil is energized.
  • the centroid coincides with the centroid of the coil, and the mover is not affected by the magnetic force and cannot move.
  • a system composed of an elastic element and a mover has a fixed vibration frequency, which is related to the elastic coefficient of the elastic element and the mass of the mover.
  • the frequency of the alternating current can be adjusted to make the frequency of the magnetic force have an integral multiple relationship with the natural frequency of the system composed of the mover and the elastic element, thereby increasing the deformation amplitude of the diaphragm when it is impacted. Increase the amount of liquid that the diaphragm can absorb and the amount of liquid injected in a single vibration to enhance the liquid injection effect.
  • the technical problem to be solved by the present invention is to overcome the technical deficiencies of low automation and poor structural reliability of the existing liquid feeding device, and provide an automatic liquid feeding device for washing equipment.
  • An automatic liquid feeding device for washing equipment including a housing and a liquid suction device.
  • a driving device and a sleeve are provided in the housing.
  • the driving device includes a coil, and the coil is wound around the outside of the sleeve.
  • one end of the housing is connected to the liquid suction device, and also includes a movable component.
  • the movable component includes a mover and a diaphragm.
  • the diaphragm is arranged in the liquid suction device and is partially connected to the liquid suction device.
  • One end of the mover is connected to the diaphragm.
  • the driving device A magnetic driving force is provided to the mover to drive the mover to perform periodic reciprocating motion in the sleeve, causing the diaphragm and the mover to oscillate at the same frequency.
  • the peripheral edge of the diaphragm is fixedly connected to the chamber wall of the liquid suction device; in the initial position, the centroid of the mover is set away from the centroid of the coil, and the diaphragm has no deformation; the coil is passed through After alternating current, the magnetic driving force received by the mover always points to the direction of the centroid of the coil, but the magnitude of the magnetic driving force changes periodically; the mover pulls and/or pushes the mover under the action of the magnetic driving force.
  • the diaphragm deforms and oscillates back and forth, causing the washing liquid to be sucked into and discharged from the liquid suction device.
  • the peripheral edge of the diaphragm is fixed on the inner wall of the liquid suction chamber, and the suspended diaphragm forms the deformable part of the diaphragm. While the mover pulls and pushes the diaphragm to move as a whole, the diaphragm itself is forced to Back and forth oscillation also occurs, which can discharge more washing liquid out of the suction chamber, thereby improving the liquid feeding efficiency of the automatic liquid feeding device used for washing equipment.
  • the mover and the diaphragm are integrally connected to form a movable assembly through integral molding, non-detachable connection or detachable connection, and one end portion of the mover connected to the diaphragm is exposed on the sleeve.
  • An elastic element is provided at one end of the sleeve away from the diaphragm. The mover pulls and/or pushes the diaphragm to deform, and the deformation of the diaphragm generates a diaphragm restoring force that acts on the mover, and/or the deformation of the elastic element generates a spring elastic force that acts on the mover.
  • the movable component has a formation scheme that can adapt to a variety of different conditions, which broadens the applicable range of the automatic liquid dosing device for washing equipment; at the same time, one end of the connection between the mover and the diaphragm is exposed on the sleeve , that is, there is a certain distance between the diaphragm and the open end of the sleeve, so as to ensure that there is sufficient buffer space when the diaphragm sleeve moves in the direction.
  • the non-detachable connection method includes.
  • One end of the mover is adhesively connected to the center of the diaphragm to form a movable component.
  • the mover and the diaphragm are bonded and fixed.
  • the simple connection can greatly reduce the difficulty and cost of manufacturing and meet the actual market demand.
  • the integrated molding connection method includes.
  • the end of the mover facing toward the diaphragm is provided with an umbrella-shaped or mushroom-shaped embedded block.
  • the diaphragm is provided with a mounting fixture that cooperates with the embedded block; the mover and the mounting fixture are coupled and connected as a whole and placed in the mold, and the surroundings of the mounting fixture are formed by integrated injection molding with the mover. Connected diaphragm.
  • the mover and the mounting fixture are connected as a whole as the supporting component of the diaphragm center, and the diaphragm structure is integrated with the whole by injection molding in the mold. This solution makes the connection between the mover and the diaphragm more efficient.
  • the detachable connection method includes.
  • the end of the mover facing toward the diaphragm is provided with an umbrella-shaped or mushroom-shaped embedded block.
  • the central part of the diaphragm has a certain thickness; the diaphragm is provided with an embedded part snap-fitting with the embedded block.
  • the embedded block is engaged with the embedded part to realize the connection between the mover and the diaphragm.
  • the embedded part at the end of the mover is connected with the embedded part in the diaphragm.
  • the mover further includes a dumbbell-shaped conductive part.
  • One end of the conductive part is connected to the moving part, and an embedded block is provided on the other end.
  • the embedded block cooperates with the embedded part to realize the connection between the mover and the diaphragm. Connection. Adopting the above solution, the aforementioned adhesive connection, integrated injection molding and embedded fit snap-in structure form a new specific structure.
  • the design of the conductive part can reduce the overall volume of the mover by reducing the volume of the moving part.
  • the conductive part can make the driving force received by the movable component more concentrated, which can increase the deformation degree of the mover-driven diaphragm, and can be used for automatic operation of washing equipment.
  • the performance of the liquid device has been further improved.
  • the magnetic driving force overcomes the diaphragm restoring force and/or the spring elastic force to drive the mover to first accelerate and then decelerate in the direction of the coil centroid position, and the mover speed is zero.
  • the position is the first extreme position of the mover.
  • the diaphragm restoring force and/or spring elastic force overcomes the magnetic driving force to drive the mover to accelerate in a direction away from the coil centroid. During the movement, it starts to decelerate after passing the initial position.
  • the magnetic driving force, diaphragm restoring force and spring elastic force all hinder the movement of the mover, and the position where the mover speed is zero is the second limit position of the mover.
  • the direction of the diaphragm restoring force is toward the direction close to the coil centroid, and the diaphragm restoring force and/or spring force assist the magnetic driving force in driving the mover to move to the initial position.
  • the distance between the first limit position and the second limit position is the maximum amplitude of the mover.
  • the diaphragm restoring force and/or spring elastic force hinders the magnetic driving force from driving the mover to move.
  • the diaphragm restoring force and/or the spring elastic force assist the magnetic driving force to drive the mover movement.
  • the diaphragm follows the reciprocating motion of the mover, and the degree of deformation of the diaphragm is different when the mover moves from the initial position to the first extreme position and from the initial position to the second extreme position.
  • the volume can change even more during liquid aspiration. More washing liquid is sucked into the suction chamber, and when reset, it will move a certain distance further than the original position, ensuring that the washing liquid is fully discharged.
  • the degree of deformation of the diaphragm during the process of the mover from the initial position to the first limit position is greater than the degree of deformation of the mover from the initial position to the second limit position.
  • the distance between the second limit position and the initial position is smaller than the distance between the first limit position and the initial position, ensuring that the elastic element will not cause functional failure due to excessive stretching.
  • this solution can also make the diaphragm periodically in the The changing state prevents the diaphragm from fatigue damage caused by repeated reversal forces, thus ensuring the performance reliability and service life of the automatic liquid dosing device to a certain extent.
  • a kind of washing equipment adopts the above-mentioned automatic liquid feeding device.
  • the automatic liquid dosing device improves the intelligence of the washing machine, saves users unnecessary time in adding detergent to laundry, accurately determines the amount of dosing, saves unnecessary waste of detergent, and is more in line with the actual use needs of users.
  • the present invention has the following beneficial effects compared with the prior art.
  • This application plan provides a variety of connection methods between the mover and the diaphragm. Different structures and connection methods make the automatic liquid dosing device for washing equipment more adaptable, which greatly enhances the scope of use of the automatic liquid dosing device for washing equipment;
  • the movement of the mover is affected by the driving device, the elastic element and the diaphragm itself.
  • the driving device provides the most basic driving force for the mover, and the additional force stored by the elastic element and the diaphragm is used to assist the mover.
  • the position of the mover overcoming the dead center ensures the realization of the periodic reciprocating motion of the mover, making the automatic liquid dosing device used in washing equipment more functionally reliable.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the existing technology and provide a method that drives the mover to reciprocate at high frequency through a driving device, so that the liquid in the sleeve can gain energy to generate velocity waves, and periodically performs washing of suction and discharge of liquid.
  • Equipment automatic dosing device is to overcome the shortcomings of the existing technology and provide a method that drives the mover to reciprocate at high frequency through a driving device, so that the liquid in the sleeve can gain energy to generate velocity waves, and periodically performs washing of suction and discharge of liquid.
  • Equipment automatic dosing device is to overcome the shortcomings of the existing technology and provide a method that drives the mover to reciprocate at high frequency through a driving device, so that the liquid in the sleeve can gain energy to generate velocity waves, and periodically performs washing of suction and discharge of liquid.
  • Equipment automatic dosing device is to overcome the shortcomings of the existing technology and provide a method that drives the mover to reciprocate at high frequency through a driving device,
  • Another object of the present invention is to provide a washing device.
  • the basic concept of the technical solution adopted by the present invention is to provide an automatic liquid feeding device for washing equipment, including a sleeve, one end of the sleeve is closed, and the other end has a suction pipe and a drain pipe.
  • the suction pipe and the drain pipe on the other end of the sleeve are alternately opened;
  • the mover is movably provided in the sleeve;
  • the driving device is provided on the sleeve for driving the The mover moves in the sleeve; the mover oscillates back and forth in the sleeve, causing the liquid in the sleeve to fluctuate, and the fluctuating liquid flows along the axial direction of the sleeve and periodically flow out of the drain pipe.
  • the driving device may drive the mover in one of electromechanical, pneumatic or electromagnetic modes. Under the driving action of the driving device, the mover moves in the sleeve. Continuous reciprocating oscillation.
  • the driving device when using the electromagnetic method, includes a coil, the coil is wound around the outside of the sleeve; and an elastic element is axially disposed on the inner wall of the sleeve for providing the Restoring force of the mover moving to the initial position.
  • the center of the mover is offset from the center of the coil.
  • the axis of the coil is parallel to the axis of the mover, the outer diameter of the mover is smaller than the inner diameter of the sleeve, and the horizontal line connecting the centers of the mover and the coil is The distance is greater than or equal to the maximum amplitude of the mover oscillating toward the center of the coil.
  • the elastic element includes a support spring. One end of the support spring is connected to the inner wall of the sleeve, and the other end is connected to the end of the mover.
  • the support spring The maximum compression amount is greater than or equal to the maximum amplitude of the mover oscillation.
  • the elastic element further includes a rebound spring, one end of the rebound spring is connected to the inner wall of the sleeve, the support spring is sleeved on the outside of the rebound spring, and the elastic coefficient of the rebound spring is greater than the elastic coefficient of the rebound spring.
  • the elastic coefficient of the support spring, the maximum compression amount of the rebound spring is greater than or equal to the mover.
  • the invention also provides a washing equipment, which has the above-mentioned automatic liquid feeding device for the washing equipment.
  • the present invention has the following beneficial effects compared with the existing technology:
  • the mover, coil, elastic element and other parts are arranged to cooperate with each other. Under the joint action of the coil and the elastic element on the mover, the mover vibrates back and forth in the sleeve, so that the inside of the sleeve can be washed.
  • the detergent can be continuously poured into the washing machine.
  • a pressure difference is continuously formed to replenish the detergent inside the sleeve, ensuring that the liquid is poured into the washing machine periodically and continuously. Dosing liquid is more accurate and efficient.
  • the mover is completely horizontally slid and arranged in the sleeve, so that under the action of the magnetic field, the resultant force of attraction experienced by the mover is the largest, and the movement is more stable; in addition, the mover and the sleeve are placed in the sleeve.
  • There is a gap in the radial direction which not only ensures the normal movement of the mover, but also increases the energy gain effect of the washing liquid in the sleeve due to pulse action, thereby ensuring the effect of adding liquid to the washing machine.
  • the present invention forms a spring resonance system by arranging a support spring and a rebound spring. At the same time, the support spring is sleeved on the outside of the rebound spring to form a spring resonance system.
  • the outer diameter and elastic coefficient of the support spring are different from that of the above-mentioned support spring. Therefore, the elastic force range formed by the cooperation between the rebound spring and the support spring is larger, effectively shortening the length that a single spring needs to provide a certain restoring force, and can better adapt to the mover. Resilience needed after movement.
  • the technical problem to be solved by the present invention is to overcome the existing problems of the laundry detergent dispensing device in the prior art, such as short service life due to wear caused by the dispensing action, complex structure, high cost, poor economic efficiency, inaccurate dispensing, and poor dispensing properties.
  • the invention provides an automatic liquid feeding device for washing equipment.
  • the invention proposes an automatic liquid feeding device for washing equipment, which includes a housing 2.
  • a sleeve cavity 203 is provided inside the housing 2.
  • a coil 501 is provided outside the sleeve cavity 203.
  • the sleeve cavity 203 is provided with a suction device.
  • the liquid pipe 603 and the drain pipe 204 are provided with a mover 4 and an elastic element 3 in the sleeve cavity 203; the mover 4 is affected by the magnetic driving force of the coil 501 and the resilience of the elastic element 3, and moves in the sleeve cavity.
  • 203 oscillates back and forth, causing the washing liquid entering the sleeve cavity 203 to fluctuate and flow in one direction along the axial direction of the sleeve cavity 203 .
  • the two ends of the sleeve cavity 203 are connected to the suction pipe 603 and the discharge pipe 204 respectively.
  • the coil 501 is arranged on the outer periphery of the mover 4.
  • the coil 501 axially drives the mover 4 in the sleeve.
  • the inside of the barrel cavity 203 moves toward the elastic element 3 and squeezes the elastic element 3;
  • the elastic element 3 is arranged on one side of the mover 4; the elastic element 3 rebounds against the mover 4, so that the mover 4 moves along the axial direction of the sleeve cavity 203 , moves away from the elastic element 3; the reciprocating movement of the mover 4 causes the washing liquid from the suction pipe 603 to flow to the drain pipe 204.
  • the liquid suction pipe 603 and the liquid discharge pipe 204 can be equipped with valve structures such as a one-way valve and a control valve, so that the liquid suction pipe 603 and the liquid discharge pipe 204 can be opened or closed correspondingly; the liquid suction pipe 603 and the liquid discharge pipe 204 can be opened or closed accordingly;
  • the opening/closing method of the tube 204 can be as follows: the suction tube 603 and the discharge tube 204 can be opened/closed alternately; or, the suction tube 603 and the discharge tube 204 can be opened/closed at the same time to realize the self-directed suction tube.
  • 603 flows into the sleeve cavity 203, and the actuator 4 vibrates back and forth to cause fluctuations in the washing liquid and flows out to the drain pipe 204 provided at the opposite end.
  • the mover 4 is columnar, and the outer diameter of the mover 4 is smaller than the inner diameter of the sleeve cavity 203; a flow guide channel is formed between the mover 4 and the sleeve cavity 203; the length of the mover 4 is smaller than the inner diameter of the sleeve cavity 203.
  • the mover 4 vibrates back and forth at a certain frequency, changing the volume and pressure of the liquid inlet chamber 207 and the liquid outlet chamber 208 of the sleeve cavity 203, so that the washing liquid passes through the diversion channel and flows from the liquid inlet chamber 207 to the outlet. Liquid chamber 208 flows.
  • the elastic element 3 of the present invention is axially arranged in the liquid outlet chamber 208, with one end connected to the sleeve.
  • the inner wall of the barrel cavity 203 is connected, and the other end is connected to the mover 4 so that the outer peripheral surface of the mover 4 is spaced apart from the inner wall of the sleeve cavity 203; the elastic element 3 is a rebound spring.
  • the elastic element 3 of the present invention also includes a support spring 301 arranged in the liquid inlet chamber 207; the support spring 301 is connected to the mover 4 and the other inner wall of the sleeve cavity 203 respectively, so that The outer peripheral surface of the mover 4 is spaced apart from the inner wall of the sleeve cavity 203, so that the flow guide channel is in an annular shape surrounding the outer periphery of the mover 4; the stiffness coefficient of the support spring 301 is smaller than the rebound spring.
  • the mover 4 can be axially fixed in the sleeve cavity 203.
  • the elastic element 3 of the present invention includes a support spring 301 and a rebound spring 302 set in the liquid outlet chamber 208; the support spring 301 is connected to the end of the mover 4 and the sleeve respectively.
  • the support spring 301 is connected to the end of the mover 4 and the sleeve respectively.
  • one end of the rebound spring 302 is connected to the sleeve cavity 203, and the other end is suspended in the air toward the end of the mover 4; the stiffness coefficient of the support spring 301 is smaller than that of the rebound spring 302, and the axial length of the rebound spring 302 is short. on the support spring 301.
  • the elastic element 3 of the present invention includes support springs 301 respectively provided in the liquid inlet chamber 207 and the liquid outlet chamber 208.
  • One end of the two support springs is connected to the corresponding end of the mover 4. and the corresponding inner wall of the sleeve cavity 203; of course, a rebound spring 302 can also be provided in the liquid inlet chamber 207 and/or the liquid outlet chamber 208.
  • One end of the rebound spring 302 is connected to the inner wall of the sleeve cavity 203, and the other end of the rebound spring 302 is connected to the inner wall of the sleeve cavity 203.
  • the corresponding end facing the mover 4 is suspended in the air.
  • the support spring 301 and the rebound spring 302 that constitute the elastic element 3 are coaxially arranged with the mover 4 to provide the mover with a restoring force for reciprocating vibration in the axial direction.
  • the mover 4 of the present invention is in the initial position when it is not affected by the magnetic driving force; when the mover 4 is in the initial position, the center of the mover 4 is deviated from the center of the sleeve cavity 203; preferably, when the mover 4 is in the initial position position, the volume of the liquid outlet chamber 208 is larger than the volume of the liquid inlet chamber 207; the center of the coil 501 and the center of the mover 4 are arranged eccentrically.
  • the end of the mover 4 close to the liquid inlet chamber 207 of the present invention protrudes from the end of the coil 501.
  • the mover 4 of the present invention is provided with a liquid guide channel that connects the liquid inlet chamber 207 and the liquid outlet chamber 208; the cross-sectional area of the liquid guide channel gradually increases along the direction from the liquid inlet chamber 207 to the liquid outlet chamber 208. reduce, or the liquid diversion channel is provided with a one-way conduction structure, and the conduction direction of the one-way conduction structure is from the liquid inlet chamber 207 to the liquid outlet chamber 208.
  • the liquid guide channel of the present invention is arranged inside the mover 4 and/or on the outer periphery of the mover 4; the liquid guide channel penetrates the mover 4 along the axial direction of the mover 4; the liquid guide channel
  • the shapes include linear, curved and spiral; one or more liquid diversion channels are provided.
  • the present invention has the following beneficial effects compared with the existing technology:
  • coils and elastic elements are used to make the mover vibrate back and forth in the sleeve cavity, and the mover drives the washing liquid to fluctuate, thereby adding washing liquid to the washing equipment multiple times at a certain frequency. It is different from the existing technology that realizes the effect of liquid inlet and outlet through piston and pump structure.
  • a diversion channel is formed between the outer periphery of the mover and the inner wall of the sleeve cavity for the passage of washing liquid.
  • the washing liquid can be moved along the circumferential direction of the sleeve cavity to achieve multiple small doses.
  • the delivery is more accurate; on the other hand, the diversion channel isolates the mover from the inner wall of the sleeve cavity to avoid friction with the inner wall of the sleeve cavity when the mover moves, and the wear and tear of the mover will not affect the liquid inlet and outlet. The effect effectively improves the service life and is suitable for long-term use.
  • the mover realizes reciprocating vibration through elastic elements and coils.
  • the structure is simple, and there is no need to install air-tight structures such as pistons, which effectively reduces costs and is economical.
  • the present invention has a simple structure and significant effects, and is intended to be popularized and used.
  • Figure 1 is a diagram of an automatic liquid dosing device of the present invention
  • FIG. 2 is a diagram of another automatic liquid dosing device of the present invention.
  • FIG. 3 is a diagram of another automatic liquid dosing device of the present invention.
  • FIG. 4 is a diagram of another automatic liquid dosing device of the present invention.
  • Figure 5 is a schematic diagram of the state when the diaphragm of the automatic liquid dosing device is impacted in the present invention
  • Figure 6 is a schematic structural diagram of an automatic liquid dosing device for washing equipment in an embodiment of the present invention.
  • Figure 7 is a schematic structural diagram of another automatic liquid dosing device for washing equipment in an embodiment of the present invention.
  • Figure 8 is a schematic structural diagram of another automatic liquid dosing device for washing equipment in an embodiment of the present invention.
  • Figure 9 is a schematic structural diagram of another automatic liquid dosing device for washing equipment in an embodiment of the present invention.
  • Figure 10 is a schematic structural diagram of another automatic liquid feeding device for washing equipment in an embodiment of the present invention.
  • Figure 11 is a schematic structural diagram of another automatic liquid dosing device for washing equipment in an embodiment of the present invention.
  • Figure 12 is a schematic structural diagram of another automatic liquid dosing device for washing equipment in an embodiment of the present invention.
  • Figure 13 is a schematic structural diagram of another automatic liquid dosing device for washing equipment in an embodiment of the present invention.
  • Figure 14 is a schematic structural diagram of another automatic liquid dosing device for washing equipment in an embodiment of the present invention.
  • Figure 15 is a schematic diagram of an embodiment of the automatic liquid dosing device of the present invention with an elastic element on one side;
  • Figure 16 is a schematic diagram of an embodiment of the automatic liquid dosing device of the present invention with elastic elements on both sides;
  • Figure 17 is a schematic diagram of another embodiment of the automatic liquid dosing device of the present invention with an elastic element on one side;
  • Figure 18 is a schematic diagram of another embodiment of the automatic liquid dosing device of the present invention with elastic elements on both sides;
  • FIGS 19 to 25 are schematic structural diagrams of automatic liquid dosing devices for washing equipment in different embodiments of the present invention.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection or a detachable connection.
  • Connection, or integral connection can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • connection or integral connection
  • connection can be a mechanical connection or an electrical connection
  • connection can be a direct connection or an indirect connection through an intermediate medium.
  • specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the automatic liquid dosing device includes a mover 4, a driving device 5 and a liquid suction device 6.
  • the mover 4 is an independent component and is not connected to other structures.
  • the liquid suction device 6 includes a liquid suction chamber 602 for accommodating objects, and also includes a diaphragm 1. The edge of the diaphragm 1 is fixed on the liquid suction device 6 to form part of the side wall of the liquid suction chamber 602.
  • the driving device 5 can drive the mover 4 through pneumatic means, or can drive the mover 4 through electromagnetic force.
  • the driving device 5 is provided with The air path is connected to the bottom of the sleeve 202, and the initial position of the mover is set at the bottom of the sleeve 202, separated from the diaphragm 1 by a certain distance. Injecting compressed gas into the air path can drive the mover 4 to move toward the diaphragm 1 and hit the diaphragm 1.
  • the moving mover 4 has kinetic energy and can cause the diaphragm 1 to elastically deform when it hits the diaphragm 1.
  • the kinetic energy of mover 4 continues to decrease until it reaches zero.
  • the speed of mover 4 is zero, the deformation of diaphragm 1 reaches the maximum.
  • the diaphragm 1 is a side wall that forms the liquid suction chamber 602. The elastic deformation of the diaphragm 1 will change the air pressure in the liquid suction chamber 602, causing the relationship between the air pressure in the liquid suction chamber 602 and the external air pressure to change, generating pressure. Difference.
  • the diaphragm 1 deforms toward the inside of the liquid suction chamber 602 after being struck by the actuator 4, so that the volume in the liquid suction chamber 602 becomes smaller, the pressure in the chamber increases, and the liquid is discharged to the outside.
  • Diaphragm 1 is elastic, and the deformed diaphragm 1 will generate an elastic restoring force. Under the action of the elastic restoring force, the deformed part of diaphragm 1 will return to the original position and continue to move in the opposite direction of the original deformation direction beyond the original position. That is, it is deformed toward the outside of the liquid suction chamber 602, thereby continuously reciprocating on both sides of the original position, which means that the diaphragm 1 will be in a vibrating state.
  • the driving device 5 includes a sleeve 202, and the initial position of the mover 4 is located on the left side of the sleeve 202, away from the diaphragm 1, and is driven by the driving device. 5 can move toward diaphragm 1 when driven.
  • the initial position of mover 4 is a certain distance from diaphragm 1.
  • Mover 4 gradually accelerates under the traction of the driving force. A certain amount of kinetic energy can be accumulated within this distance, so that diaphragm 1 can obtain a greater deformation after being hit. . After the mover 4 hits the diaphragm 1, the diaphragm 1 will undergo elastic deformation and obtain rebound force.
  • the diaphragm 1 can bounce the mover 4 back to its original position.
  • the deformed diaphragm 1 will generate an elastic restoring force.
  • the mover 4 will be bounced back to the initial position, and then driven by the driving device 5, it will hit the diaphragm 1 again.
  • an elastic element 3 is provided between the left side of the sleeve 202 and the side of the mover 4 away from the diaphragm 1 .
  • the elastic element 3 can move the driving device 5 to the mover 4 .
  • the work is converted into its own elastic potential energy.
  • the initial position of the mover 4 is located on the right side of the sleeve 202 , and the mover 4 is in contact with the diaphragm 1 .
  • the mover 4 is driven away from the diaphragm 1 by the driving device 5 and compresses the elastic element 3.
  • the elastic element 3 obtains elastic potential energy and resilience. Then, the elastic element 3 does work on the mover 4 through the rebound force, causing the mover 4 to accelerate to the right and hit the diaphragm 1.
  • the mover 4 can be reset by using the driving force of the driving device 5 and the elasticity of the diaphragm 1. Complete the action of pouring liquid.
  • the rebound force of the elastic element 3 can also be used to drive the mover 4 so that the mover 4 hits the diaphragm 1 .
  • an elastic element 3 is provided on the left side of the mover 4, and the elastic element 3 is connected to the left bottom surface of the sleeve 202 or with The left end face of mover 4 is connected.
  • the elastic element 3 can also rest freely between the left bottom surface of the sleeve 202 and the left end surface of the mover 4 .
  • the left side of the elastic element 3 is fixedly connected to the sleeve 202 or the driving device 5
  • the right side of the elastic element 3 is connected to the mover 4 .
  • the elastic element 3 includes a support spring 301.
  • One end of the support spring 301 is connected to the mover 4 and the other end is connected to the sleeve 202.
  • the support spring 301 is in a spiral shape and is in tension when the mover 4 contacts the diaphragm 1. state, providing the pulling force to break away from the diaphragm 1.
  • the support spring 301 is always connected to the mover 4 and the sleeve 202.
  • the mover 4 is rushed towards the diaphragm 1 by the magnetic force, it is gradually stretched and lengthened, providing a pulling force for the mover 4.
  • the pulling force is when the mover 4 hits the diaphragm 1.
  • the spring tension is the largest. In this way, the support spring 301 provides a return force for the mover 4 so that the mover 4 leaves the diaphragm 1 faster.
  • the elastic element 3 also includes a rebound spring 302.
  • One end of the rebound spring 302 is connected to the mover 4 or the sleeve 202, and the other end is suspended.
  • the rebound spring 302 is in the form of a spiral. shape, its length is less than the difference between the lengths of the sleeve cavity 203 and the mover 4, the mover 4 is always unable to contact the rebound spring 302 and the diaphragm 1 at the same time, so that the rebound spring 302 is not in compression when the mover 4 contacts the diaphragm 1 state.
  • the rebound spring 302 has one end fixed, which can be connected to the left side of the mover 4 or the bottom of the sleeve 202, and the other end is suspended.
  • the rebound spring 302 only bears pressure during the movement of the mover 4. The speed of the mover 4 can be quickly reduced, and the mover 4 can be reversely accelerated toward the direction of the diaphragm 1 .
  • the mover 4 is driven by magnetic force
  • the automatic liquid injection device includes a driving device 5 and a liquid suction device 6.
  • the driving device 5 includes a coil 501 and a sleeve 202 that can generate a magnetic field.
  • the coil 501 is annular and is made of multiple turns of conductive metal wire;
  • the sleeve 202 is a long and narrow cylindrical object, and the length of the sleeve 202 along the axis is greater than the length of the coil 501 along the axis.
  • the sleeve 202 The right end has an open mouth, and the left end is not open.
  • the sleeve 202 also includes a sleeve cavity 203.
  • the sleeve cavity 203 is collinear with the axis of the sleeve 202.
  • the sleeve cavity 203 communicates with the open opening on the right side of the sleeve 202.
  • the sleeve 202 is arranged in the middle of the annular coil 501.
  • the central axis of the sleeve 202 is parallel to or coincident with the central axis of the coil 501.
  • the coil 501 is arranged close to the right opening of the sleeve 202.
  • the liquid suction device 6 includes a liquid suction chamber 602 for accommodating objects and a diaphragm 1 constituting the side wall of the liquid suction chamber 602 .
  • the driving device 5 also includes a mover 4, which is movably disposed in the sleeve cavity 203 of the sleeve 202.
  • the initial position of the mover 4 is close to the left side of the sleeve.
  • the coil 501 will generate a magnetic field and form a magnetic force on the mover 4 located in the sleeve 202.
  • the direction of the magnetic force received by the mover 4 at any position in the magnetic field points to the centroid of the coil 501 .
  • an elastic element 3 can also be provided between the mover 4 and the left end of the sleeve 202.
  • the elastic element 3 will be continuously compressed, so the work done by the magnetic force on the mover 4 will be converted into elastic potential energy of the elastic element 3.
  • the compressed elastic element 3 squeezes the mover 4 and releases the elastic potential energy of the elastic element 3 to the mover 4.
  • the mover 4 accelerates to the right, and the elastic potential energy of the elastic element 3 is converted into the mover 4.
  • the kinetic energy of the mover 4 impacts the diaphragm 1.
  • the driving device 5 and the liquid suction device 6 are connected together, so that the right side of the open opening of the sleeve 202 is placed in close contact with the diaphragm 1 constituting the side wall of the liquid suction chamber 602, ensuring that when the mover 4 strikes the diaphragm 1, The diaphragm 1 deforms more into the liquid suction chamber 602 .
  • the liquid suction device 6 also includes a liquid suction pipe 603, a liquid discharge pipe 204 and a one-way valve 206.
  • the liquid suction pipe 603 and the liquid discharge pipe 204 are arranged on the rightmost end surface of the liquid suction device 6, which end surface is parallel to the diaphragm. .
  • a one-way valve 206 is provided in the liquid suction tube 603 to only allow liquid to enter the interior of the liquid suction chamber 602 from the outside.
  • a one-way valve 206 is provided in the drain pipe 204 to only allow liquid to flow from the inside of the liquid suction chamber 602 to the outside of the liquid suction chamber 602 .
  • the diaphragm 1 is a flat sheet.
  • the diaphragm 1 includes a fixed end and a deformed end.
  • the fixed end is connected to the side wall of the liquid suction chamber 602.
  • the deformed end is impacted by the mover 4 and absorbs the force of the mover 4.
  • Kinetic energy produces elastic deformation.
  • the diaphragm 1 is a circular plane, the edge of the circular plane is a fixed end, the fixed end is connected to the side wall of the liquid suction chamber 602, and the free area on the circular plane is a deformation end.
  • the central axis of the coil 501 is arranged perpendicular to the plane of the diaphragm 1, and the mover 4 reciprocates in a direction perpendicular to the plane of the diaphragm 1. With this arrangement, the movement direction of the mover 4 is perpendicular to the deformation end of the diaphragm 1 .
  • the deformation amplitude of the diaphragm 1 can be increased, thereby increasing the amount of liquid absorbed each time the diaphragm 1 vibrates.
  • the driving device 5 also includes a housing 2.
  • the sleeve 202 is fixed at the central axis of the coil 501 through the housing 2.
  • the housing 2 also includes a flange 201.
  • the open end of the sleeve 202 is connected to the flange 201.
  • the central axis of the barrel 202 is parallel to or coincident with the central axis of the coil 501 .
  • the sleeve 202 is a thin-walled structure with a cylindrical outer shape and a cylindrical cavity concentric with the outer shape, that is, the sleeve cavity 203 .
  • the mover 4 is a solid cylinder, and the diameter of its cross-sectional circle is equal to that of the sleeve cavity 203.
  • the mover 4 can slide freely in the sleeve cavity 203.
  • the sleeve 202 ensures the stability of the movement of the mover 4. sex.
  • the center of the opening of the sleeve 202 is facing the centroid of the diaphragm 1.
  • the impact position of the mover 4 is the centroid of the deformation end of the diaphragm 1.
  • the flange 201 is in contact with the surface of the diaphragm 1, and the flange 201 and the liquid suction device 6 squeeze the edge of the diaphragm 1, so that the diaphragm is fixed between the sleeve cavity 203 and the liquid suction cavity 602.
  • the edge 201 direction is deformed.
  • the axial length of the sleeve cavity 203 is at least 1.5 times the axial length of the mover 4, so that the mover 4 has a distance to accelerate and decelerate when moving in the sleeve cavity 203, and can accumulate kinetic energy to increase the impact force. bigger.
  • the automatic liquid dispensing device can dispense the washing liquid more efficiently.
  • the driving device 5 drives the mover 4 to move and hit the diaphragm 1 through magnetic force. , so that the liquid suction device 6 completes the action of dispensing washing liquid.
  • direct current can be supplied to the coil 501, or alternating current can be supplied to the coil 501. Both methods can drive the automatic liquid dosing device.
  • the mover 4 can always remain in motion and hit the diaphragm 1 repeatedly.
  • the controlled magnetic force appears when the moving direction of the mover 4 is consistent with the direction of the magnetic force, and the controlled magnetic force disappears when the moving direction of the mover 4 is inconsistent with the direction of the magnetic force, ensuring that the magnetic force always does positive work on the mover 4.
  • the frequency of the alternating current can be adjusted to improve the liquid dosing effect of the automatic liquid dosing device.
  • the direction of the magnetic field generated by the coil 501 also continuously alternates, and the magnetic field intensity changes accordingly as the current intensity changes.
  • the frequency of changes in the strength of the magnetic field is the same as the frequency of changes in the alternating current.
  • the change in the strength of the magnetic force received by the mover 4 in the magnetic field also has a certain frequency, and the mover 4 is always in motion.
  • the automatic liquid dosing device By controlling the on-off frequency of direct current and the natural frequency of alternating current, the automatic liquid dosing device can be controlled to dole out liquid, and the efficiency of liquid dosing can be improved. To improve and enhance the liquid feeding effect of the automatic liquid feeding device, it can be achieved by adjusting the relationship between the alternating current frequency and the direct current on-off frequency and the vibration frequency of the mover.
  • the elastic element 3 and the mover 4 can be regarded as a whole with a fixed vibration frequency, that is, an elastic vibration system.
  • the overall vibration frequency is related to the elastic coefficient of the elastic element 3 and the mass of the mover 4 .
  • the magnetic force is the excitation force that excites the elastic system composed of the mover 4 and the elastic element 3 to vibrate.
  • the frequency of the excitation force is consistent with or is a multiple of the natural frequency of the excited system, resonance will occur, thereby enhancing the liquid dosing effect of the automatic liquid dosing device.
  • Magnetism can change the frequency by adjusting the current, such as adjusting the on-off frequency of direct current and the alternating frequency of alternating current. Therefore, by adjusting the current, adjusting the mass of the mover 4, and adjusting the elastic coefficient of the elastic element 3, the relationship between the changing frequency of the driving force and the frequency of the elastic vibration system composed of the mover 4 and the elastic element 3 can be changed, so that the automatic throw
  • the liquid feeding device can achieve the best liquid feeding effect by adjusting the frequency of the alternating current to increase the volume change of the liquid suction chamber 602 of the automatic liquid feeding device and enhance the liquid feeding effect.
  • This embodiment provides a washing equipment using the above-mentioned automatic liquid feeding device.
  • the suction pipe 603 of the automatic liquid dosing device is connected to the detergent storage box of the washing equipment, and the drain pipe 206 of the automatic liquid dosing device is connected to the water inlet of the washing equipment.
  • the incoming water flow mixes with the washing liquid and then enters the washing bucket.
  • the automatic and precise addition of detergent is controlled, avoiding excessive addition of detergent from damaging the clothes, and at the same time simplifying the structure of the liquid dosing device.
  • the present invention provides an automatic liquid feeding device for washing equipment by specifically designing the structure and arranging magnetic drive and elastic element to assist movement. Liquid dosing device and washing equipment using the above automatic liquid dosing device for washing equipment.
  • this embodiment provides an automatic liquid feeding device for washing equipment, including: a housing 2 and a liquid suction device 6 .
  • a driving device 5 and a sleeve 202 are provided in the housing 2 , and one end of the housing 2 is connected to the liquid suction device 6 .
  • the automatic liquid dosing device also includes a movable component 103.
  • the movable component 103 includes a mover 4 and a diaphragm 1.
  • the diaphragm 1 is arranged in the liquid suction device 6.
  • One end of the mover 4 is connected to the diaphragm 1.
  • the driving device 5 drives the mover 4 to perform periodic reciprocating motion in the sleeve 202.
  • the mode By pulling and/or pushing The mode causes the diaphragm 1 to deform, and the deformation of the diaphragm 1 causes the washing liquid to be sucked into and discharged from the liquid suction device 6.
  • the diaphragm 1 and the mover 4 oscillate at the same frequency.
  • the described oscillation means that the diaphragm 1 is deformed in the left and right directions driven by the mover 4 and at the same time, the diaphragm 1 itself has a small range of resonant shaking.
  • This kind of resonant shaking causes the diaphragm 1 to have different amplitudes in the direction of the chamber of the liquid suction device 6 and the direction of the sleeve 202, causing part of the washing liquid to be discharged from the liquid suction device 6, which improves the automatic feeding of the washing equipment to a certain extent.
  • the efficiency of the liquid device in dispensing washing liquid is arranged to move within the sleeve 202, and the mover 4 is coaxial with the sleeve 202 when moving.
  • the mover 4 is limited to move within the sleeve 202 and is coaxial with the sleeve 202 when moving.
  • the mover 4 is a metal structural component with a relatively fixed shape and volume. It is non-magnetic and will undergo movement and displacement under the attraction of a magnetic field, but will not be magnetized as a whole. Specifically, the mover 4 is connected to the centroid of the diaphragm 1, and the centroid of the diaphragm 1 is concentric with its deformation part.
  • the peripheral edge of the diaphragm 1 is fixedly connected to the chamber wall of the liquid suction device 6 .
  • the mover 4 causes the diaphragm 1 to deform and oscillate reciprocally by pulling and/or pushing, so that the washing liquid is sucked into and discharged from the liquid suction device 6 .
  • the peripheral edge of the diaphragm 1 is fixed on the inner wall of the liquid suction chamber, and the suspended part of the diaphragm forms the deformable part of the diaphragm.
  • the degree of deformation of the diaphragm 1 toward the chamber of the liquid suction device 6 is greater than or equal to The degree of deformation in the direction of sleeve 202. While the mover pulls and promotes the overall movement of the diaphragm, the diaphragm 1 itself also oscillates back and forth due to the force. This oscillation can discharge more washing liquid out of the suction chamber, thereby improving the automatic feeding of washing equipment. Liquid dosing efficiency of the liquid device.
  • the housing 2 further includes a flange 201 connected to one end of the liquid suction device 6 , which includes a suction device 6 .
  • the liquid chamber 602 and the end cover 601 are vertically connected to the flange 201.
  • the end cover 601 is provided with a groove to accommodate the end of the diaphragm.
  • the end of the diaphragm 1 is fixed to the flange. 201 and the groove of the end cover 601, the diaphragm 1 covers and seals one end of the sleeve 202 and forms one side wall of the liquid suction chamber 602.
  • the cover end 601 is composed of the side wall of the liquid suction chamber.
  • the flange 201 is formed by the sleeve 202 extending at an angle for a certain length, or the flange 201 is formed by the side wall of the housing 201 extending at an angle for a certain length.
  • the periphery of the diaphragm 1 is fixed between the flange 201 and the groove of the end cover 601, and the diaphragm 1 connects the liquid suction device 6 and the housing 2. Further, the periphery of the diaphragm 1 is fixed between the flange 201 and the groove of the end cover 601. When the diaphragm 1 is supported and fixed, the middle part is the deformable area.
  • the diaphragm separates the liquid suction device and the casing, and the diaphragm acts as a side wall inside the liquid suction device, which can simplify the structure of the automatic liquid dosing device used in washing equipment and facilitate processing and manufacturing. Furthermore, the mover 4 and the diaphragm 1 are connected together to form the movable assembly 103 through integrated molding, non-detachable connection or detachable connection. One end portion of the mover 4 connected to the diaphragm 1 is exposed on the sleeve. 202.
  • the non-detachable connection method includes: one end of the mover 4 is adhesively connected to the centroid of the diaphragm 1 to form a movable component 103. Further, the mover 4 is a metal structural component, and the diaphragm 1 is a non-magnetized structural component or a metal component. When the diaphragm 1 is made of a metal structural member with a certain elasticity, the mover 4 and the diaphragm 1 are fixedly connected by welding. In the above scheme, the mover and the diaphragm are bonded and fixed, and the simple connection can greatly reduce the difficulty and cost of manufacturing, and meets the actual market demand.
  • the mover 4 includes a moving part 402.
  • the moving part 402 is a cylindrical structural member of metal material.
  • An umbrella-shaped or mushroom-shaped embedded block 401 is provided at the end of the moving part 402 toward the direction of the diaphragm 1.
  • the integrated mounting fixture is placed in the mold, and the diaphragm 1 connected to the mover 4 is formed by integrated injection molding around the mounting fixture.
  • the material of the diaphragm 1 is plastic, rubber, silicone, animal skin, etc.
  • the mounting fixture has high temperature resistance.
  • the installation fixing parts are made of metal alloy structural parts.
  • the integrally formed integral component connecting the mover 4 and the diaphragm 1 is fixedly connected and cannot be detached.
  • the mover and the mounting fixture are connected together to form a whole as a support component in the center of the diaphragm.
  • the diaphragm structure is formed by injection molding in the mold and integrated with the whole.
  • the detachable connection method includes: the central part of the diaphragm 1 has a certain thickness, the diaphragm 1 is provided with an embedded part 101 that engages with the embedded block 401, and the embedded block 401 and the embedded The part 101 cooperates with the snap connection to realize the connection between the mover 4 and the diaphragm 1.
  • the snap-on connection method is more reliable and stable, and can greatly improve the structural strength of the movable components, which to a certain extent improves the functional reliability of the automatic liquid dosing device for washing equipment.
  • the shape of the diaphragm 1 is disk-shaped, bowl-shaped or bladder-shaped.
  • the diaphragm follows the reciprocating motion of the mover and has different degrees of deformation toward the chamber of the liquid suction device 6 and toward the sleeve 202 .
  • the degree of deformation of the diaphragm toward the chamber of the liquid suction device 6 is greater than the degree of deformation toward the sleeve 202 . Because the space on the side of the sleeve 202 is small, there is a certain obstruction to the leftward movement of the diaphragm. This solution can prevent the diaphragm from being damaged due to excessive magnetic field force, and ensures the automatic operation of the washing equipment. The service life of the liquid dosing device.
  • the degree of deformation of the diaphragm toward the chamber of the liquid suction device is less than the degree of deformation toward the sleeve, ensuring that the elastic element will not be overstretched.
  • this solution can also make the diaphragm in a changing state periodically, preventing fatigue damage caused by repeated reversing forces on the diaphragm, thus ensuring the reliable performance of the automatic liquid dosing device to a certain extent. performance and service life.
  • the mover 4 also includes a dumbbell-shaped conductive part 403.
  • One end of the conductive part 403 is connected to the moving part 402, and an embedded block 401 is provided on the other end.
  • the embedded block 401 and the embedded part 101 cooperates with the snap connection to realize the connection between the mover 4 and the diaphragm 1.
  • the above-mentioned bonding, welding, integrated molding, snapping and threaded mover 4 can be provided with a conductive portion 403 for easy connection.
  • the material of the conductive part 403 can be non-metallic material or other materials as needed.
  • the driving device 5 includes a coil 501.
  • the coil 501 is wound around the outside of the sleeve 202.
  • the coil 501 is energized to generate a magnetic field.
  • the mover 4 is driven by the magnetic field to reciprocate in the sleeve 202, pushing and/or pulling periodically.
  • Diaphragm 1 is deformed.
  • the driving device 5 adopts a magnetic drive method, which can reduce the volume and mass of the automatic liquid dosing device used in washing equipment.
  • the cost of the magnetic drive coil is lower than other driving methods, thereby reducing production costs.
  • the central axis of the coil 501 coincides with the central axis of the sleeve 202 .
  • the diaphragm 1 is made of elastic material.
  • the driving device 5 can also be driven by a hydraulic system or a pneumatic system to move the movable components. It should be noted that the magnetic driving force provided by the driving device 5 to the mover 4 may be a force whose direction is always fixed or a force whose direction changes periodically.
  • an elastic element 3 is provided at one end of the sleeve 202 away from the diaphragm.
  • the elastic element 3 and the driving device 5 assist each other and/or restrict the movement of the mover 4.
  • the elastic element 3 includes a support spring 301.
  • the support spring 301 is coaxially arranged with the mover 4 and connected at one end. When the mover 4 moves, the support spring 301 generates a force on the mover 4 that is the same or opposite to the direction of movement.
  • the elasticity Element 3 also includes a rebound spring 302. The length of the rebound spring 302 is no longer than the length of the support spring 301.
  • the mover 4 When the mover 4 moves away from the diaphragm 1, the mover 4 contacts the rebound spring 302 at a certain position, causing the mover 4 to contact the rebound spring 302. Receiving a force opposite to the direction of movement can reduce the speed of mover 4 to zero.
  • one end of the support spring 301 is connected to the bottom of the sleeve 202 , and the other end is connected to the end of the mover 4 .
  • one end of the rebound spring 302 is connected to the bottom of the sleeve 202 , and the other end is at a certain distance from the end of the mover 4 .
  • the other end of the diaphragm 1 is provided with a return spring 303.
  • One end of the return spring 303 is connected to the centroid of the diaphragm 1, so that the diaphragm 1 is pulled or pushed and always returns to its original position.
  • the return spring provided in the suction chamber 602 always gives the movable component a restoring force opposite to the direction of movement. This scheme can avoid to a certain extent the problems caused by excessive deformation of the diaphragm. The situation of fatigue damage greatly extends the service life of the automatic liquid dosing device used in washing equipment.
  • Figure 13 can be understood as a schematic diagram of the state in the initial position, or as a schematic diagram of the state during movement. No specific restrictions are made here, so the solutions reflected in the figures are all valid.
  • a return spring 303 is provided in the liquid suction chamber 602. One end of the return spring 303 is connected to the deformation part of the diaphragm 1, and the other end is connected to the inner wall of the liquid suction chamber 602 corresponding to the diaphragm 1. Further, multiple return springs 303 may be provided, and the multiple return springs are arranged in parallel.
  • the automatic dosing device determines the power-on time required to work according to the required amount of washing additives.
  • the automatic dosing device puts the washing additives into the water inlet pipe of the washing barrel, and is driven by the incoming water to add the washing additives evenly into the outer washing barrel of the washing equipment.
  • the automatic liquid feeding device provided in this embodiment can pump part of the detergent into the liquid suction chamber, and then delay the discharge of this part of the washing liquid out of the liquid suction chamber and put it into the washing bucket water inlet pipe, or it can After the liquid suction chamber is filled with washing liquid, the liquid suction chamber is discharged as a whole and put into the water inlet pipe of the washing bucket. This prevents the amount of detergent dispensed from being limited to a certain range by the size of the suction chamber of the liquid dosing device. Therefore, the liquid dosing device of this embodiment has a wide range of applications.
  • the detachable connection method between the diaphragm and the mover also includes a threaded connection method.
  • the center of the diaphragm has a certain thickness.
  • One end of the mover is equipped with a protruding threaded rod.
  • the threaded rod is screwed into the internally threaded channel through rotation to achieve the connection between the mover and the diaphragm.
  • Connection, or the diaphragm is provided with a threaded rod convexly, and one end of the mover is concavely provided with an internally threaded channel structure.
  • the threaded rod is screwed into the internally threaded channel by rotation to realize the connection between the mover and the diaphragm.
  • this embodiment is a further limitation of the eighth embodiment.
  • the mover 4 and the diaphragm 1 are snap-fitted through the embedded block 401 and the embedded part 101.
  • the specific method is as follows: an umbrella-shaped or mushroom-shaped embedded block 401 is provided at the end of the moving part 402 toward the diaphragm 1.
  • the center part of the diaphragm 1 has a certain thickness, and an embedded block 401 is provided inside the diaphragm 1 to engage with the embedded block 401.
  • the mating embedding part 101 and the embedding block 401 are engaged with the embedding part 101 to realize the connection between the mover 4 and the diaphragm 1 .
  • the embedded block 401 is a rigid and non-deformable umbrella-shaped or mushroom-shaped structural member, and an open embedded portion 101 is provided in the center of the diaphragm 1 .
  • the central axis of the mover 4 is parallel to the center line of the diaphragm 1.
  • the embedded block 401 of the mover 4 is translated and inserted into the embedded part 101. The movement is completed until the central axis of the mover 4 coincides with the center line of the diaphragm 1.
  • the embedded block 401 is an elastically deformable umbrella-shaped or mushroom-shaped structural member, and the diaphragm 1 is provided with an embedded portion 101 snap-fitted with the embedded block 401 .
  • the embedded block 401 is stretched and fixed in the embedded part 101, and the mover 4 and the diaphragm 1 are completed. snap-on assembly.
  • the coil is not energized, the mover has no tendency to move, the spring is in its natural state without compression or tension, and the diaphragm has no deformation;
  • a cycle of alternating current is divided into the first half-cycle stage and the second half-cycle stage.
  • the voltage image (or current image) of the first half-cycle stage and the second half-cycle stage of alternating current is related to the voltage value (or current value) as The point of 0 is symmetrical about the center; the voltage peak (or current peak) point of the upper half cycle and/or the second half cycle is the midpoint, and the half cycle is divided into the voltage intensity increasing (or current increasing) stage and the voltage intensity decreasing (or current reduction) stage.
  • the mover When the coil is supplied with alternating current, the mover will not be magnetized as a whole, but will be attracted to the left by the magnetic lines of force exposed in the opening on the left side wall of the sleeve. Taking the mover as the force-receiving body, the mover moves due to the magnetic field force F1, the diaphragm's restoring force F2, and the spring's restoring force F3.
  • the mover in the initial position is subject to the magnetic field force F1 to the left, causing the mover to move to the left.
  • the restoring force of the diaphragm F2 and the restoring force of the spring F3 increases to prevent the mover from moving to the left.
  • the restoring force F2 of the diaphragm is a pulling force on the mover to the right
  • the restoring force F3 of the spring is a pushing force on the mover to the right.
  • the magnetic field force F1 on the mover continues to increase, forcing the diaphragm to continue to stretch to the left.
  • the diaphragm's restoring force F2 continues to increase, the spring continues to compress, and the spring's restoring force F3 Continue to grow.
  • the mover is subjected to the magnetic field force F1 to the left, which is numerically equal to the numerical sum of the restoring force F2 of the diaphragm to the right and the restoring force F3 of the spring, but the mover still has momentum to the left.
  • the mover continues to move a certain distance to the left, further compressing the spring and stretching the diaphragm, so that the values of the restoring force F2 of the diaphragm to the right and the restoring force F3 of the spring are greater than those of the mover in a short period of time.
  • the value of the magnetic field force F1 to the left is applied until the speed of the mover is reduced to zero. At this time, the mover receives the resultant force to the right, and the mover has a tendency to move to the right.
  • the mover at the farthest extreme position on the left receives the restoring force F2 of the diaphragm to the right and the restoring force F3 of the spring.
  • the sum of the values is greater than the magnetic field the mover receives to the left.
  • the value of force F1 so the mover moves to the right.
  • the return force F2 of the diaphragm and the return force F3 of the spring are released and reduced, causing the mover to move to the right.
  • the return force F2 of the diaphragm is a pulling force on the mover to the right
  • the return force of the spring is Force F3 is the push force on the mover to the right.
  • the magnetic field force F1 to the left on the mover continues to decrease
  • the restoring force F2 of the diaphragm and the restoring force F3 of the spring continue to be released and reduced, causing the mover to move to the right.
  • the mover When it reaches the conversion point between the first half cycle and the second half cycle (that is, the turning point where the AC voltage value is 0 and the voltage is about to reverse direction), at this time, the mover is no longer affected by the magnetic field force (that is, the magnetic field force F1 is 0), and the stored diaphragm The restoring force F2 of the spring and the restoring force F3 of the spring are also completely released. At this time, the mover is not subject to external force, but the mover still has momentum to the right, and the mover continues to move a certain distance to the right. The mover continues to move a certain distance to the right. During this process, the diaphragm is pushed to the right.
  • the restoring force F2 of the diaphragm is pushing the mover to the left.
  • the spring is stretched by the mover.
  • the restoring force F3 of the spring is the pulling force on the mover to the left. Until the speed of the mover decreases to zero, the resultant force on the mover is to the left, and the mover has a tendency to move to the left.
  • the alternating current will enter the voltage intensity increasing stage in the second half of the cycle, then enter the voltage intensity decreasing stage in the second half of the cycle, and then enter the voltage intensity increasing stage in the first half cycle, and the cycle continues, that is, When the alternating current frequency is 50HZ, the mover moves back and forth 100 times.
  • the force analysis when the alternating current enters the voltage intensity increasing stage of the second half cycle is the same as the voltage intensity increasing stage of the alternating current entering the first half cycle; the force analysis of the alternating current entering the voltage intensity decreasing stage of the second half cycle is the same as that of the alternating current.
  • the voltage intensity reduction stage entering the first half cycle is the same and will not be described again here.
  • this embodiment is different from the above-mentioned Embodiment 11.
  • Another specific principle of the driving device driving the mover is as follows: taking sinusoidal alternating current as an example, when the alternating current In the first half-cycle stage, the coil generates magnetic poles with upper N and lower S (of course, depending on the direction of the current, it may also be upper S and lower N).
  • the mover part and the exposed part partially overlap in the height direction, and the open part of the coil partially overlaps.
  • the external leakage magnetic field lines completely magnetize the mover to form magnetic poles with upper S and lower N. As the voltage first increases and then decreases, the magnetic pole strength formed by the coil first increases and then weakens until it disappears.
  • the magnetism of the mover also appears to increase first and then decrease.
  • the upper end of the mover receives an attraction force from the N pole of the coil and a repulsive force from the S pole both point upward.
  • the lower end of the mover receives an upward attraction force from the S pole that is much greater than the downward repulsion force from the N pole, so the mover moves upward. , and finally the velocity decreases to zero at a relatively stable position.
  • the upward acceleration increases from zero to a certain value and then decreases to zero.
  • the mover When the alternating current is at the midpoint of the cycle, the mover is now in a relatively stable state with no magnetic pole distribution.
  • the coil When the alternating current is in the second half-cycle stage, the coil generates magnetic poles with upper S and lower N.
  • the leakage magnetic field lines at the exposed part of the coil magnetize the mover to form magnetic poles with upper N and lower S.
  • the intensity of the magnetic pole formed by the coil first increases and then weakens until it disappears.
  • the magnetic pole of this mover also appears to be high first and then low.
  • the downward pulling force of the spring plus the downward repulsive force of the coil S pole on the lower end of the mover is greater than the attraction force of the coil S pole on the upper end of the mover and
  • the N pole of the coil exerts an upward repulsive force on the upper end of the mover and the N pole of the coil exerts an upward attraction force on the lower end of the mover. Therefore, the mover moves downward and finally stays in a relatively stable position and resets.
  • This solution can play a role in magnetic field cancellation.
  • the power-on time is determined to achieve precise delivery of detergent.
  • an elastic element is provided at one end of the sleeve 202 away from the diaphragm. 3.
  • the elastic element 3 and the driving device 5 assist each other and/or restrict the movement of the mover 4.
  • the elastic element 3 includes a support spring 301. In the natural state, one end of the support spring 301 is connected to the bottom of the sleeve 202, and the other end is connected to the bottom of the mover 4. Ends.
  • the elastic element 3 also includes a rebound spring 302. The length of the rebound spring 302 is no longer than the length of the support spring 301.
  • one end of the rebound spring 302 is connected to the bottom of the sleeve 202, and the other end is at a certain distance from the end of the mover 4. Furthermore, in the initial state, neither the support spring 301 nor the rebound spring 302 is subject to tensile force or compression force, and the rebound spring 302 does not contact the mover 4 .
  • the diaphragm may also have the following specific structure:
  • the bowl-shaped diaphragm 1 is disposed at the connection between the housing 2 and the liquid suction device 6.
  • the connection structure is the same as that in the above embodiment and will not be described again here.
  • connection mode of the bowl-shaped diaphragm 1 with the housing 2 and the liquid suction device 6 can be configured as an adhesive connection.
  • a bonding area is formed on the inner wall of the automatic liquid dosing device for washing equipment, an adhesion point is provided on the outer periphery of the bowl-shaped diaphragm 1, and the bonding point on the outer periphery of the bowl-shaped diaphragm 1 is connected to the inner wall of the automatic liquid dosing device for washing equipment.
  • the adhesive area is fitted, the convex surface of the bowl-shaped diaphragm 1 is arranged toward the sleeve 202, and the end of the outer peripheral wall is flush with or protrudes from the high point of the convex surface of the bowl-shaped diaphragm 1.
  • the bowl-shaped diaphragm 1 forms a gradually tightening spherical curved surface structure from the outer periphery to the end.
  • Two mutually isolated chambers are formed between the bowl-shaped diaphragm 1 and the automatic liquid dosing device for washing equipment.
  • the cavity surrounding the bowl-shaped diaphragm 1 that includes both the liquid inlet and the liquid outlet is the liquid suction chamber 602, and the other chamber is the isolation chamber.
  • the arrangement of the above-mentioned isolation chamber gives the diaphragm 1 a larger range of motion, and the bowl-shaped design allows the liquid suction device 6 to accommodate more washing liquid, improving the working efficiency of the automatic liquid dosing device for washing equipment.
  • the bladder-shaped diaphragm 1 is disposed at the connection between the housing 2 and the liquid suction device 6.
  • the connection structure is the same as that in the above embodiment and will not be described again here.
  • the bladder-shaped diaphragm 1 has a bending structural member 102, and the bending structural member 102 In the form of folded bellows.
  • the bending structural member 102 can be stretched or compressed to a certain extent according to the direction of the force.
  • the design of the above-mentioned bending structural member 102 can help change the volume of the liquid suction chamber 602, so that the volume of the liquid suction chamber 602 changes to a greater extent, allowing more washing liquid to be sucked into the liquid suction device 6 and discharged.
  • Device 6 improves the working efficiency of the automatic liquid dosing device for washing equipment.
  • an automatic liquid feeding device for washing equipment includes a sleeve 202, a mover 4 and a driving device 5.
  • One end of the sleeve 202 is closed, and the other end has a suction pipe 603 and a discharge pipe 204.
  • the suction pipe 603 and the discharge pipe 204 on the other end of the sleeve 202 are alternately opened.
  • the mover 4 is movably disposed in the sleeve 202 .
  • the driving device 5 is disposed outside the sleeve 202 and is used to drive the mover 4 to move in the sleeve 202 .
  • the mover 4 reciprocates in the sleeve 202, causing the liquid in the sleeve 202 to fluctuate.
  • the fluctuating liquid flows axially along the sleeve 202 and periodically flows from the drain pipe. 204 outflow.
  • the sleeve 202 has a hollow structure, and an installation port for the suction pipe 603 and the discharge pipe 204 is provided at one end, wherein the suction pipe 603 and the discharge pipe 204 are sealed Insert into the corresponding installation port of the suction pipe 603 and the installation port of the discharge pipe 204.
  • the suction pipe 603 and the liquid discharge pipe 204 can also be fixed to their respective installation ports by threaded connection.
  • the suction pipe 603 and the discharge pipe 204 in the sleeve 202 can alternately open the suction pipe 603 and the discharge pipe 204 when the driving device 5 acts on the mover 4 to oscillate back and forth, thereby forming a one-way discharge. Channel to add liquid to the inside of the washing machine.
  • the mover 4 is a columnar metal structural member with a relatively fixed shape and volume, and may be made of ferrous metal, and the interior of the mover 4 may be hollow or partially hollow. Among them, the mover 4 itself does not have magnetism in the initial state, and will be magnetized and attracted by the magnetic field to cause motion displacement.
  • the mover 4 is arranged in the sleeve 202 and can slide inside the sleeve 202 .
  • the driving device 5 is provided outside the sleeve 202 . Under the action of the driving device 5 , the mover 4 can move in the sleeve 202 .
  • the liquid in the sleeve 202 Since the mover 4 oscillates at high frequency and performs reciprocating motion in the sleeve 202 , the liquid in the sleeve 202 generates kinetic energy to form a velocity wave.
  • the energized liquid moves in the sleeve 202 in the form of waves, and the liquid flows to the drain pipe 204 and opens the drain pipe 204, and water is injected into the inside of the washing machine through the drain pipe 204.
  • a negative pressure is formed inside the sleeve 202 , so that liquid is replenished into the sleeve 202 through the pipette 603 .
  • Such repeated actions can realize periodic and continuous injection of liquid into the washing machine, and the amount of liquid injected is accurate and efficient.
  • the driving device 5 can drive the mover 4 in one of electromechanical, pneumatic or electromagnetic modes. Under the driving action, the mover 4 moves in the sleeve 202 Continuous reciprocating oscillation.
  • an electromechanical driving method is used to drive the mover 4 to reciprocate.
  • the specific method is: a micro linear vibration motor is provided inside the mover 4, and the vibration direction of the micro linear vibration motor is connected with the mover. 4 move in the same direction, so that the mover 4 can continuously perform high-frequency reciprocating oscillations in the sleeve 202, thereby causing the liquid in the sleeve 202 to gain energy and generate fluctuations, thereby realizing the action of feeding and discharging liquid.
  • the mover 4 has a smaller amplitude and a higher frequency, which will cause the mover 4 to oscillate at a high frequency and drive the liquid to produce fluctuations at a higher frequency.
  • a pneumatic driving method is used to drive the mover 4 to reciprocate.
  • the specific method may be: a sleeve is set on the outside of the mover 4, and the mover 4 is sealed and slidably arranged in the sleeve. , the casing is provided with openings for inputting and discharging gas.
  • the air pressure inside the sleeve By changing the air pressure inside the sleeve, the moving position of the mover 4 is changed, and the changing frequency is increased, so that the mover 4 can continuously perform high-frequency reciprocating oscillation in the sleeve 202, so that the The liquid in the sleeve 202 is energized to generate fluctuations, thereby realizing the action of feeding and discharging liquid.
  • the pneumatic driving method makes the reciprocating movement of the mover more stable, thereby ensuring that the amount of liquid injected in a single time is uniform during the periodic liquid dosing process.
  • the driving device 5 when using the electromagnetic method, includes a coil 501 and an elastic element 3 .
  • the coil 501 is wound around the outside of the sleeve 202 .
  • the elastic element 3 is axially disposed on the inner wall of the sleeve 202 to provide a restoring force for the mover 4 to move to the initial position.
  • the center of the mover 4 is offset from the center of the coil 501 .
  • the driving device 5 includes a coil 501 , and the coil 501 is wound around the outside of the sleeve 202 .
  • the center of the mover 4 is offset from the center of the coil 501 .
  • the horizontal distance between the lines connecting the centers of the mover 4 and the coil 501 is greater than the maximum amplitude of the mover 4 oscillating toward the center of the coil 501 .
  • the coil 501 can also be separately provided with a coil bracket 502 outside the sleeve 202, and the coil 501 is wound around the coil bracket 502 to achieve the connection between the coil 501 and the sleeve 202.
  • Detachable setup. The position of the coil support 502 can be adjusted adaptively according to needs, making the setting more flexible.
  • An elastic element 3 is provided on the inner wall of the sleeve 202, and the elastic element 3 is arranged in an axial direction. That is, the expansion and contraction direction of the elastic element 3 may be set along the axial direction of the sleeve 202 , but may not be completely perpendicular to the end of the sleeve 202 .
  • the mover 4 is driven by the driving device 5 in the sleeve 202 to perform high-frequency oscillation, and then resets under the action of the elastic element 3 . Then, under the dual action of the driving device 5 and the elastic element 3, the mover 4 forms a continuous high-frequency reciprocating movement.
  • the vibration frequency of the oscillation system composed of the mover 4 and the elastic element 3 is achieved by setting the ratio of the elastic coefficient of the elastic element 3 to the mass of the mover 4 .
  • the elastic coefficient of the elastic element 3 is much larger than the mass of the mover 4, which can increase the vibration frequency of the entire oscillation system.
  • the mover 4 is driven by the driving device 5 to achieve high-frequency reciprocating oscillation in the sleeve 202 .
  • the mover 4 is driven to perform high-frequency reciprocating oscillation by an electromagnetic driving method, in which the structure is simple and compact, and the cost is low; and the coil 501 and other components required for the driving force to drive the mover 4 are not required.
  • the elastic element 3 only needs to be reset, so there is no large extrusion force and friction force, ensuring the service life of the mover 4 .
  • the gap is greater than or equal to the distance between the mover 4 and the liquid suction tube 603 The maximum amplitude of oscillation.
  • the mover 4 is arranged in the sleeve 202. After the elastic element 3 is connected to one end of the sleeve 202, the other end of the mover 4 is connected to the other end of the sleeve 202. There is a gap in between.
  • a certain gap is left between one end surface of the mover 4 and the inner end surface of the sleeve 202 with the suction tube 603, so that the gap can be filled with liquid.
  • a certain gap is left to ensure that the liquid gradually gains energy and generates speed due to the high-frequency oscillation of the mover 4. waves, and form a one-way liquid column flow trend.
  • the center of the coil 501 is deviated from the center of the mover 4 . That is, the mid-perpendicular line of the axial length of the coil 501 does not coincide with the mid-perpendicular line of the axial length of the mover 4 .
  • the center vertical line corresponding to the entire length of the coil 501 is located on the left or right side of the center vertical line of the axial length of the mover 4 .
  • the magnitude and direction of the current change periodically.
  • the waveform of the current is a sinusoidal waveform. Due to the periodic changes in the magnitude of the current, the generated magnetic field will change periodically, and the attraction force in the sleeve 202 will also change periodically.
  • the sinusoidal alternating current is passed into the coil 501 .
  • the mover 4 begins to Finally, the electromagnetic force provided by the coil 501 changes in size and has the same magnetic force direction. The direction of the electromagnetic force received by the mover 4 is always directed toward the center of the coil 501 .
  • the electromagnetic force drives the mover 4 to move to the left and starts to squeeze the elastic element 3. Then the electromagnetic force does work on the mover 4 and converts it into the elastic potential energy of the elastic element 3, so that The electromagnetic force always promotes the movement of the mover 4 and does positive work on the mover 4 .
  • the elastic element 3 After the mover 4 moves to the far left and stops, the elastic element 3 begins to release its own elastic potential energy, which is converted into the kinetic energy of the mover 4, causing it to start moving to the right. At this time, the electromagnetic force blocks When the mover 4 moves, negative work is done on the mover 4 until the mover 4 moves to the rightmost position and stops.
  • the mover 4 will reciprocate and oscillate at high frequency in the sleeve 202 , thereby causing the liquid in the sleeve 202 to gain energy and fluctuate. Thereby, the liquid moves to the side toward the drain pipe 204 in a wave form to drain the liquid. After the liquid is drained, a negative pressure is formed in the sleeve 202 and the liquid is sucked from the liquid suction pipe 603 .
  • the entire forward waveform of the current is a half cycle.
  • the current in the coil 501 is turned on, and the current gradually increases from 0 to the maximum value, and the magnetic field intensity continues to increase, so that the electromagnetic force received by the mover 4 continues to increase and moves to the left side of the sleeve 202, and the mover 4 4.
  • the elastic element 3 is compressed so that its restoring force continues to increase.
  • the electromagnetic force is always greater than the restoring force, and the mover 4 performs an accelerating motion in the sleeve 202 with continuously decreasing acceleration.
  • the mover 4 When the electromagnetic force is equal to the restoring force, the acceleration is 0, and the speed of the mover 4 is maximum at this time; the mover 4 continues to move to the left, and the restoring force is greater than the electromagnetic force, then the mover 4 begins to decelerate until is 0. At this time, the compression amount of the elastic element 3 is maximum, and the mover 4 begins to accelerate in reverse, that is, the mover 4 moves to the right side of the sleeve 202, and the current starts to move from the maximum value to the right side of the sleeve 202.
  • FIG. 15 another more preferred embodiment: when the coil 501 is supplied with sinusoidal alternating current, the entire forward waveform of the current is a half cycle.
  • the current in the coil 501 is turned on, and the current gradually increases from 0 to the maximum value, and the magnetic field intensity continues to increase, so that the electromagnetic force received by the mover 4 continues to increase and moves to the left side of the sleeve 202, and the mover 4 4.
  • the elastic element 3 is compressed so that its restoring force continues to increase.
  • the electromagnetic force is always greater than the restoring force, and the mover 4 performs an accelerating motion in the sleeve 202 with continuously decreasing acceleration.
  • the mover 4 When the electromagnetic force is equal to the restoring force, the acceleration is 0, and the speed of the mover 4 is maximum at this time; the mover 4 continues to move to the left, and the current gradually decreases to 0 from the maximum value, and the recovery of the elastic element 3 If the force is greater than the electromagnetic force, the mover 4 begins to decelerate until it reaches 0. At this time, the compression amount of the elastic element 3 is the largest, and the mover 4 begins to accelerate in the opposite direction, that is, the mover 4 begins to accelerate in the opposite direction.
  • the right side of the sleeve 202 moves, and the time period required for the mover 4 to move to the left is consistent with the time period required to move to the right.
  • the electromagnetic force first gradually decreases and then gradually increases, but the overall electromagnetic force does the least negative work on the mover 4 .
  • the mover 4 when the oscillation period of the mover 4 and the elastic element 3 is the same as or in a multiple relationship with the period of the sinusoidal current, that is, the change period of the electromagnetic force, resonance will occur, so that the mover 4 is driven by the electromagnetic force.
  • the amplitude of oscillation is the largest, which effectively ensures the effect of liquid suction and discharge. Due to the effect of the continuous alternating current, the mover 4 can oscillate at high frequency in the sleeve 202, thereby allowing the entire liquid suction and discharge action to proceed continuously.
  • the oscillation amplitude of the mover 4 in the sleeve 202 can be controlled, This ensures the effect of liquid suction and discharge.
  • the mover 4 will rapidly reciprocate and drive the liquid inside the sleeve 202 to generate velocity waves, thereby draining the liquid to one side of the drain pipe 204 .
  • the axis of the coil 501 is parallel to the axis of the mover 4 , and the outer diameter of the mover 4 is smaller than the inner diameter of the sleeve 202 .
  • the horizontal distance between the centers of the mover 4 and the coil 501 is greater than or equal to The mover 4 oscillates toward the center of the coil 501 with the maximum amplitude.
  • the mover 4 When the mover 4 is slidably disposed on the sleeve 202 , it can be placed completely horizontally, so that the axis of the mover 4 can be parallel to the axis of the coil 501 . Therefore, under the action of the magnetic field, the resultant force of attraction experienced by the mover 4 is the largest, and the movement becomes more stable.
  • the axes among the coil 501, the mover 4 and the sleeve 202 are arranged to coincide with each other.
  • the coil 501, the mover 4 and the sleeve 202 coaxially, it can be ensured that the movement of the mover 4 in the sleeve 202 will not be affected by the sleeve 202. Internal friction effects. At the same time, it is ensured that the attractive force generated by the magnetic field acting on the mover 4 is uniform in all directions, thereby making the movement of the mover 4 more stable.
  • the projection of the mover 4 along the axial direction of the sleeve 202 completely blocks the nozzle of the drain pipe 204 .
  • the mover 4 is opposite to the nozzle of the drain pipe 204. When extending in the horizontal direction, the mover 4 can completely cover the nozzle of the drain pipe 204, so that when the liquid fluctuates, the mover 4 can move as much as possible when the liquid fluctuates. Excess liquid is discharged from the drain pipe 204 .
  • bosses are respectively provided at both ends of the mover 4 .
  • the two ends of the mover 4 are provided with bosses, and the bosses are provided with rounded corners, thereby reducing the resistance of the mover 4 during high-frequency reciprocating oscillation.
  • the elastic element 3 includes a support spring 301 , one end of the support spring 301 is connected to the inner wall of the sleeve 202 , and the other end is connected to the outer wall of the mover 4 .
  • the maximum compression amount of the support spring 301 is less than or equal to the maximum amplitude of the oscillation of the mover 4 .
  • the support spring 301 is a compression spring.
  • the support spring 301 is disposed on the inner end surface of the sleeve 202 opposite to the drain pipe 204 .
  • the support spring 301 is coaxially arranged with the mover 4, and since a boss is provided on the end face of the mover 4, one end of the support spring 301 is clamped and fixed on the boss. Due to the coaxial arrangement, it can be ensured that the mover 4 is positioned horizontally on its axis in the sleeve 202, which not only completes the installation and fixation of the mover 4, but also provides the mover 4 with a stable position when receiving the force. The magnetic field attracts and provides restoring force after movement.
  • the maximum compression amount of the support spring 301 is greater than or equal to the maximum amplitude of the oscillation of the mover 4, during the oscillation process of the mover 4, the support will be compressed by moving toward the center of the coil 501.
  • the spring 301 prevents the support spring 301 from being compressed to the maximum compression amount before the mover 4 moves to the maximum amplitude, affecting the overall oscillation effect.
  • the mover 4 is provided with a return spring 303 on the other end surface away from the support spring 301.
  • the installation position and fixation method of the return spring 303 and the support spring 301 are exactly the same. Therefore, the two ends of the mover 4 can be installed and fixed accordingly, further ensuring its horizontal state after installation.
  • the elastic element 3 further includes a rebound spring 302 , one end of the rebound spring 302 is connected to the inner wall of the sleeve 202 , and the support spring 301 is sleeved on the outside of the rebound spring 302 .
  • the elastic coefficient of the rebound spring 302 is greater than the elastic coefficient of the support spring 301 .
  • the maximum compression amount of the rebound spring 302 is greater than or equal to the maximum amplitude of the oscillation of the mover 4 .
  • the rebound spring 302 is disposed inside the support spring 301 and forms a spring resonance system with the support spring 301.
  • the support spring 301 can be gradually compressed after the mover 4 is attracted by the magnetic field. After continued compression, it will interact with the rebound spring. 302 for extrusion.
  • the maximum amplitude of the oscillation of the mover 4 is less than the maximum compression amount of the rebound spring 302, which avoids The mover 4 is rebounded before it reaches the maximum amplitude, which affects the overall oscillation effect.
  • the elastic force range that can be formed by the cooperation between the rebound spring 302 and the support spring 301 is larger, effectively shortening the need for a single spring.
  • the length of a certain restoring force can better adapt to the restoring force that needs to be provided after the mover 4 moves.
  • the liquid suction pipe 603 and the liquid discharge pipe 204 are located on the same side of the sleeve 202 . Arranging the liquid suction pipe 603 and the liquid discharge pipe 204 on the same side of the sleeve 202 can shorten the distance of liquid suction and discharge, and add washing liquid to the interior of the washing machine more efficiently.
  • a guide device is provided in the liquid suction pipe 603 and the liquid discharge pipe 204.
  • the guide device is a one-way valve 206.
  • the conduction direction of the one-way valve 206 located on the liquid suction pipe 603 is determined by the direction of the one-way valve 206.
  • the suction pipe 603 points to the inside of the sleeve 202
  • the conductive direction of the one-way valve 206 located on the drain pipe 204 points from the inside of the sleeve 202 to the drain pipe 204 . Therefore, the liquid can be effectively controlled to flow from the suction tube 603 into the sleeve 202 and be discharged from the drain tube 204 .
  • a one-way valve 206 is provided inside the liquid suction pipe 603 and the liquid discharge pipe 204, thereby ensuring the direction of suction and discharge of liquid, and fully ensuring that the liquid is sucked from the liquid suction pipe 603 and discharged. It is discharged from the drain pipe 204 to prevent the liquid sucked into the sleeve 202 from partially flowing back into the suction pipe 603 during draining, affecting the efficiency of pouring liquid into the washing machine.
  • the coil 501 in the present invention can also be supplied with direct current.
  • direct current when direct current flows through the coil 501, the current is controlled to be on and off at a certain frequency.
  • the electromagnetic force needs to appear and disappear at a certain frequency.
  • the movement direction of the mover 4 is consistent with the direction of the electromagnetic force;
  • the mover 4 rebounds under the action of the support spring 301 .
  • the mover 4 can also achieve oscillating motion in the sleeve 202 .
  • the sleeve 202 includes a sleeve body and an end cover 601, wherein the sleeve body has an opening, and the opening of the sleeve body is butted with the end cover 601, so that a pipe diameter is formed everywhere inside.
  • Sleeve cavities 203 with equal or unequal diameters. When the pipe diameter is constant, the mover 4 reciprocates at high frequency, driving the liquid to gain energy and fluctuate. The fluctuations in the sleeve cavity 203 are stable, and the amount of liquid suction and discharge can be guaranteed; when the formed pipe diameters are not all equal, That is, the end cap 601 has a larger pipe diameter and can initially store more liquid.
  • the pressure at the end cap 601 decreases, resulting in less energy to open the one-way valve 206 in the drain pipe 204, and the liquid drain volume decreases, thereby forming a formation in the sleeve 202.
  • the pressure difference is small, resulting in reduced liquid suction volume.
  • the pipe diameter of the sleeve cavity 203 formed by the sleeve body and the end cover 601 is the same everywhere.
  • the end cover 601 is fixedly connected to the sleeve body 2, and the fixing method can be bolted connection, bonding or welding.
  • the end cap 601 and the sleeve body are fixed with bolts to facilitate disassembly.
  • flanges 201 are fixedly provided on the outer peripheral walls of the sleeve body and the end cap 601, thereby providing a mounting location when the sleeve body and the end cap 601 are fixed by bolts.
  • a sealing ring is provided between the two flanges 201 to ensure the sealing performance at the connection between the sleeve body and the end cover 601.
  • the present invention also provides a washing equipment having any one of the above-mentioned automatic liquid feeding devices for washing equipment.
  • the automatic liquid dosing device is used in a washing device, which can be a washing machine, a dishwasher, an integrated washing and drying machine, and other equipment.
  • a washing machine as an example, the suction pipe 603 of the automatic liquid adding device is connected to the detergent liquid storage box.
  • the liquid drain pipe 204 can be directly connected to the inner barrel of the washing machine. During the liquid filling process, the liquid drain pipe 204 can be connected with the inlet. The water discharged from the water pipe is mixed and thrown into the inner barrel of the washing machine.
  • the mover 4 is driven by electromagnetic force provided by the above-mentioned coil 501 and reset by the elastic element 3 .
  • the above-mentioned oscillating action is continuously reciprocated, so that the liquid in the sleeve 202 is energized and oscillated, and then the liquid in the sleeve 202 fluctuates and displaces. Therefore, while the liquid is poured into the inside of the washing machine through the drain pipe 204, a pressure difference is generated inside the sleeve 202, causing the one-way valve 206 of the liquid suction pipe 603 to open to suck liquid, which can ensure continuous liquid feeding into the inner barrel of the washing machine. Inject the required liquid, the operation is simple and the liquid injection is accurate.
  • the present invention proposes an automatic liquid feeding device for washing equipment, which is used to realize the inlet and outlet of washing liquid.
  • the inlet of washing liquid means to enable various washing methods in the washing machine.
  • the liquid enters the automatic liquid dosing device of the washing equipment.
  • the discharge of the washing liquid means that the washing liquid in the automatic liquid dosing device of the washing equipment is thrown into the washing machine.
  • the automatic liquid dosing device of the washing equipment of the present invention includes a housing 2.
  • a sleeve 202 is provided in the housing 2.
  • the sleeve 202 has a sleeve cavity 203.
  • the present invention includes the inlet and outlet of the washing liquid, so that the washing liquid can enter
  • the sleeve cavity 203 realizes the inlet and outlet of the washing liquid, and allows the washing liquid to be discharged from the sleeve cavity 203 to the inner barrel of the washing machine, thereby realizing the outlet of the washing liquid, and the inlet and outlet of the washing liquid are carried out simultaneously.
  • the sleeve cavity 203 is in the shape of a long cylinder.
  • a coil 501 is provided on the outer periphery of the sleeve cavity 203.
  • a mover 4 and an elastic element 3 are provided in the sleeve cavity 203.
  • Both ends of the sleeve cavity 203 are connected to suction pipes respectively. 603 and drain pipe 204.
  • the suction pipe 603 and the drain pipe 204 are respectively located on both sides of the mover 4.
  • the suction pipe 603 is connected to the washing liquid storage box/storage cavity of the washing machine, and the drain pipe 204 is connected to the washing tub of the washing machine.
  • the washing liquid in the washing liquid storage box/storage cavity enters the sleeve cavity 203 through the suction pipe 603, and is discharged from the sleeve cavity 203 through the drain pipe 204.
  • the shell 2 and the sleeve 202 have openings respectively, and the shell 2 and the sleeve 202 are arranged on the same side.
  • An end cap 601 is installed at the opening of the shell 2 to close the opening.
  • the end cap 601 and The housing 2 is fixedly connected, and the end cap 601 respectively closes the openings of the housing 2 and the sleeve 202 so that the sleeve 202 forms a sleeve cavity 203 and the housing 2 forms an installation cavity 205 .
  • the liquid suction pipe 603 and the liquid discharge pipe 204 are respectively provided on the end cover 601 and the housing 2.
  • the opening of the housing 2 is provided with a flange 201, and the end cover 601 is fitted to the flange 201 and fixedly installed on the flange 201.
  • the coil 501 is arranged in the installation cavity 205.
  • the installation cavity 205 is provided with an installation bracket, and the coil 501 is fixed on the installation bracket.
  • the washing liquid in the sleeve cavity 203 is driven to fluctuate.
  • the fluctuation of the washing liquid has a certain amplitude, which can cause the washing liquid in the sleeve cavity 203 to obtain fluid along the axis of the sleeve cavity 203.
  • the amplitude in the direction causes the washing liquid to move axially along the sleeve cavity 203, and is discharged from the sleeve cavity 203 through the drain pipe 204 to realize the discharge of the washing liquid;
  • the drain pipe 204 and the suction pipe 603 are each provided with a one-way conduction structure.
  • the washing liquid enters the sleeve cavity 203 through the suction pipe 603 in one direction.
  • the sleeve cavity 203 The washing liquid in the pump is discharged in one direction through the drain pipe 204.
  • the one-way conduction structure includes a one-way valve 206, a diaphragm, a valve, etc. with a one-way conduction function.
  • the structure is simple and the conduction effect is good.
  • other control components may also be provided in the liquid pipe, such as control valves, other one-way valves, etc. structures.
  • a one-way conductive structure can be provided in the suction pipe 603 or the discharge pipe 204, which can also guide the washing liquid and the like from the suction pipe into the liquid suction pipe.
  • the sleeve cavity 203 and the mover 4 vibrate back and forth to drive the flow to the drain pipe 204 for the purpose of use.
  • washing liquid can only enter the sleeve cavity 203 in one direction through the suction pipe 603 and be discharged from the sleeve cavity 203 in one direction through the drain pipe 204, under the constant vibration of the mover 4, the fluctuating washing liquid continues to flow out of the drain pipe. 204 discharges the sleeve cavity 203.
  • the washing liquid discharged from the sleeve cavity 203 through the drain pipe 204 will pull the washing liquid in the sleeve cavity 203 to continuously move toward the drain pipe 204, and , when the washing liquid moves toward the drain pipe 204, it will pull the washing liquid in the suction pipe 603 and continuously enter the sleeve cavity 203, forming a cycle, so that the washing liquid continuously enters the sleeve cavity 203. And the washing liquid is continuously discharged from the sleeve cavity 203, thereby realizing the inlet and outlet of the washing liquid.
  • the washing liquid can be allowed to enter the sleeve cavity 203 through the suction pipe 603 by its own gravity, so that the washing liquid entering the sleeve cavity 203 has a certain pressure, and the pressure is controlled so that the pressure is not enough to open.
  • the one-way valve 206 relies on the vibration of the mover 4 to drive the washing liquid to fluctuate. Under the combined action of the washing liquid fluctuation and pressure, the one-way valve 206 in the drain pipe 204 is opened to realize the discharge of the washing liquid.
  • a pressurizing device can also be provided to control the washing liquid in the sleeve cavity 203 so that it has an appropriate pressure.
  • the pressure required to open the one-way valve 206 through the fluctuation of the washing liquid can be reduced, and the difficulty of opening the one-way valve 206 through the vibration of the mover 4 can be reduced.
  • the mover 4 is no need for the mover 4 to vibrate with a larger amplitude to increase the pressure of the liquid fluctuation, and can be used at a relatively high pressure. In the case of small amplitude vibration, the one-way valve 206 is opened to save electric energy and cost.
  • the mover 4 can be made to vibrate at high frequency to drive the washing liquid to fluctuate, so that the washing liquid opens the one-way valve with a small fluctuation amplitude.
  • the washing liquid discharge is more stable.
  • the washing liquid fluctuates at high frequency and a small amount of liquid is discharged each time.
  • the high frequency and small amount of liquid discharge not only makes up for the problem of small single liquid discharge, but also makes the washing process more efficient.
  • the liquid delivery is more precise, the controllability is better, and the delivery amount is more accurate.
  • the principle of reciprocating vibration of the mover 4 in the sleeve cavity 203 of the present invention is:
  • the mover 4 is at least partly made of magnetically permeable material, and can be configured as a metal rod, etc., so that the mover 4 is affected by the magnetic field generated by the coil to generate a magnetic driving force; of course, in order to reduce the mass of the mover 4, the mover 4 can be 4 is set to hollow, partially hollowed-out and other structures. Under the action of the magnetic driving force of the coil 501 and the elastic force of the elastic element 3, the mover 4 vibrates back and forth along the axial direction of the sleeve cavity 203.
  • direct current or alternating current is supplied to the coil 501, and the elastic element 3 is used to drive the mover 4 to vibrate reciprocally in the sleeve cavity 203.
  • the supply of direct current and alternating current to the coil 501 will be described below through specific embodiments.
  • an implementation mode of the automatic liquid feeding device of the washing equipment is as follows:
  • Direct current is supplied to the coil 501, and the coil 501 is arranged around the mover 4 along the circumferential direction of the mover 4.
  • the coil 501 forms a closed loop.
  • the coil 501 is energized, a magnetic field is generated, and the magnetic field exerts an attraction force on the mover 4 , and this attraction force acts as the magnetic driving force of the coil 501 on the mover 4 .
  • the magnetic driving force drives the mover 4 to move toward the elastic element 3 and squeeze the elastic element 3 .
  • the size of the magnetic driving force can be indirectly controlled, and the magnetic driving force of the coil 501 can be increased or decreased.
  • the coil 501 can be caused to generate a magnetic driving force on the mover 4, or the magnetic driving force of the coil 501 can be controlled.
  • the magnetic drive disappears. After the elastic element 3 is squeezed, it deforms. When the elastic element 3 is compressed and reaches the extreme position, the rebound force is the largest. The elastic element 3 can no longer be compressed, the mover 4 stops moving, and the force of the mover 4 is balanced.
  • the control coil 501 is powered off, or the magnetic driving force of the coil 501 is reduced, breaking the force balance of the mover 4, causing the elastic element 3 to rebound against the mover 4, causing the mover 4 to move in the opposite direction away from the elastic element 3, and the mover 4 is After moving in the reverse direction, the control coil 501 is energized, or the magnetic driving force of the coil 501 is increased, so that the mover 4 is subject to the magnetic driving force of the coil 501 and moves forward. In this cycle, the mover 4 is continuously subjected to the magnetic driving force and rebound force. , reciprocating vibration along the axial direction of the sleeve cavity 203.
  • AC current is supplied to the coil 501, and the coil 501 is arranged around the mover 4 along the circumferential direction of the mover 4.
  • the coil 501 forms a closed loop.
  • the magnetic driving force of the coil 501 changes continuously, and the mover 4 is driven by the alternating current.
  • the current gradually reaches the peak value from zero, and the magnetic driving force gradually increases from zero to the maximum value.
  • the compression of the elastic element 3 by the mover 4 The amount gradually increases, that is, the magnetic driving force drives the mover 4 to continuously squeeze the elastic element 3 and move toward the elastic element 3, thereby realizing the forward driving of the mover 4;
  • the current gradually decreases from the maximum value to zero, and the magnetic driving force continues to decrease.
  • the mover 4 moves away from the elastic element 3 and is driven by the rebound force. The mover 4 realizes the reverse drive of the mover 4.
  • the mover 4 is subject to the magnetic driving force and the rebound force at the same time.
  • the resultant force of the magnetic driving force and the rebound force drives the mover 4 to move forward.
  • the resultant force of the magnetic driving force and the rebound force drives the mover 4 to move in the reverse direction.
  • the magnetic driving force continues to increase, and the mover 4 continues to move forward and has a positive speed.
  • the magnetic driving force reaches the peak and is about to decrease, that is, the first quarter period
  • the mover 4 continues to move forward, from the end of the first quarter cycle to when the forward moving speed of the mover 4 is zero.
  • This period of time can be called "braking time".
  • the braking time occupies the time of the second quarter cycle, that is, during the period at the beginning of the second quarter cycle, the mover 4 is not moving along the reverse direction. move in the forward direction, but continue to move in the forward direction until the speed decreases to zero;
  • the function of the second quarter cycle is to drive the mover 4 to move in the reverse direction through the elastic element 3.
  • the "braking time” needs to be properly controlled, at least The “braking time” is less than one quarter cycle; to avoid the mover 4 continuing to move forward during the entire cycle and unable to move in the reverse direction, causing the mover to only move in one direction, unable to move back and forth, and unable to enter the liquid through reciprocating vibration. , discharge.
  • the "braking time" can be controlled to a suitable length.
  • the time for the mover 4 to move in the forward direction or the time to move in the reverse direction in each quarter cycle can be controlled, that is, the time of the mover 4 to move in each half cycle can be controlled.
  • the mover 4 completes one reciprocating vibration in each half cycle and two reciprocating vibrations in the entire cycle.
  • the mover 4 is movably arranged in the middle of the sleeve cavity 203, so that the mover 4 vibrates in the middle area of the sleeve cavity 203, causing the sleeve to vibrate.
  • the washing liquid on both sides of the mover 4 in the cavity 203 is affected by the vibration of the mover 4, which maximizes the vibration effect of the mover 4 and facilitates the inlet and outlet of the washing liquid.
  • the mover 4 is columnar, the outer diameter of the mover 4 is smaller than the inner diameter of the sleeve cavity 203, and the length of the mover 4 is smaller than the length of the sleeve cavity 203.
  • the outer circumference of the mover 4 and the inner wall of the sleeve cavity 203 are spaced apart from each other.
  • a diversion channel is formed between the outer periphery of the mover 4 and the inner wall of the sleeve cavity 203 for the passage of washing liquid. 2031.
  • the mover 4 divides the sleeve cavity 203 into a liquid inlet chamber 207 and a liquid outlet chamber 208 along the axial direction of the sleeve cavity 203.
  • the liquid inlet chamber 207 and the liquid outlet chamber 208 are respectively located on both sides of the mover 4.
  • the flow guide channel 2031 connects the liquid inlet chamber 207 and the liquid outlet chamber 208.
  • the liquid inlet chamber 207 is connected to a liquid suction tube 603, and the liquid outlet chamber 208 is connected to a liquid discharge pipe 204.
  • the washing liquid enters the liquid inlet chamber 207 through the liquid suction tube 603, and enters the liquid outlet chamber 208 from the liquid inlet chamber 207 through the diversion channel 2031.
  • the washing liquid flows in one direction from the suction pipe 603 to the drain along the axial direction of the sleeve cavity 203 under the vibration of the mover 4. tube204.
  • the elastic element 3 includes a support spring 301 and a rebound spring 302.
  • the support spring 301 is arranged in the liquid outlet chamber 208 and/or the liquid inlet chamber 207.
  • the two ends of the support spring 301 are connected to the mover 4 and the sleeve respectively.
  • the support spring 301 plays a role in limiting and supporting the mover 4.
  • the area where the mover 4 is located in the sleeve cavity 203 can be limited, so that the mover 4 is in
  • the middle area of the sleeve cavity 203 can provide a certain vertical support force to the mover 4, that is, it can provide a radial support force to the mover 4 along the sleeve cavity 203, so that the mover 4 is suspended on the sleeve.
  • the outer periphery of the mover 4 does not come into contact with the inner wall of the sleeve cavity 203, so that the outer periphery of the mover 4 and the inner wall of the sleeve cavity 203 are spaced apart from each other, so that the flow guide channel 2031 formed between them is in a shape surrounding the moving member.
  • the outer circumference of child 4 is ring-shaped.
  • the washing liquid in the liquid inlet chamber 207 can evenly enter the liquid outlet chamber 208 along the periphery of the mover 4 through the guide channel 2031.
  • the washing liquid flows more evenly, resulting in the inflow of the washing liquid.
  • the liquid and liquid discharge are more stable and controllable, and the liquid discharge effect is good.
  • the rebound spring 302 is arranged in the liquid outlet chamber 208.
  • One end of the rebound spring 302 is connected to the inner wall of the sleeve cavity 203, and the other end is suspended in the air toward the corresponding end of the mover 4, so that the mover 4 is magnetized.
  • the stiffness coefficient of the rebound spring 302 is greater than the support spring 301, and is used to exert a rebound force on the mover 4, which is close to the liquid discharge
  • the pipe 204 is installed, so that the mover 4 vibrates at a position close to the drain pipe 204, which can further increase the liquid discharge speed and liquid output of the drain pipe 204.
  • support springs 301 can be provided in the liquid outlet chamber 208 and the liquid inlet chamber 207 respectively.
  • the support springs 301 installed in the mover 4 respectively connect the two ends of the mover 4 with the inner wall of the liquid outlet chamber 208 or the liquid inlet chamber 207 to achieve the effect of axial limit support for both ends of the mover 4, thereby ensuring The mover 4 will not deflect during the vibration process.
  • the support spring 301 can only be provided in the liquid outlet chamber 208 or the liquid inlet chamber 207, which can still ensure that the mover 4 receives the magnetic driving force and elastic force in the sleeve cavity 203. The effect of vibrating.
  • the rebound spring 302 can also be eliminated, and only the elastic force of the support spring 301 is used to provide the reset elastic force for the mover 4, which can also drive the mover 4 to vibrate in the chamber. Effect.
  • the mover 4 is provided with a liquid diversion channel 2031 that connects the liquid inlet chamber 207 and the liquid outlet chamber 208.
  • the liquid guide channel 2031 is provided inside the mover 4 and/or on the outer peripheral surface of the mover 4.
  • the liquid guide channel 2031 penetrates the mover 4 along the axial direction of the mover 4.
  • the shape of the liquid guide channel 2031 includes linear, One or more liquid diversion channels 2031 are provided in a curved or spiral shape.
  • the washing liquid in the sleeve chamber 203 passes through the liquid guide channel 2031 and flows from the liquid inlet chamber 207 to the liquid outlet chamber 208.
  • the cross-sectional area of the liquid guide channel 2031 gradually decreases along the direction from the liquid inlet chamber 207 to the liquid outlet chamber 208, or the liquid guide channel 2031 is provided with a one-way conduction structure, and the conduction structure of the one-way conduction structure is The passage direction is from the liquid inlet chamber 207 to the liquid outlet chamber 208 .
  • the washing liquid can continuously enter the liquid outlet chamber 208 from the liquid inlet chamber 207 during the reciprocating vibration of the mover 4, thereby promoting the liquid outflow.
  • the washing liquid in the liquid diversion channel 2031 can flow in one direction from the liquid inlet chamber 207 to the liquid outlet chamber 208, which can increase the liquid pressure in the liquid outlet chamber 208, thereby promoting liquid discharge.
  • the washing liquid can flow from the liquid inlet chamber 207 to the liquid outlet chamber 208, increasing the liquid in the liquid outlet chamber 208. Likewise, it has the effect of promoting liquid drainage.
  • the one-way conduction structure provided on the liquid diversion channel 2031 can be a one-way valve 206; or, as shown in Figure 25, the one-way conduction structure provided on the liquid diversion channel 2031 can be,
  • the liquid diversion channel 2031 is a tapered tube with an aperture gradually narrowing from one end connected to the liquid outlet chamber 208 to the end connected to the liquid inlet chamber 207; of course, it can also be any other existing technology that can achieve a single Directly connected structure.
  • the volume of the liquid outlet chamber 208 is smaller than the volume of the liquid inlet chamber 207. Since the mover 4 is disposed close to the drain pipe 204, the volume of the liquid outlet chamber 208 is smaller. By reducing the volume of the liquid outlet chamber 208, the outlet volume can be reduced. The washing liquid everywhere in the liquid chamber 208 is closer to the mover 4, so that the washing liquid everywhere in the liquid outlet chamber 208 can obtain a larger amplitude, which is convenient for liquid discharge.
  • the center of the mover 4 is eccentrically deviated from the center of the coil 501 to the right, and the liquid outlet chamber
  • the volume of 208 is larger than the volume of the liquid inlet chamber 207, so that the mover 4 has a larger stroke to the left.
  • the liquid outlet chamber 208 has a deformation portion, which is disposed close to the drain pipe 204 , and the cross-sectional area of the deformation portion gradually becomes smaller in the direction toward the drain pipe 204 .
  • the cross-sectional area of the liquid outlet chamber 208 is gradually reduced in the direction pointing toward the drain pipe 204, which can be further increased.
  • the liquid outlet pressure of the liquid outlet chamber 208 is conducive to liquid discharge.
  • the mover 4 has a front end surface and a rear end surface perpendicular to the axis of the sleeve cavity 203.
  • the front end surface is located in the liquid inlet chamber 207 and faces the suction pipe 603.
  • the rear end face is located in the liquid outlet chamber 208 and faces the liquid suction pipe 603. Drain pipe 204.
  • the front end surface of the mover 4 is provided with an arc-shaped convex portion, which protrudes toward the outside of the mover 4
  • the rear end surface is provided with an arc-shaped recessed portion, which is recessed toward the inside of the mover 4 .
  • the convex portion on the front end surface of the mover 4 can play a role in guiding the flow.
  • the washing liquid in the liquid inlet chamber 207 flows along the surface of the convex portion to the liquid outlet chamber 208.
  • the rear end surface of the mover 4 The concave portion has a certain convergence effect on the washing liquid, and the concave portion can have a better squeezing effect on the washing liquid in the liquid outlet chamber 208 and promote the liquid discharge.
  • the coil 501 and the elastic element 3 make the mover 4 vibrate back and forth in the sleeve cavity 203, and the mover 4 drives the washing liquid to fluctuate, thereby realizing liquid inlet and outlet.
  • a diversion channel is formed between the outer periphery of the mover 4 and the inner wall of the sleeve cavity 203 for the passage of washing liquid.
  • the washing liquid can move along the circumferential direction of the sleeve cavity 203 to realize liquid inlet and outlet.
  • the flow guide channel isolates the mover 4 from the inner wall of the sleeve cavity 203 to avoid friction with the inner wall of the sleeve cavity 203 when the mover 4 moves, thereby preventing the mover 4 from wearing and tearing. Wear affects the liquid inlet and outlet effects, which effectively improves the service life and is suitable for long-term use.
  • the mover realizes reciprocating vibration through the elastic element 3 and the coil 501.
  • the structure is simple and there is no need to install air-tight structures such as pistons, which effectively reduces the cost and is economical.
  • the embodiment of the present invention also introduces a washing device, which includes a barrel for washing the clothes inside; a liquid storage box containing detergent inside or manually injecting detergent; and is also equipped with the above-mentioned The automatic liquid dosing device of the washing equipment.
  • the liquid inlet pipe of the automatic liquid dosing device of the washing equipment is connected with the liquid storage box, and the liquid outlet pipe is connected with the barrel to pump the detergent in the liquid storage box into the barrel to realize washing. Automatic delivery of liquid.
  • the washing liquid can be any existing liquid type that can treat clothes, such as detergent, bleach, disinfectant, softener, fragrance, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

本发明公开了一种洗涤设备自动投液装置及洗涤设备,自动投液装置包括驱动装置和吸液装置,吸液装置包括容纳液体的吸液腔,还包括:膜片,膜片构成吸液腔的部分侧壁,膜片具有弹力并且能够通过弹性变形改变吸液腔内部与外部之间的气压差,使所述吸液装置进液、排液;动子,用于对膜片施力使膜片产生弹性变形,动子与膜片不连接。该装置能够驱动动子以一定的频率反复地撞击膜片,使膜片产生振动并引起吸液腔内部和外部的气压大小关系不断变化,进而通过改变吸液腔内外的气压差达到投放液体的目的,该投液装置仅包括动子和吸液腔,大大减少了投液装置的结构件,通过加快动子的撞击频率可以加快投液速度,能够调整添加洗涤剂液体的速度。

Description

一种洗涤设备自动投液装置及洗涤设备 技术领域
本发明属于洗涤设备领域,具体地说,涉及一种洗涤设备自动投液装置及洗涤设备。
背景技术
传统的洗衣机在洗涤过程中使用的洗涤剂与洗衣机是分开放置的,在洗衣机上没有设置洗涤剂的添加装置,洗涤剂不能自动添加,不能实现洗衣机的洗衣过程全自动。随着洗衣机自动化的提高,大多洗衣机设计成盛放洗涤剂或/和柔软剂的洗涤剂盒与进水管路相通,通过进水将洗涤剂盒内的洗涤剂或/和柔软剂冲入洗涤桶中,但是该结构必须每次洗衣前先将洗涤剂或/和柔软剂放入洗涤剂盒中,同样没有实现洗衣过程全自动。
目前已有关于洗涤剂自动投放装置的专利申请:
申请号为200610136059.9的中国专利公开了一种洗衣机的洗涤剂供应装置,包括洗涤剂盆,所述洗涤剂盆具有多个室和安装在多个室中的至少一个室中的虹吸单元,其中所述虹吸单元包括:虹吸管,所述虹吸管形成在所述室的底部;和盖部件,所述盖部件安装在所述虹吸管的上方,并且所述盖部件包括虹吸帽和旁路通道,所述虹吸帽环绕所述虹吸管的外圆表面以便在所述虹吸管和所述虹吸帽之间设置虹吸通道,所述旁路通道用于使溢出所述虹吸通道的水循环至所述虹吸通道。将洗涤剂注入洗涤剂盆,再将洗涤水注入洗涤剂盆将盆内的洗涤剂稀释后从虹吸单元排入洗涤缸。
该发明解决了浓洗涤剂直接进入洗涤桶所带的损伤被洗衣物的问题,但是无法实现控制洗涤剂的自动精确添加。
申请号为201410303597.7的中国专利公开了一种自动投液装置:包括洗涤液储存盒、进水盒及连接两者的微型泵,所述的洗涤液储存盒的顶部设有加液口,洗涤液储存盒的底部设有液位传感器,所述微型泵的进液管直接与洗涤液储存盒连通,所述微型泵的排液管与进水盒相连,所述微型泵的排液管上依次设有单向阀及流量传感器,所述的液位传感器及流量传感器与控制***的输入端相连,所述的微型泵与控制***的输出端相连。
该结构虽然能够实现洗涤剂精确添加控制,但是结构复杂,成本高。
有鉴于此,特提出本发明。
发明内容
本发明的目的在于提供一种洗涤设备自动投液装置,以实现快速自动添加洗涤剂液体,减少投液装置的配置,简化投液装置的结构的目的。
本发明的另一目的在于提供一种洗涤设备,以实现控制洗涤剂的自动精确添加的目的。
为解决上述技术问题,本发明采用技术方案的基本构思是:
一种洗涤设备自动投液装置,包括驱动装置5和吸液装置6,吸液装置6包括容纳液体的吸液腔602,还包括:膜片1,膜片1构成吸液腔602的部分侧壁,膜片1具有弹力并且能够通过弹性变形改变吸液腔602内部与外部之间的气压差,使所述吸液装置6进液、排液;动子4,用于对膜片1施力使膜片1产生弹性变形,动子4与膜片1不连接。
该技术方案中,动子4与膜片1是分离的两个部件,驱动装置5提供驱动力使动子4运动起来。运动的动子4具有动能,撞击膜片1时能够使膜片1发生弹性变形。随着膜片1的变形量不断变大,动子4的动能不断减小直至为零,动子4速度为零时膜片1的变形量达到最大。其中膜片1是构成吸液腔602的一个侧壁,膜片1的弹性变形会改变吸液腔602内的气压,使吸液腔602内的气压与外界气压的大小关系发生变化,产生压力差。膜片1被动子4撞击后向吸液腔602的内部产生变形,使吸液腔602内的体积变小,腔内压力变大,向外部排出液体。膜片1具有弹性,变形后的膜片1会产生弹性回复力,在弹性回复力的作用下,膜片1的变形部位会向原始位置回归并超过原始位置继续向原变形方向的反方向运动,即向 吸液腔602的外部方向变形,从而不断地在原始位置两侧往复运动,也就是说膜片1会处于振动的状态。
在膜片1的变形部位向原始位置回归并向吸液腔602的外部方向变形的过程中,吸液腔602内的体积变大,腔内压力变小,吸液装置6吸入液体。
进一步地,所述动子4初始位置远离所述膜片1,受所述驱动装置5驱动向所述膜片1运动,撞击所述膜片1使其发生弹性变形,所述膜片1发生弹性变形后具有回弹力可将所述动子4弹回初始位置。
该方案中,动子4初始位置距离膜片1有一定距离,动子4在驱动力的牵引下逐渐加速,在该距离内可以积蓄一定量的动能,使膜片1被撞击后可以获得更大的变形量。变形后的膜片1会产生弹性回复力,在弹性回复力的作用下,动子4会被送回初始位置,等待进行下一次的撞击动作。
进一步地,还包括设置在动子4上远离膜片1侧的弹性元件3,所述动子4在初始位置时与所述膜片1接触,所述动子4被所述驱动装置5驱动远离所述膜片1并压缩弹性元件3,所述弹性元件3的弹性势能将所述动子4通过回弹力撞击所述膜片1。
进一步地,所述弹性元件3被压缩直至所述动子4速度降为零时,所述弹性元件3反弹,所述动子4受所述弹性元件3驱动加速向所述膜片1运动,并撞击所述膜片1使其发生弹性变形。
进一步地,所述的弹性元件3一端被固定在驱动装置5上,另一端与所述动子4连接。进一步地,所述动子在所述驱动装置5的驱动力、膜片1和/或弹性元件3的回弹力的作用下连续往复运动,使膜片1产生弹性变形。
进一步地,所述驱动装置5包括可产生磁场的线圈501,所述动子4的形心总是偏离线圈501的形心设置,所述线圈501的磁场对所述动子4产生磁力,磁力的方向朝着线圈501的形心并驱动所述动子4运动。
一个单向的磁力以一定的频率出现和消失,或者增强和减弱,在动子4受到单向磁力驱动时不断压缩弹性元件3,将其产生的动能转化为弹性元件3的弹性势能,在单向磁力消失时被压缩的弹性元件3挤压动子4,将弹性元件3的弹性势能释放到动子4上,转化为动子4的动能,完成撞击膜片1的动作。将动子的形心与线圈的形心偏离设置,可以保证自动投液装置启动后动子4总是能够受到单向的磁力作用,进而可以引起动子4在平衡位置的左右作往复运动,避免出现线圈501通电产生磁场后,由于动子4的形心与线圈501的形心重合,动子4不受磁力的作用,无法产生运动的情况。保证了动子4在受到单向的作用力时,能够不断地在受力平衡点的左右往复运动,不断地撞击膜片1。
进一步地,所述线圈501中通交流电,产生的磁场是变化的磁场,动子4所受磁力的大小跟随磁场强度变化。
该技术方案中,在线圈501中通入交流电,线圈501的绕制匝数固定不变,由于通入交流电的正负极不断交替并且电流强度不断变化,使线圈501产生的磁场强度随着电流强度的改变而相应变化。此时,磁场具有与交变电流相关的频率,动子4在该磁场中受到的磁力也具有一定的频率。磁力是激发动子4振动的激振力。动子4在激振力的作用下会不断反复运动,撞击膜片1。
磁力以一定的频率增强和减弱,在动子4受到较强磁力驱动时不断压缩弹性元件3,将其产生的动能转化为弹性元件3的弹性势能,在磁力减弱时被压缩的弹性元件3挤压动子4,将弹性元件3的弹性势能释放到动子4上,转化为动子4的动能,完成撞击膜片1的动作。
进一步地,所述驱动装置5包括壳体2和套筒202,所述驱动装置5设置在壳体2的内部,套筒202的轴向中心线与所述线圈501的轴向中心线重合设置,所述动子4的外形与套筒202空腔的形状相同且所述动子4可在套筒202中滑动。
该技术方案中,通过壳体2将驱动装置5和套筒202固定在一起,并使线圈501套在套筒202的外侧,动子4在套筒腔203中运动,有利于保持动子4反复运动时的位置和姿态,并且能够使动子4沿着线圈501产生的磁场方向运动,有利于增大动子4撞击膜片1的力量。同时,使线圈501的中心轴线与套筒腔203的中心轴线重合,有利于动子4在线圈501产生的磁场中受到的驱动力最大。将驱动装置5和套筒202通过壳体2固定,保证了动子4运动的稳定性,防止动子4的往复运动引起自动投液装置的振动,进而导致损坏,有利于使投液装置长期使用。
本发明还提供一种具有上述自动投液装置的洗涤设备。
采用上述技术方案后,本发明与现有技术相比具有以下有益效果。
1、该洗涤设备自动投液装置能够驱动动子以一定的频率反复地撞击膜片,使膜片产生振动并引起吸液腔内部和外部的气压大小关系不断变化,进而通过改变吸液腔内外的气压差达到投放液体的目的,当吸液腔内压力变小时,吸入液体,当吸液腔内压力变大时,排出液体,该投液装置仅包括动子和吸液腔,大大减少了投液装置的结构件,通过加快动子的撞击频率可以加快投液速度,能够调整添加洗涤剂液体的速度。
2、通过磁力驱动的自动投液装置可以保证动子总是能够受到单向的磁力作用,进而可以引起动子在平衡位置的左右作往复运动,避免出现线圈通电产生磁场后,由于动子的形心与线圈的形心重合,动子不受磁力的作用,无法产生运动的情况。
3、弹性元件和动子组成的一个***,具有固定的振动频率,该振动频率与弹性元件的弹性系数和动子的质量相关,当激振力的频率与被激振***的固有频率一致或者呈整倍数关系时,会发生共振,可以通过调节交流电的频率来使磁力的频率与动子和弹性元件组成的***的固有频率呈整倍数关系,进而增大膜片被撞击时的形变幅度,增加膜片单次振动所能吸取的液体量和投放的液体量,增强投液效果。
本发明要解决的技术问题在于克服现有投液装置自动化程度较低和结构可靠性较差技术的不足,提供一种用于洗涤设备的自动投液装置。
为解决上述技术问题,本发明采用技术方案的基本构思是。提供一种用于洗涤设备的自动投液装置,包括壳体和吸液装置,所述壳体内设置有驱动装置和套筒,所述驱动装置包括线圈,线圈绕设于所述套筒的外侧,所述壳体的一端与所述吸液装置连接,还包括活动组件。
所述活动组件包括动子和膜片,所述膜片设置在所述吸液装置内并部分与吸液装置连接,所述动子的一个端部与所述膜片连接,所述驱动装置给予动子提供磁驱力,驱动所述动子在套筒内进行周期性的往复运动,致使所述膜片与动子以相同的频率振荡。采用上述方案,将用于洗涤设备的自动投液装置分成了壳体、吸液装置和活动组件三部分,限定了三部分的包含及连接位置关系,通过活动组件周期性的往复运动改变吸液装置的容积,完成吸液和排液进程,这种方案能使用于洗涤设备的自动投液装置的结构简单化,在保证其使用寿命的前提下,更加地便于加工制造。
进一步地,所述膜片的周边边缘与吸液装置的腔室壁固定连接;初始位置状态下,所述动子的形心偏离线圈的形心设置,所述膜片无形变;线圈通入交流电后,所述动子受到的磁驱力总是指向线圈的形心方向但磁驱力的大小周期性的变化;所述动子在磁驱力的作用下通过拉动和/或推动使所述膜片发生形变进行往复振荡,使洗涤液吸入和排出吸液装置。采用上述方案,膜片的周边边缘固定在吸液腔室的内壁上,悬空的膜片形成了膜片的可形变部位,动子拉动、推动膜片整体运动的同时,膜片自身由于受力也发生前后振荡,这种震荡能将洗涤液更多的排出吸液腔室,进而提升了用于洗涤设备的自动投液装置的投液效率。
进一步地,所述动子与所述膜片两者通过一体化成型、不可拆连接或可拆卸连接的方式连接一体形成活动组件,所述动子与膜片连接的一端部分外露于套筒。所述套筒远离膜片方向的一端设置有弹性元件。所述动子拉动和/或推动使膜片发生形变,膜片变形产生对动子作用的膜片复位力和/或弹性元件变形产生对动子作用的弹簧弹力。所述膜片复位力阻碍或协助 磁驱力使动子运动,或者,所述弹簧弹力阻碍或协助磁驱力使动子运动。采用上述方案,活动组件具有能适应多种不同条件状况下的形成方案,扩宽了用于洗涤设备的自动投液装置的可应用范围;同时动子与膜片连接的一端部分外露于套筒,即膜片距离套筒的开放端具有一定的距离,以此保证膜片套筒方向移动时具有足够的缓冲空间。
进一步地,所述的不可拆连接方式包括。所述动子的一端部与所述膜片的中心部位粘接连接,形成活动组件。采用上述方案,动子与膜片粘接固定,简单的连接能极大地降低制造的难度和生产制的成本,契合实际的市场需求。
进一步地,所述的一体化成型连接方式包括。所述动子朝向膜片方向的端部设置有伞状或蘑菇形状的嵌入块。所述膜片内设有与嵌入块配合的安装固定件;将动子与所述安装固定件配合连接形成的整体放置到模具中,在安装固定件的四周通过一体化注塑成型形成与动子连接的膜片。采用上述方案,以动子与安装固定件配合连接形成的整体作为膜片中心的支撑部件,模具内注塑形成与整体一体化的膜片结构,这种方案使动子与膜片的连接具有更高的可靠性,能使活动组件在长时间的使用后依然保持初始的位置关系,极大地提升了用于洗涤设备的自动投液装置的使用寿命,契合用户的实际使用需求。所述的可拆卸连接方式包括。所述动子朝向膜片方向的端部设置有伞状或蘑菇形状的嵌入块。所述膜片的中心部位具有一定的厚度;所述膜片内设置有与嵌入块卡接配合的嵌入部。所述嵌入块与嵌入部配合卡接,实现动子与膜片的连接。采用上述方案,动子端部的嵌入部与膜片内的嵌入部卡接连接,这种可拆卸连接使连接的结构更具有可靠性和实用性,在保证活动组件运动实现吸液和排液功能的前提下,极大地提升了用于洗涤设备的自动投液装置的使用寿命。
进一步地,所述动子还包括哑铃形状的传导部,所述传导部的一端连接运动部,另一端上设置有嵌入块,所述嵌入块与嵌入部配合卡接,实现动子与膜片的连接。采用上述方案,应用于前述的粘接连接、一体化注塑成型和嵌入配合卡接的结构形成了新的具体结构,传导部的设计,能通过减少运动部的体积来降低动子整体的体积及重量,降低生产的成本和降低驱动装置驱动的能量使用,而且传导部的应用能使活动组件收到的驱动力更加集中,能提升动子带动膜片的变形程度,使用于洗涤设备的自动投液装置的使用性能得到进一步地提升。
进一步地,从初始位置向朝向线圈形心位置移动时,磁驱力克服膜片复位力和/或弹簧弹力带动动子向朝向线圈形心位置方向先加速后减速移动,动子速度为零的位置为动子的第一极限位置。从第一极限位置向远离线圈形心位置移动时,膜片复位力和/或弹簧弹力克服磁驱力带动动子向远离线圈形心位置方向加速移动,移动过程中经过初始位置开始减速移动,此时磁驱力、膜片复位力和弹簧弹力均阻碍动子移动,动子速度为零的位置为动子的第二极限位置。从第二极限位置向初始位置移动时,膜片复位力方向朝向靠近线圈形心的方向,膜片复位力和/或弹簧弹力协助磁驱力带动动子向初始位置移动。采用上述方案,阶段性的状态分析,结合动子的受力对弹性元件和/或膜片的状态变化进行了描述,使得各阶段都能实现应有的功能,保证了功能的可靠性。
进一步地,所述第一极限位置与第二极限位置之间的距离,是动子的最大振幅。采用上述方案,谐振***的整体具有的固定频率条件下,当交流电的转换频率使得谐振***能以固定频率振动时,此时动子处于最佳状态,即此时动子以最大振幅来回振动。最大振幅的条件下,可以在单位时间内排出更多的洗涤液,提升了自动投液装置的工作效率。
进一步地,动子从初始状态位置向线圈形心位置移动时,所述膜片复位力和/或弹簧弹力阻碍磁驱力带动动子运动。动子从右极限位置向初始状态位置移动时,述膜片复位力和/或弹簧弹力协助磁驱力带动动子运动。采用上述方案,可以实现动子的快速制动和快速启动,使得动子的运动频率与交流电的转换频率之间在启动和运行一段时间后仍具有线性关系,保证了运动的统一和高效。
进一步地,所述膜片随动子的往复运动,动子从初始位置向第一极限位置和从初始位置向第二极限位置的过程中膜片变形的程度不同。采用上述方案,能在吸液时容积变化更大, 使更多的洗涤液吸入吸液腔,复位时还会相比原位多移动一段距离,保证了洗涤液的充分排出。
进一步地,所述膜片在动子从初始位置向第一极限位置过程中的变形程度大于在动子从初始位置向第二极限位置过程中的变形程度。采用上述方案,第二极限位置与初始位置的距离小于第一极限位置与初始位置的距离,保证弹性元件不会因为过度拉伸而导致功能失效,同时此方案还能使膜片周期性的处于变化的状态,防止膜片反复受到换向的作用力而导致的疲劳破坏,因此在一定程度上保证了自动投液装置的性能可靠性和使用寿命。
一种洗涤设备,采用上述的自动投液装置。
采用上述方案,自动投液装置提升了洗衣机的智能程度,节省了用户的洗衣投放洗涤液的不必要时间和精准的确定投放用量节省了洗涤剂不必要的浪费,更加契合用户的实际使用需求。
采用上述技术方案后,本发明与现有技术相比具有以下有益效果。
1、本申请方案,提供了多种动子与膜片的连接方式。不同的结构及连接方式使得用于洗涤设备的自动投液装置的适应能力更强,极大地提升了用于洗涤设备的自动投液装置的使用范围;
2、本申请方案,简单的结构设计能使用于洗涤设备的自动投液装置便于加工制造,节约了生产的制造成本;
3、本申请方案,动子的运动受到驱动装置、弹性元件和膜片自身三部件的作用,驱动装置为动子提供最基本的驱动力,弹性元件和膜片储存的额外力用于协助动子克服死点的位置,保证了动子周期性往复运动的实现,使用于洗涤设备的自动投液装置更具有功能的可靠性。
本发明要解决的技术问题在于克服现有技术的不足,提供一种通过驱动装置驱动动子高频往复振荡,而使得套筒中的液体获能产生速度波,周期性地进行吸排液的洗涤设备自动投液装置。
本发明的另一个目的在于,提供了一种洗涤设备。
为解决上述技术问题,本发明采用技术方案的基本构思是:提供一种洗涤设备自动投液装置,包括,套筒,所述套筒一端封闭,另一个端部具有吸液管和排液管,所述套筒的另一端部上的吸液管和排液管交替打开;动子,可移动地设置于所述套筒中;驱动装置,设置于所述套筒上,用于驱动所述动子在所述套筒中移动;所述动子在所述套筒内往复振荡,使所述套筒内的液体产生波动,波动的液体沿着所述套筒轴向流动并周期性的从所述排液管流出。
进一步地,所述驱动装置驱动所述动子的方式可以是电动机械式、气动式或者电磁式中的其中一种,在所述驱动装置的驱动作用下,所述动子在所述套筒中连续往复振荡。
进一步地,采用电磁式的方式时,所述驱动装置包括,线圈,所述线圈绕设于所述套筒的外侧;弹性元件,轴向设置于所述套筒内壁上,用于提供所述动子向初始位置移动的恢复力。
进一步地,初始状态下,所述动子的中心偏离所述线圈的中心设置。
进一步地,所述动子与所述吸液管相靠近的端面与所述套筒的内端面之间存在间隙,所述间隙大于等于所述动子朝向所述吸液管振荡的最大振幅。
进一步地,所述线圈的轴线与所述动子的轴线相平行,所述动子的外径小于所述套筒的内径大小,所述动子与所述线圈两者中心的连线的水平距离大于等于所述动子朝向所述线圈的中心振荡的最大振幅。
进一步地,所述动子沿着所述套筒轴向方向上的投影将所述排液管的管口全部遮挡。
进一步地,所述动子的两端分别设置有凸台。进一步地,所述弹性元件包括支撑弹簧,所述支撑弹簧的一端与所述套筒的内壁连接,另一端与所述动子的端部连接,所述支撑弹簧 的最大压缩量大于等于所述动子振荡的最大振幅。
进一步地,所述弹性元件还包括反弹弹簧,所述反弹弹簧的一端与所述套筒的内壁连接,所述支撑弹簧套设在所述反弹弹簧的外部,所述反弹弹簧的弹性系数大于所述支撑弹簧的弹性系数,所述反弹弹簧的最大压缩量大于等于所述动子。
本发明还提供了一种洗涤设备,具有上述的洗涤设备自动投液装置。
采用上述技术方案后,本发明与现有技术相比具有以下有益效果:
(1)本发明通过设置动子、线圈、弹性元件等部分的相互配合,在线圈与弹性元件对动子的共同作用下,使得动子在套筒中来回振动,从而可以使得套筒内部洗涤剂获能进行连续投液作业,同时,投液过程中,不断形成压强差对套筒内部进行洗涤剂的补给,保证向洗衣机内周期性连续的进行投液。投液更加精准、高效。
(2)本发明通过所述动子完全水平的滑动设置于套筒中,从而可以在磁场作用下,动子所受到的吸引力的合力最大,移动更加稳定;另外,动子与套筒在径向方向上具有间隙,保证动子正常移动的同时,可以增加套筒中的洗涤液受到脉冲作用获能的效果,进而保证向洗衣机投液的效果。
(3)本发明通过设置支撑弹簧、反弹弹簧,同时支撑弹簧套在反弹弹簧的外侧组成弹簧谐振***,不仅可以给动子提供安装部位,保证其安装后水平处于套筒中,还由于反弹弹簧与述支撑弹簧的外径以及弹性系数不同,从而反弹弹簧与支撑弹簧之间可以配合组成的弹力范围更大,有效缩短单根弹簧需要提供一定恢复力的长度,可以更好的适应于动子移动后所需要提供的恢复力。
本发明要解决的技术问题在于克服现有技术中洗衣液投放装置存在的,投放动作产生磨损导致使用寿命短,以及结构复杂,成本高,经济性差、投放不够精准、多种投放性差的问题,本发明提供了一种洗涤设备自动投液装置。
为解决上述技术问题,本发明采用技术方案的基本构思是:
本发明提出了一种洗涤设备自动投液装置,包括壳体2,壳体2内设有套筒腔203,所述套筒腔203外设有线圈501,所述套筒腔203设置有吸液管603和排液管204,套筒腔203内设有动子4和弹性元件3;动子4受到线圈501的磁驱力以及弹性元件3的回弹力作用下,在所述套筒腔203内往复振荡,使进入所述套筒腔203中的洗涤液波动,沿着所述套筒腔203的轴向单向流动。
本发明中所述套筒腔203的两端分别连接吸液管603和排液管204,所述线圈501设置在动子4的外周,所述线圈501轴向驱动动子4在所述套筒腔203内向弹性元件3移动,并挤压弹性元件3;弹性元件3设置在动子4的一侧;弹性元件3反弹动子4,使动子4沿所述套筒腔203的轴向,背离弹性元件3移动;所述动子4的往复移动使来自吸液管603的洗涤液流动至排液管204。
优选的,吸液管603和排液管204上可安装单向阀、控制阀等阀体结构,使得吸液管603和排液管204可对应开通、或闭合;吸液管603和排液管204的开通/闭合方式可以如下:吸液管603和排液管204可交替的开通/闭合;或者,吸液管603和排液管204可同时开通/闭合,以实现引导自吸液管603流入套筒腔203内、受动子4往复振荡而产生波动的洗涤液向相反端所设的排液管204流出。
本发明中动子4呈柱状,动子4的外径小于所述套筒腔203的内径;动子4与所述套筒腔203之间形成导流通道;动子4的长度小于所述套筒腔203的长度;动子4将所述套筒腔203分隔成进液腔207和出液腔208;吸液管603和排液管204分别与进液腔207和出液腔208连接;所述动子4以一定频率往复振动,改变所述套筒腔203进液腔207和出液腔208的容积和压力,使洗涤液通过所述导流通道,由进液腔207向出液腔208流动。
作为一种优选的实施方式,本发明所述弹性元件3轴向设置在出液腔208中,一端与套 筒腔203内壁连接,另一端与动子4连接,使动子4的外周面与所述套筒腔203的内壁间隔设置;所述弹性元件3为反弹弹簧。
为了更好支撑动子4,本发明的弹性元件3还包括设置在进液腔207中的支撑弹簧301;支撑弹簧301分别连接动子4和所述套筒腔203的另一侧内壁,使动子4的外周面与所述套筒腔203的内壁间隔设置,使所述导流通道呈围绕动子4外周的环状;支撑弹簧301的劲度系数小于反弹弹簧。通过反弹弹簧和支撑弹簧301,可以将动子4轴向固定在套筒腔203中。
作为另一种优选的实施方式,本发明所述弹性元件3包括套设在出液腔208中的支撑弹簧301和反弹弹簧302;支撑弹簧301分别连接动子4的端部和所述套筒腔203的内壁,反弹弹簧302的一端连接所述套筒腔203、另一端朝向动子4的端部悬空设置;支撑弹簧301的劲度系数小于反弹弹簧302,反弹弹簧302的轴向长度短于支撑弹簧301。
作为另一种优选的实施方式,本发明所述弹性元件3包括分别设置在进液腔207和出液腔208中的支撑弹簧301,两根支撑弹簧的一端分别连接动子4的对应端部和所述套筒腔203的对应侧内壁;当然,还可以在进液腔207、和/或出液腔208中设置反弹弹簧302,反弹弹簧302的一端与套筒腔203内壁相连、另一端朝向动子4的对应端悬空设置。优选的,本发明中,构成上述弹性元件3的支撑弹簧301、反弹弹簧302均与动子4同轴设置,以为动子提供沿轴向往复振动的回复力。
本发明所述动子4不受磁驱力作用时位于初始位置;在动子4位于初始位置时,动子4的中心偏离套筒腔203的中心设置;优选的,在动子4位于初始位置时,所述出液腔208的容积大于进液腔207的容积;所述线圈501中心与所述动子4的中心偏心设置。
本发明所述动子4靠近进液腔207的一端突出于线圈501的端部设置。
优选地,本发明动子4上设有连通进液腔207和出液腔208的液体导流通道;所述液体导流通道的横截面积沿进液腔207至出液腔208的方向逐渐减小,或者所述液体导流通道上设有单向导通结构,单向导通结构的导通方向为由进液腔207指向出液腔208。更有选本发明所述液体导流通道设置在动子4的内部和/或动子4的外周;所述液体导流通道沿动子4轴向贯穿动子4;所述液体导流通道的形状包括直线状、弯曲状和螺旋状;所述液体导流通道设置一条或多条。
采用上述技术方案后,本发明与现有技术相比具有以下有益效果:
本发明,通过线圈、弹性元件使动子在套筒腔中往复振动,通过动子带动洗涤液波动,实现一定频率下多次向洗涤设备添加洗涤液。区别于现有技术中通过活塞、泵结构实现进液、出液的效果。
此外,本发明,动子的外周与套筒腔的内壁之间形成可供洗涤液通过的导流通道,一方面可使洗涤液沿套筒腔的周向移动,实现多次小剂量投放,投放更加精准;另一方面,导流通道使动子与套筒腔的内壁相隔离,避免动子动作时,与套筒腔的内壁发生摩擦,不会因为动子磨损影响进液、出液效果,有效提高了使用寿命,适于长时间使用。
还有,本发明中,动子通过弹性元件和线圈实现往复振动,结构简单,无需设置活塞等气密性结构,有效降低了成本,经济性好。
同时,本发明结构简单,效果显著,示意推广使用。
下面结合附图对本发明的具体实施方式作进一步详细的描述。
附图说明
附图作为本发明的一部分,用来提供对本发明的进一步的理解,本发明的示意性实施例及其说明用于解释本发明,但不构成对本发明的不当限定。显然,下面描述中的附图仅仅是一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。在附图中:
图1是本发明的一种自动投液装置的示图;
图2是本发明的另一种自动投液装置的示图;
图3是本发明的另一种自动投液装置的示图;
图4是本发明的另一种自动投液装置的示图;
图5是本发明中自动投液装置的膜片被撞击时的状态示意图;
图6是本发明实施例中的一种用于洗涤设备的自动投液装置的结构示意图;
图7是本发明实施例中的另一种用于洗涤设备的自动投液装置的结构示意图;
图8是本发明实施例中的另一种用于洗涤设备的自动投液装置的结构示意图;
图9是本发明实施例中的另一种用于洗涤设备的自动投液装置的结构示意图;
图10是本发明实施例中的另一种用于洗涤设备的自动投液装置的结构示意图;
图11是本发明实施例中的另一种用于洗涤设备的自动投液装置的结构示意图;
图12是本发明实施例中的另一种用于洗涤设备的自动投液装置的结构示意图;
图13是本发明实施例中的另一种用于洗涤设备的自动投液装置的结构示意图;
图14是本发明实施例中的另一种用于洗涤设备的自动投液装置的结构示意图;
图15是本发明的自动投液装置的一实施例一侧具有弹性元件的示意图;
图16是本发明的自动投液装置的一实施例两侧具有弹性元件的示意图;
图17是本发明的自动投液装置的另一实施例一侧具有弹性元件的示意图;
图18是本发明的自动投液装置的另一实施例两侧具有弹性元件的示意图;
图19至图25是本发明不同实施方式中洗涤设备自动投液装置的结构示意图。
图中:1、膜片;2、壳体;3、弹性元件;4、动子;5、驱动装置;6、吸液装置;101、嵌入部;102;弯折结构件;103、活动组件;201、翻边;202、套筒;203、套筒腔;204、排液管;205、安装腔;206、单向阀;207、进液腔;208、出液腔;301、支撑弹簧;302、反弹弹簧;303、复位弹簧;401、嵌入块;402、运动部;403、传导部;501、线圈;502、线圈支架;601、端盖;602、吸液腔;603、吸液管;2031、导流通道。
需要说明的是,这些附图和文字描述并不旨在以任何方式限制本发明的构思范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对实施例中的技术方案进行清楚、完整地描述,以下实施例用于说明本发明,但不用来限制本发明的范围。
在本发明的描述中,需要说明的是,术语“左”、“右”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例一
如图1所示,本实施例中,自动投液装置包括动子4、驱动装置5和吸液装置6,动子4是独立的部件,与其他结构不连接。其中,吸液装置6包括容纳物体的吸液腔602,还包括膜片1,膜片1的边缘固定在吸液装置6上构成吸液腔602的部分侧壁。驱动装置5可以通过气动的方式驱动动子4,也可以通过电磁力的方式驱动动子4。例如,驱动装置5中设置有 气路,气路连通套筒202的底部,动子初始位置设在套筒202的底部,与膜片1间隔一段距离。向气路中通入压缩气体可以驱动动子4向膜片1运动,并撞击膜片1。
如图5所示,运动的动子4具有动能,撞击膜片1时能够使膜片1发生弹性变形。随着膜片1的变形量不断变大,动子4的动能不断减小直至为零,动子4速度为零时膜片1的变形量达到最大。其中膜片1是构成吸液腔602的一个侧壁,膜片1的弹性变形会改变吸液腔602内的气压,使吸液腔602内的气压与外界气压的大小关系发生变化,产生压力差。膜片1被动子4撞击后向吸液腔602的内部产生变形,使吸液腔602内的体积变小,腔内压力变大,向外部排出液体。膜片1具有弹性,变形后的膜片1会产生弹性回复力,在弹性回复力的作用下,膜片1的变形部位会向原始位置回归并超过原始位置继续向原变形方向的反方向运动,即向吸液腔602的外部方向变形,从而不断地在原始位置两侧往复运动,也就是说膜片1会处于振动的状态。在膜片1的变形部位向原始位置回归并向吸液腔602的外部方向变形的过程中,吸液腔602内的体积变大,腔内压力变小,吸液装置6吸入液体。
实施例二
作为本实施例的一种实施方式,如图1所示,本实施例中,驱动装置5包括套筒202,动子4的初始位置位于套筒202的左侧远离膜片1,受到驱动装置5驱动时,可向膜片1运动。动子4初始位置距离膜片1有一定距离,动子4在驱动力的牵引下逐渐加速,在该距离内可以积蓄一定量的动能,使膜片1被撞击后可以获得更大的变形量。动子4撞击膜片1后,膜片1会发生弹性变形并获得回弹力,膜片1可将动子4弹回初始位置。变形后的膜片1会产生弹性回复力,在弹性回复力的作用下,动子4会被弹回初始位置,然后在驱动装置5的驱动下再次进行撞击膜片1的动作。优选地,如图2所示,在套筒202的左侧和动子4上远离膜片1的一侧之间设置有弹性元件3,弹性元件3可将驱动装置5对动子4做的功转化为自身的弹性势能。
作为本实施例的另一种实施方式,动子4的初始位置位于套筒202的右侧,动子4与膜片1相接触。首先,动子4被驱动装置5驱动远离膜片1并压缩弹性元件3,弹性元件3被压缩后获得弹性势能和回弹力。然后,弹性元件3通过回弹力对动子4做功,使动子4向右加速运动并撞击膜片1。
本实施例中,通过改变动子4的初始位置与膜片1和距离,可以以膜片1的弹性回复力实现动子4的复位,利用驱动装置5的驱动力和膜片1的弹性,完成投液的动作。还可以利用弹性元件3的回弹力,对动子4进行驱动,进而使动子4撞击膜片1。
实施例三
作为本实施例的一种实施方式,如图2至4所示,本实施例中,在动子4的左侧设有弹性元件3,弹性元件3与套筒202的左侧底面连接或者与动子4的左侧端面连接。弹性元件3还可以自由搁置在套筒202的左侧底面与动子4的左侧端面之间。优选地,弹性元件3的左侧固定连接在套筒202上或者驱动装置5上,弹性元件3的右侧与动子4相连接。
如图3所示,弹性元件3包括支撑弹簧301,支撑弹簧301一端连接动子4、另一端连接套筒202,支撑弹簧301呈螺旋线状,在动子4接触膜片1时处于拉伸状态,提供脱离膜片1的拉力。支撑弹簧301始终连接动子4和套筒202,在动子4受到磁力作用冲向膜片1时,被逐渐拉伸变长,为动子4提供拉力,拉力在动子4撞击膜片1后,膜片1达到最大变形时弹簧的拉力最大。如此,支撑弹簧301为动子4提供一个返回的力,使动子4更快地离开膜片1。
作为本实施例的另一种实施方式,如图3所示,弹性元件3还包括反弹弹簧302,反弹弹簧302的一端连接动子4或套筒202,另一端悬空,反弹弹簧302呈螺旋线状,其长度小于套筒腔203与动子4长度的差值,动子4总是无法同时接触反弹弹簧302和膜片1,使动子4接触到膜片1时反弹弹簧302不处于压缩状态。反弹弹簧302有一端固定,该固定端可连接动子4的左侧或套筒202的底部,另一端悬空,反弹弹簧302在动子4运动过程中仅受压力, 可以快速地使动子4的速度降低,并使动子4反向加速冲向膜片1的方向。
实施例四
如图1-4所示,本实施例中,动子4由磁力驱动,自动投液装置包括驱动装置5和吸液装置6,驱动装置5包括可产生磁场的线圈501和套筒202。其中,线圈501为环状,由可导电的金属线环绕多圈制成;套筒202为狭长的柱形物体,套筒202沿轴线方向的长度大于线圈501沿轴线方向的长度,套筒202右端具有敞开口,左端不敞开,套筒202还包括套筒腔203,套筒腔203与套筒202的轴线共线,套筒腔203与套筒202右侧的敞开口贯通。套筒202设置在环状线圈501的中间,套筒202的中心轴线与线圈501的中心轴线平行或重合,线圈501靠近套筒202的右侧敞开口设置。吸液装置6包括容纳物体的吸液腔602和构成吸液腔602侧壁的膜片1。驱动装置5还包括动子4,动子4可活动地设置套筒202的套筒腔203中。动子4的初始位置靠近套筒的左侧,当线圈501中通入电流时,线圈501会产生磁场,对处于套筒202中的动子4形成磁力。
如图1至3所示,将动子4形心的初始位置设置在偏离线圈501形心的地方,例如,使动子4位于套筒202的左侧紧贴套筒202的底部,或者,使动子4位于套筒202的右侧紧贴膜片。这样可以使的动子4在***启动后处于受力不平衡的状态,受到一个方向总是指向线圈501的形心的磁力,从而运动起来。线圈501的形心是线圈501通电后产生的磁场中磁通量最大的位置,在该磁场中任意位置的动子4受到的磁力的方向都指向该线圈501的形心。优选地,如图2和3所示,还可以在动子4与套筒202左侧的端部之间设置弹性元件3。
这样,动子4的形心向线圈501的形心接近的过程中会不断压缩弹性元件3,从而磁力对动子4做的功,会转化为弹性元件3的弹性势能。在磁力消失时,被压缩的弹性元件3挤压动子4,将弹性元件3的弹性势能释放到动子4上,动子4向右加速运动,弹性元件3的弹性势能转化为动子4的动能,进而动子4撞击膜片1。驱动装置5与吸液装置6连接在一起,使套筒202敞开口的右侧与构成吸液腔602侧壁的膜片1相贴合设置,保证了动子4运动撞击膜片1时,膜片1向吸液腔602内变形量更大。吸液装置6还包括吸液管603、排液管204和单向阀206,吸液管603和排液管204设置在吸液装置6最右侧的端面上,该端面与膜片相互平行。在吸液管603中设有单向阀206,仅允许液体从吸液腔602的外部进入吸液腔602的内部。在排液管204中设有单向阀206,仅允许液体从吸液腔602的内部流向吸液腔602的外部。动子4在套筒腔203中受磁力的驱动时,可以一定频率反复撞击膜片1,膜片1产生振动,进而使吸液腔602内气压与外界气压的大小关系不断变化,在吸液腔602内部压力小时吸入液体,压力大时排出液体。
实施例五
如图5所示,膜片1为平面状的薄片,膜片1包括固定端和变形端,固定端与吸液腔602的侧壁连接,变形端受到动子4撞击,吸收动子4的动能发生弹性变形。优选地,膜片1为圆形平面,圆形平面的边缘为固定端,固定端与吸液腔602的侧壁连接,圆形平面上的自由区域为变形端。线圈501的中心轴线垂直于膜片1的平面设置,动子4沿垂直于膜片1平面的方向往复运动。这样设置,动子4的运动方向垂直于所述膜片1的变形端。可以增加膜片1的形变幅度,进而增加每次膜片1振动时的吸液量。驱动装置5还包括壳体2,套筒202通过壳体2固定在线圈501的中心轴线位置,壳体2还包括翻边201,套筒202有开口的一端与翻边201连接在一起,套筒202的中心轴线与线圈501的中心轴线平行或者重合。套筒202是由薄壁形成的结构,其外部的形状为圆柱形,其内部还具有一个与外形同心的圆柱形空腔,即套筒腔203。动子4为实心的圆柱体,其截面圆的直径与套筒腔203的截面圆直径相等,动子4在套筒腔203中可自由地滑动,套筒202保证了动子4运动的稳定性。优选地,套筒202开口的中心正对膜片1的形心,此时,动子4撞击位置是膜片1变形端的形心。翻边201与膜片1的面相接触,翻边201与吸液装置6挤压膜片1的边缘,使膜片固定在套筒腔203和吸液腔602之间。优选地,翻边201与膜片1的面之间具有间隙,可供膜片振动时,向翻 边201方向发生变形。增大吸液腔602的体积,吸取更多的液体。同时,套筒腔203的轴向长度至少为动子4轴向长度的1.5倍,使得动子4在套筒腔203中运动时具有加速和减速的距离,可以积蓄动能,使撞击的动作力量更大。
实施例六
本实施例中,通过调整驱动力的频率与动子4往复运动的频率之间关系使得自动投液装置更高效率地投放洗涤液,驱动装置5通过磁力驱动动子4运动并撞击膜片1,使吸液装置6完成投放洗涤液的动作。
在该实施例中,可向线圈501中通入直流电,也可向线圈501中通入交流电,两种方式都可以驱动自动投液装置。
当线圈501中通直流电时,需要以一定频率控制电流的通断。
线圈501的绕制匝数和通入的电流强度固定不变的情况下,向线圈501中通入直流电,会产生强度和方向都不变的磁场。动子4在该磁场中受到的力一直保持不变,动子4逐渐压缩弹性元件3的过程中,受到的弹力不断变大直至与磁力平衡,动子4最终会静止在平衡位置。
通过控制磁力以一定的频率出现和消失,就能使动子4总是保持运动的状态,不断反复地撞击膜片1。
也就是说控制磁力在动子4的运动方向与磁力方向一致时出现,控制磁力在动子4的运动方向与磁力方向不一致时消失,保证磁力总是对动子4做正功。
当线圈中通交流电时,可以通过调节交流电的频率大小,改善自动投液装置的投液效果。
在向线圈501中通入交流电的情况下,由于交流电的正负极不断交替并且电流强度不断变化,线圈501产生的磁场方向也不断地交替,磁场强度随着电流强度的改变而相应变化。此时,磁场的强弱变化频率与交变电流的变化频率相同,动子4在该磁场中受到的磁力强弱变化也具有一定的频率,动子4总是处于运动状态。
通过控制直流电的通断频率和交流电的固有频率就可以控制自动投液装置投液进行投液,并改善投液的效率。而要改善和增强自动投液装置投液投液效果,可以通过调节交流电频率和直流电通断频率与动子振动频率之间的关系来实现。
其中,弹性元件3和动子4可以看成一个具有固定的振动频率的整体,即弹性振动***。该整体的振动频率与弹性元件3的弹性系数和动子4的质量相关。通过调整动子4的质量和/或弹性元件3的弹性系数,改变该整体的固有振动频率。
磁力是激发动子4和弹性元件3组成的弹性***振动的激振力。当激振力的频率与被激振***的固有频率一致或者呈倍数关系时,会发生共振现象,从而增强自动投液装置的投液效果。
磁力可以通过调节电流而改变频率,比如调整直流电的通断频率,调整交流电的交变频率。因此,通过调节电流、调整动子4的质量、调整弹性元件3的弹性系数,可以改变驱动力的变化频率与动子4和弹性元件3组成的弹性振动***频率之间的关系,使自动投液装置达到最佳的投液效果,通过调节交流电的频率来增大自动投液装置吸液腔602的体积变化量,增强投液效果。
实施例七
本实施例提供一种采用上述自动投液装置的洗涤设备。自动投液装置的吸液管603连接洗涤设备的洗涤剂储存盒,自动投液装置的排液管206连接洗涤设备的进水口,通入的水流与洗涤液混合后进入洗涤桶中。本实施例通过设置自动投液装置,实现了控制洗涤剂的自动精确添加,避免了洗涤剂过量添加损伤衣物,同时还简化了投液装置的结构。
实施例八
如图6至图14所示,本发明通过对用于洗涤设备的自动投液装置进行具体地结构设计,设置磁驱带动和弹性元件辅助移动的方式,提供了一种用于洗涤设备的自动投液装置及使用上述用于洗涤设备的自动投液装置的洗涤设备。
如图6至图8所示,本实施例提供的一种用于洗涤设备的自动投液装置,包括:壳体2和吸液装置6。壳体2内设置有驱动装置5和套筒202,壳体2的一端与吸液装置6连接。自动投液装置,还包括活动组件103,活动组件103包括动子4和膜片1。膜片1设置在吸液装置6内,动子4的一个端部与膜片1连接,驱动装置5驱动动子4在套筒202内进行周期性的往复运动,通过拉动和/或推动的方式使膜片1发生形变,膜片1的形变使洗涤液吸入和排出吸液装置6。具体地,膜片1与动子4以相同的频率振荡。所述的振荡指膜片1在动子4带动下进行左右方向的形变的同时膜片1自身有小范围内的谐振晃动。这种谐振晃动,使膜片1向吸液装置6的腔室和向套筒202方向具有不同的振幅,使部分洗涤液排出吸液装置6,一定程度上提升了用于洗涤设备的自动投液装置投放洗涤液的效率。具体地,动子4设置在套筒202内运动,动子4运动时与套筒202同轴。动子4限制于套筒202内运动且动子4运动时与套筒202同轴,既可以保证动子4运动时受到全部的驱动力尽可能多的有效化,提升了能量利用效率,也可以减少不必要的摩擦消耗,使用于洗涤设备的自动投液装置的工作效率更高。具体地,动子4为形状、体积相对固定不变化的金属结构件,本身不具有磁性且会在磁场的吸引下发生运动位移,但不会整体被磁化。具体地,动子4连接在膜片1的形心,膜片1的形心与其形变部位同心。
参见附图6,所述膜片1的周边边缘与吸液装置6的腔室壁固定连接。所述动子4通过拉动和/或推动使所述膜片1发生形变进行往复振荡,使洗涤液吸入和排出吸液装置6。
上述方案,膜片1的周边边缘固定在吸液腔室的内壁上,膜片的悬空部分形成了膜片的可形变部位,膜片1向吸液装置6的腔室的变形程度大于或等于向套筒202方向的变形程度。动子拉动、推动膜片整体运动的同时,膜片1自身由于受力也发生前后振荡,这种震荡能将洗涤液更多的排出吸液腔室,进而提升了用于洗涤设备的自动投液装置的投液效率。
在本实施例的另一个具体实施方案中,参见附图7至附图14,所述壳体2还包括与所述吸液装置6一端连接的翻边201,所述吸液装置6包括吸液腔602和与所述翻边201垂直连接的端盖601,所述端盖601上设有容纳所述膜片端部的凹槽,所述膜片1的端部固定于所述翻边201和所述端盖601凹槽之间,所述膜片1将所述套筒202一端覆盖密封并构成所述吸液腔602的一侧侧壁。
具体的,所述盖端601由吸液腔侧壁构成。进一步地,所述翻边201由套筒202具有角度的延伸一定长度形成,或者所述翻边201由壳体201的侧壁有角度的延伸一定长度形成。进一步地,膜片1的周边固定在翻边201和端盖601凹槽之间,膜片1将吸液装置6和壳体2连接起来。进一步地,膜片1的周边固定在翻边201和端盖601凹槽之间,膜片1在加持固定下,中间部位即是可形变区。
上述方案,膜片将吸液装置和壳体分割,膜片充当吸液装置内一侧壁的设计,能使用于洗涤设备的自动投液装置的结构构成简单化,便于加工制造。进一步地,动子4与膜片1两者通过一体化成型、不可拆连接或可拆卸连接的方式连接一体形成活动组件103,所述动子4与膜片1连接的一端部分外露于套筒202。
参见附图6至附图8,不可拆连接方式包括:动子4的一端部与膜片1的形心部位粘接连接,形成活动组件103。进一步地,动子4为金属材质结构件,膜片1是非磁化材质结构件或者金属件。当膜片1选用具有一定弹性的金属结构件时,动子4与膜片1选用焊接的固定连接方式。上述方案,动子与膜片粘接固定,简单的连接能极大地降低制造的难度和生产制的成本,契合实际的市场需求。
具体地,动子4包括运动部402,运动部402为金属材料的圆柱体结构件,运动部402朝向膜片1方向的端部设置有伞状或蘑菇形状的嵌入块401,膜片1内设有与嵌入块401配 合的安装固定件,将动子4与安装固定件配合连接形成的整体放置到模具中,在安装固定件的四周通过一体化注塑成型形成与动子4连接的膜片1。进一步地,膜片1的材质为塑料、橡胶、硅胶、动物皮等。进一步地,安装固定件具有耐高温的性能。进一步地,安装固定件选用金属材质的合金结构件。进一步地,一体化成型的动子4与膜片1连接的整体件,为固定连接不可拆卸。上述方案,以动子与安装固定件配合连接形成的整体作为膜片中心的支撑部件,模具内注塑形成与整体一体化的膜片结构,这种方案使动子与膜片的连接具有更高的可靠性,能使活动组件在长时间的使用后依然保持初始的位置关系,极大地提升了用于洗涤设备的自动投液装置的使用寿命,契合用户的实际使用需求。
参见附图9至附图14,可拆卸的连接方式包括:膜片1的中心部位具有一定的厚度,膜片1内设置有与嵌入块401卡接配合的嵌入部101,嵌入块401与嵌入部101配合卡接,实现动子4与膜片1的连接。卡接的连接方式更加可靠稳定,能极大的提升活动组件的结构强度,即在一定程度上提升了用于洗涤设备的自动投液装置的功能可靠性。进一步地,膜片1形状为盘状、碗状和囊状。
参见附图8至附图11,所述膜片随动子的往复运动,向吸液装置6的腔室和向套筒202方向具有不同的变形程度。优选地,所述膜片向吸液装置6的腔室的变形程度大于向套筒202方向的变形程度。因为套筒202侧的空间较小,对膜片的向左移动具有一定的阻碍,这样的方案,能防止出现磁场力过大致使膜片被拉坏的情况,保证了用于洗涤设备的自动投液装置的使用寿命。
在本实施例的另一种具体方案中,参见附图6,所述膜片向吸液装置的腔室的变形程度小于向套筒方向的变形程度,保证弹性元件不会因为过度拉伸而导致功能失效,同时此方案还能使膜片周期性的处于变化的状态,防止膜片反复受到换向的作用力而导致的疲劳破坏,因此在一定程度上保证了自动投液装置的性能可靠性和使用寿命。
参见附图11、附图13和附图14,动子4还包括哑铃形状的传导部403,传导部403的一端连接运动部402,另一端上设置有嵌入块401,嵌入块401与嵌入部101配合卡接,实现动子4与膜片1的连接。进一步地,上述的粘接、焊接、一体化成型、卡接和螺纹连接的动子4均可以设置便于连接的传导部403。进一步地,传导部403的材质按需可选用非金属材质或其他材质。
具体地,驱动装置5包括线圈501,线圈501绕设于套筒202的外侧,线圈501通电产生磁场,动子4受磁场的驱动在套筒202中往复运动,周期性的推动和/或拉动膜片1产生形变。上述方案,驱动装置5采用磁驱的方式,能减小用于洗涤设备的自动投液装置的体积和质量,磁驱线圈的成本较其他驱动方式低,以此可以降低生产的成本。进一步地,线圈501的中轴线与套筒202的中轴线重合。进一步地,膜片1由弹性材质制成,当动子4拉动或推动膜片1复位时,膜片因自身的弹性还会小幅度的前后波动,将集聚的能量释放彻底。这种方案可以使能量得到更大程度的利用,大大提升了能量利用效率和投放洗涤液的效率。进一步地,除磁驱方式外,驱动装置5也可以选择液压***、气压***带动的方式,使活动组件运动。需要说明的是,所述驱动装置5给予动子4提供的磁驱力,可以是方向始终固定不变的力,也可以是方向周期性变化的力。
参见附图6至附图8、附图10和附图12,套筒202远离膜片方向的一端设置有弹性元件3,弹性元件3与驱动装置5相互协助和/或制约动子4的运动,弹性元件3包括支撑弹簧301,支撑弹簧301与动子4同轴设置并有一端相连,当动子4发生移动时,支撑弹簧301对动子4产生与运动方向相同或相反的力,弹性元件3还包括反弹弹簧302,反弹弹簧302的长度不大于支撑弹簧301的长度,当动子4背离膜片1方向移动时,到某一位置动子4与反弹弹簧302接触,使动子4受到与运动方向相反的力,能使动子4速度降至零。进一步地,支撑弹簧301在自然状态下一端连接套筒202底部,另一端连接动子4的端部。进一步地,反弹弹簧302在自然状态下一端连接套筒202底部,另一端与动子4的端部有一定的距离。
参见附图13,膜片1的另一端设置有复位弹簧303,复位弹簧303一端连接膜片1的形心,使膜片1受拉或受推,始终向原位回复。上述方案,无论膜片是受拉或受推,设置于吸液腔602的复位弹簧始终给予活动组件一个与运动方向相反的复位力,这种方案能一定程度上避免出现膜片过度形变引起的疲劳破坏的情况,极大地提升了用于洗涤设备的自动投液装置的使用寿命。
需要说明的是,附图13可以理解为初始位置下的状态示意图,也可以理解为运动过程中的状态示意图,这里并未做出具体限制,因此附图反映的方案均成立。进一步地,复位弹簧303设置于吸液腔602中,复位弹簧303的一端连接膜片1的形变部位,另一端连接在吸液腔602内与膜片1对应的内壁上。进一步地,复位弹簧303可设置有多个,多个复位弹簧平行设置。
用于洗涤设备的自动投液装置的具体操作步骤:
洗涤设备内放入衣物,根据衣物确定所需的洗涤添加剂用量。自动投液装置根据所需的洗涤添加剂用量确定需要工作的通电时间,自动投液装置将洗涤添加剂投放到洗涤桶进水管中,并由进水带动较为均匀的添加到洗涤设备的洗涤外筒中。
需要说明的是,本实施例提供的自动投液装置可以将吸液腔中抽入部分洗涤剂后,再延时地将这部分洗涤液排出吸液腔投放到洗涤桶进水管中,也可以是将吸液腔中抽满洗涤液后,再整体地排出吸液腔投放到洗涤桶进水管中。这使得投放的洗涤剂剂量不会因投液装置吸液腔的大小而限定在某一范围,因此本实施例的投液装置具有极大的适用范围。
实施例九
本实施例与上述实施例八存在区别,所述的膜片与动子的可拆卸连接方式还包括:螺纹连接方式。膜片的中心部位具有一定的厚度,膜片内设置有内螺纹通道结构,动子的一端设置有凸出的螺纹杆,通过旋转将螺纹杆旋进内螺纹通道,实现动子与膜片的连接,或者,膜片外凸设置有螺纹杆,动子的一端内凹设置有内螺纹通道结构,通过旋转将螺纹杆旋进内螺纹通道,实现动子与膜片的连接。
实施例十
如图9至图11、图12和图14所示,本实施例为上述实施例八的进一步限定,所述的动子4与膜片1通过嵌入块401与嵌入部101实现卡接配合的具体方式如下:运动部402朝向膜片1方向的端部设置有伞状或蘑菇形状的嵌入块401,膜片1的中心部位具有一定的厚度,膜片1内设置有与嵌入块401卡接配合的嵌入部101,嵌入块401与嵌入部101配合卡接,实现动子4与膜片1的连接。进一步地,嵌入块401是具有刚性不可变形的伞状或蘑菇形状的结构件,膜片1的中心部位设置有开放的嵌入部101。装配时,动子4的中轴线平行于膜片1的中心线,动子4的嵌入块401平移卡入嵌入部101中,移动至动子4的中轴线重合于膜片1的中心线完成动子4与膜片1的卡接装配。或者,嵌入块401是具有弹性可变形的伞状或蘑菇形状的结构件,膜片1内设置有与嵌入块401卡接配合的嵌入部101。装配时,移动至动子4的中轴线重合于膜片1的中心线,将嵌入块401***嵌入部101中,嵌入块401在嵌入部101中舒展开固定,完成动子4与膜片1的卡接装配。
实施例十一
如图6至8、图10和图12所示,本实施例为上述实施例八的进一步描述,所述的驱动装置驱动动子的具体原理如下:
初始时线圈未通电,动子无运动趋势,弹簧处于自然状态无压缩或拉伸,膜片无形变;
采用正弦交流电为例,将交流电的一个周期分为上半周期阶段和下半周期阶段,交流电的上半周期阶段和下半周期阶段电压图像(或电流图像)关于电压数值(或电流数值)为0的点中心对称;以上半周期和/或下半周期的电压峰值(或电流峰值)点为中点,将半周期分为电压强度升高(或电流升高)阶段和电压强度降低(或电流降低)阶段。
线圈通入交流电,动子不会被整体磁化,会被套筒左侧部分侧壁的敞口中外露的磁力线吸引向左移动。以动子为受力体分析,动子受磁场力F1和膜片的复位力F2以及弹簧的复位力F3作用而运动。
当交流电处于上半周期的电压强度升高阶段,处于初始位置的动子,受到向左的磁场力F1致使动子向左移动,向左移动的同时膜片的复位力F2和弹簧的复位力F3增大来阻止动子左移,此时膜片的复位力F2是对动子向右的拉力,弹簧的复位力F3是对动子向右的推力。随着电压的继续增大,动子受到向左的磁场力F1不断地增大,迫使膜片继续向左拉伸,膜片的复位力F2继续增大,弹簧继续压缩,弹簧的复位力F3继续增大。当到达电压峰值点,此时,动子受到向左的磁场力F1在数值上等于向右的膜片的复位力F2和弹簧的复位力F3的数值和,但是动子仍具有向左的动量,动子继续向左侧位移一定的距离,进一步地压缩了弹簧和拉伸了膜片,使向右的膜片的复位力F2和弹簧的复位力F3的数值和短时间内大于了动子受到向左的磁场力F1的数值,直至动子的速度减为零,此时动子受合力向右,动子有向右运动的趋势。
当交流电处于上半周期的电压强度降低阶段,处于左侧最远极限位置的动子,受到向右的膜片的复位力F2和弹簧的复位力F3的数值和大于动子受到向左的磁场力F1的数值,因此动子右移。动子向右移动的同时膜片的复位力F2和弹簧的复位力F3得到释放减小来致使动子右移,此时膜片的复位力F2是对动子向右的拉力,弹簧的复位力F3是对动子向右的推力。随着电压的继续降低,动子受到向左的磁场力F1不断地减小,膜片的复位力F2和弹簧的复位力F3得以继续释放减小致使动子右移。当到达上半周期与下半周期的转换点(即交流电电压数值为0、电压即将换向的转折点),此时,动子不在受磁场力(即磁场力F1为0),存储的膜片的复位力F2和弹簧的复位力F3也释放完全,此时动子不受外力,但是动子仍具有向右的动量,动子继续向右侧位移一定的距离。动子继续向右移动一定距离,这个过程中膜片被推动向右,此时膜片的复位力F2是对动子向左的推力,同时在这个过程中弹簧被动子带动拉伸,此时弹簧的复位力F3是对动子向左的拉力。直至动子的速度减为零,此时动子受到的合力向左,动子有向左运动的趋势。
此时如果将交流电停止,完成动子会在初始位置左右反复,直至将能量消耗殆尽。
此时如果保持交流电的接通,交流电进入下半周期的电压强度升高阶段,再进入下半周期的电压强度降低阶段,下一步进入上半周期的电压强度升高阶段,以此循环,即当交变电流频率50HZ,动子运动100个来回。
需要说明的是,交流电进入下半周期的电压强度升高阶段受到的力分析与交流电进入上半周期的电压强度升高阶段相同;交流电进入下半周期的电压强度降低阶段受到的力分析与交流电进入上半周期的电压强度降低阶段相同,这里不再做赘述。
实施例十二
如图6至8、图10和图12所示,本实施例与上述实施例十一存在区别,所述的驱动装置驱动动子的另一种具体原理如下:采用正弦交流电为例,当交流电处于上半周期阶段,线圈生成上N下S的磁极(当然根据电流方向的不同,也可能是上S下N),动子部分与敞口部位在高度方向上部分重合,线圈敞口部位的外漏磁力线将动子完全磁化形成上S下N的磁极。过程随着电压先高后低,线圈形成的磁极强度先强后弱直至消失,因此动子的磁性也表现为先高后低。动子上端受到的线圈N极的吸引力和S极的排斥力均指向上,动子下端受到的S极向上的吸引力远远大于收到N极向下的排斥力,因此动子向上运动,最终在一个相对稳定的位置速度减为零。动子向上运动的过程受到方向向上的加速度从零增至某值,后减为零。
当交流电处于周期中点时,动子现处于相对稳定状态,无磁极分布的磁场。当交流电处于下半周期阶段,线圈生成上S下N的磁极,线圈敞口部位的外漏磁力线将动子磁化形成上N下S的磁极。过程随着电压的大小先高后低,线圈形成的磁极强度先强后弱直至消失,因 此动子的磁极也表现为先高后低。在磁极吸引力的作用下(设置有复位弹簧,复位弹簧也发挥作用),弹簧向下的拉力加线圈S极对动子下端向下的排斥力大于线圈S极对动子上端的吸引力和线圈N极对动子上端向上的排斥力和线圈N极对动子下端向上的吸引力,因此动子向下运动,最终停留在一个相对稳定的位置复位。这种方案,能起到磁场抵消的作用。
根据所需的洗涤添加剂用量,确定通电时间,实现洗涤剂的精准投放。
实施例十三
如图6至8、图10和图12所示,本实施例与上述实施例十一存在区别,所述的驱动装置驱动动子的另一种具体原理如下:以直流电为例,当线圈的绕制匝数和通入的电流强度固定不变时,向线圈中通入直流电,就会瞬时产生强度和方向都不变的磁场。此时,动子在该磁场中受到的力一直保持不变,动子逐渐压缩弹簧的过程中,受到的弹力不断变大直至与磁力平衡,动子最终会静止在平衡位置。若要使动子往复不断地带动膜片同时防止线圈烧坏,需要使该磁力以一定的频率出现和消失,也就是说使磁力总是在动子的运动方向与磁力方向一致时出现,不一致时消失,即磁力总是对动子做正功。
实施例十四
如图6至8和图12所示,本实施例为上述实施例八的进一步描述,所述的弹性元件的具体调节过程如下:具体地,套筒202远离膜片方向的一端设置有弹性元件3,弹性元件3与驱动装置5相互协助和/或制约动子4的运动,弹性元件3包括支撑弹簧301,支撑弹簧301在自然状态下一端连接套筒202底部,另一端连接动子4的端部。弹性元件3还包括反弹弹簧302,反弹弹簧302的长度不大于支撑弹簧301的长度,反弹弹簧302在自然状态下一端连接套筒202底部,另一端与动子4的端部有一定的距离。进一步地,初始状态下支撑弹簧301和反弹弹簧302均不受拉伸力和压缩力,且反弹弹簧302不接触动子4。
当动子4向靠近膜片1方向移动时,动子4拉动支撑弹簧301,支撑弹簧301给予活动组件103一个与运动方向相反的拉力,随着运动的持续进行这个拉力越来越大;当动子4将膜片1推动变形至某一程度,动子4的速度降为零;动子4受到膜片1的复位推力和支撑弹簧301的拉力和驱动装置5的驱动,动子4向背离膜片1的方向移动。动子4向背离膜片1的方向移动至支撑弹簧301初始状态点时,动子4的速度仍不为零;当动子4背离膜片1方向移动至与反弹弹簧302接触,使动子4受到与运动方向相反的力瞬间的增大,某一位置点使动子4速度降至零;此时,动子4受到驱动装置5、支撑弹簧301和反弹弹簧302的作用力以及膜片1的复位拉力均指向靠近膜片1的方向,动子4向靠近膜片1的方向运动,以此循环往复。
实施例十五
本实施例为上述实施例八的进一步描述,所述的膜片还可以有如下具体结构:
参见附图12,碗状膜片1设置于壳体2和吸液装置6的连接处,连接结构与上述实施例相同的方案在这里不做赘述。
具体地,碗状膜片1与壳体2和吸液装置6的连接方式可以设置为粘合性连接。在用于洗涤设备的自动投液装置内壁形成一个胶粘区,在碗状膜片1外周设置粘合处,将碗状膜片1外周粘合处与用于洗涤设备的自动投液装置内壁的胶粘区贴合,碗状膜片1的凸面朝向套筒202方向设置,外周壁的端部与碗状膜片1的凸面高点平齐或突出。碗状膜片1自外周至端部形成逐渐收紧的球状曲面结构,碗状膜片1与用于洗涤设备的自动投液装置之间形成两个互相隔离的腔室。碗状膜片1外周围合的范围同时包括进液口与出液口的腔室为吸液腔602,另外一个腔室为隔离腔室。上述隔离腔室的设置,给予膜片1更大的运动范围,同时碗状的设计使得吸液装置6能容纳更多的洗涤液,提升用于洗涤设备的自动投液装置的工作效率。
参见附图14,囊状膜片1设置于壳体2和吸液装置6的连接处,连接结构与上述实施例相同的方案在这里不做赘述。所述囊状膜片1具有弯折结构件102,所述的弯折结构件102 为折叠波纹管形式。所述的弯折结构件102可以根据受力的方向不同,做出一定程度的拉伸或压缩。上述弯折结构件102的设计,能起到协助改变吸液腔602容积的作用,使得吸液腔602的容积变化程度更大,实现将更多的洗涤液吸入吸液装置6和排出吸液装置6,提升了用于洗涤设备的自动投液装置的工作效率。
实施例十六
如图15至图18所示,本发明所述的一种洗涤设备自动投液装置,包括套筒202、动子4以及驱动装置5。
所述套筒202的一端封闭,另一个端部具有吸液管603和排液管204,所述套筒202的另一端部上的吸液管603和排液管204交替打开。所述动子4可移动地设置于所述套筒202中。
所述驱动装置5设置于所述套筒202的外侧,用于驱动所述动子4在所述套筒202中移动。
所述动子4在所述套筒202内往复振荡,使所述套筒202内的液体产生波动,波动的液体沿着所述套筒202轴向流动并周期性的从所述排液管204流出。
本发明中,所述套筒202为中空结构,在其中一个端部上开设有吸液管603安装口和排液管204安装口,其中所述吸液管603和所述排液管204密封插设在对应的吸液管603安装口和排液管204安装口上。具体的,所述吸液管603和所述排液管204与各自安装口的固定方式也可以采用螺纹连接的方式。
所述套筒202中的吸液管603和排液管204可以在驱动装置5作用所述动子4来回振荡时,交替打开吸液管603和排液管204,从而形成单向的排液通道,实现将液体向洗衣机内部添加。
所述动子4为形状、体积相对固定不变化的柱状金属结构件,可以为铁质金属,且所述动子4内部可以是空心或者局部空心的设置。其中,所述动子4初始状态下自身不具有磁性,会在磁场的吸引下磁化并被吸引发生运动位移。所述动子4设置在所述套筒202中,并且可以在所述套筒202的内部中进行滑动。在所述套筒202的外侧设置有所述驱动装置5,在所述驱动装置5的作用下,使得所述动子4可以在套筒202中移动。
由于所述动子4在所述套筒202中高频振荡进行往复运动,从而使所述套筒202中的液体产生动能形成速度波。获能的液体以波的形式在所述套筒202中移动,液体流动到所述排液管204处并打开所述排液管204,通过所述排液管204向洗衣机内部进行注水。由于所述套筒202中排出部分液体,其内部形成负压,使得通过所述吸液管603向所述套筒202中补充液体。如此反复动作,可以实现向洗衣机中周期性连续进行注液作业,投液量精准、高效。
优选的,所述驱动装置5驱动所述动子4的方式可以是电动机械式、气动式或者电磁式中的其中一种,在驱动作用下,所述动子4在所述套筒202中连续往复振荡。
其中,采用电动机械式的驱动方式驱动所述动子4进行往复移动,其具体方式是:所述动子4内部设置有微型直线振动电机,通过微型直线振动电机的振动方向与所述动子4移动的方向一致,从而可以达到所述动子4在所述套筒202中连续地进行高频往复振荡,从而使得所述套筒202中的液体获能产生波动,实现进排液的动作。所述动子4振幅较小,频率较高,会使得所述动子4高频振荡起来,带动液体产生波动的频率较高。
另外,采用气动式的驱动方式驱动所述动子4进行往复移动,其具体方式可以是:所述动子4外侧套设有套管,所述动子4在所述套管中密封滑动设置,所述套管中设有用于输入和排放气体的开口。通过改变套管内部的气压,而改变所述动子4的移动位置,提高改变频率,从而可以达到所述动子4在所述套筒202中连续地进行高频往复振荡,从而使得所述套筒202中的液体获能产生波动,实现进排液的动作。气动式的驱动方式使得所述动子产生的往复移动的动作更加稳定,从而保证周期性投液过程中,单次投液量均匀。
优选的,采用电磁式的方式时,所述驱动装置5包括线圈501和弹性元件3。
所述线圈501绕设于所述套筒202的外侧。
所述弹性元件3轴向设置于所述套筒202内壁上,用于提供所述动子4向初始位置移动的恢复力。
优选的,初始状态下,所述动子4的中心偏离所述线圈501的中心设置。
所述驱动装置5包括线圈501,所述线圈501绕设于所述套筒202的外侧。初始状态下,所述动子4的中心偏离所述线圈501的中心设置。且所述动子4与所述线圈501两者中心的连线的水平距离大于所述动子4朝向所述线圈501的中心振荡的最大振幅。
另外,所述线圈501也可以单独在所述套筒202的外侧设置有线圈支架502,将所述线圈501绕设在所述线圈支架502上,实现所述线圈501与所述套筒202的可拆卸式设置。所述线圈支架502可以根据需求,对其位置进行适应性调整,设置更加灵活。
在所述套筒202的内壁上设置有弹性元件3,且所述弹性元件3呈轴向设置。即所述弹性元件3的伸缩方向可以沿着所述套筒202的轴向方向设置,但可以不完全垂直于所述套筒202的端部。
所述动子4在所述套筒202中受到所述驱动装置5的驱动下进行高频振荡后,在所述弹性元件3的作用下进行复位。则通过所述驱动装置5和所述弹性元件3的双重作用下,所述动子4形成连续的高频往复移动动作。
具体的,通过设置所述弹性元件3的弹性系数与所述动子4的质量的比值来实现所述动子4与所述弹性元件3组成的振荡***的振动频率。具体的,所述弹性元件3的弹性系数远大于所述动子4的质量,从而可以提高整个振荡***的振动频率。则所述动子4在所述驱动装置5的驱动下,在所述套筒202中实现高频的往复振荡动作。通过电磁式的驱动方式驱动所述动子4进行高频往复振荡,其中设置的结构简单紧凑,成本较低;且驱动所述动子4移动的驱动力所需的所述线圈501等部件不与其直接连接,仅仅需要所述弹性元件3进行复位,从而没有较大的挤压力和摩擦力,保证所述动子4的使用寿命。
优选的,所述动子4与所述吸液管603相靠近的端面与所述套筒202的内端面之间存在间隙,所述间隙大于等于所述动子4朝向所述吸液管603振荡的最大振幅。
所述动子4设置在所述套筒202中,其中在所述弹性元件3与所述套筒202的一端连接后,所述动子4的另一端与所述套筒202的另一端内部之间具有间隙。
所述动子4在所述套筒202中往复振荡过程中,当所述动子4向靠近所述吸液管603的一端移动时,所述动子4不与其端部的侧壁相接触或刚好接触。即所述动子4向靠近所述吸液管603的一侧移动的最大振幅小于等于该间隙。保证所述动子4在振荡过程中不会撞击在所述套筒202的端部的内壁上。
另外,在初始设置时,所述动子4的一端面与具有所述吸液管603的所述套筒202的内端面之间留有一定的间隙,可以使得间隙处填充有液体。一方面保证在向排液管204排液时,有一定量的液体可以进入洗衣机中;另一方面,留有一定的间隙,可以保证液体受所述动子4高频振荡而逐渐获能产生速度波,并形成单向液柱的流动趋势。
初始状态下,即未通电状态下,所述线圈501的中心与所述动子4中心相偏离。即所述线圈501轴向长度的中垂线与所述动子4轴向长度的中垂线不重合。所述线圈501绕设的整体长度对应的中垂线处于所述动子4轴向长度的中垂线的左侧或者右侧。
以所述动子4轴向长度的中垂线处于所述线圈501的右侧时,所述线圈501通入交流电时,由于交流电的特性,其电流的大小、方向呈周期性变化,具体的电流的波形呈正弦波形,由于电流大小的周期性变化,使得产生的磁场会产生周期性的变化,进而对处于所述套筒202中的吸引力同样存在周期性的变化。
在向所述线圈501中通入该正弦交流电。在正弦波形的一个周期过程中,所述动子4始 终受到所述线圈501提供的大小变化、磁力方向一致的电磁力。其中所述动子4所受的电磁力的方向始终指向所述线圈501的中心。
在开始状态下,电磁力驱动所述动子4向左侧运动,并开始挤压所述弹性元件3,则电磁力对所述动子4做功转化为所述弹性元件3的弹性势能,使得电磁力始终促进所述动子4运动,对所述动子4做正功。
到所述动子4运动到最左侧停下后,所述弹性元件3开始释放自身的弹性势能,转化为所述动子4的动能,使其开始向右侧运动,此时电磁力阻碍所述动子4运动,对所述动子4做负功,到所述动子4运动到最右侧停下。
在正弦交流电的连续周期下,所述动子4会在所述套筒202中高频往复进行振荡运动,从而使得所述套筒202中的液体获能波动。从而液体以波动的形式向朝向所述排液管204的一侧移动进行排液,排液后,所述套筒202内形成负压并从所述吸液管603进行吸液。
其中一个优选的实施例中:当所述线圈501通入正弦交流电时,以电流的整个正向波形为半个周期为例。所述线圈501电流导通,电流从0逐渐增强至最大值,磁场强度不断增强,使得所述动子4受到的电磁力不断增加并向所述套筒202的左侧移动,所述动子4压缩弹性元件3使得其恢复力不断增加,此阶段电磁力始终大于恢复力,则所述动子4在所述套筒202中做加速度不断减小的加速运动。
当电磁力等于恢复力时,加速度为0,此时所述动子4的速度最大;所述动子4继续向左运动,恢复力大于电磁力,则所述动子4开始做减速运动直至为0,此时所述弹性元件3的压缩量最大,所述动子4开始做反向加速运动,即所述动子4向所述套筒202的右侧移动,电流由最大值开始向0逐渐减弱,整个过程与上述所述动子4向所述套筒202左侧移动的运动状态一致,则所述动子4在半个周期中完成一次往复运动,其反向波形中的所述动子4的运动状态与上述一致。
参考图15,另外一个更优选的实施例:当所述线圈501通入正弦交流电时,以电流的整个正向波形为半个周期为例。所述线圈501电流导通,电流从0逐渐增强至最大值,磁场强度不断增强,使得所述动子4受到的电磁力不断增加并向所述套筒202的左侧移动,所述动子4压缩弹性元件3使得其恢复力不断增加,此阶段电磁力始终大于恢复力,则所述动子4在所述套筒202中做加速度不断减小的加速运动。
当电磁力等于恢复力时,加速度为0,此时所述动子4的速度最大;所述动子4继续向左运动,电流从最大值开始逐渐降为0,所述弹性元件3的恢复力大于电磁力,则所述动子4开始做减速运动直至为0,此时所述弹性元件3的压缩量最大,所述动子4开始做反向加速运动,即所述动子4向所述套筒202的右侧移动,其中所述动子4向左侧移动与向右侧移动所需的时间周期一致。在所述动子4向右侧移动的过程中,电磁力先逐渐减小后在逐渐增大,但整体电磁力对所述动子4做负功最少。
则所述动子4与所述弹性元件3的振荡周期与上述正弦电流的周期即电磁力的变化周期相同或者呈倍数关系时,会产生共振,使得所述动子4在电磁力的驱动下振荡的幅度最大,则有效保证吸排液的效果。由于持续的交变电流的作用,使得所述动子4可以在所述套筒202中高频振荡,进而使得整个吸排液的动作连续进行。
整体来说,通过控制交流电频率与所述动子4和所述弹性元件3形成的振荡***的振动频率之间的关系,可以控制所述动子4在所述套筒202中的振荡幅度,进而保证吸排液的效果。所述动子4在高频的振荡中,会快速的往复振动并带动所述套筒202内部的液体产生速度波,从而向所述排液管204的一侧排液。在排液后,所述套筒202内部形成负压,从吸液管603处吸液进入所述套筒202中,保证整个投液动作连续进行,则实现向洗衣机中投放洗涤液的动作。
优选地,所述线圈501的轴线与所述动子4的轴线相平行,所述动子4的外径大小小于所述套筒202的内径大小。所述动子4与所述线圈501两者中心的连线的水平距离大于等于 所述动子4朝向所述线圈501的中心振荡的最大振幅。
所述动子4滑动设置于所述套筒202时,可以将其完全水平放置,从而所述动子4的轴线可以与所述线圈501的轴线相平行设置。从而可以在磁场作用下,所述动子4所受到的吸引力的合力最大,同时移动也更加稳定。
所述动子4和所述线圈501的空间上存在的两个中点,将两个中点的连线的水平分量对应的距离大于等于所述动子4朝向所述线圈501的中心一侧的振荡的最大振幅。在所述动子4朝所述线圈501的中心移动时,避免所述动子4的中心越过所述线圈501的中心,而导致磁力方向发生改变的情况,进而保证所述动子4振荡效果。
优选地,所述线圈501、所述动子4以及所述套筒202三者之间的轴线相重合设置。
本发明中,通过将所述线圈501、所述动子4以及所述套筒202三者同轴设置,可以保证所述动子4在套筒202中的移动不会受到所述套筒202内部的摩擦影响。同时,保证磁场作用在所述动子4上产生的吸引力在各个方位上是均匀的,进而使得所述动子4移动的动作更加稳定。
优选地,所述动子4沿着所述套筒202轴向方向上的投影将所述排液管204的管口全部遮挡。
所述动子4与所述排液管204的管口相对,沿着水平方向进行延伸时,所述动子4完全可以覆盖排液管204的管口,则可以在液体波动时,尽可能多的液体从所述排液管204中排出。
优选地,所述动子4的两端分别设置有凸台。
所述动子4的两端设置有凸台,其中凸台上设置有圆角,从而可以减小所述动子4高频往复振荡时的阻力。
优选地,所述弹性元件3包括支撑弹簧301,所述支撑弹簧301的一端与所述套筒202的内壁连接,另一端与所述动子4的外侧壁连接。所述支撑弹簧301的最大压缩量小于等于所述动子4振荡的最大振幅。
参照图15和3,所述支撑弹簧301采用压缩弹簧。作为其中优选的方案,所述支撑弹簧301设置于与所述排液管204相对的所述套筒202的内端面上。具体的,所述支撑弹簧301与所述动子4同轴设置,且由于所述动子4的端面上设置有凸台,所述支撑弹簧301的一端卡紧固定在凸台上。由于同轴设置,可以保证所述动子4在所述套筒202中,水平地处于其轴心上,既完成了所述动子4的安装固定,同时也给所述动子4在受磁场吸引移动后提供恢复力。
另外,由于所述支撑弹簧301的最大压缩量大于等于所述动子4振荡的最大振幅,在所述动子4振荡过程中,由于往所述线圈501的中心一侧移动会压缩所述支撑弹簧301,避免所述动子4还未移动到最大振幅时,所述支撑弹簧301就被压缩至最大压缩量处,影响整体振荡的效果。
进一步地,参照图16和4,所述动子4在远离所述支撑弹簧301的另一端面上设置有复位弹簧303,其中复位弹簧303与支撑弹簧301的安装位置以及固定方式完全相同。从而可以对所述动子4两端进行相应的安装固定,进一步保证其安装后的水平状态。
优选地,所述弹性元件3还包括反弹弹簧302,所述反弹弹簧302的一端与所述套筒202的内壁连接,所述支撑弹簧301套设在所述反弹弹簧302的外部。所述反弹弹簧302的弹性系数大于所述支撑弹簧301的弹性系数。所述反弹弹簧302的最大压缩量大于等于所述动子4振荡的最大振幅。
所述反弹弹簧302设置于所述支撑弹簧301的内部,与所述支撑弹簧301组成弹簧谐振***,可以在所述动子4被磁场吸引后逐渐压缩支撑弹簧301,继续压缩后会与反弹弹簧302进行挤压。同样,所述动子4振荡的最大振幅小于所述反弹弹簧302的最大压缩量,避免所 述动子4未到达最大振幅处即被反弹,影响整体振荡的效果。
由于所述反弹弹簧302与所述支撑弹簧301的外径以及弹性系数不同,从而所述反弹弹簧302与所述支撑弹簧301之间可以配合组成的弹力范围更大,有效缩短单根弹簧需要提供一定恢复力的长度,可以更好的适应于所述动子4移动后所需要提供的恢复力。
优选地,所述吸液管603与所述排液管204位于所述套筒202的同侧。将所述吸液管603与所述排液管204设置在所述套筒202的同侧,可以使得液体吸入并排出的路程缩短,更加有效率的给所述洗衣机内部添加洗涤液等。
具体的,所述吸液管603和排液管204中设置导向装置,所述导向装置为单向阀206,位于所述吸液管603上的所述单向阀206的导通方向由所述吸液管603指向所述套筒202内部,位于所述排液管204上的所述单向阀206的导通方向由所述套筒202内部指向所述排液管204。从而可以有效控制液体从所述吸液管603流入所述套筒202中、并从所述排液管204中排出。
本发明中,在所述吸液管603和所述排液管204的内部设置有单向阀206,从而可以保证抽吸和排放液体的方向,可以完全保证液体从吸液管603被吸取并从所述排液管204中排出,避免吸入所述套筒202中的液体在排液时部分重新回流到所述吸液管603中,影响向所述洗衣机投液的效率。
进一步的,本发明中的所述线圈501同样可以通入直流电。
以直流电为例,当所述线圈501中通直流电时,并以一定频率控制电流的通断。
当所述线圈501的绕制匝数和通入的电流强度固定不变时,向所述线圈501中通入直流电,就会瞬时产生强度和方向都不变的磁场。此时,所述动子4在该磁场中受到的力一直保持不变,所述动子4逐渐压缩所述支撑弹簧301的过程中,受到的弹力不断变大直至与电磁力平衡,所述动子4最终会静止在平衡位置。
使所述动子4往复振荡运动,需要使该电磁力以一定的频率出现和消失,导通所述线圈501的电流时,所述动子4的运动方向与电磁力方向一致;断开所述线圈501的电流时,所述动子4在所述支撑弹簧301的作用下回弹。进而通过控制所述线圈501通断的频率,同样可以实现所述动子4在所述套筒202中振荡运动。
具体的,所述套筒202包括套筒本体和端盖601组成,其中套筒本体具有敞口,所述套筒本体的敞口处与所述端盖601对接,从而使得内部形成管径处处相等或者管径不全相等的套筒腔203。当管径一定时,所述动子4在高频往复振荡,带动液体获能波动,在套筒腔203中波动稳定,吸排液的量可以得到保证;而当形成的管径不全相等时,即所述端盖601部分的管径较大,能够在初始储存更多的液体。但是,液体获能波动时,到达所述端盖601处压强减小,导致打开排液管204中的单向阀206的能量较小,排液量减小,进而所述套筒202中形成的压力差较小,导致吸液量减小。优选的,所述套筒本体与端盖601形成的套筒腔203的管径处处相等。
其中端盖601与套筒本体2固定连接,固定方式可以是螺栓连接、粘接或者焊接。优选的,所述端盖601与套筒本体之间采用螺栓固定,便于拆卸。
进一步地,所述套筒本体和端盖601的外周壁上固定套设有翻边201,从而给所述套筒本体与端盖601通过螺栓固定时提供安装部位。且两个翻边201之间设置有密封圈,保证套筒本体和端盖601在连接处的密封性能。
本发明还提供一种具有上述任一所述的洗涤设备自动投液装置的洗涤设备。具体使用时,其中该自动投液装置应用于洗涤装置中,具体的可以是洗衣机、洗碗机或者洗烘一体机等等设备。以洗衣机为例,该自动投液装置的吸液管603与洗涤剂储液盒相连,所述排液管204可以直接与洗衣机的内筒连通,在排液管204投液过程中可以与进水管排入的水混合一同投入洗衣机的内筒中。
在洗衣过程中,通过上述的线圈501给所述动子4提供电磁力进行驱动,并通过弹性元件3进行复位。不断往复上述振荡动作,从而使得所述套筒202中的液体获能被振荡起来,则所述套筒202中的液体波动位移。从而在通过所述排液管204向洗衣机内部投液的同时,所述套筒202内部产生压强差使得吸液管603的单向阀206打开进行吸液,则可以保证连续不断向洗衣机内筒中投入所需的液体,操作简单、投液精准。
实施例十七
如图19至图25所示,本发明提出了一种洗涤设备自动投液装置,用于实现对洗涤液的进液、出液,对洗涤液进液是指,使洗衣机中的多种洗涤液进入到洗涤设备自动投液装置中,对洗涤液出液是指,将洗涤设备自动投液装置中的洗涤液投出至洗衣机。本发明的洗涤设备自动投液装置包括壳体2,壳体2内设有套筒202,套筒202具有套筒腔203,本发明对洗涤液的进液、出液包括,使洗涤液进入套筒腔203,实现对洗涤液的进液,使洗涤液由套筒腔203排出至洗衣机内桶,实现对洗涤液的出液,对洗涤液的进液、出液,同时进行。
套筒腔203呈长筒状,套筒腔203的外周设有线圈501,套筒腔203内设有设有动子4和弹性元件3,套筒腔203的两端分别连接有吸液管603和排液管204。吸液管603和排液管204分别位于动子4的两侧,吸液管603连接洗衣机的洗涤液存放盒/存放腔,排液管204连接洗衣机的洗涤筒。洗涤液存放盒/存放腔中的洗涤液,由吸液管603进入到套筒腔203中,由排液管204排出套筒腔203。
壳体2、套筒202分别具有敞口,且壳体2与套筒202的敞口同侧设置,壳体2的敞口处安装有用于封闭该敞口的端盖601,端盖601与壳体2固定连接,端盖601分别将壳体2和的套筒202的敞口封闭,使套筒202的内部形成套筒腔203,使壳体2的内部形成安装腔205。吸液管603和排液管204分别设置在端盖601上和壳体2上。
优选的,壳体2的敞口处设还有翻边201,端盖601与翻边201贴合,并固定安装在翻边201上。线圈501设置在安装腔205内,安装腔205内设有安装支架,线圈501固定在安装支架上。
本发明对洗涤液进液、出液的原理为:
通过动子4在套筒腔203中往复振动,带动套筒腔203中的洗涤液波动,洗涤液波动具有一定的振幅,可使得套筒腔203内的洗涤液,获得沿套筒腔203轴向的振幅,使洗涤液沿套筒腔203轴向移动,并通过排液管204排出套筒腔203,实现对洗涤液的出液;
如图19所示,排液管204和吸液管603内均设有单向导通结构,通过该单向导通结构,洗涤液通过吸液管603单向进入套筒腔203,套筒腔203中的洗涤液通过排液管204单向排出,单向导通结构包括单向阀206、具有单向导通功能的膜片、瓣膜等,结构简单,导通效果好。当然,为了实现吸液管603和排液管204的开通/断开还可以在液管内设置其他控制部件,例如:控制阀、其他单向阀等等的结构。
为了节约成本,还可以,如图22和图23所示,仅在吸液管603、或排液管204内设有单向导通结构,同样可以实现将洗涤液等自吸液管导流进套筒腔203、受动子4往复振动而驱动流向排液管204的使用目的。
由于洗涤液仅能由吸液管603单向进入套筒腔203,以及由排液管204单向排出套筒腔203,在动子4的不断振动下,波动的洗涤液不断由排液管204排出套筒腔203,由于洗涤液具有一定的黏性,由排液管204排出套筒腔203的洗涤液,会拉动套筒腔203中的洗涤液不断向排液管204方向移动,以及,洗涤液向排液管204方向移动的过程中,会拉动吸液管603中的洗涤液,不断进入到套筒腔203中,构成循环,使得套筒腔203中不断地有洗涤液进入,以及不断地有洗涤液排出套筒腔203,由此实现对洗涤液的进液、出液。
优选的,可使洗涤液依靠自身的重力通过吸液管603进入到套筒腔203中,使得进入套筒腔203中的洗涤液具有一定的压力,并且,控制该压力,使压力不足以打开排液管204内 的单向阀206,需依靠动子4振动,带动洗涤液波动,在洗涤液的波动和压力共同作用下,将排液管204内的单向阀206打开,实现对洗涤液的出液。
对于套筒腔203中的洗涤液的压力,还可以通过设置加压装置,控制套筒腔203中洗涤液,使其具有适当的压力,通过对套筒腔203中洗涤液施加压力,一方面可以降低通过洗涤液波动打开单向阀206所需压力,降低通过动子4振动打开单向阀206的难度,无需动子4以较大的振幅振动,以提升液体波动的压力,可以在较小振幅振动的情况下将单向阀206打开,节约电能,节约成本,另一方面,可使动子4高频振动,带动洗涤液波动,使洗涤液以较小的波动振幅打开单向阀206,洗涤液出液更加平稳,洗涤液以高频波动出液,每次少量出液,通过高频、少量出液一方面弥补了单次出液量小的问题,另一方面可以使洗涤液的投放更加精细,可控性更好,投放量更准确。
本发明动子4在套筒腔203中往复振动的原理为:
动子4至少部分由导磁物质构成,可设置为金属棒等,以使得动子4受线圈产生的磁场作用而产生磁驱力;当然,为了减小动子4的质量,可以将动子4设置为空心、局部镂空等结构。动子4在线圈501的磁驱力和弹性元件3的弹力作用下,沿套筒腔203的轴向往复振动。
本发明通过向线圈501通入直流电或交流电,并配合弹性元件3驱动动子4在套筒腔203内做往复振动,下面通过具体的实施例分别对线圈501通入直流电和交流电进行说明。
本发明实施例中,洗涤设备自动投液装置的一种实施方式如下:
向线圈501通入直流电,线圈501沿动子4的周向环绕动子4设置,线圈501构成闭合回路。线圈501通电后产生磁场,磁场对动子4产生吸引力,该吸引力作为线圈501对动子4的磁驱力。
磁驱力驱动动子4朝向弹性元件3移动,并挤压弹性元件3。通过控制电流的大小,可间接控制磁驱力的大小,可增加或减小线圈501的磁驱力,通过控制电流的通断,可使线圈501产生对动子4的磁驱力,或者使磁驱力消失。弹性元件3受到挤压后,发生形变,当弹性元件3受压到达极限位置时,反弹力最大,弹性元件3不可再被压缩,动子4停止移动,动子4受力平衡,此时,控制线圈501断电,或降低线圈501的磁驱力,打破动子4的受力平衡,使弹性元件3反弹动子4,使动子4沿背离弹性元件3反向移动,动子4发生反向移动后,控制线圈501通电,或增加线圈501的磁驱力,使动子4受到线圈501的磁驱力,正向移动,如此循环,使动子4不断受到磁驱力和反弹力,沿着套筒腔203的轴向往复振动。
本发明实施例中,洗涤设备自动投液装置的还一种实施方式如下:
向线圈501通入交流电,线圈501沿动子4的周向环绕动子4设置,线圈501构成闭合回路,由于交流电不断变化,导致线圈501的磁驱力不断变化,通过交流电对动子4驱动的原理为:
在交流电的一个周期内,具有两个电流/电压的峰值,处于电流/电压峰值时,线圈501对动子4的磁驱力最大。
在第一个四分之一周期内,电流由零逐渐达到峰值,磁驱力由零逐渐增大到最大值,在磁驱力不断增大的过程中,动子4对弹性元件3的压缩量逐渐增大,即磁驱力驱动动子4不断挤压弹性元件3,朝向弹性元件3移动,实现了对动子4的正向驱动;
在第二个四分之一周期内,电流由最大值逐渐降低到零,磁驱力不断减小,动子4在弹性元件3的反弹力作用下,背离弹性元件3移动,通过反弹力驱动动子4,实现了对动子4的反向驱动。
动子4同时受到磁驱力和反弹力,在第一个四分之一周期内,磁驱力与反弹力的合力驱动动子4正向移动,在第二个四分之一周期内,磁驱力与反弹力的合力驱动动子4反向移动。
以上所述是通过交流电对动子4驱动依据的原理,在实际情况中,由于动子4往复运动, 具有正向或反向的速度;
在第一个四分之一周期内,磁驱力不断增大,动子4不断正向移动,并具有正向的速度,当磁驱力达到峰值并即将减小时,即第一个四分之一周期结束的时刻,由于动子4具有正向的速度,动子4继续正向移动,由第一个四分之一周期结束时始,至动子4正向移动的速度为零时止,这段时间可称为“制动时间”制动时间,占用第二个四分之一周期的时间,即在第二个四分之一周期开始的一段时间,动子4并非沿反向移动,而是继续沿正向移动,直至速度降低为零;
而第二个四分之一周期的作用是,通过弹性元件3驱动动子4反向移动,为使动子4获得较好的往复振动效果,需要适当控制“制动时间”,至少要使“制动时间”小于一个四分之一的周期;避免整个周期内动子4持续正向移动,无法反向移动,导致动子只能单向移动,无法往复移动,无法通过往复振动进液、出液。
通过调整弹簧的弹性系数、磁驱力大小、动子4的质量、往复振动的位移长度,即可控制“制动时间”为合适的时长。
通过合适的“制动时间”,可以控制每一个四分之一周期内动子4沿正向移动的时间或沿反向移动的时间,即控制动子4在每一个二分之一周期内完成一次往复振动。
动子4在每一个二分之一周期内完成一次往复振动,在整个周期内完成两次往复振动。
优选的,通过线圈501的磁驱力和弹性元件3的反弹力,使动子4活动设置在套筒腔203的中部,使动子4在套筒腔203的中部区域内振动,使套筒腔203内动子4的两侧的洗涤液均受到动子4的振动作用,使动子4的振动效果最大化,利于洗涤液的进液、出液。
如图19至图25所示,本发明实施例中,动子4呈柱状,动子4的外径小于套筒腔203的内径,且动子4的长度小于套筒腔203的长度,动子4与套筒腔203同轴设置,动子4的外周与套筒腔203的内壁间隔设置,动子4的外周与套筒腔203的内壁之间形成可供洗涤液通过的导流通道2031。
动子4沿套筒腔203的轴向,将套筒腔203分隔成进液腔207和出液腔208,进液腔207和出液腔208分别位于动子4的两侧,导流通道2031连通进液腔207和出液腔208。进液腔207连接有吸液管603,出液腔208连接有排液管204,洗涤液由吸液管603进入进液腔207,由进液腔207通过导流通道2031进入出液腔208,通过排液管204排出出液腔208,在套筒腔203内,洗涤液沿套筒腔203的轴向,在动子4的振动作用下,由吸液管603单向流动至排液管204。
如图19所示,弹性元件,3包括支撑弹簧301和反弹弹簧302,支撑弹簧301设置在出液腔208和/或进液腔207中,支撑弹簧301的两端分别连接动子4和套筒腔203的内壁,支撑弹簧301对动子4起到限位、支撑的作用,通过支撑弹簧301,一方面,可以限定动子4在套筒腔203中的所在区域,使动子4处于套筒腔203的中部区域,另一方面,可对动子4提供一定的竖向支撑力,即向动子4提供沿套筒腔203径向的支撑力,使动子4悬浮在套筒腔203中,动子4的外周与套筒腔203的内壁不发生接触,使动子4的外周与套筒腔203的内壁相互间隔,使二者之间形成的导流通道2031呈围绕动子4外周的环状。
通过环状的导流通道2031,可以使进液腔207中的洗涤液,通过导流通道2031沿动子4的外周均匀进入出液腔208,洗涤液流动更加均匀,导致对洗涤液的进液、出液更加平稳,更加可控,出液效果好。
如图19所示,反弹弹簧302设置在出液腔208中,反弹弹簧302的一端与套筒腔203的内壁相连、另一端朝向动子4的对应端部悬空设置,使得动子4受磁驱力作用而移动时、与反弹弹簧302的悬空端接触,而被触发反弹作用;反弹弹簧302的劲度系数大于支撑弹簧301,用于对动子4施加反弹力,动子4靠近排液管204设置,即使动子4在靠近排液管204位置处振动,可以进一步提升排液管204的出液速度、出液量。
如图19和图20所示,为了提升动子4在套筒腔203内的平衡性,可以在出液腔208和进液腔207内分别设置支撑弹簧301,出液腔208和进液腔207内所设的支撑弹簧301分别将动子4的两端与出液腔208或进液腔207的内壁相连,以实现对动子4两端分别进行轴向限位支撑的效果,进而保证动子4在振动过程中不会产生偏移。
如图21所示,还有,为了节约成本,可以仅在出液腔208、或进液腔207内设置支撑弹簧301,依然可以保证动子4在套筒腔203内收磁驱力和弹力作用而振动的效果。
如图20所示,当然,为了节约成本,还可以将反弹弹簧302取消,而仅利用支撑弹簧301的弹性作用力为动子4提供复位弹力,同样可以实现驱动动子4在腔室内振动的效果。
如图24和图25所示,为进一步提升出液速度、出液量,提高出液效率,动子4上设有连通进液腔207和出液腔208的液体导流通道2031。
液体导流通道2031设置在动子4的内部、和/或动子4的外周面上,液体导流通道沿动子4轴向贯穿动子4,液体导流通道2031的形状包括直线状、弯曲状和螺旋状,液体导流通道2031设置一条或多条。
套筒腔203中的洗涤液,穿过液体导流通道2031,由进液腔207流动至出液腔208。优选的,液体导流通道2031的横截面积沿进液腔207至出液腔208的方向逐渐减小,或者,液体导流通道2031上设有单向导通结构,并且单向导通结构的导通方向为由进液腔207指向出液腔208。
通过液体导流通道2031,可以使洗涤液在动子4往复振动的过程中,不断地由进液腔207进入到出液腔208中,促进出液,通过液体导流通道2031上的单向导通结构,可以使液体导流通道2031中的洗涤液,由进液腔207至出液腔208单向流动,可增加出液腔208的液体压力,进而促进出液。通过改变液体导流通道2031的横截面积,可利于向洗涤液由进液腔207向出液腔208流动,增加出液腔208的液体,同样,具有促进排液的效果。
如图24所示,液体导流通道2031上所设的单向导通结构可以为单向阀206;也可以,如图25所示,液体导流通道2031上所设的单向导通结构为,液体导流通道2031为自与出液腔208相连通一端向与进液腔207相连通一端逐渐收窄孔径的锥形管;当然,还可以为其他的现有技术中的任一可实现单向导通的连通结构。
优选的,出液腔208的容积小于进液腔207的容积,由于动子4靠近排液管204设置,导致出液腔208的容积较小,通过缩小出液腔208的容积,可以使出液腔208内各处的洗涤液更加靠近动子4,可以使出液腔208内各处的洗涤液获得较大的振幅,利于出液。
本发明中,当动子4靠近进液腔207设置,动子4的端部突出于线圈501的端部设置时,动子4的中心向右侧偏离线圈501的中心偏心设置,出液腔208的容积大于进液腔207的容积,使动子4向左有更大的行程。
优选的,出液腔208具有变形部,该变形部靠近排液管204设置,并且,变形部沿指向排液管204的方向横截面积逐渐变小。通过变形部使出液腔208沿着指向排液管204的方向,横截面积逐渐减小,可进一步提升,出液腔208的出液压力,利于出液。
优选的,动子4具有与套筒腔203轴线垂直的前端面、后端面,前端面位于进液腔207中,并正对吸液管603,后端面位于出液腔208中,并正对排液管204。动子4的前端面上设有呈圆弧形的凸部,凸部朝向动子4的外部凸出,后端面上设置有呈圆弧形的凹部,凹部朝向动子4的内部凹陷。
动子4在振动过程中,动子4前端面上的凸部可起到导流的作用,进液腔207中的洗涤液沿着凸部表面流向出液腔208,动子4后端面上的凹部对洗涤液有一定的汇聚效果,通过该凹部可以对出液腔208内的洗涤液具有较好的挤压出液效果,促进出液。
本发明,通过线圈501、弹性元件3使动子4在套筒腔203中往复振动,通过动子4带动洗涤液波动,实现进液、出液。区别于现有技术中通过活塞、泵结构实现进液、出液,本 发明,动子4的外周与套筒腔203的内壁之间形成可供洗涤液通过的导流通道,一方面可使洗涤液沿套筒腔203的周向移动,实现进液、出液,另一方面,导流通道使动子4与套筒腔203的内壁相隔离,避免动子4动作时,与套筒腔203的内壁发生摩擦,避免动子4磨损,不会因为动子4磨损影响进液、出液效果,有效提高了使用寿命,适于长时间使用。
动子通过弹性元件3和线圈501实现往复振动,结构简单,无需设置活塞等气密性结构,有效降低了成本,经济性好。
本发明实施例中还介绍了一种洗涤装置,其包括,筒,用于对内部的衣物进行洗涤处理;储液盒,内部盛放有洗涤剂、或者手动注入有洗涤剂;还安装有上述的洗涤设备自动投液装置,洗涤设备自动投液装置的进液管与储液盒相连通,出液管与筒相连通,以将储液盒内的洗涤剂抽送至筒内,实现对洗涤液的自动投放。同时,所述的洗涤液可以为现有的任一可对衣物进行处理的液体种类,例如:洗涤剂、漂白剂、消毒剂、柔顺剂、添香剂等等。
以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专利的技术人员在不脱离本发明技术方案范围内,当可利用上述提示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明方案的范围内。

Claims (42)

  1. 一种洗涤设备自动投液装置,包括驱动装置(5)和吸液装置(6),吸液装置(6)包括容纳液体的吸液腔(602),其特征在于,还包括:膜片(1),膜片(1)构成吸液腔(602)的部分侧壁,膜片(1)具有弹力并且能够通过弹性变形改变吸液腔(602)内部与外部之间的气压差,使所述吸液装置(6)进液、排液;动子(4),用于对膜片(1)施力使膜片(1)产生弹性变形,动子(4)与膜片(1)不连接。
  2. 根据权利要求1所述的一种洗涤设备自动投液装置,其特征在于,所述动子(4)初始位置远离所述膜片(1),受所述驱动装置(5)驱动向所述膜片(1)运动,撞击所述膜片(1)使其发生弹性变形,所述膜片(1)发生弹性变形后具有回弹力可将所述动子(4)弹回初始位置。
  3. 根据权利要求1所述的一种洗涤设备自动投液装置,其特征在于,还包括设置在动子(4)上远离膜片(1)侧的弹性元件(3),所述动子(4)在初始位置时与所述膜片(1)接触,所述动子(4)被所述驱动装置(5)驱动远离所述膜片(1)并压缩弹性元件(3),所述弹性元件(3)的弹性势能将所述动子(4)通过回弹力撞击所述膜片(1)。
  4. 根据权利要求3所述的一种洗涤设备自动投液装置,其特征在于,所述弹性元件(3)被压缩直至所述动子(4)速度降为零时,所述弹性元件(3)反弹,所述动子(4)受所述弹性元件(3)驱动加速向所述膜片(1)运动,并撞击所述膜片(1)使其发生弹性变形。
  5. 根据权利要求4所述的一种洗涤设备自动投液装置,其特征在于,所述的弹性元件(3)一端被固定在驱动装置(5)上,另一端与所述动子(4)连接。
  6. 根据权利要求1-5任一所述的一种洗涤设备自动投液装置,其特征在于,所述动子在所述驱动装置(5)的驱动力、膜片(1)和/或弹性元件(3)的回弹力的作用下连续往复运动,使膜片(1)产生弹性变形。
  7. 根据权利要求1-3任一所述的一种洗涤设备自动投液装置,其特征在于,所述驱动装置(5)包括可产生磁场的线圈(501),所述动子(4)的形心总是偏离线圈(501)的形心设置,所述线圈(501)的磁场对所述动子(4)产生磁力,磁力的方向朝着线圈(501)的形心并驱动所述动子(4)运动。
  8. 根据权利要求7所述的一种洗涤设备自动投液装置,其特征在于,所述线圈(501)中通交流电,其产生的磁场是变化的磁场,动子(4)所受磁力的大小跟随磁场强度变化。
  9. 根据权利要求8所述的一种洗涤设备自动投液装置,其特征在于,所述驱动装置(5)包括壳体(2)和套筒(202),所述驱动装置(5)设置在壳体(2)的内部,套筒(202)的轴向中心线与所述线圈(501)的轴向中心线重合设置,所述动子(4)的外形与套筒(202)空腔的形状相同且所述动子(4)可在套筒(202)中滑动。
  10. 一种洗涤设备,其特征在于,具有上述权利要求1-9任一所述的洗涤设备自动投液装置。
  11. 一种用于洗涤设备的自动投液装置,包括壳体(2)和吸液装置(6),所述壳体(2)内设置有驱动装置(5)和套筒(202),所述驱动装置(5)包括线圈(501),线圈(501)绕设于所述套筒(202)的外侧,所述壳体(2)的一端与所述吸液装置(6)连接,其特征在于,还包括活动组件(103);所述活动组件(103)包括动子(4)和膜片(1);所述膜片(1)设置在所述吸液装置(6)内并部分与吸液装置(6)连接;所述动子(4)的一个端部与所述膜片(1)连接;所述驱动装置(5)给予动子(4)提供磁驱力,驱动所述动子(4)在套筒(202)内进行周期性的往复运动,致使所述膜片(1)与动子(4)以相同的频率振荡。
  12. 根据权利要求11所述的一种用于洗涤设备的自动投液装置,其特征在于,所述膜片(1)的周边边缘与吸液装置(6)的腔室壁固定连接;初始位置状态下,所述动子(4)的形心偏离线圈(501)的形心设置,所述膜片(1)无形变;线圈(501)通入交流电后,所述动子(4)受到的磁驱力方向不变总是指向线圈(501)的形心方向但磁驱力的大小周期性的变 化;所述动子(4)在磁驱力的作用下通过拉动和/或推动使所述膜片(1)发生形变进行往复振荡,使洗涤液吸入和排出吸液装置(6)。
  13. 根据权利要求11所述的一种用于洗涤设备的自动投液装置,其特征在于,所述动子(4)与所述膜片(1)两者通过不可拆连接、一体化成型或可拆卸连接的方式连接一体形成活动组件(103),所述动子(4)与膜片(1)连接的一端部分外露于套筒(202);所述套筒(202)远离膜片方向的一端设置有弹性元件(3);所述弹性元件(3)的一端连接在动子(4)不与膜片(1)连接的另一侧端部;所述动子(4)拉动和/或推动使膜片(1)发生形变,膜片(1)变形产生对动子(4)作用的膜片复位力和/或弹性元件(3)变形产生对动子(4)作用的弹簧弹力;所述膜片复位力阻碍或协助磁驱力使动子(4)运动,或者,所述弹簧弹力阻碍或协助磁驱力使动子(4)运动。
  14. 根据权利要求13所述的一种用于洗涤设备的自动投液装置,其特征在于,所述的不可拆连接方式包括:所述动子(4)的一端部与所述膜片(1)的中心部位粘接连接,形成活动组件(103);或者,所述的一体化成型连接方式包括:所述动子(4)朝向膜片(1)方向的端部设置有伞状或蘑菇形状的嵌入块(401);所述膜片(1)内设有与嵌入块(401)配合的安装固定件;将动子(4)与所述安装固定件配合连接形成的整体放置到模具中,在安装固定件的四周通过一体化注塑成型形成与动子(4)连接的膜片(1);或者,所述的可拆卸连接方式包括:所述动子(4)朝向膜片(1)方向的端部设置有伞状或蘑菇形状的嵌入块(401);所述膜片(1)的中心部位具有一定的厚度;所述膜片(1)内设置有与嵌入块(401)卡接配合的嵌入部(101);所述嵌入块(401)与嵌入部(101)配合卡接,实现动子(4)与膜片(1)的连接。
  15. 根据权利要求13所述的一种用于洗涤设备的自动投液装置,其特征在于,所述动子(4)还包括哑铃形状的传导部(403);所述传导部(403)的一端连接运动部(402),另一端上设置有嵌入块(401);所述嵌入块(401)与嵌入部(101)配合卡接,实现动子(4)与膜片(1)的连接。
  16. 根据权利要求13所述的一种用于洗涤设备的自动投液装置,其特征在于,从初始位置向朝向线圈形心位置移动时,磁驱力克服膜片复位力和/或弹簧弹力带动动子(4)向朝向线圈形心位置方向先加速后减速移动,动子(4)速度为零的位置为动子(4)的第一极限位置;从第一极限位置向远离线圈形心位置移动时,膜片复位力和/或弹簧弹力克服磁驱力带动动子(4)向远离线圈形心位置方向加速移动,移动过程中经过初始位置开始减速移动,此时磁驱力、膜片复位力和弹簧弹力均阻碍动子(4)移动,动子(4)速度为零的位置为动子(4)的第二极限位置;从第二极限位置向初始位置移动时,膜片复位力方向朝向靠近线圈形心的方向,膜片复位力和/或弹簧弹力协助磁驱力带动动子(4)向初始位置移动;所述第一极限位置与第二极限位置之间的距离,是动子(4)的最大振幅。
  17. 根据权利要求16所述的一种用于洗涤设备的自动投液装置,其特征在于,动子(4)从初始状态位置向线圈形心位置移动时,所述膜片复位力和/或弹簧弹力阻碍磁驱力带动动子(4)运动;动子(4)从右极限位置向初始状态位置移动时,述膜片复位力和/或弹簧弹力协助磁驱力带动动子(4)运动。
  18. 根据权利要求17所述的一种用于洗涤设备的自动投液装置,其特征在于,所述膜片(1)随动子(4)的往复运动,动子(4)从初始位置向第一极限位置和从初始位置向第二极限位置的过程中膜片变形的程度不同。
  19. 根据权利要求18所述的一种用于洗涤设备的自动投液装置,其特征在于,所述膜片(1)在动子(4)从初始位置向第一极限位置过程中的变形程度大于在动子(4)从初始位置向第二极限位置过程中的变形程度。
  20. 一种洗涤设备,其特征在于,采用权利要求11-19任意一项所述的一种用于洗涤设备的自动投液装置。
  21. 一种洗涤设备自动投液装置,其特征在于:包括,套筒(202),所述套筒(202)一端封闭,另一个端部具有吸液管(603)和排液管(204),所述套筒(202)的另一端部上的吸液管(603)和排液管(204)交替打开;动子(4),可移动地设置于所述套筒(202)中;驱动装置(5),设置于所述套筒(202)上,用于驱动所述动子(4)在所述套筒(202)中移动;所述动子(4)在所述套筒(202)内往复振荡,使所述套筒(202)内的液体产生波动,波动的液体沿着所述套筒(202)轴向流动并周期性的从所述排液管(204)流出。
  22. 根据权利要求21所述的一种洗涤设备自动投液装置,其特征在于:所述驱动装置(5)驱动所述动子(4)的方式可以是电动机械式、气动式或者电磁式中的其中一种,在所述驱动装置(5)的驱动作用下,所述动子(4)在所述套筒(202)中连续往复振荡。
  23. 根据权利要求22所述的一种洗涤设备自动投液装置,其特征在于:采用电磁式的方式时,所述驱动装置(5)包括,线圈(501),所述线圈(501)绕设于所述套筒(202)的外侧;弹性元件(3),轴向设置于所述套筒(202)内壁上,用于提供所述动子(4)向初始位置移动的恢复力。
  24. 根据权利要求23所述的一种洗涤设备自动投液装置,其特征在于:初始状态下,所述动子(4)的中心偏离所述线圈(501)的中心设置。
  25. 根据权利要求21所述的一种洗涤设备自动投液装置,其特征在于:所述动子(4)与所述吸液管(603)相靠近的端面与所述套筒(202)的内端面之间存在间隙,所述间隙大于等于所述动子(4)朝向所述吸液管(603)振荡的最大振幅。
  26. 根据权利要求23所述的一种洗涤设备自动投液装置,其特征在于:所述线圈(501)的轴线与所述动子(4)的轴线相平行,所述动子(4)的外径小于所述套筒(202)的内径大小,所述动子(4)与所述线圈(501)两者中心的连线的水平距离大于等于所述动子(4)朝向所述线圈(501)的中心振荡的最大振幅。
  27. 根据权利要求21所述的一种洗涤设备自动投液装置,其特征在于:所述动子(4)沿着所述套筒(202)轴向方向上的投影将所述排液管(204)的管口全部遮挡。
  28. 根据权利要求21所述的一种洗涤设备自动投液装置,其特征在于:所述动子(4)的两端分别设置有凸台。
  29. 根据权利要求23所述的一种洗涤设备自动投液装置,其特征在于:所述弹性元件(3)包括支撑弹簧(301),所述支撑弹簧(301)的一端与所述套筒(202)的内壁连接,另一端与所述动子(4)的端部连接,所述支撑弹簧(301)的最大压缩量大于等于所述动子(4)振荡的最大振幅。
  30. 根据权利要求29所述的一种洗涤设备自动投液装置,其特征在于:所述弹性元件(3)还包括反弹弹簧(302),所述反弹弹簧(302)的一端与所述套筒(202)的内壁连接,所述支撑弹簧(301)套设在所述反弹弹簧(302)的外部,所述反弹弹簧(302)的弹性系数大于所述支撑弹簧(301)的弹性系数,所述反弹弹簧(302)的最大压缩量大于等于所述动子(4)振荡的最大振幅。
  31. 一种洗涤设备,其特征在于:包括如权利要求21-30任一所述的洗涤设备自动投液装置。
  32. 一种洗涤设备自动投液装置,包括壳体(2),壳体(2)内设有套筒腔(203),其特征在于,所述套筒腔(203)外设有线圈(501),所述套筒腔(203)设置有吸液管(603)和排液管(204)、套筒腔(203)内设有动子(4)和弹性元件(3);动子(4)受到线圈(501)的磁驱力以及弹性元件(3)的回弹力作用下,在所述套筒腔(203)内往复振荡,使进入所述套筒腔(203)中的洗涤液波动,波动的洗涤液沿着套筒腔(203)的轴向流动至排液管(204)流出。
  33. 根据权利要求32所述的一种洗涤设备自动投液装置,其特征在于,所述套筒腔(203) 的两端分别连接吸液管(603)和排液管(204);所述线圈(501)设置在动子(4)的外周,所述线圈(501)轴向驱动动子(4)在所述套筒腔(203)内向弹性元件(3)移动,并挤压弹性元件(3);弹性元件(3)设置在动子(4)的一侧;弹性元件(3)反弹动子(4),使动子(4)沿所述套筒腔(203)的轴向,背离弹性元件(3)移动;所述动子(4)的往复移动使来自吸液管(603)的洗涤液流动至排液管(204);优选的,吸液管(603)和排液管(204)可交替的开通/闭合;或者,吸液管(603)和排液管(204)可同时开通/闭合。
  34. 根据权利要求33所述的一种洗涤设备自动投液装置,其特征在于,动子(4)呈柱状,动子(4)的外径小于所述套筒腔(203)的内径;动子(4)与所述套筒腔(203)之间形成导流通道;动子(4)的长度小于所述套筒腔(203)的长度;动子(4)将所述套筒腔(203)分隔成进液腔(207)和出液腔(208);吸液管(603)和排液管(204)分别与进液腔(207)和出液腔(208)连接;所述动子(4)以一定频率往复振动,改变所述套筒腔(203)进液腔(207)和出液腔(208)的容积和压力,使洗涤液通过所述导流通道,由进液腔(207)向出液腔(208)流动。
  35. 根据权利要求34所述的一种洗涤设备自动投液装置,其特征在于,所述弹性元件(3)轴向设置在出液腔(208)中,一端与套筒腔(203)内壁连接,另一端与动子(4)连接,使动子(4)的外周面与所述套筒腔(203)的内壁间隔设置;优选的,所述弹性元件(3)为反弹弹簧。
  36. 根据权利要求35所述的一种洗涤设备自动投液装置,其特征在于,弹性元件(3)还包括设置在进液腔(207)中的支撑弹簧(301);支撑弹簧(301)分别连接动子(4)和所述套筒腔(203)的另一侧内壁,使动子(4)的外周面与所述套筒腔(203)的内壁间隔设置,使所述导流通道呈围绕动子(4)外周的环状;支撑弹簧(301)的劲度系数小于反弹弹簧。
  37. 根据权利要求34所述的一种洗涤设备自动投液装置,其特征在于,所述弹性元件(3)包括套设在出液腔(208)中的支撑弹簧(301)和反弹弹簧;支撑弹簧(301)的两端分别连接动子(4)的端部和所述套筒腔(203)的内壁,反弹弹簧的一端连接所述套筒腔(203)、另一端朝向动子(4)的端部悬空设置;支撑弹簧(301)的劲度系数小于反弹弹簧,反弹弹簧短于支撑弹簧。
  38. 根据权利要求32-37任一项所述的一种洗涤设备自动投液装置,其特征在于,所述动子(4)不受磁驱力作用时位于初始位置;在动子(4)位于初始位置时,动子(4)的中心偏离套筒腔(203)的中心设置;优选的,在动子(4)位于初始位置时,所述出液腔(208)的容积大于进液腔(207)的容积;所述线圈(501)中心与所述动子(4)的中心偏心设置。
  39. 根据权利要求32-37任一项所述的一种洗涤设备自动投液装置,其特征在于,所述动子(4)靠近进液腔(207)的一端突出于线圈(501)的端部设置。
  40. 根据权利要求32-37任一项所述的一种洗涤设备自动投液装置,其特征在于,动子(4)上设有连通进液腔(207)和出液腔(208)的液体导流通道;所述液体导流通道的横截面积沿进液腔(207)至出液腔(208)的方向逐渐减小;和/或,所述液体导流通道上设有单向导通结构,单向导通结构的导通方向为由进液腔(207)指向出液腔(208)。
  41. 根据权利要求40所述的一种洗涤设备自动投液装置,其特征在于,所述液体导流通道设置在动子(4)的内部、和/或动子(4)的外周;所述液体导流通道沿动子(4)轴向贯穿动子(4);优选的,所述液体导流通道的形状包括直线状、弯曲状或螺旋状;进一步优选的,所述液体导流通道设置一条或多条。
  42. 一种洗涤装置,其特征在于:安装有上述权利要求32至41任一所述的洗涤设备自动投液装置。
PCT/CN2023/101192 2022-06-30 2023-06-20 一种洗涤设备自动投液装置及洗涤设备 WO2024001854A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202210770050.2 2022-06-30
CN202210772467.2 2022-06-30
CN202210772467.2A CN117364431A (zh) 2022-06-30 2022-06-30 一种洗涤设备自动投液装置及洗涤设备
CN202210771206.9A CN117364429A (zh) 2022-06-30 2022-06-30 一种洗涤液投放器及洗涤装置
CN202210770050.2A CN117364423A (zh) 2022-06-30 2022-06-30 一种用于洗涤设备的自动投液装置及洗涤设备
CN202210771206.9 2022-06-30
CN202210770803.XA CN117364426A (zh) 2022-06-30 2022-06-30 一种洗涤设备自动投液装置及洗涤设备
CN202210770803.X 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024001854A1 true WO2024001854A1 (zh) 2024-01-04

Family

ID=89383254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101192 WO2024001854A1 (zh) 2022-06-30 2023-06-20 一种洗涤设备自动投液装置及洗涤设备

Country Status (1)

Country Link
WO (1) WO2024001854A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030033373A (ko) * 2001-10-22 2003-05-01 엘지전자 주식회사 세탁기의 액체세제 자동 투입장치
CN205152630U (zh) * 2015-11-10 2016-04-13 南京乐金熊猫电器有限公司 可自动投入液态洗涤剂的装置
CN110004665A (zh) * 2018-01-04 2019-07-12 青岛海尔滚筒洗衣机有限公司 一种衣物处理剂投放结构及洗衣机
CN111387902A (zh) * 2020-04-14 2020-07-10 浙江宏昌电器科技股份有限公司 一种液态洗涤剂自动投放装置
CN218345718U (zh) * 2022-06-30 2023-01-20 青岛海尔洗衣机有限公司 一种洗涤设备的自动投放装置及洗涤设备
CN218492035U (zh) * 2022-06-30 2023-02-17 青岛海尔洗衣机有限公司 一种洗涤设备的投放室、液体投放装置及洗涤设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030033373A (ko) * 2001-10-22 2003-05-01 엘지전자 주식회사 세탁기의 액체세제 자동 투입장치
CN205152630U (zh) * 2015-11-10 2016-04-13 南京乐金熊猫电器有限公司 可自动投入液态洗涤剂的装置
CN110004665A (zh) * 2018-01-04 2019-07-12 青岛海尔滚筒洗衣机有限公司 一种衣物处理剂投放结构及洗衣机
CN111387902A (zh) * 2020-04-14 2020-07-10 浙江宏昌电器科技股份有限公司 一种液态洗涤剂自动投放装置
CN218345718U (zh) * 2022-06-30 2023-01-20 青岛海尔洗衣机有限公司 一种洗涤设备的自动投放装置及洗涤设备
CN218492035U (zh) * 2022-06-30 2023-02-17 青岛海尔洗衣机有限公司 一种洗涤设备的投放室、液体投放装置及洗涤设备

Similar Documents

Publication Publication Date Title
CN100432430C (zh) 往复式压缩机
CN218492035U (zh) 一种洗涤设备的投放室、液体投放装置及洗涤设备
CN106350966B (zh) 一种自动投放装置及洗衣机
CN218345718U (zh) 一种洗涤设备的自动投放装置及洗涤设备
CN206785581U (zh) 一种单缸双作用磁力泵
CN218115897U (zh) 一种液体投放装置的投放室、投放装置及洗涤设备
WO2017140180A1 (zh) 隔膜泵及电动喷雾器
WO2024001854A1 (zh) 一种洗涤设备自动投液装置及洗涤设备
US11971023B2 (en) Miniature electromagnetic water pump
WO2024001858A1 (zh) 一种洗涤设备的自动投放装置及洗涤设备
WO2024001855A1 (zh) 一种洗涤设备的自动投放装置及洗涤设备
US3075471A (en) Pump and operating means
CN216975182U (zh) 双谐振柱塞泵
WO2024001857A1 (zh) 一种洗涤设备的自动投放装置及洗涤设备
CN111980889B (zh) 一种半柔性一体式主动阀压电泵
CN117364423A (zh) 一种用于洗涤设备的自动投液装置及洗涤设备
CN117364429A (zh) 一种洗涤液投放器及洗涤装置
CN117364426A (zh) 一种洗涤设备自动投液装置及洗涤设备
CN117364425A (zh) 一种洗涤设备的自动投放装置及洗涤设备
CN109578252A (zh) 一种圆形压电泵
JPH10184553A (ja) 電磁ポンプ
CN117364418A (zh) 一种洗涤设备的添加剂投放器的驱动装置及洗涤设备
CN210531083U (zh) 一种防堵电磁泵
CN117364431A (zh) 一种洗涤设备自动投液装置及洗涤设备
CN117364432A (zh) 一种洗涤设备的自动投放装置及洗涤设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830034

Country of ref document: EP

Kind code of ref document: A1