WO2024001740A1 - 高温气冷堆燃料元件输送***及高温气冷堆*** - Google Patents

高温气冷堆燃料元件输送***及高温气冷堆*** Download PDF

Info

Publication number
WO2024001740A1
WO2024001740A1 PCT/CN2023/099665 CN2023099665W WO2024001740A1 WO 2024001740 A1 WO2024001740 A1 WO 2024001740A1 CN 2023099665 W CN2023099665 W CN 2023099665W WO 2024001740 A1 WO2024001740 A1 WO 2024001740A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature gas
cooled reactor
lifting
cooled
fuel element
Prior art date
Application number
PCT/CN2023/099665
Other languages
English (en)
French (fr)
Inventor
许杰
雷伟俊
张振鲁
孟东旺
汪景新
肖三平
王翥
Original Assignee
华能核能技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华能核能技术研究院有限公司 filed Critical 华能核能技术研究院有限公司
Publication of WO2024001740A1 publication Critical patent/WO2024001740A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/20Arrangements for introducing objects into the pressure vessel; Arrangements for handling objects within the pressure vessel; Arrangements for removing objects from the pressure vessel
    • G21C19/202Arrangements for handling ball-form, i.e. pebble fuel
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/02Details of handling arrangements
    • G21C19/12Arrangements for exerting direct hydraulic or pneumatic force on fuel element or on control element
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/34Apparatus or processes for dismantling nuclear fuel, e.g. before reprocessing ; Apparatus or processes for dismantling strings of spent fuel elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention belongs to the field of reactor technology, and specifically relates to a high-temperature gas-cooled reactor fuel element transportation system and a high-temperature gas-cooled reactor system.
  • High-temperature gas-cooled reactors usually use pebble-bed gas-cooled reactor technology.
  • the fuel elements adopt spherical geometric elements. During normal operation, they undergo continuous circulation and loading and unloading processes. After the fuel elements come out of the reactor, they undergo singulation, ball separation and combustion. After a series of processes of consumption measurement, the fuel elements that have not reached the burnup depth requirements are re-transported back to the core and continue to undergo fission reactions to release energy, while the fuel elements that have reached the burnup depth requirements after multiple cycles are removed from the system as spent fuel. The internal discharge is discharged to the spent fuel system. In order to maintain sufficient remaining reactivity in the reactor core, the same number of new fuel elements must be replenished to the reactor core after the spent fuel is discharged to maintain normal power operation of the unit.
  • the fuel elements are discharged from the reactor by their own weight and flow to the lowest point in the system, and then are reloaded into the reactor by pneumatic lifting. New fuel elements and spent fuel elements also rely on pneumatic lifting to enter the reactor and spent fuel system respectively.
  • the pneumatic transportation method has many disadvantages.
  • the pneumatic lifting method has strict restrictions on the transportation speed of spherical components. It cannot be too fast or too slow, and it cannot transport multiple fuel components at the same time, which limits the efficiency of fuel component transportation. and operational flexibility.
  • the length of the ball transmission pipeline required by the pneumatic lifting method is too long. The long-distance movement of the fuel element in the pipeline collides and rubs with the wall surface, which easily produces dust and debris. These dust and debris will affect the stability of the operation of the equipment in the system. nature, causing unplanned system outage.
  • the present invention aims to solve one of the technical problems in the related art, at least to a certain extent.
  • embodiments of the present invention provide a high-temperature gas-cooled reactor fuel element delivery system.
  • the high-temperature gas-cooled reactor fuel element transportation system includes a fuel supply device, an unloading device, a lifting device and a distribution and blocking device.
  • the fuel supply device is located above the high-temperature gas-cooled stack and connected to the upper end of the high-temperature gas-cooled stack;
  • the unloading device is located below the high-temperature gas-cooled pile.
  • the unloading device includes a broken ball separation device.
  • the broken ball separation device has a first inlet, and the first inlet is connected to the high-temperature gas-cooled pile. The lower end is connected, and the broken ball separation device also has a first outlet and a second outlet;
  • the lower end of the lifting device is connected to the first outlet to lift the fuel element to a preset height.
  • the highest lifting point of the lifting device is higher than the upper end of the high-temperature gas-cooled stack, and the lowest lifting point of the lifting device is The point is lower than the lower end of the broken ball separation device;
  • the upper end of the distribution blocking device is lower than the highest lifting point of the lifting device, the lower end of the distribution blocking device is higher than the upper end of the high-temperature gas-cooled reactor, and the distribution blocking device has a second inlet, so The second inlet is connected to the upper end of the lifting device,
  • the distribution blocking device also has a third outlet, and the third outlet is adjacent to the upper end of the high-temperature gas-cooled reactor. even.
  • the high-temperature gas-cooled reactor fuel element delivery system of the embodiment of the present invention further includes a commutator and a shutdown temporary storage device, and the commutator is provided between the lifting device and the distribution choke device. between;
  • One end of the commutator is connected to the lifting device, and the other end of the commutator can be in a first state connected to the distribution choke device and a second state connected to the shutdown temporary storage device. switch;
  • the shutdown temporary storage device has an auxiliary cooling device.
  • the lifting device includes a plurality of lifting machines, and the plurality of lifting machines are connected in sequence from bottom to top in the vertical direction through connecting pipes.
  • the connecting pipe has a first end and a second end opposite in the length direction, the first end is located above the second end, and the first end is adjacent to the elevator.
  • the upper end of the lower elevator is connected, and the second end is connected to the lower end of the upper elevator among the adjacent elevators.
  • the high-temperature gas-cooled reactor fuel element transportation system of the embodiment of the present invention further includes a spent fuel temporary storage device, and the spent fuel temporary storage device is provided below the distribution choke device, and the distribution choke device The device also has a fourth outlet, and the upper end of the spent fuel temporary storage device is connected to the fourth outlet.
  • the unloading device further includes a debris collection tank connected to the second outlet of the debris ball separation device.
  • the broken ball separation device further has a fifth outlet, and the fifth outlet is connected to the broken material collection tank through a broken material pipe;
  • the unloading device also includes a gas path purging device.
  • the vent of the gas path purging device is connected to the scrap pipe.
  • a switch valve is provided on the scrap pipe. The switch valve is located on the scrap pipe. Below the connection between the vent and the scrap pipe.
  • the air path purging device is switchable between a suction state for suction and a blowing state for blowing.
  • the fuel supply device is provided above the high-temperature gas-cooled stack, and the fuel supply device has a fuel temporary storage device.
  • An embodiment of the present invention also provides a high-temperature gas-cooled reactor system, including the above-mentioned high-temperature gas-cooled reactor fuel element transportation system.
  • Figure 1 is a schematic structural diagram of a high-temperature gas-cooled reactor fuel element delivery system according to an embodiment of the present invention.
  • Figure 2 is a partial enlarged view of position A in Figure 1;
  • Figure 3 is a partial enlarged view of B in Figure 1.
  • the high-temperature gas-cooled reactor fuel element transportation system includes a fuel supply device 1, an unloading device 2, a lifting device 3, and a distribution blocking device 4.
  • the fuel supply device 1 is disposed above the high-temperature gas-cooled stack 8 and is connected to the upper end of the high-temperature gas-cooled stack 8 .
  • the unloading device 2 is located below the high-temperature gas-cooled stack 8.
  • the unloading device 2 includes a broken ball separation device 201.
  • the broken ball separation device 201 has a first inlet 2011.
  • the first inlet 2011 is connected to the lower end of the high-temperature gas-cooled stack 8.
  • the broken ball separation device 201 also has a first outlet 2012 and a second outlet 2013.
  • the lower end of the lifting device 3 is connected to the first outlet 2012 to lift the fuel element to a preset height.
  • the highest lifting point of the lifting device 3 is higher than the upper end of the high-temperature gas-cooled stack 8.
  • the lowest lifting point of the lifting device 3 is lower than the broken ball.
  • the upper end of the distribution blocking device 4 is lower than the highest lifting point of the lifting device 3, and the lower end of the distribution blocking device 4 is higher than the upper end of the high-temperature gas-cooled stack 8.
  • the distribution blocking device 4 has a second inlet 401, and the second inlet 401 is connected to the upper end of the high-temperature gas-cooled stack 8.
  • the upper end of the lifting device 3 is connected.
  • the distribution blocking device 4 also has a third outlet 402 , and the third outlet 402 is connected to the upper end of the high-temperature gas-cooled stack 8 .
  • the fuel elements are unloaded from the reactor through the unloading device 2, and then lifted to the highest point by the lifting device 3.
  • the fuel elements flow to the distribution blocking device 4 by their own weight.
  • the distribution choke device 4 divides the flow of the fuel elements, and distributes the fuel elements that have not reached the burnup depth into the reactor by relying on the self-weight of the fuel elements.
  • the high-temperature gas-cooled reactor fuel element transportation system of the embodiment of the present invention has high transportation efficiency and stability, and also has high flexibility.
  • the high-temperature gas-cooled reactor fuel element transportation system includes a fuel supply device 1, an unloading device 2, a lifting device 3, and a distribution blocking device 4.
  • the fuel supply device 1 is disposed above the high-temperature gas-cooled stack 8 and is connected to the upper end of the high-temperature gas-cooled stack 8 .
  • the unloading device 2 is located below the high-temperature gas-cooled stack 8.
  • the unloading device 2 includes a broken ball separation device 201.
  • the broken ball separation device 201 has a first inlet 2011.
  • the first inlet 2011 is connected to the lower end of the high-temperature gas-cooled stack 8.
  • the broken ball separation device 201 also has a first outlet 2012 and a second outlet 2013.
  • the unloading device 2 can be a horizontal shaft-type unloading mechanism, which can simultaneously have a single function of unloading balls and separating broken balls.
  • the outlet at the lower end of the high-temperature gas-cooled stack 8 can be connected with the first inlet 201 of the broken ball separation device 201 through the core unloading pipe, so as to discharge the fuel elements from the high-temperature gas-cooled stack 8 into the unloading device 2 .
  • the pellet separation device 201 first performs a singulation process on the fuel elements, and then separates the pellets from the fuel elements one by one.
  • the lower end of the lifting device 3 is connected to the first outlet 2012 to lift the fuel element to a preset height.
  • the highest lifting point of the lifting device 3 is higher than the upper end of the high-temperature gas-cooled stack 8.
  • the lowest lifting point of the lifting device 3 is lower than the broken ball. Separating device 201 lower end.
  • the intact fuel elements are separated by the broken ball separation device 201 and then discharged to the lower end of the lifting device 3 through the first outlet 2012 .
  • the lifting device 3 can adopt a waterwheel lifting method or a spiral lifting method. It is worth noting that other promotion methods can also be selected according to actual needs.
  • the upper end of the distribution blocking device 4 is lower than the highest lifting point of the lifting device 3, and the lower end of the distribution blocking device 4 is higher than the upper end of the high-temperature gas-cooled stack 8.
  • the distribution blocking device 4 has a second inlet 401, and the second inlet 401 is connected to the upper end of the high-temperature gas-cooled stack 8. The upper end of the lifting device 3 is connected.
  • the fuel elements lifted to the highest point by the lifting device 3 can flow into the distribution blocking device 4 by their own weight.
  • the distribution choke device 4 can use high-purity germanium to detect gamma rays emitted by the fuel elements to measure the fuel element's burn-up and determine whether the fuel element's burn-up depth meets the requirements.
  • the distribution blocking device 4 also integrates the function of a resistor.
  • the choke device 4 integrates a choke function to prevent the high-temperature gas in the core of the high-temperature gas-cooled reactor 8 from flowing upward.
  • the distribution blocking device 4 also has a third outlet 402 , and the third outlet 402 is connected to the upper end of the high-temperature gas-cooled stack 8 . This allows the fuel elements that have not reached the burnup depth requirement to pass through the third outlet 402 and flow into the interior of the high-temperature gas-cooled stack 8 by their own weight.
  • the high-temperature gas-cooled reactor fuel element delivery system of the embodiment of the present invention also includes a commutator 5 and a shutdown temporary storage device 6.
  • the commutator 5 is provided between the lifting device 3 and the distribution choke device 4. .
  • One end of the commutator 5 is connected to the lifting device 3 , and the other end of the commutator 5 is switchable between a first state connected to the distribution choke device 4 and a second state connected to the shutdown buffer device 6 .
  • the commutator 5 switches to the second state, so that the fuel elements transported by the lifting device 3 enter the shutdown temporary storage device 6 for temporary storage, so as to achieve rapid The fuel elements in the high-temperature gas-cooled reactor 8 are quickly discharged, thereby achieving the effect of cold shutdown or maintenance shutdown.
  • the shutdown temporary storage device 6 has an auxiliary cooling device. Since the fuel elements temporarily stored in the shutdown temporary storage device 6 are transported from the high-temperature gas-cooled reactor 8 in the event of an emergency shutdown, most of the fuel elements in the shutdown temporary storage device 6 have not reached burnup. Deep fuel elements will release a certain amount of heat in the shutdown temporary storage device 6. Therefore, the shutdown temporary storage device 6 needs to be equipped with an auxiliary cooling device to cool down the shutdown temporary storage device 6 and prevent the shutdown temporary storage device 6 from appearing. Overheating problem.
  • the lifting device 3 includes a plurality of lifting machines 301 , and the plurality of lifting machines 301 are connected in sequence from bottom to top in the vertical direction through connecting pipes 302 .
  • the lifting method of the hoist 301 can be a waterwheel lifting method or a spiral lifting method.
  • a combination of the two can also be used.
  • the same or different lifting methods can also be used.
  • the above lifting methods Both can achieve continuous cycle improvement of fuel elements.
  • the high-temperature gas-cooled reactor fuel element transportation system according to the embodiment of the present invention is simple, reliable and has high lifting efficiency compared to the pneumatic transportation method by setting up multiple elevators 301 .
  • the fuel elements are relatively stationary relative to the elevator 301, and will basically not rub or collide with the elements in the lifting device 3, thereby not generating a large amount of dust and debris.
  • the outer surface of the elevator 301 is covered with a shielding layer for shielding radiation. Since some of the fuel elements in the elevator 301 have not yet reached the burnup depth and still have a certain amount of radiation, it is necessary to cover the outer surface of the elevator 301 with a shielding layer for shielding radiation to prevent on-site workers from being harmed by radiation. .
  • the connecting pipe 302 has a first end and a second end opposite in the length direction, the first end is located above the second end, and the first end is connected to the upper end of the adjacent elevator 301 located below. The second end is connected to the lower end of the upper elevator 301 among the adjacent elevators 301 .
  • the high-temperature gas-cooled reactor fuel element transportation system of the embodiment of the present invention also includes a spent fuel temporary storage device 7 , the spent fuel temporary storage device 7 is provided below the distribution choke device 4 , and the distribution choke device 4 also It has a fourth outlet 403, and the upper end of the spent fuel temporary storage device 7 is connected to the fourth outlet 403.
  • the fuel elements whose burnup depth reaches the required level measured by the distribution choke device 4 enter the spent fuel temporary storage device 7 through the fourth outlet 403 . Since the spent fuel temporary storage device 7 is located below the distribution choke device 4, the spent fuel elements can be discharged to the spent fuel temporary storage device 7 by their own gravity without relying on pneumatic lifting.
  • the unloading device 2 further includes a debris collection tank 202 , which is connected to the second outlet 2013 of the debris separation device 201 .
  • the fuel elements are discharged from the high-temperature gas-cooled reactor 8 and enter the broken ball separation device 201.
  • the broken ball separation device 201 first single-processes the fuel elements and separates the broken balls one by one.
  • the separated broken balls and smaller Small-sized debris and chips are discharged from the debris collection tank 202 through the second outlet 2013. Since the debris collection tank 202 is located below the crushed ball separation device 201, the separated crushed balls and smaller-sized debris and debris The chips can flow into the chip collection tank 202 by their own weight without using pneumatic conveying.
  • the crushed ball separation device 201 also has a fifth outlet 2014.
  • the fifth outlet 2014 is connected to the debris collection tank 202 through the debris pipe 2015, and contains the crushed balls and smaller sized debris separated by the crushed ball separation device 201. and debris can also be discharged into the debris collection tank 202 through the fifth outlet 2014 through the debris pipe. It is worth noting that the separated debris balls and smaller-sized debris and debris also use their own weight to pass through the fifth The outlet 2014 flows into the scrap collection tank 202 through the scrap pipe.
  • the unloading device 2 also includes a gas path purging device 203.
  • the vent 2031 of the gas path purging device 203 is connected to the scrap pipe.
  • a switch valve 204 is provided on the scrap pipe. The switch valve 204 is located on Below the connection between the vent 2031 and the scrap pipe. That is to say, when purging is required, the switch valve 204 is closed to prevent gas from entering the debris collection tank 202 .
  • the air path purging device 203 is switchable between a suction state of suction and a blowing state of air blowing.
  • the gas path purging device 203 can use a gas cannon pulse purging method.
  • pulse gas can be used to purge the fuel elements in the broken ball separation device 201.
  • the air path purging device 203 can also realize the function of deducting the debris and dust accumulated in the broken ball separation device 201.
  • the fuel supply device 1 is disposed above the high-temperature gas-cooled stack 8 , and the fuel supply device 1 has a fuel temporary storage device.
  • the fuel supply device 1 may include a fuel temporary storage device 101 for receiving fuel provided from a new fuel supply system. New fuel elements are supplied and temporarily stored in the fuel temporary storage device 101. When it is necessary to replenish the reactor core with new fuel elements, the new fuel elements are sent to the high-temperature gas-cooled reactor 8 .
  • the fuel temporary storage device 101 Since the fuel temporary storage device 101 is installed at a height higher than the reactor pressure vessel, new fuel elements can flow into the high-temperature gas-cooled reactor 8 by their own weight without the need for pneumatic transportation.
  • the outlet of the fuel supply device 1 can be connected to the downstream pipeline of the distribution choke, and new fuel elements can be transported into the high-temperature gas-cooled reactor 8 by gravity instead of pneumatic transportation, which can greatly improve transportation.
  • the efficiency of new fuel elements reduces refueling time.
  • Embodiments of the present invention also provide a high-temperature gas-cooled reactor system, including the high-temperature gas-cooled reactor fuel element delivery system described in the above embodiments.
  • the high-temperature gas-cooled reactor system includes one or two high-temperature gas-cooled reactor fuel element delivery systems.
  • the high-temperature gas-cooled reactor fuel element transportation system is used, as shown in Figure 1, the upper end pipelines of the spent fuel temporary storage devices 7 of the two high-temperature gas-cooled reactor fuel element transportation systems can be connected through the spent fuel connecting pipe 9.
  • the spent fuel temporary storage device 7 in the high-temperature gas-cooled reactor fuel element transportation system When one of them, it can be transported to the spent fuel temporary storage device 7 in another high-temperature gas-cooled reactor fuel element transportation system through the spent fuel connecting pipe 9 , greatly improving the performance of the high-temperature gas-cooled reactor system for temporarily storing spent fuel.
  • the high-temperature gas-cooled reactor system including the high-temperature gas-cooled reactor fuel element transportation system of the above embodiment has higher transportation efficiency and stability, and also has higher flexibility.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In the present invention, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be mechanically connected, electrically connected or communicable with each other; it can be directly connected or indirectly connected through an intermediate medium; it can be the internal connection of two elements or the interaction between two elements, Unless otherwise expressly limited. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • the terms “one embodiment,””someembodiments,””examples,””specificexamples,” or “some examples” mean specific features, structures, materials, or features described in connection with the embodiment or example. Features are included in at least one embodiment or example of the invention. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can interpret this specification as The different embodiments or examples described in and the features of the different embodiments or examples can be combined and combined.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

高温气冷堆燃料元件输送***及高温气冷堆***。高温气冷堆燃料元件输送***包括燃料供应装置(1)、卸料装置(2)、提升装置(3)和分配阻流装置(4)。卸料装置(2)设于高温气冷堆(8)的下方,卸料装置(2)包括碎球分离装置(201),碎球分离装置(201)与高温气冷堆(8)的下端相连,提升装置(3)的下端与碎球分离装置(201)的第一出口相连,以将燃料元件提升至预设高度,提升装置(3)的提升最高点高于高温气冷堆(8)的上端,提升装置(3)的提升最低点低于碎球分离装置(201)的下端。分配阻流装置(4)的上端低于提升装置(3)的提升最高点,分配阻流装置(4)的下端高于高温气冷堆(8)的上端,分配阻流装置(4)与提升装置(3)的上端相连,分配阻流装置(4)的第三出口与高温气冷堆(8)的上端相连。

Description

高温气冷堆燃料元件输送***及高温气冷堆*** 技术领域
本发明属于反应堆技术领域,具体涉及一种高温气冷堆燃料元件输送***及高温气冷堆***。
背景技术
高温气冷堆通常采用球床式气冷堆技术,燃料元件采用球形几何元件,在正常运行期间要经过连续的循环和装卸料过程,燃料元件从反应堆出来后经过单一化、碎球分离和燃耗测量一系列过程后,未达到燃耗深度要求的燃料元件被重新输送回堆芯,继续发生裂变反应释放能量,而经过多次循环达到燃耗深度要求的燃料元件则作为乏燃料被从***内卸出排向乏燃料***,为了保持堆芯由足够的剩余反应性,在排出乏燃料后要向堆芯补充相同数量的新燃料元件,以维持机组正常的功率运行。
相关技术中燃料元件依靠自重从反应堆内卸出流向***内最低点后,再依靠气力提升方式重新装入反应堆。新燃料元件和乏燃料元件同样要依靠气力提升的方式分别进入反应堆和乏燃料***。
但是气力运输的方式具有诸多弊端,例如气力提升方式对球形元件的输送速度限制条件苛刻,既不能太快也不能太慢,并且不能同时输送多个燃料元件,这样就限制了燃料元件输送的效率和运行的灵活性。而且气力提升方式所需要的球路输送管道长度过长,燃料元件在管道内长距离运动与壁面发生碰撞和摩擦,容易产生粉尘和碎屑,这些粉尘和碎屑会影响***内设备运行的稳定性,造成***非计划停运。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的实施例提供了一种高温气冷堆燃料元件输送***。
本发明实施例的高温气冷堆燃料元件输送***包括燃料供应装置、卸料装置、提升装置和分配阻流装置。
所述燃料供应装置设于所述高温气冷堆的上方且与所述高温气冷堆的上端相连;
所述卸料装置设于所述高温气冷堆的下方,所述卸料装置包括碎球分离装置,所述碎球分离装置具有第一进口,所述第一进口与所述高温气冷堆的下端相连,所述碎球分离装置还具有第一出口和第二出口;
所述提升装置的下端与所述第一出口相连,以将燃料元件提升至预设高度,所述提升装置的提升最高点高于所述高温气冷堆的上端,所述提升装置的提升最低点低于所述碎球分离装置的下端;
所述分配阻流装置的上端低于所述提升装置的提升最高点,所述分配阻流装置的下端高于所述高温气冷堆的上端,所述分配阻流装置具有第二进口,所述第二进口与所述提升装置的上端相连,
所述分配阻流装置还具有第三出口,所述第三出口与所述高温气冷堆的上端相 连。
在一些实施例中,本发明实施例的高温气冷堆燃料元件输送***还包括换向器和停堆暂存装置,所述换向器设于所述提升装置与所述分配阻流装置之间;
所述换向器的一端与所述提升装置相连,所述换向器的另一端在与所述分配阻流装置相连的第一状态和与所述停堆暂存装置相连的第二状态可切换;
所述停堆暂存装置具有辅助冷却装置。
在一些实施例中,所述提升装置包括多个提升机,多个所述提升机在上下方向上由下至上通过连接管依次相连。
在一些实施例中,所述连接管具有其长度方向相对的第一端和第二端,所述第一端位于所述第二端的上方,所述第一端与相邻所述提升机中的位于下方的提升机的上端相连,所述第二端与相邻所述提升机中位于上方的提升机的下端相连。
在一些实施例中,本发明实施例的高温气冷堆燃料元件输送***还包括乏燃料暂存装置,所述乏燃料暂存装置设于所述分配阻流装置的下方,所述分配阻流装置还具有第四出口,所述乏燃料暂存装置的上端与所述第四出口相连。
在一些实施例中,所述卸料装置还包括碎料收集罐,所述碎料收集罐与所述碎球分离装置的所述第二出口相连。
在一些实施例中,所述碎球分离装置还具有第五出口,所述第五出口通过碎屑管与所述碎料收集罐相连;
所述卸料装置还包括气路吹扫装置,所述气路吹扫装置的通气口与所述碎料管相连,所述碎料管上设有开关阀,所述开关阀设于所述通气口与所述碎料管连接处的下方。
在一些实施例中,所述气路吹扫装置在抽吸的抽吸状态和吹气的吹气状态之间可切换。
在一些实施例中,所述燃料供应装置设于所述高温气冷堆的上方,所述燃料供应装置具有燃料暂存装置。
本发明实施例还提供了一种高温气冷堆***,包括以上所述的高温气冷堆燃料元件输送***。
附图说明
图1是本发明实施例高温气冷堆燃料元件输送***的结构示意图。
图2是图1中A处的局部放大图;
图3是图1中B处的局部放大图。
附图标记:
1、燃料供应装置;101、燃料暂存装置;2、卸料装置;201、碎球分离装置;2011、第一
进口;2012、第一出口;2013、第二出口;2014、第五出口;2015、碎屑管;202、碎料收集罐;203、气路吹扫装置;2031、通气口;204、开关阀;3、提升装置;301、提升机;302、连接管;4、分配阻流装置;401、第二进口;402、第三出口;403、第四出口;5、换向器;6、停堆暂存装置;7、乏燃料暂存装置;8、高温气冷堆;9、乏燃料连接管。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面根据图1-3描述一下本发明实施例的高温气冷堆燃料元件输送***。
本发明实施例的高温气冷堆燃料元件输送***包括燃料供应装置1、卸料装置2、提升装置3、分配阻流装置4。
如图1所示,燃料供应装置1设于高温气冷堆8的上方且与高温气冷堆8的上端相连。卸料装置2设于高温气冷堆8的下方,卸料装置2包括碎球分离装置201,碎球分离装置201具有第一进口2011,第一进口2011与高温气冷堆8的下端相连,碎球分离装置201还具有第一出口2012和第二出口2013。
提升装置3的下端与第一出口2012相连,以将燃料元件提升至预设高度,提升装置3的提升最高点高于高温气冷堆8的上端,提升装置3的提升最低点低于碎球分离装置201的下端。
分配阻流装置4的上端低于提升装置3的提升最高点,分配阻流装置4的下端高于高温气冷堆8的上端,分配阻流装置4具有第二进口401,第二进口401与提升装置3的上端相连。分配阻流装置4还具有第三出口402,第三出口402与高温气冷堆8的上端相连。
本发明实施例的高温气冷堆燃料元件输送***,将燃料元件由卸料装置2从反应堆中卸出,然后经提升装置3提升至最高点后,燃料元件依靠自重流向分配阻流装置4,分配阻流装置4通过对燃料元件进行燃耗测量后,对燃料元件进行分流,将未达到燃耗深度的燃料元件依靠燃料元件的自重分配流入反应堆内。与相关技术中依靠气力输送的方式相比,具有较高的运输效率和稳定性,同时也能够根据需要同时输送多个燃料元件,因此也具有较高的灵活性。
因此,本发明实施例的高温气冷堆燃料元件输送***具有较高的运输效率和稳定性,同时也具有较高的灵活性。
下面根据图1-3进一步描述一下本发明实施例的高温气冷堆燃料元件输送***。
本发明实施例的高温气冷堆燃料元件输送***包括燃料供应装置1、卸料装置2、提升装置3、分配阻流装置4。
如图1所示,燃料供应装置1设于高温气冷堆8的上方且与高温气冷堆8的上端相连。
卸料装置2设于高温气冷堆8的下方,卸料装置2包括碎球分离装置201,碎球分离装置201具有第一进口2011,第一进口2011与高温气冷堆8的下端相连,碎球分离装置201还具有第一出口2012和第二出口2013。
可选地,卸料装置2可为卧式轴系卸料机构,能够同时具备单一化卸球和碎球分离功能。高温气冷堆8的下端的出口可通过堆芯卸料管与碎球分离装置201的第一进口20]1相连通,以将燃料元件从高温气冷堆8排出至卸料装置2内。
碎球分离装置201首先对燃料元件进行单一化处理,并且逐个对燃料元件进行碎球分离。
提升装置3的下端与第一出口2012相连,以将燃料元件提升至预设高度,提升装置3的提升最高点高于高温气冷堆8的上端,提升装置3的提升最低点低于碎球分离装置201的 下端。
完好的燃料元件经碎球分离装置201分离后通过第一出口2012排出至提升装置3的下端。提升装置3可采用水车式提升方式或螺旋式提升方式。值得注意的是,也可根据实际需要选择其他的提升方式。
分配阻流装置4的上端低于提升装置3的提升最高点,分配阻流装置4的下端高于高温气冷堆8的上端,分配阻流装置4具有第二进口401,第二进口401与提升装置3的上端相连。
经过提升装置3提升至最高点的燃料元件可利用自重流入分配阻流装置4中。分配阻流装置4一方面可利用高纯锗探测燃料元件发射的γ射线,以对燃料元件进行燃耗测量,确定燃料元件的燃耗深度是否达到要求。另一方面分配阻流装置4还集成了阻力器的功能。
由于高温气冷堆8的堆芯温度高,因此会形成自然循环的压头,然而自然循环方向与燃料元件输送方向是相反的,为了消除自然循环对燃料元件输送***运行的影响,进而在分配阻流装置4内集成阻流功能,以阻止高温气冷堆8的堆芯内的高温气体向上流动。
进一步地,分配阻流装置4还具有第三出口402,第三出口402与高温气冷堆8的上端相连。使得未达到燃耗深度要求的燃料元件可通过第三出口402并利用自重流向高温气冷堆8内部。
在一些实施例中,本发明实施例的高温气冷堆燃料元件输送***还包括换向器5和停堆暂存装置6,换向器5设于提升装置3与分配阻流装置4之间。换向器5的一端与提升装置3相连,换向器5的另一端在与分配阻流装置4相连的第一状态和与停堆暂存装置6相连的第二状态可切换。
当高温气冷堆8机组出现紧急停堆的情况时,换向器5切换至第二状态,使得由提升装置3输送过来的燃料元件进入停堆暂存装置6内进行暂存,以实现快速将高温气冷堆8中的燃料元件快速排出,进而达到冷停堆或维修停堆的效果。
进一步地,停堆暂存装置6具有辅助冷却装置。由于暂存于停堆暂存装置6内的燃料元件是在紧急停堆的情况下由高温气冷堆8内输送过来的,因此停堆暂存装置6内的燃料元件多是没有达到燃耗深度的燃料元件,在停堆暂存装置6内会释放一定的热量,因此停堆暂存装置6需要设置辅助冷却装置以对停堆暂存装置6进行降温,防止停堆暂存装置6出现过热的问题。
在一些实施例中,如图1所示,提升装置3包括多个提升机301,多个提升机301在上下方向上由下至上通过连接管302依次相连。
可选地,提升机301的提升方式可以采用水车式提升方式,也可以采用螺旋式提升方式,当然也可以采用两者配合的方式,同时也可以采用相同或不同的提升方式,以上提升方式均可以实现燃料元件连续循环提升。
本发明实施例的高温气冷堆燃料元件输送***通过设置多个提升机301,相比气力输送的方式具有简单可靠和提升效率高的特点。在提升过程中,燃料元件相对于提升机301是相对静止的,基本不会与提升装置3内的元件发生摩擦和碰撞,进而不会产生大量的粉尘和碎屑。
同时设置多个提升机301可减轻单个提升机301的提升压力,进而可减少机械故障发生的概率,同时也可降低提升机301的制作难度。值得注意的是,提升机301的数量可根据 实际需要进行确定。
进一步地,提升机301的外表面包覆有用于屏蔽辐射的屏蔽层。由于提升机301中的部分燃料元件还为达到燃耗深度,还具有一定的辐射,因此需要在提升机301的外表面包覆用于屏蔽辐射的屏蔽层,防止现场的工作人员遭受辐射的伤害。
在一些实施例中,连接管302具有其长度方向相对的第一端和第二端,第一端位于第二端的上方,第一端与相邻提升机301中位于下方的提升机301的上端相连,第二端与相邻提升机301中位于上方的提升机301的下端相连。
本发明实施例的高温气冷堆燃料元件输送***通过采用上述设置,燃料元件在到达下方提升机301的最高点时,可利用自重通过连接管302进入上方提升机301的最低点。
在一些实施例中,本发明实施例的高温气冷堆燃料元件输送***还包括乏燃料暂存装置7,乏燃料暂存装置7设于分配阻流装置4的下方,分配阻流装置4还具有第四出口403,乏燃料暂存装置7的上端与第四出口403相连。
经分配阻流装置4测量燃耗深度达到要求的燃料元件通过第四出口403进入乏燃料暂存装置7。由于乏燃料暂存装置7设于分配阻流装置4的下方,因此,乏燃料元件可利用自重排向乏燃料暂存装置7,无需依靠气力提升。
在一些实施例中,卸料装置2还包括碎料收集罐202,碎料收集罐202与碎球分离装置201的第二出口2013相连。
由高温气冷堆8排出并进入碎球分离装置201的燃料元件,碎球分离装置201首先对燃料元件进行单一化处理,并逐个对燃料元件进行碎球分离,分离出来的碎球和更小尺寸的碎渣和碎屑通过第二出口2013排出碎料收集罐202内,由于碎料收集罐202位于碎球分离装置201的下方,因此分离出来的碎球和更小尺寸的碎渣和碎屑能够利用自重自行流入碎料收集罐202内,无需采用气力输送。
进一步地,碎球分离装置201还具有第五出口2014,第五出口2014通过碎屑管2015与碎料收集罐202相连,有碎球分离装置201分离出来的碎球和更小尺寸的碎渣和碎屑也可通过第五出口2014经过碎料管排入碎料收集罐202内,值得注意的是,分离出来的碎球和更小尺寸的碎渣和碎屑同样是利用自重通过第五出口2014进过碎料管流入碎料收集罐202内。
在一些实施例中,卸料装置2还包括气路吹扫装置203,气路吹扫装置203的通气口2031与碎料管相连,碎料管上设有开关阀204,开关阀204设于通气口2031与碎料管连接处的下方。也就是说,当需要吹扫时,开关阀204关闭,以防止气体进入碎料收集罐202内。
可选地,气路吹扫装置203在抽吸的抽吸状态和吹气的吹气状态之间可切换。气路吹扫装置203可采用气炮脉冲吹扫的方式,当碎球分离装置201内发生燃料元件结桥的问题时,可以用脉冲气体对碎球分离装置201内的燃料元件进行吹扫,以达到破桥的目的。此外气路吹扫装置203还可以实现对碎球分离装置201内积累的碎屑和粉尘进行导出的功能,通过利用气路吹扫装置203进行抽吸,进而在下游管道制造低压环境,在压差的作用下,将碎球分离装置201内的碎屑和粉尘抽出。
在一些实施例中,燃料供应装置1设于高温气冷堆8的上方,燃料供应装置1具有燃料暂存装置。
可选地,燃料供应装置1可包括燃料暂存装置101,用于接收从新燃料供应***提 供的新燃料元件,并将其暂存在燃料暂存装置101内。当需要向堆芯补充新燃料元件时,将新燃料元件送往高温气冷堆8内。
由于燃料暂存装置101的设置高度要高于反应堆压力容器,新燃料元件可利用自重流入高温气冷堆8内,无需利用气力运输。
可选地,燃料供应装置1的出口可连接在分配阻流器的下游管道上,依靠重力向高温气冷堆8内输送新燃料元件,不再采用气力输送的方式,这样可以大幅度提升运输新燃料元件的效率,缩短装料的时间。
本发明实施例还提供了一种高温气冷堆***,包括以上实施例所述的高温气冷堆燃料元件输送***。高温气冷堆***中包括一个或者两个高温气冷堆燃料元件输送***。当高温气冷堆燃料元件输送***时,如图1所示,两个高温气冷堆燃料元件输送***的乏燃料暂存装置7的上端管路可通过乏燃料连接管9相连,当其中一个高温气冷堆燃料元件输送***中的乏燃料暂存装置7存满乏燃料时,可通过乏燃料连接管9输送至另一个高温气冷堆燃料元件输送***中的乏燃料暂存装置7中,大大提高了高温气冷堆***暂存乏燃料的性能。同时包括以上实施例的高温气冷堆燃料元件输送***的高温气冷堆***具有较高的运输效率和稳定性,同时也具有较高的灵活性。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本发明中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书 中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种高温气冷堆燃料元件输送***,其特征在于,包括:
    燃料供应装置,所述燃料供应装置设于所述高温气冷堆的上方且与所述高温气冷堆的上端相连;
    卸料装置,所述卸料装置设于所述高温气冷堆的下方,所述卸料装置包括碎球分离装置,所述碎球分离装置具有第一进口,所述第一进口与所述高温气冷堆的下端相连,所述碎球分离装置还具有第一出口和第二出口;
    提升装置,所述提升装置的下端与所述第一出口相连,以将燃料元件提升至预设高度,所述提升装置的提升最高点高于所述高温气冷堆的上端,所述提升装置的提升最低点低于所述碎球分离装置的下端;
    分配阻流装置,所述分配阻流装置的上端低于所述提升装置的提升最高点,所述分配阻流装置的下端高于所述高温气冷堆的上端,所述分配阻流装置具有第二进口,所述第二进口与所述提升装置的上端相连,
    所述分配阻流装置还具有第三出口,所述第三出口与所述高温气冷堆的上端相连。
  2. 根据权利要求1所述的高温气冷堆燃料元件输送***,其特征在于,还包括换向器和停堆暂存装置,所述换向器设于所述提升装置与所述分配阻流装置之间;
    所述换向器的一端与所述提升装置相连,所述换向器的另一端在与所述分配阻流装置相连的第一状态和与所述停堆暂存装置相连的第二状态可切换;
    所述停堆暂存装置具有辅助冷却装置。
  3. 根据权利要求1所述的高温气冷堆燃料元件输送***,其特征在于,所述提升装置包括多个提升机,多个所述提升机在上下方向上由下至上通过连接管依次相连。
  4. 根据权利要求3所述的高温气冷堆燃料元件输送***,其特征在于,所述连接管具有其长度方向相对的第一端和第二端,所述第一端位于所述第二端的上方,所述第一端与相邻所述提升机中的位于下方的提升机的上端相连,所述第二端与相邻所述提升机中位于上方的提升机的下端相连。
  5. 根据权利要求1所述的高温气冷堆燃料元件输送***,其特征在于,还包括乏燃料暂存装置,所述乏燃料暂存装置设于所述分配阻流装置的下方,所述分配阻流装置还具有第四出口,所述乏燃料暂存装置的上端与所述第四出口相连。
  6. 根据权利要求1所述的高温气冷堆燃料元件输送***,其特征在于,所述卸料装置还包括碎料收集罐,所述碎料收集罐与所述碎球分离装置的所述第二出口相连。
  7. 根据权利要求6所述的高温气冷堆燃料元件输送***,其特征在于,所述碎球分离装置还具有第五出口,所述第五出口通过碎屑管与所述碎料收集罐相连;
    所述卸料装置还包括气路吹扫装置,所述气路吹扫装置的通气口与所述碎料管相连,所述碎料管上设有开关阀,所述开关阀设于所述通气口与所述碎料管连接处的下方。
  8. 根据权利要求7所述的高温气冷堆燃料元件输送***,其特征在于,所述气路吹扫装置在抽吸的抽吸状态和吹气的吹气状态之间可切换。
  9. 根据权利要求1所述的高温气冷堆燃料元件输送***,其特征在于,所述燃料供应装置设于所述高温气冷堆的上方,所述燃料供应装置具有燃料暂存装置。
  10. 一种高温气冷堆***,其特征在于,包括如权利要求1-9所述的高温气冷堆燃料元件输送***。
PCT/CN2023/099665 2022-06-30 2023-06-12 高温气冷堆燃料元件输送***及高温气冷堆*** WO2024001740A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210756977.0A CN115083642B (zh) 2022-06-30 2022-06-30 高温气冷堆燃料元件输送***及高温气冷堆***
CN202210756977.0 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024001740A1 true WO2024001740A1 (zh) 2024-01-04

Family

ID=83255752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099665 WO2024001740A1 (zh) 2022-06-30 2023-06-12 高温气冷堆燃料元件输送***及高温气冷堆***

Country Status (2)

Country Link
CN (1) CN115083642B (zh)
WO (1) WO2024001740A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115083642B (zh) * 2022-06-30 2023-08-22 华能核能技术研究院有限公司 高温气冷堆燃料元件输送***及高温气冷堆***
CN116344086B (zh) * 2023-03-29 2024-04-19 华能山东石岛湾核电有限公司 燃料装卸***的堆芯进料管卡堵在线处理***及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3929616A1 (de) * 1988-10-05 1990-04-12 Interatom Brennelementabzug fuer einen kugelhaufenkernreaktor
CN1975937A (zh) * 2006-09-22 2007-06-06 清华大学 球床高温气冷堆一体化燃料卸料装置
CN101083153A (zh) * 2007-06-25 2007-12-05 清华大学 球床高温气冷堆在线换料***
WO2014000553A1 (en) * 2012-06-29 2014-01-03 Tsinghua University System and method for pneumatically lifting fuel elements of pebble-bed reactor group by group
CN110148482A (zh) * 2019-05-31 2019-08-20 中核能源科技有限公司 一种自动扶梯式燃料传输装置
CN110648773A (zh) * 2019-10-23 2020-01-03 中核能源科技有限公司 一种水车链箱式燃料垂直输送装置
CN210516242U (zh) * 2019-05-31 2020-05-12 中核能源科技有限公司 一种自动扶梯式燃料传输装置
CN211207985U (zh) * 2019-10-23 2020-08-07 中核能源科技有限公司 一种水车链箱式燃料垂直输送装置
CN115083642A (zh) * 2022-06-30 2022-09-20 华能核能技术研究院有限公司 高温气冷堆燃料元件输送***及高温气冷堆***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474113B (zh) * 2013-09-30 2015-12-02 清华大学 球床模块式高温气冷堆燃料装卸***
CN112735616A (zh) * 2021-01-13 2021-04-30 西安热工研究院有限公司 一种高温气冷堆燃料球的装卸装置及方法
CN114373561A (zh) * 2021-12-16 2022-04-19 华能核能技术研究院有限公司 一种高温气冷堆燃料元件循环***及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3929616A1 (de) * 1988-10-05 1990-04-12 Interatom Brennelementabzug fuer einen kugelhaufenkernreaktor
CN1975937A (zh) * 2006-09-22 2007-06-06 清华大学 球床高温气冷堆一体化燃料卸料装置
CN101083153A (zh) * 2007-06-25 2007-12-05 清华大学 球床高温气冷堆在线换料***
WO2014000553A1 (en) * 2012-06-29 2014-01-03 Tsinghua University System and method for pneumatically lifting fuel elements of pebble-bed reactor group by group
CN110148482A (zh) * 2019-05-31 2019-08-20 中核能源科技有限公司 一种自动扶梯式燃料传输装置
CN210516242U (zh) * 2019-05-31 2020-05-12 中核能源科技有限公司 一种自动扶梯式燃料传输装置
CN110648773A (zh) * 2019-10-23 2020-01-03 中核能源科技有限公司 一种水车链箱式燃料垂直输送装置
CN211207985U (zh) * 2019-10-23 2020-08-07 中核能源科技有限公司 一种水车链箱式燃料垂直输送装置
CN115083642A (zh) * 2022-06-30 2022-09-20 华能核能技术研究院有限公司 高温气冷堆燃料元件输送***及高温气冷堆***

Also Published As

Publication number Publication date
CN115083642A (zh) 2022-09-20
CN115083642B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2024001740A1 (zh) 高温气冷堆燃料元件输送***及高温气冷堆***
CN101083153B (zh) 球床高温气冷堆在线换料***及其功能子***
KR102342415B1 (ko) 인출 연료 임시 저장 장치
Wu et al. The design features of the HTR-10
Reutler et al. The modular high-temperature reactor
CN110176316B (zh) 一种u型管内部换热式堆芯熔融物捕集装置
EP2727117B1 (en) System and method for pneumatically lifting fuel elements of pebble-bed reactor group by group
US20030112919A1 (en) Nuclear reactor of the pebble bed type
CN115171927A (zh) 吸收球停堆***和吸收球输送方法
CN102598149A (zh) 核裂变反应堆、透气式核裂变燃料模块、其方法以及透气式核裂变燃料模块***
CN1447342A (zh) 应用于气冷反应堆的吸收球第二停堆***
CN114883019A (zh) 一种高温气冷堆燃料装卸***及方法
CN218333143U (zh) 球床式高温气冷堆不停堆换料***
CN102262907B (zh) 一种高温气冷堆吸收球气力输送供料器及输送***
CN102855951A (zh) 球床高温堆的新燃料装料暂存装置
CN115410733A (zh) 一种高温气冷堆用吊篮式燃料球传输***
SE532185C2 (sv) Förfarande för att driva en reaktor hos en kärnanläggning
US20030227994A1 (en) Nuclear plant
CN115083632A (zh) 高温气冷堆和余热排出***
CN215069285U (zh) 一种球床式气冷堆堆芯流动性及密实化实验装置
RU2316067C1 (ru) Ядерный энергетический реактор на тепловых нейтронах с твердым теплоносителем
Venter et al. PBMR reactor design and development
CN113436762A (zh) 一种球床式气冷堆堆芯流动性及密实化实验装置及方法
CN219003803U (zh) 一种高温气冷堆燃料装卸***的碎球分选装置
CN116344086B (zh) 燃料装卸***的堆芯进料管卡堵在线处理***及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829923

Country of ref document: EP

Kind code of ref document: A1