WO2024000924A1 - 电磁刺激方法、装置、设备及可读存储介质 - Google Patents

电磁刺激方法、装置、设备及可读存储介质 Download PDF

Info

Publication number
WO2024000924A1
WO2024000924A1 PCT/CN2022/125020 CN2022125020W WO2024000924A1 WO 2024000924 A1 WO2024000924 A1 WO 2024000924A1 CN 2022125020 W CN2022125020 W CN 2022125020W WO 2024000924 A1 WO2024000924 A1 WO 2024000924A1
Authority
WO
WIPO (PCT)
Prior art keywords
stimulation
tes
pulse
tms
current
Prior art date
Application number
PCT/CN2022/125020
Other languages
English (en)
French (fr)
Inventor
戚自辉
蒋田仔
Original Assignee
中国科学院自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院自动化研究所 filed Critical 中国科学院自动化研究所
Publication of WO2024000924A1 publication Critical patent/WO2024000924A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets

Definitions

  • the present application relates to the field of medical technology, and in particular to an electromagnetic stimulation method, device, equipment and readable storage medium.
  • Transcranial Electrical Stimulation (TES) and Transcranial Magnetic Stimulation (TMS) are very mature non-invasive neuromodulation technologies that can be used for transcranial nerve modulation, as well as stimulation of peripheral nerves and muscles. And it has been widely used in clinical and research, and its effectiveness has been proven.
  • FIG 1 is a schematic diagram of the use of TES in the prior art.
  • the positive electrode sheet and the negative electrode sheet can be attached to the target area of the target object, and a specific pattern of low-intensity current is applied in the target area, thereby causing small changes in cell membrane potential, thereby regulating the spontaneous firing rate, which is a subthreshold stimulus.
  • the advantages of TES are small size and low power consumption, but it has the disadvantages of weak stimulation intensity and poor spatial focus.
  • FIG. 2 is a schematic diagram of how TMS is used in the prior art.
  • TMS uses its powerful alternating magnetic field to penetrate the skull and induce current in the cerebral cortex to stimulate the brain nerves. Since the skin and skull have little hindrance to the magnetic field, Sufficient current can be induced in the cerebral cortex to directly activate neurons, which is a suprathreshold stimulus.
  • the advantage of TMS is that it has high stimulation intensity, causes little discomfort, and has significant effects. Its disadvantage is that although TMS has better spatial focusing than TES, it still cannot meet the needs of precise neural regulation and it is difficult to further improve the focusing.
  • This application provides an electromagnetic stimulation method, device, equipment and readable storage medium to solve the shortcoming of insufficient spatial focusing of TMS and TES in the prior art.
  • This application provides an electromagnetic stimulation method, including:
  • control the current direction of the pulse electrical stimulation TES device in the electromagnetic stimulation device in the target area, and The current directions of the pulsed magnetic stimulation TMS device in the electromagnetic stimulation device in the target area are the same, so that the current signals generated by the pulsed electrical stimulation TES device and the pulsed magnetic stimulation TMS in the target area are opposite to each other.
  • the target area is subjected to electromagnetic stimulation, and the stimulation intensity corresponding to the depth stimulation is greater than the first preset value;
  • the current direction of the pulse electrical stimulation TES device in the target area is controlled, and the pulse magnetic stimulation TMS device is controlled in the target area.
  • the direction of the current in the target area is opposite, so that the current signal generated in the target area by the pulse electrical stimulation TES device and the pulse magnetic stimulation TMS is used to electromagnetic stimulate the target area, and the shallow stimulation corresponds to The stimulation intensity is less than or equal to the first preset value.
  • the method further includes:
  • the difference between the pulse width of the pulse electrical stimulation TES and the pulse width of the pulse magnetic stimulation TMS is less than the first preset value, and the pulse width of the pulse electrical stimulation TES and the pulse width of the pulse magnetic stimulation TMS are less than the first preset value.
  • the pulse widths of the pulse magnetic stimulation TMS are all less than the second preset value, the repetition frequency between the pulses of the pulse electrical stimulation TES and the pulses of the pulse magnetic stimulation TMS is less than the third preset value, the pulse electrical stimulation TES
  • the time is synchronized with pulse magnetic stimulation TMS or the time difference between the two is a preset value.
  • the phases of the waveforms of the pulsed electrical stimulation TES and the pulsed magnetic stimulation TMS are synchronized and the waveforms are the same, and the amplitudes of the pulsed electrical stimulation TES and the pulsed magnetic stimulation TMS decay exponentially. are less than the fourth preset value.
  • the waveform of the pulse magnetic stimulation TMS when the waveform of the pulse magnetic stimulation TMS is a bipolar waveform, the waveform of the pulse electrical stimulation TES is a bipolar square wave or a bipolar triangle wave; in the When the waveform of pulse magnetic stimulation TMS is a unipolar waveform, the waveform of pulse electrical stimulation TES is a unipolar square wave or a unipolar triangle wave.
  • the method further includes:
  • adjusting the current size in the pulse electrical stimulation TES device and the pulse magnetic stimulation TMS device according to the comparison results includes:
  • the comparison result is that the difference between the intensity of the stimulation signal and the second preset value is greater than the preset difference, and the intensity of the stimulation signal is less than the second preset value
  • increase the current in the pulse electrical stimulation TES device the current size in the pulse electrical stimulation TES device is greater than the third preset value, and the intensity of the stimulation signal is less than the second preset value
  • increase the current size in the pulse magnetic stimulation TMS device until the difference between the intensity of the stimulation signal and the second preset value is less than the preset difference.
  • adjusting the current size in the pulse electrical stimulation TES device and the pulse magnetic stimulation TMS device according to the comparison results includes:
  • the pulse electrical stimulation TES device and the second preset value are respectively adjusted according to the preset ratio.
  • the current size in the pulsed magnetic stimulation TMS device is the same.
  • This application also provides an electromagnetic stimulation device, including:
  • the receiving module is used to receive operating instructions input by the user
  • a control module configured to respond to the operation instruction and control the pulse electrical stimulation TES device in the electromagnetic stimulation device within the target area when the operation instruction is used to instruct deep stimulation of the target area of the target object.
  • the current direction is the same as the current direction of the pulsed magnetic stimulation TMS device in the electromagnetic stimulation device in the target area, so that the pulsed electrical stimulation TES device and the pulsed magnetic stimulation TMS can pass through the pulsed magnetic stimulation TMS device in the target area.
  • the generated current signal performs electromagnetic stimulation on the target area, and the stimulation intensity corresponding to the depth stimulation is greater than the first preset value;
  • the control module is also used to control the current direction of the pulse electrical stimulation TES device in the target area when the operation instruction is used to indicate shallow stimulation of the target area, and the The current direction of the pulsed magnetic stimulation TMS device in the target area is opposite to electromagnetic stimulation of the target area through the current signal generated by the pulsed electrical stimulation TES device and the pulsed magnetic stimulation TMS in the target area. , the stimulation intensity corresponding to the shallow stimulation is less than or equal to the first preset value.
  • This application also provides an electromagnetic stimulation device, including a pulse electric stimulation TES device, a pulse magnetic stimulation TMS device and a controller.
  • the controller is respectively connected to the pulse electric stimulation TES device and the pulse magnetic stimulation TMS device.
  • the controller is used to execute the electromagnetic stimulation method described in any of the above embodiments.
  • the pulse electrical stimulation TES device includes a TES controller, a digital-to-analog conversion module, a current source, and multiple electrode pairs, each electrode pair including a positive electrode and a negative electrode;
  • the digital-to-analog conversion module is connected to the first end of the TES controller and the current source respectively; the digital-to-analog conversion module is used to perform digital-to-analog conversion on the control signal sent by the TES controller, and convert the The resulting analog signal is sent to the current source;
  • the second end of the current source is connected to the positive electrode in each electrode pair, the third end of the current source is connected to the negative electrode in each electrode pair, and the current source is used to provide a signal to the electrode according to the analog signal.
  • the electrode pair outputs current.
  • the second end of the current source is connected to the positive electrode of each electrode pair through a first resistor
  • the third end of the current source is connected to the positive electrode of each electrode pair through a second resistor.
  • the negative electrode is connected, wherein the first resistor connected to the positive electrode in the same electrode pair and the second resistor connected to the negative electrode have the same resistance value, and the resistance values of the first resistor or the second resistor corresponding to different electrode pairs Not all the same.
  • the pulse electrical stimulation TES device includes a TES controller, multiple power isolation modules, multiple digital-to-analog conversion modules, multiple current sources and multiple electrode pairs, each electrode pair includes The positive electrode and negative electrode, power isolation module, digital-to-analog conversion module, current source and electrode pair are in one-to-one correspondence;
  • the TES controller is connected to the first end of each power isolation module, the second end of each power isolation module is connected to the first end of the corresponding digital-to-analog conversion module, and the second end of the digital-to-analog conversion module is connected to the corresponding
  • the first end of the current source is connected; the second end of each current source is connected to the positive electrode of the corresponding electrode pair, and the third end of the current source is connected to the negative electrode of the corresponding electrode pair;
  • the digital-to-analog conversion module is used to perform digital-to-analog conversion on the control signal sent by the TES controller, and send the converted analog signal to the corresponding current source;
  • the current source is used to output current to the corresponding electrode pair according to the analog signal.
  • the pulse electrical stimulation TES device includes a TES controller, multiple digital-to-analog conversion modules, multiple current sources, a ground electrode, and multiple electrodes.
  • the digital-to-analog conversion module, the current Source and electrode correspond one to one;
  • the TES controller is connected to the first end of each digital-to-analog conversion module, the second end of each digital-to-analog conversion module is connected to the first end of the corresponding current source, and the second end of each current source is connected to the corresponding electrode. connection, the third terminal of all current sources is connected to the ground electrode;
  • the digital-to-analog conversion module is used to perform digital-to-analog conversion on the control signal sent by the TES controller, and send the converted analog signal to the corresponding current source;
  • the current source is used to output current to the corresponding electrode according to the analog signal.
  • This application also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • a computer program is stored on which a computer program is stored.
  • the computer program is executed by a processor, any one of the above electromagnetic stimulation methods can be implemented.
  • This application provides electromagnetic stimulation methods, devices, equipment and readable storage media.
  • the method receives operating instructions input by the user and controls electromagnetic stimulation when the operating instructions are used to instruct deep stimulation of the target area of the target object.
  • the current direction of the pulsed electrical stimulation TES device in the device in the target area is the same as the current direction of the pulsed magnetic stimulation TMS device in the electromagnetic stimulation device in the target area.
  • the operating instructions are used to indicate shallow stimulation of the target area.
  • the current direction of the pulsed electrical stimulation TES device in the target area is controlled to be opposite to the direction of the current of the pulsed magnetic stimulation TMS device in the target area, so that the pulsed electrical stimulation TES device and the pulsed magnetic stimulation TMS are generated in the target area.
  • the current signal electromagnetically stimulates the target area.
  • the current generated by the pulsed electrical stimulation TES device and the current induced by the pulsed magnetic stimulation TMS device are superimposed on the target area, it can be adjusted based on different needs such as deep stimulation or shallow stimulation.
  • the current direction of TES devices and TMS devices in the target area can increase or weaken the intensity of electromagnetic stimulation in the target area, thereby improving the spatial focusing of electromagnetic stimulation in the target area and meeting the needs of precise neural regulation.
  • FIG. 1 is a schematic diagram of the use of TES in the prior art
  • FIG. 2 is a schematic diagram of how TMS is used in the prior art
  • Figure 3 is a current density curve diagram of direct current stimulation in the prior art
  • Figure 4 is the current density curve of alternating current stimulation
  • Figure 5a is a schematic diagram of the position of the O-shaped coil above the target object
  • Figure 5b is a schematic diagram of the eddy current induced by the O-shaped coil on the target object
  • Figure 6a is a schematic diagram of the position of the figure-8 coil above the target object
  • Figure 6b is a schematic diagram of the eddy current induced by the figure-8 coil on the target object
  • Figure 7a is a schematic diagram of the position of the conical coil above the target object
  • Figure 7b is a schematic diagram of the eddy current induced by the conical coil on the target object
  • Figure 8 is a schematic flow chart of the electromagnetic stimulation method provided by this application.
  • Figure 9 is a schematic diagram of electromagnetic induced eddy current
  • Figure 10 is the TES electric field distribution diagram
  • Figure 11 shows the distribution of TES electric field in the human brain
  • Figure 12 is a schematic diagram of the electromagnetic superposition principle of this application in a two-dimensional plane
  • Figure 13 is the electric field distribution diagram of TES
  • Figure 14 is the electric field distribution diagram induced by TMS
  • Figure 15 is the electromagnetic superposition electric field distribution diagram
  • Figure 16 is an arrangement diagram of one side of the circular coil and a pair of electrodes provided by this application;
  • Figure 17 is an arrangement diagram of the center line of the circular coil and a pair of electrodes provided by this application;
  • Figure 18 is an arrangement diagram of both sides of the circular coil and two pairs of electrodes provided by this application.
  • Figure 19 is an arrangement diagram of the center line of the figure-of-eight coil or the conical coil and a pair of electrodes provided by this application;
  • Figure 20 is an electric field distribution diagram under the electrode arrangement of Figure 19;
  • Figure 21 is an arrangement diagram of the center line of the figure-8 coil or the conical coil and the two pairs of electrodes provided by this application;
  • Figure 22 is an arrangement diagram of the figure-of-eight coil or cone coil and three pairs of electrodes provided by this application;
  • Figure 23 is a structural block diagram of the main controller, the pulse electrical stimulation TES device and the pulse magnetic stimulation TMS device;
  • Figure 24 is a pulse waveform diagram of pulse magnetic stimulation TMS
  • Figure 25a is one of the schematic diagrams of the pulse current waveforms of the pulse electrical stimulation TES device and the pulse magnetic stimulation TMS device;
  • Figure 25b is the second schematic diagram of the pulse current waveforms of the pulse electrical stimulation TES device and the pulse magnetic stimulation TMS device;
  • Figure 25c is the third schematic diagram of the pulse current waveforms of the pulse electrical stimulation TES device and the pulse magnetic stimulation TMS device;
  • Figure 26 is one of the structural schematic diagrams of the pulse electrical stimulation TES device provided by this application.
  • Figure 27 is the second structural schematic diagram of the pulse electrical stimulation TES device provided by this application.
  • Figure 28 is the third structural schematic diagram of the pulse electrical stimulation TES device provided by this application.
  • Figure 29 is a schematic structural diagram of the electromagnetic stimulation device provided by this application.
  • TES can apply a specific pattern of low-intensity current to the target area, thereby causing small changes in cell membrane potential, thereby regulating the spontaneous firing rate, and is a subthreshold stimulus.
  • the skulls of large animals are thick, and the electrical conductivity of the skulls is poor, resulting in more current flowing through the scalp.
  • the cerebrospinal fluid has good electrical conductivity, and it surrounds the brain tissue and has a strong electrical shielding effect, leading to A part of the current passing through the skull will be shunted by the cerebrospinal fluid, and only a small part of the current actually enters the cerebral cortex. Therefore, the stimulation intensity of TES is weak.
  • TES microcurrent transcranial electrical stimulation
  • TES can be divided into direct current stimulation (transcranial direct current stimulation, tDCS), alternating current stimulation (transcranial alternating-current stimulation, tACS), and random noise stimulation (Transcranial Random Noise Stimulation, tRNS).
  • the stimulation current is about 100uA-5mA.
  • Figure 3 is a current density curve diagram of direct current stimulation in the prior art.
  • the current density of direct current stimulation is usually 1.0 mA.
  • Figure 4 is a current density curve diagram of alternating current stimulation. As shown in Figure 4, the amplitude of the current density of alternating current stimulation is approximately 1.0mA.
  • TES also includes High Definition-transcranial Alternating Current Stimulation (HD-tACS), time-frequency interference electrical stimulation, etc.
  • HD-tACS High Definition-transcranial Alternating Current Stimulation
  • TES mentioned above have weak stimulation intensity and poor focus. shortcoming.
  • TMS uses the principle of electromagnetic induction to generate an alternating magnetic field through the alternating current in the coil.
  • the alternating magnetic field then generates an induced electric field in the human body, that is, an eddy current (the eddy current is basically parallel to the plane of the coil).
  • the eddy current is used to stimulate the brain nerves.
  • TMS is a painless, non-invasive green treatment method. Since the skin and skull have little obstruction to the magnetic field, a large enough current can be induced in the cerebral cortex to directly activate neurons, which is a suprathreshold stimulation. In view of the strong stimulation intensity of transcranial magnetic stimulation, the little discomfort caused and the remarkable effect, it has been used in various aspects such as neuropsychology (depression, schizophrenia), rehabilitation department, pediatrics (cerebral palsy, autism, etc.) application.
  • TMS spatial focusing
  • TES positron emission tomography
  • the spatial resolution of TMS is 0.5-1cm
  • the stimulation depth is limited to 2-3cm under the cerebral cortex. Improving the spatial focus and penetration depth of TMS has always been the goal pursued by users, from circular coils, to figure-8 coils, to conical coils, but there has been no breakthrough progress.
  • Figure 5a is a schematic diagram of the position of the O-shaped coil above the target object
  • Figure 5b is a schematic diagram of the eddy current induced by the O-shaped coil on the target object
  • Figure 6a is a schematic diagram of the position of the figure-8 coil above the target object
  • Figure 6b is a schematic diagram of the figure-8 coil
  • Figure 7a is a schematic diagram of the position of the conical coil above the target object
  • Figure 7b is a schematic diagram of the eddy current induced by the conical coil on the target object. It can be seen from Figure 5a to Figure 7b that the figure-8 coil is more focused.
  • the figure-8 coil uses a pair of circular coils with opposite currents to induce 2 sets of eddy currents in the brain.
  • the current direction of the two sets of eddy currents at the tangent point The current density in the target area is 2-3 times higher than that in other areas.
  • the focus range of the figure-8 coil is an ellipse. The focus is good in the direction of the line connecting the center of the two coils, but the focus is poor in the tangent direction where the two coils are tangent. There is an urgent need to improve the focus in the tangential direction.
  • TMS consumes huge power and is difficult to be portable and wearable.
  • the single pulse period of TMS is about 350us, its current peak can reach 5000A, and the short-term power of 10Hz TMS can reach several Kw. Most of the energy is wasted in the form of heat, and it also increases coil heat dissipation. burden. Therefore, reducing the power consumption of TMS is also a goal pursued by the industry.
  • TES and TMS can be superimposed in space and time to electromagnetic stimulate the target area of the target object through the current signal generated in the superimposed area, thereby improving the space of electromagnetic stimulation. Focusability.
  • the intensity of electromagnetic stimulation can be strengthened or weakened by changing the direction of the current in TES and TMS in the overlay area, thereby meeting the user's different stimulation intensity needs.
  • Figure 8 is a schematic flow chart of the electromagnetic stimulation method provided by the present application. As shown in Figure 8, the method includes:
  • Step 801 Receive operation instructions input by the user.
  • the execution subject of this application is the electromagnetic stimulation equipment, which can also be understood as the controller in the electromagnetic stimulation equipment.
  • the controller can control the pulse electrical stimulation TES device and the pulse magnetic stimulation TMS device in the electromagnetic stimulation equipment.
  • the operation instructions can be input by the user by clicking on different controls in the electromagnetic stimulation device, or they can be input by voice or text. For example, you can enter "transcranial depth stimulation” and so on.
  • Step 802 In response to the operation instruction, in the case where the operation instruction is used to instruct deep stimulation of the target area of the target object, control the current direction of the TES device in the electromagnetic stimulation device in the target area, and the TMS in the electromagnetic stimulation device The current direction of the device in the target area is the same to electromagnetically stimulate the target area through the current signal generated by the TES device and TMS in the target area.
  • the stimulation intensity corresponding to the depth stimulation is greater than the first preset value.
  • the depth stimulation can also be understood as enhanced stimulation.
  • the intensity of the electromagnetic stimulation in the target area is greater than the first preset value.
  • TMS By superimposing TMS on the target area, the current in the TES device and the current in the TMS device have the same direction in the target area. Based on this, the intensity of electromagnetic stimulation in the target area can be enhanced to achieve the purpose of deep stimulation.
  • the electromagnetic stimulation device generates a current in the target area of the target object through the TES device, and at the same time generates an induced current in the target area of the target object through the TMS device, by superimposing the current generated by the TES device and the induced current generated by the TMS device in the target area. , and perform electromagnetic stimulation on the target area based on the superimposed current.
  • the principle of electromagnetic superposition is introduced as follows:
  • FIG 9 is a schematic diagram of electromagnetic induction eddy current.
  • TMS uses the principle of electromagnetic induction.
  • the alternating current in the coil generates an alternating magnetic field.
  • the alternating magnetic field then generates an induced electric field in the human body, that is, eddy current.
  • the source has a whirl field, which is an annular flow with no starting point and end point, and the eddy current is basically parallel to the coil plane.
  • the figure-8 coil commonly used in TMS has better spatial focusing performance because the two sets of eddy currents induced by the two circular coils add in the same direction below the middle of the two coils, thereby obtaining better stimulation intensity and spatial focusing. .
  • FIG 10 is a TES electric field distribution diagram.
  • TES transmits an electric field through the electrode, which is an active irrotational field.
  • the current flows in one direction, and it always flows from the positive electrode to the negative electrode, with a starting point and an end point.
  • Figure 11 shows the distribution of TES electric field in the human brain.
  • the electric field under the TES electrodes is mainly perpendicular to the cortical surface, while the electric field between the electrodes is mainly tangential to the cortex.
  • the above-mentioned electrodes may be invasive electrodes or non-invasive electrodes.
  • the electric field induced by TMS and the electric field generated by the current source of TES are two independent sources, which conform to the superposition theorem.
  • the rotating field induced by TMS and the irrotating field of TES are expressed in time and space. superimposed on each other, so that the resultant electric field has higher intensity and spatial focus. The following will first demonstrate the principle of electromagnetic superposition in a two-dimensional plane, and then introduce the principle of electromagnetic superposition in three-dimensional space.
  • TMS and TES are used to stimulate the conductive plane.
  • the TMS figure-8 coil is close to the conductive plane, and the electrodes are attached to the conductive plane, located below the figure-8 coil and arranged along the tangent direction of the two circles of the figure-8 coil.
  • Figure 12 is a schematic diagram of the electromagnetic superposition principle of this application in a two-dimensional plane. As shown in Figure 12, the solid line circle represents the induced electric field of the TMS figure-8 coil in the conductive plane, and the dotted line circle represents the TES electrical stimulation electric field, "+ "-” represents the positive and negative electrodes. In the target area formed between "+" and "-" of TES, the current direction of TES is from the positive electrode to the negative electrode.
  • the direction of the electric field of TMS is mainly tangent to the cerebral cortex, and the direction of the electric field between TES electrodes is also mainly tangent to the cerebral cortex.
  • FIG. 13 is the electric field distribution diagram of TES;
  • Figure 14 is the electric field distribution diagram induced by TMS, and
  • Figure 15 is the electromagnetic superposition electric field distribution diagram. As shown in Figure 13-15, when TES is used alone, the maximum electric field intensity on the gray matter surface is 1.23v/m. When TMS is used alone, the maximum electric field intensity on the gray matter surface is 1.28v/m.
  • the maximum electric field intensity on the gray matter surface reaches 2.5v/m, which can greatly increase the stimulation intensity and improve focus (the field intensity away from the target area is greatly attenuated), especially the focal spot length is smaller along the tangent direction of the two TMS coils. .
  • the direction of the electric field in the target area formed by TES between the positive and negative electrodes is the same as the electric field induced by TMS, thereby strengthening the stimulation.
  • the direction of the electric field is the same as that of TMS.
  • the induced electric field weakens the stimulation, increases the electric field intensity in the target area, and weakens the electric field intensity in the non-target area, thereby achieving the purpose of improving focus.
  • precise control of nerves is achieved by applying the superimposed current generated in the target area to the target area of the target subject for electromagnetic stimulation.
  • Step 803 When the operation instruction is used to instruct shallow stimulation of the target area, control the current direction of the TES device in the target area to be opposite to the current direction of the TMS device in the target area, so that the current direction of the TES device and TMS in the target area is The current signal generated in the target area performs electromagnetic stimulation on the target area.
  • the stimulation intensity corresponding to the shallow stimulation is less than or equal to the first preset value.
  • the shallow stimulation can also be understood as weakening the stimulation.
  • the intensity of the electromagnetic stimulation in the target area is less than or equal to the first preset value.
  • it is necessary to weaken the electromagnetic stimulation of the target area Superimpose TES and TMS in the target area so that the current in the TES device and the current in the TMS device have opposite directions in the target area. This can weaken the intensity of electromagnetic stimulation in the target area, thereby achieving the purpose of shallow stimulation.
  • the stimulation of the target area is strengthened, and the stimulation area is relatively concentrated; while the stimulation area of shallow stimulation is wider, and can weaken the surface stimulation and retain the deep stimulation.
  • the electromagnetic stimulation method provided by this application controls the current generated by the pulse electrical stimulation TES device and the pulse magnetic stimulation TMS device to be superimposed in space and time within the target area, and electromagnetic stimulation is performed on the target area through the superimposed current, thereby improving the The spatial focus of electromagnetic stimulation in the target area; and, controlling the direction of the current generated by the pulse magnetic stimulation TMS device and the pulse electrical stimulation TES device in the target area is the same or opposite, in addition to improving the spatial focus of electromagnetic stimulation in the target area, It also strengthens or weakens the intensity of electromagnetic stimulation, thereby achieving the purpose of deep stimulation or shallow stimulation of the target area, further improving the accuracy of neural regulation.
  • this application can greatly reduce the power consumption of TMS by superimposing the current generated by the pulse magnetic stimulation TMS device and the electrical stimulator in the target area and in the same direction, thereby realizing the portable and wearable TMS device and greatly expanding the The application scenarios of TMS.
  • the electromagnetic stimulation device can also determine the arrangement of the pulse electrical stimulation TES device and the pulse magnetic stimulation TMS device according to the target area and stimulation intensity, where the stimulation intensity includes deep stimulation and shallow stimulation. Stimulation; and shows the arrangement of pulsed electrical stimulation TES devices and pulsed magnetic stimulation TMS devices.
  • the operating instructions received by the electromagnetic stimulation device include the target area that needs to be electromagnetic stimulated on the target object and the stimulation intensity that needs to be achieved in the target area, where the stimulation intensity includes deep stimulation and shallow stimulation.
  • the electromagnetic stimulation device displays the arrangement of the pulse electrical stimulation TES device and the pulse magnetic stimulation TMS device through the received operation instructions. In this way, it is convenient for the user to place the TES device and the TMS device in the target area of the target object according to the display arrangement to achieve the purpose of deep stimulation or shallow stimulation, thereby improving the user experience.
  • Figure 16 is an arrangement diagram of one side of the circular coil and one pair of electrodes provided by this application.
  • the stimulation point of the traditional circular coil is the ring part under the coil, and the TES electrode is located on one side of the ring. , you can strengthen the stimulation intensity on one side of the ring and weaken the stimulation intensity on the other side of the ring, and the two sides are non-equivalent, with one side strengthening or weakening more than the other side.
  • Figure 17 is an arrangement diagram of the center line of the circular coil and a pair of electrodes provided by this application. As shown in Figure 17, placing the TES electrode on the center line of the ring can enhance the stimulation intensity on one side of the ring and weaken the other side of the ring. The stimulation intensity on both sides is superimposed and weakened in equal measure.
  • Figure 18 is an arrangement diagram of both sides of the circular coil and two pairs of electrodes provided by this application. As shown in Figure 18, the two pairs of TES electrodes are located on both sides of the circular ring. By adjusting the polarity of the positive and negative electrodes, 1 One side is strengthened and the other side is weakened, or both sides are strengthened or weakened.
  • Figure 19 is an arrangement diagram of the center line of the figure-of-eight coil or conical coil and a pair of electrodes provided by this application.
  • Figure 20 is an electric field distribution diagram under the electrode arrangement of Figure 19, as shown in Figures 19 and 20.
  • the first pair of electrodes on the midline weakens surface stimulation and achieves deep focusing: the direction of the TES electric field between the positive and negative electrodes is opposite to that of the TMS induced electric field, weakening the surface stimulation.
  • the TES electric field attenuates faster with depth, the TMS deep induced electric field is less affected by electromagnetic superposition. , thereby achieving the purpose of deep focusing.
  • the biconical coil is a special case of the figure-8 coil.
  • the magnetic field of the biconical coil attenuates with distance. The speed is slow to stimulate deep brain areas, but while the biconical coil activates the deep cortex, it also activates the superficial cortex under the coil.
  • Figure 21 is an arrangement diagram of the center line and two pairs of electrodes of the figure-eight coil or cone coil provided by this application. As shown in Figure 21, the two pairs of electrodes in the center line enhance the ability to weaken the electric field intensity outside the target area. Add an electrode with opposite polarity outside the midline electrode.
  • the TES electric field between electrode 1+ and electrode 1- is the same as the TMS induced electric field, and the intensity is strengthened. However, between electrode 1+ and electrode 2-, the TES electric field between electrode 1- and Between electrodes 2+, the TES electric field is in the opposite direction to the TMS-induced electric field, and its intensity is weakened.
  • Figure 22 is an arrangement diagram of the figure-of-eight coil or cone coil and three pairs of electrodes provided by this application. As shown in Figure 22, through the three pairs of electrodes, the target area stimulation can be strengthened and the secondary side stimulation can be weakened.
  • the difference between the pulse width of the above-mentioned pulse electrical stimulation TES and the pulse width of pulse magnetic stimulation TMS is less than the first preset value, and the pulse width of the pulse electrical stimulation TES and the pulse width of the pulse magnetic stimulation TMS are both less than the first preset value.
  • two preset values, and the repetition frequency between pulses of pulsed electrical stimulation TES and pulses of pulsed magnetic stimulation TMS is less than the third preset value.
  • Figure 23 is a structural block diagram of the connection between the main controller and the pulse electrical stimulation TES device and the pulse magnetic stimulation TMS device. As shown in Figure 23, the pulse width of the pulse electrical stimulation TES and the pulse width and repetition frequency of the pulse magnetic stimulation TMS It can be controlled by a main controller electrically connected to it.
  • the main controller controls the difference between the pulse width of the pulse electrical stimulation TES and the pulse width of the pulse magnetic stimulation TMS to be less than the first preset value, it can ensure that the pulse widths output by the two are the same or similar; and the control The pulse width of the pulse electrical stimulation TES and the pulse width of the pulse magnetic stimulation TMS are both less than the second preset value, and the repetition frequency between the pulses of the pulse electrical stimulation TES and the pulse of the pulse magnetic stimulation TMS is controlled to be less than the third preset value, It can ensure that the waveforms of the currents superimposed on the target area by the pulsed electrical stimulation TES device and the pulsed magnetic stimulation TMS device are the same or similar, and it can also ensure that the pulse widths of both can achieve the purpose of effective stimulation of the target area. Generally, the pulse width of pulsed electrical stimulation TES and pulsed magnetic stimulation TMS are very short, generally less than 500 microseconds.
  • the difference between the pulse width of the pulse electrical stimulation TES and the pulse width of the pulse magnetic stimulation TMS is less than the first preset value
  • the pulse width of the pulse electrical stimulation TES and the pulse width of the pulse magnetic stimulation TMS are The widths are all less than the second preset value
  • the repetition frequency between the pulses of the pulsed electrical stimulation TES and the pulses of the pulsed magnetic stimulation TMS is less than the third preset value
  • the pulsed electrical stimulation TES and the pulsed magnetic stimulation TMS are synchronized in time or both.
  • the preset value difference in time can make the waveforms of the superimposed currents of the pulsed electrical stimulation TES device and the pulsed magnetic stimulation TMS device in the target area the same or similar, thereby improving the stimulation intensity and spatial focusing of the electromagnetic stimulation in the target area. sexual purpose.
  • the pulse width of pulsed electrical stimulation TES and the pulse width of pulsed magnetic stimulation TMS are less than the first preset value (less than 500 microseconds)
  • the current peak value of pulsed electrical stimulation TES that the human body can withstand can be greatly increased from the traditional continuous
  • the 5mA of TES is increased to 50mA, and since the current peak value of pulsed electrical stimulation TES can be increased, the size of the pulsed magnetic stimulation TMS device is further reduced, making pulsed magnetic stimulation TMS more portable.
  • phase of pulse electrical stimulation TES and pulse magnetic stimulation TMS waveforms can be synchronized and the waveforms are the same, and the amplitude exponential decay of pulse electrical stimulation TES and pulse magnetic stimulation TMS is less than the fourth preset value.
  • the pulse electrical stimulation TES device and the pulse magnetic stimulation TMS device in order to effectively superimpose the currents of the pulse electrical stimulation TES device and the pulse magnetic stimulation TMS device in the target area, it is necessary to ensure that the two have the same or similar waveforms, and to ensure that the two have the same or similar waveforms. It is: the phases of pulse electrical stimulation TES and pulse magnetic stimulation TMS are the same, and the amplitude exponential attenuation of pulse electrical stimulation TES and pulse magnetic stimulation TMS is both less than the fourth preset value.
  • the adjustment of the current waveforms generated by TMS and TES is achieved through a pulse current source, that is, the current generated by TMS and the current generated by TES have the same or similar waveform through the pulse current source.
  • the above-mentioned waveforms may include sine waves, cosine waves, etc.
  • the waveform of pulse magnetic stimulation TMS is a bipolar waveform
  • the waveform of pulse electrical stimulation TES is a bipolar square wave or a bipolar triangle wave
  • the waveform of pulse electrical stimulation of TES is unipolar square wave or unipolar triangle wave.
  • the waveform of TES can be set to a bipolar square wave, a bipolar triangle wave, a unipolar square wave or a unipolar triangle wave to approximate the waveform of TMS, avoiding that the waveforms of pulse magnetic stimulation TMS and pulse electrical stimulation TES must be consistent. situation, thus making the application range of electromagnetic stimulation wider.
  • Figure 24 is a pulse waveform diagram of pulse magnetic stimulation TMS.
  • pulse magnetic stimulation TMS can be bipolar pulse Biphasic (shown by the solid line) or unipolar pulse Monophasic (shown by the dotted line).
  • the TES waveform of the cosine pulse and the TMS induced current have the same amplitude exponential attenuation.
  • TES and TMS have the same or similar waveform, amplitude, and attenuation degree, both of them will affect the target area. The electromagnetic stimulation effect is the best.
  • the following uses the commonly used bipolar pulse Biphasic as an example to illustrate how pulse magnetic stimulation TMS and pulse electrical stimulation TES are synchronized.
  • the pulse electrical stimulation TES device uses a pulse current source.
  • the current source can avoid the influence of the voltage induced by pulse magnetic stimulation TMS. Its waveform and phase can be exactly the same as the electric field induced by pulse magnetic stimulation TMS, or it can be different.
  • the current function of the bipolar pulse magnetic stimulation TMS coil is:
  • V C (0) is the initial capacitor voltage
  • is the angular frequency
  • L is the inductance value
  • is the decay speed
  • t is the time.
  • I TMS (t) I TMS (0)Cos( ⁇ t)exp(- ⁇ t),t ⁇ 0
  • I TMS (0) is the peak value of TMS induced current IL (t), which is related to the coil distance, coil intensity, and the characteristics of the tissue being tested.
  • the main controller can realize the synchronization of the pulsed magnetic stimulation TMS and the pulsed electrical stimulation TES.
  • Figure 25a is the first schematic diagram of the pulse current waveform of the pulse electric stimulation TES device and the pulse magnetic stimulation TMS device.
  • Figure 25b is the second schematic diagram of the pulse current waveform of the pulse electric stimulation TES device and the pulse magnetic stimulation TMS device.
  • Figure 25c is the pulse electric stimulation diagram.
  • the solid line is the voltage waveform induced by the bipolar TMS coil current, which is a single pulse cosine waveform whose amplitude decays exponentially. Strict time synchronization is achieved between the pulsed electrical stimulation TES device and the pulsed magnetic stimulation TMS device through synchronous triggering.
  • the waveform data of pulse electrical stimulation TES is stored in the main controller in advance, and the current waveform can be output when the trigger signal is received.
  • the electromagnetic stimulation method provided by this application achieves pulsed electrical stimulation by making the phases of pulsed electrical stimulation TES and pulsed magnetic stimulation TMS the same; and the amplitude exponential attenuation of pulsed electrical stimulation TES and pulsed magnetic stimulation TMS is both smaller than the fourth preset value.
  • the current generated by the stimulation TES device and the pulse magnetic stimulation TMS device is effectively superposed in the target area, thereby ultimately achieving the purpose of improving the stimulation intensity and spatial focus of electromagnetic stimulation in the target area.
  • the current size in the pulse electrical stimulation TES device and/or the pulse magnetic stimulation TMS device can be adjusted based on the stimulation signal during the stimulation process, thereby making the intensity of the electromagnetic stimulation Closer to actual required intensity.
  • the stimulation signal of the target object during the electromagnetic stimulation of the target area can be obtained, the intensity of the stimulation signal can be compared with the second preset value, the comparison result can be obtained, and the pulse can be adjusted according to the comparison result.
  • the current size in the electrical stimulation TES device and/or the pulse magnetic stimulation TMS device is such that the difference between the intensity of the stimulation signal and the second preset value is less than the preset difference.
  • this application uses stimulation signals to measure the effect of electromagnetic stimulation on the target object.
  • the difference between the intensity of the stimulation signal and the second preset value is less than the preset difference, it illustrates the effect of electromagnetic stimulation on the target object.
  • the stimulation intensity is close to the preset stimulation intensity. Therefore, the electromagnetic stimulation device determines whether the current intensity of the electromagnetic stimulation is appropriate by obtaining the intensity of the stimulation signal and comparing the intensity of the stimulation signal with the second preset value. The difference between them is greater than the preset difference, indicating that the intensity of electromagnetic stimulation is too large or too small.
  • the current size, or the current size of the pulsed electrical stimulation TES device and the pulsed magnetic stimulation TMS device in the target area can be adjusted together to adjust the intensity of electromagnetic stimulation.
  • the above-mentioned stimulation signal may be, for example, an electromyographic signal, an electroencephalogram signal, or a cerebral blood oxygen signal.
  • the electromagnetic stimulation method provided by this application adjusts the current size in the pulse electrical stimulation TES device and/or the pulse magnetic stimulation TMS device so that the difference between the intensity of the stimulation signal and the second preset value is less than the preset difference.
  • the intensity of the adjusted electromagnetic stimulation is made close to the preset stimulation intensity, which avoids the phenomenon that the stimulation intensity is too small and does not have a substantial stimulating effect on the target area, or the stimulation intensity is too large, resulting in poor user experience.
  • the stimulation intensity can be adjusted in real time during the electromagnetic stimulation of the target area, the accuracy of electromagnetic stimulation of the target area of the target object is improved.
  • this application adjusts the current size in the pulse electrical stimulation TES device and the pulse magnetic stimulation TMS device according to the comparison results.
  • the current in the pulse electrical stimulation TES device is increased.
  • the current size in the electrical stimulation TES device is greater than the third preset value and the intensity of the stimulation signal is less than the second preset value, increase the current size in the pulse magnetic stimulation TMS device until the intensity of the stimulation signal is equal to the second preset value. The difference between the preset values is less than the preset difference.
  • the intensity of the stimulation signal is less than the second preset value, it means that the intensity of the electromagnetic stimulation is not strong enough to have a substantial effect on the target object. Therefore, it is necessary to increase the stimulation until the difference between the intensity of the stimulation signal and the second preset value is less than the preset difference, so that the electromagnetic stimulation can have a substantial effect on the target object.
  • this application first adjusts the current in the pulse electrical stimulation TES device to adjust the intensity of the stimulation signal to the first The difference between the two preset values is less than the preset difference.
  • the target object will feel uncomfortable, therefore, when the current in the pulse electrical stimulation TES device is less than the third preset value, priority is given to Adjust the current size in the pulse electrical stimulation TES device. Only when the current size in the pulse electrical stimulation TES device is greater than the third preset value, increase the current size in the pulse magnetic stimulation TMS device so that the stimulation signal The difference between the intensity and the second preset value is less than the preset difference.
  • the electromagnetic stimulation method provided by this application preferentially increases the current in the pulse electrical stimulation TES device by comparing the difference between the stimulation signal and the second preset value, and the magnitude of the stimulation signal and the second preset value.
  • the size adjustment method achieves effective stimulation of the target object and can ensure that the power of the electromagnetic stimulation device is reduced as much as possible while effectively stimulating the target object.
  • the comparison result is that the difference between the intensity of the stimulation signal and the second preset value is greater than the preset difference value, and the intensity of the stimulation signal is greater than the second preset value
  • the current in the pulse magnetic stimulation TMS device is less than the fourth preset value and the intensity of the stimulation signal is greater than the second preset value
  • this adjustment method is opposite to the previous adjustment method, which achieves effective stimulation of the target object by strengthening stimulation.
  • This adjustment method achieves effective stimulation of the target object by reducing stimulation.
  • the intensity of the stimulation signal is greater than the second preset value, it means that the intensity of the electromagnetic stimulation to the target object is too large, and the intensity of the electromagnetic stimulation needs to be reduced.
  • the comparison result is the intensity of the stimulation signal and the second preset value If the difference is less than the preset difference, it means that the electromagnetic stimulation can effectively stimulate the target object.
  • the current size in the pulse magnetic stimulation TMS device is prioritized to be reduced so that the intensity of the stimulation signal is between the second preset value and the intensity of the stimulation signal.
  • the difference is less than the preset difference.
  • the current magnitude in the pulse magnetic stimulation TMS device is less than the fourth preset value, it means that the pulse magnetic stimulation TMS device cannot achieve effective stimulation of the target object, and it is necessary to pass
  • the method of adjusting the current size in the pulse electrical stimulation TES device ensures that the pulse magnetic stimulation TMS device can effectively stimulate the target object, and when the current size in the pulse electrical stimulation TES device is adjusted to the intensity of the stimulation signal and the second preset value If the difference is less than the preset difference, it means that the intensity of electromagnetic stimulation can achieve effective stimulation of the target object, and then stop reducing the current size in the pulse electrical stimulation TES device.
  • the electromagnetic stimulation method provided by this application prioritizes the comparison result by showing that the difference between the intensity of the stimulation signal and the second preset value is greater than the preset difference, and the intensity of the stimulation signal is greater than the second preset value. Reducing the current size in the pulsed electrical stimulation TES device to achieve effective stimulation of the target object can reduce the power of the electromagnetic stimulation device as much as possible while ensuring effective stimulation of the target object.
  • the pulse electrical stimulation TES device can be adjusted separately according to the preset ratio. and the current size in the pulsed magnetic stimulation TMS device.
  • the adjustment method may include adjusting the current size in the pulse electrical stimulation TES device and the pulse magnetic stimulation TMS device respectively according to a preset ratio to achieve effective stimulation of the target object.
  • the preset ratio can be 1:4, 3:7, 4:6, etc. This application does not limit this, as long as it can achieve the purpose of effective stimulation of the target object as quickly and effectively as possible.
  • the electromagnetic stimulation method provided by the embodiment of the present application simultaneously adjusts the current size in the pulse electrical stimulation TES device and the pulse magnetic stimulation TMS device through a preset ratio, so that the difference between the intensity of the stimulation signal and the second preset value can be adjusted.
  • the value reaches the goal of being less than the preset difference in the shortest time, thereby improving the efficiency of effective electromagnetic stimulation of the target object.
  • prompt information is output, and the prompt information is used to remind the user Adjust the placement of the pulsed electrical stimulation TES device and/or pulsed magnetic stimulation TMS device.
  • the placement of the pulse electrical stimulation TES device and/or the pulse magnetic stimulation TMS device is adjusted first position to achieve effective stimulation of the target object, thereby achieving the efficiency of effective electromagnetic stimulation of the target object. Adjusting the placement of the pulsed electrical stimulation TES device and/or the pulsed magnetic stimulation TMS device can be achieved by referring to the electrode arrangement shown in Figures 16 to 22, and will not be described again here.
  • FIG. 23 is a structural block diagram of a main controller, a pulse electrical stimulation TES device and a pulse magnetic stimulation TMS device.
  • the electromagnetic stimulation equipment includes a pulse electrical stimulation TES device 232, The pulse magnetic stimulation TMS device 233 and the controller 231.
  • the controller 231 is electrically connected to the pulse electrical stimulation TES device 232 and the pulse magnetic stimulation TMS device 233 respectively.
  • the controller 231 can execute the electromagnetic stimulation method described in any of the above embodiments.
  • this application provides structural diagrams of three types of pulse electrical stimulation TES devices, which are single-channel current source multi-electrode type, isolated multi-channel current source type and non-isolated multi-channel current source type. Mode.
  • the three current sources can all generate the same electric field as the TMS-induced voltage waveform, and the waveforms of the multiple channel current sources are the same, but the amplitudes can be different to achieve better superposition effects.
  • FIG 26 is one of the structural schematic diagrams of the pulse electrical stimulation TES device provided by this application.
  • the pulse electrical stimulation TES device includes a TES controller, a digital-to-analog conversion module, a current source, and multiple electrode pairs. Each electrode pair Includes positive and negative electrodes.
  • the digital-to-analog conversion module is connected to the first end of the TES controller and the current source respectively; the digital-to-analog conversion module is used to perform digital-to-analog conversion on the control signal sent by the TES controller, and send the converted analog signal to the Current source; the second end of the current source is connected to the positive electrode in each electrode pair, the third end of the current source is connected to the negative electrode in each electrode pair, and the current source is used to supply the electrode to the electrode according to the analog signal. Center the output current.
  • the pulse electrical stimulation TES device provided by this application is a single-channel current source multi-electrode type, which uses one current source to drive multiple electrodes.
  • Each electrode pair can be connected in series with a resistor of different resistances. The resistor is used to adjust the current.
  • the allocation ratio between different electrode pairs allows the electrode pairs to be flexibly used and arranged according to the actual situation of the target object.
  • the electromagnetic stimulation equipment provided by this application because the single-channel current source multi-electrode pulse electrical stimulation TES device includes multiple electrode pairs with different current sizes, the electrode pairs can be flexibly used and arranged according to the actual situation of the target object. Improved stimulation efficiency of target areas.
  • the second end of the current source is connected to the positive electrode of each electrode pair through a first resistor
  • the third end of the current source is connected to each electrode pair through a second resistor.
  • the negative electrodes in two electrode pairs are connected, wherein the first resistor connected to the positive electrode in the same electrode pair and the second resistor connected to the negative electrode have the same resistance value, and the first resistor or the second resistor corresponding to different electrode pairs has the same resistance value. Resistors do not all have the same resistance value.
  • the resistance values of the first resistors or the second resistors corresponding to different electrode pairs are not all the same, different electrode pairs can output different currents to provide electromagnetic stimulation with different stimulation intensities, providing users with Provides multiple options, increasing flexibility of use.
  • FIG 27 is the second structural schematic diagram of the pulse electrical stimulation TES device provided by this application.
  • the pulse electrical stimulation TES device includes a TES controller, multiple power isolation modules, multiple digital-to-analog conversion modules, and multiple current sources.
  • the TES controller is connected to the first end of each power isolation module respectively.
  • each power isolation module is connected to the first end of the corresponding digital-to-analog conversion module, and the second end of the digital-to-analog conversion module is connected to the first end of the corresponding current source;
  • the second end of each current source is connected to The positive electrode in the corresponding electrode pair is connected, and the third end of the current source is connected to the negative electrode in the corresponding electrode pair;
  • the digital-to-analog conversion module is used to perform digital-to-analog conversion on the control signal sent by the TES controller, and convert the The converted analog signal is sent to the corresponding current source; the current source is used to output current to the corresponding electrode pair according to the analog signal.
  • the electromagnetic stimulation equipment provided by this application has an isolated multi-channel current source type as the pulsed electrical stimulation TES device, and each pair of electrodes is driven by an isolated current source. Since the channels are electrically isolated, each pair can be accurately controlled. The current of the electrode is free from interference from other channels, thereby improving the accuracy of electromagnetic stimulation.
  • FIG 28 is the third structural schematic diagram of the pulse electrical stimulation TES device provided by this application.
  • the pulse electrical stimulation TES device includes a TES controller, multiple digital-to-analog conversion modules, multiple current sources, multiple electrodes and ground Electrodes, multiple electrodes include positive electrodes and negative electrodes, digital-to-analog conversion modules, current sources and electrodes correspond one to one;
  • the TES controller is connected to the first end of each digital-to-analog conversion module, and the second end of each digital-to-analog conversion module The terminal is connected to the first terminal of the corresponding current source, the second terminal of each current source is connected to the corresponding electrode, and the third terminal of all current sources is connected to the ground electrode;
  • the digital-to-analog conversion module is used to control the TES
  • the control signal sent by the device is digital-to-analog converted, and the converted analog signal is sent to the corresponding current source;
  • the current source is used to output current to the corresponding electrode according to the analog signal.
  • each electrode is driven by a non-isolated current source, multiple current sources share a ground electrode or are called balanced electrodes.
  • the ground electrode is used to balance the extra current from the current sources that does not sum to zero due to current errors.
  • current source 1 is set to 5mA and connected to electrode 1+.
  • Current source 2 is set to -5mA and connected to electrode 1-. At this time, there is no current passing through the ground electrode, and the current of electrode 1+ completely passes through electrode 1. -flow past.
  • FIG 29 is a schematic structural diagram of the electromagnetic stimulation device provided by this application. As shown in Figure 29, the device includes:
  • the receiving module 11 is used to receive operating instructions input by the user;
  • the control module 12 is configured to respond to the operation instruction, and when the operation instruction is used to instruct deep stimulation of the target area of the target object, control the pulse electrical stimulation TES device in the electromagnetic stimulation device to perform deep stimulation in the target area.
  • the current direction in the electromagnetic stimulation device is the same as the current direction in the target area of the pulsed magnetic stimulation TMS device in the electromagnetic stimulation device, so that the pulsed electrical stimulation TES device and the pulsed magnetic stimulation TMS in the target area
  • the current signal generated in the target area is electromagnetically stimulated, and the stimulation intensity corresponding to the depth stimulation is greater than the first preset value;
  • the control module 12 is also used to control the current direction of the pulsed electrical stimulation TES device in the target area when the operation instruction is used to indicate shallow stimulation of the target area, and the The current direction of the pulsed magnetic stimulation TMS device in the target area is opposite, so that the current signal generated by the pulsed electrical stimulation TES device and the pulsed magnetic stimulation TMS in the target area is electromagnetic on the target area. Stimulation, the stimulation intensity corresponding to the shallow stimulation is less than or equal to the first preset value.
  • the device also includes:
  • a determination module configured to determine the arrangement of the pulse electrical stimulation TES device and the pulse magnetic stimulation TMS device according to the target area and stimulation intensity, wherein the stimulation intensity includes deep stimulation and shallow stimulation;
  • a display module is used to display the arrangement of the pulse electrical stimulation TES device and the pulse magnetic stimulation TMS device.
  • the difference between the pulse width of the pulse electrical stimulation TES and the pulse width of the pulse magnetic stimulation TMS is less than the first preset value
  • the pulse width of the pulse electrical stimulation TES and the pulse width of the pulse magnetic stimulation TMS are both less than the second preset value
  • the repetition frequency between the pulses of the pulse electrical stimulation TES and the pulses of the pulse magnetic stimulation TMS is less than the third preset value
  • the pulse electrical stimulation TES and the pulse magnetic stimulation TMS are within The time is synchronized or the time difference between the two is a preset value.
  • the phases of the pulse electrical stimulation TES and the pulse magnetic stimulation TMS waveforms are synchronized and the waveforms are the same, and the amplitude exponential attenuation of the pulse electrical stimulation TES and the pulse magnetic stimulation TMS is less than the fourth preset value. .
  • the waveform of the pulse magnetic stimulation TMS is a bipolar waveform
  • the waveform of the pulse electrical stimulation TES is a bipolar square wave or a bipolar triangle wave
  • the waveform of the pulse electrical stimulation TES is a unipolar square wave or a unipolar triangle wave.
  • the device also includes:
  • An acquisition module configured to acquire the stimulation signal of the target object during electromagnetic stimulation of the target area
  • a comparison module used to compare the intensity of the stimulation signal with the second preset value to obtain a comparison result
  • an adjustment module configured to adjust the current size in the pulse electrical stimulation TES device and/or the pulse magnetic stimulation TMS device according to the comparison result, so that the intensity of the stimulation signal is consistent with the second preset The difference between the values is less than the preset difference.
  • the adjustment module is specifically used for:
  • the comparison result is that the difference between the intensity of the stimulation signal and the second preset value is greater than the preset difference, and the intensity of the stimulation signal is less than the second preset value
  • increase the current in the pulse electrical stimulation TES device the current size in the pulse electrical stimulation TES device is greater than the third preset value, and the intensity of the stimulation signal is less than the second preset value
  • increase the current size in the pulse magnetic stimulation TMS device until the difference between the intensity of the stimulation signal and the second preset value is less than the preset difference.
  • the adjustment module is specifically used for:
  • the pulse electrical stimulation TES device and the second preset value are respectively adjusted according to the preset ratio.
  • the current size in the pulsed magnetic stimulation TMS device is the same.
  • the device of this embodiment can be used to perform the method of any of the foregoing electromagnetic stimulation device-side method embodiments. Its specific implementation process and technical effects are similar to those in the electromagnetic stimulation device-side method embodiments. For details, see Electromagnetic Stimulation Equipment The detailed introduction of the side method embodiment will not be described again here.
  • the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is implemented when executed by a processor to perform the electromagnetic stimulation method provided by each of the above methods.
  • the method includes:
  • the direction of the current in the area is the same as the direction of the current in the target area of the pulsed magnetic stimulation TMS device in the electromagnetic stimulation device, so that the pulsed electrical stimulation TES device and the pulsed magnetic stimulation TMS are used in the target area
  • the current signal generated in the area performs electromagnetic stimulation on the target area, and the stimulation intensity corresponding to the deep stimulation is greater than the first preset value; when the operation instruction is used to instruct shallow stimulation on the target area , controlling the current direction of the pulsed electrical stimulation TES device in the target area to be opposite to the current direction of the pulsed magnetic stimulation TMS device in the target area, so as to pass the pulsed electrical stimulation TES device and the
  • the current signal generated by pulse magnetic stimulation TMS in the target area performs electromagnetic stimulation on the target area, and the stimulation intensity corresponding
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • each embodiment can be implemented by software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disk, optical disk, etc., including a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments or certain parts of the embodiments.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Treatment Devices (AREA)
  • Electrotherapy Devices (AREA)

Abstract

本申请提供一种电磁刺激方法、装置、设备及可读存储介质。该方法应用于医疗技术领域,该方法能够解决现有技术中通过电刺激或磁刺激对目标区域进行刺激时,聚焦性较差的问题。该方法包括:接收用户输入的操作指令;在操作指令用于指示对目标对象的目标区域进行深度刺激的情况下,控制电磁刺激设备中的TES器件在目标区域内的电流方向,和TMS器件在目标区域内的电流方向相同,在操作指令用于指示对目标区域进行浅度刺激的情况下,控制TES器件在目标区域内的电流方向,和TMS器件在目标区域内的电流方向相反,以通过TES器件和TMS在目标区域内产生的电流信号对目标区域进行电磁刺激。本申请可以提高电磁刺激在目标区域的空间聚焦性。

Description

电磁刺激方法、装置、设备及可读存储介质
相关申请的交叉引用
本申请要求于2022年06月30日提交的申请号为202210754796.4,发明名称为“电磁刺激方法、装置、设备及可读存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及医疗技术领域,尤其涉及一种电磁刺激方法、装置、设备及可读存储介质。
背景技术
经颅电刺激(Transcranial Electrical Stimulation,TES)和经颅磁刺激(Transcranial Magnetic Stimulation,TMS)是非常成熟的非侵入神经调控技术,可用于经颅神经调控,也可用于外周神经和肌肉的刺激,并且已经在临床和研究中大量应用,并证明了其有效性。
图1是现有技术中TES的使用方式示意图,如图1所示,在进行TES时,可以将正电极片和负电极片贴于目标对象的目标区域,通过将特定模式的低强度电流作用于目标区域,从而引起细胞膜电位的微小变化,进而调节自发放电率,属于阈下刺激。TES的优点是体积小、功耗低,但存在刺激强度弱、空间聚焦性差的缺点。
图2是现有技术中TMS的使用方式示意图,TMS通过其强大的交变磁场来透过颅骨,并在大脑皮层感应出电流而刺激大脑神经,由于皮肤、颅骨对磁场的阻碍作用很小,大脑皮层中可以感应出足够大的电流来直接激活神经元,属于阈上刺激。TMS优势在于刺激强度大,引发的不适感小,效果显著,其缺点是:虽然TMS的空间聚焦性好于TES,但依然无法满足精准神经调控的需要,难以进一步提高聚焦性。
因此,不论是TES还是TMS,都存在空间聚焦性较差的问题。
发明内容
本申请提供一种电磁刺激方法、装置、设备及可读存储介质,用以解决现有技术中TMS和TES的空间聚焦性不够高的缺陷。
本申请提供一种电磁刺激方法,包括:
接收用户输入的操作指令;
响应于所述操作指令,在所述操作指令用于指示对目标对象的目标区域进行深度刺激的情况下,控制电磁刺激设备中的脉冲电刺激TES器件在所述目标区域内的电流方向,和所述电磁刺激设备中的脉冲磁刺激TMS器件在所述目标区域内的电流方向相同,以通过所述脉冲电刺激TES器件和所述脉冲磁刺激TMS在所述目标区域内产生的电流信号对所述目标区域进行电磁刺激,所述深度刺激对应的刺激强度大于第一预设值;
在所述操作指令用于指示对所述目标区域进行浅度刺激的情况下,控制所述脉冲电刺激TES器件在所述目标区域内的电流方向,和所述脉冲磁刺激TMS器件在所述目标区域内的电流方向相反,以通过所述脉冲电刺激TES器件和所述脉冲磁刺激TMS在所述目标区域内产生的电流信号对所述目标区域进行电磁刺激,所述浅度刺激对应的刺激强度小于或等于所述第一预设值。
根据本申请提供的一种电磁刺激方法,所述方法还包括:
根据所述目标区域以及刺激强度,确定所述脉冲电刺激TES器件和所述脉冲磁刺激TMS器件的排布方式,其中,所述刺激强度包括深度刺激和浅度刺激;
显示所述脉冲电刺激TES器件和所述脉冲磁刺激TMS器件的排布方式。
根据本申请提供的一种电磁刺激方法,脉冲电刺激TES的脉冲宽度和脉冲磁刺激TMS的脉冲宽度之间的差值小于第一预设值,所述脉冲电刺激TES的脉冲宽度和所述脉冲磁刺激TMS的脉冲宽度均小于第二预设值,所述脉冲电刺激TES的脉冲和所述脉冲磁刺激TMS的脉冲之间的重复频率小于第三预设值,所述脉冲电刺激TES和脉冲磁刺激TMS在时间上同步或者两者时间上相差预设值。
根据本申请提供的一种电磁刺激方法,所述脉冲电刺激TES和所述脉冲磁刺激TMS波形的相位同步且波形相同,所述脉冲电刺激TES和所述 脉冲磁刺激TMS的幅值指数衰减均小于第四预设值。
根据本申请提供的一种电磁刺激方法,在所述脉冲磁刺激TMS的波形为双极性波形的情况下,所述脉冲电刺激TES的波形为双极方波或双极三角波;在所述脉冲磁刺激TMS的波形为单极性波形的情况下,所述脉冲电刺激TES的波形为单极方波或单极三角波。
根据本申请提供的一种电磁刺激方法,所述方法还包括:
获取在对所述目标区域进行电磁刺激的过程中所述目标对象的刺激信号;
将所述刺激信号的强度和第二预设值进行比对,得到比对结果;
根据所述比对结果,调整所述脉冲电刺激TES器件和/或所述脉冲磁刺激TMS器件中的电流大小,以使所述刺激信号的强度和所述第二预设值之间的差值小于预设差值。
根据本申请提供的一种电磁刺激方法,所述根据所述比对结果,调整所述脉冲电刺激TES器件和所述脉冲磁刺激TMS器件中的电流大小,包括:
在所述比对结果为所述刺激信号的强度和第二预设值之间的差值大于所述预设差值,且所述刺激信号的强度小于所述第二预设值的情况下,增大所述脉冲电刺激TES器件中的电流,在所述脉冲电刺激TES器件中的电流大小大于第三预设值,且所述刺激信号的强度小于所述第二预设值的情况下,增大所述脉冲磁刺激TMS器件中的电流大小,直至所述刺激信号的强度和所述第二预设值之间的差值小于预设差值。
根据本申请提供的一种电磁刺激方法,所述根据所述比对结果,调整所述脉冲电刺激TES器件和所述脉冲磁刺激TMS器件中的电流大小,包括:
在所述比对结果为所述刺激信号的强度和第二预设值之间的差值大于所述预设差值的情况下,按照预设比例,分别调整所述脉冲电刺激TES器件和所述脉冲磁刺激TMS器件中的电流大小。
本申请还提供一种电磁刺激装置,包括:
接收模块,用于接收用户输入的操作指令;
控制模块,用于响应于所述操作指令,在所述操作指令用于指示对目 标对象的目标区域进行深度刺激的情况下,控制电磁刺激设备中的脉冲电刺激TES器件在所述目标区域内的电流方向,和所述电磁刺激设备中的脉冲磁刺激TMS器件在所述目标区域内的电流方向相同,以通过所述脉冲电刺激TES器件和所述脉冲磁刺激TMS在所述目标区域内产生的电流信号对所述目标区域进行电磁刺激,所述深度刺激对应的刺激强度大于第一预设值;
所述控制模块,还用于在所述操作指令用于指示对所述目标区域进行浅度刺激的情况下,控制所述脉冲电刺激TES器件在所述目标区域内的电流方向,和所述脉冲磁刺激TMS器件在所述目标区域内的电流方向相反,以通过所述脉冲电刺激TES器件和所述脉冲磁刺激TMS在所述目标区域内产生的电流信号对所述目标区域进行电磁刺激,所述浅度刺激对应的刺激强度小于或等于所述第一预设值。
本申请还提供一种电磁刺激设备,包括脉冲电刺激TES器件、脉冲磁刺激TMS器件和控制器,所述控制器分别与所述脉冲电刺激TES器件和所述脉冲磁刺激TMS器件连接,所述控制器用于执行如上任一种实施方式中所述的电磁刺激方法。
根据本申请提供的电磁刺激设备,所述脉冲电刺激TES器件包括TES控制器、数模转换模块、电流源、多个电极对,每个电极对中包括正电极和负电极;
所述数模转换模块分别与所述TES控制器和所述电流源的第一端连接;所述数模转换模块用于将所述TES控制器发送的控制信号进行数模转换,并将转换后的模拟信号发送至所述电流源;
所述电流源的第二端与每个电极对中的正电极连接,所述电流源的第三端与每个电极对中的负电极连接,所述电流源用于根据所述模拟信号向所述电极对中输出电流。
根据本申请提供的电磁刺激设备,所述电流源的第二端通过第一电阻与每个电极对中的正电极连接,所述电流源的第三端通过第二电阻与每个电极对中的负电极连接,其中,与同一个电极对中的正电极连接的第一电阻和与负电极连接的第二电阻的阻值相同,不同电极对对应的第一电阻或第二电阻的阻值不全相同。
根据本申请提供的电磁刺激设备,所述脉冲电刺激TES器件包括TES控制器、多个电源隔离模块、多个数模转换模块、多个电流源和多个电极对,每个电极对中包括正电极和负电极,电源隔离模块、数模转换模块、电流源和电极对一一对应;
所述TES控制器分别和各电源隔离模块的第一端连接,各电源隔离模块的第二端和对应的数模转换模块的第一端连接,所述数模转换模块的第二端和对应的电流源的第一端连接;每个电流源的第二端与对应的电极对中的正电极连接,电流源的第三端与对应的电极对中的负电极连接;
所述数模转换模块用于将所述TES控制器发送的控制信号进行数模转换,并将转换后的模拟信号发送至对应的所述电流源;
所述电流源用于根据所述模拟信号向对应的所述电极对中输出电流。
根据本申请提供的电磁刺激设备,所述脉冲电刺激TES器件包括TES控制器、多个数模转换模块、多个电流源、地电极和多个电极,所述数模转换模块、所述电流源和电极一一对应;
所述TES控制器分别和各数模转换模块的第一端连接,各数模转换模块的第二端和对应的电流源的第一端连接,每个电流源的第二端与对应的电极连接,所有电流源的第三端均与所述地电极连接;
所述数模转换模块用于将所述TES控制器发送的控制信号进行数模转换,并将转换后的模拟信号发送至对应的所述电流源;
所述电流源用于根据所述模拟信号向对应的所述电极中输出电流。
本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种电磁刺激方法。
本申请提供的电磁刺激方法、装置、设备及可读存储介质,该方法通过接收用户输入的操作指令,并在操作指令用于指示对目标对象的目标区域进行深度刺激的情况下,控制电磁刺激设备中的脉冲电刺激TES器件在目标区域内的电流方向,和电磁刺激设备中的脉冲磁刺激TMS器件在目标区域内的电流方向相同,在操作指令用于指示对目标区域进行浅度刺激的情况下,控制脉冲电刺激TES器件在目标区域内的电流方向,和脉冲磁刺激TMS器件在目标区域内的电流方向相反,以通过脉冲电刺激TES器件和脉冲磁刺激TMS在目标区域内产生的电流信号对目标区域进行电磁 刺激,由于在目标区域同时叠加了脉冲电刺激TES器件产生的电流和脉冲磁刺激TMS器件感生的电流,而且可以基于深度刺激或者浅度刺激等不同的需求,调整TES器件和TMS器件在目标区域内的电流方向,可以增大或者减弱目标区域内的电磁刺激强度,由此可以提高电磁刺激在目标区域内的空间聚焦性,满足了精准神经调控的需要。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中TES的使用方式示意图;
图2是现有技术中TMS的使用方式示意图;
图3是现有技术中直流电刺激的电流密度曲线图;
图4为交流电刺激的电流密度曲线图;
图5a为O型线圈在目标对象上方位置示意图;
图5b为O型线圈在目标对象上感生的涡流示意图;
图6a为8字线圈在目标对象上方位置示意图;
图6b为8字线圈在目标对象上感生的涡流示意图;
图7a为锥形线圈在目标对象上方位置示意图;
图7b为锥形线圈在目标对象上感生的涡流示意图;
图8是本申请提供的电磁刺激方法流程示意图;
图9是电磁感应涡流示意图;
图10为TES电场分布图;
图11为TES电场在人脑中的分布图;
图12为本申请在二维平面中的电磁叠加原理示意图;
图13是TES的电场分布图;
图14是TMS感生电场分布图;
图15是电磁叠加电场分布图;
图16是本申请提供的圆形线圈单侧与1对电极的排布图;
图17是本申请提供的圆形线圈中线与1对电极的排布图;
图18是本申请提供的圆形线圈双侧与2对电极的排布图;
图19是本申请提供的8字线圈或锥形线圈中线与1对电极的排布图;
图20是在图19的电极排布方式下的电场分布图;
图21是本申请提供的8字线圈或锥形线圈中线与2对电极的排布图;
图22是本申请提供的8字线圈或锥形线圈与3对电极的排布图;
图23为主控制器与脉冲电刺激TES器件和脉冲磁刺激TMS器件的结构框图;
图24是脉冲磁刺激TMS的脉冲波形图;
图25a为脉冲电刺激TES器件与脉冲磁刺激TMS器件的脉冲电流波形示意图之一;
图25b为脉冲电刺激TES器件与脉冲磁刺激TMS器件的脉冲电流波形示意图之二;
图25c为脉冲电刺激TES器件与脉冲磁刺激TMS器件的脉冲电流波形示意图之三;
图26为本申请提供的脉冲电刺激TES器件结构示意图之一;
图27为本申请提供的脉冲电刺激TES器件结构示意图之二;
图28为本申请提供的脉冲电刺激TES器件结构示意图之三;
图29为本申请提供的电磁刺激装置的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了能够更好的理解本申请的技术方案,在对本申请的技术方案进行介绍之前,先对TES的工作原理和TMS的工作原理进行说明。
其中,TES可以将特定模式的低强度电流作用于目标区域,从而引起细胞膜电位的微小变化,进而调节自发放电率,属于阈下刺激。对于TES 而言,大动物的颅骨厚,而颅骨的导电性较差,导致流经头皮的电流多,同时,脑脊液的导电性好,其包围脑组织,有较强的电屏蔽作用,导致穿过颅骨的电流又会被脑脊液分流一部分,而真正进入大脑皮层的电流只占一小部分,因此,TES的刺激强度弱。虽然后期又发展出了高分辨率经颅电刺激、时频干涉电刺激,但刺激其强度弱、聚焦性差的缺点依然没有本质的改善。而高压经颅电刺激可以非侵入的激活神经***,但是会在头皮诱发痛觉,不舒服的问题。因此后来提出了微电流经颅电刺激,就是通常所指TES。TES可分为直流电刺激(transcranial direct current stimulation,tDCS)、交流电刺激(transcranial alternating-current stimulation,tACS)、随机噪声刺激(Transcranial Random Noise Stimulation,tRNS),刺激电流在100uA-5mA左右。其中,图3是现有技术中直流电刺激的电流密度曲线图,如图3所示,直流电刺激的电流密度通常为1.0mA。图4为交流电刺激的电流密度曲线图,如图4所示,交流电刺激的电流密度的幅值大约在1.0mA左右。另外,TES还包括高分辨率经颅电刺激(High Definition-transcranial Alternating Current Stimulation,HD-tACS)、时频干涉电刺激等,但是,上述的各种TES,均存在刺激强度弱、聚焦性差的缺点。
TMS是利用电磁感应原理,通过线圈中的交变电流产生交变磁场,交变磁场进而在人体中产生感应电场,即涡流(该涡流基本平行于线圈平面),通过该涡流来刺激大脑神经。TMS是一种无痛、无创的绿色治疗方法,由于皮肤、颅骨对磁场的阻碍作用很小,大脑皮层中可以感应出足够大的电流来直接激活神经元,属于阈上刺激。鉴于经颅磁刺激的刺激强度大,引发的不适感小,效果显著,在神经心理科(抑郁症、精分症)、康复科、儿科(脑瘫,自闭症等)等各个方面都得到了应用。
TMS的空间聚焦性虽然好于TES,但依然无法满足精准神经调控的需要,难以进一步提高聚焦性。通常情况下TMS的空间分辨率在0.5~1cm,刺激深度局限于大脑皮质下2-3cm。提高TMS的空间聚焦性和穿透深度一直是用户的追求目标,从圆形型线圈,到8字线圈,再到锥形线圈,但一直没有突破性进展。其中,图5a为O型线圈在目标对象上方位置示意图,图5b为O型线圈在目标对象上感生的涡流示意图;图6a为8字线圈在目标对象上方位置示意图,图6b为8字线圈在目标对象上感生的涡流示意 图;图7a为锥形线圈在目标对象上方位置示意图,图7b为锥形线圈在目标对象上感生的涡流示意图。从图5a-图7b可以看出,8字线圈更具聚焦性,8字线圈使用一对相反电流的圆形线圈,在大脑中感生出2组涡流,2组涡流在相切处的电流方向相同,从而使得靶区电流密度是其它区域处的电流密度高2-3倍。8字线圈的焦点范围是一个椭圆形的,2个线圈的圆心连线方向聚焦性较好,而在2个线圈相切的切线方向的聚焦性较差,迫切需要提高切线方向的聚焦性。
同时,TMS功耗巨大,难以实现便携和可穿戴。在TMS的单脉冲周期约为350us的情况下,其电流峰值可达5000A,10Hz的TMS的短时功率可达数Kw,大部份能量都以热的形式浪费掉,而且也增加了线圈散热的负担。因此降低TMS的功耗也是业界追求的目标。
考虑到上述问题,本申请实施例中,可以将TES和TMS在空间和时间上进行叠加,以通过叠加区域产生的电流信号,对目标对象的目标区域进行电磁刺激,从而可以提高电磁刺激的空间聚焦性。另外,可以通过改变叠加区域内TES和TMS中电流的方向,以加强或者减弱电磁刺激的强度,从而可以满足用户不同的刺激强度的需求。
下面结合图8描述本申请的电磁刺激方法,图8是本申请提供的电磁刺激方法流程示意图,如图8所示,该方法包括:
步骤801:接收用户输入的操作指令。
具体地,本申请的执行主体为电磁刺激设备,也可以理解为电磁刺激设备中的控制器,该控制器可以对电磁刺激设备中的脉冲电刺激TES器件和脉冲磁刺激TMS器件进行控制。
其中,操作指令可以为用户通过点选电磁刺激设备中的不同控件输入的,也可以为通过语音或者文字等方式输入的。例如,可以输入“对经颅进行深度刺激”等。
步骤802:响应于操作指令,在操作指令用于指示对目标对象的目标区域进行深度刺激的情况下,控制电磁刺激设备中的TES器件在目标区域内的电流方向,和电磁刺激设备中的TMS器件在目标区域内的电流方向相同,以通过TES器件和TMS在目标区域内产生的电流信号对目标区域进行电磁刺激。
其中,深度刺激对应的刺激强度大于第一预设值,另外,深度刺激也可以理解为增强刺激。
具体地,在需要对目标对象的目标区域进行深度刺激的情况下,需要保证在目标区域的电磁刺激的强度大于第一预设值。为了达到深度刺激的目的,就需要加强对目标区域的电磁刺激。由于TES的穿透能力有限,大部分电流从浅层皮层流过,深部电流较小,通过在目标区域叠加TMS,使得TES器件中的电流和TMS器件中的电流在目标区域内的方向相同,据此就可以加强目标区域电磁刺激的强度,从而达到深度刺激的目的。
具体地,电磁刺激设备通过TES器件在目标对象的目标区域产生电流,同时通过TMS器件在目标对象的目标区域产生感应电流,通过使TES器件产生的电流和TMS器件产生的感应电流在靶区叠加,并基于叠加的电流对目标区域进行电磁刺激。其中,电磁叠加的原理介绍如下:
图9是电磁感应涡流示意图,如图9所示,TMS利用电磁感应原理,线圈中的交变电流产生交变磁场,交变磁场进而在人体中产生感应电场,即涡流,其属于一种无源有旋场,是环型流动,没有起点和终点,且涡流基本平行于线圈平面。TMS常用的8字型线圈具有较好的空间聚焦性能,是因为2个圆形线圈所感生的2组涡流在两线圈的中间下方同向相加,从而获得较好的刺激强度和空间聚焦性。
图10为TES电场分布图,如图10所示,TES通过电极传递电场,属于有源无旋场,电流单向流动,其总是从正极流向负极,有起点和终点。图11为TES电场在人脑中的分布图,如图11所示,TES电极下方的电场主要垂直于皮层表面,而电极之间的电场主要与皮层相切。
需要进行说明的是,上述的电极可以为侵入式电极,也可以为非侵入式电极。
应理解,TMS的感生电场和TES的电流源产生的电场是2种独立的源,符合叠加定理,在本申请中,将TMS感生的有旋场和TES的无旋场在时间和空间上进行叠加,从而使合成电场具有更高的强度和空间聚焦性。下面先在二维平面中展示电磁叠加的原理,再介绍三维空间中电磁叠加的原理。
在二维平面中,使用TMS和TES刺激导电平面,TMS 8字线圈紧贴 导电平面,电极贴在导电平面上,位于8字线圈的下方,沿8字线圈的两圆的切线方向布置。图12为本申请在二维平面中的电磁叠加原理示意图,如图12所示,实线圆环代表TMS 8字线圈在导电平面内的感应电场,虚线圆环表示TES电刺激电场,“+”“-”表示正负电极,在由TES的“+”到“-”之间构成的靶区,TES的电流方向为从正极到负极,在该靶区同时叠加TMS的情况下,由于TMS感生的电流方向与TES的电流方向相同,从而使得靶区的电流变大,再将靶区叠加的电流刺激目标对象的目标区域时,就可以使目标区域的电磁刺激得到加强。而在正负电极两端之外,TMS与TES的电场方向相反,从而非靶区的电场强度得到削弱。
在三维空间中,当TMS、TES刺激大脑的情况下,TMS的电场方向主要与大脑皮层相切,TES电极之间的电场方向也主要是与大脑皮层相切,因此也具备同向加强、反向削弱的叠加条件,从而提高了脉冲电刺激TES器件和所述脉冲磁刺激TMS在目标区域的刺激强度和空间聚焦性。
使用Simnibs软件和球模型进行仿真,电极尺寸2cm*2cm,电流5mA,线圈为Magstim70mm 8字线圈,di/dt为1.00x1e6A/s。图13是TES的电场分布图;图14是TMS感生电场分布图,图15是电磁叠加电场分布图。如图13-15所示,单独使用TES作用时,灰质表面的最大电场强度为1.23v/m,单独使用TMS作用时,灰质表面的最大电场强度为1.28v/m,TMS与TES叠加后,灰质表面的最大电场强度达到了2.5v/m,因而可以大幅提高刺激强度,同时提高了聚焦性(远离靶区的场强大幅衰减),特别是沿TMS两线圈切线方向上焦斑长度更小。
本申请提供的电磁刺激方法,通过TES在正负电极之间形成的靶区的电场方向与TMS感生电场相同,从而使得刺激加强,在TES的正负电极两端之外,电场方向与TMS感生电场相反,刺激削弱,提高了靶区的电场强度,削弱了非靶区的电场强度,从而达到提高聚焦性的目的。另外,通过将靶区产生的叠加电流作用于目标对象的目标区域进行电磁刺激的方式实现了对神经的精准调控。
步骤803:在操作指令用于指示对目标区域进行浅度刺激的情况下,控制TES器件在目标区域内的电流方向,和TMS器件在目标区域内的电流方向相反,以通过TES器件和TMS在目标区域内产生的电流信号对目 标区域进行电磁刺激。
其中,浅度刺激对应的刺激强度小于或等于第一预设值,另外,浅度刺激也可以理解为削弱刺激。
具体地,在需要对目标对象的目标区域进行浅度刺激的情况下,需要保证在目标区域的电磁刺激的强度小于或等于第一预设值。为了达到浅度刺激的目的,就需要削弱对目标区域的电磁刺激。在目标区域将TES和TMS进行叠加,使得TES器件中的电流和TMS器件中的电流在目标区域内的方向相反,据此就可以削弱目标区域电磁刺激的强度,从而达到浅度刺激的目的。
其中,对于TES器件中的电流和TMS器件中的电流在目标区域内的方向相反时,电磁叠加的原理与前述TES器件中的电流和TMS器件中的电流在目标区域内的方向相同时类似,此处不再赘述。
综上,在深度刺激的情况下,目标区域的刺激得到了加强,刺激区域比较集中;而浅度刺激的刺激区域比较广泛,且可以削弱表层刺激,保留深层刺激。
本申请提供的电磁刺激方法,通过控制脉冲电刺激TES器件和脉冲磁刺激TMS器件产生的电流在靶区内在空间和时间上得到叠加,通过叠加后的电流对目标区域进行电磁刺激,从而提高了电磁刺激在目标区域的空间聚焦性;并且,控制脉冲磁刺激TMS器件和脉冲电刺激TES器件在目标区域内的产生的电流方向相同或者相反,在提高电磁刺激在目标区域的空间聚焦性外,还加强或削弱了电磁刺激的强度,从而实现了对目标区域进行深度刺激或者浅度刺激的目的,进一步提高了对神经调控的精确性。
而且,本申请提供的电磁刺激方法,当脉冲磁刺激TMS器件和电刺激器在目标区域内的产生的电流方向相同的情况下,由于总刺激强度得到了加强,因此可以适当降低TMS的刺激强度,如果TMS电流可以降至1/2,则功耗可降至1/4。因此,本申请通过将脉冲磁刺激TMS器件和电刺激器产生的电流在目标区域叠加且方向相同的方式,可以大幅降低TMS的功耗,从而实现了TMS设备的便携式和可穿戴式,大幅扩展了TMS的应用场景。
进一步地,在上述实施例的基础上,电磁刺激设备还可以根据目标区 域以及刺激强度,确定脉冲电刺激TES器件和脉冲磁刺激TMS器件的排布方式,其中,刺激强度包括深度刺激和浅度刺激;并显示脉冲电刺激TES器件和脉冲磁刺激TMS器件的排布方式。
具体地,电磁刺激设备接收的操作指令中,包括对目标对象需要进行电磁刺激的目标区域以及该目标区域需要达到的刺激强度,其中,刺激强度包括深度刺激和浅度刺激。在实现对目标区域进行深度刺激或浅度刺激的过程中,电磁刺激设备通过接收的该操作指令将脉冲电刺激TES器件和脉冲磁刺激TMS器件的排布方式进行显示。这样,可以方便用户根据显示的排布方式,将TES器件和TMS器件放置到目标对象的目标区域内,以达到深度刺激或浅度刺激的目的,从而可以提高用户的体验。
下面对脉冲电刺激TES器件和脉冲磁刺激TMS器件的排布方式进行具体的介绍:
图16是本申请提供的圆形线圈单侧与1对电极的排布图,如图16所示,传统圆形线圈的刺激点为线圈下的环形部分,将TES电极位于圆环的一侧,则可以加强圆环一侧的刺激强度,削弱圆环另一侧的刺激强度,且两侧是非对等的,一侧加强或削弱的比另一侧更多。
图17是本申请提供的圆形线圈中线与1对电极的排布图,如图17所示,将TES电极位于圆环的中线,可以加强圆环一侧的刺激强度,削弱圆环另一侧的刺激强度,且是对等叠加和削弱。
图18是本申请提供的圆形线圈双侧与2对电极的排布图,如图18所示,2对TES电极分别位于圆环的两侧,通过调整正负电极的极性,实现1侧加强,另1侧削弱,或者2侧都加强或削弱。
图19是本申请提供的8字线圈或锥形线圈中线与1对电极的排布图,图20是在图19的电极排布方式下的电场分布图,如图19和图20所示,中线1对电极削弱表层刺激,实现深部聚焦:正负电极间的TES电场方向与TMS感应电场相反,削弱表层刺激,但由于TES电场随深度衰减更快,TMS深部感应电场受电磁叠加的影响小,从而实现深部聚焦的目的。另外,双锥型线圈是8字线圈的一种特殊情况,是将2个圆形线圈折一个角度,从而产生更深,更宽的磁场,相比较其他TMS线圈,双锥线圈磁场随距离的衰减速度慢,以刺激深部脑区,但双锥型线圈在激活深部皮层的同时, 也会激活线圈下的浅层皮层。
图21是本申请提供的8字线圈或锥形线圈中线与2对电极的排布图,如图21所示,中线2对电极,增强削弱靶区外电场强度的能力。在中线电极的外侧分别增加1个极性相反的电极,在电极1+与电极1-间TES电场与TMS感应电场相同,强度加强,而在电极1+与电极2-间,电极1-与电极2+间,TES电场与TMS感生电场方向相反,强度削弱。
图22是本申请提供的8字线圈或锥形线圈与3对电极的排布图,如图22所示,通过3对电极,可以加强靶区刺激,削弱副边刺激。
需要说明的是:本申请除了上述电极的排布的方式外,还有多种TES电极排布来实现不同的叠加效果,本申请在此不再例举。
进一步地,上述的脉冲电刺激TES的脉冲宽度和脉冲磁刺激TMS的脉冲宽度之间的差值小于第一预设值,脉冲电刺激TES的脉冲宽度和脉冲磁刺激TMS的脉冲宽度均小于第二预设值,且脉冲电刺激TES的脉冲和脉冲磁刺激TMS的脉冲之间的重复频率小于第三预设值。
具体地,图23为主控制器与脉冲电刺激TES器件和脉冲磁刺激TMS器件连接的结构框图,如图23所示,脉冲电刺激TES的脉冲宽度和脉冲磁刺激TMS的脉冲宽度以及重复频率可以通过与其电连接的主控制器进行控制。而主控制器在控制脉冲电刺激TES的脉冲宽度和脉冲磁刺激TMS的脉冲宽度之间的差值小于第一预设值的情况下,可以保证两者输出的脉冲宽度相同或者相近;而控制脉冲电刺激TES的脉冲宽度和脉冲磁刺激TMS的脉冲宽度均小于第二预设值、以及控制脉冲电刺激TES的脉冲和脉冲磁刺激TMS的脉冲之间的重复频率小于第三预设值,可以保证脉冲电刺激TES器件和脉冲磁刺激TMS器件两者在目标区域叠加的电流的波形相同或相近、还可以保证两者的脉冲宽度能够达到对目标区域进行有效刺激的目的。通常,脉冲电刺激TES的脉冲宽度和脉冲磁刺激TMS的脉冲宽度非常短,一般小于500微秒。
本申请提供的电磁刺激方法,通过脉冲电刺激TES的脉冲宽度和脉冲磁刺激TMS的脉冲宽度之间的差值小于第一预设值,脉冲电刺激TES的脉冲宽度和脉冲磁刺激TMS的脉冲宽度均小于第二预设值,脉冲电刺激TES的脉冲和脉冲磁刺激TMS的脉冲之间的重复频率小于第三预设值, 脉冲电刺激TES和脉冲磁刺激TMS在时间上同步或者两者时间上相差预设值,可以使脉冲电刺激TES器件和脉冲磁刺激TMS器件两者在目标区域叠加的电流的波形相同或相近,从而据此实现提高电磁刺激在目标区域的刺激强度和空间聚焦性的目的。此外,由于脉冲电刺激TES的脉冲宽度和脉冲磁刺激TMS的脉冲宽度小于第一预设值(小于500微秒),因此人体可承受的脉冲电刺激TES的电流峰值可以大幅提高,从传统连续TES的5mA提高至50mA,而由于脉冲电刺激TES的电流峰值可以提高,就进一步减小了脉冲磁刺激TMS器件的体积,使得脉冲磁刺激TMS更加方便携带。
进一步地,脉冲电刺激TES和脉冲磁刺激TMS波形的相位可以同步且波形相同,脉冲电刺激TES和脉冲磁刺激TMS的幅值指数衰减均小于第四预设值。
具体地,要实现使脉冲电刺激TES器件和脉冲磁刺激TMS器件在目标区域的电流得到有效叠加,就需要保证两者具有相同或相近的波形,而保证两者具有相同或者相近的波形的措施为:脉冲电刺激TES和脉冲磁刺激TMS的相位相同,且脉冲电刺激TES和脉冲磁刺激TMS的幅值指数衰减均小于第四预设值。而调整TMS与TES产生的电流波形则是通过脉冲电流源来实现的,即:通过脉冲电流源使TMS产生的电流与TES产生的电流具有相同或相近的波形。
示例性的,上述的波形可以包括正弦波和余弦波等。
进一步地,在脉冲磁刺激TMS的波形为双极性波形的情况下,脉冲电刺激TES的波形为双极方波或双极三角波;在脉冲磁刺激TMS的波形为单极性波形的情况下,脉冲电刺激TES的波形为单极方波或单极三角波。
具体地,可以将TES的波形设置为双极方波、双极三角波、单极方波或单极三角波,以近似TMS的波形,避免了脉冲磁刺激TMS和脉冲电刺激TES的波形必须一致的情况,从而使得电磁刺激的应用范围更广泛。
图24是脉冲磁刺激TMS的脉冲波形图,如图24所示,脉冲磁刺激TMS可以是双极性脉冲Biphasic(实线所示),也可以是单极性脉冲Monophasic(虚线所示),从图24中可以看出,余弦脉冲的TES波形与TMS感应电流具有相同的幅值指数衰减,当TES与TMS具有相同或相似 的波形、幅值、衰减度的情况下,两者对目标区域的电磁刺激效果最佳。
下面以常用的双极性脉冲Biphasic为例说明脉冲磁刺激TMS和脉冲电刺激TES如何同步。
脉冲电刺激TES器件采用脉冲电流源,电流源可以避免脉冲磁刺激TMS感生电压的影响,其波形、相位可以与脉冲磁刺激TMS感生电场完全相同,也可以有所不同。
双极性脉冲磁刺激TMS线圈电流函数为:
Figure PCTCN2022125020-appb-000001
其中,V C(0)为初始电容电压,ω为角频率,L为电感值,α为衰减速度,t为时间。
脉冲磁刺激TMS在人体中感生的电流I TMS(t)的简化表达式为:
I TMS(t)=I TMS(0)Cos(ωt)exp(-αt),t≥0
其中,I TMS(0)为TMS感应电流I L(t)的峰值,与线圈距离、线圈强度、被试组织特性有关。
主控制器通过控制脉冲电刺激TES器件电流的以上参数,使得该参数与脉冲磁刺激TMS器件的电流对应参数一致,就可以实现脉冲磁刺激TMS和脉冲电刺激TES的同步。
图25a为脉冲电刺激TES器件与脉冲磁刺激TMS器件的脉冲电流波形示意图之一,图25b为脉冲电刺激TES器件与脉冲磁刺激TMS器件的脉冲电流波形示意图之二,图25c为脉冲电刺激TES器件与脉冲磁刺激TMS器件的脉冲电流波形示意图之三。其中,实线为双极性TMS线圈电流所感生出的电压波形,为幅值按指数衰减的单脉冲余弦波形。脉冲电刺激TES器件与脉冲磁刺激TMS器件之间通过同步触发,实现严格的时间同步。脉冲电刺激TES的波形数据预先存储在主控制器中,当接收到触发信号后可以输出电流波形。
本申请提供的电磁刺激方法,通过使脉冲电刺激TES和脉冲磁刺激TMS的相位相同;且脉冲电刺激TES和脉冲磁刺激TMS的幅值指数衰减均小于第四预设值,实现了脉冲电刺激TES器件和脉冲磁刺激TMS器件产生的电流在目标区域有效叠加的目的,从而最终实现了提高电磁刺激在 目标区域的刺激强度和空间聚焦性的目的。
进一步地,在对目标对象的目标区域进行电磁刺激的过程中,可以基于刺激过程中的刺激信号调整脉冲电刺激TES器件和/或脉冲磁刺激TMS器件中的电流大小,从而使得电磁刺激的强度与实际需要的强度更加接近。
示例性的,可以获取在对目标区域进行电磁刺激的过程中目标对象的刺激信号,将刺激信号的强度和第二预设值进行比对,得到比对结果,并根据比对结果,调整脉冲电刺激TES器件和/或脉冲磁刺激TMS器件中的电流大小,以使刺激信号的强度和第二预设值之间的差值小于预设差值。
具体地,本申请通过刺激信号来衡量电磁刺激对目标对象的作用,在刺激信号的强度与第二预设值之间的差值小于预设差值的情况下,说明电磁刺激对目标对象的刺激强度与预设的刺激强度相近。因此,电磁刺激设备通过获取刺激信号的强度,并将刺激信号的强度和第二预设值进行比对,来判断当前的电磁刺激的强度是否合适,如果刺激信号的强度和第二预设值之间的差值大于预设差值,说明电磁刺激的强度过大或过小,此时,需要调整脉冲电刺激TES器件在目标区域的电流大小、或者调整脉冲磁刺激TMS器件在目标区域的电流大小、或者共同调整脉冲电刺激TES器件和脉冲磁刺激TMS器件在目标区域的电流大小,从而调整电磁刺激的强度。
应理解,上述的刺激信号例如可以为肌电信号、脑电信号或脑血氧信号等。
本申请提供的电磁刺激方法,通过调整脉冲电刺激TES器件和/或脉冲磁刺激TMS器件中的电流大小,使刺激信号的强度和第二预设值之间的差值小于预设差值,使得调整后的电磁刺激的强度与预设的刺激强度相近,避免了刺激强度过小,对目标区域的刺激没有产生实质的刺激作用,或者刺激强度过大,导致用户体验不好的现象。另外,由于在对目标区域进行电磁刺激的过程中,可以实时调整刺激强度,从而提高了对目标对象的目标区域进行电磁刺激的精确性。
进一步地,本申请在上述实施例的基础上,在根据比对结果,调整脉冲电刺激TES器件和脉冲磁刺激TMS器件中的电流大小时,在一种可能的实现方式中,在比对结果为刺激信号的强度和第二预设值之间的差值大于预设差值,且刺激信号的强度小于第二预设值的情况下,增大脉冲电刺 激TES器件中的电流,在脉冲电刺激TES器件中的电流大小大于第三预设值,且刺激信号的强度小于第二预设值的情况下,增大脉冲磁刺激TMS器件中的电流大小,直至刺激信号的强度和第二预设值之间的差值小于预设差值。
具体地,在刺激信号的强度小于第二预设值的情况下,说明电磁刺激的强度不够大,不能对目标对象产生实质的作用。因此,需要加大刺激,直到加大到刺激信号的强度和第二预设值之间的差值小于预设差值的情况下,电磁刺激才能够对目标对象产生实质的作用。在加大刺激强度时,由于磁刺激相比电刺激消耗的功耗更大,因此为了降低功耗,本申请首先通过调节脉冲电刺激TES器件中的电流的方式来使刺激信号的强度和第二预设值之间的差值小于预设差值。由于当脉冲电刺激TES器件中的电流大于第三预设值的情况下,目标对象会出现不适的现象,因此,在脉冲电刺激TES器件的电流大小小于第三预设值的情况下,优先调节脉冲电刺激TES器件中的电流大小,只有当脉冲电刺激TES器件中的电流大小大于第三预设值的情况下,再增大脉冲磁刺激TMS器件中的电流大小,以使刺激信号的强度和第二预设值之间的差值小于预设差值。
本申请提供的电磁刺激方法,通过比对刺激信号与第二预设值之间的差值、以及刺激信号与第二预设值大小的方式,来优先增大脉冲电刺激TES器件中的电流大小的调整方式实现对目标对象的有效刺激,能够保证在对目标对象实施有效刺激的情况下,使电磁刺激设备的功耗尽可能地降低。
在另一种可能的实现方式中,在比对结果为刺激信号的强度和第二预设值之间的差值大于预设差值,且刺激信号的强度大于第二预设值的情况下,减小脉冲磁刺激TMS器件中的电流,在脉冲磁刺激TMS器件中的电流大小小于第四预设值,且刺激信号的强度大于第二预设值的情况下,减小脉冲电刺激TES器件中的电流大小,直至刺激信号的强度和第二预设值之间的差值小于预设差值。
具体地,该调整方式与上一种调整方式相反,上一种调整方式为通过加强刺激来实现对目标对象的有效刺激。而本调节方式是通过减小刺激来实现对目标对象的有效刺激。在刺激信号的强度大于第二预设值的情况下,说明对目标对象的电磁刺激强度过大,需要降低电磁刺激的强度,当降低 到比对结果为刺激信号的强度和第二预设值之间的差值小于预设差值的情况下,说明电磁刺激能够对目标对象实施有效刺激。而在降低刺激强度的过程中,为了保证对目标对象实施有效刺激的情况下,通过优先减小脉冲磁刺激TMS器件中的电流大小的方式来使刺激信号的强度和第二预设值之间的差值小于预设差值,然而,在脉冲磁刺激TMS器件中的电流大小小于第四预设值的情况下,说明脉冲磁刺激TMS器件无法实现对目标对象的有效刺激,则就需要通过调整脉冲电刺激TES器件中的电流大小的方式,来保证脉冲磁刺激TMS器件对目标对象的有效刺激,而当脉冲电刺激TES器件中的电流大小调节到刺激信号的强度和第二预设值之间的差值小于预设差值的情况下,说明电磁刺激的强度能够达到对目标对象的有效刺激,则停止减小脉冲电刺激TES器件中的电流大小。
本申请提供的电磁刺激方法,通过比对结果为刺激信号的强度和第二预设值之间的差值大于预设差值,且刺激信号的强度大于第二预设值的方式,来优先减小脉冲电刺激TES器件中的电流大小的实现对目标对象的有效刺激,能够在保证对目标对象实施有效刺激的情况下,使电磁刺激设备的功耗尽可能地降低。
在再一种实现方式中,在比对结果为刺激信号的强度和第二预设值之间的差值大于预设差值的情况下,可以按照预设比例,分别调整脉冲电刺激TES器件和脉冲磁刺激TMS器件中的电流大小。
具体地,在比对结果为刺激信号的强度和第二预设值之间的差值大于预设差值的情况下,通过同时调整脉冲电刺激TES器件和脉冲磁刺激TMS器件中的电流大小的方式,来使刺激信号的强度和第二预设值之间的差值小于预设差值。而调整的方式可以包括按照预设比例,分别调整脉冲电刺激TES器件和脉冲磁刺激TMS器件中的电流大小,实现对目标对象的有效刺激。举例来说,该预设比例可以为1:4、3:7、4:6等,本申请对此不作限制,只要能够最快、最有效地对目标对象实施有效刺激的目的即可。
本申请实施例提供的电磁刺激方法,通过预设比例来同时分别调整脉冲电刺激TES器件和脉冲磁刺激TMS器件中的电流大小,能够使刺激信号的强度和第二预设值之间的差值在最短的时间内达到小于预设差值的目的,从而提高了对目标对象实施有效电磁刺激的效率。
在再一种可能的实现方式中,在比对结果为刺激信号的强度和第二预设值之间的差值大于预设差值的情况下,输出提示信息,该提示信息用于提醒用户调整脉冲电刺激TES器件和/或脉冲磁刺激TMS器件的放置位置。
具体地,在脉冲电刺激TES器件、或脉冲磁刺激TMS器件的在目标区域的放置位置由于误差范围比较大的情况下,通过优先调整脉冲电刺激TES器件和/或脉冲磁刺激TMS器件的放置位置来实现对目标对象的有效刺激,从而实现对目标对象实施有效电磁刺激的效率。而调整脉冲电刺激TES器件和/或脉冲磁刺激TMS器件的放置位置可以参考图16-图22的电极排布的方式来实现,在此不再赘述。
本申请还提供一种电磁刺激设备,图23为主控制器与脉冲电刺激TES器件和脉冲磁刺激TMS器件的结构框图,如图23所示,该电磁刺激设备包括脉冲电刺激TES器件232、脉冲磁刺激TMS器件233和控制器231,控制器231分别与脉冲电刺激TES器件232和脉冲磁刺激TMS器件233电连接,控制器231可以执行上述任一实施例中所述的电磁刺激方法。
进一步地,本申请在图23实施例的基础上,提供了3种脉冲电刺激TES器件的结构图,分别为单通道电流源多电极式,隔离多通道电流源式和非隔离多通道电流源式。该3种电流源均可产生与TMS感生电压波形相同的电场,且多个通道电流源波形相同,幅值可以不同,以实现更好的叠加效果。
图26为本申请提供的脉冲电刺激TES器件结构示意图之一,如图26所示,脉冲电刺激TES器件包括TES控制器、数模转换模块、电流源、多个电极对,每个电极对中包括正电极和负电极。
数模转换模块分别与TES控制器和所述电流源的第一端连接;数模转换模块用于将TES控制器发送的控制信号进行数模转换,并将转换后的模拟信号发送至所述电流源;电流源的第二端与每个电极对中的正电极连接,电流源的第三端与每个电极对中的负电极连接,所述电流源用于根据所述模拟信号向电极对中输出电流。
具体地,本申请提供的脉冲电刺激TES器件为单通道电流源多电极式,其使用1个电流源推动多个电极,每个电极对可以串联不同阻值的电阻, 该电阻用于调节电流在不同电极对间的分配比例,从而可以根据目标对象的实际情况灵活取用并排布该电极对。
本申请提供的电磁刺激设备,由于该单通道电流源多电极式的脉冲电刺激TES器件包括多个电流大小不同的电极对,从而可以根据目标对象的实际情况灵活取用并排布该电极对,提高了对目标区域的刺激效率。
进一步地,本申请提供的电磁刺激设备,如图26所示,电流源的第二端通过第一电阻与每个电极对中的正电极连接,电流源的第三端通过第二电阻与每个电极对中的负电极连接,其中,与同一个电极对中的正电极连接的第一电阻和与负电极连接的第二电阻的阻值相同,不同电极对对应的第一电阻或第二电阻的阻值不全相同。
本申请提供的电磁刺激设备,由于不同电极对对应的第一电阻或第二电阻的阻值不全相同,从而不同的电极对可以输出不同的电流,以提供不同刺激强度的电磁刺激,为用户提供了多个选择,增加了使用的灵活性。
图27为本申请提供的脉冲电刺激TES器件结构示意图之二,如图27所示,脉冲电刺激TES器件包括TES控制器、多个电源隔离模块、多个数模转换模块、多个电流源和多个电极对,每个电极对中包括正电极和负电极,电源隔离模块、数模转换模块、电流源和电极对一一对应;TES控制器分别和各电源隔离模块的第一端连接,各电源隔离模块的第二端和对应的数模转换模块的第一端连接,数模转换模块的第二端和对应的电流源的第一端连接;每个电流源的第二端与对应的电极对中的正电极连接,电流源的第三端与对应的电极对中的负电极连接;所述数模转换模块用于将TES控制器发送的控制信号进行数模转换,并将转换后的模拟信号发送至对应的所述电流源;电流源用于根据模拟信号向对应的所述电极对中输出电流。
本申请提供的电磁刺激设备,由于脉冲电刺激TES器件为隔离多通道电流源式,其每对电极均由1个隔离式电流源推动,由于通道间是电气隔离的,因此可以精确控制每对电极的电流,且不受其它通道的干扰,从而提高了电磁刺激的精确度。
图28为本申请提供的脉冲电刺激TES器件结构示意图之三,如图28所示,脉冲电刺激TES器件包括TES控制器、多个数模转换模块、多个电 流源、多个电极和地电极,多个电极中包括正电极和负电极,数模转换模块、电流源和电极一一对应;TES控制器分别和各数模转换模块的第一端连接,各数模转换模块的第二端和对应的电流源的第一端连接,每个电流源的第二端与对应的电极连接,所有电流源的第三端均与所述地电极连接;数模转换模块用于将TES控制器发送的控制信号进行数模转换,并将转换后的模拟信号发送至对应的电流源;电流源用于根据所述模拟信号向对应的电极中输出电流。
本申请提供的电磁刺激设备,由于每个电极均由1个非隔离电流源推动,多个电流源共用地电极或者称作为平衡电极。通过精确配置每个电流源的幅值,使所有电流源的总和为0,从而实现精确分配每个电极电流的目的。地电极用于平衡因电流误差导致的电流源的总和不为0的额外电流。以2通道为例,电流源1设置为5mA,接电极1+,电流源2设置为-5mA,接电极1-,此时,地电极上没有电流通过,电极1+的电流完全通道电极1-流过。
图29为本申请提供的电磁刺激装置的结构示意图,如图29所示,该装置包括:
接收模块11,用于接收用户输入的操作指令;
控制模块12,用于响应于所述操作指令,在所述操作指令用于指示对目标对象的目标区域进行深度刺激的情况下,控制电磁刺激设备中的脉冲电刺激TES器件在所述目标区域内的电流方向,和所述电磁刺激设备中的脉冲磁刺激TMS器件在所述目标区域内的电流方向相同,以通过所述脉冲电刺激TES器件和所述脉冲磁刺激TMS在所述目标区域内产生的电流信号对所述目标区域进行电磁刺激,所述深度刺激对应的刺激强度大于第一预设值;
所述控制模块12,还用于在所述操作指令用于指示对所述目标区域进行浅度刺激的情况下,控制所述脉冲电刺激TES器件在所述目标区域内的电流方向,和所述脉冲磁刺激TMS器件在所述目标区域内的电流方向相反,以通过所述脉冲电刺激TES器件和所述脉冲磁刺激TMS在所述目标区域内产生的电流信号对所述目标区域进行电磁刺激,所述浅度刺激对应的刺激强度小于或等于所述第一预设值。
可选地,所述装置还包括:
确定模块,用于根据所述目标区域以及刺激强度,确定所述脉冲电刺激TES器件和所述脉冲磁刺激TMS器件的排布方式,其中,所述刺激强度包括深度刺激和浅度刺激;
显示模块,用于显示所述脉冲电刺激TES器件和所述脉冲磁刺激TMS器件的排布方式。
可选地,脉冲电刺激TES的脉冲宽度和脉冲磁刺激TMS的脉冲宽度之间的差值小于第一预设值,所述脉冲电刺激TES的脉冲宽度和所述脉冲磁刺激TMS的脉冲宽度均小于第二预设值,且所述脉冲电刺激TES的脉冲和所述脉冲磁刺激TMS的脉冲之间的重复频率小于第三预设值,所述脉冲电刺激TES和脉冲磁刺激TMS在时间上同步或者两者时间上相差预设值。
可选地,所述脉冲电刺激TES和所述脉冲磁刺激TMS波形的相位同步且波形相同,所述脉冲电刺激TES和所述脉冲磁刺激TMS的幅值指数衰减均小于第四预设值。
可选地,在所述脉冲磁刺激TMS的波形为双极性波形的情况下,所述脉冲电刺激TES的波形为双极方波或双极三角波;在所述脉冲磁刺激TMS的波形为单极性波形的情况下,所述脉冲电刺激TES的波形为单极方波或单极三角波。
可选地,所述装置还包括:
获取模块,用于获取在对所述目标区域进行电磁刺激的过程中所述目标对象的刺激信号;
比对模块,用于将所述刺激信号的强度和第二预设值进行比对,得到比对结果;
调整模块,用于根据所述比对结果,调整所述脉冲电刺激TES器件和/或所述脉冲磁刺激TMS器件中的电流大小,以使所述刺激信号的强度和所述第二预设值之间的差值小于预设差值。
可选地,所述调整模块,具体用于:
在所述比对结果为所述刺激信号的强度和第二预设值之间的差值大于所述预设差值,且所述刺激信号的强度小于所述第二预设值的情况下,增 大所述脉冲电刺激TES器件中的电流,在所述脉冲电刺激TES器件中的电流大小大于第三预设值,且所述刺激信号的强度小于所述第二预设值的情况下,增大所述脉冲磁刺激TMS器件中的电流大小,直至所述刺激信号的强度和所述第二预设值之间的差值小于预设差值。
可选地,所述调整模块,具体用于:
在所述比对结果为所述刺激信号的强度和第二预设值之间的差值大于所述预设差值的情况下,按照预设比例,分别调整所述脉冲电刺激TES器件和所述脉冲磁刺激TMS器件中的电流大小。
本实施例的装置,可以用于执行前述电磁刺激设备侧方法实施例中任一实施例的方法,其具体实现过程与技术效果与电磁刺激设备侧方法实施例中类似,具体可以参见电磁刺激设备侧方法实施例中的详细介绍,此处不再赘述。
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供的电磁刺激方法,该方法包括:
接收用户输入的操作指令;响应于所述操作指令,在所述操作指令用于指示对目标对象的目标区域进行深度刺激的情况下,控制电磁刺激设备中的脉冲电刺激TES器件在所述目标区域内的电流方向,和所述电磁刺激设备中的脉冲磁刺激TMS器件在所述目标区域内的电流方向相同,以通过所述脉冲电刺激TES器件和所述脉冲磁刺激TMS在所述目标区域内产生的电流信号对所述目标区域进行电磁刺激,所述深度刺激对应的刺激强度大于第一预设值;在所述操作指令用于指示对所述目标区域进行浅度刺激的情况下,控制所述脉冲电刺激TES器件在所述目标区域内的电流方向,和所述脉冲磁刺激TMS器件在所述目标区域内的电流方向相反,以通过所述脉冲电刺激TES器件和所述脉冲磁刺激TMS在所述目标区域内产生的电流信号对所述目标区域进行电磁刺激,所述浅度刺激对应的刺激强度小于或等于所述第一预设值。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多 个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (15)

  1. 一种电磁刺激方法,包括:
    接收用户输入的操作指令;
    响应于所述操作指令,在所述操作指令用于指示对目标对象的目标区域进行深度刺激的情况下,控制电磁刺激设备中的脉冲电刺激TES器件在所述目标区域内的电流方向,和所述电磁刺激设备中的脉冲磁刺激TMS器件在所述目标区域内的电流方向相同,以通过所述脉冲电刺激TES器件和所述脉冲磁刺激TMS在所述目标区域内产生的电流信号对所述目标区域进行电磁刺激,所述深度刺激对应的刺激强度大于第一预设值;
    在所述操作指令用于指示对所述目标区域进行浅度刺激的情况下,控制所述脉冲电刺激TES器件在所述目标区域内的电流方向,和所述脉冲磁刺激TMS器件在所述目标区域内的电流方向相反,以通过所述脉冲电刺激TES器件和所述脉冲磁刺激TMS在所述目标区域内产生的电流信号对所述目标区域进行电磁刺激,所述浅度刺激对应的刺激强度小于或等于所述第一预设值。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    根据所述目标区域以及刺激强度,确定所述脉冲电刺激TES器件和所述脉冲磁刺激TMS器件的排布方式,其中,所述刺激强度包括深度刺激和浅度刺激;
    显示所述脉冲电刺激TES器件和所述脉冲磁刺激TMS器件的排布方式。
  3. 根据权利要求1所述的方法,其中,脉冲电刺激TES的脉冲宽度和脉冲磁刺激TMS的脉冲宽度之间的差值小于第一预设值,所述脉冲电刺激TES的脉冲宽度和所述脉冲磁刺激TMS的脉冲宽度均小于第二预设值,所述脉冲电刺激TES的脉冲和所述脉冲磁刺激TMS的脉冲之间的重复频率小于第三预设值,所述脉冲电刺激TES和脉冲磁刺激TMS在时间上同步或者两者时间上相差预设值。
  4. 根据权利要求3所述的方法,其中,所述脉冲电刺激TES和所述脉冲磁刺激TMS波形的相位同步且波形相同,所述脉冲电刺激TES和所 述脉冲磁刺激TMS的幅值指数衰减均小于第四预设值。
  5. 根据权利要求3所述的方法,其中,在所述脉冲磁刺激TMS的波形为双极性波形的情况下,所述脉冲电刺激TES的波形为双极方波或双极三角波;在所述脉冲磁刺激TMS的波形为单极性波形的情况下,所述脉冲电刺激TES的波形为单极方波或单极三角波。
  6. 根据权利要求3或4所述的方法,其中,所述方法还包括:
    获取在对所述目标区域进行电磁刺激的过程中所述目标对象的刺激信号;
    将所述刺激信号的强度和第二预设值进行比对,得到比对结果;
    根据所述比对结果,调整所述脉冲电刺激TES器件和/或所述脉冲磁刺激TMS器件中的电流大小,以使所述刺激信号的强度和所述第二预设值之间的差值小于预设差值。
  7. 根据权利要求6所述的方法,其中,所述根据所述比对结果,调整所述脉冲电刺激TES器件和所述脉冲磁刺激TMS器件中的电流大小,包括:
    在所述比对结果为所述刺激信号的强度和第二预设值之间的差值大于所述预设差值,且所述刺激信号的强度小于所述第二预设值的情况下,增大所述脉冲电刺激TES器件中的电流,在所述脉冲电刺激TES器件中的电流大小大于第三预设值,且所述刺激信号的强度小于所述第二预设值的情况下,增大所述脉冲磁刺激TMS器件中的电流大小,直至所述刺激信号的强度和所述第二预设值之间的差值小于预设差值。
  8. 根据权利要求6所述的方法,其中,所述根据所述比对结果,调整所述脉冲电刺激TES器件和所述脉冲磁刺激TMS器件中的电流大小,包括:
    在所述比对结果为所述刺激信号的强度和第二预设值之间的差值大于所述预设差值的情况下,按照预设比例,分别调整所述脉冲电刺激TES器件和所述脉冲磁刺激TMS器件中的电流大小。
  9. 一种电磁刺激装置,包括:
    接收模块,用于接收用户输入的操作指令;
    控制模块,用于响应于所述操作指令,在所述操作指令用于指示对目 标对象的目标区域进行深度刺激的情况下,控制电磁刺激设备中的脉冲电刺激TES器件在所述目标区域内的电流方向,和所述电磁刺激设备中的脉冲磁刺激TMS器件在所述目标区域内的电流方向相同,以通过所述脉冲电刺激TES器件和所述脉冲磁刺激TMS在所述目标区域内产生的电流信号对所述目标区域进行电磁刺激,所述深度刺激对应的刺激强度大于第一预设值;
    所述控制模块,还用于在所述操作指令用于指示对所述目标区域进行浅度刺激的情况下,控制所述脉冲电刺激TES器件在所述目标区域内的电流方向,和所述脉冲磁刺激TMS器件在所述目标区域内的电流方向相反,以通过所述脉冲电刺激TES器件和所述脉冲磁刺激TMS在所述目标区域内产生的电流信号对所述目标区域进行电磁刺激,所述浅度刺激对应的刺激强度小于或等于所述第一预设值。
  10. 一种电磁刺激设备,包括脉冲电刺激TES器件、脉冲磁刺激TMS器件和控制器,所述控制器分别与所述脉冲电刺激TES器件和所述脉冲磁刺激TMS器件连接,所述控制器用于执行如权利要求1至8任一项所述电磁刺激方法。
  11. 根据权利要求10所述的电磁刺激设备,其中,所述脉冲电刺激TES器件包括TES控制器、数模转换模块、电流源、多个电极对,每个电极对中包括正电极和负电极;
    所述数模转换模块分别与所述TES控制器和所述电流源的第一端连接;所述数模转换模块用于将所述TES控制器发送的控制信号进行数模转换,并将转换后的模拟信号发送至所述电流源;
    所述电流源的第二端与每个电极对中的正电极连接,所述电流源的第三端与每个电极对中的负电极连接,所述电流源用于根据所述模拟信号向所述电极对中输出电流。
  12. 根据权利要求11所述的电磁刺激设备,其中,所述电流源的第二端通过第一电阻与每个电极对中的正电极连接,所述电流源的第三端通过第二电阻与每个电极对中的负电极连接,与同一个电极对中的正电极连接的第一电阻和与负电极连接的第二电阻的阻值相同,不同电极对对应的第一电阻或第二电阻的阻值不全相同。
  13. 根据权利要求10所述的电磁刺激设备,其中,所述脉冲电刺激TES器件包括TES控制器、多个电源隔离模块、多个数模转换模块、多个电流源和多个电极对,每个电极对中包括正电极和负电极,电源隔离模块、数模转换模块、电流源和电极对一一对应;
    所述TES控制器分别和各电源隔离模块的第一端连接,各电源隔离模块的第二端和对应的数模转换模块的第一端连接,所述数模转换模块的第二端和对应的电流源的第一端连接;每个电流源的第二端与对应的电极对中的正电极连接,电流源的第三端与对应的电极对中的负电极连接;
    所述数模转换模块用于将所述TES控制器发送的控制信号进行数模转换,并将转换后的模拟信号发送至对应的所述电流源;
    所述电流源用于根据所述模拟信号向对应的所述电极对中输出电流。
  14. 根据权利要求10所述的电磁刺激设备,其中,所述脉冲电刺激TES器件包括TES控制器、多个数模转换模块、多个电流源、地电极和多个电极,所述数模转换模块、所述电流源和电极一一对应;
    所述TES控制器分别和各数模转换模块的第一端连接,各数模转换模块的第二端和对应的电流源的第一端连接,每个电流源的第二端与对应的电极连接,所有电流源的第三端均与所述地电极连接;
    所述数模转换模块用于将所述TES控制器发送的控制信号进行数模转换,并将转换后的模拟信号发送至对应的所述电流源;
    所述电流源用于根据所述模拟信号向对应的所述电极中输出电流。
  15. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至8任一项所述电磁刺激方法。
PCT/CN2022/125020 2022-06-30 2022-10-13 电磁刺激方法、装置、设备及可读存储介质 WO2024000924A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210754796.4 2022-06-30
CN202210754796.4A CN114796875B (zh) 2022-06-30 2022-06-30 电磁刺激方法、装置、设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2024000924A1 true WO2024000924A1 (zh) 2024-01-04

Family

ID=82522782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125020 WO2024000924A1 (zh) 2022-06-30 2022-10-13 电磁刺激方法、装置、设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN114796875B (zh)
WO (1) WO2024000924A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114796875B (zh) * 2022-06-30 2022-09-27 中国科学院自动化研究所 电磁刺激方法、装置、设备及可读存储介质
CN116269733B (zh) * 2023-03-20 2024-05-03 成都飞云科技有限公司 一种脉冲消融导管、装置及脉冲消融方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140235927A1 (en) * 2013-02-21 2014-08-21 Brainsway, Inc. Unilateral coils for deep transcranial magnetic stimulation
CN107929938A (zh) * 2017-12-27 2018-04-20 首都医科大学宣武医院 一种经颅电磁同步刺激***
CN111686374A (zh) * 2020-06-17 2020-09-22 天津泰姆斯医疗科技有限责任公司 一种重复经颅磁刺激与电刺激一体化的方法和***
CN114042251A (zh) * 2021-11-17 2022-02-15 国家康复辅具研究中心 多靶点光磁电耦合神经调控装置及方法
CN114796875A (zh) * 2022-06-30 2022-07-29 中国科学院自动化研究所 电磁刺激方法、装置、设备及可读存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8267850B2 (en) * 2007-11-27 2012-09-18 Cervel Neurotech, Inc. Transcranial magnet stimulation of deep brain targets
CN202096603U (zh) * 2011-05-26 2012-01-04 沈阳助邦科技有限公司 多功能抑郁焦虑治疗仪
CN107530549B (zh) * 2015-04-03 2021-05-18 国立大学法人东京大学 经颅磁刺激装置用线圈装置
CN110975153B (zh) * 2019-12-06 2023-09-08 中国科学院苏州生物医学工程技术研究所 一种深度脑刺激的配置方法及***、电子设备、存储介质
CN113440731B (zh) * 2021-08-11 2022-02-15 成都理工大学 用于颅脑电磁刺激的不对称异型线圈及颅脑电磁刺激***
CN114191720A (zh) * 2021-12-20 2022-03-18 天津工业大学 一种用于深度经颅磁刺激的交叉型线圈
CN114129901B (zh) * 2021-12-20 2023-08-22 成都理工大学 一种随动型深部聚焦电磁刺激***及其刺激方法
CN114377296A (zh) * 2022-01-19 2022-04-22 首都医科大学宣武医院 无创脑深部电磁耦合神经调控装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140235927A1 (en) * 2013-02-21 2014-08-21 Brainsway, Inc. Unilateral coils for deep transcranial magnetic stimulation
CN107929938A (zh) * 2017-12-27 2018-04-20 首都医科大学宣武医院 一种经颅电磁同步刺激***
CN111686374A (zh) * 2020-06-17 2020-09-22 天津泰姆斯医疗科技有限责任公司 一种重复经颅磁刺激与电刺激一体化的方法和***
CN114042251A (zh) * 2021-11-17 2022-02-15 国家康复辅具研究中心 多靶点光磁电耦合神经调控装置及方法
CN114796875A (zh) * 2022-06-30 2022-07-29 中国科学院自动化研究所 电磁刺激方法、装置、设备及可读存储介质

Also Published As

Publication number Publication date
CN114796875B (zh) 2022-09-27
CN114796875A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2024000924A1 (zh) 电磁刺激方法、装置、设备及可读存储介质
Sommer et al. TMS of primary motor cortex with a biphasic pulse activates two independent sets of excitable neurones
US20200147379A1 (en) Synergistic muscle activation device
KR101755657B1 (ko) 강한 자기장을 이용한 저주파 전기자극시 발생되는 피부의 통증을 완화시키는 자기장 인가장치
US20140194949A1 (en) Multiplex Electrodes for Applying Transcutaneous Interferential Current
US9186505B2 (en) Transcranial electrostimulation device and method
US20160136424A1 (en) Transcranial pulsed current stimulation
EP3204113A1 (en) Methods and apparatus for stimulation of biological tissue
WO2019184904A1 (zh) 中枢神经磁刺激装置及具有其的保健或医疗器械
US10874846B2 (en) Transcutaneous electrical nerve stimulation electrode needle and transcutaneous electrical nerve stimulation device
Kesikburun Non-invasive brain stimulation in rehabilitation
Zewdie et al. TMS basics: single and paired pulse neurophysiology
KR20100056849A (ko) 고주파치료 및 저주파치료 기능을 동시 적용한 전기치료기
ES2661188T3 (es) Regulador del ritmo cardíaco temporal no invasivo interferencial
Zhao et al. Task-concurrent anodal tDCS modulates bilateral plasticity in the human suprahyoid motor cortex
US20230158321A1 (en) Kilohertz transcranial magnetic perturbation with temporal interference
JP2021514725A (ja) 美容に使用する複合電極パッドを用いた美容機器及びその方法
Zhang et al. Design of a Novel Paired Associative Nerve Stimulation System and Treatment Strategy for incomplete spinal cord injury: a preliminary study
Barker et al. Transcranial magnetic stimulation
Peterchev et al. Transcranial Magnetic Stimulators
CN114225221A (zh) 一种用于经颅磁刺激法的定位帽以及基于定位帽的经颅磁刺激法
Madhavan Magnetic and direct current stimulation for stroke
JP7189594B2 (ja) 非侵襲的ヒト優位半球の大脳運動性言語野判定装置
Bounyong et al. Controlling interfered area in interferential current stimulation by electrode-area patterning
Golaszewski Synaptic plasticity by afferent electrical stimulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949009

Country of ref document: EP

Kind code of ref document: A1