WO2024000300A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2024000300A1
WO2024000300A1 PCT/CN2022/102457 CN2022102457W WO2024000300A1 WO 2024000300 A1 WO2024000300 A1 WO 2024000300A1 CN 2022102457 W CN2022102457 W CN 2022102457W WO 2024000300 A1 WO2024000300 A1 WO 2024000300A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
opening
color
display panel
color pixel
Prior art date
Application number
PCT/CN2022/102457
Other languages
English (en)
French (fr)
Inventor
张如芹
李金钰
邵智猛
祁一歌
曾平川
孔超
黄高坤
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/102457 priority Critical patent/WO2024000300A1/zh
Publication of WO2024000300A1 publication Critical patent/WO2024000300A1/zh

Links

Images

Definitions

  • the present disclosure relates to the field of display technology, and in particular to display panels and display devices.
  • AMOLED Active matrix organic light emitting diode
  • a substrate including a plurality of pixels
  • a pixel defining layer located on the base substrate, the pixel defining layer having a plurality of pixel openings; wherein the plurality of pixels correspond to the plurality of pixel openings in a one-to-one correspondence;
  • the plurality of pixels include first color pixels and second color pixels; wherein the attenuation rate of the viewing angle brightness of the pixel opening of the first color pixel in unit area is the first attenuation rate, and the second color pixel The attenuation rate of the viewing angle brightness of the pixel opening in the unit area is a second attenuation rate, and the first attenuation rate is less than the second attenuation rate;
  • the area of the pixel opening of one of the first color pixels is smaller than the area of the pixel opening of one of the second color pixels.
  • one pixel opening of the first color pixel has a first size
  • one pixel opening of the second color pixel has a second size
  • the first size is smaller than The second size
  • the ratio between the first size and the second size ranges from 1:1.2 to 1:1.6.
  • one pixel opening of the first color pixel has a third size
  • one pixel opening of the second color pixel has a fourth size
  • the third size is smaller than The fourth dimension; the second direction intersects the first direction.
  • the ratio between the third dimension and the fourth dimension ranges from 1:1.2 to 1:1.6.
  • the plurality of pixels further include third color pixels
  • the area of the pixel opening of one of the second color pixels is smaller than the area of the pixel opening of one of the third color pixels.
  • the display panel further includes:
  • a black matrix located on the side of the pixel defining layer facing away from the base substrate; wherein the black matrix has a plurality of black matrix openings; the plurality of black matrix openings correspond to the plurality of pixel openings in one-to-one correspondence;
  • the orthographic projection of the bottom end of the black matrix opening on the base substrate covers the orthographic projection of the corresponding bottom end of the pixel opening on the base substrate.
  • the bottom end of the black matrix opening is at the edge of the orthographic projection of the base substrate and the bottom end of the pixel opening is at the edge of the base substrate.
  • the edge of the orthographic projection has a first opening spacing
  • the bottom end of the black matrix opening is at the edge of the orthographic projection of the base substrate and the bottom end of the pixel opening is at the edge of the orthographic projection of the base substrate and has a second opening. spacing;
  • the first opening spacing is smaller than the second opening spacing.
  • the ratio between the first opening spacing and the second opening spacing ranges from 1:1.2 to 1:2.2.
  • the plurality of pixels further include a third color pixel; in the third color pixel, the bottom end of the black matrix opening is at an edge of the orthographic projection of the base substrate and the The bottom end of the pixel opening has a third opening spacing at the edge of the orthographic projection of the substrate;
  • the third opening spacing is not smaller than the first opening spacing, and the third opening spacing is smaller than the second opening spacing.
  • the display panel further includes:
  • a first refractive index layer located on the side of the pixel defining layer facing away from the base substrate;
  • a second refractive index layer located on the side of the first refractive index layer facing away from the base substrate;
  • the refractive index of the first refractive index layer is smaller than the refractive index of the second refractive index layer
  • the first refractive index layer has an adjustment structure, and the adjustment structure is provided corresponding to at least one of the first color pixel and the second color pixel;
  • the adjustment structure is configured to reduce the exit angle of the light emitted from the pixel opening of the corresponding pixel.
  • the adjustment structure includes a groove, and the sidewalls of the groove are slope-shaped, and the second refractive index layer fills the groove;
  • the groove is arranged corresponding to the first color pixel, and the bottom end of the pixel opening of the first color pixel covers the bottom end of the groove in the orthographic projection of the substrate substrate. orthographic projection.
  • the bottom end of the pixel opening of the first color pixel is at the edge of the orthographic projection of the base substrate, and the bottom end of the groove is at the edge of the orthographic projection of the base substrate.
  • the front projection of the top of the pixel opening of the first color pixel on the base substrate covers the front projection of the top of the groove on the base substrate; or, the third The top of the pixel opening of a color pixel is located in the orthographic projection of the base substrate and the top of the groove is within the orthographic projection of the base substrate.
  • the adjustment structure includes a concave lens array; the second refractive index layer fills the concave lens array;
  • the concave lens array is arranged corresponding to the second color pixel, and the bottom end of the pixel opening of the second color pixel covers the area where the concave lens array is located on the base substrate in an orthographic projection of the substrate. Orthographic projection.
  • each concave lens has the same size, and the spacing distance between every two adjacent concave lenses is the same.
  • the plurality of pixels further include a third color pixel; one first color pixel, one second color pixel, and one third color pixel constitute a repeating unit; Within the repeating unit, the first color pixels and the second color pixels are arranged along a first direction, and a straight line passing through the center of the pixel opening of the third color pixel and perpendicular to the first direction is located in the third color pixel. At the gap between the pixel opening of a pixel of one color and the pixel opening of the pixel of the second color; a plurality of the repeating units are arranged sequentially along the first direction to form a pixel row.
  • the plurality of pixels further include third color pixels
  • One first color pixel, two second color pixels, and one third color pixel form a repeating unit; in the repeating unit, the first color pixel, the two second color pixels, the third color
  • the center of the pixel opening of the pixel forms a quadrilateral
  • a line connecting the center of the pixel opening of the first color pixel and the center of the pixel opening of the third color pixel forms the first diagonal of the quadrilateral
  • the repeating unit is parallel to They are arranged sequentially in the direction of the first diagonal line to form a pixel row.
  • the first color pixel is a red pixel
  • the second color pixel is a green pixel
  • the third color pixel is a blue pixel
  • the pixel opening of any one of the plurality of pixels is at least one of a rectangle, a rhombus, and a circle in an orthographic projection of the substrate.
  • a display device provided by an embodiment of the present disclosure includes the above-mentioned display panel.
  • Figure 1 shows some W viewing angle CIE trajectory diagrams when OLED display panels in related technologies use red, green and blue primary colors of light mixed with white light;
  • Figure 2 shows some single-color viewing angle brightness attenuation diagrams of red OLED, green OLED and blue OLED in related technologies
  • Figure 3 is a comparative schematic diagram of some specific parameters of W viewing angle deflection and W viewing angle brightness attenuation ratio when the OLED display panel in the related art uses red, green and blue primary color light mixed with white light;
  • Figure 4 is a schematic cross-sectional structural diagram of a display panel provided by an embodiment of the present disclosure.
  • Figure 5 is a schematic diagram of an optical path provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic structural diagram of some top views of display panels provided by embodiments of the present disclosure.
  • Figure 7 is another top structural schematic diagram of a display panel provided by an embodiment of the present disclosure.
  • Figure 8 is a schematic cross-sectional structural diagram of a display panel provided by an embodiment of the present disclosure.
  • Figure 9a is a schematic cross-sectional structural diagram of another display panel provided by an embodiment of the present disclosure.
  • Figure 9b is a schematic cross-sectional structural diagram of a display panel provided by an embodiment of the present disclosure.
  • Figure 10a shows some W viewing angle CIE trajectory diagrams when the display panel provided by the embodiment of the present disclosure uses three primary colors of red, green and blue light mixed with white light;
  • Figure 10b shows some monochromatic viewing angle brightness attenuation diagrams of red pixels, green pixels and blue pixels provided by embodiments of the present disclosure
  • Figure 10c is a schematic comparison diagram of some specific parameters of W viewing angle deflection and W viewing angle brightness attenuation ratio when the display panel provided by the embodiment of the present disclosure uses red, green and blue primary color light mixed with white light;
  • Figure 11 is a schematic cross-sectional structural diagram of a display panel provided by an embodiment of the present disclosure.
  • Figure 12 is a schematic cross-sectional structural diagram of a display panel provided by an embodiment of the present disclosure.
  • Figure 13 is a schematic cross-sectional structural diagram of some display panels provided by embodiments of the present disclosure.
  • Figure 14 is a schematic cross-sectional structural diagram of a display panel provided by an embodiment of the present disclosure.
  • Figure 15 is a schematic structural diagram of some further top views of display panels provided by embodiments of the present disclosure.
  • Figure 16 is a schematic structural diagram of some further top views of display panels provided by embodiments of the present disclosure.
  • Figure 17a is another W viewing angle CIE trajectory diagram when the display panel in the related art uses three primary colors of red, green and blue light mixed with white light;
  • Figure 17b is another monochromatic viewing angle brightness attenuation diagram of red pixels, green pixels and blue pixels in the related art
  • Figure 17c is another comparative schematic diagram of specific parameters of W viewing angle deflection and W viewing angle brightness attenuation ratio when the display panel in the related art uses red, green and blue primary color light mixed with white light;
  • Figure 18a is another W viewing angle CIE trajectory diagram when the display panel provided by the embodiment of the present disclosure uses three primary colors of red, green and blue light mixed with white light;
  • Figure 18b is another monochromatic viewing angle brightness attenuation diagram of red pixels, green pixels and blue pixels provided by an embodiment of the present disclosure
  • Figure 18c is another comparative schematic diagram of specific parameters of W viewing angle deflection and W viewing angle brightness attenuation ratio when the display panel provided by the embodiment of the present disclosure uses three primary colors of red, green and blue light mixed with white light;
  • Figure 19 is a schematic cross-sectional structural diagram of a display panel provided by an embodiment of the present disclosure.
  • Figure 20 is a schematic structural diagram of some further top views of display panels provided by embodiments of the present disclosure.
  • Figure 21a is another W viewing angle CIE trajectory diagram when the display panel provided by the embodiment of the present disclosure uses red, green and blue primary color light mixed with white light;
  • Figure 21b is another monochrome viewing angle brightness attenuation diagram of red pixels, green pixels and blue pixels provided by embodiments of the present disclosure
  • Figure 21c is a comparative schematic diagram of some specific parameters of W viewing angle deflection and W viewing angle brightness attenuation ratio when the display panel provided by the embodiment of the present disclosure uses red, green and blue primary color light mixed with white light;
  • Figure 22 is a schematic cross-sectional structural diagram of some display panels provided by embodiments of the present disclosure.
  • Figure 23a is another W viewing angle CIE trajectory diagram when the display panel provided by the embodiment of the present disclosure uses red, green and blue primary color light mixed with white light;
  • Figure 23b is another monochrome viewing angle brightness attenuation diagram of red pixels, green pixels and blue pixels provided by embodiments of the present disclosure
  • Figure 23c is a schematic diagram illustrating further comparisons of specific parameters of W viewing angle deflection and W viewing angle brightness attenuation ratio when the display panel provided by the embodiment of the present disclosure uses three primary colors of red, green and blue light mixed with white light.
  • the first method is to attach a circular polarizer to the light exit side of the OLED display panel. This circular polarizer can reduce the amount of light entering the OLED. The amount of ambient light emitted from the light-emitting surface after being reflected by the internal structure of the OLED display panel.
  • the second method is to set up a color photoresist layer + black matrix on the packaging layer of the OLED display panel, that is, a color filter on encapsulation (COE) structure + black matrix on the packaging layer.
  • COE color filter on encapsulation
  • the color photoresist layer can absorb light It plays a filtering role, so it can also reduce the amount of ambient light that enters the OLED display panel and is reflected from the light-emitting surface after being reflected by the internal structure of the OLED display panel.
  • the color photoresist layer has a higher transmittance to the light emitted by the OLED display panel, and the thickness of the OLED display panel integrated with the color photoresist layer is lower, so OLED It is the development trend for display panels to adopt COE structure + black matrix.
  • the attenuation rate of light emitted by OLEDs of different colors is inconsistent at different viewing angles, resulting in a color shift when the display panel displays images at different viewing angles. For example, when an OLED display panel displays a white screen, it may become blue or pink. In this way, the display effect of the display panel is poor.
  • the display panel may include a plurality of light-emitting devices of different colors.
  • These light-emitting devices of different colors may include: red light-emitting devices that emit red light, green light-emitting devices that emit green light, and blue light-emitting devices that emit blue light.
  • red light-emitting devices that emit red light
  • green light-emitting devices that emit green light
  • blue light-emitting devices that emit blue light.
  • the three primary colors of red, green, and blue can be mixed to achieve color display.
  • the brightness attenuation rates of light-emitting devices of different colors are inconsistent at different viewing angles. Therefore, color shift will occur when the display panel displays white images at different viewing angles.
  • Figure 1 is a W viewing angle CIE (Commission Internationale d'Eclairage) trajectory diagram when the display panel in the related art uses red, green and blue light-emitting devices based on three primary color lights mixed with white light.
  • Figure 2 is a monochromatic viewing angle brightness attenuation diagram of red, green and blue light-emitting devices in the related art.
  • Figure 3 is the W viewing angle when the display panel uses red, green and blue light-emitting devices based on the three primary colors of light mixed with white light in the related art. Schematic diagram comparing the specific parameters of the brightness attenuation ratio of the partial and W viewing angles.
  • CIE Commission Internationale d'Eclairage
  • LR10 represents the single-color viewing angle brightness attenuation curve of the red light-emitting device
  • LG10 represents the single-color viewing angle brightness attenuation curve of the green light-emitting device
  • LB10 represents the single-color viewing angle brightness attenuation curve of the blue light-emitting device.
  • the display panel provided by the embodiment of the present disclosure, as shown in FIGS. 4 to 7 , includes: a base substrate 100 and a pixel defining layer 170 located on the base substrate 100 .
  • the base substrate 100 includes a plurality of pixels (such as spx1 to spx3), the pixel defining layer 170 has a plurality of pixel openings (such as KK1 to KK3), and the plurality of pixels correspond to the plurality of pixel openings in a one-to-one correspondence. That is, one pixel includes one pixel opening.
  • the plurality of pixels include a first color pixel spx1 and a second color pixel spx2; wherein, the attenuation rate of the viewing angle brightness of the pixel opening of the first color pixel spx1 in the unit area is the first attenuation rate, and the pixel of the second color pixel spx2 The attenuation rate of the viewing angle brightness of the opening in unit area is the second attenuation rate, and the first attenuation rate is smaller than the second attenuation rate. And, the area of the pixel opening of a first color pixel spx1 is smaller than the area of the pixel opening of a second color pixel spx2.
  • the attenuation rate of the viewing angle brightness of the first color pixel spx1 is increased on the basis of the original slow rate, thereby increasing the attenuation rate of the viewing angle brightness attenuation of the first color pixel spx1.
  • the decay rate difference is reduced. This can balance the brightness attenuation at the pixel openings of different light-emitting colors to achieve a rough balance and improve the W viewing angle deviation problem.
  • the plurality of pixels also include a third color pixel spx3; a first color pixel spx1, a second color pixel spx2, and a third color pixel spx3 form a Repeating unit.
  • the first color pixel spx1 and the second color pixel spx2 are arranged along the first direction F1, and a straight line passing through the center of the pixel opening of the third color pixel spx3 and perpendicular to the first direction F1 is located at the first color pixel spx1 at the gap between the pixel opening and the pixel opening of the second color pixel spx2.
  • Multiple repeating units are arranged sequentially along the first direction F1 to form a pixel row. And, the plurality of pixel rows are arranged sequentially along the second direction F2.
  • the first direction F1 and the second direction F2 are arranged to cross.
  • the first direction F1 and the second direction F2 are arranged vertically.
  • the first direction F1 is the row direction of the pixels
  • the second direction F2 is the column direction of the pixels.
  • a pixel circuit array layer is disposed between the base substrate and the pixel defining layer.
  • the pixel circuit array layer includes a plurality of pixel circuits. Each pixel opening is provided with a light-emitting device one by one. Each pixel is provided with a pixel circuit and a light-emitting device, and the pixel circuit is coupled to the light-emitting device to input a driving current to the anode of the light-emitting device through the pixel circuit to drive the light-emitting device to emit light.
  • the plurality of pixels provided on the substrate may include red pixels, green pixels and blue pixels, so that red, green and blue colors can be mixed to achieve color display.
  • one pixel includes one pixel opening, and each pixel opening emits light of a corresponding color.
  • the pixel openings included in red pixels are provided with red light-emitting devices that emit red light
  • the pixel openings included in green pixels are provided with green light-emitting devices that emit green light
  • the pixel openings included in blue pixels are provided with blue light-emitting devices that emit blue light.
  • the light-emitting device may be at least one of OLED and QLED (Quantum Dot Light Emitting Diodes).
  • the first color pixel spx1 may be a red pixel, and a red light-emitting device is provided in the first color pixel spx1.
  • the second color pixel spx2 may be a green pixel, and a green light-emitting device is provided in the second color pixel spx2.
  • the third color pixel spx3 may be a blue pixel, and a blue light-emitting device is provided in the third color pixel spx3.
  • first color pixel spx1, the second color pixel spx2 and the third color pixel spx3 can also be pixels of other colors, and the first color pixel spx1
  • the specific color of the second color pixel spx2 and the third color pixel spx3 can be determined according to the actual application requirements, and is not limited here.
  • the light-emitting device may include an anode 210 , a hole injection layer 220 , a first hole transport layer 230 , a second hole transport layer 240 , a light-emitting layer 250 , and a hole blocking layer that are stacked in sequence.
  • the hole injection layer 220, the first hole transport layer 230, the electron blocking layer, the hole blocking layer 260, the electron transport layer 270, and the electron injection layer 280 can further improve the performance of the display panel.
  • the hole injection layer 220 does not limit the specific materials of the hole injection layer 220, the first hole transport layer 230, the electron blocking layer, the hole blocking layer 260, the electron transport layer 270, and the electron injection layer 280.
  • the material forming the electron injection layer 280 may be Yb.
  • the second hole transport layer 240 includes a plurality of second sub-hole transport layers, and each light-emitting device includes one second sub-hole transport layer.
  • the second sub-hole transport layers in different light-emitting devices are arranged independently of each other.
  • the red light-emitting device includes an anode 211, a second sub-hole transport layer 241 and a light-emitting layer 251, and the second sub-hole transport layer 241 is located between the first hole transport layer 230 and the light-emitting layer. between 251.
  • the green light-emitting device includes an anode 212, a second sub-hole transport layer 242 and a light-emitting layer 252, and the second sub-hole transport layer 242 is located between the first hole transport layer 230 and the light-emitting layer 252.
  • the blue light-emitting device includes an anode 213, a second sub-hole transport layer 243 and a light-emitting layer 253, and the second sub-hole transport layer 243 is located between the first hole transport layer 230 and the light-emitting layer 253.
  • the thickness d1 of the second sub-hole transport layer 241 is greater than the thickness d2 of the second sub-hole transport layer 242 and greater than the thickness d3 of the second sub-hole transport layer 243 .
  • the cavity length of the microcavity of the red light-emitting device can be longer than the cavity length of the microcavity of the green light-emitting device, thereby achieving a color gamut of up to 115% @NTSC1931.
  • the thickness d1 can also be increased by ⁇ d1 (for example, ⁇ d1 can be ), reduce the thickness d2 by ⁇ d2 (for example, ⁇ d2 can be ), thereby achieving a color gamut of up to 125%@NTSC1931.
  • the thickness of the second sub-hole transport layers 241 to 243 is different, the thickness difference is very small compared to the thickness of the layered structure in the display panel, and will not cause unevenness of the film layer. Unfair.
  • the pixel opening of any one of the plurality of pixels is a rectangle in the orthographic projection of the base substrate 100.
  • the orthographic projection of the pixel opening KK1 of the first color pixel spx1 on the base substrate 100 is a rectangle
  • the orthographic projection of the pixel opening KK2 of the second color pixel spx2 on the base substrate 100 is also a rectangle.
  • the pixel opening KK3 of the three-color pixel spx3 is also rectangular in the orthographic projection of the base substrate 100 .
  • the long side of the pixel opening KK1 of the first color pixel spx1, the long side of the pixel opening KK2 of the second color pixel spx2, and the long side of the pixel opening KK3 of the third color pixel spx3 are all parallel to the first direction F1.
  • the short side of the pixel opening KK1 of the first color pixel spx1, the short side of the pixel opening KK2 of the second color pixel spx2, and the short side of the pixel opening KK3 of the third color pixel spx3 are all parallel to the second direction F2.
  • the shape of the orthographic projection of the pixel opening on the base substrate is a rectangle.
  • Embodiments of the present disclosure do not limit the shape of the orthographic projection of the pixel opening on the base substrate.
  • the shape of the orthographic projection of the pixel opening on the substrate may also be a circle, an ellipse, or other regular or irregular polygon.
  • the shapes of the orthographic projections of the pixel openings of pixels of different colors on the base substrate may be the same or different (in this case, at least part of the sides must satisfy the above ratio).
  • the cross-section of the pixel opening may be an inverted trapezoid
  • the area of the pixel opening of each pixel may be the area of the orthogonal projection of the top end of the pixel opening (ie, the long side of the inverted trapezoid) on the substrate 100 .
  • the area of the pixel opening KK1 of the first color pixel spx1 is the area of the orthogonal projection of the top of the pixel opening KK1 (ie, the long side of the inverted trapezoid) on the substrate 100 .
  • the area of the pixel opening KK2 of the second color pixel spx2 is the area of the orthogonal projection of the top of the pixel opening KK2 (that is, the long side of the inverted trapezoid) on the base substrate 100 .
  • the area of the pixel opening KK3 of the third color pixel spx3 is the area of the orthogonal projection of the top of the pixel opening KK3 (ie, the long side of the inverted trapezoid) on the base substrate 100 .
  • the pixel opening KK1 of a first color pixel spx1 has a first size r11
  • the pixel opening KK2 of a second color pixel spx2 Having a second size g11 the first size r11 is smaller than the second size g11.
  • the ratio between the first size r11 and the second size g11 ranges from 1:1.2 to 1:1.6. That is, r11:g11 is 1:1.2 ⁇ 1:1.6.
  • r11:g11 can be 1:1.2, r11:g11 can be 1:1.3, r11:g11 can be 1:1.4, r11:g11 can be 1:1.5, or r11:g11 can be 1:1.5, or r11:g11 can be 1:1.5.
  • r11:g11 is 1:1.6.
  • the specific values of r11:g11 can be determined according to the needs of the actual application, and are not limited here.
  • the pixel opening KK1 of a first color pixel spx1 has a third size r12
  • the pixel opening KK2 of a second color pixel spx2 Having a fourth size g12 the third size r12 is smaller than the fourth size g12.
  • the ratio between the third dimension r12 and the fourth dimension g12 ranges from 1:1.2 to 1:1.6. That is, r12:g12 is 1:1.2 ⁇ 1:1.6.
  • r12:g12 can be 1:1.2, r12:g12 can be 1:1.3, r12:g12 can be 1:1.4, r12:g12 can be 1:1.5, or r12:g12 can be 1:1.5, or r12:g12 can be 1:1.5.
  • r12:g12 is 1:1.6.
  • the specific values of r12:g12 can be determined according to the needs of the actual application, and are not limited here.
  • the area of the pixel opening KK2 of a second color pixel spx2 is smaller than the area of the pixel opening KK3 of a third color pixel spx3.
  • the pixel opening KK3 of one third color pixel spx3 has the fifth size b11.
  • the fifth size b11 is larger than the second size g11.
  • r11:g11:b11 is 1:1.2:1.7 ⁇ 1:1.6:1.9.
  • r11:g11:b11 is 1:1.2:1.7, 1:1.2:1.8, 1:1.2:1.9, 1:1.3:1.7, 1:1.3:1.8, 1:1.6:1.7, 1:1.6: One of 1.8, 1:1.6:1.9.
  • the specific values of r11:g11:b11 can be determined according to the needs of the actual application, and are not limited here.
  • the pixel opening KK3 of a third color pixel spx3 has a sixth size b12.
  • the sixth dimension b12 is larger than the fourth dimension g12.
  • r12:g12:b12 is 1:1.2:1.7 ⁇ 1:1.6:1.9.
  • r12:g12:b12 is 1:1.2:1.7, 1:1.2:1.8, 1:1.2:1.9, 1:1.3:1.7, 1:1.3:1.8, 1:1.6:1.7, 1:1.6: One of 1.8, 1:1.6:1.9.
  • the specific values of r12:g12:b12 can be determined according to the needs of the actual application, and are not limited here.
  • the above-mentioned dimensions in the first direction F1 may be the dimensions of the bottom end of the corresponding pixel opening (ie, the short side of the inverted trapezoid) in the orthographic projection of the base substrate 100 along the first direction F1, and the above-mentioned dimensions in the first direction F1 are
  • Each size in the second direction F2 may be the size of the bottom end of the corresponding pixel opening (ie, the short side of the inverted trapezoid) on the orthographic projection of the base substrate 100 along the second direction F2.
  • the first size r11 may be the size of the bottom end (ie, the short side of the inverted trapezoid) of the pixel opening KK1 of the first color pixel spx1 in the orthographic projection of the substrate substrate 100 along the first direction F1
  • the second size g11 is The size of the bottom end (ie, the short side of the inverted trapezoid) of the pixel opening KK2 of the second color pixel spx2 in the orthographic projection of the base substrate 100 along the first direction F1.
  • the fifth size b11 may be the size of the bottom end (ie, the short side of the inverted trapezoid) of the pixel opening KK3 of the third color pixel spx3 in the orthographic projection of the base substrate 100 along the first direction F1.
  • the third size r12 may be the size of the bottom end (ie, the short side of the inverted trapezoid) of the pixel opening KK1 of the first color pixel spx1 in the orthographic projection of the substrate substrate 100 along the second direction F2, and the fourth size g12 may be the second color The size of the bottom end (ie, the short side of the inverted trapezoid) of the pixel opening KK2 of the pixel spx2 in the orthographic projection of the base substrate 100 along the second direction F2.
  • the sixth size b12 may be the size of the bottom end (ie, the short side of the inverted trapezoid) of the pixel opening KK3 of the third color pixel spx3 in the orthographic projection of the base substrate 100 along the second direction F2.
  • first to sixth dimensions may also be the dimensions at the same position from the bottom end of the above-mentioned pixel opening (i.e., the short side of the inverted trapezoid) to the top end (i.e., the long side of the inverted trapezoid), that is, the above-mentioned pixel opening
  • the dimensions at the same position from the bottom end (that is, the short side of the inverted trapezoid) to the top may also comply with the parameter settings of the embodiment of the present disclosure.
  • the first to sixth dimensions may also be the size at the top of the above-mentioned pixel opening (i.e., the long side of the inverted trapezoid). That is, the size of the top of the above-mentioned pixel opening (i.e., the long side of the inverted trapezoid) may also conform to this specification.
  • the parameter settings of the disclosed embodiments are disclosed.
  • the display panel further includes: an encapsulation layer 120 , a black matrix 130 and a color photoresist layer 140 .
  • the encapsulation layer 120 is located on the side of the pixel defining layer 170 facing away from the base substrate 100
  • the black matrix 130 is located on the side of the encapsulation layer 120 facing away from the base substrate 100
  • the color photoresist layer 140 is located on the side of the black matrix 130 facing away from the base substrate 100 .
  • the encapsulation layer 120 may have a stacked first inorganic encapsulation layer 121 , an organic encapsulation layer 122 , and a second inorganic encapsulation layer 123 .
  • a light coupling layer 181 and a LiF film layer 182 are also provided between the encapsulation layer 120 and the cathode.
  • the refractive index of the optical coupling layer 181 is smaller than the refractive index of the LiF film layer 182 and the first inorganic encapsulation layer 121, so that the optical coupling layer 181, the LiF film layer 182 and the first inorganic encapsulation layer 121 can form a high-low-high refractive index. combination to improve light extraction rate.
  • the black matrix 130 and the color photoresist layer 140 can also be disposed between the first inorganic encapsulation layer 121 and the organic encapsulation layer 122 .
  • the black matrix 130 and the color photoresist layer 140 may also be disposed between the organic encapsulation layer 122 and the second inorganic encapsulation layer 123 .
  • the specific positions of the black matrix 130 and the color photoresist layer 140 can be determined according to the needs of the actual application, and are not limited here.
  • the black matrix 130 has multiple black matrix openings, and the multiple black matrix openings correspond to the multiple pixel openings one by one.
  • the orthographic projection of the color photoresist layer 140 on the base substrate 100 covers the orthographic projection of the plurality of black matrix openings on the base substrate 100 .
  • the color photoresist layer 140 has multiple photoresist layers 140 of different colors, the black matrix opening corresponding to the red pixel is covered by the red photoresist layer 140, and the black matrix opening corresponding to the green pixel is covered by the green photoresist layer 140, The black matrix openings corresponding to blue pixels are covered by the blue photoresist layer 140 .
  • the cross-section of the black matrix opening can also be roughly an inverted trapezoid, and the bottom end of the black matrix opening (ie, the short side of the inverted trapezoid) is on the base substrate 100
  • the orthographic projection covers the orthographic projection of the bottom end of the corresponding pixel opening (ie, the short side of the inverted trapezoid) on the base substrate 100 .
  • the black matrix openings can expose the corresponding pixel openings as much as possible on a plane perpendicular to the base substrate 100 .
  • the material of the black matrix is an organic material.
  • the cross section of the actually prepared black matrix cannot be completely in the shape of an inverted trapezoid, but is similar to an inverted trapezoid. shape.
  • the corners of the cross section of the actually prepared black matrix are arc-shaped inverted trapezoids.
  • the bottom end of the black matrix opening is at the edge of the orthographic projection of the substrate substrate 100 and the bottom end of the pixel opening KK1 is at the edge of the orthographic projection of the substrate substrate 100.
  • the bottom end of the black matrix opening is at the edge of the orthographic projection of the base substrate 100 and the bottom end of the pixel opening KK2 is at the edge of the orthogonal projection of the base substrate 100 and has a second opening spacing.
  • the first opening spacing is smaller than the second opening spacing.
  • the ratio between the first opening spacing and the second opening spacing ranges from 1:1.2 to 1:2.2.
  • the range of the ratio between the first opening spacing and the second opening spacing is one of 1:1.2, 1:1.5, 1:1.8, 1:2.0, and 1:2.2.
  • the specific value of the ratio between the first opening spacing and the second opening spacing can be determined according to the needs of the actual application, and is not limited here.
  • the bottom end of the black matrix opening is between the edge of the orthographic projection of the base substrate 100 and the bottom end of the pixel opening KK1
  • the edge of the orthographic projection of the base substrate 100 has a first opening pitch r21.
  • the bottom end of the black matrix opening is at the edge of the orthographic projection of the substrate substrate 100 and the bottom end of the pixel opening KK2 is at the edge of the orthogonal projection of the substrate substrate 100.
  • the opening spacing is g21.
  • the first opening pitch r21 is smaller than the second opening pitch g21.
  • r21:g21 is 1:1.2 ⁇ 1:2.2.
  • r21:g21 is one of 1:1.2, 1:1.5, 1:1.8, 1:2.0, and 1:2.2.
  • the specific values of r21:g21 can be determined according to the needs of the actual application, and are not limited here.
  • the bottom end of the black matrix opening is between the edge of the orthographic projection of the base substrate 100 and the bottom end of the pixel opening KK1
  • the bottom end of the black matrix opening is at the edge of the orthographic projection of the substrate substrate 100 and the bottom end of the pixel opening KK2 is at the edge of the orthogonal projection of the substrate substrate 100.
  • the opening spacing is g22.
  • the first opening pitch r22 is smaller than the second opening pitch g22.
  • r22:g22 is 1:1.2 ⁇ 1:2.2.
  • r22:g22 is one of 1:1.2, 1:1.5, 1:1.8, 1:2.0, and 1:2.2.
  • the specific values of r22:g22 can be determined according to the needs of actual applications, and are not limited here.
  • the bottom end of the black matrix opening is at the edge of the orthographic projection of the substrate substrate 100 and the bottom end of the pixel opening is at the orthogonal projection edge of the substrate substrate 100 .
  • the edge has a third opening spacing.
  • the third opening spacing is not less than the first opening spacing, and the third opening spacing is less than the second opening spacing.
  • the ratio between the first opening spacing and the third opening spacing ranges from 1:1 to 1:1.2.
  • the ratio between the first opening spacing, the second opening spacing and the third opening spacing ranges from 1:1:1.2 to 1:1.2:2.2.
  • the ratio between the first opening spacing, the second opening spacing and the third opening spacing ranges from 1:1:1.2, 1:1:1.5, 1:1.2:1.8, 1:1.2:2.0, 1 :1.2:One of 2.2.
  • the specific numerical values of the ratios between the first opening spacing, the second opening spacing and the third opening spacing can be determined according to the actual application requirements, and are not limited here.
  • the bottom end of the black matrix opening is between the edge of the orthographic projection of the base substrate 100 and the bottom end of the pixel opening KK3
  • the third opening pitch b21 is not less than the first opening pitch r21 and is smaller than the second opening pitch g21.
  • r21:b21 is 1:1 ⁇ 1:1.2.
  • r21:b21 is one of 1:1, 1:1.1, and 1:1.2.
  • r21:g21:b21 is 1:1:1.2 ⁇ 1:1.2:2.2.
  • the specific values of r21:b21 can be determined according to the needs of the actual application, and are not limited here.
  • the bottom end of the black matrix opening is between the edge of the orthographic projection of the base substrate 100 and the bottom end of the pixel opening KK3
  • the third opening pitch b22 is not less than the first opening pitch r22 and is smaller than the second opening pitch g22.
  • r22:b22 is 1:1 ⁇ 1:1.2.
  • r22:b22 is one of 1:1, 1:1.1, and 1:1.2.
  • r22:g22:b22 is 1:1:1.2 ⁇ 1:1.2:2.2.
  • the specific values of r22:b22 can be determined according to the needs of the actual application, and are not limited here.
  • the first opening spacings r21 and r22 can be set to be the same. In this way, the distance between the bottom end of the black matrix opening in the first color pixel spx1 at the edge of the orthographic projection of the substrate substrate 100 and the bottom end of the pixel opening KK1 at the edge of the orthogonal projection of the substrate substrate 100 can be uniformly set. Improved pixel opening placement uniformity.
  • the second opening spacings g21 and g22 may be set to be the same. In this way, the distance between the bottom end of the black matrix opening in the second color pixel spx2 at the edge of the orthographic projection of the substrate substrate 100 and the bottom end of the pixel opening KK2 at the edge of the orthographic projection of the substrate substrate 100 can be uniformly set, Improved pixel opening placement uniformity.
  • the third opening spacings b21 and b22 may be set to be the same. In this way, the distance between the bottom end of the black matrix opening in the third color pixel spx3 at the edge of the orthographic projection of the substrate substrate 100 and the bottom end of the pixel opening KK3 at the edge of the orthographic projection of the substrate substrate 100 can be uniformly set. Improved pixel opening placement uniformity.
  • the display panel further includes: a first refractive index layer 150 and a second refractive index layer 160 .
  • the first refractive index layer 150 is located on the side of the pixel defining layer 170 facing away from the base substrate 100
  • the second refractive index layer 160 is located on the side of the first refractive index layer 150 facing away from the base substrate 100 .
  • the first refractive index layer 150 and the second refractive index layer 160 have different refractive indexes.
  • the refractive index of the first refractive index layer 150 is smaller than the refractive index of the second refractive index layer 160 .
  • the first refractive index layer 150 has an adjustment structure, and the adjustment structure is provided corresponding to the first color pixel spx1.
  • the adjustment structure is configured to reduce the exit angle of the light emitted from the pixel opening of the first color pixel spx1, thereby reducing the exit angle of the light emitted from the pixel opening of the first color pixel spx1 after exiting from the display panel.
  • part of the light emitted from the pixel opening of the first color pixel spx1 can be absorbed by the black matrix 130, so as to reduce the rate of brightness attenuation of the light beam emitted from the pixel opening of the first color pixel spx1 under a large viewing angle, so that The viewing angle brightness attenuation rate of the light emitted by the pixel opening of the first color pixel spx1 is as consistent as possible with the viewing angle brightness attenuation rate of the light emitted by the pixel opening of the second color pixel spx2, thereby reducing the color shift of the display panel.
  • the adjustment structure may include a groove AX, and the sidewalls of the groove AX are slope-shaped, and the second refractive index layer 160 fills the groove AX.
  • the groove AX is arranged corresponding to the first color pixel spx1, and the orthographic projection of the bottom end of the pixel opening of the first color pixel spx1 on the base substrate 100 covers the orthographic projection of the bottom end of the groove AX on the base substrate 100 .
  • the cross section of the groove AX is an inverted trapezoid
  • the bottom end of the groove AX is the short side of the inverted trapezoid
  • the top end of the groove AX is the long side of the inverted trapezoid.
  • the side walls of the groove AX are slope-shaped. Since the refractive index of the second refractive index layer 160 is greater than the refractive index of the first refractive index layer 150, by designing the side walls of the groove AX
  • the specific value of the tilt angle ⁇ can be determined by forming a total reflection plane at the side wall of the groove AX.
  • the light L11 emitted from the edge (such as the right edge) of the pixel opening of the first color pixel spx1 is incident on the left side of the groove AX.
  • the side wall is S1
  • total reflection can occur.
  • the light emitted from the left edge of the pixel opening of the first color pixel spx1 is incident on the side wall on the right side of the groove AX, total reflection can also occur.
  • the light emitted from the pixel opening of the first color pixel spx1 can be concentrated to be emitted from the front viewing angle, which can increase the rate at which the brightness of the light beam emitted from the pixel opening of the first color pixel spx1 at a large viewing angle attenuates, so that the first color
  • the viewing angle brightness attenuation rate of the light emitted by the pixel opening of the pixel spx1 is as consistent as possible with the viewing angle brightness attenuation rate of the light emitted by the pixel opening of the second color pixel spx2, thereby reducing the color shift of the display panel.
  • the bottom end of the pixel opening of the first color pixel spx1 is between the edge of the orthographic projection of the base substrate 100 and the bottom end of the groove AX is between the edge of the orthogonal projection of the base substrate 100
  • It has a first shrinkage value ns1
  • the first shrinkage value ns1 is not less than zero and not greater than 2 ⁇ m, that is, 0 ⁇ ns1 ⁇ 2 ⁇ m. This allows the light L11 emitted from the edge (such as the right edge) of the pixel opening of the first color pixel spx1 to be totally reflected when incident on the side wall S1 on the left side of the groove AX.
  • ns1 0, then the bottom end of the pixel opening of the first color pixel spx1 overlaps with the bottom end of the groove AX at the edge of the orthographic projection of the base substrate 100 .
  • 0 ⁇ ns1 ⁇ 2 ⁇ m then the bottom end of the pixel opening of the first color pixel spx1 at the edge of the orthographic projection of the base substrate 100 does not overlap with the bottom end of the groove AX at the edge of the orthogonal projection of the base substrate 100, And the bottom end of the groove AX is recessed from the edge of the orthographic projection of the base substrate 100 and the bottom end of the pixel opening of the first color pixel spx1 is within the edge of the orthogonal projection of the base substrate 100 .
  • ns1 is one of 0.5 ⁇ m, 1.0 ⁇ m, 1.5 ⁇ m, and 2 ⁇ m. In actual applications, the specific value of ns1 can be determined according to the actual application environment and is not limited here.
  • the front projection of the top of the pixel opening KK1 of the first color pixel spx1 on the base substrate 100 covers the front projection of the top of the groove AX on the base substrate 100 .
  • This can further enable the light L11 emitted from the edge (such as the right edge) of the pixel opening KK1 of the first color pixel spx1 to be totally reflected when incident on the side wall S1 on the left side of the groove AX.
  • the top of the pixel opening of the first color pixel can also be located in the orthographic projection of the base substrate and the top of the groove is within the orthographic projection of the base substrate, which is not limited here.
  • Figure 10a is a W viewing angle CIE (Commission Internationale d'Eclairage) trajectory diagram when the display panel shown in Figure 4 uses three primary colors of red, green and blue light mixed with white light.
  • Figure 10b is a single-color viewing angle brightness attenuation diagram of the display panel shown in Figure 4.
  • Figure 10c is a specific W viewing angle deviation and W viewing angle brightness attenuation ratio when the display panel shown in Figure 4 uses red, green and blue primary color light mixed with white light. Parameter comparison diagram.
  • CIE Commission Internationale d'Eclairage
  • LR11 represents the attenuation curve of the monochromatic viewing angle brightness of the red pixel
  • LG11 represents the attenuation curve of the monochromatic viewing angle brightness of the green pixel
  • LB11 represents the attenuation curve of the monochromatic viewing angle brightness of the blue pixel.
  • Embodiments of the present disclosure provide schematic structural diagrams of other display panels, as shown in FIG. 11 . It is modified from the implementation in the above-mentioned embodiment. Only the differences between this embodiment and the above-mentioned embodiment will be described below, and the similarities will not be described again.
  • the adjustment structure may also include a concave lens array TZ; the second refractive index layer 160 fills the concave lens array TZ.
  • the concave lens array TZ is arranged corresponding to the second color pixel spx2, and the orthographic projection of the bottom end of the pixel opening KK2 of the second color pixel spx2 on the substrate 100 covers the orthographic projection of the area where the concave lens array TZ is located on the substrate 100 .
  • the refractive index of the second refractive index layer 160 is greater than the refractive index of the first refractive index layer 150, when the light emitted from the pixel opening KK2 of the second color pixel spx2 is incident on the concave lens array TZ, the light enters the optically dense medium from the optically sparse medium.
  • the direction of the light changes, which can reduce the brightness attenuation rate of the light beam emitted from the pixel opening of the second color pixel spx2 under a large viewing angle, so that the pixel opening of the first color pixel spx1
  • the viewing angle brightness attenuation rate of the light emitted by KK1 is as consistent as possible with the viewing angle brightness attenuation rate of the light emitted by the pixel opening KK2 of the second color pixel spx2, thereby reducing the color shift of the display panel.
  • each concave lens has the same size.
  • the orthographic projection of each concave lens in the concave lens array TZ on the substrate 100 is a circle, and the size of the concave lens may be the diameter of the orthographic projection of the circle. That is to say, the orthogonal projection diameters of each concave lens in the concave lens array TZ on the base substrate 100 are the same.
  • the spacing distance between every two adjacent concave lenses is the same.
  • the distance between every two adjacent concave lenses in the concave lens array TZ is the same as the center of the orthographic projection of the substrate substrate 100 .
  • Embodiments of the present disclosure provide further structural schematic diagrams of display panels, as shown in FIG. 13 . It is modified from the implementation in the above-mentioned embodiment. Only the differences between this embodiment and the above-mentioned embodiment will be described below, and the similarities will not be described again.
  • the adjustment structure may include both a groove AX and a concave lens array TZ.
  • the groove AX is arranged corresponding to the first color pixel spx1
  • the concave lens array TZ is arranged corresponding to the second color pixel spx2.
  • the groove AX and the concave lens array TZ can be combined with each other, so that the viewing angle brightness attenuation rate of the light emitted by the pixel opening of the first color pixel spx1 is the same as that of the pixel opening of the second color pixel spx2.
  • the viewing angle brightness attenuation rate of the emitted light should be kept as consistent as possible, thereby reducing the color shift of the display panel.
  • Embodiments of the present disclosure provide further structural schematic diagrams of display panels, as shown in FIG. 14 . It is modified from the implementation in the above-mentioned embodiment. Only the differences between this embodiment and the above-mentioned embodiment will be described below, and the similarities will not be described again.
  • one first color pixel spx1, two second color pixels spx2_1 and spx2_2, and one third color pixel spx3 form a repeating unit.
  • the center of the pixel opening of the first color pixel spx1, the two second color pixels spx2_1 and spx2_2, and the third color pixel spx3 forms a quadrilateral BS.
  • the center of the pixel opening of the first color pixel spx1 and the center of the third color pixel spx3 The line connecting the centers of the pixel openings forms the first diagonal line bs1 of the quadrilateral BS, and the line connecting the centers of the pixel openings of the two second color pixels spx2_1 and spx2_2 forms the second diagonal line of the quadrilateral.
  • the repeating units are sequentially arranged along the direction parallel to the first diagonal line bs1 (ie, the fourth direction F4) to form a pixel row.
  • the plurality of pixel rows are arranged sequentially along a direction perpendicular to the first diagonal line (ie, the third direction F3).
  • the third direction F3 is the column direction of the pixels
  • the fourth direction F4 is the row direction of the pixels.
  • the pixel opening of any one of the plurality of pixels is a rhombus in the orthographic projection of the base substrate 100 .
  • the pixel openings of the first color pixel spx1, the second color pixel spx2_1, spx2_2, and the third color pixel spx3 are rhombus-shaped in the orthographic projection of the base substrate 100.
  • one of the two diagonal lines of the rhombus pixel openings of the first color pixel spx1, the second color pixels spx2_1 and spx2_2, and the third color pixel spx3 is parallel to one of the third direction F3 and the fourth direction F4.
  • the diagonal line formed by the diamond-shaped pixel openings of the first color pixel spx1 and the third color pixel spx3 is parallel to the fourth direction F4, and the diagonal line formed by the diamond-shaped pixel openings of the second color pixel spx2_1 and spx2_2 is parallel to the third direction F3 parallel, and a set of opposite sides of the diamond-shaped pixel openings of the first color pixel spx1, the second color pixel spx2 and the third color pixel spx3 are parallel to the first direction F1, and the other set of opposite sides are parallel to the first direction F1.
  • the two directions F2 are parallel.
  • the first direction F1 is perpendicular to the second direction F2, the first direction F1 and the third direction F3 differ by 40°-50°, and the second direction F2 and the fourth direction F4 differ by 40°-50°.
  • the first direction F1 and the third direction F3 differ by 45°
  • the second direction F2 and the fourth direction F4 differ by 45°.
  • the pixel openings of the first color pixel, the second color pixel, and the third color pixel are rhombus-shaped in the orthographic projection of the base substrate.
  • This disclosure does not limit the shape of the orthographic projection of the pixel openings of the first color pixel, the second color pixel, and the third color pixel on the base substrate.
  • the shape of the orthographic projection of the pixel openings of the first color pixel, the second color pixel, and the third color pixel on the base substrate may also be a circle, an ellipse, or other regular or irregular polygons.
  • the shapes of the orthographic projections of the pixel openings of pixels of different colors on the base substrate may be the same or different (in this case, at least part of the sides must satisfy the above ratio).
  • the pixel opening KK1 of a first color pixel spx1 has a first size r31
  • the pixel opening KK2_1 of a second color pixel spx2_1 Having a second size g31_1 the first size r31 is smaller than the second size g31_1.
  • the ratio between the first size r31 and the second size g31_1 ranges from 1:1.2 to 1:1.6. That is, r31:g31_1 is 1:1.2 ⁇ 1:1.6.
  • r31:g31_1 can be 1:1.2, r31:g31_1 can be 1:1.3, r31:g31_1 can be 1:1.4, r31:g31_1 can be 1:1.5, or r31:g31_1 can be 1:1.5, or r31:g31_1 can be 1:1.5.
  • r31:g31_1 is 1:1.6.
  • the specific values of r31:g31_1 can be determined according to the needs of actual applications, and are not limited here.
  • the pixel opening KK1 of a first color pixel spx1 has a first size r31
  • the pixel opening of another second color pixel spx2_2 KK2_2 has a second size g31_2
  • the first size r31 is smaller than the second size g31_2.
  • the ratio between the first size r31 and the second size g31_2 ranges from 1:1.2 to 1:1.6. That is, r31:g31_2 is 1:1.2 ⁇ 1:1.6.
  • r31:g31_2 can be 1:1.2, r31:g31_2 can be 1:1.3, r31:g31_2 can be 1:1.4, r31:g31_2 can be 1:1.5, or r31:g31_2 can be 1:1.5, or r31:g31_2 can be 1:1.5.
  • r31:g31_2 is 1:1.6.
  • the specific values of r31:g31_2 can be determined according to the needs of actual applications, and are not limited here.
  • the second sizes g31_1 and g31_2 may be the same, so that the second sizes of the second color pixels spx2_1 and spx2_2 can be designed uniformly, thereby improving the design uniformity of the display panel.
  • the pixel opening KK1 of a first color pixel spx1 has a third size r32
  • the pixel opening KK2_1 of a second color pixel spx2_1 Having a fourth size g32_1 the third size r32 is smaller than the fourth size g32_1.
  • the ratio between the third dimension r32 and the fourth dimension g32_1 ranges from 1:1.2 to 1:1.6. That is, r32:g32_1 is 1:1.2 ⁇ 1:1.6.
  • r32:g32_1 can be 1:1.2, r32:g32_1 can be 1:1.3, r32:g32_1 can be 1:1.4, r32:g32_1 can be 1:1.5, or r32:g32_1 can be 1:1.5, or r32:g32_1 can be 1:1.5.
  • r32:g32_1 is 1:1.6.
  • the specific values of r32:g32_1 can be determined according to the needs of actual applications, and are not limited here.
  • the pixel opening KK1 of a first color pixel spx1 has a third size r32
  • the pixel opening of another second color pixel spx2_2 KK2_2 has a fourth size g32_2
  • the third size r32 is smaller than the fourth size g32_2.
  • the ratio between the third dimension r32 and the fourth dimension g32_2 ranges from 1:1.2 to 1:1.6. That is, r32:g32_2 is 1:1.2 ⁇ 1:1.6.
  • r32:g32_2 can be 1:1.2, r32:g32_2 can be 1:1.3, r32:g32_2 can be 1:1.4, r32:g32_2 can be 1:1.5, or r32:g32_2 can be 1:1.5, or r32:g32_2 can be 1:1.5.
  • r32:g32_2 is 1:1.6.
  • the specific values of r32:g32_2 can be determined according to the needs of actual applications, and are not limited here.
  • the fourth dimensions g32_1 and g32_2 can be the same, so that the fourth dimensions of the second color pixels spx2_1 and spx2_2 can be designed uniformly, improving the design uniformity of the display panel.
  • the area of the pixel opening KK2_1 of a second color pixel spx2_1 is smaller than the area of the pixel opening KK3 of a third color pixel spx3.
  • the pixel opening KK3 of one third color pixel spx3 has the fifth size b31.
  • the fifth size b31 is larger than the second size g31_1.
  • r31:g31_1:b31 is 1:1.2:1.7 ⁇ 1:1.6:1.9.
  • r31:g31_1:b31 is 1:1.2:1.7, 1:1.2:1.8, 1:1.2:1.9, 1:1.3:1.7, 1:1.3:1.8, 1:1.6:1.7, 1:1.6: One of 1.8, 1:1.6:1.9.
  • the specific values of r31:g31_1:b31 can be determined according to the needs of the actual application, and are not limited here.
  • the area of the pixel opening KK2_2 of another second color pixel spx2_2 is smaller than the area of the pixel opening KK3 of one third color pixel spx3.
  • the pixel opening KK3 of one third color pixel spx3 has the fifth size b31.
  • the fifth size b31 is larger than the second size g31_2.
  • r31:g31_2:b31 is 1:1.2:1.7 ⁇ 1:1.6:1.9.
  • r31:g31_2:b31 is 1:1.2:1.7, 1:1.2:1.8, 1:1.2:1.9, 1:1.3:1.7, 1:1.3:1.8, 1:1.6:1.7, 1:1.6: One of 1.8, 1:1.6:1.9.
  • the specific values of r31:g31_2:b31 can be determined according to the needs of the actual application, and are not limited here.
  • the pixel opening KK3 of a third color pixel spx3 has a sixth size b32.
  • the sixth size b32 is larger than the fourth size g32_1.
  • r32:g32_1:b32 is 1:1.2:1.7 ⁇ 1:1.6:1.9.
  • r32:g32_1:b32 is 1:1.2:1.7, 1:1.2:1.8, 1:1.2:1.9, 1:1.3:1.7, 1:1.3:1.8, 1:1.6:1.7, 1:1.6: One of 1.8, 1:1.6:1.9.
  • the specific values of r32:g32_1:b32 can be determined according to the needs of the actual application, and are not limited here.
  • the pixel opening KK3 of a third color pixel spx3 has a sixth size b32.
  • the sixth size b32 is larger than the fourth size g32_2.
  • r32:g32_2:b32 is 1:1.2:1.7 ⁇ 1:1.6:1.9.
  • r32:g32_2:b32 is 1:1.2:1.7, 1:1.2:1.8, 1:1.2:1.9, 1:1.3:1.7, 1:1.3:1.8, 1:1.6:1.7, 1:1.6: One of 1.8, 1:1.6:1.9.
  • the specific values of r32:g32_2:b32 can be determined according to the needs of actual applications, and are not limited here.
  • the adjustment structure of the first refractive index layer 150 may include a groove AX, and the sidewalls of the groove AX are slope-shaped, and the second refractive index layer 160 fills the groove AX.
  • the groove AX is arranged corresponding to the first color pixel spx1, and the orthographic projection of the bottom end of the pixel opening KK1 of the first color pixel spx1 on the base substrate 100 covers the orthographic projection of the bottom end of the groove AX on the base substrate 100 .
  • the cross section of the groove AX is an inverted trapezoid
  • the bottom end of the groove AX is the short side of the inverted trapezoid
  • the top end of the groove AX is the long side of the inverted trapezoid.
  • the side walls of the groove AX are slope-shaped. Since the refractive index of the second refractive index layer 160 is greater than the refractive index of the first refractive index layer 150, by designing the side walls of the groove AX
  • the specific value of the tilt angle ⁇ can be determined by forming a total reflection plane at the side wall of the groove AX.
  • the light L11 emitted from the edge (such as the right edge) of the pixel opening of the first color pixel spx1 is incident on the left side of the groove AX.
  • the side wall is S1
  • total reflection can occur.
  • the light emitted from the left edge of the pixel opening of the first color pixel spx1 is incident on the side wall on the right side of the groove AX
  • total reflection can also occur.
  • the light emitted from the middle area of the pixel opening of the first color pixel spx1 is incident on the left and right side walls of the groove AX, total reflection will not occur and can be refracted out.
  • part of the light emitted from the pixel opening of the first color pixel spx1 can emit to the outside of the display panel to achieve light emission, and another part of the light emitted from the pixel opening of the first color pixel spx1 is absorbed by the black matrix 130, which can increase the viewing angle at a large angle.
  • the brightness attenuation rate should be kept as consistent as possible, thereby reducing the color shift of the display panel.
  • Figure 17a is a W viewing angle CIE (Commission Internationale d'Eclairage) trajectory diagram when the OLED display panel in the related art uses three primary colors of red, green and blue light mixed with white light.
  • Figure 17b is a monochromatic viewing angle brightness attenuation diagram of red OLED (such as R), green OLED (such as G) and blue OLED (such as B) in the related technology.
  • Figure 17c is an OLED display panel in the related technology that uses red, green and blue three primary colors of light. Schematic diagram comparing specific parameters of W viewing angle deflection and W viewing angle brightness attenuation ratio when white light is mixed.
  • CIE Commission Internationale d'Eclairage
  • Figure 18a is a W viewing angle CIE (Commission Internationale d'Eclairage) trajectory diagram when the display panel shown in Figure 14 uses three primary colors of red, green and blue light mixed with white light.
  • Figure 18b is a monochromatic viewing angle brightness attenuation diagram of the display panel shown in Figure 14.
  • Figure 18c is the specific W viewing angle deviation and W viewing angle brightness attenuation ratio when the display panel shown in Figure 14 uses red, green and blue primary color light mixed with white light. Parameter comparison diagram.
  • CIE Commission Internationale d'Eclairage
  • LR21 represents the attenuation curve of the monochromatic viewing angle brightness of the red pixel
  • LG21 represents the attenuation curve of the monochromatic viewing angle brightness of the green pixel
  • LB21 represents the attenuation curve of the monochromatic viewing angle brightness of the blue pixel.
  • Embodiments of the present disclosure provide further structural schematic diagrams of display panels, as shown in FIG. 19 . It is modified from the implementation in the above-mentioned embodiment. Only the differences between this embodiment and the above-mentioned embodiment will be described below, and the similarities will not be described again.
  • the adjustment structure of the first refractive index layer 150 may also include a concave lens array TZ; the second refractive index layer 160 is filled with the concave lens array TZ.
  • the concave lens array TZ is arranged corresponding to the second color pixels spx2_1 and spx2_2. That is, the second color pixel spx2_1 is provided with a concave lens array TZ, and the orthographic projection of the bottom end of the pixel opening KK2_1 of the second color pixel spx2_1 on the substrate 100 covers the orthographic projection of the area where the concave lens array TZ is located on the substrate 100 .
  • the second color pixel spx2_2 is also provided with a concave lens array TZ, and the orthographic projection of the bottom end of the pixel opening KK2_2 of the second color pixel spx2_2 on the substrate 100 covers the orthographic projection of the area where the concave lens array TZ is located on the substrate 100 . Since the refractive index of the second refractive index layer 160 is greater than the refractive index of the first refractive index layer 150, when the light emitted from the pixel openings of the second color pixels spx2_1 and spx2_2 is incident on the concave lens array TZ, the light enters through the optically sparse medium.
  • Dense medium according to the normal line of the spherical center of the concave lens, the direction of the light changes, which can reduce the brightness attenuation rate of the light beam emitted from the pixel opening of the second color pixel spx2 under a large viewing angle, so that the pixel of the first color pixel spx1
  • the viewing angle brightness attenuation rate of the light emitted by the opening is as consistent as possible with the viewing angle brightness attenuation rate of the light emitted by the pixel opening of the second color pixel spx2, thereby reducing the color shift of the display panel.
  • Figure 21a is a W viewing angle CIE (Commission Internationale d'Eclairage) trajectory diagram when the display panel shown in Figure 19 uses three primary colors of red, green and blue light mixed with white light.
  • Figure 21b is a single-color viewing angle brightness attenuation diagram of the display panel shown in Figure 19.
  • Figure 21c is the specific W viewing angle deviation and W viewing angle brightness attenuation ratio when the display panel shown in Figure 19 uses red, green and blue primary color light mixed with white light. Parameter comparison diagram.
  • CIE Commission Internationale d'Eclairage
  • LR22 represents the attenuation curve of the monochromatic viewing angle brightness of the red pixel
  • LG22 represents the attenuation curve of the monochromatic viewing angle brightness of the green pixel
  • LB22 represents the attenuation curve of the monochromatic viewing angle brightness of the blue pixel.
  • Embodiments of the present disclosure provide further schematic structural diagrams of display panels, as shown in FIG. 22 . It is modified from the implementation in the above-mentioned embodiment. Only the differences between this embodiment and the above-mentioned embodiment will be described below, and the similarities will not be described again.
  • the adjustment structure of the first refractive index layer 150 may include both the groove AX and the concave lens array TZ.
  • the groove AX is arranged corresponding to the first color pixel spx1
  • the concave lens array TZ is arranged corresponding to the second color pixels spx2_1 and spx2_2. It should be noted that, for the implementation of the groove AX and the concave lens array TZ, reference can be made to the above-mentioned implementation and will not be described again here.
  • Figure 23a is a W viewing angle CIE (Commission Internationale d'Eclairage) trajectory diagram when the display panel shown in Figure 22 uses three primary colors of red, green and blue light mixed with white light.
  • Figure 23b is a monochrome viewing angle brightness attenuation diagram of the display panel shown in Figure 22.
  • Figure 23c is a specific W viewing angle deviation and W viewing angle brightness attenuation ratio when the display panel shown in Figure 22 uses red, green and blue primary color light mixed with white light. Parameter comparison diagram.
  • CIE Commission Internationale d'Eclairage
  • LR23 represents the attenuation curve of the monochromatic viewing angle brightness of the red pixel
  • LG23 represents the attenuation curve of the monochromatic viewing angle brightness of the green pixel
  • LB23 represents the attenuation curve of the monochromatic viewing angle brightness of the blue pixel.
  • An embodiment of the present disclosure also provides a display device, including the above display panel provided by the embodiment of the present disclosure.
  • the principle of solving the problem of this display device is similar to that of the foregoing display panel. Therefore, the implementation of this display device can be referred to the implementation of the foregoing display panel, and the overlapping parts will not be described again.
  • the display device may be: a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, or any other product or component with a display function.
  • Other essential components of the display device are understood by those of ordinary skill in the art, and will not be described in detail here, nor should they be used to limit the present disclosure.

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板及显示装置,包括:衬底基板(100),包括多个像素;像素限定层(170),位于衬底基板(100)上,像素限定层(170)具有多个像素开口;其中,多个像素和多个像素开口一一对应;其中,多个像素包括第一颜色像素(spx1)和第二颜色像素(spx2);其中,第一颜色像素(spx1)的像素开口(KK1)在单位面积中视角亮度的衰减速率为第一衰减速率,第二颜色像素(spx2)的像素开口(KK2)在单位面积中视角亮度的衰减速率为第二衰减速率,第一衰减速率小于第二衰减速率;一个第一颜色像素(spx1)的像素开口(KK1)的面积小于一个第二颜色像素(spx2)的像素开口(KK2)的面积。

Description

显示面板及显示装置 技术领域
本公开涉及显示技术领域,尤其涉及显示面板及显示装置。
背景技术
有源矩阵有机发光二极管(Active matrix organic light emitting device,AMOLED)作为一种电流型发光器件,因其所具有的低功耗、自发光、高色饱和度、快速响应、宽视角和能够实现柔性化等特点而越来越多地被应用于高性能显示领域当中。
发明内容
本公开实施例提供的显示面板,包括:
衬底基板,包括多个像素;
像素限定层,位于所述衬底基板上,所述像素限定层具有多个像素开口;其中,所述多个像素和所述多个像素开口一一对应;
其中,所述多个像素包括第一颜色像素和第二颜色像素;其中,所述第一颜色像素的像素开口在单位面积中视角亮度的衰减速率为第一衰减速率,所述第二颜色像素的像素开口在所述单位面积中视角亮度的衰减速率为第二衰减速率,所述第一衰减速率小于所述第二衰减速率;
一个所述第一颜色像素的像素开口的面积小于一个所述第二颜色像素的像素开口的面积。
在一些可能的实施方式中,在第一方向上,一个所述第一颜色像素的像素开口具有第一尺寸,一个所述第二颜色像素的像素开口具有第二尺寸,所述第一尺寸小于所述第二尺寸。
在一些可能的实施方式中,所述第一尺寸和所述第二尺寸之间的比值范围为1:1.2~1:1.6。
在一些可能的实施方式中,在第二方向上,一个所述第一颜色像素的像素开口具有第三尺寸,一个所述第二颜色像素的像素开口具有第四尺寸,所述第三尺寸小于所述第四尺寸;所述第二方向与所述第一方向交叉。
在一些可能的实施方式中,所述第三尺寸和所述第四尺寸之间的比值范围为1:1.2~1:1.6。
在一些可能的实施方式中,所述多个像素还包括第三颜色像素;
一个所述第二颜色像素的像素开口的面积小于一个所述第三颜色像素的像素开口的面积。
在一些可能的实施方式中,所述显示面板还包括:
黑矩阵,位于所述像素限定层背离所述衬底基板一侧;其中,所述黑矩阵具有多个黑矩阵开口;所述多个黑矩阵开口与所述多个像素开口一一对应;
所述黑矩阵开口的底端在所述衬底基板的正投影覆盖对应的所述像素开口的底端在所述衬底基板的正投影。
在一些可能的实施方式中,所述第一颜色像素中,所述黑矩阵开口的底端在所述衬底基板的正投影的边缘与所述像素开口的底端在所述衬底基板的正投影的边缘具有第一开口间距;
所述第二颜色像素中,所述黑矩阵开口的底端在所述衬底基板的正投影的边缘与所述像素开口的底端在所述衬底基板的正投影的边缘具有第二开口间距;
所述第一开口间距小于所述第二开口间距。
在一些可能的实施方式中,所述第一开口间距与所述第二开口间距之间的比值的范围为1:1.2~1:2.2。
在一些可能的实施方式中,所述多个像素还包括第三颜色像素;所述第三颜色像素中,所述黑矩阵开口的底端在所述衬底基板的正投影的边缘与所述像素开口的底端在所述衬底基板的正投影的边缘具有第三开口间距;
所述第三开口间距不小于所述第一开口间距,且所述第三开口间距小于所述第二开口间距。
在一些可能的实施方式中,所述显示面板还包括:
第一折射率层,位于所述像素限定层背离所述衬底基板一侧;
第二折射率层,位于所述第一折射率层背离所述衬底基板一侧;
其中,所述第一折射率层的折射率小于所述第二折射率层的折射率;
所述第一折射率层具有调整结构,所述调整结构与所述第一颜色像素和所述第二颜色像素中的至少一个对应设置;
所述调整结构被配置为降低对应像素的像素开口出射光线的出射角。
在一些可能的实施方式中,所述调整结构包括凹槽,且所述凹槽的侧壁呈斜坡状,所述第二折射率层填充所述凹槽;
所述凹槽与所述第一颜色像素对应设置,且所述第一颜色像素的像素开口的底端在所述衬底基板的正投影覆盖所述凹槽的底端在所述衬底基板的正投影。
在一些可能的实施方式中,所述第一颜色像素的像素开口的底端在所述衬底基板的正投影的边缘与所述凹槽的底端在所述衬底基板的正投影的边缘之间具有第一内缩值,所述第一内缩值不小于零且不大于2μm。
在一些可能的实施方式中,所述第一颜色像素的像素开口的顶端在所述衬底基板的正投影覆盖所述凹槽的顶端在所述衬底基板的正投影;或者,所述第一颜色像素的像素开口的顶端在所述衬底基板的正投影位于所述凹槽的顶端在所述衬底基板的正投影内。
在一些可能的实施方式中,所述调整结构包括凹透镜阵列;所述第二折射率层填充所述凹透镜阵列;
所述凹透镜阵列与所述第二颜色像素对应设置,且所述第二颜色像素的像素开口的底端在所述衬底基板的正投影覆盖所述凹透镜阵列所在区域在所述衬底基板的正投影。
在一些可能的实施方式中,所述凹透镜阵列中,各所述凹透镜的尺寸相同,且每相邻两个所述凹透镜之间的间隔距离相同。
在一些可能的实施方式中,所述多个像素还包括第三颜色像素;一个所 述第一颜色像素、一个所述第二颜色像素、一个所述第三颜色像素组成一个重复单元;所述重复单元内,所述第一颜色像素和所述第二颜色像素沿第一方向排布,且过所述第三颜色像素的像素开口中心且垂直于所述第一方向的直线位于所述第一颜色像素的像素开口与所述第二颜色像素的像素开口之间的间隙处;多个所述重复单元沿所述第一方向依次排布,组成像素行。
在一些可能的实施方式中,所述多个像素还包括第三颜色像素;
一个第一颜色像素、两个第二颜色像素、一个第三颜色像素组成一个重复单元;所述重复单元内,所述第一颜色像素、所述两个第二颜色像素、所述第三颜色像素的像素开口的中心组成四边形,所述第一颜色像素的像素开口中心与所述第三颜色像素的像素开口中心的连线组成所述四边形的第一对角线,所述重复单元沿平行于所述第一对角线的方向依次排布,组成像素行。
在一些可能的实施方式中,所述第一颜色像素为红色像素,所述第二颜色像素为绿色像素,所述第三颜色像素为蓝色像素。
在一些可能的实施方式中,所述多个像素中的任一个像素的像素开口,在所述衬底基板的正投影为矩形、菱形与圆形中的至少一种。
本公开实施例提供的显示装置,包括上述的显示面板。
附图说明
图1为相关技术中OLED显示面板采用红绿蓝三原色光混合白光时的一些W视角CIE轨迹图;
图2为相关技术中红色OLED、绿色OLED以及蓝色OLED的一些单色视角亮度衰减图;
图3为相关技术中OLED显示面板采用红绿蓝三原色光混合白光时的W视角色偏和W视角亮度衰减比例的具体参数的一些对比示意图;
图4为本公开实施例提供的显示面板的一些剖视结构示意图;
图5为本公开实施例提供的光路示意图;
图6为本公开实施例提供的显示面板的一些俯视结构示意图;
图7为本公开实施例提供的显示面板的另一些俯视结构示意图;
图8为本公开实施例提供的显示面板的又一些剖视结构示意图;
图9a为本公开实施例提供的显示面板的又一些剖视结构示意图;
图9b为本公开实施例提供的显示面板的又一些剖视结构示意图;
图10a为本公开实施例提供的显示面板采用红绿蓝三原色光混合白光时的一些W视角CIE轨迹图;
图10b为本公开实施例提供的红色像素、绿色像素以及蓝色像素的一些单色视角亮度衰减图;
图10c为本公开实施例提供的显示面板采用红绿蓝三原色光混合白光时的W视角色偏和W视角亮度衰减比例的具体参数的一些对比示意图;
图11为本公开实施例提供的显示面板的又一些剖视结构示意图;
图12为本公开实施例提供的显示面板的又一些剖视结构示意图;
图13为本公开实施例提供的显示面板的又一些剖视结构示意图;
图14为本公开实施例提供的显示面板的又一些剖视结构示意图;
图15为本公开实施例提供的显示面板的又一些俯视结构示意图;
图16为本公开实施例提供的显示面板的又一些俯视结构示意图;
图17a为相关技术中的显示面板采用红绿蓝三原色光混合白光时的另一些W视角CIE轨迹图;
图17b为相关技术中的红色像素、绿色像素以及蓝色像素的另一些单色视角亮度衰减图;
图17c为相关技术中的显示面板采用红绿蓝三原色光混合白光时的W视角色偏和W视角亮度衰减比例的具体参数的另一些对比示意图;
图18a为本公开实施例提供的显示面板采用红绿蓝三原色光混合白光时的另一些W视角CIE轨迹图;
图18b为本公开实施例提供的红色像素、绿色像素以及蓝色像素的另一些单色视角亮度衰减图;
图18c为本公开实施例提供的显示面板采用红绿蓝三原色光混合白光时 的W视角色偏和W视角亮度衰减比例的具体参数的另一些对比示意图;
图19为本公开实施例提供的显示面板的又一些剖视结构示意图;
图20为本公开实施例提供的显示面板的又一些俯视结构示意图;
图21a为本公开实施例提供的显示面板采用红绿蓝三原色光混合白光时的又一些W视角CIE轨迹图;
图21b为本公开实施例提供的红色像素、绿色像素以及蓝色像素的又一些单色视角亮度衰减图;
图21c为本公开实施例提供的显示面板采用红绿蓝三原色光混合白光时的W视角色偏和W视角亮度衰减比例的具体参数的又一些对比示意图;
图22为本公开实施例提供的显示面板的又一些剖视结构示意图;
图23a为本公开实施例提供的显示面板采用红绿蓝三原色光混合白光时的又一些W视角CIE轨迹图;
图23b为本公开实施例提供的红色像素、绿色像素以及蓝色像素的又一些单色视角亮度衰减图;
图23c为本公开实施例提供的显示面板采用红绿蓝三原色光混合白光时的W视角色偏和W视角亮度衰减比例的具体参数的又一些对比示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分 不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
通常,为了降低OLED显示面板的内部结构对环境光线的反射率,通常采用以下两种方式:第一种方式,在OLED显示面板的出光侧贴附圆偏光片,该圆偏光片能够减少进入OLED显示面板内的环境光被OLED显示面板的内部结构反射后从出光面的出射量。第二种方式,在OLED显示面板的封装层上设置彩色光阻层+黑矩阵,即封装层上彩膜(Color Filter on Encapsulation,COE)结构+黑矩阵,由于该彩色光阻层能够对光线起到过滤作用,因此也可以减少进入OLED显示面板内的环境光被OLED显示面板的内部结构反射后从出光面的出射量。此外,彩色光阻层与圆偏光片相比,彩色光阻层对OLED显示面板所发出的光线的透过率更高,且集成了彩色光阻层的OLED显示面板的厚度更低,因此OLED显示面板采用COE结构+黑矩阵是发展趋势。
然而,在集成了彩色光阻层的OLED显示面板中,不同视角下不同颜色OLED所发出的光线的衰减速率不一致,导致不同视角下显示面板在画面显示时会发生色偏的现象。例如,在OLED显示面板在显示白色画面时,可能会出现发青或发粉等现象。如此,显示面板的显示效果较差。
示例性地,显示面板可以包括多个不同颜色的发光器件。这些不同颜色的发光器件可以包括:发红光的红色发光器件、发绿光的绿色发光器件以及发蓝光的蓝色发光器件,这样可以通过红绿蓝三原色光进行混色,以实现彩色显示。在实际应用中,由于发光器件的微腔结构的影响,不同视角下不同颜色的发光器件的亮度衰减速率不一致。因此,不同视角下显示面板在显示白画面时会发生色偏的现象。具体地,如图1至图3所示,图1为相关技术 中显示面板采用红绿蓝发光器件基于三原色光混合白光时的W视角CIE(Commission Internationale d'Eclairage)轨迹图。图2为相关技术中红色发光器件、绿色发光器件以及蓝色发光器件的单色视角亮度衰减图,图3为相关技术中显示面板采用红绿蓝发光器件基于三原色光混合白光时的W视角色偏和W视角亮度衰减比例的具体参数对比示意图。其中,LR10代表红色发光器件的单色视角亮度衰减曲线,LG10代表绿色发光器件的单色视角亮度衰减曲线,LB10代表蓝色发光器件的单色视角亮度衰减曲线。由图1至图3可以看出,不同视角下不同颜色的发光器件的亮度衰减速率不一致,其中,红色发光器件的亮度衰减较慢,绿色发光器件的亮度衰减较快,在采用红绿蓝发光器件基于三原色光混合白光时,不同视角下显示面板在画面显示时会发生色偏的现象。
有鉴于此,本公开实施例提供的显示面板,如图4至图7所示,包括:衬底基板100以及位于衬底基板100上的像素限定层170。其中,衬底基板100包括多个像素(如spx1~spx3),像素限定层170具有多个像素开口(如KK1~KK3),多个像素和多个像素开口一一对应。即一个像素包括一个像素开口。并且,多个像素包括第一颜色像素spx1和第二颜色像素spx2;其中,第一颜色像素spx1的像素开口在单位面积中视角亮度的衰减速率为第一衰减速率,第二颜色像素spx2的像素开口在单位面积中视角亮度的衰减速率为第二衰减速率,第一衰减速率小于第二衰减速率。以及,一个第一颜色像素spx1的像素开口的面积小于一个第二颜色像素spx2的像素开口的面积。即将第一颜色像素spx1的视角亮度的衰减速率在原来较慢的基础上进行提高,从而提高第一颜色像素spx1的视角亮度衰减的衰减速率。以及将第二颜色像素spx2的视角亮度的衰减速率由原来较快的基础上进行降低,从而降低第二颜色像素spx2的视角亮度的衰减速率,进而使第一颜色像素spx1和第二颜色像素spx2的衰减速率差异降低。这样可以平衡不同出光颜色像素开口处的亮度衰减达到大致平衡,改善W视角色偏问题。
在本公开一些实施例中,如图4至图7所示,多个像素还包括第三颜色 像素spx3;一个第一颜色像素spx1、一个第二颜色像素spx2、一个第三颜色像素spx3组成一个重复单元。重复单元内,第一颜色像素spx1和第二颜色像素spx2沿第一方向F1排布,且过第三颜色像素spx3的像素开口中心且垂直于第一方向F1的直线位于第一颜色像素spx1的像素开口与第二颜色像素spx2的像素开口之间的间隙处。多个重复单元沿第一方向F1依次排布,组成像素行。以及,多个像素行沿第二方向F2依次排布。示例性地,第一方向F1和第二方向F2交叉设置。例如,第一方向F1和第二方向F2垂直设置。可选地,第一方向F1为像素的行方向,第二方向F2为像素的列方向。
在本公开一些实施例中,衬底基板与像素限定层之间设置有像素电路阵列层。像素电路阵列层包括多个像素电路。每个像素开口一一设置一个发光器件。每一个像素中设置一个像素电路和一个发光器件,且像素电路与发光器件耦接,以通过像素电路向发光器件的阳极输入驱动电流,驱动发光器件发光。
示例性地,衬底基板上设置的多个像素可以包括红色像素,绿色像素以及蓝色像素,这样可以通过红绿蓝进行混色,以实现彩色显示。并且,一个像素包括一个像素开口,则每一个像素开口出射对应颜色的光。具体地,红色像素包括的像素开口设置发红光的红色发光器件,绿色像素包括的像素开口设置发绿光的绿色发光器件,蓝色像素包括的像素开口设置发蓝光的蓝色发光器件。可选地,发光器件可以为OLED、QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管)中的至少一种。
示例性地,如图4所示,第一颜色像素spx1可以为红色像素,则第一颜色像素spx1中设置红色发光器件。第二颜色像素spx2可以为绿色像素,则第二颜色像素spx2中设置绿色发光器件。第三颜色像素spx3可以为蓝色像素,则第三颜色像素spx3中设置蓝色发光器件。当然,在实际应用中,也可以采用其他颜色来实现彩色显示,则第一颜色像素spx1、第二颜色像素spx2以及第三颜色像素spx3还可以为其他颜色的像素,并且,第一颜色像素spx1、第二颜色像素spx2以及第三颜色像素spx3具体为哪种颜色的像素,可以根据实 际应用的需求进行确定,在此不作限定。
示例性地,如图8所示,发光器件可以包括依次层叠设置的阳极210、空穴注入层220、第一空穴传输层230、第二空穴传输层240、发光层250、空穴阻挡层260、电子传输层270、电子注入层280和阴极290。空穴注入层220、第一空穴传输层230、电子阻挡层、空穴阻挡层260、电子传输层270、电子注入层280可以进一步提升显示面板的性能。本公开对空穴注入层220、第一空穴传输层230、电子阻挡层、空穴阻挡层260、电子传输层270、电子注入层280的具体材料不作限制,本领域技术人员可以根据使用需求进行选择和调整,例如,形成电子注入层280的材料可以是Yb。
在本公开一些实施例中,第二空穴传输层240包括多个第二子空穴传输层,每一个发光器件包括一个第二子空穴传输层。不同发光器件中的第二子空穴传输层相互独立设置。示例性地,如图9a所示,红色发光器件包括阳极211、第二子空穴传输层241以及发光层251,且第二子空穴传输层241位于第一空穴传输层230和发光层251之间。绿色发光器件包括阳极212、第二子空穴传输层242以及发光层252,且第二子空穴传输层242位于第一空穴传输层230和发光层252之间。蓝色发光器件包括阳极213、第二子空穴传输层243以及发光层253,且第二子空穴传输层243位于第一空穴传输层230和发光层253之间。其中,第二子空穴传输层241的厚度d1大于第二子空穴传输层242的厚度d2大于第二子空穴传输层243的厚度d3。这样可以使红色发光器件的微腔的腔长大于绿色发光器件的微腔的腔长大于蓝色发光器件的微腔的腔长,从而实现的色域可达115%@NTSC1931。进一步地,如图9b所示,还可以将厚度d1增加Δd1(例如,Δd1可以为
Figure PCTCN2022102457-appb-000001
),将厚度d2减少Δd2(例如,Δd2可以为
Figure PCTCN2022102457-appb-000002
),从而实现的色域可达125%@NTSC1931。需要说明的是,虽然第二子空穴传输层241~243的厚度有差异,但是该厚度差异相对于显示面板中层状结构的厚度来说是很小的,并不会造成膜层的凹凸不平。
在本公开一些实施例中,如图6与图7所示,所述多个像素中的任一个 像素的像素开口,在所述衬底基板100的正投影为矩形。示例性地,第一颜色像素spx1的像素开口KK1在所述衬底基板100的正投影为长方形,第二颜色像素spx2的像素开口KK2在所述衬底基板100的正投影也为长方形,第三颜色像素spx3的像素开口KK3在所述衬底基板100的正投影也为长方形。并且,第一颜色像素spx1的像素开口KK1的长边、第二颜色像素spx2的像素开口KK2的长边、第三颜色像素spx3的像素开口KK3的长边均与第一方向F1平行。第一颜色像素spx1的像素开口KK1的短边、第二颜色像素spx2的像素开口KK2的短边、第三颜色像素spx3的像素开口KK3的短边均与第二方向F2平行。
需要说明的是,上述是以像素开口在衬底基板的正投影的形状为矩形为例进行说明的。本公开实施例对像素开口在衬底基板的正投影的形状不限制。例如,像素开口在衬底基板的正投影的形状还可以是圆形、椭圆形、其他规则或不规则的多边形。并且,不同颜色像素的像素开口在衬底基板的正投影的形状可以相同、也可以不同(此时存在至少部分边满足上述比例即可)。
在本公开一些实施例中,像素开口的截面可以为倒梯形,每个像素的像素开口的面积可以为像素开口的顶端(即倒梯形长边)在衬底基板100的正投影的面积。示例性地,如图4与图5所示,第一颜色像素spx1的像素开口KK1的面积为像素开口KK1的顶端(即倒梯形长边)在衬底基板100的正投影的面积。第二颜色像素spx2的像素开口KK2的面积为像素开口KK2的顶端(即倒梯形长边)在衬底基板100的正投影的面积。第三颜色像素spx3的像素开口KK3的面积为像素开口KK3的顶端(即倒梯形长边)在衬底基板100的正投影的面积。
在本公开一些实施例中,如图4至图7所示,在第一方向F1上,一个第一颜色像素spx1的像素开口KK1具有第一尺寸r11,一个第二颜色像素spx2的像素开口KK2具有第二尺寸g11,第一尺寸r11小于第二尺寸g11。示例性地,第一尺寸r11和第二尺寸g11之间的比值范围为1:1.2~1:1.6。即r11:g11为1:1.2~1:1.6。可选地,可以使r11:g11为1:1.2,也可以使r11:g11为1:1.3, 也可以使r11:g11为1:1.4,也可以使r11:g11为1:1.5,也可以使r11:g11为1:1.6。在实际应用中,可以根据实际应用的需求确定r11:g11的具体数值,在此不作限定。
在本公开一些实施例中,如图4至图7所示,在第二方向F2上,一个第一颜色像素spx1的像素开口KK1具有第三尺寸r12,一个第二颜色像素spx2的像素开口KK2具有第四尺寸g12,第三尺寸r12小于第四尺寸g12。示例性地,第三尺寸r12和第四尺寸g12之间的比值范围为1:1.2~1:1.6。即r12:g12为1:1.2~1:1.6。可选地,可以使r12:g12为1:1.2,也可以使r12:g12为1:1.3,也可以使r12:g12为1:1.4,也可以使r12:g12为1:1.5,也可以使r12:g12为1:1.6。在实际应用中,可以根据实际应用的需求确定r12:g12的具体数值,在此不作限定。
在本公开一些实施例中,如图4至图7所示,一个第二颜色像素spx2的像素开口KK2的面积小于一个第三颜色像素spx3的像素开口KK3的面积。在一些示例中,在第一方向F1上,一个第三颜色像素spx3的像素开口KK3具有第五尺寸b11。且第五尺寸b11大于第二尺寸g11。示例性地,r11:g11:b11为1:1.2:1.7~1:1.6:1.9。可选地,r11:g11:b11为1:1.2:1.7、1:1.2:1.8、1:1.2:1.9、1:1.3:1.7、1:1.3:1.8、1:1.6:1.7、1:1.6:1.8、1:1.6:1.9中的一个。在实际应用中,可以根据实际应用的需求确定r11:g11:b11的具体数值,在此不作限定。
在本公开一些实施例中,如图4至图7所示,在第二方向F2上,一个第三颜色像素spx3的像素开口KK3具有第六尺寸b12。且第六尺寸b12大于第四尺寸g12。示例性地,r12:g12:b12为1:1.2:1.7~1:1.6:1.9。可选地,r12:g12:b12为1:1.2:1.7、1:1.2:1.8、1:1.2:1.9、1:1.3:1.7、1:1.3:1.8、1:1.6:1.7、1:1.6:1.8、1:1.6:1.9中的一个。在实际应用中,可以根据实际应用的需求确定r12:g12:b12的具体数值,在此不作限定。
示例性地,上述在第一方向F1上的各尺寸可以为对应的像素开口的底端(即倒梯形短边)在衬底基板100的正投影沿第一方向F1上的尺寸,且上述在第二方向F2上的各尺寸可以为对应的像素开口的底端(即倒梯形短边)在 衬底基板100的正投影沿第二方向F2上的尺寸。具体地,第一尺寸r11可以为第一颜色像素spx1的像素开口KK1的底端(即倒梯形短边)在衬底基板100的正投影沿第一方向F1上的尺寸,第二尺寸g11为第二颜色像素spx2的像素开口KK2的底端(即倒梯形短边)在衬底基板100的正投影沿第一方向F1上的尺寸。第五尺寸b11可以为第三颜色像素spx3的像素开口KK3的底端(即倒梯形短边)在衬底基板100的正投影沿第一方向F1上的尺寸。第三尺寸r12可以为第一颜色像素spx1的像素开口KK1的底端(即倒梯形短边)在衬底基板100的正投影沿第二方向F2上的尺寸,第四尺寸g12为第二颜色像素spx2的像素开口KK2的底端(即倒梯形短边)在衬底基板100的正投影沿第二方向F2上的尺寸。第六尺寸b12可以为第三颜色像素spx3的像素开口KK3的底端(即倒梯形短边)在衬底基板100的正投影沿第二方向F2上的尺寸。
需要说明的是,第一尺寸至第六尺寸也可以是上述像素开口的底端(即倒梯形的短边)至顶端(即倒梯形的长边)中同一位置处的尺寸,即上述像素开口的底端(即倒梯形的短边)至顶端(即倒梯形的长边)中同一位置处的尺寸也可以符合本公开实施例的参数设置。例如,第一尺寸至第六尺寸也可以是上述像素开口的顶端(即倒梯形的长边)位置处的尺寸,即上述像素开口的顶端(即倒梯形的长边)的尺寸也可以符合本公开实施例的参数设置。
在本公开一些实施例中,如图4与图5所示,显示面板还包括:封装层120、黑矩阵130以及彩色光阻层140。该封装层120位于像素限定层170背离衬底基板100一侧,黑矩阵130位于封装层120背离衬底基板100一侧,彩色光阻层140位于黑矩阵130背离衬底基板100一侧。示例性地,如图8所示,封装层120可以具有层叠设置的第一无机封装层121、有机封装层122以及第二无机封装层123。可选地,封装层120与阴极之间还设置有光耦合层181和LiF膜层182。并且,光耦合层181的折射率小于LiF膜层182和第一无机封装层121的折射率,这样可以使光耦合层181、LiF膜层182以及第一无机封装层121形成高低高折射率的组合,以提高光取出率。
需要说明的是,黑矩阵130以及彩色光阻层140也可以设置在第一无机封装层121和有机封装层122之间。或者,黑矩阵130以及彩色光阻层140也可以设置在有机封装层122与第二无机封装层123之间。在实际应用中,黑矩阵130以及彩色光阻层140的具***置,可以根据实际应用的需求进行确定,在此不作限定。
在本公开一些实施例中,如图4与图5所示,黑矩阵130具有多个黑矩阵开口,且多个黑矩阵开口与多个像素开口一一对应。以及,彩色光阻层140在衬底基板100的正投影覆盖多个黑矩阵开口在衬底基板100的正投影。可选地,彩色光阻层140具有多个不同颜色的光阻层140,对应红色像素的黑矩阵开口被红色光阻层140覆盖,对应绿色像素的黑矩阵开口被绿色光阻层140覆盖,对应蓝色像素的黑矩阵开口被蓝色光阻层140覆盖。
在本公开一些实施例中,如图4所示,每一个像素中,黑矩阵开口的截面也可以为大致的倒梯形,黑矩阵开口的底端(即倒梯形短边)在衬底基板100的正投影覆盖对应的像素开口的底端(即倒梯形短边)在衬底基板100的正投影。这样在垂直于衬底基板100所在平面上,可以使黑矩阵开口尽可能将对应的像素开口暴露出。需要说明的,在实际工艺中,黑矩阵的材料为有机材料,由于有机材料具有一定的流动性,因此实际制备出的黑矩阵的截面并不能完全为倒梯形的形状,而是类似倒梯形的形状。例如,基于工艺波动范围内,实际制备出的黑矩阵的截面的边角为圆弧形的倒梯形。
在本公开一些实施例中,第一颜色像素spx1中,黑矩阵开口的底端在衬底基板100的正投影的边缘与像素开口KK1的底端在衬底基板100的正投影的边缘具有第一开口间距。第二颜色像素spx2中,黑矩阵开口的底端在衬底基板100的正投影的边缘与像素开口KK2的底端在衬底基板100的正投影的边缘具有第二开口间距。其中,第一开口间距小于第二开口间距。示例性地,第一开口间距与第二开口间距之间的比值的范围为1:1.2~1:2.2。可选地,第一开口间距与第二开口间距之间的比值的范围为1:1.2、1:1.5、1:1.8、1:2.0、1:2.2中的一个。在实际应用中,可以根据实际应用的需求确定第一开口间距与第 二开口间距之间的比值的具体数值,在此不作限定。
示例性地,如图4与图6所示,第一颜色像素spx1中,在第一方向F1上,黑矩阵开口的底端在衬底基板100的正投影的边缘与像素开口KK1的底端在衬底基板100的正投影的边缘具有第一开口间距r21。第二颜色像素spx2中,在第一方向F1上,黑矩阵开口的底端在衬底基板100的正投影的边缘与像素开口KK2的底端在衬底基板100的正投影的边缘具有第二开口间距g21。其中,第一开口间距r21小于第二开口间距g21。示例性地,r21:g21为1:1.2~1:2.2。可选地,r21:g21为1:1.2、1:1.5、1:1.8、1:2.0、1:2.2中的一个。在实际应用中,可以根据实际应用的需求确定r21:g21的具体数值,在此不作限定。
示例性地,如图4与图6所示,第一颜色像素spx1中,在第二方向F2上,黑矩阵开口的底端在衬底基板100的正投影的边缘与像素开口KK1的底端在衬底基板100的正投影的边缘具有第一开口间距r22。第二颜色像素spx2中,在第二方向F2上,黑矩阵开口的底端在衬底基板100的正投影的边缘与像素开口KK2的底端在衬底基板100的正投影的边缘具有第二开口间距g22。其中,第一开口间距r22小于第二开口间距g22。示例性地,r22:g22为1:1.2~1:2.2。可选地,r22:g22为1:1.2、1:1.5、1:1.8、1:2.0、1:2.2中的一个。在实际应用中,可以根据实际应用的需求确定r22:g22的具体数值,在此不作限定。
进一步地,如图4与图6所示,第三颜色像素spx3中,黑矩阵开口的底端在衬底基板100的正投影的边缘与像素开口的底端在衬底基板100的正投影的边缘具有第三开口间距。其中,第三开口间距不小于第一开口间距,且第三开口间距小于第二开口间距。示例性地,第一开口间距与第三开口间距之间的比值的范围为1:1~1:1.2。可选地,第一开口间距、第二开口间距以及第三开口间距之间的比值的范围为1:1:1.2~1:1.2:2.2。可选地,第一开口间距、第二开口间距以及第三开口间距之间的比值的范围为1:1:1.2、1:1:1.5、1:1.2:1.8、1:1.2:2.0、1:1.2:2.2中的一个。在实际应用中,可以根据实际应用的需求确定 第一开口间距、第二开口间距以及第三开口间距之间的比值的具体数值,在此不作限定。
示例性地,如图4与图6所示,第三颜色像素spx3中,在第一方向F1上,黑矩阵开口的底端在衬底基板100的正投影的边缘与像素开口KK3的底端在衬底基板100的正投影的边缘具有第三开口间距b21。其中,第三开口间距b21不小于第一开口间距r21,且小于第二开口间距g21。示例性地,r21:b21为1:1~1:1.2。可选地,r21:b21为1:1、1:1.1、1:1.2中的一个。进一步地,r21:g21:b21为1:1:1.2~1:1.2:2.2。在实际应用中,可以根据实际应用的需求确定r21:b21的具体数值,在此不作限定。
示例性地,如图4与图5所示,第三颜色像素spx3中,在第二方向F2上,黑矩阵开口的底端在衬底基板100的正投影的边缘与像素开口KK3的底端在衬底基板100的正投影的边缘具有第三开口间距b22。其中,第三开口间距b22不小于第一开口间距r22,且小于第二开口间距g22。示例性地,r22:b22为1:1~1:1.2。可选地,r22:b22为1:1、1:1.1、1:1.2中的一个。进一步地,r22:g22:b22为1:1:1.2~1:1.2:2.2。在实际应用中,可以根据实际应用的需求确定r22:b22的具体数值,在此不作限定。
可选地,可以将第一开口间距r21与r22设置为相同。这样可以使第一颜色像素spx1中的黑矩阵开口的底端在衬底基板100的正投影的边缘与像素开口KK1的底端在衬底基板100的正投影的边缘之间的间距统一设置,提高像素开口的设置均一性。
可选地,可以将第二开口间距g21与g22设置为相同。这样可以使第二颜色像素spx2中的黑矩阵开口的底端在衬底基板100的正投影的边缘与像素开口KK2的底端在衬底基板100的正投影的边缘之间的间距统一设置,提高像素开口的设置均一性。
可选地,可以将第三开口间距b21与b22设置为相同。这样可以使第三颜色像素spx3中的黑矩阵开口的底端在衬底基板100的正投影的边缘与像素开口KK3的底端在衬底基板100的正投影的边缘之间的间距统一设置,提高 像素开口的设置均一性。
在本申请实施例中,如图4与图5所示,显示面板还包括:第一折射率层150和第二折射率层160。其中,第一折射率层150位于像素限定层170背离衬底基板100一侧,第二折射率层160位于第一折射率层150背离衬底基板100一侧。并且,第一折射率层150和第二折射率层160的折射率不同。例如,第一折射率层150的折射率小于第二折射率层160的折射率。并且,第一折射率层150具有调整结构,调整结构与第一颜色像素spx1对应设置。其中,调整结构被配置为降低从第一颜色像素spx1的像素开口出射光线的出射角,从而使得从第一颜色像素spx1的像素开口出射的光线从显示面板出射后的出射角减小。这样通过调整结构,可以使从第一颜色像素spx1的像素开口出射的部分光线被黑矩阵130吸收,以减少在大视角下从第一颜色像素spx1的像素开口发出的光束亮度衰减的速率,使得第一颜色像素spx1的像素开口发出的光线的视角亮度衰减速率与第二颜色像素spx2的像素开口所发出的光线的视角亮度衰减率尽量保持一致,进而可以减小显示面板的色偏。
示例性地,如图4与图5所示,调整结构可以包括凹槽AX,且凹槽AX的侧壁呈斜坡状,第二折射率层160填充凹槽AX。该凹槽AX与第一颜色像素spx1对应设置,且第一颜色像素spx1的像素开口的底端在衬底基板100的正投影覆盖凹槽AX的底端在衬底基板100的正投影。示例性地,凹槽AX的截面为倒梯形,凹槽AX的底端为倒梯形短边,凹槽AX的顶端为倒梯形长边。由于凹槽AX的截面为倒梯形,凹槽AX的侧壁呈斜坡状,由于第二折射率层160的折射率大于第一折射率层150的折射率,通过设计凹槽AX的侧壁的倾斜角β的具体数值,可以在凹槽AX的侧壁处会形成全反射平面,第一颜色像素spx1的像素开口的边缘(如右侧边缘)出射的光L11,入射到凹槽AX左侧的侧壁处S1时,能够发生全反射。同理,第一颜色像素spx1的像素开口的左侧边缘出射的光,入射到凹槽AX右侧的侧壁处时,也能够发生全反射。这样可以将第一颜色像素spx1的像素开口出射的光,能够被汇聚到正视角出射,可以增加在大视角下从第一颜色像素spx1的像素开口发出的光束亮 度衰减的速率,使得第一颜色像素spx1的像素开口发出的光线的视角亮度衰减速率与第二颜色像素spx2的像素开口所发出的光线的视角亮度衰减速率尽量保持一致,进而可以减小显示面板的色偏。
示例性地,如图7所示,第一颜色像素spx1的像素开口的底端在衬底基板100的正投影的边缘与凹槽AX的底端在衬底基板100的正投影的边缘之间具有第一内缩值ns1,第一内缩值ns1不小于零且不大于2μm,即0≤ns1≤2μm。这样可以使从第一颜色像素spx1的像素开口的边缘(如右侧边缘)出射的光L11,入射到凹槽AX左侧的侧壁处S1时,能够发生全反射。
可选地,ns1=0,则第一颜色像素spx1的像素开口的底端在衬底基板100的正投影的边缘与凹槽AX的底端在衬底基板100的正投影的边缘重叠。或者,0<ns1≤2μm,则第一颜色像素spx1的像素开口的底端在衬底基板100的正投影的边缘与凹槽AX的底端在衬底基板100的正投影的边缘不重叠,且凹槽AX的底端在衬底基板100的正投影的边缘内缩于第一颜色像素spx1的像素开口的底端在衬底基板100的正投影的边缘内。这样可以进一步使从第一颜色像素spx1的像素开口的边缘(如右侧边缘)出射的光L11,入射到凹槽AX左侧的侧壁处S1时,能够发生全反射。可选地,ns1为0.5μm、1.0μm、1.5μm、2μm中的一个。在实际应用中,ns1的具体数值可以根据实际应用的环境确定,在此不作限定。
示例性地,如图4与图5所示,第一颜色像素spx1的像素开口KK1的顶端在衬底基板100的正投影覆盖凹槽AX的顶端在衬底基板100的正投影。这样可以进一步使从第一颜色像素spx1的像素开口KK1的边缘(如右侧边缘)出射的光L11,入射到凹槽AX左侧的侧壁处S1时,能够发生全反射。当然,也可以使第一颜色像素的像素开口的顶端在衬底基板的正投影位于凹槽的顶端在衬底基板的正投影内,在此不作限定。
如图10a至图10b所示,图10a为图4所示的显示面板采用红绿蓝三原色光混合白光时的W视角CIE(Commission Internationale d'Eclairage)轨迹图。图10b为图4所示的显示面板的单色视角亮度衰减图,图10c为图4所示的 显示面板采用红绿蓝三原色光混合白光时的W视角色偏和W视角亮度衰减比例的具体参数对比示意图。图10b中,LR11代表红色像素单色视角亮度的衰减曲线,LG11代表绿色像素单色视角亮度的衰减曲线,LB11代表蓝色像素单色视角亮度的衰减曲线。由图10a至图10b可以看出,采用本公开实施例提供的显示面板,在不同视角下不同颜色的OLED的亮度衰减速率趋于一致,在采用RGB混合白光时,不同视角下显示面板在画面显示时的色偏得以改善。
本公开实施例提供了另一些显示面板的结构示意图,如图11所示。其针对上述实施例中的实施方式进行了变形。下面仅说明本实施例与上述实施例的区别之处,其相同之处在此不作赘述。
在本公开一些实施例中,如图11与图12所示,调整结构也可以包括凹透镜阵列TZ;第二折射率层160填充凹透镜阵列TZ。凹透镜阵列TZ与第二颜色像素spx2对应设置,且第二颜色像素spx2的像素开口KK2的底端在衬底基板100的正投影覆盖凹透镜阵列TZ所在区域在衬底基板100的正投影。由于第二折射率层160的折射率大于第一折射率层150的折射率,从第二颜色像素spx2的像素开口KK2出射的光,入射到凹透镜阵列TZ时,光由光疏介质进入光密介质,按照凹透镜的球心为法线,该光线的方向发生变化,可以降低在大视角下从第二颜色像素spx2的像素开口发出的光束亮度衰减的速率,使得第一颜色像素spx1的像素开口KK1发出的光线的视角亮度衰减速率与第二颜色像素spx2的像素开口KK2所发出的光线的视角亮度衰减速率尽量保持一致,进而可以减小显示面板的色偏。
在本公开一些实施例中,如图11与图12所示,凹透镜阵列TZ中,各凹透镜的尺寸相同。示例性地,凹透镜阵列TZ中的各凹透镜在衬底基板100的正投影为圆形,凹透镜的尺寸可以为圆形的正投影的直径。也就是说,凹透镜阵列TZ中的各凹透镜在衬底基板100的正投影的直径相同。
在本公开一些实施例中,如图8与图12所示,凹透镜阵列TZ中,每相邻两个凹透镜之间的间隔距离相同。示例性地,凹透镜阵列TZ中的每相邻两个凹透镜在衬底基板100的正投影的圆心之间的距离相同。
本公开实施例提供了又一些显示面板的结构示意图,如图13所示。其针对上述实施例中的实施方式进行了变形。下面仅说明本实施例与上述实施例的区别之处,其相同之处在此不作赘述。
在本公开一些实施例中,如图13所示,调整结构既可以包括凹槽AX,又可以包括凹透镜阵列TZ。其中,凹槽AX与第一颜色像素spx1对应设置,凹透镜阵列TZ与第二颜色像素spx2对应设置。需要说明的是,凹槽AX和凹透镜阵列TZ的实施方式,可以参照上述实施方式,在此不作赘述。
本公开实施例中,可以通过凹槽AX和凹透镜阵列TZ这两种方式的相互结合,使得第一颜色像素spx1的像素开口发出的光线的视角亮度衰减速率与第二颜色像素spx2的像素开口所发出的光线的视角亮度衰减速率尽量保持一致,进而可以减小显示面板的色偏。
本公开实施例提供了又一些显示面板的结构示意图,如图14所示。其针对上述实施例中的实施方式进行了变形。下面仅说明本实施例与上述实施例的区别之处,其相同之处在此不作赘述。
在本公开一些实施例中,如图14至图16所示,一个第一颜色像素spx1、两个第二颜色像素spx2_1和spx2_2、一个第三颜色像素spx3组成一个重复单元。重复单元内,第一颜色像素spx1、两个第二颜色像素spx2_1和spx2_2、第三颜色像素spx3的像素开口的中心组成四边形BS,第一颜色像素spx1的像素开口中心与第三颜色像素spx3的像素开口中心的连线组成四边形BS的第一对角线bs1,两个第二颜色像素spx2_1和spx2_2的像素开口中心的连线组成四边形的第二对角线。重复单元沿平行于第一对角线bs1的方向(即第四方向F4)依次排布,组成像素行。以及,多个像素行沿垂直于第一对角线的方向(即第三方向F3)依次排布。示例性地,第三方向F3为像素的列方向,第四方向F4为像素的行方向。
在本公开一些实施例中,如图15与图16所示,所述多个像素中的任一个像素的像素开口,在所述衬底基板100的正投影为菱形。示例性地,第一颜色像素spx1、第二颜色像素spx2_1、spx2_2以及第三颜色像素spx3的像素 开口在所述衬底基板100的正投影为菱形。并且,第一颜色像素spx1、第二颜色像素spx2_1和spx2_2以及第三颜色像素spx3的菱形像素开口的两条对角线中的一条与第三方向F3和第四方向F4中的一个方向平行。例如,第一颜色像素spx1与第三颜色像素spx3的菱形像素开口形成的对角线与第四方向F4平行,第二颜色像素spx2_1和spx2_2的菱形像素开口形成的对角线与第三方向F3平行,以及,第一颜色像素spx1、第二颜色像素spx2以及第三颜色像素spx3的菱形像素开口的一组相对设置的对边与第一方向F1平行,另一组相对设置的对边与第二方向F2平行。其中,第一方向F1与第二方向F2垂直,第一方向F1与第三方向F3相差40°~50°,第二方向F2与第四方向F4相差40°~50°。例如,第一方向F1与第三方向F3相差45°,第二方向F2与第四方向F4相差45°。
需要说明的是,本实施例仅是以第一颜色像素、第二颜色像素以及第三颜色像素的像素开口在所述衬底基板的正投影为菱形为例进行说明的。本公开对第一颜色像素、第二颜色像素以及第三颜色像素的像素开口在所述衬底基板的正投影的形状不进行限定。例如,第一颜色像素、第二颜色像素以及第三颜色像素的像素开口在所述衬底基板的正投影的形状,也可以为圆形、椭圆形、其他规则或不规则的多边形。并且,不同颜色像素的像素开口在衬底基板的正投影的形状可以相同、也可以不同(此时存在至少部分边满足上述比例即可)。
在本公开一些实施例中,如图14与图15所示,在第一方向F1上,一个第一颜色像素spx1的像素开口KK1具有第一尺寸r31,一个第二颜色像素spx2_1的像素开口KK2_1具有第二尺寸g31_1,第一尺寸r31小于第二尺寸g31_1。示例性地,第一尺寸r31和第二尺寸g31_1之间的比值范围为1:1.2~1:1.6。即r31:g31_1为1:1.2~1:1.6。可选地,可以使r31:g31_1为1:1.2,也可以使r31:g31_1为1:1.3,也可以使r31:g31_1为1:1.4,也可以使r31:g31_1为1:1.5,也可以使r31:g31_1为1:1.6。在实际应用中,可以根据实际应用的需求确定r31:g31_1的具体数值,在此不作限定。
在本公开一些实施例中,如图14与图15所示,在第一方向F1上,一个第一颜色像素spx1的像素开口KK1具有第一尺寸r31,另一个第二颜色像素spx2_2的像素开口KK2_2具有第二尺寸g31_2,第一尺寸r31小于第二尺寸g31_2。示例性地,第一尺寸r31和第二尺寸g31_2之间的比值范围为1:1.2~1:1.6。即r31:g31_2为1:1.2~1:1.6。可选地,可以使r31:g31_2为1:1.2,也可以使r31:g31_2为1:1.3,也可以使r31:g31_2为1:1.4,也可以使r31:g31_2为1:1.5,也可以使r31:g31_2为1:1.6。在实际应用中,可以根据实际应用的需求确定r31:g31_2的具体数值,在此不作限定。
示例性地,第二尺寸g31_1和g31_2可以相同,这样可以统一设计第二颜色像素spx2_1和spx2_2的第二尺寸,提高显示面板的设计均一性。
在本公开一些实施例中,如图14与图15所示,在第二方向F2上,一个第一颜色像素spx1的像素开口KK1具有第三尺寸r32,一个第二颜色像素spx2_1的像素开口KK2_1具有第四尺寸g32_1,第三尺寸r32小于第四尺寸g32_1。示例性地,第三尺寸r32和第四尺寸g32_1之间的比值范围为1:1.2~1:1.6。即r32:g32_1为1:1.2~1:1.6。可选地,可以使r32:g32_1为1:1.2,也可以使r32:g32_1为1:1.3,也可以使r32:g32_1为1:1.4,也可以使r32:g32_1为1:1.5,也可以使r32:g32_1为1:1.6。在实际应用中,可以根据实际应用的需求确定r32:g32_1的具体数值,在此不作限定。
在本公开一些实施例中,如图14与图15所示,在第二方向F2上,一个第一颜色像素spx1的像素开口KK1具有第三尺寸r32,另一个第二颜色像素spx2_2的像素开口KK2_2具有第四尺寸g32_2,第三尺寸r32小于第四尺寸g32_2。示例性地,第三尺寸r32和第四尺寸g32_2之间的比值范围为1:1.2~1:1.6。即r32:g32_2为1:1.2~1:1.6。可选地,可以使r32:g32_2为1:1.2,也可以使r32:g32_2为1:1.3,也可以使r32:g32_2为1:1.4,也可以使r32:g32_2为1:1.5,也可以使r32:g32_2为1:1.6。在实际应用中,可以根据实际应用的需求确定r32:g32_2的具体数值,在此不作限定。
示例性地,第四尺寸g32_1和g32_2可以相同,这样可以统一设计第二 颜色像素spx2_1和spx2_2的第四尺寸,提高显示面板的设计均一性。
在本公开一些实施例中,如图14与图15所示,一个第二颜色像素spx2_1的像素开口KK2_1的面积小于一个第三颜色像素spx3的像素开口KK3的面积。在一些示例中,在第一方向F1上,一个第三颜色像素spx3的像素开口KK3具有第五尺寸b31。且第五尺寸b31大于第二尺寸g31_1。示例性地,r31:g31_1:b31为1:1.2:1.7~1:1.6:1.9。可选地,r31:g31_1:b31为1:1.2:1.7、1:1.2:1.8、1:1.2:1.9、1:1.3:1.7、1:1.3:1.8、1:1.6:1.7、1:1.6:1.8、1:1.6:1.9中的一个。在实际应用中,可以根据实际应用的需求确定r31:g31_1:b31的具体数值,在此不作限定。
在本公开一些实施例中,如图14与图15所示,另一个第二颜色像素spx2_2的像素开口KK2_2的面积小于一个第三颜色像素spx3的像素开口KK3的面积。在一些示例中,在第一方向F1上,一个第三颜色像素spx3的像素开口KK3具有第五尺寸b31。且第五尺寸b31大于第二尺寸g31_2。示例性地,r31:g31_2:b31为1:1.2:1.7~1:1.6:1.9。可选地,r31:g31_2:b31为1:1.2:1.7、1:1.2:1.8、1:1.2:1.9、1:1.3:1.7、1:1.3:1.8、1:1.6:1.7、1:1.6:1.8、1:1.6:1.9中的一个。在实际应用中,可以根据实际应用的需求确定r31:g31_2:b31的具体数值,在此不作限定。
在本公开一些实施例中,如图14与图15所示,在第二方向F2上,一个第三颜色像素spx3的像素开口KK3具有第六尺寸b32。且第六尺寸b32大于第四尺寸g32_1。示例性地,r32:g32_1:b32为1:1.2:1.7~1:1.6:1.9。可选地,r32:g32_1:b32为1:1.2:1.7、1:1.2:1.8、1:1.2:1.9、1:1.3:1.7、1:1.3:1.8、1:1.6:1.7、1:1.6:1.8、1:1.6:1.9中的一个。在实际应用中,可以根据实际应用的需求确定r32:g32_1:b32的具体数值,在此不作限定。
在本公开一些实施例中,如图14与图15所示,在第二方向F2上,一个第三颜色像素spx3的像素开口KK3具有第六尺寸b32。且第六尺寸b32大于第四尺寸g32_2。示例性地,r32:g32_2:b32为1:1.2:1.7~1:1.6:1.9。可选地,r32:g32_2:b32为1:1.2:1.7、1:1.2:1.8、1:1.2:1.9、1:1.3:1.7、1:1.3:1.8、1:1.6:1.7、 1:1.6:1.8、1:1.6:1.9中的一个。在实际应用中,可以根据实际应用的需求确定r32:g32_2:b32的具体数值,在此不作限定。
示例性地,如图14所示,第一折射率层150的调整结构可以包括凹槽AX,且凹槽AX的侧壁呈斜坡状,第二折射率层160填充凹槽AX。该凹槽AX与第一颜色像素spx1对应设置,且第一颜色像素spx1的像素开口KK1的底端在衬底基板100的正投影覆盖凹槽AX的底端在衬底基板100的正投影。示例性地,凹槽AX的截面为倒梯形,凹槽AX的底端为倒梯形短边,凹槽AX的顶端为倒梯形长边。由于凹槽AX的截面为倒梯形,凹槽AX的侧壁呈斜坡状,由于第二折射率层160的折射率大于第一折射率层150的折射率,通过设计凹槽AX的侧壁的倾斜角β的具体数值,可以在凹槽AX的侧壁处会形成全反射平面,第一颜色像素spx1的像素开口的边缘(如右侧边缘)出射的光L11,入射到凹槽AX左侧的侧壁处S1时,能够发生全反射。同理,第一颜色像素spx1的像素开口的左侧边缘出射的光,入射到凹槽AX右侧的侧壁处时,也能够发生全反射。并且,第一颜色像素spx1的像素开口的中间区域出射的光,入射到凹槽AX左侧和右侧的侧壁处时,不会发生全反射,可以折射出去。从而使第一颜色像素spx1的像素开口出射的部分光线能够出射到显示面板外面,实现发光,并且从第一颜色像素spx1的像素开口出射的另一部分光线被黑矩阵130吸收,可以增加在大视角下从第一颜色像素spx1的像素开口发出的光束亮度衰减的速率,使得第一颜色像素spx1的像素开口发出的光线的视角亮度衰减速率与第二颜色像素spx2的像素开口所发出的光线的视角亮度衰减速率尽量保持一致,进而可以减小显示面板的色偏。
需要说明的是,本实施例中凹槽AX的实施方式,可以参照上述实施方式,在此不作赘述。
如图17a至图17b所示,图17a为相关技术中OLED显示面板采用红绿蓝三原色光混合白光时的W视角CIE(Commission Internationale d'Eclairage)轨迹图。图17b为相关技术中红色OLED(如R)、绿色OLED(如G)以及蓝色OLED(如B)的单色视角亮度衰减图,图17c为相关技术中OLED显 示面板采用红绿蓝三原色光混合白光时的W视角色偏和W视角亮度衰减比例的具体参数对比示意图。由图17a至图17b可以看出,不同视角下不同颜色的OLED的亮度衰减速率不一致,其中,红色OLED的亮度衰减较慢,绿色OLED的亮度衰减较快,在采用RGB混合白光时,不同视角下显示面板在画面显示时会发生色偏的现象。
如图18a至图18b所示,图18a为图14所示的显示面板采用红绿蓝三原色光混合白光时的W视角CIE(Commission Internationale d'Eclairage)轨迹图。图18b为图14所示的显示面板的单色视角亮度衰减图,图18c为图14所示的显示面板采用红绿蓝三原色光混合白光时的W视角色偏和W视角亮度衰减比例的具体参数对比示意图。图18b中,LR21代表红色像素单色视角亮度的衰减曲线,LG21代表绿色像素单色视角亮度的衰减曲线,LB21代表蓝色像素单色视角亮度的衰减曲线。由图18a至图18b可以看出,采用本公开实施例提供的显示面板,在不同视角下不同颜色的OLED的亮度衰减速率趋于一致,在采用RGB混合白光时,不同视角下显示面板在画面显示时的色偏得以改善。
本公开实施例提供了又一些显示面板的结构示意图,如图19所示。其针对上述实施例中的实施方式进行了变形。下面仅说明本实施例与上述实施例的区别之处,其相同之处在此不作赘述。
在本公开一些实施例中,如图19与图20所示,第一折射率层150的调整结构也可以包括凹透镜阵列TZ;第二折射率层160填充凹透镜阵列TZ。凹透镜阵列TZ与第二颜色像素spx2_1和spx2_2对应设置。即,第二颜色像素spx2_1设置凹透镜阵列TZ,且第二颜色像素spx2_1的像素开口KK2_1的底端在衬底基板100的正投影覆盖凹透镜阵列TZ所在区域在衬底基板100的正投影。第二颜色像素spx2_2也设置凹透镜阵列TZ,且第二颜色像素spx2_2的像素开口KK2_2的底端在衬底基板100的正投影覆盖凹透镜阵列TZ所在区域在衬底基板100的正投影。由于第二折射率层160的折射率大于第一折射率层150的折射率,从第二颜色像素spx2_1和spx2_2的像素开口出射的光, 入射到凹透镜阵列TZ时,光由光疏介质进入光密介质,按照凹透镜的球心为法线,该光线的方向发生变化,可以降低在大视角下从第二颜色像素spx2的像素开口发出的光束亮度衰减的速率,使得第一颜色像素spx1的像素开口发出的光线的视角亮度衰减速率与第二颜色像素spx2的像素开口所发出的光线的视角亮度衰减速率尽量保持一致,进而可以减小显示面板的色偏。
需要说明的是,本实施例中凹透镜阵列TZ的实施方式,可以参照上述实施方式,在此不作赘述。
如图21a至图21b所示,图21a为图19所示的显示面板采用红绿蓝三原色光混合白光时的W视角CIE(Commission Internationale d'Eclairage)轨迹图。图21b为图19所示的显示面板的单色视角亮度衰减图,图21c为图19所示的显示面板采用红绿蓝三原色光混合白光时的W视角色偏和W视角亮度衰减比例的具体参数对比示意图。图21b中,LR22代表红色像素单色视角亮度的衰减曲线,LG22代表绿色像素单色视角亮度的衰减曲线,LB22代表蓝色像素单色视角亮度的衰减曲线。由图21a至图21b可以看出,采用本公开实施例提供的显示面板,在不同视角下不同颜色的OLED的亮度衰减速率趋于一致,在采用RGB混合白光时,不同视角下显示面板在画面显示时的色偏得以改善。
本公开实施例提供了又一些显示面板的结构示意图,如图22所示。其针对上述实施例中的实施方式进行了变形。下面仅说明本实施例与上述实施例的区别之处,其相同之处在此不作赘述。
在本公开一些实施例中,如图22所示,第一折射率层150的调整结构既可以包括凹槽AX,又可以包括凹透镜阵列TZ。其中,凹槽AX与第一颜色像素spx1对应设置,凹透镜阵列TZ与第二颜色像素spx2_1和spx2_2对应设置。需要说明的是,凹槽AX和凹透镜阵列TZ的实施方式,可以参照上述实施方式,在此不作赘述。
如图23a至图23b所示,图23a为图22所示的显示面板采用红绿蓝三原色光混合白光时的W视角CIE(Commission Internationale d'Eclairage)轨迹图。 图23b为图22所示的显示面板的单色视角亮度衰减图,图23c为图22所示的显示面板采用红绿蓝三原色光混合白光时的W视角色偏和W视角亮度衰减比例的具体参数对比示意图。图23b中,LR23代表红色像素单色视角亮度的衰减曲线,LG23代表绿色像素单色视角亮度的衰减曲线,LB23代表蓝色像素单色视角亮度的衰减曲线。由图23a至图23b可以看出,采用本公开实施例提供的显示面板,在不同视角下不同颜色的OLED的亮度衰减速率趋于一致,在采用RGB混合白光时,不同视角下显示面板在画面显示时的色偏得以改善。
本公开实施例还提供了显示装置,包括本公开实施例提供的上述显示面板。该显示装置解决问题的原理与前述显示面板相似,因此该显示装置的实施可以参见前述显示面板的实施,重复之处在此不再赘述。
在具体实施时,在本公开实施例中,显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (21)

  1. 一种显示面板,包括:
    衬底基板,包括多个像素;
    像素限定层,位于所述衬底基板上,所述像素限定层具有多个像素开口;其中,所述多个像素和所述多个像素开口一一对应;
    其中,所述多个像素包括第一颜色像素和第二颜色像素;其中,所述第一颜色像素的像素开口在单位面积中视角亮度的衰减速率为第一衰减速率,所述第二颜色像素的像素开口在所述单位面积中视角亮度的衰减速率为第二衰减速率,所述第一衰减速率小于所述第二衰减速率;
    一个所述第一颜色像素的像素开口的面积小于一个所述第二颜色像素的像素开口的面积。
  2. 如权利要求1所述的显示面板,其中,在第一方向上,一个所述第一颜色像素的像素开口具有第一尺寸,一个所述第二颜色像素的像素开口具有第二尺寸,所述第一尺寸小于所述第二尺寸。
  3. 如权利要求2所述的显示面板,其中,所述第一尺寸和所述第二尺寸之间的比值范围为1:1.2~1:1.6。
  4. 如权利要求1-3任一项所述的显示面板,其中,在第二方向上,一个所述第一颜色像素的像素开口具有第三尺寸,一个所述第二颜色像素的像素开口具有第四尺寸,所述第三尺寸小于所述第四尺寸;所述第二方向与所述第一方向交叉。
  5. 如权利要求4所述的显示面板,其中,所述第三尺寸和所述第四尺寸之间的比值范围为1:1.2~1:1.6。
  6. 如权利要求1-5任一项所述的显示面板,其中,所述多个像素还包括第三颜色像素;
    一个所述第二颜色像素的像素开口的面积小于一个所述第三颜色像素的像素开口的面积。
  7. 如权利要求1-6任一项所述的显示面板,其中,所述显示面板还包括:
    黑矩阵,位于所述像素限定层背离所述衬底基板一侧;其中,所述黑矩阵具有多个黑矩阵开口;所述多个黑矩阵开口与所述多个像素开口一一对应;
    所述黑矩阵开口的底端在所述衬底基板的正投影覆盖对应的所述像素开口的底端在所述衬底基板的正投影。
  8. 如权利要求7所述的显示面板,其中,所述第一颜色像素中,所述黑矩阵开口的底端在所述衬底基板的正投影的边缘与所述像素开口的底端在所述衬底基板的正投影的边缘具有第一开口间距;
    所述第二颜色像素中,所述黑矩阵开口的底端在所述衬底基板的正投影的边缘与所述像素开口的底端在所述衬底基板的正投影的边缘具有第二开口间距;
    所述第一开口间距小于所述第二开口间距。
  9. 如权利要求8所述的显示面板,其中,所述第一开口间距与所述第二开口间距之间的比值的范围为1:1.2~1:2.2。
  10. 如权利要求8或9所述的显示面板,其中,所述多个像素还包括第三颜色像素;所述第三颜色像素中,所述黑矩阵开口的底端在所述衬底基板的正投影的边缘与所述像素开口的底端在所述衬底基板的正投影的边缘具有第三开口间距;
    所述第三开口间距不小于所述第一开口间距,且所述第三开口间距小于所述第二开口间距。
  11. 如权利要求1-10任一项所述的显示面板,其中,所述显示面板还包括:
    第一折射率层,位于所述像素限定层背离所述衬底基板一侧;
    第二折射率层,位于所述第一折射率层背离所述衬底基板一侧;
    其中,所述第一折射率层的折射率小于所述第二折射率层的折射率;
    所述第一折射率层具有调整结构,所述调整结构与所述第一颜色像素和所述第二颜色像素中的至少一个对应设置;
    所述调整结构被配置为降低对应像素的像素开口出射光线的出射角。
  12. 如权利要求11所述的显示面板,其中,所述调整结构包括凹槽,且所述凹槽的侧壁呈斜坡状,所述第二折射率层填充所述凹槽;
    所述凹槽与所述第一颜色像素对应设置,且所述第一颜色像素的像素开口的底端在所述衬底基板的正投影覆盖所述凹槽的底端在所述衬底基板的正投影。
  13. 如权利要求12所述的显示面板,其中,所述第一颜色像素的像素开口的底端在所述衬底基板的正投影的边缘与所述凹槽的底端在所述衬底基板的正投影的边缘之间具有第一内缩值,所述第一内缩值不小于零且不大于2μm。
  14. 如权利要求12或13所述的显示面板,其中,所述第一颜色像素的像素开口的顶端在所述衬底基板的正投影覆盖所述凹槽的顶端在所述衬底基板的正投影;或者,所述第一颜色像素的像素开口的顶端在所述衬底基板的正投影位于所述凹槽的顶端在所述衬底基板的正投影内。
  15. 如权利要求11-14任一项所述的显示面板,其中,所述调整结构包括凹透镜阵列;所述第二折射率层填充所述凹透镜阵列;
    所述凹透镜阵列与所述第二颜色像素对应设置,且所述第二颜色像素的像素开口的底端在所述衬底基板的正投影覆盖所述凹透镜阵列所在区域在所述衬底基板的正投影。
  16. 如权利要求15所述的显示面板,其中,所述凹透镜阵列中,各所述凹透镜的尺寸相同,且每相邻两个所述凹透镜之间的间隔距离相同。
  17. 如权利要求1-16任一项所述的显示面板,其中,所述多个像素还包括第三颜色像素;一个所述第一颜色像素、一个所述第二颜色像素、一个所述第三颜色像素组成一个重复单元;所述重复单元内,所述第一颜色像素和所述第二颜色像素沿第一方向排布,且过所述第三颜色像素的像素开口中心且垂直于所述第一方向的直线位于所述第一颜色像素的像素开口与所述第二颜色像素的像素开口之间的间隙处;多个所述重复单元沿所述第一方向依次 排布,组成像素行。
  18. 如权利要求1-16任一项所述的显示面板,其中,所述多个像素还包括第三颜色像素;
    一个第一颜色像素、两个第二颜色像素、一个第三颜色像素组成一个重复单元;所述重复单元内,所述第一颜色像素、所述两个第二颜色像素、所述第三颜色像素的像素开口的中心组成四边形,所述第一颜色像素的像素开口中心与所述第三颜色像素的像素开口中心的连线组成所述四边形的第一对角线,所述重复单元沿平行于所述第一对角线的方向依次排布,组成像素行。
  19. 如权利要求17或18所述的显示面板,其中,所述第一颜色像素为红色像素,所述第二颜色像素为绿色像素,所述第三颜色像素为蓝色像素。
  20. 如权利要求1-19任一项所述的显示面板,其中,所述多个像素中的任一个像素的像素开口,在所述衬底基板的正投影为矩形、菱形与圆形中的至少一种。
  21. 一种显示装置,包括如权利要求1-20任一项所述的显示面板。
PCT/CN2022/102457 2022-06-29 2022-06-29 显示面板及显示装置 WO2024000300A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/102457 WO2024000300A1 (zh) 2022-06-29 2022-06-29 显示面板及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/102457 WO2024000300A1 (zh) 2022-06-29 2022-06-29 显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2024000300A1 true WO2024000300A1 (zh) 2024-01-04

Family

ID=89383450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102457 WO2024000300A1 (zh) 2022-06-29 2022-06-29 显示面板及显示装置

Country Status (1)

Country Link
WO (1) WO2024000300A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638147A (zh) * 2015-03-04 2015-05-20 京东方科技集团股份有限公司 一种像素界定层及oled器件
US20160282987A1 (en) * 2015-03-24 2016-09-29 Samsung Display Co., Ltd. Display device
CN108875662A (zh) * 2018-06-26 2018-11-23 武汉天马微电子有限公司 一种显示面板及显示装置
CN113097278A (zh) * 2021-03-31 2021-07-09 武汉天马微电子有限公司 显示面板及显示装置
CN113629122A (zh) * 2021-08-31 2021-11-09 京东方科技集团股份有限公司 显示面板以及显示装置
CN216488064U (zh) * 2021-08-31 2022-05-10 京东方科技集团股份有限公司 显示面板以及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638147A (zh) * 2015-03-04 2015-05-20 京东方科技集团股份有限公司 一种像素界定层及oled器件
US20160282987A1 (en) * 2015-03-24 2016-09-29 Samsung Display Co., Ltd. Display device
CN108875662A (zh) * 2018-06-26 2018-11-23 武汉天马微电子有限公司 一种显示面板及显示装置
CN113097278A (zh) * 2021-03-31 2021-07-09 武汉天马微电子有限公司 显示面板及显示装置
CN113629122A (zh) * 2021-08-31 2021-11-09 京东方科技集团股份有限公司 显示面板以及显示装置
CN216488064U (zh) * 2021-08-31 2022-05-10 京东方科技集团股份有限公司 显示面板以及显示装置

Similar Documents

Publication Publication Date Title
US20230006005A1 (en) Display substrate and display device
WO2021254228A1 (zh) 显示面板和显示装置
WO2022001311A1 (zh) 显示面板及显示装置
US20170352710A1 (en) Oled pixel arrangement structure and display device
WO2021027103A1 (zh) 显示面板及显示装置
US11374061B2 (en) OLED display panel and intelligent terminal
WO2020215413A1 (zh) 显示面板及显示装置
US20200279517A1 (en) Organic light emitting diode display pixel array
US10475867B2 (en) Organic light-emitting display panel and display apparatus thereof
US11056081B2 (en) Display panel and display device
US20230039372A1 (en) Display panel and manufacturing method therefor, and display device
CN111564571A (zh) Oled显示面板及显示装置
US11974458B2 (en) OLED display panel and OLED display device
WO2021184324A1 (zh) 显示装置及其显示方法
WO2022036768A1 (zh) 显示面板及显示装置
WO2022022076A1 (zh) 显示器件和近眼显示设备
WO2022188421A1 (zh) 显示基板、彩膜基板、显示面板及显示装置
CN113629122A (zh) 显示面板以及显示装置
US8421966B2 (en) Liquid crystal display comprising red, green, blue, and yellow sub-pixels having chromaticity on a CIE1931 chromaticity diagram wherein the sub-pixels have different areas
WO2024119779A1 (zh) 像素结构及显示面板
WO2024000300A1 (zh) 显示面板及显示装置
CN111312916A (zh) 显示面板和显示装置
WO2024000792A1 (zh) 显示面板及显示装置
WO2020063700A1 (zh) Led显示屏
CN216488064U (zh) 显示面板以及显示装置