WO2024000257A1 - 一种支持无线供电和近场通信的供电设备 - Google Patents

一种支持无线供电和近场通信的供电设备 Download PDF

Info

Publication number
WO2024000257A1
WO2024000257A1 PCT/CN2022/102308 CN2022102308W WO2024000257A1 WO 2024000257 A1 WO2024000257 A1 WO 2024000257A1 CN 2022102308 W CN2022102308 W CN 2022102308W WO 2024000257 A1 WO2024000257 A1 WO 2024000257A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
detection
module
picc
mode
Prior art date
Application number
PCT/CN2022/102308
Other languages
English (en)
French (fr)
Inventor
张统
方耀蚺
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to CN202280006855.8A priority Critical patent/CN116325524A/zh
Priority to PCT/CN2022/102308 priority patent/WO2024000257A1/zh
Publication of WO2024000257A1 publication Critical patent/WO2024000257A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems

Definitions

  • Embodiments of the present application relate to the technical field of wireless power supply, and in particular, to a power supply device that supports wireless power supply and near field communication.
  • NFC near-field communication
  • PICC proximity integrated circuit card
  • the embodiment of the present application provides a power supply device that supports wireless power supply and near field communication, which can reduce the impact of PICC detection on wireless power supply and ensure wireless power supply efficiency.
  • embodiments of the present application provide a power supply device that supports wireless power supply and near field communication, including a wireless power supply module, a power supply coil and a detection module.
  • the wireless power supply module is used to provide a power supply signal to the power supply coil,
  • the power supply coil uses the power supply signal to power electronic equipment;
  • the detection module is used to detect whether there is a target device in the detection area of the power supply device and detect whether the target device belongs to a PICC device; the operation of the power supply device
  • the modes include power supply mode, PICC detection mode and PICC protection mode; when the power supply equipment is running in the power supply mode, in response to the detection information output by the detection module, the operation mode of the power supply equipment switches from the power supply mode to The PICC detection mode or the PICC protection mode; when the power supply device operates in the power supply mode, the PICC detection mode and the PICC protection mode respectively, the wireless power supply module provides power to the power supply coil.
  • the power of the signal decreases in sequence; wherein the target device is a
  • the wireless power supply module in the power supply device may include multiple operating modes, specifically including power supply mode, PICC detection mode and PICC protection mode.
  • the operating mode of the power supply equipment can be switched from the power supply mode to the PICC detection mode or the PICC protection mode.
  • the wireless power supply module can provide power supply signals with decreasing power to the power supply coil, so that the power supply coil generates magnetic fields of different strengths to power electronic devices, so that it can flexibly Meet the power supply requirements in different operating modes.
  • the power supply equipment can continue to provide wireless power supply to the current electronic equipment when performing PICC detection, thereby avoiding the loss of power supply to the electronic equipment.
  • the power supply equipment provided by the embodiments of the present application can ensure the efficiency of wireless power supply while ensuring the detection efficiency of the PICC to prevent the PICC from being damaged, thereby meeting the user needs to a great extent.
  • the wireless power supply module in response to the power supply device operating in the power supply mode, provides a power supply signal of the first power to the power supply coil; in response to the power supply device operating in the PICC detection mode, the wireless power supply module provides a power supply signal of the second power to the power supply coil; in response to the power supply device operating in the PICC protection mode, the wireless power supply module provides power supply of a third power to the power supply coil. signal; wherein the first power is greater than the second power, and the second power is greater than the third power.
  • the wireless power supply module when the power supply equipment is running in the power supply mode, PICC detection mode or PICC protection mode, the wireless power supply module can provide power supply signals with successively decreasing power to the power supply coil, so that the power supply coil generates magnetic fields of different strengths, which is flexible It can effectively meet the power supply requirements under different situations, which not only avoids the interruption of charging of electronic equipment during PICC detection, ensures the efficiency of wireless power supply, but also prevents damage to the PICC, which greatly protects the user experience.
  • the third power may be equal to 0, which is equivalent to directly turning off the wireless power supply module, that is, no wireless power supply is performed.
  • the detection information output by the detection module is used to indicate: whether there is the target device other than the power supply device and the electronic device in the detection area; or, the Whether there is a PICC device in the detection area of the power supply device.
  • the detection information output by the detection module can indicate whether there are target devices other than power supply equipment and electronic equipment in the detection area of the power supply equipment, that is, whether there is a new device entering the detection area; or, the detection information Can indicate whether there is a PICC device in the detection area.
  • Subsequent power supply equipment can switch to different operating modes in time based on the detection information output by the detection module to provide power supply signals of different powers to the power supply coil, while meeting the needs of PICC detection, wireless power supply and PICC protection, and avoiding interruption of charging of electronic equipment during PICC detection. and damage to the PICC.
  • the detection module in response to the presence of the target device in the detection area, the detection module outputs the detection information to indicate that the power supply device operates in the PICC detection mode; in response to the detection area If the target device does not exist, the detection module outputs the detection information to indicate that the power supply device is operating in the power supply mode.
  • the power supply device when the detection module detects that a new device enters the detection area, can switch to the PICC detection mode to detect the PICC in time and prevent the PICC from being damaged.
  • the power supply equipment can maintain the power supply mode.
  • the power supply device is originally in a standby state, and when the detection module detects that no device enters the detection area, the power supply device can still run in the standby state, that is, no wireless power supply is performed, to save energy as much as possible.
  • the detection module in response to the target device belonging to a PICC device, the detection module outputs the detection information to indicate that the power supply device operates in the PICC protection mode; in response to the target device not belonging to a PICC Equipment, the detection module outputs the detection information to indicate that the power supply equipment operates in the power supply mode.
  • the power supply device when the detection module detects that the target device does belong to a PICC device, the power supply device can run in the PICC protection mode to prevent damage to the PICC in time; when the detection module detects that the target device does not belong to a PICC device, the power supply device The device can operate in powered mode. For example, when the detection module does not detect whether the device is a PICC device, the power supply device can continue to run in the PICC detection mode. In this way, the embodiments of the present application can flexibly switch to different operating modes according to the actual situation, which not only avoids the interruption of charging of electronic devices during PICC detection, ensures the efficiency of wireless power supply, but also prevents damage to the PICC, which greatly protects the user's use. experience.
  • the detection module includes: a sensor module, configured to detect whether the target device other than the power supply device and the electronic device is present in the detection area, and output a sensor detection signal ; Near field communication module, used to detect whether the target device in the detection area belongs to a PICC device, and output a near field communication module detection signal.
  • the detection module may specifically include a sensor module and a near field communication module.
  • the sensor module can monitor in real time whether a device enters the detection area of the power supply equipment, and output the sensor detection signal, which is the sensor detection result.
  • the near field communication module can be used to detect whether the device entering the detection area is a PICC device, and output the near field communication module detection signal, that is, the detection result of the near field communication module.
  • Subsequent power supply equipment can switch to different operating modes in time based on the detection results output by the sensor module and near field communication module to provide power supply signals of different powers to the power supply coil to avoid interruption of charging of electronic equipment and damage to the PICC during PICC detection.
  • the detection module is configured to: in response to the sensor detection signal, the detection module output the detection information to indicate that the power supply device operates in the PICC detection mode or the power supply mode. ; In response to the near field communication module detection signal, the detection module outputs the detection information to indicate that the power supply device operates in the PICC protection mode or the power supply mode.
  • the power supply device in response to the sensor detection signal, that is, in response to the detection result output by the sensor module, can switch to different operating modes.
  • the power supply device in response to the near field communication module detection signal, that is, in response to the detection result output by the near field communication module, the power supply device can switch to different operating modes. This can meet the power supply needs under different circumstances and avoid charging interruption of electronic equipment and damage to PICC during PICC detection.
  • the detection information includes at least one of the sensor detection signal and the near field communication module detection signal, wherein: in response to the detection information including the sensor detection signal, the The power supply device operates in the PICC detection mode or the power supply mode; in response to the detection information including the near field communication module detection signal, the power supply device operates in the PICC protection mode or the power supply mode.
  • the detection information output by the detection module may include at least one of a sensor detection signal and a near field communication module detection signal.
  • the power supply device can switch between different operating modes.
  • the power supply device can switch to different operating modes. This can meet the power supply needs under different circumstances and avoid charging interruption of electronic equipment and damage to PICC during PICC detection.
  • the wireless power supply module in response to the detection information including the sensor detection signal, provides the power supply signal of the first power or the second power to the power supply coil; In response to the detection information including the near field communication module detection signal, the wireless power supply module provides the power supply signal of the first power or the third power to the power supply coil.
  • the power supply device in response to the sensor detection signal, can provide power supply signals of different powers to the power supply coil to meet the power supply requirements of PICC detection or wireless power supply and avoid interruption of charging of electronic equipment during PICC detection.
  • the power supply equipment in response to the near field communication module detection signal, can provide power supply signals of different powers to the power supply coil to meet the power supply needs of wireless power supply and PICC protection, ensure efficient power supply to electronic equipment and avoid damage to the PICC.
  • the power supply device further includes: a control module, configured to respond to the detection information output by the detection module, control the power supply device to operate in the power supply mode, the PICC detection mode or the PICC protection mode.
  • the power supply equipment may also include a control module.
  • the control module may control the switching of the operating mode of the power supply equipment based on the detection information output by the detection module to meet power supply requirements under different circumstances. In this way, it not only avoids the interruption of charging of electronic equipment during PICC detection, ensures the efficiency of wireless power supply, but also prevents damage to the PICC.
  • control module is configured to: in response to the detection information including the sensor detection signal, the control module controls the power supply device to operate in the PICC detection mode or the power supply mode. ; In response to the detection information including the near field communication module detection signal, the control module controls the power supply device to operate in the PICC protection mode or the power supply mode.
  • the control module in response to the detection result output by the sensor module in the detection module, can control the power supply device to operate in the PICC detection mode or power supply mode. In response to the detection result output by the near field communication module in the detection module, the control module can control the power supply device to operate in the PICC protection mode or power supply mode. In this way, embodiments of the present application can use the controller to flexibly switch different operating modes under different detection results to meet power supply requirements under different circumstances.
  • control module is configured to: in response to the detection information including the sensor detection signal, the control module controls the wireless power supply module to provide the first power to the power supply coil. or the power supply signal of the second power; in response to the detection information including the near field communication module detection signal, the control module controls the wireless power supply module to provide the first power to the power supply coil or The power supply signal of the third power.
  • the control module in response to the detection result output by the sensor module in the detection module, can control the wireless power supply module to provide power supply signals of different powers to the power supply coil, so that the power supply coil generates magnetic fields of different strengths.
  • the control module in response to the detection results output by the near field communication module in the detection module, can control the wireless power supply module to provide power supply signals of different powers to the power supply coil, so that the power supply coil generates magnetic fields of different strengths.
  • the embodiment of the present application can use the controller to provide power supply signals of different powers under different detection results to meet the power supply requirements under different circumstances, which not only avoids the interruption of charging of electronic equipment during PICC detection, but also ensures wireless power supply efficiency. Can prevent PICC damage.
  • embodiments of the present application provide a power supply device, which is characterized in that it includes a wireless power supply module, a power supply coil, a detection module and a control module, wherein: the wireless power supply module is used to provide power to the power supply coil.
  • the power supply coil uses the power supply signal to power electronic equipment;
  • the detection module is used to detect whether there is a target device in the detection area of the power supply device and detect whether the target device belongs to a PICC device;
  • the control A module configured to control the wireless power supply module to provide the power supply signal with a first power to the power supply coil, and in response to the detection information output by the detection module, to control the wireless power supply module to provide the power supply coil with The power supply signal of a second power or a third power; wherein the target device is a device other than the power supply device and the electronic device, the first power is greater than the second power, and the second The power is greater than the third power.
  • the detection module includes a sensor module and a near field communication module, wherein: the sensor module is used to detect whether the target device is present in the detection area; and the near field communication module a module for detecting whether the target device in the detection area belongs to a PICC device; the detection module for outputting the detection information according to the detection results of the sensor module and the near field communication module, the The detection information is used to indicate whether the target device exists in the detection area or whether the target device belongs to a PICC device.
  • control module is configured to: in response to the detection information indicating that the target device exists in the detection area, control the wireless power supply module to provide the second power to the power supply coil. Power supply signal; in response to the detection information indicating that the target device belongs to a PICC device, control the wireless power supply module to provide a third power power supply signal to the power supply coil.
  • inventions of the present application provide a wireless power supply and PICC detection method, which is applied to power supply equipment.
  • the power supply equipment includes a wireless power supply module, a power supply coil and a detection module; the operation mode of the power supply equipment includes a power supply mode, PICC detection mode and PICC protection mode; the method includes: providing a power supply signal to the power supply coil through the wireless power supply module, and the power supply coil uses the power supply signal to power the electronic device; detecting the Whether there is a target device in the detection area of the power supply device and whether the target device belongs to a PICC device, the target device is a device other than the power supply device and the electronic device; the power supply device runs on the power supply device mode, the operating mode of the power supply equipment switches from the power supply mode to the PICC detection mode or the PICC protection mode; the power supply equipment operates in the power supply mode, the PICC detection mode and the PICC protection mode respectively.
  • the protection mode the power of the power supply signal provided by the wireless power supply module to the power supply coil
  • inventions of the present application provide a power supply device.
  • the power supply device may include: a processor and a memory, wherein the memory is used to store program code, and the processor is used to call the program code to implement the above.
  • the third aspect provides functions involved in a wireless power supply and PICC detection method process.
  • the power supply device may also include a communication interface for the power supply device to communicate with other devices or a communication network.
  • embodiments of the present application provide a computer-readable storage medium that stores a computer program. When executed by a processor, the computer program implements the wireless power supply and wireless power supply provided in the third aspect. Functions involved in the PICC detection method process.
  • embodiments of the present application provide a computer program.
  • the computer program includes instructions.
  • the instructions When the instructions are executed by a computer, the computer can perform the wireless power supply and PICC detection method process provided in the third aspect. function.
  • inventions of the present application provide a chip.
  • the chip includes a processor and a communication interface.
  • the processor is configured to call and run instructions from the communication interface.
  • the chip Execute the functions involved in the wireless power supply and PICC detection method process provided by the third aspect.
  • embodiments of the present application provide a chip system.
  • the chip system includes the power supply device described in any one of the first aspect or the second aspect, and is used to implement the wireless power supply provided in the third aspect. and the functions involved in the PICC detection method process.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data for wireless power supply and PICC detection methods.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • Figure 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of the time domain waveform during PICC detection.
  • Figure 3 is a schematic structural diagram of a power supply device provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of a time domain waveform during a PICC detection process provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another power supply device provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of yet another power supply device provided by an embodiment of the present application.
  • Figure 7 is a schematic flowchart of a wireless power supply and PICC detection method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of power changes of a power supply signal provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of power changes of another power supply signal provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another wireless power supply and PICC detection method provided by an embodiment of the present application.
  • At least one (item) refers to one or more, and “plurality” refers to two or more.
  • “And/or” is used to describe the relationship between associated objects, indicating that there can be three relationships. For example, “A and/or B” can mean: only A exists, only B exists, and A and B exist simultaneously. , where A and B can be singular or plural. The character “/” generally indicates that the related objects are in an "or” relationship. “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • At least one of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c” ”, where a, b, c can be single or multiple.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the invention.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • a component may be, but is not limited to, a process, a processor, an object, an executable file, a thread of execution, a program and/or a computer running on a processor.
  • applications running on the computing device and the computing device may be components.
  • One or more components can reside in a process and/or thread of execution and a component can be localized on one computer and/or distributed between 2 or more computers. Additionally, these components can execute from various computer-readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component, a local system, a distributed system, and/or a network, such as the Internet, which interacts with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component, a local system, a distributed system, and/or a network, such as the Internet, which interacts with other systems via signals
  • Wireless power supply technology or magnetic induction wireless charging (wireless power transfer, WPT) technology, is a technology that couples the AC magnetic field generated by the transmitting coil in the power supply equipment to the receiving coil in the electronic device for energy transmission.
  • NFC technology is a technology that transmits data by coupling the AC magnetic field generated by the transmitting coil in the card reader (proximity coupling device, PCD) and the receiving coil in the adjacent integrated circuit card (PICC).
  • PCD proximity coupling device
  • PICC adjacent integrated circuit card
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the application scenario may include a power supply device 10 , an electronic device 20 and a device 30 .
  • the power supply device 10 has a wireless power supply function and a near field communication function.
  • the power supply device 10 can wirelessly power the electronic device 20 and can perform data communication with the device 30 by transmitting NFC signals.
  • the electronic device 20 has a wireless charging function.
  • a battery is installed in the electronic device 20 .
  • the electronic device 20 can be a smart phone, a tablet computer, a laptop computer, a smart watch, a smart bracelet, a smart helmet, a smart glasses, a Bluetooth headset and other wearable devices. It can also be Be it electric cars, drones, and robot vacuum cleaners, to name a few.
  • the battery in the electronic device 20 may be any one of a lead-acid battery, a nickel-cadmium battery, a nickel-iron battery, a nickel-hydrogen battery, a lithium-ion battery, and the like.
  • no battery is installed in the electronic device 20 .
  • the electronic device 20 may be a desktop computer, a landline phone, a radio frequency identification (radio frequency identification, RFID) card, or the like.
  • Device 30 includes a proximity integrated circuit card and device 30 is a PICC device.
  • the device 30 may be a student ID card, a meal card, a bus card, a bank card, an ID card, or other device including a PICC.
  • the power supply device 10 wirelessly supplies power to the electronic device 20 , and the device 30 enters the detection area of the power supply device 10 .
  • the power supply device 10 wirelessly powers the electronic device 20 without damaging the NFC function of the electronic device 20 .
  • the detection area of the power supply device 10 is larger than the wireless power supply area. When any device enters the detection area of the power supply device 10, the power supply device 10 can turn off the wireless power supply in time to prevent the wireless power supply magnetic field from damaging the PICC device.
  • the power supply device 10 finds that the device 30 enters its detection area, and the power supply device 10 stops wireless power supply to the electronic device 20 . Correspondingly, the electronic device 20 loses power supply. After the power supply device 10 stops wireless power supply to the electronic device 20 , the power supply device 10 starts transmitting carrier frequency signals to the device 30 .
  • FIG. 2 is a schematic diagram of the time domain waveform during PICC detection.
  • the power supply device 10 transmits a start signal with a carrier frequency of f NFC to the device 30 .
  • the power supply device 10 transmits a request (REQ) signal with a carrier frequency of f NFC to the device 30 .
  • the startup signal is used to power the device 30 , and the startup signal lasts for at least 5.1 milliseconds, so that the device 30 stores enough power to communicate with the power supply device 10 .
  • the request signal generally lasts 0.5 milliseconds.
  • f NFC is 13.56MHz.
  • the power supply device 10 receives the answer to request (ATQ) signal sent by the device 30, and the power supply device 10 confirms that the device 30 belongs to the PICC device. At this point, the power supply device 10 ends the PICC detection. Subsequently, data can be transmitted between the power supply device 10 and the device 30 .
  • ATQ answer to request
  • the power supply device 10 After the power supply device 10 enters its detection area from the discovery device 30, it will stop wireless power supply to the electronic device 20. As a result, the electronic device 20 that was originally receiving power loses power supply or stops charging, thereby seriously affecting the wireless power supply efficiency and user experience.
  • the power supply device 10 needs to stop wireless power supply to the electronic device 20 while sending the request signal and waiting for the reply request signal. As shown in FIG. 2 , the request signal only lasts for 0.5 milliseconds. During this period, the impact of stopping wireless charging on the electronic device 20 on the wireless power efficiency is negligible. However, the duration of the start signal is much longer than the duration of the request signal. If the power supply device 10 stops wirelessly charging the electronic device 20 for a long time, the wireless power supply efficiency will be affected and the user experience will be reduced.
  • embodiments of the present application provide a power supply device that can reduce the impact of PICC devices on wireless power supply efficiency and improve user experience.
  • FIG. 3 is a schematic structural diagram of a power supply device provided by an embodiment of the present application.
  • the technical solution of the embodiment of the present application may be implemented in the structure shown as an example in Figure 3 or a similar structure.
  • the power supply device 10 may be the power supply device 10 shown in FIG. 1 above.
  • the power supply device 10 may include a wireless power supply module 101 , a power supply coil 14 and a detection module 102 .
  • the wireless power supply module 101 is connected to the power supply coil 14 .
  • the wireless power supply module 101 is used to provide power supply signals to the power supply coil 14 .
  • the power supply coil 14 is used to receive the power supply signal provided by the wireless power supply module 101 and use the power supply signal to generate a corresponding wireless power supply magnetic field to power the electronic device 20 .
  • the wireless power supply module 101 can provide power supply signals of different powers to the power supply coil 14, so that the power supply coil 14 generates wireless power supply magnetic fields of different strengths.
  • the detection module 102 is used to detect whether there is a target device in the detection area of the power supply device 10 and whether the target device belongs to a PICC device, and output corresponding detection information.
  • the target device is a device other than the power supply device 10 and the electronic device 20 that is receiving power supply.
  • the target device may belong to a PICC device or not.
  • the target device may be the device 30 in Figure 1 .
  • the detection module 102 in response to the presence of the target device in the detection area of the power supply device 10, the detection module 102 outputs detection information indicating that the target device exists in the detection area of the power supply device 10.
  • the detection module 102 in response to the absence of the target device in the detection area of the power supply device 10, the detection module 102 outputs detection information indicating that the target device does not exist in the detection area of the power supply device 10.
  • the detection module 102 in response to the target device in the detection area belonging to a PICC device, the detection module 102 outputs detection information indicating that the target device belongs to a PICC device.
  • the detection module 102 in response to the target device in the detection area not belonging to the PICC device, the detection module 102 outputs detection information indicating that the target device does not belong to the PICC device.
  • the operating modes of the power supply device 10 may include a power supply mode, a PICC detection mode, and a PICC protection mode.
  • the wireless power supply module 101 can provide power supply signals of different powers to the power supply coil 14 respectively.
  • the wireless power supply module 101 can provide power supply signals with sequentially decreasing power to the power supply coil 14 . It should be noted that, as shown in Figure 2 above, there is no data transmission between the power supply device 10 and the device 30 during the period of sending the startup signal.
  • the impact of the wireless power supply magnetic field on the startup signal is negligible, and the wireless power supply magnetic field can even be used directly to replace the startup signal.
  • the signal powers device 30.
  • the wireless power supply module 101 of the power supply device 10 can still provide power supply signals to the power supply coil 14, thereby generating a wireless power supply magnetic field to power the electronic device 20 and the device 30.
  • the power supply equipment 10 can implement switching between different operating modes based on the detection information output by the detection module 102 .
  • the power supply device 10 in response to the detection information output by the detection module 102, the power supply device 10 may operate in the power supply mode, the PICC detection mode or the PICC protection mode.
  • the power supply device 10 operates in the power supply mode.
  • the operation mode of the power supply device 10 can be switched from the power supply mode to the PICC detection mode or the PICC protection mode.
  • the power supply device 10 operates in the power supply mode. In response to the detection information output by the detection module 102, the operation mode of the power supply device 10 can be switched from the power supply mode to the PICC detection mode, or the power supply mode can be maintained. In one implementation, the power supply device 10 operates in the PICC detection mode. In response to the detection information output by the detection module 102, the operation mode of the power supply device 10 can be switched from the PICC detection mode to the PICC protection mode or the power supply mode.
  • the detection information output by the detection module 102 can be used to indicate whether there are target devices other than the power supply device 10 and the electronic device 20 in the detection area of the power supply device 10.
  • the power supply Device 10 may operate in power supply mode or PICC detection mode.
  • the detection module 102 in response to the presence of a target device in the detection area of the power supply device 10, the detection module 102 outputs detection information to indicate that the power supply device 10 operates in the PICC detection mode.
  • the detection module 102 in response to the absence of the target device in the detection area of the power supply device 10, the detection module 102 outputs detection information to indicate that the power supply device 10 operates in the power supply mode.
  • the detection module 102 detects that the target device exists in the detection area of the power supply device 10, and in response to the detection information output by the detection module 102, the power supply device 10 runs in the PICC detection mode. For example, the detection module 102 detects that the target device does not exist in the detection area of the power supply device 10. In response to the detection information output by the detection module 102, the power supply device 10 operates in the power supply mode.
  • the detection information output by the detection module 102 can also be used to indicate whether there is a PICC device in the detection area of the power supply equipment 10, that is, indicating whether the target device entering the detection area belongs to a PICC device.
  • the power supply device 10 can operate in PICC protection mode, power supply mode or PICC detection mode.
  • the detection information output by the detection module 102 indicates that the power supply device 10 operates in the PICC protection mode.
  • the detection information output by the detection module 102 indicates that the power supply device 10 is operating in the power supply mode.
  • the detection module 102 detects that the target device belongs to a PICC device, and in response to the detection information output by the detection module 102, the power supply device 10 operates in the PICC protection mode. For example, the detection module 102 detects that the target device does not belong to a PICC device, and in response to the detection information output by the detection module 102, the power supply device 10 operates in the power supply mode. For example, the detection module 102 does not detect whether the target device is a PICC device. In response to the detection information output by the detection module 102, the power supply device 10 can maintain the PICC detection mode.
  • the power supply device 10 in the embodiment of the present application will be described below with reference to FIG. 1 and FIG. 3 .
  • the operating modes of the power supply device 10 include power supply mode, PICC detection mode and PICC protection mode.
  • the power supply device 10 operates in the power supply mode.
  • the wireless power supply module 101 of the power supply device 10 provides a power supply signal to the power supply coil 14 so that the power supply coil 14 generates a wireless power supply magnetic field to power the electronic device 20 .
  • the power supply device 10 operates in the power supply mode, and the wireless power supply module 101 can provide a first power power supply signal to the power supply coil 14 .
  • the device 30 enters the detection area of the power supply device 10 .
  • the power supply device 10 switches to the PICC detection mode.
  • the power of the power supply signal provided by the wireless power supply module 101 to the power supply coil 14 can remain unchanged or appropriately reduced, so that the power supply coil 14 continues to generate a wireless power supply magnetic field to power the electronic device 20 and the device 30 .
  • the wireless power supply module 101 can provide a power supply signal of a second power to the power supply coil 14, and the first power can be greater than the second power.
  • FIG. 4 is a schematic diagram of a time domain waveform during a PICC detection process provided by an embodiment of the present application.
  • the wireless power supply module 101 of the power supply device 10 can provide a power supply signal of the second power to the power supply coil 14 , so that the power supply coil 14 generates a wireless power supply magnetic field to power the electronic device 20 and the device 30 .
  • the carrier frequency of the power supply signal may be f WPT .
  • the wireless power supply module 101 of the power supply device 10 is turned off, and the detection module 102 can detect whether the device 30 is a PICC device by transmitting one or more request signals, and output corresponding detection information.
  • the power supply device 10 switches to the PICC protection mode.
  • the wireless power supply module 101 can provide a very small power power supply signal to the power supply coil 14. Even, the power supply device 10 can directly turn off the wireless power supply module 101 until the PICC leaves the detection area, thereby effectively preventing PICC damage extends the service life of PICC equipment and ensures user experience and property safety.
  • the wireless power supply module 101 can provide a third power power supply signal to the power supply coil 14, and the second power can be greater than the third power.
  • the third power may be 0, which is equivalent to directly turning off the wireless power supply module 101.
  • the power supply device 10 can switch back to the power supply mode. If the detection information output by the detection module 102 indicates that it cannot be determined whether the device 30 is a PICC device, the power supply device 10 may maintain the PICC detection mode.
  • the power of the power supply signal provided by the wireless power supply module 101 in the power supply mode can be larger to achieve efficient power supply to the electronic device 20 .
  • the power of the power supply signal provided by the wireless power supply module 101 in the PICC detection mode may be equal to or less than the power of the power supply signal provided in the power supply mode to ensure continuous power supply to the electronic device 20 and prevent damage to possible PICC devices as much as possible.
  • the power of the power supply signal provided by the wireless power supply module 101 in the PICC protection mode can be extremely small or even 0 to prevent damage to the PICC device.
  • the electronic device 20 is a smartphone as shown in Figure 1, or a Bluetooth headset, a tablet computer, a desktop computer, etc.
  • the power supply scene is generally an indoor scene, and the power supply device 10 can generally be installed in a living room, bedroom, classroom, shopping mall, or library. in restaurants, canteens, banks, operating rooms or wards.
  • the power supply scenario is a library
  • the device 30 can be a PICC device such as a student ID card or a book debit card.
  • the power supply scenario is a canteen
  • the device 30 can be a PICC device such as a meal card.
  • the power supply scenario is a hospital, and the device 30 can be a PICC device such as a medical insurance card or an ID card.
  • the power supply scenario is a bank
  • the device 30 can be a PICC device such as a bank card or an ID card, etc., which will not be described again here.
  • the electronic device 20 is an electric vehicle
  • the power supply scenario may generally be a private garage or a public parking lot, etc.
  • the power supply scenario is a private garage or an underground public parking lot
  • the device 30 can be a PICC device such as a vehicle unlock card or a bus card.
  • the power supply device 10 provided by the embodiment of the present application includes multiple operating modes, and the power supply device 10 can provide power supply signals of different powers in different operating modes. In this way, the power supply device 10 can still continue to provide wireless power to the current electronic device 20 during the PICC detection period, thereby avoiding the situation where the electronic device 20 loses power supply or stops charging. In this way, the embodiments of the present application can ensure the efficiency of PICC detection to prevent the PICC device from being damaged, and at the same time ensure the efficiency of wireless power supply, which meets the user's needs to a great extent.
  • FIG. 5 is a schematic structural diagram of another power supply device provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application may be implemented in the structure shown as an example in Figure 5 or a similar structure.
  • the power supply device 10 may be the power supply device 10 shown in FIG. 1 above.
  • the power supply device 10 may include a wireless power supply module 101 , a power supply coil 14 , a detection module 102 and a control module 103 .
  • the detection module 102 may include a sensor module 1021 and a near field communication module 1022.
  • the wireless power supply module 101 and the power supply coil 14 please refer to the description of the corresponding embodiment in Figure 3 above, and will not be described again here.
  • the wireless power supply module 101 can be connected to the power supply coil 14 of the power supply device 10
  • the control module 103 can be connected to the wireless power supply module 101 , the sensor module 1021 and the near field communication module 1022 respectively.
  • the near field communication module 1022 can be connected with an NFC coil.
  • the sensor module 1021 is used to detect whether there are target devices other than the power supply device 10 and the electronic device 20 in the detection area of the power supply device 10, and output the corresponding sensor detection signal to the control module 103, that is, output the detection result of the sensor module 1021 to the control module 103.
  • Module 103 the sensor module 1021 may specifically include one or more capacitive sensors, which may efficiently and accurately detect whether a target device enters the detection area based on changes in dielectric constant in the detection area.
  • the sensor detection signal output by the sensor module 1021 indicates that the target device exists in the detection area of the power supply device 10 .
  • the sensor detection signal output by the sensor module 1021 indicates that the target device does not exist in the detection area of the power supply device 10 .
  • the near field communication module 1022 is used to detect whether the target device entering the detection area is a PICC device, and output the corresponding near field communication module detection signal to the control module 103, that is, output the detection result of the near field communication module 1022 to the control module 103.
  • the near field communication module 1022 can send a request signal and wait for the target device to send a corresponding request reply signal. If the near field communication module 1022 receives the reply request signal sent by the target device, it can determine that the target device belongs to a PICC device. .
  • the near field communication module detection signal output by the near field communication module 1022 indicates that the target device belongs to the PICC device.
  • the near field communication module detection signal output by the near field communication module 1022 indicates that the target device does not belong to the PICC device.
  • the control module 103 is used to control the power of the power supply signal provided by the wireless power supply module 101. In one implementation, in response to the detection information output by the detection module 102, the control module 103 controls the power of the power supply signal provided by the wireless power supply module 101. In one embodiment, in response to the detection result output by the sensor module 1021 in the detection module 102, the control module 103 controls the power of the power supply signal provided by the wireless power supply module 101. In one implementation, in response to the detection result output by the sensor module 1021 in the detection module 102, the control module 103 controls the power of the power supply signal provided by the wireless power supply module 101.
  • the operating modes of the power supply device 10 may include a power supply mode, a PICC detection mode, and a PICC protection mode.
  • the wireless power supply module 101 can provide power supply signals of different powers to the power supply coil 14 respectively.
  • the wireless power supply module 101 can provide power supply signals with sequentially decreasing power to the power supply coil 14 .
  • the power supply equipment 10 can implement switching between different operating modes based on the detection information output by the detection module 102 .
  • the power supply device 10 in response to the detection information output by the detection module 102, the power supply device 10 may operate in the power supply mode, the PICC detection mode or the PICC protection mode.
  • the detection information output by the detection module 102 may include the sensor detection signal output by the sensor module 1021, that is, the detection result of the sensor module 1021.
  • the detection module 102 in response to the detection result of the sensor module 1021, the detection module 102 outputs detection information to indicate that the power supply device 10 operates in the PICC detection mode or the power supply mode.
  • the control module 103 controls the wireless power supply module 101 to provide a power supply signal of the first power to the power supply coil 14. At this time, the power supply device 10 operates in the power supply mode. In one implementation, in response to the detection result output by the sensor module 1021, the control module 103 controls the wireless power supply module 101 to provide a power supply signal of the second power to the power supply coil 14. At this time, the power supply device 10 operates in the PICC detection mode. Wherein, the first power may be greater than or equal to the second power.
  • the sensor module 1021 detects that there are target devices other than the power supply device 10 and the electronic device 20 in the detection area.
  • the control module 103 controls the wireless power supply module 101 to provide power supply with the second power.
  • the signal is sent to the power supply coil 14.
  • the power supply device 10 operates in the PICC detection mode.
  • the sensor module 1021 detects that there is no target device other than the power supply device 10 and the electronic device 20 in the detection area.
  • the control module 103 controls the wireless power supply module 101 to provide the first power.
  • the power supply signal is sent to the power supply coil 14. At this time, the power supply device 10 operates in the power supply mode.
  • the detection information output by the detection module 102 may include the near field communication module detection signal output by the near field communication module 1022, that is, include the detection result of the near field communication module 1022.
  • the detection module 102 in response to the detection result output by the near field communication module 1022, the detection module 102 outputs detection information to indicate that the power supply device 10 operates in the PICC protection mode or the power supply mode.
  • the control module 103 controls the wireless power supply module 101 to provide a power supply signal of the third power to the power supply coil 14. At this time, the power supply device 10 operates in the PICC protection mode. In one implementation, in response to the detection result output by the near field communication module 1022, the wireless power supply module 101 is controlled to provide a power supply signal of the first power to the power supply coil 14. At this time, the power supply device 10 operates in the power supply mode. In one implementation, in response to the detection result output by the near field communication module 1022, the control module 103 controls the wireless power supply module 101 to provide a power supply signal of the second power to the power supply coil 14.
  • the power supply device 10 operates in the PICC detection mode.
  • the third power may be greater than or equal to 0 and less than the second power.
  • the third power when the third power is 0, it is equivalent to the wireless power supply module 101 not providing a power supply signal to the power supply coil, that is, it is equivalent to turning off the wireless power supply module 101 .
  • the near field communication module 1022 detects that the target device belongs to a PICC device.
  • the control module 103 controls the wireless power supply module 101 to provide a third power power supply signal to the power supply coil. , at this time the power supply equipment 10 is running in the PICC protection mode.
  • the near field communication module 1022 detects that the target device does not belong to a PICC device.
  • the control module 103 controls the wireless power supply module 101 to provide a power supply signal of the first power to the power supply. coil, at this time the power supply device 10 operates in the power supply mode.
  • the near field communication module 1022 does not detect whether the target device is a PICC device.
  • the control module 103 controls the wireless power supply module 101 to provide a power supply signal of the second power to the Power supply coil, at this time the power supply equipment 10 is running in the PICC detection mode.
  • the power supply device 10 in the embodiment of the present application will be described below with reference to FIG. 1 and FIG. 5 .
  • the operating modes of the power supply device 10 include power supply mode, PICC detection mode and PICC protection mode.
  • the power supply device 10 operates in the power supply mode.
  • the control module 103 of the power supply device 10 controls the wireless power supply module 101 to provide a first power power supply signal to the power supply coil 14 so that the power supply coil 14 generates a corresponding wireless power supply magnetic field to power the electronic device 20 .
  • the sensor module 1021 thereof can always be in a running state to monitor in real time whether any equipment enters the detection area.
  • the device 30 enters the detection area of the power supply device 10 .
  • the sensor module 1021 of the power supply device 10 detects that the device 30 has entered the detection area.
  • the control module 103 can control the wireless power supply module 101 to output a power supply signal of the first power to the power supply coil 14, so that power is supplied.
  • the coil 14 generates a corresponding wireless power supply magnetic field to supply power to the electronic device 20 and the device 30.
  • the control module 103 can also control the near field communication module 1022 to detect whether the device 30 is a PICC device. At this time, the power supply device 10 operates in the PICC detection mode.
  • the device 30 does not enter the detection area of the power supply device 10.
  • the control module 103 can control the wireless power supply module 101 to maintain output of the power supply signal of the first power to the power supply coil 14. At this time, power is supplied.
  • Device 10 operates in power supply mode.
  • the control module 103 can control the wireless power supply module 101 to output a power supply signal of the second power to the power supply coil 14 .
  • the carrier frequency of the power supply signal may be f WPT .
  • the power supply device 10 provided by the embodiment of the present application can still provide a wireless power supply signal during PICC detection.
  • the amplitude of the power supply signal is much larger than the amplitude of the NFC signal, which can ensure that during PICC detection
  • the electronic device 20 that is originally receiving power will not lose power, which greatly reduces the impact of PICC detection on wireless power supply, thereby ensuring wireless power supply efficiency. Subsequently, as shown in FIG.
  • control module 103 can control the wireless power supply module 101 to turn off, turn on the near field communication module 1022 , and control the near field communication module 1022 to transmit one or more request signals through the NFC coil to detect the device 30 Whether it is a PICC device.
  • the near field communication module 1022 detects that the device 30 does belong to a PICC device.
  • the control module 103 can control the wireless power supply module 101 to output a power supply signal of the third power to the power supply coil. 14.
  • the power supply equipment 10 runs in the PICC protection mode to prevent the PICC from being damaged. For example, if the near field communication module 1022 receives the reply request signal sent by the device 30, it can determine that the device 30 belongs to a PICC device.
  • the near field communication module 1022 detects that the device 30 does not belong to a PICC device.
  • the control module 103 can control the wireless power supply module 101 to output a power supply signal of the first power to the power supply coil. 14.
  • the power supply device 10 is running in the power supply mode. For example, if the near field communication module 1022 does not receive the reply request signal sent by the device 30 within a preset time, it may be determined that the device 30 does not belong to the PICC device.
  • the control module 103 can control the wireless power supply module 101 to continuously output the power supply signal of the second power. to the power supply coil 14.
  • the power supply equipment 10 maintains the PICC detection mode.
  • the control module 103 can control the near field communication module 1022 to send the request signal again to detect the device 30 again. Whether it is a PICC device.
  • the power supply device 10 in the embodiment of the present application can detect nearby PICC devices in real time through sensors and near-field communication modules, and switch to different operating modes based on the detection results. Moreover, the power supply device 10 can provide power supply signals of different powers in different operating modes, flexibly meeting the power supply requirements in different operating modes, which not only avoids the interruption of charging of the electronic device 20 during PICC detection, ensures wireless power supply efficiency, but also prevents The PICC equipment is damaged, which greatly protects the user experience.
  • FIG. 6 is a schematic structural diagram of yet another power supply device provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application may be implemented in the structure shown as an example in Figure 6 or a similar structure.
  • the power supply device 10 may be the power supply device 10 shown in FIG. 1 above.
  • the power supply device 10 may include a wireless power supply module 101 , a sensor module 1021 , a near field communication module 1022 and a control module 103 .
  • the wireless power supply module 101 may specifically include a signal generator 11 , a power amplifier 12 and a front-end circuit 13 connected in sequence, wherein the front-end circuit 13 may be connected to the power supply coil 14 .
  • the near field communication module 1022 may specifically include a card reader chip 21 and a front-end circuit 22 connected in sequence, wherein the front-end circuit 22 may be connected to the NFC coil 23 .
  • the signal generator 11 of the wireless power supply module 101 is used to generate a power supply signal.
  • the signal generator 11 can be implemented by a crystal oscillator, a microcontroller, a digital signal processor, etc.
  • the power amplifier 12 of the wireless power supply module 101 can be used to power amplify the power supply signal generated by the signal generator 11.
  • the front-end circuit 13 of the wireless power supply module 101 may include a matching network and a filtering network.
  • the matching network can be used to match the input impedance to the desired input impedance range of the power amplifier 12, and the filter network can be used to filter out harmonics of the wireless power supply signal, etc., which will not be described in detail here.
  • the card reading chip 21 of the near field communication module 1022 can be used to send and read NFC signals.
  • the card reading chip 21 may be used to send a request signal and read the reply request signal sent by the device 30 .
  • the card reading chip 21 can be implemented by an integrated chip.
  • the front-end circuit 22 of the near field communication module 1022 may include a matching network and a filtering network.
  • the matching network can be used to match the input impedance to the expected input impedance range of the card reader chip 21, and the filter network can be used to filter out undesired high-order harmonics in the NFC signal.
  • the power supply coil 14 is used to receive the power supply signal output by the front-end circuit 13 and generate a corresponding wireless power supply magnetic field to realize wireless power supply.
  • the NFC coil 23 is used to receive the NFC signal output by the front-end circuit 22 and generate a corresponding NFC magnetic field to achieve data communication.
  • the NFC coil 23 can also be used to receive the NFC signal sent by the device 30 and transmit the signal to the card reader chip to achieve data communication.
  • the control module 103 is connected to the wireless power supply module 101, the sensor module 1021 and the near field communication module 1022 respectively.
  • the control module 103 may be implemented by a microcontroller, a digital signal processor, or the like.
  • the control module 103 is mainly used to control the opening and closing of the wireless power supply module 101 and the near field communication module 1022, and to control the power of the power supply signal output by the wireless power supply module 101.
  • the control module 103 can also control the impedance detection of the wireless power supply module 101 and the near field communication module 1022, and so on.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the power supply device 10 .
  • the power supply device 10 may have more or fewer components than those shown in FIG. 3, FIG. 5, and FIG. 6, or combine some components, or split some components, or different component layout.
  • the various components shown in the figures may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • the interface connection relationship between the modules illustrated in the embodiment of the present application is only a schematic explanation and does not constitute a structural limitation on the power supply equipment 10 .
  • the power supply device 10 may also adopt different interface connection methods in the above embodiments, or a combination of multiple interface connection methods.
  • FIG. 7 is a schematic flowchart of a wireless power supply and PICC detection method provided by an embodiment of the present application. This method can be applied to the application scenario described in Figure 1 above, and specifically can be applied to the power supply equipment 10 described in Figure 3, Figure 5, and Figure 6 above. Taking the power supply device 10 as the execution subject as an example, the wireless power supply and PICC detection method provided by this application will be described in detail below. As shown in Figure 7, the wireless power supply and PICC detection method may include the following steps S11 to S15.
  • Step S11 the power supply equipment operates in the power supply mode.
  • the power supply device 10 operates in the power supply mode.
  • the wireless power supply module 101 of the power supply device 10 provides a power supply signal of a certain power to the power supply coil, so that the power supply coil generates a wireless power supply magnetic field to power the electronic device 20 .
  • the power supply device 10 operates in the power supply mode, and the wireless power supply module 101 can provide a first power power supply signal to the power supply coil to achieve efficient power supply to one or more electronic devices 20 .
  • the power supply device 10 operates in the power supply mode.
  • the control module 103 controls the signal generator 11 in the wireless power supply module 101 to generate a power supply signal and output it to the power amplifier 12. After passing through the power amplifier 12, the power supply signal is output
  • the power of the signal may be the above-mentioned first power.
  • the power supply signal of the first power is output to the power supply coil 14 after being input impedance matched and filtered by the front-end circuit 13 in the wireless power supply module 101, so that the power supply coil 14 generates a corresponding wireless power supply magnetic field.
  • the power supply device 10 may run in the power supply mode by default after being started.
  • the power supply device 10 can be in the standby state by default after being started.
  • the power supply device 10 senses the presence of the electronic device 20 on its charging stand, or when the power supply device 10 is Bluetooth matched to the electronic device 20, the power supply device 10 can run in the power supply mode. etc.
  • Step S12 detect whether a target device enters the detection area.
  • the power supply device 10 operates in the PICC detection mode or power supply mode.
  • the power supply device 10 in response to the detection result output by the sensor module 1021 in the detection module 102, the power supply device 10 operates in the PICC detection mode or the power supply mode.
  • the detection result is used to indicate whether a target device enters the detection area of the power supply device 10 .
  • the sensor module 1021 detects that a target device enters the detection area, and in response to the detection result output by the sensor module 1021, the power supply device 10 operates in the PICC detection mode. For example, the sensor module 1021 detects that no target device enters the detection area, and in response to the detection result output by the sensor module 1021, the power supply device 10 operates in the power supply mode. For example, if the sensor module 1021 does not detect whether a target device enters the detection area, in response to the detection result output by the sensor module 1021, the power supply device 10 may operate in the power supply mode.
  • the sensor module 1021 may include one or more capacitive sensors.
  • the one or more capacitive sensors may efficiently and conveniently detect whether a device enters the detection area based on changes in dielectric constant in the detection area.
  • Step S13 It is detected that a target device enters the detection area, and the power supply device runs in the PICC detection mode.
  • the detection module 102 detects that a target device enters the detection area, and in response to the detection information output by the detection module 102, the power supply device operates in the PICC detection mode.
  • the sensor module 1021 in the detection module 102 detects that a target device enters the detection area, and in response to the detection result output by the sensor module 1021, the power supply device 10 runs in the PICC detection mode.
  • the sensor module 1021 in the detection module 102 detects that a target device enters the detection area.
  • the control module 103 can control the wireless power supply module 101 to output a power supply signal of the second power to the power supply coil. 14.
  • the control module 103 can also control the near field communication module 1022 to detect whether the target device belongs to a PICC device. At this time, the power supply device 10 runs in the PICC detection mode.
  • the target device is the device 30 in Figure 1 mentioned above.
  • the power supply device 10 operates in the PICC detection mode.
  • the controller 103 controls the signal generator 11 in the wireless power supply module 101 to generate a power supply signal and output it to the power amplifier 12.
  • the The power of the power supply signal may be the above-mentioned second power.
  • the power supply signal of the second power is output to the power supply coil 14 after being input impedance matched and filtered by the front-end circuit 13 in the wireless power supply module 101, so that the power supply coil 14 generates a corresponding wireless power supply magnetic field.
  • the second power may be less than or equal to the first power.
  • FIG. 8 is a schematic diagram of power changes of a power supply signal provided by an embodiment of the present application.
  • the power supply device originally operates in the power supply mode, and the wireless power supply module 101 outputs a power supply signal of the first power to the power supply coil 14 .
  • the detection module 102 detects that a target device enters the detection area.
  • the power supply device 10 immediately switches to the PICC detection mode, and the wireless power supply module 101 outputs a power supply signal of the second power to the power supply coil 14.
  • the power of the power supply signal provided by the wireless power supply module 101 can be reduced according to a preset range.
  • Step S14 detect whether the target device is a PICC device.
  • the power supply device 10 operates in the PICC detection mode, and the detection module 102 detects whether the target device entering the detection area is a PICC device. In response to the detection information output by the detection module 102, the power supply device 10 operates in the PICC protection mode, power supply mode, or PICC detection mode.
  • the power supply device 10 in response to the detection result output by the near field communication module 1022 in the detection module 102, the power supply device 10 operates in the PICC protection mode, power supply mode or PICC detection mode.
  • the detection result is used to indicate whether the target device entering the detection area is a PICC device.
  • the near field communication module 1022 detects that the target device belongs to a PICC device, and in response to the detection result output by the near field communication module 1022, the power supply device 10 operates in the PICC protection mode.
  • the near field communication module 1022 detects that the target device does not belong to a PICC device.
  • the power supply device 10 operates in the power supply mode. For example, the near field communication module 1022 does not detect whether the target device is a PICC device.
  • the power supply device 10 can maintain the PICC detection mode.
  • the control module 103 in it can control the wireless power supply module during the power supply stage of the PICC detection.
  • 101 provides a second power power supply signal to the power supply coil for a period of time such as 4 milliseconds, 4.3 milliseconds or 5 milliseconds, thereby powering the electronic device 20 and the device 30 .
  • the control module 103 turns off the wireless power supply module 101 during the detection phase of PICC detection, turns on the near field communication module 1022, and controls the near field communication module 1022 to transmit one or more request signals to detect whether the device 30 is a PICC device.
  • the power supply device 10 runs in the PICC detection mode, and the controller 103 controls the card reader chip 21 in the near field communication module 1022 to generate the above request signal, which passes through the front end of the near field communication module 1022.
  • the input impedance of the circuit 13 is matched and filtered and output to the NFC coil 23 .
  • the NFC coil 23 generates a corresponding NFC magnetic field based on the request signal, and attempts to perform data communication with the device 30 to detect whether the device 30 is a PICC device.
  • the device 30 can use the power supply received during the PICC power supply phase to send a corresponding reply request signal.
  • the near field communication module 1022 receives the reply request signal sent by the device 30 and determines that the device 30 belongs to a PICC device.
  • the control module 103 can control the wireless power supply module 101 to output the third power supply.
  • the signal is sent to the power supply coil 14.
  • the power supply device 10 operates in the PICC protection mode.
  • FIG. 9 is a schematic diagram of power changes of another power supply signal provided by an embodiment of the present application. As shown in FIG.
  • the wireless power supply module 101 when the power supply device 10 operates in the PICC detection mode, the wireless power supply module 101 outputs a power supply signal of the second power to the power supply coil 14 . If the near field communication module 1022 detects that the device 30 is a PICC device, the power supply device 10 can switch from the PICC detection mode to the PICC protection mode, and the wireless power supply module 101 outputs a power supply signal of the third power to the power supply coil 14 . As shown in Figure 9, when the power supply device 10 switches from the PICC detection mode to the PICC protection mode, the power of the power supply signal provided by the wireless power supply module 101 can be reduced according to a preset range.
  • control The module 103 can control the wireless power supply module 101 to output the power supply signal of the first power to the power supply coil 14 , when the power supply device 10 operates in the power supply mode. For example, as shown in FIG. 8 , the power supply device 10 operates in the PICC detection mode, and the wireless power supply module 101 outputs a power supply signal of the second power to the power supply coil 14 .
  • the power supply device 10 can switch back to the power supply mode from the PICC detection mode, and the wireless power supply module 101 outputs a power supply signal of the first power to the power supply coil 14 .
  • the control module 103 can control the wireless power supply module 101 to continuously output the power supply signal of the second power to the power supply coil 14. At this time, the power supply device 10 maintains the PICC detection mode.
  • the control module 103 can control the near field communication module 1022 to send the request signal again to detect whether the device 30 is a PICC again.
  • Step S15 It is detected that the target device belongs to a PICC device, and the power supply device runs in the PICC protection mode.
  • the detection module 102 detects that the target device belongs to a PICC device, and in response to the detection information output by the detection module 102, the power supply device operates in the PICC protection mode.
  • the near field communication module 1022 in the detection module 102 detects that the target device belongs to a PICC device. In response to the detection result output by the near field communication module 1022, the power supply device 10 operates in the PICC protection mode.
  • the near field communication module 1022 in the detection module 102 detects that the target device belongs to a PICC device.
  • the control module 103 can control the wireless power supply module 101 to output power supply with the third power.
  • the signal is sent to the power supply coil 14.
  • the power supply device 10 operates in the PICC protection mode.
  • the power supply device 10 operates in the PICC detection mode, and the wireless power supply module 101 outputs a power supply signal of the second power to the power supply coil 14 .
  • the power supply device 10 can switch from the PICC detection mode to the PICC protection mode, and the wireless power supply module 101 outputs a power supply signal of the third power to the power supply coil 14 .
  • the power of the power supply signal provided by the wireless power supply module 101 can be reduced according to a preset range.
  • the power supply device 10 operates in the PICC protection mode.
  • the controller 103 controls the signal generator 11 in the wireless power supply module 101 to generate a power supply signal and output it to the power amplifier 12.
  • the The power of the power supply signal may be the above-mentioned third power.
  • the power supply signal of the third power is output to the power supply coil 14 after being input impedance matched and filtered by the front-end circuit 13 in the wireless power supply module 101, so that the power supply coil 14 generates a corresponding wireless power supply magnetic field.
  • the third power may be greater than or equal to 0 and less than the second power.
  • the third power of 0 is equivalent to the wireless power supply module not providing a power supply signal to the power supply coil, which is equivalent to turning off the wireless power supply module 101.
  • the power supply device 10 can weaken or even turn off the wireless power supply to prevent the PICC from being damaged, thereby extending the service life of the PICC device and ensuring user experience and property safety.
  • the detection module 102 can continue to run to detect in real time whether a target device enters the detection area, thereby promptly discovering PICC devices that may exist nearby. .
  • the power supply device 10 may maintain the previous power supply mode or switch to the PICC detection mode or PICC protection mode. For example, as shown in Figure 9, if it is later detected that there is no PICC device in the detection area, the power supply device 10 can switch from the PICC protection mode to the power supply mode, and the wireless power supply module 101 outputs a power supply signal of the first power to the power supply coil 14 .
  • FIG 10 is a schematic flowchart of another wireless power supply and PICC detection method provided by an embodiment of the present application. This method can be applied to the application scenario described in Figure 1 above, and specifically can be applied to the power supply equipment 10 described in Figure 3, Figure 5, and Figure 6 above. Taking the power supply device 10 as the execution subject as an example, the wireless power supply and PICC detection method provided by this application will be further elaborated below. As shown in Figure 10, the method may include the following steps S21 to S27.
  • Step S21 the power supply equipment is in a standby state.
  • the power supply device is in a standby state and does not perform wireless power supply and near field communication.
  • the wireless power supply module 101 and the near field communication module 1022 in the power supply device 10 can be in a closed state, and the sensor module 1021 in the power supply device 10 can be in a running state to perform real-time monitoring. Monitor whether any equipment enters the detection area of the power supply equipment 10 .
  • the power supply device 10 can be in a standby state by default after being started.
  • the power supply device 10 can be turned on when the user manually turns on wireless power supply, senses the presence of an electronic device 20 on its charging stand, or Bluetooth matches an electronic device 20 that can be wirelessly charged.
  • Wireless power supply module 101 can be turned on when the user manually turns on wireless power supply, senses the presence of an electronic device 20 on its charging stand, or Bluetooth matches an electronic device 20 that can be wirelessly charged.
  • Step S22 detect whether a target device enters the detection area.
  • step S22 may refer to step S12 in the above-mentioned embodiment corresponding to FIG. 7 , which will not be described again here.
  • the target device is a device other than the power supply device 10 .
  • Step S23 It is detected that a target device enters the detection area, and the power supply device operates in the PICC detection mode.
  • step S23 may refer to step S13 in the above-mentioned embodiment corresponding to FIG. 7 , and will not be described again here.
  • the control module 103 can also continue to keep the wireless power supply module 101 closed, turn on the near field communication module 1021, and control the near field communication module 1022 to transmit for a period of time.
  • the NFC signal powers the target device, thereby maximizing protection of possible PICC devices from damage.
  • Step S24 detect whether the target device is a PICC device.
  • step S24 may refer to step S14 in the above-mentioned embodiment corresponding to FIG. 7 , and will not be described again here.
  • the power supply device 10 is originally in a standby state. If it is detected that the target device does not belong to a PICC device, it may further be detected whether the target device is an electronic device with a wireless charging function.
  • the target device may be the electronic device 20 shown in FIG. 1 , such as a mobile phone, a Bluetooth headset, a tablet, and other electronic devices with wireless charging functions.
  • Step S25 It is detected that the target device belongs to a PICC device, and the power supply device runs in the PICC protection mode.
  • step S25 may refer to step S15 in the above-mentioned embodiment corresponding to FIG. 7 , which will not be described again here.
  • Step S26 Check whether the target device is an electronic device with wireless charging function.
  • the detection module 102 may further detect whether the target device is an electronic device with a wireless charging function.
  • the power supply device 10 in response to the detection information output by the detection module 102, the power supply device 10 maintains the standby state or operates in the power supply mode.
  • the detection module 102 detects that the target device is an electronic device with a wireless charging function, and in response to the detection information output by the detection module 102, the power supply device 10 operates in the power supply mode. In this way, the embodiments of the present application can realize wireless power supply to the electronic device without damaging the PICC. For example, the detection module 102 detects that the target device is not an electronic device with a wireless charging function. In response to the detection information output by the detection module 102, the power supply device 10 maintains a standby state to save energy as much as possible.
  • the detection module 102 may also include a Bluetooth communication module, and may detect whether the target device is an electronic device with wireless charging function through Bluetooth matching or other methods.
  • Step S27 It is detected that the target device is an electronic device with wireless charging function, and the power supply device operates in the power supply mode.
  • the detection module 102 detects that the target device is an electronic device with a wireless charging function, and in response to the detection information output by the detection module 102, the power supply device operates in the power supply mode.
  • the Bluetooth communication module in the detection module 102 detects that the target device is an electronic device with a wireless charging function. In response to the detection information output by the Bluetooth communication module, the power supply device 10 operates in the power supply mode.
  • the Bluetooth communication module in the detection module 102 detects that the target device is an electronic device with a wireless charging function.
  • the control module 103 can control the wireless power supply module 101 to output the first power.
  • the power supply signal is sent to the power supply coil 14, and at this time the power supply device 10 operates in the power supply mode.
  • the power supply device 10 operates in the power supply mode.
  • the control module 103 controls the signal generator 11 in the wireless power supply module 101 to generate a power supply signal and output it to the power amplifier 12. After passing through the power amplifier 12, the power supply signal is output
  • the power of the signal may be the above-mentioned first power.
  • the power supply signal of the first power is output to the power supply coil 14 after being matched and filtered by the front-end circuit 13 in the wireless power supply module 101, so that the power supply coil 14 generates a corresponding wireless power supply magnetic field to achieve high efficiency for the target device. powered by.
  • the power supply device 10 is running in the power supply mode, and the detection module 102 can continue to run to detect in real time whether a target device enters the detection area, thereby timely discovering PICC devices and electronic devices that may exist nearby. equipment.
  • the power supply device 10 can maintain the current power supply mode or switch to any one of the standby state, the PICC detection mode, and the PICC protection mode.
  • each method flow in the wireless power supply and PICC detection method described in Figure 7 or Figure 10 can be implemented based on software, hardware, or a combination thereof.
  • the hardware implementation may include logic circuits, algorithm circuits or analog circuits, etc.
  • Implementation in software may include program instructions, which may be regarded as a software product that is stored in a memory and may be run by a processor to implement related functions.
  • embodiments of the present application provide a power supply device that supports wireless power supply and near field communication.
  • the power supply device includes multiple operating modes such as power supply mode, PICC detection mode, and PICC protection mode.
  • the wireless power supply module of the power supply device can provide power supply signals of different powers to the power supply coil in different operating modes, so that the power supply coil generates magnetic fields of different strengths, thereby flexibly meeting power supply needs in different situations.
  • the power supply equipment when the power supply equipment is performing PICC detection, it can also continue to generate a wireless power supply magnetic field to continuously provide wireless power supply to the current electronic equipment, thereby avoiding the interruption of charging of the electronic equipment during PICC detection.
  • the power supply equipment provided by the embodiments of the present application can ensure the efficiency of wireless power supply while ensuring the detection efficiency of the PICC to prevent the PICC from being damaged, thereby meeting the user needs to a great extent.
  • Embodiments of the present application also provide a computer-readable storage medium, wherein the computer-readable storage medium can store a program.
  • the program When the program is executed by a processor, the processor can perform any of the steps described in the above method embodiments. Some or all of the steps of a.
  • An embodiment of the present application also provides a computer program.
  • the computer program includes instructions.
  • the processor can execute some or all of the steps described in any of the above method embodiments. .
  • the disclosed device can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the above units is only a logical function division. In actual implementation, there may be other divisions.
  • multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical or other forms.
  • the units described above as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server or a network device, etc., specifically a processor in a computer device) to execute all or part of the steps of the above methods in various embodiments of the present application.
  • a computer device which can be a personal computer, a server or a network device, etc., specifically a processor in a computer device
  • the aforementioned storage media may include: U disk, mobile hard disk, magnetic disk, optical disk, read-only memory (Read-Only Memory, abbreviation: ROM) or random access memory (Random Access Memory, abbreviation: RAM), etc.
  • U disk mobile hard disk
  • magnetic disk magnetic disk
  • optical disk read-only memory
  • read-only memory Read-Only Memory
  • RAM random access memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Transceivers (AREA)

Abstract

本申请实施例公开了一种支持无线供电和近场通信的供电设备(10),包括无线供电模块(101)、供电线圈(14)和检测模块(102);无线供电模块(101)用于向供电线圈(14)提供供电信号从而为电子设备供电;检测模块(102)用于检测供电设备的检测区域内是否存在目标设备并检测目标设备是否属于PICC设备。目标设备为除供电设备和电子设备外的设备。响应于检测模块(102)输出的检测信息,供电设备(10)的运行模式可以从供电模式切换至PICC检测模式或PICC保护模式。供电设备(10)分别运行于供电模式、PICC检测模式和PICC保护模式时,无线供电模块向供电线圈提供的供电信号的功率依次递减。采用本申请实施例可以降低PICC检测对无线供电的影响,保证供电效率。

Description

一种支持无线供电和近场通信的供电设备 技术领域
本申请实施例涉及无线供电技术领域,尤其涉及一种支持无线供电和近场通信的供电设备。
背景技术
现有的供电设备大多集成了无线供电和近场通信(near-field communication,NFC)功能,不仅可以向电子设备进行无线供电,还可以与其它设备的邻近集成电路卡(proximity integrated circuit card,PICC)进行数据传输。由于无线供电产生的磁场通常大于NFC磁场,无线供电磁场可能损坏其它设备中的PICC。现有的供电设备在向电子设备进行无线供电时检测至其附近存在其他设备后通常会停止无线供电,从而影响供电设备的供电效率和用户的使用体验。
发明内容
本申请实施例提供了一种支持无线供电和近场通信的供电设备,可以降低PICC检测对无线供电的影响,保证无线供电效率。
第一方面,本申请实施例提供了一种支持无线供电和近场通信的供电设备,包括无线供电模块、供电线圈和检测模块,所述无线供电模块用于向所述供电线圈提供供电信号,所述供电线圈利用所述供电信号为电子设备供电;所述检测模块用于检测所述供电设备的检测区域内是否存在目标设备并检测所述目标设备是否属于PICC设备;所述供电设备的运行模式包括供电模式、PICC检测模式和PICC保护模式;所述供电设备运行于所述供电模式时,响应于所述检测模块输出的检测信息,所述供电设备的运行模式从所述供电模式切换至所述PICC检测模式或所述PICC保护模式;所述供电设备分别运行于所述供电模式、所述PICC检测模式和所述PICC保护模式时,所述无线供电模块向所述供电线圈提供的供电信号的功率依次递减;其中,所述目标设备为除所述供电设备和所述电子设备外的设备。
在本申请实施例中,供电设备中的无线供电模块可以包括多种运行模式,具体包括供电模式、PICC检测模式和PICC保护模式。响应于供电设备中的检测模块输出的检测信息,供电设备的运行模式可以从供电模式切换至PICC检测模式或PICC保护模式。无线供电模块运行于供电模式、PICC检测模式或者PICC保护模式时,无线供电模块可以提供功率依次递减的供电信号至供电线圈,以使得供电线圈产生不同强度的磁场为电子设备供电,从而可以灵活地满足不同运行模式下的供电要求。如此,供电设备在进行PICC检测时,也可以持续给当前的电子设备进行无线供电,避免了电子设备失去供电的情况。综上,本申请实施例提供的供电设备可以在保证PICC检测效率以防止PICC不被损坏的同时,保证无线供电的效率,极大程度上满足了用户的使用需求。
在一种可能的实施方式中,响应于所述供电设备运行于供电模式,所述无线供电模块向所述供电线圈提供第一功率的供电信号;响应于所述供电设备运行于所述PICC检测模式,所述无线供电模块向所述供电线圈提供第二功率的供电信号;响应于所述供电设备运行于所 述PICC保护模式,所述无线供电模块向所述供电线圈提供第三功率的供电信号;其中,所述第一功率大于所述第二功率,所述第二功率大于所述第三功率。
在本申请实施例中,供电设备分别运行于供电模式、PICC检测模式或者PICC保护模式时,无线供电模块可以提供功率依次递减的供电信号至供电线圈,以使得供电线圈产生不同强度的磁场,灵活地满足不同情况下的供电要求,既避免了PICC检测期间电子设备的断充,保证无线供电效率,又能防止PICC受损,极大程度上保障了用户的使用体验。示例性的,该第三功率可以等于0,相当于直接关闭无线供电模块,即不进行无线供电。
在一种可能的实施方式中,所述检测模块输出的所述检测信息用于指示:所述检测区域内是否存在除所述供电设备和所述电子设备外的所述目标设备;或,所述供电设备的所述检测区域内是否存在PICC设备。
在本申请实施例中,检测模块输出的检测信息可以指示供电设备的检测区域内是否存在除供电设备和电子设备外的目标设备,即指示是否有新的设备进入检测区域;或者,该检测信息可以指示检测区域内是否存在PICC设备。后续供电设备可以基于检测模块输出的检测信息及时切换不同的运行模式,以提供不同功率的供电信号至供电线圈,同时满足PICC检测、无线供电以及PICC保护的需求,避免PICC检测期间电子设备断充以及PICC受损的情况。
在一种可能的实施方式中,响应于所述检测区域内存在所述目标设备,所述检测模块输出所述检测信息指示所述供电设备运行于所述PICC检测模式;响应于所述检测区域内不存在所述目标设备,所述检测模块输出所述检测信息指示所述供电设备运行于所述供电模式。
在本申请实施例中,检测模块检测到有新的设备进入检测区域时,供电设备可以切换至PICC检测模式,以及时发现PICC,防止PICC受损。检测模块检测到没有新的设备进入检测区域时,供电设备可以维持供电模式。在一种实施方式中,供电设备原本处于待机状态,检测模块检测到没有设备进入检测区域时,供电设备可以仍然运行于待机状态,即不进行无线供电,以尽可能地节省能源。
在一种可能的实施方式中,响应于所述目标设备属于PICC设备,所述检测模块输出所述检测信息指示所述供电设备运行于所述PICC保护模式;响应于所述目标设备不属于PICC设备,所述检测模块输出所述检测信息指示所述供电设备运行于所述供电模式。
在本申请实施例中,检测模块检测到该目标设备确实属于PICC设备时,供电设备可以运行于PICC保护模式,以及时防止PICC受损;检测模块检测到该目标设备不属于PICC设备时,供电设备可以运行于供电模式。示例性的,检测模块未检测出该设备是否属于PICC设备时,供电设备可以继续运行于PICC检测模式。如此,本申请实施例可以根据实际情况灵活切换不同的运行模式,既避免了PICC检测期间电子设备的断充,保证无线供电效率,又能防止PICC受损,极大程度上保障了用户的使用体验。
在一种可能的实施方式中,所述检测模块包括:传感器模块,用于检测所述检测区域内是否存在除所述供电设备和所述电子设备外的所述目标设备,并输出传感器检测信号;近场通信模块,用于检测所述检测区域内的所述目标设备是否属于PICC设备,并输出近场通信模块检测信号。
在本申请实施例中,检测模块中具体可以包括传感器模块和近场通信模块。该传感器模块可以实时监测是否有设备进入供电设备的检测区域,并输出传感器检测信号,即传感器的检测结果。该近场通信模块可以用于检测进入检测区域内的该设备是否属于PICC设备,并输出近场通信模块检测信号,即近场通信模块的检测结果。后续供电设备可以基于传感器模 块和近场通信模块输出的检测结果及时切换不同的运行模式,以提供不同功率的供电信号至供电线圈,避免PICC检测期间电子设备断充以及PICC受损的情况。
在一种可能的实施方式中,所述检测模块用于:响应于所述传感器检测信号,所述检测模块输出所述检测信息指示所述供电设备运行于所述PICC检测模式或所述供电模式;响应于所述近场通信模块检测信号,所述检测模块输出所述检测信息指示所述供电设备运行于所述PICC保护模式或所述供电模式。
在本申请实施例中,响应于传感器检测信号,即响应于传感器模块输出的检测结果,供电设备可以切换不同的运行模式。响应于近场通信模块检测信号,即响应于近场通信模块输出的检测结果,供电设备可以切换不同的运行模式。从而满足不同情况下的供电需求,避免PICC检测期间电子设备断充和PICC受损。
在一种可能的实施方式中,所述检测信息包括所述传感器检测信号和所述近场通信模块检测信号中的至少一个,其中:响应于所述检测信息包括所述传感器检测信号,所述供电设备运行于所述PICC检测模式或所述供电模式;响应于所述检测信息包括所述近场通信模块检测信号,所述供电设备运行于所述PICC保护模式或所述供电模式。
在本申请实施例中,检测模块输出的检测信息可以包括传感器检测信号和近场通信模块检测信号中的至少一个。响应于传感器检测信号,供电设备可以切换不同的运行模式。响应于近场通信模块检测信号,供电设备可以切换不同的运行模式。从而满足不同情况下的供电需求,避免PICC检测期间电子设备断充和PICC受损。
在一种可能的实施方式中,响应于所述检测信息包括所述传感器检测信号,所述无线供电模块向所述供电线圈提供所述第一功率或所述第二功率的所述供电信号;响应于所述检测信息包括所述近场通信模块检测信号,所述无线供电模块向所述供电线圈提供所述第一功率或所述第三功率的所述供电信号。
在本申请实施例中,响应于传感器检测信号,供电设备可以提供不同功率的供电信号至供电线圈,满足PICC检测或无线供电的供电需求,避免PICC检测期间电子设备断充。响应于近场通信模块检测信号,供电设备可以提供不同功率的供电信号至供电线圈,满足无线供电和PICC保护的供电需求,保证对电子设备的高效供电以及避免PICC受损。
在一种可能的实施方式中,所述供电设备还包括:控制模块,用于响应于所述检测模块输出的所述检测信息,控制所述供电设备运行于所述供电模式、所述PICC检测模式或所述PICC保护模式。
在本申请实施例中,供电设备还可以包括控制模块,该控制模块可以基于检测模块输出的检测信息,控制供电设备的运行模式切换,以满足不同情况下的供电要求。如此,既避免了PICC检测期间电子设备的断充,保证无线供电效率,又能防止PICC受损。
在一种可能的实施方式中,所述控制模块用于:响应于所述检测信息包括所述传感器检测信号,所述控制模块控制所述供电设备运行于所述PICC检测模式或所述供电模式;响应于所述检测信息包括所述近场通信模块检测信号,所述控制模块控制所述供电设备运行于所述PICC保护模式或所述供电模式。
在本申请实施例中,响应于检测模块中传感器模块输出的检测结果,控制模块可以控制供电设备运行于PICC检测模式或供电模式。响应于检测模块中近场通信模块输出的检测结果,控制模块可以控制供电设备运行于PICC保护模式或供电模式。如此,本申请实施例可以通过控制器实现在不同检测结果下灵活切换不同的运行模式,以满足不同情况下的供电要求。
在一种可能的实施方式中,所述控制模块用于:响应于所述检测信息包括所述传感器检测信号,所述控制模块控制所述无线供电模块向所述供电线圈提供所述第一功率或所述第二功率的所述供电信号;响应于所述检测信息包括所述近场通信模块检测信号,所述控制模块控制所述无线供电模块向所述供电线圈提供所述第一功率或所述第三功率的所述供电信号。
在本申请实施例中,响应于检测模块中传感器模块输出的检测结果,控制模块可以控制无线供电模块提供不同功率的供电信号至供电线圈,以使得供电线圈产生不同强度的磁场。响应于检测模块中近场通信模块输出的检测结果,控制模块可以控制无线供电模块提供不同功率的供电信号至供电线圈,以使得供电线圈产生不同强度的磁场。如此,本申请实施例可以通过控制器实现在不同检测结果下提供不同功率的供电信号,以满足不同情况下的供电要求,既避免了PICC检测期间电子设备的断充,保证无线供电效率,又能防止PICC受损。
第二方面,本申请实施例提供了一种供电设备,其特征在于,包括无线供电模块、供电线圈、检测模块和控制模块,其中:所述无线供电模块,用于向所述供电线圈提供供电信号,所述供电线圈利用所述供电信号为电子设备供电;所述检测模块,用于检测所述供电设备的检测区域内是否存在目标设备并检测所述目标设备是否属于PICC设备;所述控制模块,用于控制所述无线供电模块向所述供电线圈提供第一功率的所述供电信号,并用于响应于所述检测模块输出的检测信息,控制所述无线供电模块向所述供电线圈提供第二功率或第三功率的所述供电信号;其中,所述目标设备为除所述供电设备和所述电子设备外的设备,所述第一功率大于所述第二功率,所述第二功率大于所述第三功率。
在一种可能的实施方式中,所述检测模块包括传感器模块和近场通信模块,其中:所述传感器模块,用于检测所述检测区域内是否存在所述目标设备;及所述近场通信模块,用于检测所述检测区域内的所述目标设备是否属于PICC设备;所述检测模块,用于根据所述传感器模块和所述近场通信模块的检测结果输出所述检测信息,所述检测信息用于指示所述检测区域内是否存在所述目标设备或指示所述目标设备是否属于PICC设备。
在一种可能的实施方式中,所述控制模块用于:响应于所述检测信息指示所述检测区域内存在所述目标设备,控制所述无线供电模块向所述供电线圈提供第二功率的供电信号;响应于所述检测信息指示所述目标设备属于PICC设备,控制所述无线供电模块向所述供电线圈提供第三功率的供电信号。
应理解,本申请的第二方面提供的供电设备与本申请第一方面的技术方案一致,其具体内容以及有益效果可参考上述第一方面中提供的供电设备,此处不再进行赘述。
第三方面,本申请实施例提供了一种无线供电和PICC检测方法,应用于供电设备,所述供电设备包括无线供电模块、供电线圈和检测模块;所述供电设备的运行模式包括供电模式、PICC检测模式和PICC保护模式;该方法包括:通过所述无线供电模块,向所述供电线圈提供供电信号,所述供电线圈利用所述供电信号为电子设备供电;通过所述检测模块,检测所述供电设备的检测区域内是否存在目标设备并检测所述目标设备是否属于PICC设备,所述目标设备为除所述供电设备和所述电子设备外的设备;所述供电设备运行于所述供电模式时,所述供电设备的运行模式从所述供电模式切换至所述PICC检测模式或所述PICC保护模式;所述供电设备分别运行于所述供电模式、所述PICC检测模式和所述PICC保护模式时,所述无线供电模块向所述供电线圈提供的所述供电信号的功率依次递减。
应理解,本申请的第三方面提供的方法流程与本申请第一方面的技术方案一致,其具体内容以及有益效果可参考上述第一方面中提供的供电设备,此处不再进行赘述。
第四方面,本申请实施例提供了一种供电设备,该供电设备可包括:处理器和存储器, 其中,所述存储器用于存储程序代码,所述处理器用于调用所述程序代码来实现上述第三方面提供的一种无线供电和PICC检测方法流程所涉及的功能。该供电设备还可以包括通信接口,用于该供电设备与其他设备或通信网络通信。
第五方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现上述第三方面提供的一种无线供电和PICC检测方法流程所涉及的功能。
第六方面,本申请实施例提供了一种计算机程序,该计算机程序包括指令,当该指令被计算机执行时,使得计算机可以执行上述第三方面提供的一种无线供电和PICC检测方法流程所涉及的功能。
第七方面,本申请实施例提供了一种芯片,该芯片包括处理器和通信接口,所述处理器用于从该通信接口调用并运行指令,当该处理器执行所述指令时,使得该芯片执行上述第三方面提供的一种无线供电和PICC检测方法流程所涉及的功能。
第八方面,本申请实施例提供了一种芯片***,该芯片***包括上述第一方面或者第二方面中任意一项所述的供电设备,用于实现上述第三方面提供的一种无线供电和PICC检测方法流程所涉及的功能。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存无线供电和PICC检测方法必要的程序指令和数据。该芯片***,可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种应用场景示意图。
图2是一种PICC检测过程中的时域波形示意图。
图3是本申请实施例提供的一种供电设备的结构示意图。
图4是本申请实施例提供的一种PICC检测过程中的时域波形示意图。
图5是本申请实施例提供的另一种供电设备的结构示意图。
图6是本申请实施例提供的又一种供电设备的结构示意图。
图7是本申请实施例提供的一种无线供电和PICC检测方法的流程示意图。
图8是本申请实施例提供的一种供电信号的功率变化示意图。
图9是本申请实施例提供的另一种供电信号的功率变化示意图。
图10是本申请实施例提供的另一种无线供电和PICC检测方法的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例进行描述。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”,以及“第一个”、“第二个”、“第三个”和“第四个”等均是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本说明书中使用的术语“部件”、“模块”、“***”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地***、分布式***和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它***交互的互联网)的信号通过本地和/或远程进程来通信。
首先,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)无线供电技术,或者说磁感应式无线充电(wireless power transfer,WPT)技术,是通过供电设备内发射线圈产生的交流磁场与电子设备内接收线圈耦合进行能量传输的技术。
(2)NFC技术,是通过读卡器(proximity coupling device,PCD)内发射线圈产生的交流磁场与邻近集成电路卡(proximity integrated circuit card,PICC)内接收线圈耦合进行数据传输的技术。
为了便于理解本申请实施例,下面将进一步分析并提出本申请所具体要解决的技术问题。如上所述,目前较多的供电设备都集成了无线供电技术和NFC技术。并且,为防止无线供电磁场损坏附近的PICC,供电设备往往需要进行PICC检测。示例性的,供电设备检测到附近存在PICC,便立即关闭无线供电,以保护PICC不被无线供电磁场损坏。
图1是本申请实施例提供的一种应用场景示意图。如图1所示,该应用场景中可以包括供电设备10、电子设备20以及设备30。其中,供电设备10具备无线供电功能和近场通信功能。供电设备10可以向电子设备20进行无线供电,并且可以通过发射NFC信号与设备30进行数据通信。
电子设备20具备无线充电功能。示例性的,电子设备20内安装有电池。示例性的,电子设备20可以为智能手机、平板电脑(tablet computer),膝上型电脑(laptop computer),智能手表、智能手环、智能头盔、智能眼镜、蓝牙耳机等可穿戴设备,还可以是电动汽车、无人机和扫地机器人,等等。电子设备20中的电池可以是铅酸电池、镍镉电池、镍铁电池、镍氢电池、锂离子电池等中的任意一种。示例性的,电子设备20内未安装电池。示例性的,电子设备20可以为台式电脑、座机、射频识别(radio frequency identification,RFID)卡,等等。
设备30包括邻近集成电路卡,设备30属于PICC设备。示例性的,设备30可以是学生证、饭卡、公交卡、银行卡、身份证等包括PICC的设备。
如图1所示,供电设备10向电子设备20进行无线供电,设备30进入供电设备10的检测区域。需要说明的是,现有的具备NFC功能的电子设备,其内部通常具备PICC保护功能。因此供电设备10对电子设备20进行无线供电,不会损坏电子设备20的NFC功能。如图1所示,供电设备10的检测区域大于无线供电区域。任何设备进入供电设备10的检测区域时,供电设备10可以及时关闭无线供电,防止无线供电磁场损伤PICC设备。
供电设备10发现设备30进入其检测区域,供电设备10停止向电子设备20进行无线供电。相应的,电子设备20失去供电。供电设备10停止向电子设备20进行无线供电后,供电设备10开始向设备30发射载波频率信号。
图2是一种PICC检测过程中的时域波形示意图。首先,供电设备10向设备30发射载波频率为f NFC的启动信号。随后,供电设备10向设备30发射载波频率为f NFC的请求(request,REQ)信号。示例性的,启动信号用于为设备30供电,启动信号至少持续5.1毫秒,使得设备30存储有足够的电量与供电设备10通讯。请求信号一般持续0.5毫秒。f NFC为13.56MHz。最后,供电设备10接收设备30发送的回复请求(answer to request,ATQ)信号,供电设备10确认该设备30属于PICC设备,至此,供电设备10结束PICC检测。后续供电设备10与设备30之间可以传输数据。
如上所述,供电设备10从发现设备30进入其检测区域后,将停止对电子设备20进行无线供电。使得原本正在接收供电的电子设备20失去供电或者说断充,从而严重影响无线供电效率和用户的使用体验。
需要说明的是,为了防止无线供电磁场对请求信号和回复请求信号的干扰,保证PICC检测的准确性,供电设备10在发送请求信号和等待回复请求信号期间需要停止向电子设备20进行无线供电。如图2所示,请求信号只持续0.5毫秒,这期间停止向电子设备20进行无线充电对无线供电效率的影响可以忽略不计。然而,启动信号的持续时间远大于请求信号的持续时间。供电设备10长时间停止向电子设备20进行无线充电将影响无线供电效率,降低了用户的使用体验。
为了解决上述问题,本申请实施例提供了一种供电设备,可以降低PICC设备对无线供电效率的影响,提高用户的使用体验。
图3是本申请实施例提供的一种供电设备的结构示意图。本申请实施例的技术方案可以在图3举例所示的结构或者类似结构中具体实施。供电设备10可以为上述图1所示的供电设备10。如图3所示,供电设备10可以包括无线供电模块101、供电线圈14和检测模块102。无线供电模块101与供电线圈14连接。
其中,无线供电模块101用于向供电线圈14提供供电信号。供电线圈14用于接收无线供电模块101提供的供电信号,并利用该供电信号产生相应的无线供电磁场,从而为电子设备20供电。在一种实施方式中,无线供电模块101可以向供电线圈14提供不同功率的供电信号,以使得供电线圈14产生不同强度的无线供电磁场。
检测模块102用于检测供电设备10的检测区域内是否存在目标设备并检测该目标设备是否属于PICC设备,并输出相应的检测信息。其中,目标设备为除供电设备10和正在接收供电的电子设备20之外的设备。在本申请实施例中,目标设备可以属于PICC设备或不属于PICC设备。示例性的,该目标设备可以为图1中的设备30。
在一种实施例中,响应于供电设备10的检测区域存在目标设备,检测模块102输出检测信息指示供电设备10的检测区域存在目标设备。
在一种实施例中,响应于供电设备10的检测区域不存在目标设备,检测模块102输出检 测信息指示供电设备10的检测区域不存在目标设备。
在一种实施例中,响应于检测区域内的目标设备属于PICC设备,检测模块102输出检测信息指示目标设备属于PICC设备。
在一种实施例中,响应于检测区域内的目标设备不属于PICC设备,检测模块102输出检测信息指示目标设备不属于PICC设备。
在本申请实施例中,供电设备10的运行模式可以包括供电模式、PICC检测模式和PICC保护模式。在一种实施方式中,供电设备10分别运行于供电模式、PICC检测模式和PICC保护模式时,无线供电模块101可以分别向供电线圈14提供不同功率的供电信号。示例性的,供电设备10分别运行于供电模式、PICC检测模式和PICC保护模式时,无线供电模块101可以向供电线圈14提供功率依次递减的供电信号。需要说明的是,如上图2所述,供电设备10在发送启动信号期间与设备30之间无数据传输,因此无线供电磁场对启动信号的影响可以忽略不计,甚至可以直接用无线供电磁场代替启动信号向设备30供电。如此,本申请实施例提供的供电设备10运行于PICC检测模式时,供电设备10的无线供电模块101可以依旧向供电线圈14提供供电信号,从而产生无线供电磁场向电子设备20和设备30供电。
在本申请实施例中,供电设备10可以基于检测模块102输出的检测信息,实现不同运行模式的切换。在一种实施方式中,响应于检测模块102输出的检测信息,供电设备10可以运行于供电模式、PICC检测模式或者PICC保护模式。
在一种实施方式中,供电设备10运行于供电模式,响应于检测模块102输出的检测信息,供电设备10的运行模式可以从供电模式切换至所述PICC检测模式或所述PICC保护模式。
在一种实施方式中,供电设备10运行于供电模式,响应于检测模块102输出的检测信息,供电设备10的运行模式可以从供电模式切换至PICC检测模式,或者维持供电模式。在一种实施方式中,供电设备10运行于PICC检测模式,响应于检测模块102输出的检测信息,供电设备10的运行模式可以从PICC检测模式切换至PICC保护模式或供电模式。
在一种实施方式中,检测模块102输出的检测信息可以用于指示供电设备10的检测区域是否存在除供电设备10和电子设备20外的目标设备,响应于检测模块102输出的检测信息,供电设备10可以运行于供电模式或者PICC检测模式。
在一种实施例中,响应于供电设备10的检测区域存在目标设备,检测模块102输出检测信息指示供电设备10运行于PICC检测模式。
在一种实施例中,响应于供电设备10的检测区域不存在目标设备,检测模块102输出检测信息指示供电设备10运行于供电模式。
示例性的,检测模块102检测到供电设备10的检测区域内存在该目标设备,响应于检测模块102输出的检测信息,供电设备10运行于PICC检测模式。示例性的,检测模块102检测到供电设备10的检测区域内不存在该目标设备,响应于检测模块102输出的检测信息,供电设备10运行于供电模式。
在一种实施方式中,检测模块102输出的检测信息还可以用于指示供电设备10的检测区域内是否存在PICC设备,即指示进入检测区域的该目标设备是否属于PICC设备,响应于检测模块102输出的检测信息,供电设备10可以运行于PICC保护模式、供电模式或者PICC检测模式。
在一种实施例中,响应于检测区域内的目标设备属于PICC设备,检测模块102输出的检测信息指示供电设备10运行于PICC保护模式。
在一种实施例中,响应于检测区域内的目标设备不属于PICC设备,检测模块102输出 的检测信息指示供电设备10运行于供电模式。
示例性的,检测模块102检测到该目标设备属于PICC设备,响应于检测模块102输出的检测信息,供电设备10运行于PICC保护模式。示例性的,检测模块102检测到该目标设备不属于PICC设备,响应于检测模块102输出的检测信息,供电设备10运行于供电模式。示例性的,检测模块102未检测出该目标设备是否属于PICC设备,响应于检测模块102输出的检测信息,供电设备10可以维持PICC检测模式。
下面结合图1和图3,对本申请实施例中的供电设备10进行说明。其中,供电设备10的运行模式包括供电模式、PICC检测模式和PICC保护模式。
供电设备10运行于供电模式,此时供电设备10的无线供电模块101提供供电信号至供电线圈14,使得供电线圈14产生无线供电磁场向电子设备20供电。示例性的,供电设备10运行于供电模式,无线供电模块101可以提供第一功率的供电信号至供电线圈14。
如图1所示,设备30进入供电设备10的检测区域。供电设备10的检测模块102检测到设备30进入检测区域后,供电设备10切换至PICC检测模式。供电设备10运行于PICC检测模式时,无线供电模块101提供至供电线圈14的供电信号的功率可以不变或者适当降低,使得供电线圈14持续产生无线供电磁场向电子设备20和设备30供电。示例性的,供电设备10运行于PICC检测模式,无线供电模块101可以提供第二功率的供电信号至供电线圈14,上述第一功率可以大于第二功率。
供电设备10运行于PICC检测模式时,检测模块102可以检测该设备30是否属于PICC设备,并输出相应的检测信息。示例性的,图4是本申请实施例提供的一种PICC检测过程中的时域波形示意图。如图4所示,供电设备10的无线供电模块101可以提供第二功率的供电信号至供电线圈14,使得供电线圈14产生无线供电磁场向电子设备20和设备30供电。如图4所示,该供电信号的载波频率可以为f WPT。然后,供电设备10的无线供电模块101关闭,检测模块102可以通过发射一次或者多次请求信号来检测该设备30是否属于PICC设备,并输出相应的检测信息。
若检测模块102输出的检测信息指示该设备30确实属于PICC设备,供电设备10切换至PICC保护模式。供电设备10运行于PICC保护模式时,无线供电模块101可以提供极小功率的供电信号至供电线圈14,甚至,供电设备10可以直接关闭无线供电模块101,直至PICC离开检测区域,从而有效地防止PICC受损,延长PICC设备的使用寿命,保证用户的使用体验以及财产安全。示例性的,供电设备10运行于PICC保护模式时,无线供电模块101可以提供第三功率的供电信号至供电线圈14,上述第二功率可以大于第三功率。示例性的,第三功率可以为0,相当于直接关闭无线供电模块101。相应的,若检测模块102输出的检测信息指示该设备30不属于PICC设备,则供电设备10可以切换回供电模式。若检测模块102输出的检测信息指示无法确定该设备30是否属于PICC设备,则供电设备10可以维持PICC检测模式。
如上所述,无线供电模块101在供电模式下提供的供电信号的功率可以较大,以实现对电子设备20的高效供电。无线供电模块101在PICC检测模式下提供的供电信号的功率可以等于或者小于供电模式下提供的供电信号的功率,以保证对电子设备20的持续供电并尽可能的防止损坏可能存在的PICC设备。无线供电模块101在PICC保护模式下提供的供电信号的功率可以极小甚至为0,以防止损坏PICC设备。
示例性的,电子设备20为图1所示的智能手机,或者蓝牙耳机、平板电脑和台式电脑等,供电场景一般为室内场景,供电设备10一般可以安装于客厅、卧室、教室、商场、图书馆、 食堂、银行、手术室或者是病房内。示例性的,供电场景为图书馆,设备30可以为学生证或者图书借记卡一类的PICC设备。示例性的,供电场景为食堂,设备30可以为饭卡一类的PICC设备。示例性的,供电场景为医院,设备30可以为医保卡或者身份证一类的PICC设备。示例性的,供电场景为银行,设备30可以为银行卡或者身份证一类的PICC设备,等等,此处不再赘述。
示例性的,电子设备20为电动汽车,供电场景一般可以是私家车库或者是公共停车场等。示例性的,供电场景为私家车库或者是地下的公共停车场,设备30可以为车辆开锁卡或者公交卡一类的PICC设备。
综上,本申请实施例提供的供电设备10包括多种运行模式,并且在不同的运行模式下供电设备10可以提供不同功率的供电信号。如此,供电设备10在PICC检测期间也仍然可以持续给当前的电子设备20进行无线供电,避免了电子设备20失去供电或者断充的情况。如此,本申请实施例可以在保证PICC检测效率以防止PICC设备不被损坏的同时,保证无线供电效率,极大程度上满足了用户的使用需求。
图5是本申请实施例提供的另一种供电设备的结构示意图。本申请实施例的技术方案可以在图5举例所示的结构或类似的结构中具体实施。供电设备10可以为上述图1所示的供电设备10。如图5所示,供电设备10可以包括无线供电模块101、供电线圈14、检测模块102和控制模块103。检测模块102可以包括传感器模块1021和近场通信模块1022。无线供电模块101和供电线圈14的功能具体可参考上述图3对应实施例的描述,此处不再赘述。
如图5所示,无线供电模块101可以与供电设备10的供电线圈14连接,控制模块103可以分别与无线供电模块101、传感器模块1021和近场通信模块1022连接。在一种实施方式中,近场通信模块1022可以与NFC线圈连接。
传感器模块1021用于检测供电设备10的检测区域内是否存在除供电设备10和电子设备20外的目标设备,并输出相应的传感器检测信号至控制模块103,即输出传感器模块1021的检测结果至控制模块103。示例性的,传感器模块1021具体可以包括一个或多个电容传感器,可以基于检测区域内介电常数的变化,高效、准确地检测有无目标设备进入检测区域。
在一种实施方式中,响应于供电设备10的检测区域存在目标设备,传感器模块1021输出的传感器检测信号指示供电设备10的检测区域存在目标设备。
在一种实施方式中,响应于供电设备10的检测区域不存在目标设备,传感器模块1021输出的传感器检测信号指示供电设备10的检测区域不存在目标设备。
近场通信模块1022用于检测进入检测区域的该目标设备是否属于PICC设备,并输出相应的近场通信模块检测信号至控制模块103,即输出近场通信模块1022的检测结果至控制模块103。示例性的,近场通信模块1022可以发送请求信号,并等待目标设备发送相应的请求回复信号,若近场通信模块1022接收到目标设备发送的回复请求信号,则可以确定该目标设备属于PICC设备。
在一种实施方式中,响应于检测区域内的目标设备属于PICC设备,近场通信模块1022输出的近场通信模块检测信号指示目标设备属于PICC设备。
在一种实施方式中,响应于检测区域内的目标设备不属于PICC设备,近场通信模块1022输出的近场通信模块检测信号指示目标设备不属于PICC设备。
控制模块103用于控制无线供电模块101提供的供电信号的功率。在一种实施方式中,响应于检测模块102输出的检测信息,控制模块103控制无线供电模块101提供的供电信号的功率。在一种实施方式中,响应于检测模块102中的传感器模块1021输出的检测结果,控 制模块103控制无线供电模块101提供的供电信号的功率。在一种实施方式中,响应于检测模块102中的传感器模块1021输出的检测结果,控制模块103控制无线供电模块101提供的供电信号的功率。
在本申请实施例中,供电设备10的运行模式可以包括供电模式、PICC检测模式和PICC保护模式。在一种实施方式中,供电设备10分别运行于供电模式、PICC检测模式和PICC保护模式时,无线供电模块101可以分别向供电线圈14提供不同功率的供电信号。在一种实施方式中,供电设备10分别运行于供电模式、PICC检测模式和PICC保护模式时,无线供电模块101可以向供电线圈14提供功率依次递减的供电信号。
在本申请实施例中,供电设备10可以基于检测模块102输出的检测信息,实现不同运行模式的切换。在一种实施方式中,响应于检测模块102输出的检测信息,供电设备10可以运行于供电模式、PICC检测模式或者PICC保护模式。
在一种实施方式中,检测模块102输出的检测信息可以包括传感器模块1021输出的传感器检测信号,即包括传感器模块1021的检测结果。
在一种实施方式中,响应于传感器模块1021的检测结果,检测模块102输出检测信息指示供电设备10运行于PICC检测模式或供电模式。
在一种实施方式中,响应于传感器模块1021输出的检测结果,控制模块103控制无线供电模块101提供第一功率的供电信号至供电线圈14,此时供电设备10运行于供电模式。在一种实施方式中,响应于传感器模块1021输出的检测结果,控制模块103控制无线供电模块101提供第二功率的供电信号至供电线圈14,此时供电设备10运行于PICC检测模式。其中,第一功率可以大于或者等于第二功率。
示例性的,传感器模块1021检测到检测区域内存在除供电设备10和电子设备20外的目标设备,响应于传感器模块101输出的检测结果,控制模块103控制无线供电模块101提供第二功率的供电信号至供电线圈14,此时供电设备10运行于PICC检测模式。
示例性的,传感器模块1021检测到检测区域内不存在除供电设备10和电子设备20外的目标设备,响应于传感器模块1021输出的检测结果,控制模块103控制无线供电模块101提供第一功率的供电信号至供电线圈14,此时供电设备10运行于供电模式。
在一种实施方式中,检测模块102输出的检测信息可以包括近场通信模块1022输出的近场通信模块检测信号,即包括近场通信模块1022的检测结果。
在一种实施方式中,响应于近场通信模块1022输出的检测结果,检测模块102输出检测信息指示供电设备10运行于PICC保护模式或供电模式。
在一种实施方式中,响应于近场通信模块1022输出的检测结果,控制模块103控制无线供电模块101提供第三功率的供电信号至供电线圈14,此时供电设备10运行于PICC保护模式。在一种实施方式中,响应于近场通信模块1022输出的检测结果,控制无线供电模块101提供第一功率的供电信号至供电线圈14,此时供电设备10运行于供电模式。在一种实施方式中,响应于近场通信模块1022输出的检测结果,控制模块103控制无线供电模块101提供第二功率的供电信号至供电线圈14,此时供电设备10运行于PICC检测模式。其中,第三功率可以大于或者等于0,且小于第二功率。示例性的,第三功率为0相当于无线供电模块101不提供供电信号至供电线圈,即相当于关闭无线供电模块101。
示例性的,近场通信模块1022检测到该目标设备属于PICC设备,响应于近场通信模块1022输出的检测结果,控制模块103控制无线供电模块101提供第三功率的供电信号至所述供电线圈,此时供电设备10运行于PICC保护模式。
示例性的,近场通信模块1022检测到该目标设备不属于PICC设备,响应于近场通信模块1022输出的检测结果,控制模块103控制无线供电模块101提供第一功率的供电信号至所述供电线圈,此时供电设备10运行于供电模式。
示例性的,近场通信模块1022未检测出该目标设备是否属于PICC设备,响应于近场通信模块1022输出的检测结果,控制模块103控制无线供电模块101提供第二功率的供电信号至所述供电线圈,此时供电设备10运行于PICC检测模式。
下面结合图1和图5,对本申请实施例中的供电设备10进行说明。其中,供电设备10的运行模式包括供电模式、PICC检测模式和PICC保护模式。
供电设备10运行于供电模式,此时供电设备10的控制模块103控制无线供电模块101提供第一功率的供电信号至供电线圈14,使得供电线圈14产生相应的无线供电磁场向电子设备20供电。此外,供电设备10开机后,其中的传感器模块1021可以一直处于运行状态,以实时监测有无设备进入检测区域。
如图1所示,设备30进入供电设备10的检测区域。供电设备10的传感器模块1021检测到设备30进入了该检测区域,响应于传感器模块1021输出的检测结果,控制模块103可以控制无线供电模块101输出第一功率的供电信号至供电线圈14,使得供电线圈14产生相应的无线供电磁场向电子设备20和设备30供电,随后,控制模块103还可以控制近场通信模块1022检测该设备30是否属于PICC设备,此时供电设备10运行于PICC检测模式。示例性的,设备30未进入供电设备10的检测区域,响应于传感器模块1021输出的检测结果,控制模块103可以控制无线供电模块101维持输出第一功率的供电信号至供电线圈14,此时供电设备10运行于供电模式。
供电设备10运行于PICC检测模式时,示例性的,如图4所示,控制模块103可以控制无线供电模块101输出第二功率的供电信号至供电线圈14。该供电信号的载波频率可以为f WPT。请一并参见图2和图4,本申请实施例提供的供电设备10在PICC检测期间仍然可以提供无线供电信号,该供电信号的幅值远大于NFC信号的幅值,可以保证在PICC检测时不会让原本正在接收供电的电子设备20失去供电,极大程度上降低了PICC检测对无线供电的影响,从而保证无线供电效率。随后,如图4所示,控制模块103可以控制无线供电模块101关闭,并开启近场通信模块1022,以及控制近场通信模块1022通过NFC线圈发射一次或者多次请求信号,以检测该设备30是否属于PICC设备。
示例性的,近场通信模块1022检测到该设备30确实属于PICC设备,响应于近场通信模块1022输出的检测结果,控制模块103可以控制无线供电模块101输出第三功率的供电信号至供电线圈14,此时供电设备10运行于PICC保护模式,以防止PICC受损。示例性的,若近场通信模块1022接收到设备30发送的回复请求信号,则可以确定该设备30属于PICC设备。
示例性的,近场通信模块1022检测到该设备30不属于PICC设备,响应于近场通信模块1022输出的检测结果,控制模块103可以控制无线供电模块101输出第一功率的供电信号至供电线圈14,此时供电设备10运行于供电模式。示例性的,若近场通信模块1022在预设时间内未接收到设备30发送的回复请求信号,则可以确定该设备30不属于PICC设备。
示例性的,近场通信模块1022未检测出该设备30是否属于PICC设备时,响应于近场通信模块1022输出的检测结果,控制模块103可以控制无线供电模块101持续输出第二功率的供电信号至供电线圈14,此时供电设备10维持PICC检测模式。示例性的,若近场通信模块1022在第一次发送请求信号后未接收到设备30发送的回复请求信号,控制模块103可以 控制近场通信模块1022再次发送请求信号,以再次检测该设备30是否属于PICC设备。
综上,本申请实施例中的供电设备10可以通过传感器和近场通信模块实时检测附近的PICC设备,基于检测结果切换不同的运行模式。并且,供电设备10在不同运行模式下可以提供不同功率的供电信号,灵活地满足不同运行模式下的供电要求,既避免了PICC检测期间电子设备20的断充,保证无线供电效率,又能防止PICC设备受损,极大程度上保障了用户的使用体验。
图6是本申请实施例提供的又一种供电设备的结构示意图。本申请实施例的技术方案可以在图6举例所示的结构或类似的结构中具体实施。供电设备10可以为上述图1所示的供电设备10。如图6所示,供电设备10可以包括无线供电模块101、传感器模块1021、近场通信模块1022和控制模块103。如图6所示,无线供电模块101具体可以包括依次连接的信号发生器11、功率放大器12和前端电路13,其中,前端电路13可以与供电线圈14连接。近场通信模块1022具体可以包括依次连接的读卡芯片21和前端电路22,其中,前端电路22可以与NFC线圈23连接。
无线供电模块101的信号发生器11用于产生供电信号。示例性的,信号发生器11可由晶振、微控制器、数字信号处理器等实现。其中,无线供电模块101的功率放大器12可以用于将信号发生器11产生的供电信号进行功率放大。示例性的,无线供电模块101的前端电路13可以包含匹配网络和滤波网络。其中,匹配网络可以用于将输入阻抗匹配到功率放大器12期望的输入阻抗范围,滤波网络可以用于滤除无线供电信号的谐波,等等,此处不再展开详述。
近场通信模块1022的读卡芯片21可以用于发送和读取NFC信号。示例性的,读卡芯片21可以用于发送请求信号和读取设备30发送的回复请求信号。示例性的,读卡芯片21可以由集成芯片实现。示例性的,近场通信模块1022的前端电路22可以包含匹配网络和滤波网络。其中,匹配网络可以用于将输入阻抗匹配到读卡芯片21期望的输入阻抗范围,滤波网络可以用于滤除NFC信号中不期望的高次谐波。
供电线圈14用于接收前端电路13输出的供电信号,并产生相应的无线供电磁场以实现无线供电。
NFC线圈23用于接收前端电路22输出的NFC信号,并产生相应的NFC磁场以实现数据通信。NFC线圈23还可以用于接收设备30发送的NFC信号,并将该信号传输至读卡芯片内,以实现数据通信。
如图6所示,控制模块103分别与无线供电模块101、传感器模块1021和近场通信模块1022连接。示例性的,控制模块103可以由微控制器、数字信号处理器等实现。如上所述,控制模块103主要用于控制无线供电模块101与近场通信模块1022的开启、关闭,以及控制无线供电模块101输出的供电信号的功率。在一种实施方式中,控制模块103还可以控制无线供电模块101与近场通信模块1022的阻抗检测,等等。
应理解,本申请实施例示意的结构并不构成对供电设备10的具体限定。在一些可能的实施例中,供电设备10可以具有比图3、图5和图6中所示的更多的或者更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。此外,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对供电设备10的结构限定。在一些可能的实施例中,供电设备10也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
请参阅图7,图7是本申请实施例提供的一种无线供电和PICC检测方法的流程示意图。该方法可应用于上述图1所述的应用场景中,以及具体可应用于上述图3、图5、图6所述的供电设备10中。下面将以执行主体为供电设备10为例,对本申请提供的无线供电和PICC检测方法进行详细阐述。如图7所示,该无线供电和PICC检测方法可以包括以下步骤S11-步骤S15。
步骤S11,供电设备运行于供电模式。
具体地,供电设备10运行于供电模式,此时供电设备10的无线供电模块101提供一定功率的供电信号至供电线圈,使得供电线圈产生无线供电磁场为电子设备20供电。
在一种实施方式中,供电设备10运行于供电模式,无线供电模块101可以提供第一功率的供电信号至供电线圈,以实现对一个或多个电子设备20的高效供电。
示例性的,如图6所示,供电设备10运行于供电模式,控制模块103控制无线供电模块101中的信号发生器11产生供电信号并输出至功率放大器12,经过功率放大器12后输出的供电信号的功率可以为上述第一功率。然后,该第一功率的供电信号经过无线供电模块101中前端电路13的输入阻抗匹配和滤波后输出至供电线圈14,使得供电线圈14产生相应的无线供电磁场。
示例性的,供电设备10启动后可以默认运行于供电模式。示例性的,供电设备10启动后可以默认处于待机状态,供电设备10感应到其充电座上存在电子设备20,或者供电设备10蓝牙匹配到电子设备20时,供电设备10可以运行于供电模式,等等。
步骤S12,检测是否有目标设备进入检测区域。
具体地,检测是否有目标设备进入检测区域,响应于检测模块102输出的检测信息,供电设备10运行于PICC检测模式或者供电模式。
在一种实施方式中,响应于检测模块102中的传感器模块1021输出的检测结果,供电设备10运行于PICC检测模式或者供电模式。该检测结果用于指示是否有目标设备进入供电设备10的检测区域。
示例性的,传感器模块1021检测到有目标设备进入检测区域,响应于传感器模块1021输出的检测结果,供电设备10运行于PICC检测模式。示例性的,传感器模块1021检测到没有目标设备进入检测区域,响应于传感器模块1021输出的检测结果,供电设备10运行于供电模式。示例性的,传感器模块1021未检测出是否有目标设备进入检测区域,响应于传感器模块1021输出的检测结果,供电设备10可以运行于供电模式。
示例性的,传感器模块1021中可以包括一个或多个电容传感器,该一个或多个电容传感器可以基于检测区域内介电常数的变化,高效、便捷地检测是否有设备进入检测区域。
步骤S13,检测到有目标设备进入检测区域,供电设备运行于PICC检测模式。
具体地,检测模块102检测到有目标设备进入检测区域,响应于检测模块102输出的检测信息,供电设备运行于PICC检测模式。
在一种实施方式中,检测模块102中的传感器模块1021检测到有目标设备进入检测区域,响应于传感器模块1021输出的检测结果,供电设备10运行于PICC检测模式。
示例性的,检测模块102中的传感器模块1021检测到有目标设备进入检测区域,响应于传感器模块1021输出的检测结果,控制模块103可以控制无线供电模块101输出第二功率的供电信号至供电线圈14,并且,控制模块103还可以控制近场通信模块1022检测该目标设备是否属于PICC设备,此时供电设备10运行于PICC检测模式。在一种实施方式中,该目标设备为上述图1中的设备30。
示例性的,如图6所示,供电设备10运行于PICC检测模式,控制器103控制无线供电模块101中的信号发生器11产生供电信号并输出至功率放大器12,经过功率放大器12后输出的供电信号的功率可以为上述第二功率。然后,该第二功率的供电信号经过无线供电模块101中前端电路13的输入阻抗匹配和滤波后输出至供电线圈14,使得供电线圈14产生相应的无线供电磁场。其中,该第二功率可以小于或者等于第一功率。
示例性的,图8是本申请实施例提供的一种供电信号的功率变化示意图。如图8所示,原本供电设备运行于供电模式,无线供电模块101输出第一功率的供电信号至供电线圈14。检测模块102检测到有目标设备进入检测区域,响应于检测模块102输出的检测结果,供电设备10立即切换至PICC检测模式,无线供电模块101输出第二功率的供电信号至供电线圈14。如图8所示,供电设备10由供电模式切换至PICC检测模式,无线供电模块101提供的供电信号的功率可以按照预设的幅度降低。
步骤S14,检测该目标设备是否属于PICC设备。
具体地,供电设备10运行于PICC检测模式,检测模块102检测进入检测区域的该目标设备是否属于PICC设备,响应于检测模块102输出的检测信息,供电设备10运行于PICC保护模式、供电模式或者PICC检测模式。
在一种实施方式中,响应于检测模块102中的近场通信模块1022输出的检测结果,供电设备10运行于PICC保护模式、供电模式或者PICC检测模式。该检测结果用于指示进入检测区域的该目标设备是否属于PICC设备。
示例性的,近场通信模块1022检测到该目标设备属于PICC设备,响应于近场通信模块1022输出的检测结果,供电设备10运行于PICC保护模式。示例性的,近场通信模块1022检测该目标设备不属于PICC设备,响应于近场通信模块1022输出的检测结果,供电设备10运行于供电模式。示例性的,近场通信模块1022未检测出该目标设备是否属于PICC设备,响应于近场通信模块1022输出的检测结果,供电设备10可以维持PICC检测模式。
示例性的,以目标设备为图1所示的设备30为例,如图4所示,供电设备10运行于PICC检测模式时,其中的控制模块103可以在PICC检测的供电阶段控制无线供电模块101提供4毫秒、4.3毫秒或者5毫秒等一段时间的第二功率的供电信号至供电线圈,从而为电子设备20和设备30供电。然后,控制模块103在PICC检测的检测阶段关闭无线供电模块101,开启近场通信模块1022,并控制近场通信模块1022发射一次或多次请求信号,以检测该设备30是否属于PICC设备。
示例性的,如图6所示,供电设备10运行于PICC检测模式,控制器103控制近场通信模块1022中的读卡芯片21产生上述请求信号,该请求信号经过近场通信模块1022中前端电路13的输入阻抗匹配和滤波后输出至NFC线圈23。NFC线圈23基于该请求信号产生相应的NFC磁场,尝试与设备30进行数据通信以检测该设备30是否属于PICC设备。
示例性的,若设备30属于PICC设备,则设备30可以利用PICC供电阶段接收到的供电发送相应的回复请求信号。近场通信模块1022接收设备30发送的回复请求信号,并确定该设备30属于PICC设备,响应于近场通信模块1022输出的检测结果,控制模块103可以控制无线供电模块101输出第三功率的供电信号至供电线圈14,此时供电设备10运行于PICC保护模式。图9是本申请实施例提供的另一种供电信号的功率变化示意图。如图9所示,供电设备10运行于PICC检测模式时,无线供电模块101输出第二功率的供电信号至供电线圈14。若近场通信模块1022检测到该设备30属于PICC设备,供电设备10可以由PICC检测模式切换至PICC保护模式,无线供电模块101输出第三功率的供电信号至供电线圈14。如 图9所示,供电设备10由PICC检测模式切换至PICC保护模式,无线供电模块101提供的供电信号的功率可以按照预设的幅度降低。
示例性的,若近场通信模块1022在预设时间内未接收到设备30发送的回复请求信号,则可以确定该设备30不属于PICC设备,响应于近场通信模块1022输出的检测结果,控制模块103可以控制无线供电模块101输出第一功率的供电信号至供电线圈14,此时供电设备10运行于供电模式。示例性的,如图8所示,供电设备10运行于PICC检测模式,无线供电模块101输出第二功率的供电信号至供电线圈14。若近场通信模块1022检测到该设备30不属于PICC设备,供电设备10可以由PICC检测模式切换回供电模式,无线供电模块101输出第一功率的供电信号至供电线圈14。
示例性的,若近场通信模块1022在第一次发送请求信号后未接收到设备30发送的回复请求信号,即未检测出该设备30是否属于PICC设备时,响应于近场通信模块1022输出的检测结果,控制模块103可以控制无线供电模块101持续输出第二功率的供电信号至供电线圈14,此时供电设备10维持PICC检测模式。控制模块103可以控制近场通信模块1022再次发送请求信号,以再次检测该设备30是否为PICC。
步骤S15,检测到该目标设备属于PICC设备,供电设备运行于PICC保护模式。
具体地,检测模块102检测到目标设备属于PICC设备,响应于检测模块102输出的检测信息,供电设备运行于PICC保护模式。
在一种实施方式中,检测模块102中的近场通信模块1022检测到该目标设备属于PICC设备,响应于近场通信模块1022输出的检测结果,供电设备10运行于PICC保护模式。
示例性的,检测模块102中的近场通信模块1022检测到该目标设备属于PICC设备,响应于近场通信模块1022输出的检测结果,控制模块103可以控制无线供电模块101输出第三功率的供电信号至供电线圈14,此时供电设备10运行于PICC保护模式。示例性的,如图9所示,供电设备10运行于PICC检测模式,无线供电模块101输出第二功率的供电信号至供电线圈14。若近场通信模块1022检测到该设备30属于PICC设备,供电设备10可以由PICC检测模式切换至PICC保护模式,无线供电模块101输出第三功率的供电信号至供电线圈14。如图9所示,供电设备10由PICC检测模式切换至PICC保护模式,无线供电模块101提供的供电信号的功率可以按照预设的幅度降低。
示例性的,如图6所示,供电设备10运行于PICC保护模式,控制器103控制无线供电模块101中的信号发生器11产生供电信号并输出至功率放大器12,经过功率放大器12后输出的供电信号的功率可以为上述第三功率。然后,该第三功率的供电信号经过无线供电模块101中前端电路13的输入阻抗匹配和滤波后输出至供电线圈14,使得供电线圈14产生相应的无线供电磁场。其中,第三功率可以大于或者等于0,且小于第二功率。示例性的,第三功率为0相当于无线供电模块不提供供电信号至供电线圈,即相当于关闭无线供电模块101。如上所述,在PICC保护模式下,供电设备10可以减弱甚至关闭无线供电,以防止PICC受损,从而延长PICC设备的使用寿命,保证用户的使用体验以及财产安全。
在一种实施方式中,如图7所示,供电设备10运行于PICC保护模式时,检测模块102可以持续运行,以实时检测是否有目标设备进入检测区域,从而及时发现附近可能存在的PICC设备。响应于检测模块102输出的检测信息,供电设备10可以维持前的供电模式或者切换至PICC检测模式或PICC保护模式。示例性的,如图9所示,若后续检测到检测区域内不存在PICC设备,供电设备10可以由PICC保护模式切换至供电模式,无线供电模块101输出第一功率的供电信号至供电线圈14。
图10是本申请实施例提供的另一种无线供电和PICC检测方法的流程示意图。该方法可应用于上述图1所述的应用场景中,以及具体可应用于上述图3、图5、图6所述的供电设备10中。下面将以执行主体为供电设备10为例,对本申请提供的无线供电和PICC检测方法进行进一步详细阐述。如图10所示,该方法可以包括以下步骤S21-步骤S27。
步骤S21,供电设备处于待机状态。
具体地,供电设备处于待机状态,不进行无线供电以及近场通信。
在一种实施方式中,供电设备10处于待机状态时,供电设备10中的无线供电模块101和近场通信模块1022可以处于关闭状态,供电设备10中的传感器模块1021可以处于运行状态,以实时监测是否有设备进入供电设备10的检测区域。
示例性的,供电设备10启动后可以默认处于待机状态,供电设备10可以在用户手动操作开启无线供电、感应到其充电座上存在电子设备20或者蓝牙匹配到可无线充电的电子设备20时开启无线供电模块101。
步骤S22,检测是否有目标设备进入检测区域。
具体地,步骤S22可以参考上述图7对应实施例中的步骤S12,此处不再进行赘述。
在一种实施方式中,该目标设备为除供电设备10外的设备。
步骤S23,检测到有目标设备进入检测区域,供电设备运行于PICC检测模式。
具体地,步骤S23可以参考上述图7对应实施例中的步骤S13,此处不再进行赘述。
在一种实施方式中,供电设备10由待机状态切换至PICC检测模式,控制模块103也可以继续维持无线供电模块101关闭,并开启近场通信模块1021,控制近场通信模块1022发射一段时间的NFC信号给该目标设备供电,从而最大化的保护可能存在的PICC设备不被损坏。
步骤S24,检测该目标设备是否属于PICC设备。
具体地,步骤S24可以参考上述图7对应实施例中的步骤S14,此处不再进行赘述。
在一种实施方式中,供电设备10原本处于待机状态,若检测到该目标设备不属于PICC设备,进一步地还可以检测该目标设备是否为具备无线充电功能的电子设备。示例性的,该目标设备可以为图1所示的电子设备20,比如手机、蓝牙耳机和平板电脑等具备无线充电功能的电子设备。
步骤S25,检测到该目标设备属于PICC设备,供电设备运行于PICC保护模式。
具体地,步骤S25可以参考上述图7对应实施例中的步骤S15,此处不再进行赘述。
步骤S26,检测该目标设备是否为具备无线充电功能的电子设备。
具体地,若检测模块102检测到该目标设备不属于PICC设备,进一步地还可以检测该目标设备是否为具备无线充电功能的电子设备。
在一种实施方式中,响应于检测模块102输出的检测信息,供电设备10维持待机状态或者运行于供电模式。
示例性的,检测模块102检测到该目标设备是具备无线充电功能的电子设备,响应于检测模块102输出的检测信息,供电设备10运行于供电模式。如此,本申请实施例可以在保证不损坏PICC的前提下实现对该电子设备的无线供电。示例性的,检测模块102检测到该目标设备不是具备无线充电功能的电子设备,响应于检测模块102输出的检测信息,供电设备10维持待机状态,以尽可能的节省能源。
示例性的,检测模块102中还可以包括蓝牙通信模块,可以通过蓝牙匹配等方法检测该目标设备是否为具备无线充电功能的电子设备。
步骤S27,检测到该目标设备是具备无线充电功能的电子设备,供电设备运行于供电模式。
具体地,检测模块102检测到目标设备是具备无线充电功能的电子设备,响应于检测模块102输出的检测信息,供电设备运行于供电模式。
在一种实施方式中,检测模块102中的蓝牙通信模块检测到该目标设备为具备无线充电功能的电子设备,响应于蓝牙通信模块输出的检测信息,供电设备10运行于供电模式。
示例性的,检测模块102中的蓝牙通信模块检测到该目标设备为具备无线充电功能的电子设备,响应于蓝牙通信模块输出的检测信息,控制模块103可以控制无线供电模块101输出第一功率的供电信号至供电线圈14,此时供电设备10运行于供电模式。
示例性的,如图6所示,供电设备10运行于供电模式,控制模块103控制无线供电模块101中的信号发生器11产生供电信号并输出至功率放大器12,经过功率放大器12后输出的供电信号的功率可以为上述第一功率。然后,该第一功率的供电信号经过无线供电模块101中前端电路13的输入阻抗匹配和滤波后输出至供电线圈14,使得供电线圈14产生相应的无线供电磁场,以实现对该目标设备的高效供电。
在一种实施方式中,如图10所示,供电设备10运行于供电模式,检测模块102可以持续运行,以实时检测是否有目标设备进入检测区域,从而及时发现附近可能存在的PICC设备以及电子设备。响应于检测模块102输出的检测信息,供电设备10可以维持当前的供电模式或者切换至待机状态、PICC检测模式、PICC保护模式中的任意一个。
在本申请实施例中,上述图7或者图10所描述的无线供电和PICC检测方法中的各方法流程具体可以基于件、硬件、或其结合的方式实现。其中,以硬件实现的方式可以包括逻辑电路、算法电路或模拟电路等。以软件实现的方式可以包括程序指令,可以被视为是一种软件产品,被存储于存储器中,并可以被处理器运行以实现相关功能。
综上,本申请实施例提供了一种支持无线供电的近场通信的供电设备,该供电设备包括供电模式、PICC检测模式和PICC保护模式等多种运行模式。基于此,该供电设备的无线供电模块可以在不同运行模式下提供不同功率的供电信号至供电线圈,以使得供电线圈产生不同强度的磁场,从而可以灵活地满足不同情况下的供电需求。如此,供电设备在进行PICC检测时,也可以持续产生无线供电磁场从而持续给当前的电子设备进行无线供电,避免在PICC检测期间电子设备断充的情况。综上,本申请实施例提供的供电设备可以在保证PICC检测效率以防止PICC不被损坏的同时,保证无线供电的效率,极大程度上满足了用户的使用需求。
本申请实施例还提供一种计算机可读存储介质,其中,该计算机可读存储介质可存储有程序,该程序被处理器执行时,使得所述处理器可以执行上述方法实施例中记载的任意一种的部分或全部步骤。
本申请实施例还提供一种计算机程序,该计算机程序包括指令,当该计算机程序被多核处理器执行时,使得所述处理器可以执行上述方法实施例中记载的任意一种的部分或全部步骤。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可能可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉, 说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以为个人计算机、服务器或者网络设备等,具体可以是计算机设备中的处理器)执行本申请各个实施例上述方法的全部或部分步骤。其中,而前述的存储介质可包括:U盘、移动硬盘、磁碟、光盘、只读存储器(Read-Only Memory,缩写:ROM)或者随机存取存储器(Random Access Memory,缩写:RAM)等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (15)

  1. 一种支持无线供电和近场通信的供电设备,其特征在于,包括无线供电模块、供电线圈和检测模块;所述无线供电模块用于向所述供电线圈提供供电信号,所述供电线圈利用所述供电信号为电子设备供电;所述检测模块用于检测所述供电设备的检测区域内是否存在目标设备并检测所述目标设备是否属于PICC设备;所述供电设备的运行模式包括供电模式、PICC检测模式和PICC保护模式;
    所述供电设备运行于所述供电模式时,响应于所述检测模块输出的检测信息,所述供电设备的运行模式从所述供电模式切换至所述PICC检测模式或所述PICC保护模式;
    所述供电设备分别运行于所述供电模式、所述PICC检测模式和所述PICC保护模式时,所述无线供电模块向所述供电线圈提供的所述供电信号的功率依次递减;
    其中,所述目标设备为除所述供电设备和所述电子设备外的设备。
  2. 根据权利要求1所述的供电设备,其特征在于,响应于所述供电设备运行于供电模式,所述无线供电模块向所述供电线圈提供第一功率的所述供电信号;
    响应于所述供电设备运行于所述PICC检测模式,所述无线供电模块向所述供电线圈提供第二功率的所述供电信号;
    响应于所述供电设备运行于所述PICC保护模式,所述无线供电模块向所述供电线圈提供第三功率的所述供电信号;
    其中,所述第一功率大于所述第二功率,所述第二功率大于所述第三功率。
  3. 根据权利要求1-2任一项所述的供电设备,其特征在于,所述检测模块输出的所述检测信息用于指示:
    所述检测区域内是否存在除所述供电设备和所述电子设备外的所述目标设备;或
    所述供电设备的所述检测区域内是否存在PICC设备。
  4. 根据权利要求1-3任一项所述的供电设备,其特征在于,响应于所述检测区域内存在所述目标设备,所述检测模块输出所述检测信息指示所述供电设备运行于所述PICC检测模式;
    响应于所述检测区域内不存在所述目标设备,所述检测模块输出所述检测信息指示所述供电设备运行于所述供电模式。
  5. 根据权利要求1-3任一项所述的供电设备,其特征在于,响应于所述目标设备属于PICC设备,所述检测模块输出所述检测信息指示所述供电设备运行于所述PICC保护模式;
    响应于所述目标设备不属于PICC设备,所述检测模块输出所述检测信息指示所述供电设备运行于所述供电模式。
  6. 根据权利要求1-5任一项所述的供电设备,其特征在于,所述检测模块包括:
    传感器模块,用于检测所述检测区域内是否存在除所述供电设备和所述电子设备外的所述目标设备,并输出传感器检测信号;
    近场通信模块,用于检测所述检测区域内的所述目标设备是否属于PICC设备,并输出近场通信模块检测信号。
  7. 根据权利要求6所述的供电设备,其特征在于,所述检测模块用于:
    响应于所述传感器检测信号,所述检测模块输出所述检测信息指示所述供电设备运行于所述PICC检测模式或所述供电模式;
    响应于所述近场通信模块检测信号,所述检测模块输出所述检测信息指示所述供电设备运行于所述PICC保护模式或所述供电模式。
  8. 根据权利要求6所述的供电设备,其特征在于,所述检测信息包括所述传感器检测信号和所述近场通信模块检测信号中的至少一个,其中:
    响应于所述检测信息包括所述传感器检测信号,所述供电设备运行于所述PICC检测模式或所述供电模式;
    响应于所述检测信息包括所述近场通信模块检测信号,所述供电设备运行于所述PICC保护模式或所述供电模式。
  9. 根据权利要求8所述的供电设备,其特征在于,响应于所述检测信息包括所述传感器检测信号,所述无线供电模块向所述供电线圈提供所述第一功率或所述第二功率的所述供电信号;
    响应于所述检测信息包括所述近场通信模块检测信号,所述无线供电模块向所述供电线圈提供所述第一功率或所述第三功率的所述供电信号。
  10. 根据权利要求1-9任一项所述的供电设备,其特征在于,所述供电设备还包括:
    控制模块,用于响应于所述检测模块输出的所述检测信息,控制所述供电设备运行于所述供电模式、所述PICC检测模式或所述PICC保护模式。
  11. 根据权利要求10所述的供电设备,其特征在于,所述控制模块用于:
    响应于所述检测信息包括所述传感器检测信号,所述控制模块控制所述供电设备运行于所述PICC检测模式或所述供电模式;
    响应于所述检测信息包括所述近场通信模块检测信号,所述控制模块控制所述供电设备运行于所述PICC保护模式或所述供电模式。
  12. 根据权利要求10所述的供电设备,其特征在于,所述控制模块用于:
    响应于所述检测信息包括所述传感器检测信号,所述控制模块控制所述无线供电模块向所述供电线圈提供所述第一功率或所述第二功率的所述供电信号;
    响应于所述检测信息包括所述近场通信模块检测信号,所述控制模块控制所述无线供电模块向所述供电线圈提供所述第一功率或所述第三功率的所述供电信号。
  13. 一种支持无线供电和近场通信的供电设备,其特征在于,包括无线供电模块、供电线圈、检测模块和控制模块,其中:
    所述无线供电模块,用于向所述供电线圈提供供电信号,所述供电线圈利用所述供电信号为电子设备供电;
    所述检测模块,用于检测所述供电设备的检测区域内是否存在目标设备并检测所述目标 设备是否属于PICC设备;
    所述控制模块,用于:
    控制所述无线供电模块向所述供电线圈提供第一功率的所述供电信号;及
    响应于所述检测模块输出的检测信息,控制所述无线供电模块向所述供电线圈提供第二功率或第三功率的所述供电信号;
    其中,所述目标设备为除所述供电设备和所述电子设备外的设备,所述第一功率大于所述第二功率,所述第二功率大于所述第三功率。
  14. 根据权利要求13所述的供电设备,其特征在于,所述检测模块包括传感器模块和近场通信模块,其中:
    所述传感器模块,用于检测所述检测区域内是否存在所述目标设备;及
    所述近场通信模块,用于检测所述检测区域内的所述目标设备是否属于PICC设备;
    所述检测模块,用于根据所述传感器模块或所述近场通信模块的检测结果输出所述检测信息,所述检测信息用于指示所述检测区域内是否存在所述目标设备或指示所述目标设备是否属于PICC设备。
  15. 根据权利要求13-14任一项所述的供电设备,其特征在于,所述控制模块用于:
    响应于所述检测信息指示所述检测区域内存在所述目标设备,控制所述无线供电模块向所述供电线圈提供第二功率的供电信号;
    响应于所述检测信息指示所述目标设备属于PICC设备,控制所述无线供电模块向所述供电线圈提供第三功率的供电信号。
PCT/CN2022/102308 2022-06-29 2022-06-29 一种支持无线供电和近场通信的供电设备 WO2024000257A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280006855.8A CN116325524A (zh) 2022-06-29 2022-06-29 一种支持无线供电和近场通信的供电设备
PCT/CN2022/102308 WO2024000257A1 (zh) 2022-06-29 2022-06-29 一种支持无线供电和近场通信的供电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/102308 WO2024000257A1 (zh) 2022-06-29 2022-06-29 一种支持无线供电和近场通信的供电设备

Publications (1)

Publication Number Publication Date
WO2024000257A1 true WO2024000257A1 (zh) 2024-01-04

Family

ID=86829145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102308 WO2024000257A1 (zh) 2022-06-29 2022-06-29 一种支持无线供电和近场通信的供电设备

Country Status (2)

Country Link
CN (1) CN116325524A (zh)
WO (1) WO2024000257A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011113029A2 (en) * 2010-03-11 2011-09-15 Qualcomm Incorporated Detection and protection of devices within a wireless power system
US20120248891A1 (en) * 2011-03-31 2012-10-04 Qualcomm Incorporated Systems and methods for detecting and protecting a wireless power communication device in a wireless power system
US20170085297A1 (en) * 2015-09-23 2017-03-23 Jie Gao Method, system and apparatus to optimize a4wp wireless charging and nfc co-existence
US20180097392A1 (en) * 2016-09-30 2018-04-05 Intel Corporation System, method and apparatus for safe a4wp polling
WO2019038089A1 (en) * 2017-08-23 2019-02-28 Continental Automotive Gmbh DEVICE AND METHOD FOR PREVENTING THE DESTRUCTION OF AN NFC CARD BY A WIRELESS CHARGING SYSTEM
US10819394B1 (en) * 2019-10-04 2020-10-27 Nxp B.V. Detection of NFC proximity IC cards (PICCs) during wireless charging

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10771113B2 (en) * 2016-04-01 2020-09-08 Intel Corporation Method and apparatus for PTU detection of NFC devices
KR20190082483A (ko) * 2018-01-02 2019-07-10 엘지이노텍 주식회사 Nfc 신호 검출 방법 및 그를 위한 장치
EP4012936A1 (en) * 2020-12-14 2022-06-15 Continental Automotive GmbH Wireless charging device, vehicle comprising a charging device and method to operate a charging device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011113029A2 (en) * 2010-03-11 2011-09-15 Qualcomm Incorporated Detection and protection of devices within a wireless power system
US20120248891A1 (en) * 2011-03-31 2012-10-04 Qualcomm Incorporated Systems and methods for detecting and protecting a wireless power communication device in a wireless power system
US20170085297A1 (en) * 2015-09-23 2017-03-23 Jie Gao Method, system and apparatus to optimize a4wp wireless charging and nfc co-existence
US20180097392A1 (en) * 2016-09-30 2018-04-05 Intel Corporation System, method and apparatus for safe a4wp polling
WO2019038089A1 (en) * 2017-08-23 2019-02-28 Continental Automotive Gmbh DEVICE AND METHOD FOR PREVENTING THE DESTRUCTION OF AN NFC CARD BY A WIRELESS CHARGING SYSTEM
US10819394B1 (en) * 2019-10-04 2020-10-27 Nxp B.V. Detection of NFC proximity IC cards (PICCs) during wireless charging

Also Published As

Publication number Publication date
CN116325524A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
US11489368B2 (en) Electronic device and method for wireless charging in electronic device
KR102644030B1 (ko) 무선 오디오 출력 디바이스
EP2084821B1 (en) Near field communication (nfc) activation
EP2903126B1 (en) Charging circuit and electronic device having the same
KR102572577B1 (ko) 무선 충전을 제어하는 충전 장치 및 방법
JP5763833B2 (ja) ワイヤレス電力システムにおいてワイヤレス電力通信デバイスを検出し、保護するためのシステムおよび方法
US20120104997A1 (en) Wireless charging device
JP6316957B2 (ja) ワイヤレス充電器の電力性能を拡張するためのシステムおよび方法
TW201131935A (en) Tracking receiver devices within wireless power regions
WO2012118706A1 (en) Waking up a wireless power transmitter from beacon mode
JP2016041008A (ja) ワイヤレス給電ピアツーピア通信
EP3430703B1 (en) Wireless charging
US10199871B2 (en) Apparatus and method for wireless power charging of subsequent receiver
JP2009136132A (ja) 近距離の無線電力伝送システム
CN104541455A (zh) 具有电容式接近度感测的无线电力***
CN105794122A (zh) 无线电力发射器调谐
EP1851865A1 (en) Method for ensuring a secure nfc functionality of a wireless mobile communication device and wireless mobile communication device having a secure nfc functionality
US8938635B2 (en) Host detection circuit powered from primary side of the alternating current adaptor for detecting changes to a power level pulse of an information handling system
US20130260689A1 (en) Wirelessly Powered Input Device
KR20180067238A (ko) 무선으로 전력을 수신하는 전자 장치 및 그 제어 방법
JP4624361B2 (ja) 自動送信モードのアクティベーションを備える通信パートナ機器
US20150024684A1 (en) Method and electronic equipment for near field communication
WO2024000257A1 (zh) 一种支持无线供电和近场通信的供电设备
TW201011482A (en) Non-contact power supply control system and method thereof
KR102499362B1 (ko) 전자 장치 및 그의 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948375

Country of ref document: EP

Kind code of ref document: A1