WO2024000138A1 - 储能***热管理的方法和储能*** - Google Patents

储能***热管理的方法和储能*** Download PDF

Info

Publication number
WO2024000138A1
WO2024000138A1 PCT/CN2022/101723 CN2022101723W WO2024000138A1 WO 2024000138 A1 WO2024000138 A1 WO 2024000138A1 CN 2022101723 W CN2022101723 W CN 2022101723W WO 2024000138 A1 WO2024000138 A1 WO 2024000138A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
energy storage
thermal management
storage unit
management component
Prior art date
Application number
PCT/CN2022/101723
Other languages
English (en)
French (fr)
Inventor
左希阳
李忠宏
许金梅
罗广生
李丽红
吴凯
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/101723 priority Critical patent/WO2024000138A1/zh
Publication of WO2024000138A1 publication Critical patent/WO2024000138A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control

Definitions

  • the present application relates to the field of energy storage technology, and in particular to a method of thermal management of an energy storage system and an energy storage system.
  • a large amount of energy is stored in a closed space in a battery energy storage system.
  • the thermal management system in the energy storage system is critical to the consistency and stability of the battery system.
  • the performance of the energy storage system is greatly affected by its thermal management system. Therefore, how to reasonably control the thermal management system and conduct thermal management of the energy storage system is an issue that needs to be solved urgently.
  • This application provides a thermal management method and energy storage system for an energy storage system, which can reasonably control the thermal management system, adjust the thermal management strategy of the energy storage system, and achieve effective and energy-saving thermal management of the energy storage system.
  • a method for thermal management of an energy storage system including: obtaining status information of the energy storage system, where the status information includes temperature information and charge and discharge information of energy storage units of the energy storage system, and the temperature information of the thermal management components of the energy storage system; determining the thermal management strategy of the energy storage system based on the status information.
  • the thermal management strategy of the energy storage system is determined based on the obtained temperature information and charge and discharge information of the energy storage unit, as well as the temperature information of the thermal management component.
  • the solution of this application comprehensively considers the temperature information of the energy storage unit and thermal management components as well as the energy storage unit
  • the charge and discharge information of the energy storage system is used to determine the thermal management strategy of the energy storage system based on this status information.
  • Such a thermal management strategy is more reasonable, can more effectively conduct thermal management of the energy storage system, improve the performance and service life of the battery, and can also reduce Unnecessary power consumption of the system during thermal management.
  • determining the thermal management strategy of the energy storage system based on the status information includes: determining the thermal management strategy based on the temperature information of the energy storage unit and the temperature information of the thermal management component.
  • the working mode of the thermal management component determine the control parameters in the working mode of the thermal management component according to the temperature information and charge and discharge information of the energy storage unit; the working mode includes: heating mode, cooling mode or self-circulation model.
  • Temperature is an important factor affecting battery performance.
  • a suitable operating temperature can slow down the aging of the battery and maximize the battery's performance.
  • the energy storage system can be thermally managed based on multiple temperature information of the current energy storage system in a timely manner to avoid excessive temperature of the energy storage system. Or too low, affecting battery performance.
  • the temperature information and charge and discharge information of the energy storage unit are comprehensively considered to determine the control parameters in the working mode of the thermal management component, ensuring a more reasonable thermal management strategy, more effective thermal management of the energy storage system, and improving battery performance and service life.
  • the energy storage unit includes a plurality of batteries
  • the working mode of the thermal management component is determined based on the temperature information of the energy storage unit and the temperature information of the thermal management component
  • the method includes: the temperature of the battery with the highest temperature among the plurality of batteries is greater than a first temperature threshold, the temperature of the battery with the lowest temperature among the plurality of batteries is greater than the second temperature threshold, and the temperature of the thermal management component is not If the temperature is less than the third temperature threshold, it is determined that the operating mode of the thermal management component is the cooling mode.
  • a first temperature threshold with a higher temperature and a second temperature threshold with a lower temperature are set to determine respectively. Whether the temperature of the battery with the highest temperature among the multiple batteries is greater than the first temperature threshold, and whether the temperature of the battery with the lowest temperature among the batteries is greater than the second temperature threshold, while taking into account the battery with the highest temperature and the battery with the lowest temperature in the energy storage unit , reducing the deviation in the judgment condition setting caused by the difference in battery temperature, and further considering whether the temperature of the thermal management component is not less than the third temperature threshold, comprehensively considering the temperature of the energy storage unit and the thermal management component, it can be timely based on the current Multiple temperature information of the energy storage system performs thermal management on the energy storage system to prevent excessive temperature of the energy storage system from affecting battery performance or causing thermal runaway of the energy storage system.
  • determining the control parameters in the working mode of the thermal management component based on the temperature information and charge and discharge information of the energy storage unit includes: based on the temperature change of the energy storage unit rate and charge and discharge current to determine the cooling power of the thermal management component in the cooling mode; determine the first target temperature of the energy storage unit in the cooling mode and the first target temperature of the energy storage unit in the cooling mode according to the charge and discharge current of the energy storage unit. Second target temperature of the thermal management component.
  • the temperature change rate and charge and discharge current of the energy storage unit are comprehensively considered to determine the cooling power of the thermal management component in cooling mode.
  • a reasonable cooling power can not only effectively achieve thermal management of the energy storage unit, but also reduce Power consumption of thermal management components.
  • the charge and discharge current of the battery is closely related to the temperature of the battery. According to the charge and discharge current of the energy storage unit, the first target temperature of the energy storage unit and the second target temperature of the thermal management component in the cooling mode are determined, and a more reasonable thermal management component is determined. Control parameters.
  • determining the cooling power of the thermal management component in the cooling mode based on the temperature change rate and charge and discharge current of the energy storage unit includes: based on the temperature change rate of the energy storage unit. According to the temperature change rate, the refrigeration power of the thermal management component is calculated as the first refrigeration power; according to the charge and discharge current of the energy storage unit, the refrigeration power of the thermal management component is calculated as the second refrigeration power; in the first When the refrigeration power is greater than the second refrigeration power, the refrigeration power of the thermal management component in the refrigeration mode is determined to be the first refrigeration power; when the first refrigeration power is less than the second refrigeration power In this case, it is determined that the cooling power of the thermal management component in the cooling mode is an average of the first cooling power and the second cooling power.
  • determining the first target temperature of the energy storage unit in the cooling mode based on the charge and discharge current of the energy storage unit includes: based on the charge and discharge current of the energy storage unit , determine the highest target temperature and the lowest target temperature of the energy storage unit in the cooling mode.
  • the maximum target temperature and the minimum target temperature of the energy storage unit are determined based on the charging and discharging current of the energy storage unit. Reduces the deviation in judgment condition settings caused by battery temperature differences.
  • the temperature of the battery with the highest temperature among the plurality of batteries is not greater than the highest target temperature or the temperature of the battery with the lowest temperature among the plurality of batteries is not greater than the lowest target temperature.
  • the thermal management component stops cooling.
  • the thermal management component is not greater than the second target temperature
  • the storage Multiple temperature conditions of the energy system have reached the preset target temperature conditions, the temperature of the energy storage unit is the appropriate operating temperature, and there is no need to adjust its temperature, so the thermal management component stops cooling.
  • the method further includes: determining the charge and discharge state of the energy storage unit according to the charge and discharge current of the energy storage unit.
  • determining the charge and discharge state of the energy storage unit according to the charge and discharge current of the energy storage unit includes: when the absolute value of the charge and discharge current of the energy storage unit is not less than a third In the case of a current threshold, it is determined that the energy storage unit is in a charging and discharging state.
  • the absolute value of the charge and discharge current of the energy storage unit is not less than the first current threshold, it means that the charge and discharge current of the energy storage unit is large and the energy storage unit is in a charging and discharging working state.
  • the energy storage unit includes a plurality of batteries
  • the working mode of the thermal management component is determined based on the temperature information of the energy storage unit and the temperature information of the thermal management component
  • the method includes: the temperature of the battery with the highest temperature among the plurality of batteries is less than a fourth temperature threshold, the temperature of the battery with the lowest temperature among the plurality of batteries is less than the fifth temperature threshold, and the temperature of the thermal management component is not If it is greater than the sixth temperature threshold, it is determined that the operating mode of the thermal management component is the heating mode.
  • a fourth temperature threshold with a higher temperature and a fifth temperature threshold with a lower temperature are set to determine respectively. Whether the temperature of the battery with the highest temperature among the multiple batteries is less than the fourth temperature threshold, and whether the temperature of the battery with the lowest temperature among the batteries is less than the fifth temperature threshold, taking into account the battery with the highest temperature and the battery with the lowest temperature in the energy storage unit.
  • determining that the operating mode of the thermal management component is the heating mode includes: when the absolute value of the discharge current of the energy storage unit is not less than a second current threshold. , determining that the working mode of the thermal management component is the first heating mode.
  • the mode is the first heating mode.
  • the thermal management component includes a plurality of Positive Temperature Coefficient (PTC) heaters, and the thermal management component is determined based on the temperature information and charge and discharge information of the energy storage unit.
  • the control parameters in the working mode of the component include: determining the number of PTC heaters turned on in the first heating mode based on the temperature change rate of the energy storage unit; determining based on the discharge current of the energy storage unit The third target temperature of the energy storage unit and the fourth target temperature of the thermal management component in the first heating mode.
  • the heating power of the thermal management component is controlled by controlling the number of PTC heaters turned on.
  • the heating power of the thermal management component in the heating mode is determined based on the temperature change rate of the energy storage unit.
  • a reasonable heating power can not only effectively achieve thermal management of the energy storage unit, but also reduce heat Manage the power consumption of components.
  • the charge and discharge current of the battery is closely related to the temperature of the battery. According to the discharge current of the energy storage unit, the third target temperature of the energy storage unit and the fourth target temperature of the thermal management component in the heating mode are determined to determine a more reasonable thermal management component. Control parameters.
  • the temperature of the battery with the lowest temperature among the plurality of batteries is not less than the third target temperature
  • the temperature of the thermal management component is not less than the fourth target temperature. , the thermal management component stops heating.
  • the thermal management component When the temperature of the battery with the lowest temperature among the plurality of batteries is not less than the third target temperature, and the temperature of the thermal management component is not less than the fourth target temperature, the multiple temperature conditions of the energy storage system reach the preset target temperature conditions, The temperature of the energy storage unit is a suitable operating temperature, and there is no need to adjust its temperature, so the thermal management component stops heating.
  • determining that the working mode of the thermal management component is the heating mode includes: determining that the absolute value of the charging current of the energy storage unit is not less than a third current threshold.
  • the working mode of the thermal management component is the second heating mode.
  • the mode is the second heating mode.
  • the status information also includes the state of charge (SOC) of the energy storage unit
  • the thermal management component includes multiple PTC heaters
  • the method further includes: When the SOC of the energy storage unit is not greater than the charging threshold, it is determined that all of the plurality of PTC heaters are turned on so that the temperature of the energy storage unit reaches the preset operating temperature.
  • SOC state of charge
  • determining the control parameters in the working mode of the thermal management component based on the temperature information and charge and discharge information of the energy storage unit includes: when the temperature of the energy storage unit reaches a certain In the case of the preset operating temperature, the number of times the PTC heater is turned on in the second heating mode is determined according to the temperature change rate of the energy storage unit; the number of turns on the PTC heater in the second heating mode is determined according to the charging current of the energy storage unit.
  • the fifth target temperature of the energy storage unit and the sixth target temperature of the thermal management component in the second heating mode, the fifth target temperature is greater than the preset operating temperature.
  • the heating mode of the thermal management component in the heating mode is determined based on the temperature change rate of the energy storage unit.
  • Thermal power and thermal management components When heating, reasonable heating power can not only effectively achieve thermal management of the energy storage unit, but also reduce the power consumption of the thermal management components.
  • the charging and discharging current of the battery is closely related to the temperature of the battery. According to the charging current of the energy storage unit, the fifth target temperature of the energy storage unit and the sixth target temperature of the thermal management component in the heating mode are determined to determine a more reasonable thermal management component. Control parameters.
  • the temperature of the battery with the lowest temperature among the plurality of batteries is not less than the fifth target temperature
  • the temperature of the thermal management component is not less than the sixth target temperature. , the thermal management component stops heating.
  • the thermal management component stops heating.
  • the method further includes: when the energy storage unit is in a working state and the temperature of the energy storage unit and the temperature of the thermal management component reach the target temperature, determine that the The working mode of the thermal management component is self-circulation mode.
  • This self-circulation mode means that the thermal management component is in a standby state and does not perform thermal management on the energy storage unit. When the temperature of the energy storage unit and the temperature of the thermal management component reach the target temperature and continue to work, the thermal management component does not need to perform thermal management on the energy storage unit. Perform thermal management.
  • the thermal management component when the energy storage unit is in a resting state, the thermal management component is in a closed state.
  • the thermal management component When the energy storage unit is not working and is in a resting state, the thermal management component does not need to be turned on, which can save system power consumption.
  • an energy storage system including: an energy storage unit, a thermal management component, and a control module.
  • the control module is used to obtain status information of the energy storage system and determine the status information based on the status information.
  • Thermal management strategy of the energy storage system wherein the status information includes the temperature information and charge and discharge information of the energy storage unit, as well as the temperature information of the thermal management component.
  • control module is configured to: determine the working mode of the thermal management component according to the temperature information of the energy storage unit and the temperature information of the thermal management component; The temperature information and charge and discharge information of the unit determine the control parameters in the working mode of the thermal management component; the working mode includes: heating mode or cooling mode.
  • control module is configured to: the temperature of the battery with the highest temperature among the plurality of batteries is greater than the first temperature threshold, and the temperature of the battery with the lowest temperature among the plurality of batteries is greater than When the second temperature threshold is reached, and the temperature of the thermal management component is not less than the third temperature threshold, it is determined that the operating mode of the thermal management component is the cooling mode.
  • control module is configured to: determine the cooling power of the thermal management component in the cooling mode according to the temperature change rate and charge and discharge current of the energy storage unit; The charging and discharging current of the energy unit determines the first target temperature of the energy storage unit and the second target temperature of the thermal management component in the cooling mode.
  • control module is configured to: calculate the refrigeration power of the thermal management component as the first refrigeration power according to the temperature change rate of the energy storage unit; Discharge current, calculate the cooling power of the thermal management component as the second cooling power; when the first cooling power is greater than the second cooling power, determine the cooling power of the thermal management component in the cooling mode is the first refrigeration power; when the first refrigeration power is less than the second refrigeration power, it is determined that the refrigeration power of the thermal management component in the refrigeration mode is the first refrigeration power and the The average value of the second cooling power.
  • the first target temperature includes a highest target temperature and a lowest target temperature
  • the control module is configured to determine the first target temperature in the cooling mode according to the charging and discharging current of the energy storage unit.
  • the temperature of the battery with the highest temperature among the plurality of batteries is not greater than the highest target temperature or the temperature of the battery with the lowest temperature among the plurality of batteries is not greater than the lowest target temperature.
  • the thermal management component stops cooling.
  • control module is further configured to determine the charging and discharging state of the energy storage unit according to the charging and discharging current of the energy storage unit.
  • control module is configured to: determine that the energy storage unit is in a charging and discharging state when the absolute value of the charging and discharging current of the energy storage unit is not less than a first current threshold.
  • the energy storage unit includes multiple batteries
  • the control module is configured to: the temperature of the battery with the highest temperature among the multiple batteries is less than a fourth temperature threshold, and the multiple batteries If the temperature of the battery with the lowest temperature among the batteries is less than the fifth temperature threshold, and the temperature of the thermal management component is not greater than the sixth temperature threshold, it is determined that the operating mode of the thermal management component is the heating mode.
  • control module is configured to: determine that the operating mode of the thermal management component is the first when the absolute value of the discharge current of the energy storage unit is not less than a second current threshold. Heating mode.
  • the thermal management component includes a plurality of PTC heaters
  • the control module is configured to: determine the temperature change rate of the energy storage unit in the first heating mode according to the temperature change rate of the energy storage unit.
  • the number of PTC heaters turned on; the third target temperature of the energy storage unit and the fourth target temperature of the thermal management component in the first heating mode are determined according to the discharge current of the energy storage unit.
  • the temperature of the battery with the lowest temperature among the plurality of batteries is not less than the third target temperature
  • the temperature of the thermal management component is not less than the fourth target temperature. , the thermal management component stops heating.
  • control module is configured to: determine that the operating mode of the thermal management component is the second when the absolute value of the charging current of the energy storage unit is not less than a third current threshold. Heating mode.
  • the status information also includes the SOC of the energy storage unit
  • the thermal management component includes multiple PTC heaters
  • the control module is also configured to: When the SOC is not greater than the charging threshold, it is determined that all the PTC heaters are turned on so that the temperature of the energy storage unit reaches the preset operating temperature.
  • control module is configured to: when the temperature of the energy storage unit reaches the preset operating temperature, determine the first time based on the temperature change rate of the energy storage unit. The number of times the PTC heater is turned on in the second heating mode; determining the fifth target temperature of the energy storage unit and the third temperature of the thermal management component in the second heating mode according to the charging current of the energy storage unit. Six target temperatures.
  • the temperature of the battery with the lowest temperature among the plurality of batteries is not less than the fifth target temperature
  • the temperature of the thermal management component is not less than the sixth target temperature. , the thermal management component stops heating.
  • the working mode of the thermal management component is determined. It is self-circulating mode.
  • the thermal management component when the energy storage unit is in a resting state, the thermal management component is in a closed state.
  • a device for thermal management of an energy storage system including a processor and a memory.
  • the memory is used to store a computer program.
  • the processor is used to call the computer program so that the device implements the first step described above. The method described in any possible implementation manner of the aspect or the first aspect.
  • a readable storage medium stores a computer program.
  • the computing device When the computer program is executed by a computing device, the computing device causes the computing device to implement the first aspect or any one of the first aspects. possible implementation methods.
  • This application provides a method for thermal management of an energy storage system, which determines the thermal management strategy of the energy storage system based on the obtained temperature information and charge and discharge information of the energy storage unit, as well as the temperature information of the thermal management components.
  • the solution of this application comprehensively considers the temperature information of the energy storage unit and thermal management components as well as the energy storage unit
  • the charge and discharge information of the energy storage system is used to determine the thermal management strategy of the energy storage system based on this status information.
  • Such a thermal management strategy is more reasonable, can more effectively conduct thermal management of the energy storage system, improve the performance and service life of the battery, and can also reduce Unnecessary power consumption of the system during thermal management.
  • Figure 1 is a schematic diagram of an energy storage system disclosed in an embodiment of the present application.
  • Figure 2 is a schematic flow chart of a thermal management method for an energy storage system disclosed in an embodiment of the present application
  • Figure 3 is a schematic flow chart of a thermal management method for an energy storage system disclosed in an embodiment of the present application
  • Figure 4 is a schematic flow chart of a thermal management method for an energy storage system disclosed in an embodiment of the present application
  • Figure 5 is a schematic flow chart of a thermal management method for an energy storage system disclosed in an embodiment of the present application.
  • Figure 6 is a schematic flow chart of a thermal management method for an energy storage system disclosed in an embodiment of the present application.
  • Figure 7 is a schematic flow chart of a thermal management method for an energy storage system disclosed in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an energy storage system disclosed in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an energy storage system thermal management device disclosed in an embodiment of the present application.
  • the thermal management system of the existing battery energy storage system is mainly based on the temperature of the battery, and does not consider the charging and discharging status of the battery, as well as the changes in the battery status during the thermal management process, resulting in the thermal management system's impact on the storage system.
  • the thermal management of the energy system deviates, reducing the performance and service life of the energy storage system battery.
  • this application provides a method for thermal management of an energy storage system, which determines the thermal management strategy of the energy storage system based on the obtained temperature information and charge and discharge information of the energy storage unit, as well as the temperature information of the thermal management components.
  • the solution of this application comprehensively considers the temperature information of the energy storage unit and thermal management components, as well as the charge and discharge information of the energy storage unit, and determines the thermal management strategy of the energy storage system based on these status information.
  • Such a thermal management strategy is more reasonable and can be more effective. Effective thermal management of the energy storage system improves battery performance and service life, and can also reduce unnecessary power consumption of the system during the thermal management process.
  • FIG 1 is a schematic diagram of an energy storage system 100 provided by this application.
  • the energy storage system 100 includes multiple battery clusters, such as battery cluster 1 to battery cluster m as shown in Figure 1, where m can be a natural number greater than 1, that is, in practical applications, the battery clusters can be flexibly adjusted according to the energy storage capacity. If the energy storage capacity is large, the number of battery clusters can be appropriately increased. If the energy storage capacity is small, the number of battery clusters can be appropriately reduced.
  • Each battery cluster is composed of at least two battery energy storage systems (ESS) connected in series, such as energy storage module 1 to energy storage module j in Figure 1, where j can be greater than or equal to 2 Natural number.
  • Each energy storage module ESS is composed of several energy storage elements connected in series or parallel to form the smallest energy storage and management unit.
  • BMS Battery Management System
  • the upper energy management system Energy Management System, EMS
  • power conversion system Power Convert System, PCS
  • FIG 2 is a schematic flow chart of a method for thermal management of an energy storage system disclosed in an embodiment of the present application.
  • the energy storage system may be the energy storage system 100 in Figure 1 .
  • the status information includes temperature information and charge and discharge information of the energy storage unit of the energy storage system, as well as temperature information of the thermal management components of the energy storage system.
  • the thermal management component of the energy storage system can perform thermal management on the energy storage unit of the energy storage system. For example, it can cool the energy storage unit when its temperature is too high, and it can cool down the energy storage unit when it needs to be heated. Heat up.
  • the thermal management component may include a water-cooling unit, which is controlled to be in cooling mode to cool the energy storage unit, and controlled to be in heating mode to heat the energy storage unit.
  • Thermal management components may also include a PTC heater. When the energy storage unit needs to be heated, the PTC heater can generate heat to heat it up.
  • the thermal management strategy of the energy storage system is determined based on the obtained temperature information and charge and discharge information of the energy storage unit, as well as the temperature information of the thermal management component.
  • the solution of this application comprehensively considers the temperature information of the energy storage unit and thermal management components as well as the energy storage unit
  • the charge and discharge information of the energy storage system is used to determine the thermal management strategy of the energy storage system based on this status information.
  • Such a thermal management strategy is more reasonable, can more effectively conduct thermal management of the energy storage system, improve the performance and service life of the battery, and can also reduce Unnecessary power consumption of the system during thermal management.
  • the temperature information of the energy storage unit and the thermal management component can be obtained through a temperature sensor.
  • the temperature sensor that obtains the temperature information of the energy storage unit and the temperature sensor that obtains the temperature information of the thermal management component can be used separately. It can be set up independently or integratedly. Furthermore, it can be integrated with the battery management system BMS, which is not limited in this application.
  • the charge and discharge information of the energy storage unit can be obtained through electrical detection devices such as current sensors and voltage sensors.
  • Electrical detection devices such as current sensors and voltage sensors can be set up independently or integrated. Furthermore, it can be integrated with the battery management system BMS, which is not limited in this application.
  • Figure 3 is a schematic flow chart of a method for thermal management of an energy storage system disclosed in another embodiment of the present application.
  • Temperature is an important factor affecting battery performance.
  • a suitable operating temperature can slow down the aging of the battery and maximize the battery's performance.
  • the energy storage system can be thermally managed based on multiple temperature information of the current energy storage system in a timely manner to avoid excessive temperature of the energy storage system. Or too low, affecting battery performance.
  • the temperature information and charge and discharge information of the energy storage unit are comprehensively considered to determine the control parameters in the working mode of the thermal management component, ensuring a more reasonable thermal management strategy, more effective thermal management of the energy storage system, and improving battery performance and service life.
  • the energy storage unit includes multiple batteries.
  • a battery refers to a physical module that includes one or more battery cells to provide electrical energy.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of the present application.
  • a battery cell can also be called a cell.
  • the battery cell can be in the shape of a cylinder, a flat body, a cuboid, or other regular or irregular shapes. The technical solutions of the embodiments of the present application can be applied to battery cells of any shape.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode sheet, a negative electrode sheet and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector that is not coated with the positive electrode active material layer protrudes from the current collector that is coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector that is not coated with the negative electrode active material layer protrudes from the current collector that is coated with the negative electrode active material layer.
  • the current collector coated with the negative active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the separator may be made of, for example, polypropylene (PP) or polyethylene (Polyethylene, PE).
  • PP polypropylene
  • PE polyethylene
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • the working mode of the thermal management component may be the cooling mode.
  • the temperature of the battery with the highest temperature among the plurality of batteries is greater than the first temperature threshold
  • the temperature of the battery with the lowest temperature among the plurality of batteries is greater than the second temperature threshold
  • the temperature of the thermal management component is not less than the third temperature threshold.
  • determine that the working mode of the thermal management component is the cooling mode.
  • Figure 4 is a schematic flow chart of a method for thermal management of an energy storage system disclosed in an embodiment of the present application. 401 in Figure 4 is similar to 301 in the foregoing embodiments, and reference may be made to the foregoing embodiments. For the sake of simplicity, details will not be described again.
  • the first temperature threshold, the second temperature threshold and the third temperature threshold are preset temperature parameters of the energy storage system. Since the batteries of the energy storage unit have different internal resistances and different usage conditions, the temperatures of the multiple batteries are different. Therefore, a first temperature threshold with a higher temperature and a second temperature threshold with a lower temperature are set to determine respectively.
  • the energy storage system can be thermally managed based on multiple temperature information of the current energy storage system in a timely manner to avoid excessive temperature of the energy storage system affecting battery performance or causing thermal runaway of the energy storage system.
  • the temperature parameters of the first temperature threshold, the second temperature threshold, and the third temperature threshold include fixed values, modifiable values, values determined by table lookup, and values determined by functional relationships, which are not limited in the embodiments of the present application.
  • T max1 is greater than the first temperature threshold
  • T min1 is greater than the second temperature threshold
  • T 1 is not less than the third temperature threshold
  • Tmax1 is greater than the first temperature threshold
  • Tmin1 is greater than the second temperature threshold
  • T1 is not less than the third temperature threshold
  • the working mode of the thermal management component is the cooling mode to cool down the energy storage unit.
  • the temperature change rate and charge and discharge current of the energy storage unit are comprehensively considered to determine the cooling power of the thermal management component in cooling mode.
  • a reasonable cooling power can not only effectively achieve thermal management of the energy storage unit, but also reduce Power consumption of thermal management components.
  • the charge and discharge current of the battery is closely related to the temperature of the battery. According to the charge and discharge current of the energy storage unit, the first target temperature of the energy storage unit and the second target temperature of the thermal management component in the cooling mode are determined, and a more reasonable thermal management component is determined. Control parameters.
  • the method for determining the cooling power of the thermal management component in the cooling mode based on the temperature change rate of the energy storage unit and the charge and discharge current may be: based on the temperature change rate of the energy storage unit, calculate The refrigeration power of the thermal management component is the first refrigeration power; according to the charge and discharge current of the energy storage unit, the refrigeration power of the thermal management component is calculated to be the second refrigeration power; when the first refrigeration power is greater than the second refrigeration power, it is determined The refrigeration power of the thermal management component in the refrigeration mode is the first refrigeration power; when the first refrigeration power is less than the second refrigeration power, it is determined that the refrigeration power of the thermal management component in the refrigeration mode is the combination of the first refrigeration power and the second refrigeration power. average value.
  • the first target temperature of the energy storage unit includes the highest target temperature and the lowest target temperature. That is to say, according to the charge and discharge current of the energy storage unit, the highest target temperature of the energy storage unit in the cooling mode is determined. The target temperature and the minimum target temperature, and the second target temperature of the thermal management component. When the temperature of the battery with the highest temperature among the plurality of batteries is not greater than the maximum target temperature, or the temperature of the battery with the lowest temperature among the plurality of batteries is not greater than the lowest target temperature, and the temperature of the thermal management component is not greater than the second target temperature. , the thermal management component stops cooling.
  • the thermal management component is not greater than the second target temperature
  • the storage Multiple temperature conditions of the energy system have reached the preset target temperature conditions, the temperature of the energy storage unit is the appropriate operating temperature, and there is no need to adjust its temperature, so the thermal management component stops cooling.
  • the charging and discharging status of the energy storage unit can also be determined based on the charging and discharging current of the energy storage unit.
  • the absolute value of the charge and discharge current of the energy storage unit is not less than the first current threshold, it is determined that the energy storage unit is in the charge and discharge state.
  • the first current threshold is a preset current parameter of the energy storage system.
  • the current parameter of the first current threshold includes a fixed value, a modifiable value, a value determined by looking up a table, and a value determined by a functional relationship. The embodiments of the present application are not limited to this.
  • the working mode of the thermal management component may be the heating mode.
  • the temperature of the battery with the highest temperature among the plurality of batteries is less than the fourth temperature threshold
  • the temperature of the battery with the lowest temperature among the plurality of batteries is less than the fifth temperature threshold
  • the temperature of the thermal management component is not greater than the sixth temperature threshold.
  • 501 in FIG. 5 is similar to 401 in the foregoing embodiments. Reference may be made to the foregoing embodiments. For the sake of brevity, details will not be described again.
  • the fourth temperature threshold, the fifth temperature threshold and the sixth temperature threshold are preset temperature parameters of the energy storage system. Since the batteries of the energy storage unit have different internal resistances and different usage conditions, the temperatures of the multiple batteries are different. Therefore, a fourth temperature threshold with a higher temperature and a fifth temperature threshold with a lower temperature are set to determine respectively.
  • the energy storage system can be thermally managed based on multiple temperature information of the current energy storage system in a timely manner to prevent the low temperature of the energy storage system from affecting the charge and discharge rate of the battery.
  • the temperature parameters of the fourth temperature threshold, the fifth temperature threshold, and the sixth temperature threshold include fixed values, modifiable values, values determined by table lookup, and values determined by functional relationships, which are not limited in the embodiments of the present application.
  • T max2 is less than the fourth temperature threshold
  • T min2 is less than the fifth temperature threshold
  • T 2 is not greater than the sixth temperature threshold
  • T max2 is less than the fourth temperature threshold, T min2 is less than the fifth temperature threshold, and T 2 is not greater than the sixth temperature threshold, it means that the temperature of the energy storage unit is low, and the temperature of the thermal management component that performs thermal management on the energy storage unit is low. It is also low and cannot effectively heat the energy storage unit. Low temperature of the energy storage unit will reduce the rate of charging or discharging of the energy storage unit. The energy storage system needs to be heated. Therefore, the working mode of the thermal management component is heating. mode to heat the energy storage unit.
  • the heating mode of the thermal management component may be the first heating mode.
  • the working mode of the thermal management component is the first heating mode. Referring to Fig. 6, 601-602 in Fig. 6 are similar to 501-502 in the foregoing embodiments. Reference may be made to the foregoing embodiments. For the sake of brevity, they will not be described again.
  • T max2 is less than the fourth temperature threshold
  • T min2 is less than the fifth temperature threshold
  • T 2 is not greater than the sixth temperature threshold
  • the second current threshold is the preset current parameter of the energy storage system.
  • the discharge state therefore, it is determined that the energy storage unit is in the discharge state, and the working mode of the thermal management component is the first heating mode.
  • the current parameter of the second current threshold includes a fixed value, a modifiable value, a value determined by a table lookup method, and a value determined by a functional relationship. The embodiments of the present application are not limited to this.
  • Thermal management components include multiple PTC heaters, which are composed of PTC ceramic heating elements and aluminum tubes.
  • This type of PTC heating element has the advantages of small thermal resistance and high heat exchange efficiency. It is an automatic constant temperature and power-saving electric heater. Since the PTC heater can only be turned on and off, the heating power of a single PTC heater cannot be adjusted. Therefore, the heating power of the thermal management component is controlled by controlling the number of PTC heaters turned on. The heating power of the thermal management component in the heating mode is determined based on the temperature change rate of the energy storage unit. When the thermal management component is heating, a reasonable heating power can not only effectively achieve thermal management of the energy storage unit, but also reduce heat Manage the power consumption of components.
  • the charge and discharge current of the battery is closely related to the temperature of the battery. According to the charge and discharge current of the energy storage unit, the third target temperature of the energy storage unit and the fourth target temperature of the thermal management component in the heating mode are determined to determine more reasonable thermal management components. control parameters.
  • the thermal management component stops. Heating.
  • the thermal management component When the temperature of the battery with the lowest temperature among the plurality of batteries is not less than the third target temperature, and the temperature of the thermal management component is not less than the fourth target temperature, the multiple temperature conditions of the energy storage system reach the preset target temperature conditions, The temperature of the energy storage unit is a suitable operating temperature, and there is no need to adjust its temperature, so the thermal management component stops heating.
  • the heating mode of the thermal management component may be the second heating mode.
  • the working mode of the thermal management component is the second heating mode.
  • T max2 is less than the fourth temperature threshold
  • T min2 is less than the fifth temperature threshold
  • T 2 is not greater than the sixth temperature threshold
  • the third current threshold is the preset current parameter of the energy storage system.
  • the charging state therefore, it is determined that the energy storage unit is in the charging state, and the working mode of the thermal management component is the second heating mode.
  • the current parameter of the third current threshold includes a fixed value, a modifiable value, a value determined by a table lookup method, and a value determined by a functional relationship. The embodiments of the present application are not limited to this.
  • the status information of the energy storage system also includes the state of charge SOC of the energy storage unit.
  • the battery's state of charge SOC is a physical quantity used to reflect the remaining capacity of the battery. It represents the remaining capacity of the battery after it has been used for a period of time or left unused for a long time. Ratio to its fully charged capacity.
  • SOC is used as the judgment condition.
  • SOC is not greater than the charging threshold, it is determined that multiple PTC heaters are all turned on, and the temperature of the energy storage unit is increased as soon as possible to reach the preset operating temperature and increase the charging rate of the battery.
  • SOC is greater than At the charging threshold, that is to say, the remaining capacity of the battery is large. At this time, the charging rate of the battery is less affected by temperature, and there is no need to set multiple PTC heaters to all be turned on.
  • the heating mode of the thermal management component in the heating mode is determined based on the temperature change rate of the energy storage unit.
  • Thermal power and thermal management components When heating, reasonable heating power can not only effectively achieve thermal management of the energy storage unit, but also reduce the power consumption of the thermal management components.
  • the charging and discharging current of the battery is closely related to the temperature of the battery. According to the charging current of the energy storage unit, the fifth target temperature of the energy storage unit and the sixth target temperature of the thermal management component in the heating mode are determined to determine a more reasonable thermal management component. Control parameters.
  • the thermal management component stops. Heating.
  • the thermal management component stops heating.
  • the working mode of the thermal management component is the self-circulation mode.
  • This self-circulation mode means that the thermal management component is in a standby state and does not perform thermal management on the energy storage unit. That is to say, when the temperature of the energy storage unit and the temperature of the thermal management component reach the target temperature and continue to work, the thermal management component does not need to Thermal management of energy storage units. At this time, the status information of the energy storage system will still be monitored in real time. When the temperature of the energy storage unit and the temperature of the thermal management component change, affecting the working efficiency of the energy storage system, the thermal management component will enter the working mode again, affecting the storage system. energy unit for thermal management.
  • the thermal management component when the energy storage unit is in a resting state, the thermal management component is in a closed state.
  • the thermal management component When the energy storage unit is not working and is in a resting state, the thermal management component does not need to be turned on, which can save system power consumption.
  • FIG 8 is a schematic diagram of an energy storage system 800 disclosed in an embodiment of the present application.
  • the energy storage system 800 includes an energy storage unit 801, a thermal management component 802 and a control module 803.
  • the control module 803 is used to obtain the status information of the energy storage system 800 and determine the thermal management strategy of the energy storage system 800 based on the status information.
  • the status information includes temperature information and charge and discharge information of the energy storage unit 801, and temperature information of the thermal management component 802.
  • the thermal management strategy of the energy storage system is determined based on the obtained temperature information, charge and discharge information of the energy storage unit 801, and the temperature information of the thermal management component 802.
  • the solution of this application comprehensively considers the temperature information of the energy storage unit 801 and the thermal management component 802 as well as the storage temperature.
  • the charge and discharge information of the energy unit 801 is used to determine the thermal management strategy of the energy storage system based on this status information.
  • Such a thermal management strategy is more reasonable, can more effectively conduct thermal management of the energy storage system, and improve the performance and service life of the battery. It can also reduce unnecessary power consumption of the system during thermal management.
  • control module 803 may directly obtain the status information of the energy storage system 800, or may obtain the status information of the energy storage system 800 through the battery management system BMS.
  • the control module 803 and the battery management system BMS can be set up independently or integratedly, which is not limited in this application.
  • control module 803 determines the working mode of the thermal management component 802 based on the temperature information of the energy storage unit 801 and the temperature information of the thermal management component 802;
  • the discharge information determines the control parameters in the operating mode of the thermal management component 802 .
  • the working mode of the thermal management component 802 may include: heating mode or cooling mode.
  • the energy storage unit 801 includes multiple batteries
  • the control module 803 determines that the temperature of the battery with the highest temperature among the multiple batteries is greater than the first temperature threshold, and the battery with the lowest temperature among the multiple batteries If the temperature is greater than the second temperature threshold, and the temperature of the thermal management component 802 is not less than the third temperature threshold, it is determined that the operating mode of the thermal management component 802 is the cooling mode.
  • control module 803 determines the cooling power of the thermal management component 802 in the cooling mode based on the temperature change rate and charge and discharge current of the energy storage unit 801; determines the cooling power based on the charge and discharge current of the energy storage unit 801. The first target temperature of the energy storage unit 801 and the second target temperature of the thermal management component 802 in the cooling mode.
  • the control module 803 calculates the cooling power of the thermal management component 802 as the first cooling power according to the temperature change rate of the energy storage unit 801; and calculates the thermal power according to the charge and discharge current of the energy storage unit 801.
  • the refrigeration power of the management component 802 is the second refrigeration power; when the first refrigeration power is greater than the second refrigeration power, it is determined that the refrigeration power of the thermal management component 802 in the cooling mode is the first refrigeration power; when the first refrigeration power is less than the second refrigeration power In the case of two cooling powers, it is determined that the cooling power of the thermal management component 802 in the cooling mode is the average of the first cooling power and the second cooling power.
  • the first target temperature includes the highest target temperature and the lowest target temperature.
  • the control module 803 determines the highest target temperature and the lowest target temperature of the energy storage unit 801 in the cooling mode according to the charging and discharging current of the energy storage unit 801. Minimum target temperature.
  • the temperature of the battery with the highest temperature among the plurality of batteries is not greater than the highest target temperature or the temperature of the battery with the lowest temperature among the plurality of batteries is not greater than the lowest target temperature, and the thermal management component When the temperature of 802 is not greater than the second target temperature, the thermal management component 802 stops cooling.
  • control module 803 determines the charging and discharging status of the energy storage unit 801 according to the charging and discharging current of the energy storage unit 801 .
  • control module 803 determines that the energy storage unit 801 is in the charge and discharge state when the absolute value of the charge and discharge current of the energy storage unit 801 is not less than the first current threshold.
  • control module 803 determines that the temperature of the battery with the highest temperature among the plurality of batteries is less than the fourth temperature threshold, and the temperature of the battery with the lowest temperature among the plurality of batteries is less than the fifth temperature threshold, and If the temperature of the thermal management component 802 is not greater than the sixth temperature threshold, it is determined that the operating mode of the thermal management component 802 is the heating mode.
  • control module 803 determines that the working mode of the thermal management component 802 is the first heating mode when the absolute value of the discharge current of the energy storage unit 801 is not less than the second current threshold.
  • the thermal management component 802 includes multiple PTC heaters, and the control module 803 determines the number of PTC heaters turned on in the first heating mode according to the temperature change rate of the energy storage unit 801; according to The discharge current of the energy storage unit 801 determines the third target temperature of the energy storage unit 801 and the fourth target temperature of the thermal management component 802 in the first heating mode.
  • the thermal management component 802 Stop heating.
  • control module 803 determines that the working mode of the thermal management component 802 is the second heating mode when the absolute value of the charging current of the energy storage unit 801 is not less than the third current threshold.
  • the status information of the energy storage system also includes the state of charge SOC of the energy storage unit 801.
  • the control module 803 determines how many All PTC heaters are turned on to make the temperature of the energy storage unit 801 reach the preset operating temperature.
  • the control module 803 determines the PTC heater in the second heating mode according to the temperature change rate of the energy storage unit 801 The number of turns on; the fifth target temperature of the energy storage unit 801 and the sixth target temperature of the thermal management component 802 in the second heating mode are determined according to the charging current of the energy storage unit 801.
  • the thermal management component 802 Stop heating.
  • control module 803 determines the operation of the thermal management component 802 when the energy storage unit 801 is in a working state and the temperature of the energy storage unit 801 and the temperature of the thermal management component 802 reach the target temperature.
  • the mode is self-circulating mode.
  • the control module 803 keeps the thermal management component 802 in a closed state.
  • the embodiment of the present application also provides a device 900 for thermal management of an energy storage system.
  • the device 900 includes a processor 901 and a memory 902.
  • the memory 902 is used to store computer programs
  • the processor 901 is used to store computer programs.
  • the computer program is called to cause the device to implement the methods of the various embodiments of the present application.
  • Embodiments of the present application also provide a readable storage medium for storing a computer program.
  • the computer program When executed by a computing device, the computing device implements the aforementioned methods of various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Control Of Temperature (AREA)

Abstract

本申请实施例提供一种储能***热管理的方法和储能***。该方法包括:获取储能***的状态信息,状态信息包括储能***的储能单元的温度信息和充放电信息,以及储能***的热管理部件的温度信息;根据状态信息确定储能***的热管理策略。本申请实施例的技术方案,能够合理控制热管理***,调节储能***的热管理策略,实现对储能***的有效且节能的热管理。

Description

储能***热管理的方法和储能*** 技术领域
本申请涉及储能技术领域,特别是涉及一种储能***热管理的方法和储能***。
背景技术
随着基于国家电力改革、可再生能源发电装机数量大幅度提升的背景下,储能技术在电力***的发、输、变、配、用五大环节中都将起到重要作用,电池储能***在新能源、智能电网、节能技术等领域应用的越来越广泛。
电池储能***中的密闭空间内存储着大量能量,随着高能量密度电池芯的发展和储能电站大容量的需求增大,储能***中的热管理***对于电池***的一致性和稳定性起着越发重要的作用,储能***的性能受其热管理***影响极大,因此如何合理控制热管理***,对储能***进行热管理,是目前亟待解决的问题。
发明内容
本申请提供了一种储能***热管理的方法和储能***,能够合理控制热管理***,调节储能***的热管理策略,实现对储能***的有效且节能的热管理。
第一方面,提供了一种储能***热管理的方法,包括:获取所述储能***的状态信息,所述状态信息包括所述储能***的储能单元的温度信息和充放电信息,以及所述储能***的热管理部件的温度信息;根据所述状态信息确定所述储能***的热管理策略。
在本申请实施例中,根据获取到的储能单元的温度信息和充放电信息,以及热管理部件的温度信息,来确定储能***的热管理策略。相较于现有技术中的根据电池的温度,***的环境温度来确定储能***的热管理策略的方案,本申请的方案综合考虑了储能单元和热管理部件的温度信息以及储能单元的充放电信息,根据这些状态信息来确定储能***的热管理策略,这样的热管理策略更合理,能够更有效地对储能***进行热管理,提高电池的性能和使用寿命,也可以减少热管理过程中***不必要的功耗。
在一种可能的实现方式中,所述根据所述状态信息确定所述储能***的热管理策略,包括:根据所述储能单元的温度信息和所述热管理部件的温度信息,确定所述热管理部件的工作模式;根据所述储能单元的温度信息和充放电信息确定所述热管理部件的工作模式下的控制参数;所述工作模式包括:制热模式,制冷模式或自循环模式。
温度是影响电池性能的重要因素,合适的工作温度能够减缓电池的老化,同时发挥电池的最优性能。将储能单元的温度信息和热管理部件的温度信息作为确定热管理部件的工作模式,可以及时根据当前储能***的多个温度信息对储能***进行热管理,避免储能***温度过高或过低影响电池性能。同时综合考虑储能单元的温度信息和充放电信息来确定热管理部件的工作模式下的控制参数,保证热管理策略更合理,能够更有效地对储能***进行热管理,提高电池的性能和使用寿命。
在一种可能的实现方式中,所述储能单元包括多个电池,所述根据所述储能单元的温度信息和所述热管理部件的温度信息,确定所述热管理部件的工作模式,包括:在所述多个电池中的温度最高的电池的温度大于第一温度阈值,所述多个电池中的温度最低的电池的温度大于第二温度阈值,以及所述热管理部件的温度不小于第三温度阈值的情况下,确定所述热管理部件的工作模式为所述制冷模式。
由于储能单元的多个电池的电池内阻大小不同,以及使用情况不同,多个电池的温度不同,因此设置温度较高的第一温度阈值,以及温度较低的第二温度阈值,分别判断多个电池中的温度最高的电池的温度是否大于第一温度阈值,电池中的温度最低的电池的温度是否大于第二温度阈值,同时考虑了储能单元中温度最高的电池和温度最低的电池,减少了由于电池温度差异带来的判断条件设置的偏差,并进一步考虑到热管理部件的温度是否不小于第三温度阈值,综合考虑了储能单元和热管理部件的温度,可以及时根据当前储能***的多个温度信息对储能***进行热管理,避免储能***温度过高影响电池性能或者是引发储能***热失控。
在一种可能的实现方式中,所述根据所述储能单元的温度信息和充放电信息,确定所述热管理部件的工作模式下的控制参数,包括:根据所述储能单元的温度变化速率和充放电电流,确定所述制冷模式下所述热管理部件的制冷功率;根据所述储能单元的充放电电流确定所述制冷模式下所述储能单元的第一目标温度和所述热管理部件的第二目标温度。
综合考虑储能单元的温度变化速率和充放电电流来确定制冷模式下热管理部件的制冷功率,热管理部件制冷时,合理的制冷功率不仅能有效实现对储能单元的热管理,同时能减少热管理部件的功耗。电池的充放电电流与电池的温度息息相关,根据储能单元的充放电电流来确定制冷模式下储能单元的第一目标温度和热管理部件的第二目标温度,确定更合理的热管理部件的控制参数。
在一种可能的实现方式中,所述根据所述储能单元的温度变化速率和充放电电流,确定所述制冷模式下所述热管理部件的制冷功率,包括:根据所述储能单元的温度变化速率,计算所述热管理部件的制冷功率为第一制冷功率;根据所述储能单元的充放电电流,计算所述热管理部件的制冷功率为第二制冷功率;在所述第一制冷功率大于所述第二制冷功率的情况下,确定所述制冷模式下所述热管理部件的制冷功率为所述第一制冷功率;在所述第一制冷功率小于所述第二制冷功率的情况下,确定所述制冷模式下所述热管理部件的制冷功率为所述第一制冷功率和所述第二制冷功率的平均值。
分别根据储能单元的温度变化速率和充放电电流计算出热管理部件的制冷功率,综合考虑计算出的这两个制冷功率来确定热管理部件的制冷功率,这样确定的制冷功率更合理,在对储能***进行有效降温处理的同时,还能减少热管理部件的功耗。
在一种可能的实现方式中,所述根据所述储能单元的充放电电流确定所述制冷模式下所述储能单元的第一目标温度,包括:根据所述储能单元的充放电电流,确定所述制冷模式下所述储能单元的最高目标温度和最低目标温度。
由于储能单元的多个电池的电池内阻大小不同,以及使用情况不同,多个电池的温度不同,因此根据储能单元的充放电电流,确定储能单元的最高目标温度和最低目标温度,减少了由于电池温度差异带来的判断条件设置的偏差。
在一种可能的实现方式中,在所述多个电池中的温度最高的电池的温度不大于所述最高目标温度或所述多个电池中的温度最低的电池的温度不大于所述最低目标温度,以及所述热管理部件的温度不大于所述第二目标温度的情况下,所述热管理部件停止制冷。
当多个电池中的温度最高的电池的温度不大于最高目标温度或者多个电池中的温度最低的电池的温度不大于最低目标温度,以及热管理部件的温度不大于第二目标温度时,储能***的多个温度条件达到了预设的目标温度条件,储能单元的温度是适宜的工作温度,不需要再对其温度进行调节,因此热管理部件停止制冷。
在一种可能的实现方式中,所述方法还包括:根据所述储能单元的充放电电流确定所述储能单元的充放电状态。
在一种可能的实现方式中,所述根据所述储能单元的充放电电流确定所述储能单元的充放电状态,包括:在所述储能单元的充放电电流的绝对值不小于第一电流阈值的情况下,确定所述储能单元处于充放电状态。
当储能单元的充放电电流的绝对值不小于第一电流阈值时,说明储能单元的充放电电流较大,储能单元处于充放电的工作状态。
在一种可能的实现方式中,所述储能单元包括多个电池,所述根据所述储能单元的温度信息和所述热管理部件的温度信息,确定所述热管理部件的工作模式,包括:在所述多个电池中的温度最高的电池的温度小于第四温度阈值,所述多个电池中的温度最低的电池的温度小于第五温度阈值,以及所述热管理部件的温度不大于第六温度阈值的情况下,确定所述热管理部件的工作模式为所述制热模式。
由于储能单元的多个电池的电池内阻大小不同,以及使用情况不同,多个电池的温度不同,因此设置温度较高的第四温度阈值,以及温度较低的第五温度阈值,分别判断多个电池中的温度最高的电池的温度是否小于第四温度阈值,电池中的温度最低的电池的温度是否小于第五温度阈值,同时考虑了储能单元中温度最高的电池和温度最低的电池,减少了由于电池温度差异带来的判断条件设置的偏差,并进一步考虑到热管理部件的温度是否不大于第六温度阈值,综合考虑了储能单元和热管理部件的温度,可以及时根据当前储能***的多个温度信息对储能***进行热管理,避免储能***温度过低影响电池的充放电速率。
在一种可能的实现方式中,所述确定所述热管理部件的工作模式为所述制热模式,包括:在所述储能单元的放电电流的绝对值不小于第二电流阈值的情况下,确定所述热管理部件的工作模式为第一制热模式。
当储能单元的放电电流的绝对值不小于第二电流阈值时,说明储能单元的放电电流较大,储能单元处于放电状态,因此确定储能单元处于放电状态下,热管理部件的工作模式为第一制热模式。
在一种可能的实现方式中,所述热管理部件包括多个正温度系数(Positive Temperature Coefficient,PTC)加热器,所述根据所述储能单元的温度信息和充放电信息确定所述热管理部件的工作模式下的控制参数,包括:根据所述储能单元的温度变化速率,确定所述第一制热模式下所述PTC加热器开启的数量;根据所述储能单元的放电电流确定所述第一制热模式下所述储能单元的第三目标温度和所述热管理部件的第四目标温度。
由于PTC加热器只有开启和关闭的区别,单个PTC加热器的加热功率是无法调节的,因此通过控制PTC加热器开启的数量,来控制热管理部件的制热功率。根据储能单元的温度变化速率来确定制热模式下热管理部件的制热功率,热管理部件制热时,合理的制热功率不仅能有效实现对储能单元的热管理,同时能减少热管理部件的功耗。电池的充放电电流与电池的温度息息相关,根据储能单元的放电电流来确定制热模式下储能单元的第三目标温度和热管理部件的第四目标温度,确定更合理的热管理部件的控制参数。
在一种可能的实现方式中,在所述多个电池中的温度最低的电池的温度不小于所述第三目标温度,以及所述热管理部件的温度不小于所述第四目标温度的情况下,所述热管理部件停止制热。
当多个电池中的温度最低的电池的温度不小于第三目标温度,以及热管理部件的温度不小于第四目标温度时,储能***的多个温度条件达到了预设的目标温度条件,储能单元的温度是适宜的工作温度,不需要再对其温度进行调节,因此热管理部件停止制热。
在一种可能的实现方式中,所述确定所述热管理部件的工作模式为制热模式,包括:在所述储能单元的充电电流的绝对值不小于第三电流阈值的情况下,确定所述热管理部件的工作模式为第二制热模式。
当储能单元的充电电流的绝对值不小于第三电流阈值时,说明储能单元的充电电流较大,储能单元处于充电状态,因此确定储能单元处于充电状态下,热管理部件的工作模式为第二制热模式。
在一种可能的实现方式中,所述状态信息还包括所述储能单元的荷电状态(State of Charge,SOC),所述热管理部件包括多个PTC加热器,所述方法还包括:在所述储能单元的SOC不大于荷电阈值的情况下,确定所述多个PTC加热器全部开启,以使所述储能单元的温度达到预设工作温度。
当电池处于充电状态时,其充电速率与电池的温度和电池的荷电状态SOC有很大关系,尤其在SOC很小时,适宜的工作温度能够很大程度提高电池的充电速率。 因此以SOC为判断条件,在SOC不大于荷电阈值时,确定多个PTC加热器全部开启,尽快提高储能单元的温度,以使达到预设工作温度,提高电池的充电速率。
在一种可能的实现方式中,所述根据所述储能单元的温度信息和充放电信息确定所述热管理部件的工作模式下的控制参数,包括:在所述储能单元的温度达到所述预设工作温度的情况下,根据所述储能单元的温度变化速率,确定所述第二制热模式下所述PTC加热器开启的数量;根据所述储能单元的充电电流确定所述第二制热模式下所述储能单元的第五目标温度和所述热管理部件的第六目标温度,所述第五目标温度大于所述预设工作温度。
当储能单元的温度达到预设工作温度时,无需再将热管理部件的多个PTC加热器全部开启,此时,根据储能单元的温度变化速率来确定制热模式下热管理部件的制热功率,热管理部件制热时,合理的制热功率不仅能有效实现对储能单元的热管理,同时能减少热管理部件的功耗。电池的充放电电流与电池的温度息息相关,根据储能单元的充电电流来确定制热模式下储能单元的第五目标温度和热管理部件的第六目标温度,确定更合理的热管理部件的控制参数。
在一种可能的实现方式中,在所述多个电池中的温度最低的电池的温度不小于所述第五目标温度,以及所述热管理部件的温度不小于所述第六目标温度的情况下,所述热管理部件停止制热。
当多个电池中的温度最低的电池的温度不小于第五目标温度,以及热管理部件的温度不小于第六目标温度时,储能***的多个温度条件达到了预设的目标温度条件,储能单元的温度是适宜的工作温度,不需要再对其温度进行调节,因此热管理部件停止制热。
在一种可能的实现方式中,所述方法还包括:在所述储能单元处于工作状态,所述储能单元的温度和所述热管理部件的温度达到目标温度的情况下,确定所述热管理部件的工作模式为自循环模式。
该自循环模式是指热管理部件处于待机状态,不对储能单元进行热管理,在储能单元的温度和热管理部件的温度达到目标温度,且持续工作时,热管理部件无需对储能单元进行热管理。
在一种可能的实现方式中,在所述储能单元处于静置状态的情况下,所述热管理部件处于关闭状态。
当储能单元不工作,处于静置状态时,热管理部件也无需开启,这样可以节省***功耗。
第二方面,提供了一种储能***,包括:储能单元、热管理部件和控制模块,所述控制模块用于获取所述储能***的状态信息,并根据所述状态信息确定所述储能***的热管理策略;其中,所述状态信息包括所述储能单元的温度信息和充放电信息,以及所述热管理部件的温度信息。
在一种可能的实现方式中,所述控制模块用于:根据所述储能单元的温度信息和所述热管理部件的温度信息,确定所述热管理部件的工作模式;根据所述储能 单元的温度信息和充放电信息确定所述热管理部件的工作模式下的控制参数;所述工作模式包括:制热模式或制冷模式。
在一种可能的实现方式中,所述控制模块用于:在所述多个电池中的温度最高的电池的温度大于第一温度阈值,所述多个电池中的温度最低的电池的温度大于第二温度阈值,以及所述热管理部件的温度不小于第三温度阈值的情况下,确定所述热管理部件的工作模式为所述制冷模式。
在一种可能的实现方式中,所述控制模块用于:根据所述储能单元的温度变化速率和充放电电流,确定所述制冷模式下所述热管理部件的制冷功率;根据所述储能单元的充放电电流确定所述制冷模式下所述储能单元的第一目标温度和所述热管理部件的第二目标温度。
在一种可能的实现方式中,所述控制模块用于:根据所述储能单元的温度变化速率,计算所述热管理部件的制冷功率为第一制冷功率;根据所述储能单元的充放电电流,计算所述热管理部件的制冷功率为第二制冷功率;在所述第一制冷功率大于所述第二制冷功率的情况下,确定所述制冷模式下所述热管理部件的制冷功率为所述第一制冷功率;在所述第一制冷功率小于所述第二制冷功率的情况下,确定所述制冷模式下所述热管理部件的制冷功率为所述第一制冷功率和所述第二制冷功率的平均值。
在一种可能的实现方式中,所述第一目标温度包括最高目标温度和最低目标温度,所述控制模块用于:根据所述储能单元的充放电电流,确定所述制冷模式下所述储能单元的所述最高目标温度和所述最低目标温度。
在一种可能的实现方式中,在所述多个电池中的温度最高的电池的温度不大于所述最高目标温度或所述多个电池中的温度最低的电池的温度不大于所述最低目标温度,以及所述热管理部件的温度不大于所述第二目标温度的情况下,所述热管理部件停止制冷。
在一种可能的实现方式中,所述控制模块还用于:根据所述储能单元的充放电电流确定所述储能单元的充放电状态。
在一种可能的实现方式中,所述控制模块用于:在所述储能单元的充放电电流的绝对值不小于第一电流阈值的情况下,确定所述储能单元处于充放电状态。
在一种可能的实现方式中,所述储能单元包括多个电池,所述控制模块用于:在所述多个电池中的温度最高的电池的温度小于第四温度阈值,所述多个电池中的温度最低的电池的温度小于第五温度阈值,以及所述热管理部件的温度不大于第六温度阈值的情况下,确定所述热管理部件的工作模式为所述制热模式。
在一种可能的实现方式中,所述控制模块用于:在所述储能单元的放电电流的绝对值不小于第二电流阈值的情况下,确定所述热管理部件的工作模式为第一制热模式。
在一种可能的实现方式中,所述热管理部件包括多个PTC加热器,所述控制模块用于:根据所述储能单元的温度变化速率,确定所述第一制热模式下所述PTC 加热器开启的数量;根据所述储能单元的放电电流确定所述第一制热模式下所述储能单元的第三目标温度和所述热管理部件的第四目标温度。
在一种可能的实现方式中,在所述多个电池中的温度最低的电池的温度不小于所述第三目标温度,以及所述热管理部件的温度不小于所述第四目标温度的情况下,所述热管理部件停止制热。
在一种可能的实现方式中,所述控制模块用于:在所述储能单元的充电电流的绝对值不小于第三电流阈值的情况下,确定所述热管理部件的工作模式为第二制热模式。
在一种可能的实现方式中,所述状态信息还包括所述储能单元的SOC,所述热管理部件包括多个PTC加热器,所述控制模块还用于:在所述储能单元的SOC不大于荷电阈值的情况下,确定所述多个PTC加热器全部开启,以使所述储能单元的温度达到预设工作温度。
在一种可能的实现方式中,所述控制模块用于:在所述储能单元的温度达到所述预设工作温度的情况下,根据所述储能单元的温度变化速率,确定所述第二制热模式下所述PTC加热器开启的数量;根据所述储能单元的充电电流确定所述第二制热模式下所述储能单元的第五目标温度和所述热管理部件的第六目标温度。
在一种可能的实现方式中,在所述多个电池中的温度最低的电池的温度不小于所述第五目标温度,以及所述热管理部件的温度不小于所述第六目标温度的情况下,所述热管理部件停止制热。
在一种可能的实现方式中,在所述储能单元处于工作状态,所述储能单元的温度和所述热管理部件的温度达到目标温度的情况下,确定所述热管理部件的工作模式为自循环模式。
在一种可能的实现方式中,在所述储能单元处于静置状态的情况下,所述热管理部件处于关闭状态。
第三方面,提供了一种储能***热管理的装置,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序,使所述装置实现上述第一方面或第一方面的任一种可能的实现方式中所述的方法。
第四方面,提供了一种可读存储介质,所述可读存储介质存储有计算机程序,所述计算机程序被计算设备执行时使得所述计算设备实现上述第一方面或第一方面的任一种可能的实现方式中所述的方法。
本申请提供了一种储能***热管理的方法,根据获取到的储能单元的温度信息和充放电信息,以及热管理部件的温度信息,来确定储能***的热管理策略。相较于现有技术中的根据电池的温度,***的环境温度来确定储能***的热管理策略的方案,本申请的方案综合考虑了储能单元和热管理部件的温度信息以及储能单元的充放电信息,根据这些状态信息来确定储能***的热管理策略,这样的热管理策略更合理,能够更有效地对储能***进行热管理,提高电池的性能和使用寿命,也可以减少热管理过程中***不必要的功耗。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的储能***的示意图;
图2是本申请一实施例公开的储能***热管理的方法的示意性流程图;
图3是本申请一实施例公开的储能***热管理的方法的示意性流程图;
图4是本申请一实施例公开的储能***热管理的方法的示意性流程图;
图5是本申请一实施例公开的储能***热管理的方法的示意性流程图;
图6是本申请一实施例公开的储能***热管理的方法的示意性流程图;
图7是本申请一实施例公开的储能***热管理的方法的示意性流程图;
图8是本申请一实施例公开的储能***的示意图;
图9是本申请一实施例公开的储能***热管理的装置的示意图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
基于国家电力改革、可再生能源发电装机数量大幅度提升的背景下,储能技术在电力***的发、输、变、配、用五大环节中都将起到重要作用。电池储能***在新能源、智能电网、节能技术等领域应用的越来越广泛。
电池储能***中的密闭空间内存储着大量能量,具有危险的本质,而“热失控”是导致锂离子电池安全隐患的根本原因,有机小分子引发的副反应的链式反应导致电池热失控的发生。随着高能量密度电池芯的发展和储能电站大容量的需求增大,储能***中的热管理***对于电池***的一致性和稳定性起着越发重要的作用,储能***的性能受其热管理***影响极大。
现有电池储能***中的热管理***对储能***的热管理主要基于电池的温度,未考虑电池的充放电状态,以及热管理过程中电池状态的变化情况,从而导致热管理***对储能***的热管理出现偏差,降低储能***电池的性能和使用寿命。
鉴于此,本申请提供了一种储能***热管理的方法,根据获取到的储能单元的温度信息和充放电信息,以及热管理部件的温度信息,来确定储能***的热管理策略。本申请的方案综合考虑了储能单元和热管理部件的温度信息以及储能单元的充放电信息,根据这些状态信息来确定储能***的热管理策略,这样的热管理策略更合理,能够更有效地对储能***进行热管理,提高电池的性能和使用寿命,也可以减少热管理过程中***不必要的功耗。
图1是本申请提供的一种储能***100的示意图。
该储能***100包含多个电池簇,如图1所示的电池簇1到电池簇m,其中,m可以为大于1的自然数,即,在实际应用中可根据储能容量灵活调整电池簇的数量,如果储能容量大,则可适当多设置电池簇的数量,如果储能容量少,则也可适当减少电池簇的数量。
每个电池簇由至少两个电池储能模组(energy storage system,ESS)串联组成,如图1中的储能模组1~储能模组j,其中,j可以为大于或等于2的自然数。每个储能模组ESS由若干储能元件串联或并联组成,形成最小的能量存储和管理单元。为实现储能***的检测和控制,每个储能模组和电池簇中会设计有电池管理***(Battery Management System,BMS)来监控电池荷电状态SOC、温度、电流等电池信息,并跟上层能量管理***(Energy Management System,EMS)或者功率转换***(Power Convert System,PCS)进行实时的信息交互,实现整个电池储能***的管理和控制。
图2是本申请一实施例公开的储能***热管理的方法的示意性流程图。该储能***可以为图1中的储能***100。
201,获取储能***的状态信息。
该状态信息包括储能***的储能单元的温度信息和充放电信息,以及储能***的热管理部件的温度信息。
储能***的热管理部件可以对储能***的储能单元进行热管理,比如,在储能单元的温度过高时可以对其进行冷却降温,在储能单元需要进行加热时可以对其进行加热升温。热管理部件可以包括水冷机组,控制水冷机组为制冷模式,可以对储能单元进行冷却降温,控制水冷机组为制热模式,可以对储能单元进行加热升温。热管理部件还可以包括PTC加热器,在储能单元需要进行加热时,PTC加热器可以产生热量对其进行加热升温。
202,根据状态信息确定储能***的热管理策略。
在本申请实施例中,根据获取到的储能单元的温度信息和充放电信息,以及热管理部件的温度信息,来确定储能***的热管理策略。相较于现有技术中的根据电池的温度,***的环境温度来确定储能***的热管理策略的方案,本申请的方案综合考虑了储能单元和热管理部件的温度信息以及储能单元的充放电信息,根据这些状态信息来确定储能***的热管理策略,这样的热管理策略更合理,能够更有效地对储能***进行热管理,提高电池的性能和使用寿命,也可以减少热管理过程中***不必要的功耗。
可选地,在本申请实施例中,可以通过温度传感器获取储能单元和热管理部件的温度信息,获取储能单元的温度信息的温度传感器和获取热管理部件的温度信息的温度传感器可以分别独立设置,也可以集成设置,进一步地,可以与电池管理***BMS集成于一体,本申请对此不做限定。
可选地,在本申请实施例中,可以通过电流传感器,电压传感器等电学检测装置获取储能单元的充放电信息,电流传感器,电压传感器等电学检测装置可以分别独立设置,也可以集成设置,进一步地,可以与电池管理***BMS集成于一体,本申请对此不做限定。
图3是本申请另一实施例公开的储能***热管理的方法的示意性流程图。
301,获取储能单元的温度信息、充放电信息和热管理部件的温度信息。
302,根据储能单元的温度信息和热管理部件的温度信息,确定热管理部件的工作模式。
303,根据储能单元的温度信息和充放电信息,确定热管理部件的工作模式下的控制参数。
温度是影响电池性能的重要因素,合适的工作温度能够减缓电池的老化,同时发挥电池的最优性能。将储能单元的温度信息和热管理部件的温度信息作为确定热管理部件的工作模式,可以及时根据当前储能***的多个温度信息对储能***进行热管理,避免储能***温度过高或过低影响电池性能。同时综合考虑储能单元的温度信息和充放电信息来确定热管理部件的工作模式下的控制参数,保证热管理策略更合理,能够更有效地对储能***进行热管理,提高电池的性能和使用寿命。
可选地,在本申请实施例中,储能单元包括多个电池。
本申请中,电池是指包括一个或多个电池单体以提供电能的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
在一些实施例中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。通常,电池单体也可称之为电芯。电池单体可以呈圆柱体、扁平体、长方体、或其它规则或者不规则的形状。本申请实施例的技术方案可以应用于任何形状的电池单体。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流 体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质例如可以为聚丙烯(Polypropylene,PP)或聚乙烯(Polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
可选地,在本申请实施例中,热管理部件的工作模式可以为制冷模式。具体地,在多个电池中的温度最高的电池的温度大于第一温度阈值,多个电池中的温度最低的电池的温度大于第二温度阈值,以及热管理部件的温度不小于第三温度阈值的情况下,确定热管理部件的工作模式为制冷模式。参考图4,图4是本申请一实施例公开的储能***热管理的方法的示意性流程图。图4中的401与前述实施例中的301类似,可以参考前述实施例,为了简洁,在此不再赘述。
402,判断多个电池中的温度最高的电池的温度T max1是否大于第一温度阈值,多个电池中的温度最低的电池的温度T min1是否大于第二温度阈值,以及热管理部件的温度T1是否不小于第三温度阈值。
第一温度阈值、第二温度阈值和第三温度阈值是储能***预设的温度参数。由于储能单元的多个电池的电池内阻大小不同,以及使用情况不同,多个电池的温度不同,因此设置温度较高的第一温度阈值,以及温度较低的第二温度阈值,分别判断多个电池中的温度最高的电池的温度T max1是否大于第一温度阈值,电池中的温度最低的电池的温度T min1是否大于第二温度阈值,同时考虑了储能单元中温度最高的电池和温度最低的电池,减少了由于电池温度差异带来的判断条件设置的偏差,并进一步考虑到热管理部件的温度T1是否不小于第三温度阈值,综合考虑了储能单元和热管理部件的温度,可以及时根据当前储能***的多个温度信息对储能***进行热管理,避免储能***温度过高影响电池性能或者是引发储能***热失控。第一温度阈值、第二温度阈值和第三温度阈值的温度参数包括固定的数值,可修改的数值,查表方式确定的数值,函数关系确定的数值,本申请实施例对此并不限定。
403,在T max1大于第一温度阈值,T min1大于第二温度阈值,以及T 1不小于第三温度阈值的情况下,确定热管理部件的工作模式为制冷模式。
Tmax1大于第一温度阈值,T min1大于第二温度阈值,以及T 1不小于第三温度阈值时,说明储能单元的温度较高,且对储能单元进行热管理的热管理部件温度也较高了,为避免储能单元发生热失控,需要对储能***进行降温处理,因此热管理部件的工作模式为制冷模式,为储能单元进行降温。
404,根据储能单元的温度变化速率和充放电电流,确定制冷模式下热管理部件的制冷功率,以及根据储能单元的充放电电流确定制冷模式下储能单元的第一目标温度和热管理部件的第二目标温度。
综合考虑储能单元的温度变化速率和充放电电流来确定制冷模式下热管理部件的制冷功率,热管理部件制冷时,合理的制冷功率不仅能有效实现对储能单元的热管理,同时能减少热管理部件的功耗。电池的充放电电流与电池的温度息息相关,根据储能单元的充放电电流来确定制冷模式下储能单元的第一目标温度和热管理部件的第二目标温度,确定更合理的热管理部件的控制参数。
可选地,在本申请实施例中,根据储能单元的温度变化速率和充放电电流,确定制冷模式下热管理部件的制冷功率的方法可以为:根据储能单元的温度变化速率,计算出热管理部件的制冷功率为第一制冷功率;根据储能单元的充放电电流,计算出热管理部件的制冷功率为第二制冷功率;在第一制冷功率大于第二制冷功率的情况下,确定制冷模式下热管理部件的制冷功率为第一制冷功率;在第一制冷功率小于第二制冷功率的情况下,确定制冷模式下热管理部件的制冷功率为第一制冷功率和第二制冷功率的平均值。
分别根据储能单元的温度变化速率和充放电电流计算出热管理部件的制冷功率,综合考虑计算出的这两个制冷功率来确定热管理部件的制冷功率,这样确定的制冷功率更合理,在对储能***进行有效降温处理的同时,还能减少热管理部件的功耗。
可选地,在本申请实施例中,储能单元的第一目标温度包括最高目标温度和最低目标温度,也就是说,根据储能单元的充放电电流,确定制冷模式下储能单元的最高目标温度和最低目标温度,以及热管理部件的第二目标温度。在多个电池中的温度最高的电池的温度不大于最高目标温度或者多个电池中的温度最低的电池的温度不大于最低目标温度,以及热管理部件的温度不大于第二目标温度的情况下,热管理部件停止制冷。
当多个电池中的温度最高的电池的温度不大于最高目标温度或者多个电池中的温度最低的电池的温度不大于最低目标温度,以及热管理部件的温度不大于第二目标温度时,储能***的多个温度条件达到了预设的目标温度条件,储能单元的温度是适宜的工作温度,不需要再对其温度进行调节,因此热管理部件停止制冷。
可选地,在本申请实施例中,还可以根据储能单元的充放电电流确定储能单元的充放电状态。
具体地,在储能单元的充放电电流的绝对值不小于第一电流阈值的情况下,确定储能单元处于充放电状态。
第一电流阈值是储能***预设的电流参数,当储能单元的充放电电流的绝对值不小于第一电流阈值时,说明储能单元的充放电电流较大,储能单元处于充放电的工作状态。第一电流阈值的电流参数包括固定的数值,可修改的数值,查表方式确定的数值,函数关系确定的数值,本申请实施例对此并不限定。
可选地,在本申请实施例中,热管理部件的工作模式可以为制热模式。具体地,在多个电池中的温度最高的电池的温度小于第四温度阈值,多个电池中的温度最低的电池的温度小于第五温度阈值,以及热管理部件的温度不大于第六温度阈值的情况下,确定热管理部件的工作模式为制热模式。参考图5,图5中的501与前述实施例中的401类似,可以参考前述实施例,为了简洁,在此不再赘述。
502,判断多个电池中的温度最高的电池的温度T max2是否小于第四温度阈值,多个电池中的温度最低的电池的温度T min2是否小于第五温度阈值,以及热管理部件的温度T 2是否不大于第六温度阈值。
第四温度阈值、第五温度阈值和第六温度阈值是储能***预设的温度参数。由于储能单元的多个电池的电池内阻大小不同,以及使用情况不同,多个电池的温度不同,因此设置温度较高的第四温度阈值,以及温度较低的第五温度阈值,分别判断多个电池中的温度最高的电池的温度T max2是否小于第四温度阈值,电池中的温度最低的电池的温度T min2是否小于第五温度阈值,同时考虑了储能单元中温度最高的电池和温度最低的电池,减少了由于电池温度差异带来的判断条件设置的偏差,并进一步考虑到热管理部件的温度T 2是否不大于第六温度阈值,综合考虑了储能单元和热管理部件的温度,可以及时根据当前储能***的多个温度信息对储能***进行热管理,避免储能***温度过低影响电池的充放电速率。第四温度阈值、第五温度阈值和第六温度阈值的温度参数包括固定的数值,可修改的数值,查表方式确定的数值,函数关系确定的数值,本申请实施例对此并不限定。
503,在T max2小于第四温度阈值,T min2小于第五温度阈值,以及T 2不大于第六温度阈值的情况下,确定热管理部件的工作模式为制热模式。
当T max2小于第四温度阈值,T min2小于第五温度阈值,以及T 2不大于第六温度阈值时,说明储能单元的温度较低,且对储能单元进行热管理的热管理部件温度也较低,无法有效为储能单元进行加热升温,储能单元的温度低会降低储能单元充电或放电的速率,需要对储能***进行升温处理,因此热管理部件的工作模式为制热模式,为储能单元进行加热升温。
可选地,在本申请实施例中,热管理部件的制热模式可以为第一制热模式,具体地,在储能单元的放电电流的绝对值不小于第二电流阈值的情况下,确定热管理部件的工作模式为第一制热模式。参考图6,图6中的601-602与前述实施例中的501-502类似,可以参考前述实施例,为了简洁,在此不再赘述。
603,在T max2小于第四温度阈值,T min2小于第五温度阈值,以及T 2不大于第六温度阈值的情况下,判断储能单元的放电电流的绝对值|I 1|是否不小于第二电流阈值。
604,在|I 1|不小于第二电流阈值的情况下,确定热管理部件的工作模式为第一制热模式。
第二电流阈值是储能***预设的电流参数,当储能单元的放电电流的绝对值|I 1|不小于第二电流阈值时,说明储能单元的放电电流较大,储能单元处于放电状态,因此确定储能单元处于放电状态下,热管理部件的工作模式为第一制热模式。第二电 流阈值的电流参数包括固定的数值,可修改的数值,查表方式确定的数值,函数关系确定的数值,本申请实施例对此并不限定。
605,根据储能单元的温度变化速率,确定第一制热模式下PTC加热器开启的数量,根据储能单元的放电电流确定第一制热模式下储能单元的第三目标温度和热管理部件的第四目标温度。
热管理部件包括多个PTC加热器,PTC加热器是由PTC陶瓷发热元件与铝管组成的。该类型PTC发热体有热阻小、换热效率高的优点,是一种自动恒温、省电的电加热器。由于PTC加热器只有开启和关闭的区别,单个PTC加热器的加热功率是无法调节的,因此通过控制PTC加热器开启的数量,来控制热管理部件的制热功率。根据储能单元的温度变化速率来确定制热模式下热管理部件的制热功率,热管理部件制热时,合理的制热功率不仅能有效实现对储能单元的热管理,同时能减少热管理部件的功耗。电池的充放电电流与电池的温度息息相关,根据储能单元的充放电电流来确定制热模式下储能单元的第三目标温度和热管理部件的第四目标温度,确定更合理的热管理部件的控制参数。
可选地,在本申请实施例中,在多个电池中的温度最低的电池的温度不小于第三目标温度,以及热管理部件的温度不小于第四目标温度的情况下,热管理部件停止制热。
当多个电池中的温度最低的电池的温度不小于第三目标温度,以及热管理部件的温度不小于第四目标温度时,储能***的多个温度条件达到了预设的目标温度条件,储能单元的温度是适宜的工作温度,不需要再对其温度进行调节,因此热管理部件停止制热。
可选地,在本申请实施例中,热管理部件的制热模式可以为第二制热模式,具体地,在储能单元的充电电流的绝对值不小于第三电流阈值的情况下,确定热管理部件的工作模式为第二制热模式。参考图7,图7中的701-702与前述实施例中的601-602类似,可以参考前述实施例,为了简洁,在此不再赘述。
703,在T max2小于第四温度阈值,T min2小于第五温度阈值,以及T 2不大于第六温度阈值的情况下,判断储能单元的充电电流的绝对值|I 2|是否不小于第三电流阈值。
704,在|I 2|不小于第三电流阈值的情况下,确定热管理部件的工作模式为第二制热模式。
第三电流阈值是储能***预设的电流参数,当储能单元的充电电流的绝对值|I 2|不小于第三电流阈值时,说明储能单元的充电电流较大,储能单元处于充电状态,因此确定储能单元处于充电状态下,热管理部件的工作模式为第二制热模式。第三电流阈值的电流参数包括固定的数值,可修改的数值,查表方式确定的数值,函数关系确定的数值,本申请实施例对此并不限定。
705,判断储能单元的SOC是否不大于荷电阈值。
706,在储能单元的SOC不大于荷电阈值的情况下,确定多个PTC加热器全部开启。
储能***的状态信息还包括储能单元的荷电状态SOC,电池的荷电状态SOC是用来反映电池的剩余容量状况的物理量,代表的是电池使用一段时间或长期搁置不用后的剩余容量与其完全充电状态的容量的比值。当电池处于充电状态时,其充电速率与电池的温度和电池的荷电状态SOC有很大关系,尤其在SOC很小时,适宜的工作温度能够很大程度提高电池的充电速率。因此以SOC为判断条件,在SOC不大于荷电阈值时,确定多个PTC加热器全部开启,尽快提高储能单元的温度,以使达到预设工作温度,提高电池的充电速率,在SOC大于荷电阈值时,也就是说电池的剩余容量较大,此时电池的充电速率受温度影响较小,无需设置多个PTC加热器全部开启。
707,判断储能单元的温度是否达到预设工作温度。
708,在储能单元的温度达到预设工作温度的情况下,根据储能单元的温度变化速率,确定第二制热模式下PTC加热器开启的数量,根据储能单元的充电电流确定第二制热模式下储能单元的第五目标温度和热管理部件的第六目标温度。
当储能单元的温度达到预设工作温度时,无需再将热管理部件的多个PTC加热器全部开启,此时,根据储能单元的温度变化速率来确定制热模式下热管理部件的制热功率,热管理部件制热时,合理的制热功率不仅能有效实现对储能单元的热管理,同时能减少热管理部件的功耗。电池的充放电电流与电池的温度息息相关,根据储能单元的充电电流来确定制热模式下储能单元的第五目标温度和热管理部件的第六目标温度,确定更合理的热管理部件的控制参数。
可选地,在本申请实施例中,在多个电池中的温度最低的电池的温度不小于第五目标温度,以及热管理部件的温度不小于第六目标温度的情况下,热管理部件停止制热。
当多个电池中的温度最低的电池的温度不小于第五目标温度,以及热管理部件的温度不小于第六目标温度时,储能***的多个温度条件达到了预设的目标温度条件,储能单元的温度是适宜的工作温度,不需要再对其温度进行调节,因此热管理部件停止制热。
可选地,在本申请实施例中,在储能单元处于工作状态,储能单元的温度和热管理部件的温度达到目标温度的情况下,确定热管理部件的工作模式为自循环模式。
该自循环模式是指热管理部件处于待机状态,不对储能单元进行热管理,也就是说,在储能单元的温度和热管理部件的温度达到目标温度,且持续工作时,热管理部件无需对储能单元进行热管理。此时,仍会实时监测储能***的状态信息,当储能单元的温度和热管理部件的温度发生变化,影响储能***的工作效率时,热管理部件则会再次进入工作模式,对储能单元进行热管理。
可选地,在本申请实施例中,在储能单元处于静置状态的情况下,热管理部件处于关闭状态。
当储能单元不工作,处于静置状态时,热管理部件也无需开启,这样可以节省***功耗。
上文描述了本申请实施例的储能***热管理的方法,下面描述本申请实施例的储能***,其中未详细描述的部分可参见前述各实施例。
图8是本申请一实施例公开的储能***800的示意图,在本申请的实施例中,储能***800包括储能单元801,热管理部件802和控制模块803。
控制模块803用于获取储能***800的状态信息,并根据状态信息确定储能***800的热管理策略。
具体地,状态信息包括储能单元801的温度信息和充放电信息,以及热管理部件802的温度信息。
在本申请实施例中,根据获取到的储能单元801的温度信息和充放电信息,以及热管理部件802的温度信息,来确定储能***的热管理策略。相较于现有技术中的根据电池的温度,***的环境温度来确定储能***的热管理策略的方案,本申请的方案综合考虑了储能单元801和热管理部件802的温度信息以及储能单元801的充放电信息,根据这些状态信息来确定储能***的热管理策略,这样的热管理策略更合理,能够更有效地对储能***进行热管理,提高电池的性能和使用寿命,也可以减少热管理过程中***不必要的功耗。
可选地,在本申请实施例中,控制模块803可以是直接获取储能***800的状态信息,也可以是通过电池管理***BMS获取储能***800的状态信息,控制模块803和电池管理***BMS可以分别独立设置,也可以集成设置,本申请对此不做限定。
可选地,在本申请实施例中,控制模块803根据储能单元801的温度信息和热管理部件802的温度信息,确定热管理部件802的工作模式;根据储能单元801的温度信息和充放电信息确定热管理部件802的工作模式下的控制参数。
可选地,在本申请实施例中,热管理部件802的工作模式可以包括:制热模式或制冷模式。
可选地,在本申请实施例中,储能单元801包括多个电池,控制模块803在多个电池中的温度最高的电池的温度大于第一温度阈值,多个电池中的温度最低的电池的温度大于第二温度阈值,以及热管理部件802的温度不小于第三温度阈值的情况下,确定热管理部件802的工作模式为制冷模式。
可选地,在本申请实施例中,控制模块803根据储能单元801的温度变化速率和充放电电流,确定制冷模式下热管理部件802的制冷功率;根据储能单元801的充放电电流确定制冷模式下储能单元801的第一目标温度和热管理部件802的第二目标温度。
可选地,在本申请实施例中,控制模块803根据储能单元801的温度变化速率,计算热管理部件802的制冷功率为第一制冷功率;根据储能单元801的充放电电流,计算热管理部件802的制冷功率为第二制冷功率;在第一制冷功率大于第二制冷功率的情况下,确定制冷模式下热管理部件802的制冷功率为第一制冷功率;在第一制冷功率小于第二制冷功率的情况下,确定制冷模式下热管理部件802的制冷功率为第一制冷功率和第二制冷功率的平均值。
可选地,在本申请实施例中,第一目标温度包括最高目标温度和最低目标温度,控制模块803根据储能单元801的充放电电流,确定制冷模式下储能单元801的最高目标温度和最低目标温度。
可选地,在本申请实施例中,在多个电池中的温度最高的电池的温度不大于最高目标温度或多个电池中的温度最低的电池的温度不大于最低目标温度,以及热管理部件802的温度不大于第二目标温度的情况下,热管理部件802停止制冷。
可选地,在本申请实施例中,控制模块803根据储能单元801的充放电电流确定储能单元801的充放电状态。
可选地,在本申请实施例中,控制模块803在储能单元801的充放电电流的绝对值不小于第一电流阈值的情况下,确定储能单元801处于充放电状态。
可选地,在本申请实施例中,控制模块803在多个电池中的温度最高的电池的温度小于第四温度阈值,多个电池中的温度最低的电池的温度小于第五温度阈值,以及热管理部件802的温度不大于第六温度阈值的情况下,确定热管理部件802的工作模式为制热模式。
可选地,在本申请实施例中,控制模块803在储能单元801的放电电流的绝对值不小于第二电流阈值的情况下,确定热管理部件802的工作模式为第一制热模式。
可选地,在本申请实施例中,热管理部件802包括多个PTC加热器,控制模块803根据储能单元801的温度变化速率,确定第一制热模式下PTC加热器开启的数量;根据储能单元801的放电电流确定第一制热模式下储能单元801的第三目标温度和热管理部件802的第四目标温度。
可选地,在本申请实施例中,在多个电池中的温度最低的电池的温度不小于第三目标温度,以及热管理部件802的温度不小于第四目标温度的情况下,热管理部件802停止制热。
可选地,在本申请实施例中,控制模块803在储能单元801的充电电流的绝对值不小于第三电流阈值的情况下,确定热管理部件802的工作模式为第二制热模式。
可选地,在本申请实施例中,储能***的状态信息还包括储能单元801的荷电状态SOC,控制模块803在储能单元801的SOC不大于荷电阈值的情况下,确定多个PTC加热器全部开启,以使储能单元801的温度达到预设工作温度。
可选地,在本申请实施例中,控制模块803在储能单元801的温度达到预设工作温度的情况下,根据储能单元801的温度变化速率,确定第二制热模式下PTC加热器开启的数量;根据储能单元801的充电电流确定第二制热模式下储能单元801的第五目标温度和热管理部件802的第六目标温度。
可选地,在本申请实施例中,在多个电池中的温度最低的电池的温度不小于第五目标温度,以及热管理部件802的温度不小于第六目标温度的情况下,热管理部件802停止制热。
可选地,在本申请实施例中,控制模块803在储能单元801处于工作状态,储能单元801的温度和热管理部件802的温度达到目标温度的情况下,确定热管理部件802的工作模式为自循环模式。
可选地,在本申请实施例中,控制模块803在储能单元801处于静置状态的情况下,热管理部件802处于关闭状态。
本申请实施例还提供了一种储能***热管理的装置900,如图9所示,该装置900包括处理器901和存储器902,其中,存储器902用于存储计算机程序,处理器901用于调用计算机程序,使装置实现前述本申请各种实施例的方法。
本申请实施例还提供了一种可读存储介质,用于存储计算机程序,计算机程序被计算设备执行时使得计算设备实现前述本申请各种实施例的方法。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (40)

  1. 一种储能***热管理的方法,其特征在于,所述方法包括:
    获取所述储能***的状态信息,所述状态信息包括所述储能***的储能单元的温度信息和充放电信息,以及所述储能***的热管理部件的温度信息;
    根据所述状态信息确定所述储能***的热管理策略。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述状态信息确定所述储能***的热管理策略,包括:
    根据所述储能单元的温度信息和所述热管理部件的温度信息,确定所述热管理部件的工作模式;
    根据所述储能单元的温度信息和充放电信息,确定所述热管理部件的工作模式下的控制参数;
    所述工作模式包括:制热模式或制冷模式。
  3. 根据权利要求2所述的方法,其特征在于,所述储能单元包括多个电池,所述根据所述储能单元的温度信息和所述热管理部件的温度信息,确定所述热管理部件的工作模式,包括:
    在所述多个电池中的温度最高的电池的温度大于第一温度阈值,所述多个电池中的温度最低的电池的温度大于第二温度阈值,以及所述热管理部件的温度不小于第三温度阈值的情况下,确定所述热管理部件的工作模式为所述制冷模式。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述储能单元的温度信息和充放电信息,确定所述热管理部件的工作模式下的控制参数,包括:
    根据所述储能单元的温度变化速率和充放电电流,确定所述制冷模式下所述热管理部件的制冷功率;
    根据所述储能单元的充放电电流确定所述制冷模式下所述储能单元的第一目标温度和所述热管理部件的第二目标温度。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述储能单元的温度变化速率和充放电电流,确定所述制冷模式下所述热管理部件的制冷功率,包括:
    根据所述储能单元的温度变化速率,计算所述热管理部件的制冷功率为第一制冷功率;
    根据所述储能单元的充放电电流,计算所述热管理部件的制冷功率为第二制冷功率;
    在所述第一制冷功率大于所述第二制冷功率的情况下,确定所述制冷模式下所述热管理部件的制冷功率为所述第一制冷功率;
    在所述第一制冷功率小于所述第二制冷功率的情况下,确定所述制冷模式下所述热管理部件的制冷功率为所述第一制冷功率和所述第二制冷功率的平均值。
  6. 根据权利要求4或5所述的方法,其特征在于,所述根据所述储能单元的充放电电流确定所述制冷模式下所述储能单元的第一目标温度,包括:
    根据所述储能单元的充放电电流,确定所述制冷模式下所述储能单元的最高目标温度和最低目标温度。
  7. 根据权利要求6所述的方法,其特征在于,
    在所述多个电池中的温度最高的电池的温度不大于所述最高目标温度或所述多个电池中的温度最低的电池的温度不大于所述最低目标温度,以及所述热管理部件的温度不大于所述第二目标温度的情况下,所述热管理部件停止制冷。
  8. 根据权利要求3至7中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述储能单元的充放电电流确定所述储能单元的充放电状态。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述储能单元的充放电电流确定所述储能单元的充放电状态,包括:
    在所述储能单元的充放电电流的绝对值不小于第一电流阈值的情况下,确定所述储能单元处于充放电状态。
  10. 根据权利要求2至9中任一项所述的方法,其特征在于,所述储能单元包括多个电池,所述根据所述储能单元的温度信息和所述热管理部件的温度信息,确定所述热管理部件的工作模式,包括:
    在所述多个电池中的温度最高的电池的温度小于第四温度阈值,所述多个电池中的温度最低的电池的温度小于第五温度阈值,以及所述热管理部件的温度不大于第六温度阈值的情况下,确定所述热管理部件的工作模式为所述制热模式。
  11. 根据权利要求10所述的方法,其特征在于,所述确定所述热管理部件的工作模式为所述制热模式,包括:
    在所述储能单元的放电电流的绝对值不小于第二电流阈值的情况下,确定所述热管理部件的工作模式为第一制热模式。
  12. 根据权利要求11所述的方法,其特征在于,所述热管理部件包括多个正温度系数PTC加热器,所述根据所述储能单元的温度信息和充放电信息确定所述热管理部件的工作模式下的控制参数,包括:
    根据所述储能单元的温度变化速率,确定所述第一制热模式下所述PTC加热器开启的数量;
    根据所述储能单元的放电电流确定所述第一制热模式下所述储能单元的第三目标温度和所述热管理部件的第四目标温度。
  13. 根据权利要求12所述的方法,其特征在于,
    在所述多个电池中的温度最低的电池的温度不小于所述第三目标温度,以及所述热管理部件的温度不小于所述第四目标温度的情况下,所述热管理部件停止制热。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述确定所述热管理部件的工作模式为制热模式,包括:
    在所述储能单元的充电电流的绝对值不小于第三电流阈值的情况下,确定所述热管理部件的工作模式为第二制热模式。
  15. 根据权利要求14所述的方法,其特征在于,所述状态信息还包括所述储能单元的荷电状态SOC,所述热管理部件包括多个PTC加热器,所述方法还包括:
    在所述储能单元的SOC不大于荷电阈值的情况下,确定所述多个PTC加热器全部开启,以使所述储能单元的温度达到预设工作温度。
  16. 根据权利要求15所述的方法,其特征在于,所述根据所述储能单元的温度信息和充放电信息确定所述热管理部件的工作模式下的控制参数,包括:
    在所述储能单元的温度达到所述预设工作温度的情况下,根据所述储能单元的温度变化速率,确定所述第二制热模式下所述PTC加热器开启的数量;
    根据所述储能单元的充电电流确定所述第二制热模式下所述储能单元的第五目标温度和所述热管理部件的第六目标温度,所述第五目标温度大于所述预设工作温度。
  17. 根据权利要求16所述的方法,其特征在于,
    在所述多个电池中的温度最低的电池的温度不小于所述第五目标温度,以及所述热管理部件的温度不小于所述第六目标温度的情况下,所述热管理部件停止制热。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,所述方法还包括:
    在所述储能单元处于工作状态,所述储能单元的温度和所述热管理部件的温度达到目标温度的情况下,确定所述热管理部件的工作模式为自循环模式。
  19. 根据权利要求1至18中任一项所述的方法,其特征在于,
    在所述储能单元处于静置状态的情况下,所述热管理部件处于关闭状态。
  20. 一种储能***,其特征在于,包括:
    储能单元;
    热管理部件;和
    控制模块,所述控制模块用于获取所述储能***的状态信息,并根据所述状态信息确定所述储能***的热管理策略;
    其中,所述状态信息包括所述储能单元的温度信息和充放电信息,以及所述热管理部件的温度信息。
  21. 根据权利要求20所述的储能***,其特征在于,所述控制模块用于:
    根据所述储能单元的温度信息和所述热管理部件的温度信息,确定所述热管理部件的工作模式;
    根据所述储能单元的温度信息和充放电信息确定所述热管理部件的工作模式下的控制参数;
    所述工作模式包括:制热模式或制冷模式。
  22. 根据权利要求21所述的储能***,其特征在于,所述储能单元包括多个电池,所述控制模块用于:
    在所述多个电池中的温度最高的电池的温度大于第一温度阈值,所述多个电池中的温度最低的电池的温度大于第二温度阈值,以及所述热管理部件的温度不小于第三温度阈值的情况下,确定所述热管理部件的工作模式为所述制冷模式。
  23. 根据权利要求22所述的储能***,其特征在于,所述控制模块用于:
    根据所述储能单元的温度变化速率和充放电电流,确定所述制冷模式下所述热管理部件的制冷功率;
    根据所述储能单元的充放电电流确定所述制冷模式下所述储能单元的第一目标温度和所述热管理部件的第二目标温度。
  24. 根据权利要求23所述的储能***,其特征在于,所述控制模块用于:
    根据所述储能单元的温度变化速率,计算所述热管理部件的制冷功率为第一制冷功率;
    根据所述储能单元的充放电电流,计算所述热管理部件的制冷功率为第二制冷功率;
    在所述第一制冷功率大于所述第二制冷功率的情况下,确定所述制冷模式下所述热管理部件的制冷功率为所述第一制冷功率;
    在所述第一制冷功率小于所述第二制冷功率的情况下,确定所述制冷模式下所述热管理部件的制冷功率为所述第一制冷功率和所述第二制冷功率的平均值。
  25. 根据权利要求23或24所述的储能***,其特征在于,所述第一目标温度包括最高目标温度和最低目标温度,所述控制模块用于:
    根据所述储能单元的充放电电流,确定所述制冷模式下所述储能单元的所述最高目标温度和所述最低目标温度。
  26. 根据权利要求25所述的储能***,其特征在于,
    在所述多个电池中的温度最高的电池的温度不大于所述最高目标温度或所述多个电池中的温度最低的电池的温度不大于所述最低目标温度,以及所述热管理部件的温度不大于所述第二目标温度的情况下,所述热管理部件停止制冷。
  27. 根据权利要求22至26中任一项所述的储能***,其特征在于,所述控制模块还用于:
    根据所述储能单元的充放电电流确定所述储能单元的充放电状态。
  28. 根据权利要求27所述的储能***,其特征在于,所述控制模块用于:
    在所述储能单元的充放电电流的绝对值不小于第一电流阈值的情况下,确定所述储能单元处于充放电状态。
  29. 根据权利要求21至28中任一项所述的储能***,其特征在于,所述储能单元包括多个电池,所述控制模块用于:
    在所述多个电池中的温度最高的电池的温度小于第四温度阈值,所述多个电池中的温度最低的电池的温度小于第五温度阈值,以及所述热管理部件的温度不大于第六温度阈值的情况下,确定所述热管理部件的工作模式为所述制热模式。
  30. 根据权利要求29所述的储能***,其特征在于,所述控制模块用于:
    在所述储能单元的放电电流的绝对值不小于第二电流阈值的情况下,确定所述热管理部件的工作模式为第一制热模式。
  31. 根据权利要求30所述的储能***,其特征在于,所述热管理部件包括多个PTC加热器,所述控制模块用于:
    根据所述储能单元的温度变化速率,确定所述第一制热模式下所述PTC加热器开启的数量;
    根据所述储能单元的放电电流确定所述第一制热模式下所述储能单元的第三目标温度和所述热管理部件的第四目标温度。
  32. 根据权利要求31所述的储能***,其特征在于,
    在所述多个电池中的温度最低的电池的温度不小于所述第三目标温度,以及所述热管理部件的温度不小于所述第四目标温度的情况下,所述热管理部件停止制热。
  33. 根据权利要求29至32中任一项所述的储能***,其特征在于,所述控制模块用于:
    在所述储能单元的充电电流的绝对值不小于第三电流阈值的情况下,确定所述热管理部件的工作模式为第二制热模式。
  34. 根据权利要求33所述的储能***,其特征在于,所述状态信息还包括所述储能单元的SOC,所述热管理部件包括多个PTC加热器,所述控制模块还用于:
    在所述储能单元的SOC不大于荷电阈值的情况下,确定所述多个PTC加热器全部开启,以使所述储能单元的温度达到预设工作温度。
  35. 根据权利要求34所述的储能***,其特征在于,所述控制模块用于:
    在所述储能单元的温度达到所述预设工作温度的情况下,根据所述储能单元的温度变化速率,确定所述第二制热模式下所述PTC加热器开启的数量;
    根据所述储能单元的充电电流确定所述第二制热模式下所述储能单元的第五目标温度和所述热管理部件的第六目标温度。
  36. 根据权利要求35所述的储能***,其特征在于,
    在所述多个电池中的温度最低的电池的温度不小于所述第五目标温度,以及所述热管理部件的温度不小于所述第六目标温度的情况下,所述热管理部件停止制热。
  37. 根据权利要求20至36中任一项所述的储能***,其特征在于,所述控制模块还用于:
    在所述储能单元处于工作状态,所述储能单元的温度和所述热管理部件的温度达到目标温度的情况下,确定所述热管理部件的工作模式为自循环模式。
  38. 根据权利要求20至37中任一项所述的储能***,其特征在于,
    在所述储能单元处于静置状态的情况下,所述热管理部件处于关闭状态。
  39. 一种储能***热管理的装置,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序,使所述装置实现上述权利要求1至19中任一项所述的方法。
  40. 一种可读存储介质,其特征在于,所述可读存储介质存储有计算机程序,所述计算机程序被计算设备执行时使得所述计算设备实现上述权利要求1至19中任一项所述的方法。
PCT/CN2022/101723 2022-06-28 2022-06-28 储能***热管理的方法和储能*** WO2024000138A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/101723 WO2024000138A1 (zh) 2022-06-28 2022-06-28 储能***热管理的方法和储能***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/101723 WO2024000138A1 (zh) 2022-06-28 2022-06-28 储能***热管理的方法和储能***

Publications (1)

Publication Number Publication Date
WO2024000138A1 true WO2024000138A1 (zh) 2024-01-04

Family

ID=89383688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101723 WO2024000138A1 (zh) 2022-06-28 2022-06-28 储能***热管理的方法和储能***

Country Status (1)

Country Link
WO (1) WO2024000138A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111834701A (zh) * 2020-07-22 2020-10-27 上海快卜新能源科技有限公司 基于储能电池温度差异的温控装置
CN111916871A (zh) * 2020-07-16 2020-11-10 合肥阳光新能源科技有限公司 储能电池舱温控方法、储能放电控制方法及储能应用***
CN112531232A (zh) * 2020-12-01 2021-03-19 阳光电源股份有限公司 一种储能***及其热管理方法
WO2021260324A1 (fr) * 2020-06-23 2021-12-30 Hutchinson Dispositif thermique a alimentation controlee en fluide fusible

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021260324A1 (fr) * 2020-06-23 2021-12-30 Hutchinson Dispositif thermique a alimentation controlee en fluide fusible
CN111916871A (zh) * 2020-07-16 2020-11-10 合肥阳光新能源科技有限公司 储能电池舱温控方法、储能放电控制方法及储能应用***
CN111834701A (zh) * 2020-07-22 2020-10-27 上海快卜新能源科技有限公司 基于储能电池温度差异的温控装置
CN112531232A (zh) * 2020-12-01 2021-03-19 阳光电源股份有限公司 一种储能***及其热管理方法

Similar Documents

Publication Publication Date Title
WO2022151696A1 (zh) 储能液冷***及温度控制方法
CN110299580B (zh) 一种电池自加热保温装置
Gou et al. The thermal performance of a novel internal cooling method for the electric vehicle battery: An experimental study
CN105826619B (zh) 锂离子动力电池包恒温热管理***
TWM576749U (zh) 電池溫度控制裝置和充換電站
CN102376997B (zh) 具有温度调节装置的电池***
WO2013023415A1 (zh) 液流电池***及其控制方法和装置
CN114335648B (zh) 全钒液流电池***的控制方法和控制***
WO2023098322A1 (zh) 热管理部件、电池及用电设备
CN116613430A (zh) 浸没式液冷储能用电池模组主动式热管理方法及***
CN111244571A (zh) 一种方形锂电池组热管理结构及其方法
CN116345014B (zh) 一种大型储能***热管理方法、电子设备及存储介质
Goud et al. An experimental investigation and hybrid neural network modelling of thermal management of lithium-ion batteries using a non-paraffinic organic phase change material, Myristyl alcohol
CN203617407U (zh) 储能蓄电池
CN108199115B (zh) 电动汽车锂电池的散热***
WO2024000138A1 (zh) 储能***热管理的方法和储能***
CN103647118B (zh) 电池温控装置
Wang et al. Design and experiment of a novel stepwise preheating system for battery packs coupled with non-dissipative balancing function based on supercapacitors
CN109860738A (zh) 快充快放石墨烯基锂离子电池***
KR101573227B1 (ko) 전지팩의 온도 제어 방법
JP7357700B2 (ja) 充電方法及び電力変換装置
CN115472954A (zh) 一种电芯单元、锂电池组及其热管控制方法
CN110797604B (zh) 一种均衡风冷电池箱***及控制方法
WO2023245931A1 (zh) 储能***的控制方法和储能***
CN108493522A (zh) 一种液态金属电池在储能应用中的温度调控方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948261

Country of ref document: EP

Kind code of ref document: A1