WO2023286683A1 - 高純度硫酸ニッケルの製造方法 - Google Patents

高純度硫酸ニッケルの製造方法 Download PDF

Info

Publication number
WO2023286683A1
WO2023286683A1 PCT/JP2022/026911 JP2022026911W WO2023286683A1 WO 2023286683 A1 WO2023286683 A1 WO 2023286683A1 JP 2022026911 W JP2022026911 W JP 2022026911W WO 2023286683 A1 WO2023286683 A1 WO 2023286683A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel sulfate
crystallization
nickel
solid
lithium
Prior art date
Application number
PCT/JP2022/026911
Other languages
English (en)
French (fr)
Inventor
知広 本田
安玉 章
昌幸 横田
暢之 田上
Original Assignee
戸田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田工業株式会社 filed Critical 戸田工業株式会社
Priority to JP2023534753A priority Critical patent/JPWO2023286683A1/ja
Priority to CA3225490A priority patent/CA3225490A1/en
Publication of WO2023286683A1 publication Critical patent/WO2023286683A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for producing high-purity nickel sulfate. More particularly, the present invention relates to a method for removing magnesium, especially contained as an impurity, from nickel sulfate. INDUSTRIAL APPLICABILITY
  • the present invention can be applied to aqueous solutions of nickel sulfate generated in the extraction of nickel from ores, the recycling process of lithium-ion secondary batteries, the acid treatment process of lithium-nickel composites, and the like.
  • Nickel sulfate is obtained as a product or by-product through the extraction of nickel from ores, the recycling process of lithium-ion secondary batteries, or the acid treatment process of lithium-nickel composites.
  • Nickel sulfate thus obtained is used as a synthetic raw material for lithium ion secondary battery positive electrode materials, primary battery positive electrode materials, various catalysts, and the like.
  • nickel sulfate When using nickel sulfate as a raw material for the above applications, one of the important physical properties of nickel sulfate is its high purity. In order to meet this demand, crystallization methods, solvent extraction methods, and precipitation methods using alkali hydroxide have been developed as methods for purifying nickel sulfate.
  • Non-Patent Document 1 reports that sodium, chlorine, and magnesium tend to be mixed into nickel sulfate crystals by cooling crystallization, and magnesium is contained in nickel sulfate more than other elements. It has been shown to be easy to remain. As shown in this example, using crystallization to remove magnesium is not an efficient technique.
  • Patent Document 1 describes a technique in which an organic phase retaining nickel and a crude nickel sulfate solution containing impurities are brought into contact in countercurrent flow to separate the impurities from nickel through a substitution reaction. ing. Although magnesium in the nickel solution is reduced by this method, its removal rate is low because magnesium's reaction behavior is similar to that of nickel. As seen in this example, solvent extraction is not a technique that can effectively remove magnesium from nickel sulfate.
  • Patent Document 2 discloses that an alkali hydroxide such as calcium hydroxide is added to an aqueous solution of nickel sulfate containing magnesium as an impurity, and nickel is removed by solid-liquid separation to form a nickel hydroxide precipitate. and separates the magnesium into a filtrate, and separates and recovers the dissolved magnesium as a precipitate by neutralization.
  • an alkali hydroxide such as calcium hydroxide
  • This method utilizes the property that nickel and magnesium precipitate in an aqueous solution with different pH values. It is difficult to say that it is an advantageous method because it requires a very high level of skill in order to maximize the operation.
  • the nickel hydroxide precipitate obtained by the addition of alkali hydroxide has a strong tendency to precipitate as fine particles.
  • problems that hinder practical operation such as the need to prepare a relatively large solid-liquid separation device in order to obtain it, or the economic efficiency decreases due to the introduction of a special filtration device. Not an efficient technique.
  • Patent Document 3 discloses a technique that combines a carbonation process, a solid-liquid separation process, and a neutralization process in order to selectively separate and remove magnesium contained in an aqueous nickel sulfate solution.
  • the pH adjustment will be easier than when using an alkali hydroxide, and the filterability of the precipitate will be improved.
  • the problem is that the high magnesium removal rate obtained by the method cannot be obtained.
  • the yield of nickel which is the main component, is greatly reduced if the operation is performed under conditions that increase the removal rate of magnesium. Therefore, although it is possible to reduce magnesium, it is not an efficient technique for magnesium removal that achieves both a nickel yield and a magnesium removal rate.
  • Patent Document 4 describes a technique that combines a hydroxylation process, a carbonation process, a solid-liquid separation process, and a neutralization process. Using this technique, it is possible to precipitate hydroxides with alkali hydroxide under conditions that allow easy pH adjustment. be recovered. This technique avoids the problem of pH adjustment, which requires a high degree of control, and improves nickel yields and magnesium removal rates.
  • the amount of carbonation additive used in the carbonation process is increased, the amount of alkali metal derived from the carbonation additive mixed in the process of repeating nickel reuse increases and is incorporated into nickel. As the amount of alkali metals added increases, nickel sulfate, which is the final product, is contaminated with alkali metals.
  • Patent Document 5 describes a method of producing basic nickel carbonate with excellent filterability by using an alkali carbonate and adding an alkali hydroxide as necessary.
  • sodium carbonate is used as the alkali metal carbonate.
  • Patent Literature 1 discloses a method of reducing impurities in a nickel solution using an exchange reaction. This technique allows the sodium contained in the aqueous nickel sulfate solution to be separated. Although the amount of by-products generated is reduced by applying solvent extraction using pH adjustment to a portion of the nickel sulfate that requires treatment, a certain percentage of raw nickel is extracted and processed.
  • Non-Patent Document 1 a method of removing sodium by crystallization to obtain high-purity nickel sulfate crystals is also conceivable.
  • sodium is concentrated in the crystallization mother liquor by continuing this operation, and the amount of sodium mixed in the nickel sulfate crystals gradually increases. continue.
  • a certain nickel/sodium concentration ratio is reached, a double salt of nickel sulfate and sodium sulfate begins to precipitate, making it impossible to obtain high-purity nickel sulfate crystals by crystallization.
  • the technique of recovering high-purity nickel by adding alkali hydroxide or alkali carbonate which is considered to be superior to the crystallization method and solvent extraction method, is also effective in removing magnesium while yielding high nickel yields.
  • the technology to achieve this was not established.
  • the carbonated nickel is used repeatedly, the amount of impurities mixed in the regenerated nickel sulfate is kept at a low level, and the quality of high-purity nickel sulfate is maintained. The technology to do so was not established.
  • the present invention has been devised in view of the above-mentioned circumstances, and solves these problems related to the removal of magnesium and the improvement of its purity at the same time.
  • the purpose is to significantly improve performance.
  • the method disclosed by the present invention is to select the appropriate chemical species as a carbonation additive to separate nickel and magnesium, and apply it to a two-stage crystallization process as a nickel sulfate manufacturing process. It is a manufacturing method characterized by
  • lithium carbonate as a carbonation additive, which has never been used before.
  • the precipitate obtained in this step not only has a high precipitation rate but is also excellent in filterability, so solid-liquid separation is easy.
  • a certain amount of lithium is contained as an impurity in the solid content recovered by solid-liquid separation.
  • This precipitate is regenerated into an aqueous nickel sulfate solution using sulfuric acid or an aqueous nickel sulfate solution containing excess sulfuric acid.
  • this aqueous solution is supplied to a step in which a concentrated crystallization operation and a cooling crystallization operation are alternately repeated, whereby high-purity lithium sulfate crystals are obtained by the concentrated crystallization operation, and high-purity nickel sulfate crystals are obtained by the cooling crystallization. can get.
  • the liquid generated by solid-liquid separation becomes an aqueous solution in which magnesium, a small amount of nickel, and lithium are dissolved.
  • Lithium hydroxide is added to this aqueous solution, and magnesium and a small amount of nickel are recovered as solids. Dissolved lithium sulfate can be introduced into the concentrated crystallization step after appropriate pH adjustment.
  • the first gist of the present invention is a production method characterized by comprising the following steps (1) to (3) as steps for producing a nickel sulfate aqueous solution in which magnesium is removed from nickel sulfate. resides in (1) A carbonation step of mixing an aqueous solution of nickel sulfate and lithium carbonate to obtain a slurry containing nickel carbonate as a solid content (2) A solid-liquid separation step of separating the slurry obtained in the carbonation step into solid and liquid ( 3) A dissolution step of dissolving the solid content obtained in the above step with a solution containing sulfuric acid
  • the second gist of the present invention is that the lithium-containing nickel sulfate aqueous solution obtained in the dissolving step (3) of dissolving in a solution containing sulfuric acid is subjected to concentrated crystallization to obtain a slurry containing lithium sulfate as a solid content.
  • the nickel sulfate aqueous solution according to the first aspect which includes a solid-liquid separation step of separating the slurry obtained in the precipitation step and the concentration crystallization step into solid and liquid to obtain the solid content of lithium sulfate crystals and the crystallization mother liquor. It depends on the manufacturing method.
  • the third gist of the present invention is a cooling crystallization step of obtaining a slurry containing nickel sulfate as a solid content by cooling the crystallization mother liquor separated in the concentration crystallization step, and the slurry obtained by the cooling crystallization. is separated into a solid and a liquid to obtain a solid content of nickel sulfate crystals and a crystallization mother liquor, and the nickel sulfate is taken out as crystals.
  • the fourth gist of the present invention resides in the method for producing an aqueous nickel sulfate solution according to the second or third gist, including the operation of returning the crystallization mother liquor separated in the cooling crystallization step to the concentrated crystallization step.
  • the fifth gist of the present invention is a solution obtained by subjecting the liquid obtained in the solid-liquid separation step (2) after the carbonation step to pH adjustment and solid-liquid separation to remove dissolved carbonic acid and polyvalent metals. and introducing the obtained solution into the concentrated crystallization step.
  • the sixth gist of the present invention resides in the method for producing an aqueous nickel sulfate solution according to any one of the second to fifth gists, wherein the operating temperature in the concentrated crystallization step is 40°C or higher.
  • the seventh gist of the present invention is the production of the nickel sulfate aqueous solution according to any one of the third to sixth gists, wherein the operating temperature in the cooling crystallization step is 20°C or more lower than the operating temperature in the concentrated crystallization step. It depends on the method.
  • a solid content containing nickel carbonate is obtained as a precipitate.
  • One of the effects of the present invention is that even if the amount of lithium carbonate added is less than the theoretical equivalent, it is possible to recover nickel with high yield and high purity.
  • the nickel carbonate-containing solid content obtained in this way has a large aggregate particle diameter, so that it has a high sedimentation velocity and is excellent in filterability, so solid-liquid separation can be easily carried out. Therefore, even if it is a general-purpose filtration apparatus, solid content can be efficiently collect
  • This nickel carbonate-containing solid content is further dissolved in an aqueous solution containing sulfuric acid.
  • This solution contains nickel sulfate and trace amounts of lithium sulfate.
  • lithium sulfate crystals are obtained as a solid content, and nickel sulfate is concentrated in the crystallization mother liquor.
  • High-purity lithium sulfate crystals can be obtained by appropriately washing the solid content.
  • the lithium sulfate obtained in this step has a quality suitable for reuse as a raw material for producing lithium carbonate and lithium hydroxide.
  • the concentrated crystallization mother liquor is further transferred to the cooling crystallization step to obtain nickel sulfate as crystals.
  • nickel sulfate as crystals.
  • high-purity nickel sulfate crystals can be obtained.
  • the liquid generated in the carbonation process also becomes a lithium sulfate solution after removing the magnesium component, and this solution can be introduced into the concentrated crystallization process. Therefore, the waste liquid treatment of the carbonation step and the step of recovering lithium sulfate, which is a valuable material, can be carried out in one step, so that the steps can be simplified and the economic efficiency can be further improved.
  • Carbon dioxide gas is generated in the process of dissolving nickel carbonate-containing solids with sulfuric acid. If it is desired to reduce the amount of carbon dioxide gas emitted, it is possible to synthesize lithium carbonate by absorbing carbon dioxide gas through a reaction with lithium hydroxide. The lithium carbonate thus obtained can be reused as a carbonating additive for nickel sulfate. Therefore, the carbon dioxide gas is repeatedly used in the process, and the amount continuously discharged out of the process can be greatly reduced.
  • FIG. 1 is a production flow diagram of high-purity nickel sulfate and high-purity lithium sulfate of the present invention.
  • FIG. FIG. 4 is a diagram showing the relationship between the magnesium removal rate with respect to the solid content obtained in the carbonation step and the carbonation temperature in Examples using the present invention.
  • FIG. 4 is a diagram showing the relationship between the yield of solids obtained in the carbonation step and the carbonation temperature in Examples using the present invention.
  • FIG. 5 is a diagram showing the relationship between the yield of solids obtained in the carbonation step and the magnesium removal rate, for examples using the present invention and comparative examples using a known technique.
  • an example manufacturing flow consists of carbonation, decarboxylation, neutralization, dissolution, concentration crystallization, cooling crystallization, and solid-liquid separation steps.
  • the combination of unit operations that constitute the actual process is not limited to this example, and a person skilled in the art who has experience with such technology can make modifications without departing from the spirit of the present invention. can be done.
  • nickel sulfate containing magnesium as an impurity is mixed with an aqueous solution of lithium carbonate to precipitate nickel carbonate-containing solids.
  • the equivalent ratio of lithium carbonate to nickel is preferably 1 or less, more preferably 0.9 or less.
  • the precipitation temperature is preferably 50°C or higher.
  • the difference in temperature does not significantly affect the removal rate of magnesium, but does change the yield of nickel. Therefore, from the viewpoint of nickel yield, the temperature is preferably 70° C. or higher. Although it is possible to operate at a temperature higher than 70°C, it is more advantageous to operate in a temperature range of around 70°C because there are many restrictions on the materials of usable equipment and equipment design. From the above point of view, the upper limit of the precipitation temperature is preferably 110°C.
  • the concentration of the raw material solution can be determined arbitrarily, but the higher the nickel sulfate concentration, the higher the efficiency. At room temperature, a solution with a concentration of 26% by weight of nickel sulfate can be easily prepared. A higher temperature may be used to prepare a raw material solution in which a larger amount of nickel sulfate is dissolved. For the reaction at 70° C., the raw material solution may also be heated to 70° C. to dissolve, for example, 35% by weight of nickel sulfate.
  • the upper limit of the concentration of the raw material solution is preferably not more than the saturated concentration that can be stably handled at the temperature at which the solution is prepared.
  • the nickel carbonate-containing solid content tends to precipitate, so it is necessary to properly stir the reaction tank.
  • the stirring method a known method can be used and can be selected as appropriate.
  • the carbonation process may be carried out by any operation of batch type, continuous type, or semi-batch type. However, it is preferable to secure a residence time or reaction time of the slurry in the reaction vessel for 1 hour or longer. If this time is too short, the reaction between lithium carbonate and nickel sulfate may not be completed. If the residence time of the slurry or the reaction time is too long, the reaction will complete, but the efficiency will be poor in terms of time.
  • the nickel carbonate-containing solid content obtained in the carbonation step is separated into solid content and liquid content in the solid-liquid separation step.
  • the solid-liquid separation device an appropriate device such as a vacuum filtration type or a pressure filtration type may be selected.
  • a vacuum filtration type or a pressure filtration type may be selected.
  • a large amount of nickel is dissolved under conditions that increase the magnesium removal rate. It is very different from the effect brought about by the invention.
  • the solid content obtained in this process is regenerated into a nickel sulfate aqueous solution by adding sulfuric acid.
  • concentration of nickel sulfate can be set arbitrarily, it is preferable to set the concentration as high as possible in order to proceed advantageously with the subsequent concentration crystallization step.
  • the nickel-containing precipitate is contaminated with sodium derived from the carbonating agent, and even if an attempt is made to obtain high-purity nickel sulfate by crystallization, sodium sulfate is concentrated in the crystallization mother liquor. It formed a double salt with nickel sulfate, making separation and purification difficult.
  • lithium carbonate as a carbonating additive, it is possible to solve the problem of double salt formation in the crystallization process and obtain high-purity nickel sulfate.
  • the lithium-containing nickel sulfate aqueous solution obtained in the dissolution step is subjected to a concentrated crystallization operation by a known method using either heating or reduced pressure, or a combination of both. Since the solubility of lithium sulfate tends to decrease as the temperature rises, it is advantageous to carry out the concentration crystallization operation in a high temperature range. C. to 110.degree. C., preferably 60.degree. C. to 90.degree.
  • the solid content of the lithium sulfate crystals obtained by the concentration crystallization operation is separated by a solid-liquid separator.
  • a centrifugal separator is generally used as this device, but other types may also be used.
  • the crystals are washed using an aqueous medium such as water, hot water, or an aqueous solution of lithium sulfate with high purity. Since a cleaning liquid such as ethanol in which lithium sulfate is difficult to dissolve can be used, the cleaning liquid should be selected in consideration of the increase in waste liquid treatment cost. If washing is performed with water, hot water, or an aqueous solution of lithium sulfate, the washing waste liquid can be directly returned to the concentration and crystallization step.
  • a part of the concentrated crystallization mother liquor is extracted and transferred to the cooling crystallizer.
  • nickel sulfate precipitates as crystals due to the change in solubility.
  • This crystal is also washed by a suitable solid-liquid separation and washing device.
  • a centrifugal separator is generally used, and an aqueous medium such as a small amount of water, cold water, or a highly pure nickel sulfate aqueous solution is used as a washing liquid.
  • This washing waste liquid can be returned to the cooling crystallization step, but since the efficiency of the cooling crystallization is lowered, it is more operationally advantageous to return it to the concentrated crystallization step.
  • a part of the cooling crystallization mother liquor is extracted and returned to the concentrated crystallizer. Lithium sulfate remaining in the mother liquor forms crystals by a concentration crystallization operation, and nickel sulfate is concentrated again.
  • the solubility of nickel sulfate decreases as the temperature decreases, it is preferable to carry out the cooling crystallization operation at a lower temperature. °C to 60 °C. If the difference from the operating temperature of the concentration crystallization step is small, the efficiency of crystal precipitation in each step is lowered, so it is preferable to set the temperature difference to 30° C. or more. For example, if the concentrated crystallization is operated at 70° C. and the cooling crystallization is operated at 35° C., the load of heating and cooling can be reduced.
  • Eutectic Freeze Crystallization can also be applied to cooling crystallization.
  • water crystals (ice) are generated as floating matter in the process of obtaining nickel sulfate crystals as a precipitate, and by solid-liquid separation of these, the concentration of the crystallization mother liquor can be achieved at the same time.
  • the vaporization energy required for concentration of the solution can be reduced as a whole system without departing from the concept of the present invention.
  • the liquid generated in the carbonation process and the subsequent solid-liquid separation process contains lithium sulfate and trace amounts of nickel and magnesium.
  • sulfuric acid is first added to lower the pH to liberate and remove the carbon dioxide gas.
  • the pH is controlled to be 4 or less.
  • a depressurization operation may be carried out together.
  • the neutralization step is to remove the minute amounts of nickel and magnesium that are dissolved by neutralization as solids.
  • Any alkaline hydroxide can be selected as the neutralizing agent, but lithium hydroxide is preferably used if the solution is to be treated in the crystallization step. If the liquid component is supplied to the crystallization step using any other alkali hydroxide, the concentration of impurities in the lithium sulfate obtained in the crystallization step increases.
  • the pH is adjusted so that nickel and magnesium are sufficiently precipitated.
  • the pH is preferably 8 or higher, more preferably 10 or higher.
  • the liquid obtained from the neutralization process and the solid-liquid separation process becomes a lithium sulfate aqueous solution.
  • sulfuric acid is added in advance such that lithium ions and sulfate ions are stoichiometrically equivalent.
  • the pH of the lithium sulfate solution is preferably adjusted to about 3.5 to 6.0.
  • the content of magnesium in the high-purity nickel sulfate obtained in the present invention is usually 300 (mg (Mg) / kg (Ni)) or less, preferably 100 ( mg (Mg)/kg (Ni)) or less.
  • the nickel concentration in the raw material solution and the high-concentration nickel content in the solid content recovered after the carbonation process were measured by a known chelate titration method using a copper ion selective electrode.
  • the contents of nickel, lithium, and magnesium contained at low concentrations were measured using an ICP emission spectrometer iCAP6500 Duo (manufactured by Thermo Fisher Scientific Co., Ltd.).
  • the pH of the slurry obtained by carbonation was measured using a pH meter HM-30P (manufactured by Toa DKK Co., Ltd.).
  • Examples 1-4 ⁇ Separation of nickel and magnesium in carbonation step and yield of nickel>
  • a simulated raw material aqueous solution was prepared so as to have a nickel sulfate concentration of 316 g/L and a magnesium sulfate concentration of 371 mg/L. About 40 mL of this solution was measured and transferred to a 1 L stainless steel container.
  • An aqueous solution of lithium carbonate (concentration shown in Table 1) was prepared as a carbonation additive and heated at 50°C (Example 1), 60°C (Example 2), 70°C (Example 3), and 80°C (Example 4). ) was added to the above simulated solution over about 90 minutes while maintaining each temperature so that the equivalence ratio shown in Table 1 was obtained.
  • the magnesium content shown in Table 1 is the magnesium element content (mg (Mg)/kg (Ni)) normalized by the nickel element content.
  • Fig. 2 shows the proportion of magnesium dissolved in the liquid that was contained in the simulated mother liquor but did not migrate into the nickel precipitate, that is, the magnesium removal rate relative to the solid content. It can be seen that the removal rate is as high as about 90% under any treatment conditions.
  • Figure 3 shows the percentage of nickel recovered as a solid content, that is, the yield of nickel. It can be seen that the yield of nickel is higher when the treatment temperature is 70 and 80°C than when the treatment temperature is 50 and 60°C.
  • Comparative Example 1 ⁇ Separation of Nickel and Magnesium and Nickel Yield in Carbonation Process Based on Conventional Technology> Experiments were conducted according to the prior art for magnesium removal using sodium carbonate as the carbonating additive.
  • the holding temperature of the reaction vessel was 40° C.
  • the concentration of the additive solution was adjusted to 3.10% by weight by using an aqueous solution of sodium carbonate instead of the aqueous solution of lithium carbonate, and the equivalent ratio of sodium carbonate to nickel sulfate was 0.
  • Processing was carried out as in Example 1, except that 0.68 was used.
  • Comparative Example 2 In an experiment similar to Comparative Example 1, the equivalent ratio of sodium carbonate to nickel sulfate was 1.18.
  • FIG. 4 shows the relationship between the percentage of nickel recovered as a solid content and the magnesium removal rate of the solid content for the samples obtained in Comparative Examples 1 and 2, together with the results of Examples 1 and 4.
  • a high nickel recovery rate about 80% or more
  • a high magnesium removal rate about 80% or more
  • Example 5 ⁇ Filtration rate of solid content cake obtained in the carbonation step> A carbonation reaction was carried out in the same manner as in Example 4 except that about 75 mL of the raw material solution was used, a 2 L stainless steel container was used as the reaction vessel, and the retention time after addition of lithium carbonate was set to 3 hours.
  • Comparative Example 3 ⁇ Filtration rate of solid content cake obtained by alkali hydroxide method based on conventional technology> 65 mL of the raw material solution was used, a 2 L stainless steel vessel was used as the reaction vessel, an aqueous solution of lithium hydroxide was used as the precipitation additive, the equivalent ratio of the additive was 0.9, and the amount of washing water was 200 mL. Except for this, the precipitation reaction and filtration rate were measured in the same manner as in Example 5. At this time, the lithium concentration in the lithium hydroxide aqueous solution was adjusted to be the same as the lithium concentration in the lithium carbonate aqueous solution in Example 5. The results are shown in Table 2.
  • Comparative Example 4 ⁇ Filtration rate of solid content cake obtained in carbonation process based on conventional technology> The carbonation reaction was carried out in the same manner as in Example 5, except that sodium carbonate was used as the precipitating additive.
  • Example 5 From Table 2, it can be seen that the yield of nickel in Example 5 and Comparative Examples 3 and 4 is almost the same. At this time, it is clear that the solid content cake obtained in Example 5 is significantly superior to that obtained in Comparative Example 3 in filterability. Furthermore, it is clear that the filterability of Example 5 is significantly superior to Comparative Example 4 using sodium carbonate as an additive.
  • Example 6 ⁇ Separation of nickel sulfate and lithium sulfate by crystallization> Even when lithium is concentrated in the crystallization mother liquor, lithium sulfate can be separated by concentrated crystallization according to the present invention, and high-purity nickel sulfate crystals are obtained by subsequent cooling crystallization. Simulated mother liquors were prepared from nickel sulfate and lithium sulfate reagents to confirm that the The simulated mother liquor was made to contain nickel sulfate and lithium sulfate in an amount of 5.08% by weight in terms of metallic nickel and 1.23% by weight in terms of metallic lithium, respectively.
  • a 1.52-fold concentration of the simulated mother liquor used in concentration crystallization was used as the starting mother liquor for cooling crystallization, and 3.1 L of this concentrate was placed in the crystallization vessel.
  • the temperature of the cooling water flowing through the heat insulating jacket was controlled so that the inside of the vessel was maintained at 25° C. during cooling crystallization.
  • Table 3 shows the analysis results of the crystals obtained by a series of operations, the simulated mother liquor, and the crystallization mother liquor after cooling crystallization.
  • the cooling crystallization mother liquor has a nickel/lithium ratio equal to that of the raw material solution, the cooling crystallization mother liquor can be returned to the concentrated crystallization step as it is, and can be repeatedly used for crystallization of lithium sulfate crystals. I understand.
  • nickel and magnesium can be effectively separated, and a precipitate with excellent filterability can be obtained. Further, after the precipitate is regenerated into an aqueous solution of nickel sulfate, nickel sulfate and lithium sulfate contained in the aqueous solution are separated by concentrated crystallization and cooling crystallization according to the present invention, and high-purity nickel sulfate is obtained. Obtainable.
  • Magnesium contained in the raw material can be removed out of the system through the neutralization process, and lithium derived from the carbonation additive is recovered as lithium sulfate in the crystallization process, so it is possible to use it in the process of refining nickel sulfate. Accumulation of impurities in the product does not affect the nickel sulfate crystals. Therefore, nickel sulfate from which magnesium has been removed can be continuously obtained in the form of an aqueous solution or crystals at a high yield throughout the purification process.
  • the method for producing high-purity nickel sulfate of the present invention can be easily applied to existing equipment, can produce nickel sulfate efficiently with high yield, and can reuse chemical products other than the target product generated in each process. Because it can be done, it is extremely economical.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

不純物として含まれるマグネシウムを硫酸ニッケルから除去する方法および高純度硫酸ニッケルの製造方法を提供する。 本発明は硫酸ニッケルからマグネシウムが除去された硫酸ニッケル水溶液を製造する工程として、下記(1)から(3)に示す工程から構成されることを特徴とする製造方法である。 (1)硫酸ニッケル水溶液と炭酸リチウムとを混合して炭酸ニッケルを含む固形分とするスラリーを得る炭酸化工程 (2)前記炭酸化工程で得られるスラリーを固液に分離する固液分離工程 (3)前記工程で得られる固形分について、硫酸を含む溶液で溶解する溶解工程

Description

高純度硫酸ニッケルの製造方法
 本発明は、高純度硫酸ニッケルの製造方法に関する。詳しくは、本発明は、特に不純物として含まれるマグネシウムを硫酸ニッケルから除去する方法に関する。本発明は、鉱石からのニッケル抽出、リチウムイオン二次電池のリサイクル工程、またはリチウムニッケル複合物の酸処理工程等で発生する硫酸ニッケル水溶液に適用できる。
 硫酸ニッケルは、鉱石からのニッケル抽出、リチウムイオン二次電池のリサイクル工程、またはリチウムニッケル複合物の酸処理工程等を経て製品または副生成物として得られる。このようにして得られる硫酸ニッケルは、リチウムイオン二次電池正極材、一次電池正極材、各種触媒等の合成原材料として利用されている。
 上記の用途の原材料として硫酸ニッケルを用いる場合、硫酸ニッケルの重要な物性の一つとして高純度であることが挙げられる。この要求に応えるために、硫酸ニッケルの精製方法として晶析法、溶媒抽出法、および水酸化アルカリを使用した沈殿法等が開発されている。
 これらの開発された精製方法によって、マグネシウムを除く主要な多価金属の不純物元素を効率的に取り除くことは可能になっているが、マグネシウムだけは効率的に除去できる工業プロセスが確立されているとは言い難い。
 晶析法によるマグネシウム除去に関して、非特許文献1では、冷却晶析によってナトリウム、塩素、マグネシウムが硫酸ニッケル結晶へと混入する傾向が報告されており、マグネシウムは他の元素に比べて硫酸ニッケル中に残留しやすいことが示されている。この例で示されているように、晶析法を用いてマグネシウムを除去することは効率的な技術ではない。
 溶媒抽出法によるマグネシウム除去に関して、特許文献1には、ニッケルを保持する有機相と不純物を含む粗硫酸ニッケル溶液とを向流的に接触させ、置換反応によって不純物をニッケルから分離する手法が記載されている。この方法によってニッケル溶液中のマグネシウムは低減されているが、マグネシウムの反応挙動がニッケルと似ているために、その除去率は低い。この例に見られるように、溶媒抽出法はマグネシウムを効率的に硫酸ニッケルから除去できる技術ではない。
 沈殿法によるマグネシウム除去に関して、特許文献2には、不純物としてマグネシウムを含有する硫酸ニッケル水溶液中に、水酸化カルシウムのようなアルカリ水酸化物を添加し、固液分離によってニッケルを水酸化ニッケル沈殿物として回収し、マグネシウムを濾液へと分離し、この溶存マグネシウムを中和によって沈殿物として分離回収する手法が記載されている。
 この手法は、ニッケルとマグネシウムとでは、水溶液中で沈殿するpHが異なる性質を利用した方法であるが、そのpHの差異は大きくなく、この工程をマグネシウムの共沈を避けながらニッケルの収率を最大化させるように運用するためには、非常に高い技術を要するため、有利な方法とは言い難い。また、水酸化アルカリの添加によって得られる水酸化ニッケル沈殿物は、微粒子として析出する傾向が強く、大量の硫酸ニッケルを処理する場合、濾過速度が遅いために効率が下がるか、適切な濾過速度を得るために相対的に巨大な固液分離装置を用意する必要性が生じるか、あるいは特殊な濾過装置を導入するために経済性が低下するなど、実用的な運用を阻害する問題を有するため、効率的な技術ではない。
 また、特許文献3には、硫酸ニッケル水溶液中に含まれるマグネシウムを選択的に分離除去するために、炭酸化工程、固液分離工程、および中和工程を組み合わせた手法が公開されている。炭酸化という手法を用いることで、水酸化アルカリを使用する場合に比べてpH調整が容易になり、沈殿物の濾過性が改善することが予測されるが、特許文献2に記載のpH調整法で得られるような高いマグネシウム除去率が得られない点が問題である。また、マグネシウムの除去率を高くするような条件で操作すると、主成分であるニッケルの収率が大幅に低下するとう点も問題である。したがって、マグネシウムの低減は可能であるが、ニッケルの収率とマグネシウム除去率を両立したマグネシウム除去として、効率的な技術ではない。
 また、特許文献4には、水酸化工程、炭酸化工程、固液分離工程、および中和工程を組み合わせた手法が記載されている。この技術を用いると、容易にpH調整が可能な条件で水酸化アルカリによる水酸化物の析出操作が可能になり、この操作の後に溶存している少量のニッケルは引き続き炭酸化工程で沈殿物として回収される。この技術によって高度な制御が要求されるpH調整の問題は回避でき、ニッケルの収率とマグネシウムの除去率を改善することができている。しかしながら、炭酸化工程で使用する炭酸化添加剤の使用量を増やすと、ニッケルの再利用を繰り返す工程内に混入する炭酸化添加剤に由来するアルカリ金属量の量が増えて、ニッケルへと取り込まれるアルカリ金属量が増えるために、最終的には製品である硫酸ニッケルがアルカリ金属で汚染されてしまう。このため、この技術で使用できる炭酸化添加剤の使用量は制限されており、硫酸ニッケルの大部分は水酸化アルカリ添加による水酸化ニッケルとして回収しなければならない。したがって、前述の理由によって固液分離工程への負荷が増加するため、実用的な観点からすると効率的な技術とは言い難い。
 ニッケルを沈殿物として得る場合、塩基性炭酸ニッケルのような炭酸ニッケル含有固形分として析出操作を実施することが、固液分離の点から好ましい。例えば、特許文献5には、アルカリ炭酸塩を用いて、必要に応じてアルカリ水酸化物を加えて、濾過性に優れる塩基性炭酸ニッケルを製造する手法が記載されている。この公報における実施例では、アルカリ金属炭酸塩として炭酸ナトリウムが用いられている。
 しかし、炭酸ナトリウムを炭酸化添加剤として使用すると、前述したようにニッケル中へのアルカリ金属、すなわちナトリウムの混入が避けられず、ニッケル原料として再利用することには適さない。
 このように、従来から利用されている溶媒抽出法や晶析法でマグネシウムを効率的に除去することは難しく、沈殿法であっても沈殿物の濾過性、高いマグネシウム除去効率、高いニッケル収率を同時に満たすような経済的な手法が確立されているとは言い難い。
 マグネシウムを効率的に除去することについて課題があるだけでなく、従来技術ではマグネシウム除去後に残るナトリウムのようなアルカリ金属が混入した硫酸ニッケルから高純度の硫酸ニッケルを得る手法についても課題が残る。
 ニッケル中にナトリウムが混入した場合、これを除去して高純度の硫酸ニッケルを得る手法としても溶媒抽出法が挙げられる。例えば、特許文献1には、交換反応を利用してニッケル溶液中の不純物を低減する手法が公開されている。この技術によって、硫酸ニッケル水溶液に含有されるナトリウムを分離することができる。処理を必要とする硫酸ニッケルの一部についてpH調整を利用した溶媒抽出を適用することで、副生成物の発生量を低減しているとはいえども、原料ニッケルに対して一定割合で抽出・逆抽出操作を繰り返す必要があるため、使用される酸とアルカリから副生成物として中和塩が大量に発生することは避けられない。pH調整剤として硫酸と水酸化ナトリウムが用いられる場合では、硫酸ナトリウムが大量に発生することになる。したがって、溶媒抽出法による硫酸ニッケル水溶液からナトリウムを除去する手法では、膨大な副生成物を処理する必要が追加で生じるために、経済的な技術とは言い難いものになる。
 また、前出した非特許文献1に見られるように、晶析法によってナトリウムを取り除き、高純度の硫酸ニッケル結晶を得る手法も考えられる。しかしながら、晶析によって純度の高い硫酸ニッケル結晶が一時的に得られるとしても、この操作を継続することで晶析母液中にナトリウムが濃縮され、硫酸ニッケル結晶中に混入するナトリウム量は徐々に増加していく。そして、あるニッケル・ナトリウム濃度比に達すると、硫酸ニッケルと硫酸ナトリウムとの複塩が析出し始め、もはや晶析操作によって高純度の硫酸ニッケル結晶を得ることは不可能になる。
 したがって、一般的な晶析法による純化操作では、不純物が濃縮される晶析母液を一定割合で系外に排出する操作が必要となる。この操作に伴って飽和濃度に達している大量の硫酸ニッケルが廃棄されるか、または別の不純物除去工程へと移送されることになり、高純度硫酸ニッケルを得るための経済性が大幅に低下するため、晶析法はナトリウムを経済的に除去する技術として適していない。
特開平10-310437号公報 特開2013-151717号公報 特開2013-203646号公報 特開2014-144877号公報 特開昭49-91996号公報
Ina Beate Jenssen, Seniz Ucar, Oluf Bockman, Ole Morten Dotterud, Jens-Petter Andreassen, 「Impurity Uptake During Cooling Crystallization of Nickel Sulfate」, Rare Metal Technology 2020, p.191-199
 上記の説明で明らかであるように、硫酸ニッケルからマグネシウム不純物を取り除くための手法として各種の開発が試みられてきたが、実用的で効率的、かつ経済性をも満たす運用が可能な技術は確立されていなかった。
 晶析法や溶媒抽出法より優れていると考えられる、水酸化アルカリ、もしくはアルカリ炭酸塩を添加して高純度のニッケルを回収する技術についても、マグネシウムを効率的に除去しながらニッケルを高収率で回収する経済性の高い不純物除去工程を実現すること、マグネシウム分離工程で得られるニッケル沈殿物の濾過性が優れることで沈殿物のハンドリング性を容易にする工程を実現すること、これらを同時に達成する技術は確立されていなかった。さらに、炭酸化処理されたニッケルを繰り返し用いても再生された硫酸ニッケル中に混入する不純物量を低水準に保ち、高純度硫酸ニッケルとして品質を保つ工程を実現すること、これらの課題をすべて満足する技術は確立されていなかった。
 本発明は、上記実情に鑑みなされたものであり、これらのマグネシウム除去と高純度化に関する課題を同時に解決し、マグネシウム不純物が除去された硫酸ニッケルの製造、および高純度硫酸ニッケル製造の効率および経済性を大幅に改善することを目的とする。
 上記課題を解決すべく、本発明者らは鋭意検討を行った結果、以下の知見が得られた。
 本発明が開示する手段は、ニッケルとマグネシウムとを分離するための炭酸化添加剤として適切な化学種を選択し、かつ、これに硫酸ニッケルの製造工程として2段階の晶析方法を適用することを特徴とする製造方法である。
 具体的には、これまで実質的に利用が試みられることがなかった炭酸リチウムを炭酸化添加剤として使用する。この工程で得られる沈殿物は、沈殿速度が大きいだけでなく濾過性に優れるため固液分離が容易である。固液分離によって回収される固形分には、ある量のリチウムが不純物として含まれる。この沈殿物は硫酸もしくは硫酸が過剰に含まれる硫酸ニッケル水溶液を用いて硫酸ニッケル水溶液へと再生される。そして、この水溶液は濃縮晶析操作と冷却晶析操作を交互に繰り返す工程へと供給され、濃縮晶析操作によって高純度の硫酸リチウム結晶が得られ、冷却晶析によって高純度の硫酸ニッケル結晶が得られる。
 冷却晶析母液には硫酸リチウムと硫酸ニッケルが溶存しているので、この母液は濃縮晶析へと再循環される。硫酸リチウムと硫酸ニッケルは複塩を形成しないので、濃縮晶析と冷却晶析は実質的な原料の損失を伴わずに、高い効率を保ちながら、継続して運転することができる。また、副生成物の発生が無いことも高効率な継続運転を可能にする要因となる。
 炭酸リチウム水溶液と原料溶液との反応後、固液分離で生じる液分にはマグネシウムと微量のニッケル、およびリチウムが溶解した水溶液となる。この水溶液には水酸化リチウムが添加されて、マグネシウムと微量のニッケルが固形分として回収される。溶存する硫酸リチウムは、適切なpH調整を施した後、濃縮晶析工程へと導入することができる。
 すなわち、本発明の第1の要旨は、硫酸ニッケルからマグネシウムが除去された硫酸ニッケル水溶液を製造する工程として、下記(1)から(3)に示す工程から構成されることを特徴とする製造方法に存する。
(1)硫酸ニッケル水溶液と炭酸リチウムとを混合して炭酸ニッケルを含む固形分とするスラリーを得る炭酸化工程
(2)前記炭酸化工程で得られるスラリーを固液に分離する固液分離工程
(3)前記工程で得られる固形分について、硫酸を含む溶液で溶解する溶解工程
 本発明の第2の要旨は、更に、前記(3)硫酸を含む溶液で溶解する溶解工程で得られたリチウム含有硫酸ニッケル水溶液を濃縮晶析によって硫酸リチウムを固形分とするスラリーを得る濃縮晶析工程、および、濃縮晶析工程で得られるスラリーを固液に分離し、硫酸リチウム結晶の固形分と晶析母液とを得る固液分離工程を含む第1の要旨に記載の硫酸ニッケル水溶液の製造方法に存する。
 本発明の第3の要旨は、更に、前記濃縮晶析工程で分離された晶析母液を冷却晶析によって硫酸ニッケルを固形分とするスラリーを得る冷却晶析工程、冷却晶析で得られるスラリーを固液に分離し、硫酸ニッケル結晶の固形分と晶析母液とを得る固液分離工程を含み、硫酸ニッケルを結晶として取り出す第2の要旨に記載の硫酸ニッケル水溶液の製造方法に存する。
 本発明の第4の要旨は、前記冷却晶析工程で分離された晶析母液を前記濃縮晶析工程へ戻す操作を含む第2又は3の要旨に記載の硫酸ニッケル水溶液の製造方法に存する。
 本発明の第5の要旨は、前記(2)炭酸化工程後の固液分離工程で得られる液分にpH調整と固液分離を行い、溶存している炭酸と多価金属を除去した溶液を得る工程、および、得られた溶液を前記濃縮晶析工程へ導入する第2~4の何れかの要旨に記載の硫酸ニッケル水溶液の製造方法に存する。
 本発明の第6の要旨は、前記濃縮晶析工程における操作温度を40℃以上とする第2~5の何れかの要旨に記載の硫酸ニッケル水溶液の製造方法に存する。
 本発明の第7の要旨は、前記冷却晶析工程における操作温度を濃縮晶析工程の操作温度より20℃以上低い温度とする第3~6の何れかの要旨に記載の硫酸ニッケル水溶液の製造方法に存する。
 本発明に係る炭酸化工程では、炭酸ニッケルを含む固形分が沈殿物として得られる。この工程における反応当量、および反応温度を適切に制御することで、高収率でニッケルを固形分として回収し、マグネシウムが固形分へと共沈することを防ぐことが同時に、かつ容易に達成できる。
 炭酸リチウムの添加量は理論当量以下であっても、高収率・高純度のニッケルを回収できることも本発明の効果の一つとして挙げられる。従来技術では、ニッケルを高収率で回収するような塩基性炭酸ニッケルを得るためには当量以上の炭酸化剤を添加する必要があったが、本発明で得られるような固形分を回収するためには不要であり、より経済的に炭酸ニッケルを含有する固形分を得ることができる。
 このようにして得られた炭酸ニッケル含有固形分は、凝集粒子径が大きいために沈降速度が大きく、濾過性にも優れるため、容易に固液分離を実施できる。したがって、汎用的な濾過装置であっても固形分を効率的に回収することができる。
 この炭酸ニッケル含有固形分はさらに硫酸を含有する水溶液で溶解される。この溶解液には硫酸ニッケルと微量の硫酸リチウムが含まれている。この水溶液について濃縮晶析操作を行うことで、硫酸リチウム結晶が固形分として得られ、晶析母液には硫酸ニッケルが濃縮される。固形分に適切な洗浄を施すことで、高純度の硫酸リチウム結晶を得ることができる。この工程で得られる硫酸リチウムは、炭酸リチウムや水酸化リチウムを製造するための原料として再利用するのに適した品質を有する。
 濃縮晶析母液はさらに冷却晶析工程へと移送され、硫酸ニッケルが結晶として得られる。この結晶に適切な洗浄を施すことで、高純度の硫酸ニッケル結晶を得ることができる。
 晶析操作に伴う副生成物の発生が無く、また硫酸リチウムと硫酸ニッケルとが複塩を形成しないため、濃縮晶析と冷却晶析を繰り返し続けることが可能であり、ニッケルやリチウムが製品外へと失われることが実質的に発生しない、非常に経済的な晶析工程となる。
 炭酸化工程で生じる液分も、マグネシウム成分を取り除いた後は硫酸リチウム溶液となり、この溶液は濃縮晶析工程へと導入することができる。したがって、炭酸化工程の廃液処理と有価物である硫酸リチウムを回収する工程とを一つの工程で担うことができるため、工程が簡素になり経済性をより高めることができる。
 炭酸ニッケル含有固形分を硫酸で溶解する工程では炭酸ガスが発生する。炭酸ガスの排出量を低減したい場合には、水酸化リチウムとの反応によって炭酸ガスを吸収して、炭酸リチウムを合成することができる。このようにして得られる炭酸リチウムは、硫酸ニッケルの炭酸化添加剤として再利用することができる。したがって、炭酸ガスは工程内で繰り返し利用されることになり、工程外へ継続的に排出される量を大幅に低減できる。
本発明の高純度硫酸ニッケルおよび高純度硫酸リチウムの製造フロー図である。 本発明を用いた実施例における、炭酸化工程で得られる固形分に対するマグネシウム除去率と炭酸化温度の関係を示した図である。 本発明を用いた実施例における、炭酸化工程で得られる固形分の収率と炭酸化温度の関係を示した図である。 本発明を用いた実施例と公知の技術を用いた比較例について、炭酸化工程で得られる固形分の収率とマグネシウム除去率との関係を示した図である。
 本発明によって可能な実施形態を説明するために、炭酸化工程、脱炭酸化工程、中和工程、溶解工程、濃縮晶析、冷却晶析、および固液分離工程から構成される製造フローを例に挙げる。しかし、実際の工程を構成する単位操作の組み合わせは、この例に限られるものではなく、このような技術に関して経験を有する当業者であれば、本発明の思想を逸脱しない範囲で変更を加えることができる。
 以下、図1に示すフロー図に沿って説明する。
 不純物としてマグネシウムを含有する硫酸ニッケルと炭酸リチウム水溶液とを混合して、炭酸ニッケル含有固形分を析出させるのが炭酸化工程である。このとき、ニッケルに対する炭酸リチウムの当量比は1以下であることが好ましく、0.9以下であることがより好ましい。このように制御を行うと、混合スラリーのpHは8以下となり、当量比を0.86とすればpHは7.3以下となる。
 析出温度は50℃以上であることが好ましい。温度の違いによってマグネシウムの除去率に大きな影響は生じないが、ニッケルの収率に変化が生じる。したがって、ニッケルの収率という観点からすると、70℃以上であることがより好ましい。70℃より高い温度でも操作をすることはできるが、使用できる装置の材料や設備設計に制限が多くなるので、70℃前後の温度域で実施する方が有利である。以上の観点から析出温度の上限は110℃であることが好ましい。
 原料溶液の濃度は任意に決めることができるが、硫酸ニッケル濃度はできるだけ高くした方が高効率になる。室温であれば硫酸ニッケルとして26重量%濃度の溶液を容易に調製することができる。より高温にして硫酸ニッケルをより多く溶解した原料溶液を調製してもよい。70℃における反応であれば、原料溶液も70℃に加温し、例えば35重量%の硫酸ニッケルを溶解してもよい。原料溶液の濃度の上限は、その溶液を準備する温度において安定的に取り扱える飽和濃度以下であることが好ましい。
 炭酸ニッケル含有固形分は沈殿しやすい性質があるので、反応槽は適切に撹拌しておく必要がある。撹拌方法については、公知の方法が使用でき、適宜選択すればよい。
 炭酸化工程は、回分式、連続式、もしくは半回分式、いずれの操作で実施してもよい。ただし、反応槽内におけるスラリーの滞留時間もしくは反応時間は1時間以上を確保することが好ましい。この時間が短すぎると、炭酸リチウムと硫酸ニッケルの反応が完了しないことがある。スラリーの滞留時間もしくは反応時間が長すぎると反応は完了するものの、時間的に効率が悪くなるので、通常5時間以下確保すればよい。
 反応を進行させる過程において、局所的であっても上記の当量比を上回るような条件を経ることは好ましくない。過剰量の炭酸リチウムに硫酸ニッケルが混合されると、マグネシウムが共沈してしまうためである。しかし、原料濃度を事前に把握しておけば、所定流量と添加量を維持することは、適切な流量計と流量制御装置、例えばコントロールバルブで容易に実現できる。また、同様の理由から炭酸リチウム水溶液中に硫酸ニッケル水溶液を投入する操作は好ましくない。しかし、硫酸ニッケル水溶液中に所定の当量比まで炭酸リチウム溶液を添加する操作は可能である。また、所定の当量比以下の量まで炭酸リチウム水溶液と硫酸ニッケル溶液を混合しておき、pHを監視しながら少量の炭酸リチウム水溶液を添加するような手順で実施してもよい。
 炭酸化工程で得られた炭酸ニッケル含有固形分は、固液分離工程によって固形分と液分とが分離される。固液分離装置としては、減圧濾過式、加圧濾過式など、適切な装置を選べばよい。従来の炭酸化法による炭酸ニッケルの回収方法では、マグネシウム除去率を高くする条件で大量のニッケルが溶存するため、固液分離工程で液分としてマグネシウムと共に回収できないニッケル量が非常に多い点が本発明でもたらされる効果と大きく異なる。
 この工程で得られる固形分は、硫酸を加えることで硫酸ニッケル水溶液へと再生される。硫酸ニッケル濃度は任意に設定できるが、次に続く濃縮晶析工程を有利に進めるために、できるだけ高濃度に設定することが好ましい。従来の炭酸化法では、ニッケル含有沈殿物内に炭酸化剤に由来するナトリウムが混入し、晶析法によって高純度な硫酸ニッケルを得ようとしても、晶析母液中に濃縮される硫酸ナトリウムが硫酸ニッケルとの複塩を形成してしまい、分離純化が困難であった。しかしながら、本発明では、炭酸リチウムを炭酸化添加剤として用いることにより、晶析工程における複塩形成の問題を解決し、高純度な硫酸ニッケルを得ることが達成できる。
 溶解工程で得られるリチウム含有硫酸ニッケル水溶液は、加温と減圧いずれか、もしくは両方を組み合わせた方式を用いた公知の方法で濃縮晶析操作が実施される。硫酸リチウムは温度が高いほど溶解度が下がる性質があるので、濃縮晶析操作は高い温度域で実施する方が有利であるが、温度が高すぎると設備コストが高くなるため、実用的には40℃から110℃の温度域、好ましくは60℃から90℃の温度域に維持される。
 濃縮晶析操作によって得られる硫酸リチウム結晶は、固液分離装置によって固形分が分離される。この装置としては遠心分離機を利用するのが一般的であるが、他の形式であってもよい。また、固液分離工程は、水、温水、もしくは純度の高い硫酸リチウム水溶液などの水性媒体を用いて結晶の洗浄が実施される。エタノールのような硫酸リチウムが溶解しにくい洗浄液を用いることもできるので、廃液処理コストの増加との兼ね合いを考慮して、洗浄液の選定をすればよい。水、温水、もしくは硫酸リチウム水溶液で洗浄するのであれば、洗浄廃液を濃縮晶析工程へとそのまま戻すことができる。
 濃縮晶析母液の一部は抜き出されて、冷却晶析装置へと移送される。濃縮晶析操作によってニッケル濃度が高められた溶液を冷却すると、溶解度の変化によって硫酸ニッケルが結晶として析出する。
 この結晶も適切な固液分離および洗浄装置によって洗浄される。一般的には遠心分離機が用いられ、少量の水、冷水、もしくは純度の高い硫酸ニッケル水溶液などの水性媒体が洗浄液として用いられる。この洗浄廃液は冷却晶析工程に戻すこともできるが、冷却晶析の効率が低下するので、濃縮晶析工程に戻す方が操作上は有利となる。
 冷却晶析母液の一部は抜き出されて、濃縮晶析装置へと戻される。母液中に残存する硫酸リチウムは濃縮晶析操作によって結晶を生成し、硫酸ニッケルは再び濃縮されることになる。
 硫酸ニッケルの溶解度は温度の低下と共に低くなるので、冷却晶析操作はより低温で実施することが好ましいが、設定温度を低くしすぎると冷却コストが増加する傾向になるので、一般的には10℃から60℃の温度域に維持される。濃縮晶析工程の操作温度との差異が小さいと、それぞれの工程で結晶を析出させる効率が低下するので、30℃以上の温度差を設定することが好ましい。例えば、濃縮晶析は70℃で運転し、冷却晶析は35℃で運転すると、加温冷却の負荷を低減できる。
 冷却晶析には共晶冷凍晶析(Eutectic Freeze Crystallization)を適用することもできる。この技術を用いると、硫酸ニッケルの結晶を沈殿物として得る過程で水の結晶(氷)が浮遊物として生成し、これらを固液分離することによって晶析母液の濃縮を同時に達成できる。冷却晶析操作中に硫酸リチウムの結晶が析出しない条件で利用する限りにおいては本発明の思想を逸脱することなく、系全体として溶液の濃縮に必要とされる蒸発エネルギーを節減できるようになる。
 炭酸化工程とそれに続く固液分離工程で発生する液分には、硫酸リチウムおよび微量ニッケルおよびマグネシウムが含まれる。また、ごく微量であるが、未反応の炭酸イオンが残るので、先に硫酸を添加してpHを低下させて炭酸ガスを遊離除去する。このとき、pH制御としてpHが4以下になることが好ましい。また、生成する炭酸ガスの脱気を速めるために減圧操作を合わせて実施してもよい。
 続いて、中和によって溶存している微量のニッケルおよびマグネシウムを固形分として除去するのが中和工程である。中和剤には任意のアルカリ水酸化物を選ぶことができるが、晶析工程でこの液を処理するのであれば、水酸化リチウムを用いることが好ましい。これ以外のアルカリ水酸化物を使用して液分を晶析工程に供給すると、晶析工程で得られる硫酸リチウム中の不純物濃度が増加する。
 中和工程はニッケルおよびマグネシウムが十分に沈殿するpHまで調整を行う。好ましくはpHが8以上であり、より好ましくはpHが10以上である。
 中和工程および固液分離工程によって得られた液分は、硫酸リチウム水溶液となる。晶析工程にこの溶液を導入する場合、事前にリチウムイオンと硫酸イオンとが化学量論的に当量となるように、硫酸を添加する。硫酸リチウム溶液としてpHが3.5~6.0程度に調整されるのがよい。
 本発明で得られる高純度硫酸ニッケル中のマグネシウム含有量は、ニッケル元素の含有量で規格化したマグネシウム元素の含有量として通常300(mg(Mg)/kg(Ni))以下、好ましくは100(mg(Mg)/kg(Ni))以下である。
 以下、炭酸化工程と晶析工程に関する実施例を示して、本発明をより詳細に説明する。以下の実施例で用いた分析法を示す。
 原料溶液中のニッケル濃度および炭酸化工程後に回収される固形分中に高濃度で含まれるニッケル含有量は、銅イオン選択電極を用いた公知のキレート滴定法で測定した。
 低濃度で含まれるニッケル、リチウムおよびマグネシウム含有量は、ICP発光分光分析装置iCAP6500 Duo(サーモフィッシャーサイエンティフィック株式会社製)を用いて測定した。
 炭酸化で得られたスラリーのpHは、pH計HM-30P(東亜ディーケーケー株式会社製)を用いて測定した。
 実施例1~4:
 <炭酸化工程におけるニッケルとマグネシウムの分離とニッケルの収率>
 硫酸ニッケル濃度として316g/L、硫酸マグネシウム濃度として371mg/Lとなるように模擬原料水溶液を準備した。この溶液を約40mL計り取り、1Lのステンレス容器へと移した。炭酸化添加剤として炭酸リチウムの水溶液(表1に示す濃度)を準備し、50℃(実施例1)、60℃(実施例2)、70℃(実施例3)、80℃(実施例4)の各温度を維持しながら約90分かけて上記の模擬溶液へ、表1に示す当量比になるように添加した。これらの操作を準備・実施している間は、容器内が十分に撹拌されているように維持した。添加が完了した後、所定の保持時間において液分だけをサンプリングし、液中に含まれるマグネシウムの量を分析した。5時間の保持時間を経たスラリーについて、pHを測定した。ブフナー漏斗を用いた減圧濾過によって固液分離を行い、得られた固形分のケーキは水で洗浄した。これらの処理条件を表1に示す。表1中に示すマグネシウム含有量は、ニッケル元素の含有量で規格化したマグネシウム元素の含有量(mg(Mg)/kg(Ni))としている。
Figure JPOXMLDOC01-appb-T000001
 表1より、炭酸リチウム水溶液の添加が完了してから1時間保持したものに対し、3時間および5時間保持したスラリー液分中のマグネシウム濃度はほとんど変化していないことがわかる。したがって、炭酸化反応を完了させるために必要な反応時間は1時間以内であると言える。
 図2に、模擬母液に含まれていたがニッケル沈殿物中には移行せずに液中に溶存したマグネシウムの割合、すなわち固形分に対するマグネシウム除去率を示す。いずれの処理条件においても、約90%の高い除去率であることがわかる。
 図3に、固形分として回収されたニッケルの割合、すなわちニッケルの収率を示す。処理温度として50、60℃よりも70、80℃の方がニッケルの収率が高いことがわかる。
 比較例1:
 <従来の技術に基づく炭酸化工程におけるニッケルとマグネシウムの分離とニッケルの収率>
 炭酸化添加剤として炭酸ナトリウムを用いたマグネシウム除去について、従来の技術に基づいて実験を行った。反応容器の保持温度を40℃としたこと、炭酸リチウムの水溶液にかえて炭酸ナトリウムの水溶液を用いて3.10重量%の添加液濃度に調製したこと、硫酸ニッケルに対する炭酸ナトリウムの当量比を0.68としたことを除いては、実施例1と同様に処理を行った。
 比較例2:
 比較例1と同様の実験において、硫酸ニッケルに対する炭酸ナトリウムの当量比を1.18とした。
 図4に、比較例1~2で得られたサンプルについて、固形分として回収されたニッケルの割合と固形分のマグネシウム除去率との関係を、実施例1~4の結果と合わせて示す。
 本発明を適用した実施例においては固形分としての高いニッケル回収率(約80%以上)と高いマグネシウム除去率(約80%以上)を両立しているのに対し、従来技術を利用した比較例では両立できていないことがわかる。
 実施例5:
 <炭酸化工程で得られる固形分ケーキの濾過速度>
 原料溶液を約75mL使用し、反応容器として2Lのステンレス容器を使用し、炭酸リチウム添加後の保持時間を3時間としたこと以外は、実施例4と同様にして炭酸化の反応を実施した。
 得られたスラリーについて、ブフナー漏斗とアドバンテック社製濾紙No.5C(直径90mm)を用いた減圧濾過で固液分離を実施した。固形分をすべて濾紙上にケーキとして回収した後、全量で約1.8Lの水を3回に分けてこの漏斗に加えて洗浄水の濾過速度を測定したところ、191~257g/minの濾過速度が得られた。この結果を表2に示す。
 比較例3:
<従来の技術に基づく水酸化アルカリ法で得られる固形分ケーキの濾過速度>
 原料溶液を65mL使用し、反応容器として2Lのステンレス容器を使用し、沈殿添加剤として水酸化リチウム水溶液を用いて、添加剤の当量比を0.9とし、洗浄水の量を200mLとしたこと以外は、実施例5と同様にして沈殿反応および濾過速度の測定を実施した。このとき、水酸化リチウム水溶液中のリチウム濃度が実施例5における炭酸リチウム水溶液中のリチウム濃度と同じになるように濃度を調整した。この結果を表2に示す。
 比較例4:
 <従来の技術に基づく炭酸化工程で得られる固形分ケーキの濾過速度>
 沈殿添加剤として炭酸ナトリウムを用いたこと以外は、実施例5と同様にして炭酸化の反応を実施した。
 得られたスラリーについて、ブフナー漏斗とアドバンテック社製濾紙No.5C(直径90mm)を用いた減圧濾過で固液分離を実施した。固形分をすべて濾紙上にケーキとして回収した後、全量で約1.8Lの水を3回に分けてこの漏斗に加えて洗浄水の濾過速度を測定したところ、116~167g/minの濾過速度が得られた。この結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、ニッケルの収率は実施例5と比較例3、4とでほぼ同じであることがわかる。このとき、実施例5で得られる固形分ケーキは、比較例3で得られるものよりも大幅に濾過性が優れていることが明らかである。更に炭酸ナトリウムを添加剤として用いた比較例4に対しても、実施例5の濾過性が有意に優れていることが明らかである。
 実施例6:
 <晶析操作による硫酸ニッケルと硫酸リチウムの分離>
 晶析母液中にリチウムが濃縮された場合であっても、本発明による濃縮晶析によって硫酸リチウムを分離することができ、これに続く冷却晶析で高純度の硫酸ニッケル結晶が晶析によって得られることを確認するために、硫酸ニッケルと硫酸リチウム試薬から模擬母液を準備した。この模擬母液に金属ニッケル換算で5.08重量%、金属リチウム換算で1.23重量%の硫酸ニッケルおよび硫酸リチウムがそれぞれ含まれるようにした。
 保温ジャケット付きの晶析容器に3.2Lの模擬母液を入れた。この容器を加温するために、90~93℃に調整した温水を保温ジャッケト内に5.5L/minの流量で流通させた。さらに、晶析容器内が80℃に保たれるように、減圧操作によって容器内の絶対圧を35~38kPaの間で制御する操作を濃縮晶析中に継続した。さらに、晶析操作中は容器内の溶液が十分に撹拌されるように維持した。
 このように制御された晶析容器に、模擬母液と同じ組成の原料溶液を継続的に供給したところ、およそ5.8時間を経過したところで硫酸リチウムの結晶が発生した。全量で約18kgの原料を32時間かけて供給した。結晶が発生し始めた後は、容器内の固形分濃度が12重量%となるように間欠的にスラリーを抜き出し、遠心分離機で固液分離を行った。この操作で得られる固形分については高純度の硫酸リチウム水溶液で洗浄した。
 濃縮晶析の原料供給を終えたところで、晶析容器内のスラリーを全量取り出し、これを遠心分離機で固液分離した。得られた液分は、濃縮晶析操作中に間欠抜き出し操作で得られた液分と合わせて80℃に保温された容器に移し、これを冷却晶析の原料溶液とした。
 濃縮晶析で使用した模擬母液を1.52倍に濃縮したものを、冷却晶析の開始母液として使用し、晶析容器内にこの濃縮液3.1Lを入れた。冷却晶析中は容器内が25℃に保たれるように、保温ジャケットに通水する冷却水の温度を制御した。
 冷却晶析の原料溶液を連続的に供給したところ、硫酸ニッケルの結晶が析出した。冷却晶析の原料は約17時間かけて連続的に供給した。冷却晶析操作中は、晶析容器内のスラリー液量がほぼ一定となるように、間欠的にスラリーを抜き出した。抜き出したスラリーの固液分離を遠心分離機で行い、この操作で得られる固形分については高純度の硫酸ニッケル水溶液で洗浄した。
 一連の操作で得られた結晶、模擬母液、および冷却晶析終了後の晶析母液の分析結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3より、高濃度の硫酸リチウムを含有する硫酸ニッケル模擬母液を用いたにもかかわらず、高純度の硫酸リチウムおよび硫酸ニッケルの結晶がそれぞれ得られていることがわかる。
 濃縮晶析操作によって硫酸ニッケルおよび硫酸リチウムの濃縮が進むが、硫酸リチウムは結晶として析出するので、濃縮晶析母液中のリチウム比率は低下した。そして、冷却晶析母液は原料溶液のニッケル・リチウム比率と同等になっているので、冷却晶析母液を濃縮晶析工程へとそのまま戻し、硫酸リチウム結晶の晶析へと繰り返し利用することができることがわかる。
 以上の結果から、本発明に係る炭酸化工程の添加剤として炭酸リチウムを使用することで、ニッケルとマグネシウムが効果的に分離されると共に、濾過性に優れる沈殿物を得ることができる。また、この沈殿物を硫酸ニッケル水溶液へと再生した後は、水溶液中に含まれる硫酸ニッケルと硫酸リチウムとは、本発明に係る濃縮晶析と冷却晶析によって分離され、高純度の硫酸ニッケルを得ることができる。原料に含まれているマグネシウムは中和工程を経て系外へ除去することができ、炭酸化添加剤に由来するリチウムは晶析工程で硫酸リチウムとして回収されるので、硫酸ニッケルを精製する工程内に不純物が蓄積して製品である硫酸ニッケル結晶に影響を与えることがない。したがって、精製工程全体としてマグネシウムが除去された硫酸ニッケルを水溶液もしくは結晶として高収率で継続して得ることができる。
 本発明の高純度硫酸ニッケルの製造方法は、既存の装置に容易に適応でき、高収率で効率良く硫酸ニッケルを製造でき、各工程で発生する目的物以外の化学品を再利用することが出来るため経済性に極めて優れる。
 
 

Claims (7)

  1.  硫酸ニッケルからマグネシウムが除去された硫酸ニッケル水溶液を製造する工程として、下記(1)から(3)に示す工程から構成されることを特徴とする製造方法。
    (1)硫酸ニッケル水溶液と炭酸リチウムとを混合して炭酸ニッケルを含む固形分とするスラリーを得る炭酸化工程
    (2)前記炭酸化工程で得られるスラリーを固液に分離する固液分離工程
    (3)前記工程で得られる固形分について、硫酸を含む溶液で溶解する溶解工程
  2.  更に、前記(3)硫酸を含む溶液で溶解する溶解工程で得られたリチウム含有硫酸ニッケル水溶液を濃縮晶析によって硫酸リチウムを固形分とするスラリーを得る濃縮晶析工程、および、濃縮晶析工程で得られるスラリーを固液に分離し、硫酸リチウム結晶の固形分と晶析母液とを得る固液分離工程を含む請求項1に記載の硫酸ニッケル水溶液の製造方法。
  3.  更に、前記濃縮晶析工程で分離された晶析母液を冷却晶析によって硫酸ニッケルを固形分とするスラリーを得る冷却晶析工程、冷却晶析で得られるスラリーを固液に分離し、硫酸ニッケル結晶の固形分と晶析母液とを得る固液分離工程を含む請求項2に記載の硫酸ニッケル水溶液の製造方法。

  4.  前記冷却晶析工程で分離された晶析母液を前記濃縮晶析工程へ戻す操作を含む請求項2又は3に記載の硫酸ニッケル水溶液の製造方法。
  5.  前記(2)炭酸化工程後の固液分離工程で得られる液分にpH調整と固液分離を行い、溶存している炭酸と多価金属を除去した溶液を得る工程、および、得られた溶液を前記濃縮晶析工程へ導入する請求項2~4の何れかに記載の硫酸ニッケル水溶液の製造方法。
  6.  前記濃縮晶析工程における操作温度を40℃以上とする請求項2~5の何れかに記載の硫酸ニッケル水溶液の製造方法。
  7.  前記冷却晶析工程における操作温度を濃縮晶析工程の操作温度より20℃以上低い温度とする請求項3~6の何れかに記載の硫酸ニッケル水溶液の製造方法。
     

     
PCT/JP2022/026911 2021-07-16 2022-07-07 高純度硫酸ニッケルの製造方法 WO2023286683A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023534753A JPWO2023286683A1 (ja) 2021-07-16 2022-07-07
CA3225490A CA3225490A1 (en) 2021-07-16 2022-07-07 Process for producing high purity nickel sulfate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-118343 2021-07-16
JP2021118343 2021-07-16

Publications (1)

Publication Number Publication Date
WO2023286683A1 true WO2023286683A1 (ja) 2023-01-19

Family

ID=84919321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026911 WO2023286683A1 (ja) 2021-07-16 2022-07-07 高純度硫酸ニッケルの製造方法

Country Status (4)

Country Link
JP (1) JPWO2023286683A1 (ja)
CA (1) CA3225490A1 (ja)
TW (1) TW202321160A (ja)
WO (1) WO2023286683A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229534A (ja) * 2009-03-30 2010-10-14 Nippon Mining & Metals Co Ltd ニッケルとリチウムの分離回収方法
CN102115125A (zh) * 2010-12-30 2011-07-06 何云 用含锰废液制备碳酸盐和硫酸锂混合产品的方法
JP2014144877A (ja) * 2013-01-25 2014-08-14 Sumitomo Metal Mining Co Ltd 高純度硫酸ニッケルの製造方法、及びニッケルを含む溶液からの不純物元素除去方法
JP2016056434A (ja) * 2014-09-12 2016-04-21 住友金属鉱山株式会社 ニッケルスラッジからのニッケルの分離方法
CN109706318A (zh) * 2018-12-28 2019-05-03 池州西恩新材料科技有限公司 一种含镍钴锰锂废正极材料的资源化回收方法
CN109734107A (zh) * 2018-12-28 2019-05-10 池州西恩新材料科技有限公司 一种锂电池废正极材料的资源化回收方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229534A (ja) * 2009-03-30 2010-10-14 Nippon Mining & Metals Co Ltd ニッケルとリチウムの分離回収方法
CN102115125A (zh) * 2010-12-30 2011-07-06 何云 用含锰废液制备碳酸盐和硫酸锂混合产品的方法
JP2014144877A (ja) * 2013-01-25 2014-08-14 Sumitomo Metal Mining Co Ltd 高純度硫酸ニッケルの製造方法、及びニッケルを含む溶液からの不純物元素除去方法
JP2016056434A (ja) * 2014-09-12 2016-04-21 住友金属鉱山株式会社 ニッケルスラッジからのニッケルの分離方法
CN109706318A (zh) * 2018-12-28 2019-05-03 池州西恩新材料科技有限公司 一种含镍钴锰锂废正极材料的资源化回收方法
CN109734107A (zh) * 2018-12-28 2019-05-10 池州西恩新材料科技有限公司 一种锂电池废正极材料的资源化回收方法

Also Published As

Publication number Publication date
TW202321160A (zh) 2023-06-01
CA3225490A1 (en) 2023-01-19
JPWO2023286683A1 (ja) 2023-01-19

Similar Documents

Publication Publication Date Title
JP7216945B2 (ja) 三元系電池廃棄物総合回収におけるマンガン-リチウム分離と抽出前溶液調製プロセス及び三元系電池廃棄物からコバルト-ニッケル-マンガン-リチウム元素を総合回収する方法
US11292725B2 (en) Method for recovering lithium hydroxide
FI127085B (en) Lithium carbonate recovery process
AU2011236094B2 (en) Production of high purity lithium compounds directly from lithium containing brines
US7214355B2 (en) Production of lithium compounds directly from lithium containing brines
US20070160516A1 (en) Production of lithium compounds directly from lithium containing brines
CA2868086C (en) Method for producing high-purity nickel sulfate
WO2014115686A1 (ja) 高純度硫酸ニッケルの製造方法、及びニッケルを含む溶液からの不純物元素除去方法
EP4140952A1 (en) Method for producing lithium hydroxide
JP7303777B2 (ja) 水酸化リチウムの製造方法
JP2021172537A (ja) 水酸化リチウムの製造方法
WO2023286683A1 (ja) 高純度硫酸ニッケルの製造方法
KR20230100733A (ko) 금속 술페이트를 결정화하기 위한 처리 방법
WO2023286684A1 (ja) 硫酸リチウムおよび遷移金属硫酸塩の製造方法
CN117051260B (zh) 一种含锂多金属溶液的处理工艺
JP7375327B2 (ja) リチウムの回収方法
CN118221140A (zh) 从含锂溶液中提取碳酸锂的方法
CN116648425A (zh) 用于生产结晶的金属硫酸盐的工艺和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842027

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3225490

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2023534753

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18578923

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22842027

Country of ref document: EP

Kind code of ref document: A1