WO2023286602A1 - Transparent conductive film laminate and method for manufacturing same - Google Patents

Transparent conductive film laminate and method for manufacturing same Download PDF

Info

Publication number
WO2023286602A1
WO2023286602A1 PCT/JP2022/025919 JP2022025919W WO2023286602A1 WO 2023286602 A1 WO2023286602 A1 WO 2023286602A1 JP 2022025919 W JP2022025919 W JP 2022025919W WO 2023286602 A1 WO2023286602 A1 WO 2023286602A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
transparent conductive
conductive film
layer
transparent
Prior art date
Application number
PCT/JP2022/025919
Other languages
French (fr)
Japanese (ja)
Inventor
繁 山木
周平 米田
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2023286602A1 publication Critical patent/WO2023286602A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a transparent conductive film laminate and a method for producing the same, and more particularly to a transparent conductive film laminate useful for suppressing curling that occurs during a heating process, and a method for producing the same.
  • touch panels have come to be mounted on various items around us.
  • the scope of use is expanding, with the development of touch panels for dashboards and center consoles, which used to be limited to only a part of the car navigation system. Since dashboards and center consoles often have curved surfaces, it is required that the touch panels mounted on them also have adaptability to curved surfaces.
  • ITO indium tin oxide
  • ITO indium tin oxide
  • a transparent conductive film using ITO is broken when bent, and the conductivity is remarkably deteriorated.
  • a transparent conductive film containing fine metal wires has been developed. Specific examples include a transparent conductive film using metal nanowires and a transparent conductive film using fine metal wires obtained by subjecting a silver salt emulsion to exposure treatment and then performing development treatment.
  • Amorphous cycloolefin resin is suitable for automotive curved touch panels as a base material for transparent conductive films. This is because the amorphous cycloolefin-based resin has a low retardation, so that visibility is improved when wearing polarized sunglasses while driving a car.
  • a transparent conductive film in which a transparent conductive layer containing fine metal wires is formed on an amorphous cycloolefin resin film is considered promising as a next-generation transparent conductive film.
  • a protective film is attached to the back surface to prevent the substrate from being damaged during transportation.
  • the transparent conductive film laminate tends to curl (warp) during the heating process.
  • problems such as the warped transparent conductive film laminate coming into contact with the upper or lower part of the drying furnace occur, making it difficult to carry out stable and continuous production. Become.
  • Patent Document 1 discloses a laminate in which both the substrate film and the surface protective film (release film) of the transparent conductive film are PET films.
  • a transparent conductive film with an amorphous transparent conductive thin film (ITO film) and a protective film (release film) are adjusted to reduce curling by adjusting the thermal shrinkage rate.
  • ITO film amorphous transparent conductive thin film
  • release film a protective film
  • Patent Document 2 discloses a transparent conductive film having a carrier film having an adhesive layer on at least one surface side of a protective film, and a transparent resin film and a transparent conductive film that are peelably laminated via the adhesive layer.
  • a film wherein the transparent resin film is made of an amorphous cycloolefin-based resin or a polycarbonate-based resin, and the protective film is made of an amorphous resin.
  • Polycarbonate and cycloolefin are used as amorphous resins for forming protective films. leads to an increase in manufacturing cost of the transparent conductive film.
  • the present applicant discloses film laminates in which the transparent resin film, which is the base material of the transparent conductive film, is an amorphous cycloolefin resin in Patent Documents 3 and 4.
  • the thickness of the transparent resin film is limited to a range of 5-25 ⁇ m.
  • the thickness of the transparent conductive film is preferably 25 ⁇ m or less. There is no need to use a thin transparent conductive film. If an excessively thin transparent conductive film is used, the risk of film breakage during the touch panel manufacturing process increases. Therefore, in the case of manufacturing an in-vehicle touch panel that does not need to be carried around and does not require frequent opening and closing operations with a predetermined curved surface shape.
  • the thickness of the transparent resin film is more than 25 ⁇ m with high production yield. In other words, the film laminate disclosed in Patent Document 3 is not suitable for production of a transparent conductive film for manufacturing an in-vehicle touch panel having a curved surface shape.
  • the film laminate disclosed in Patent Document 4 does not have an adhesive layer, and the carrier film (polycarbonate film) is adhered to the transparent conductive film by utilizing the self-adhesiveness of the carrier film (polycarbonate film). Prevents deformation due to curing shrinkage.
  • the self-adhesiveness used in Patent Document 4 is manifested by the excellent smoothness of the surface of the polycarbonate film. In order not to lose it, strict quality control is required, which entails technical difficulties.
  • using a polycarbonate film, which belongs to a relatively expensive category, as a carrier film that is finally discarded leads to an increase in the manufacturing cost of the transparent conductive film.
  • Patent Document 5 discloses a device comprising a substrate, a fine metal wire arranged on the substrate, and an adhesive layer arranged on the fine metal wire, wherein the amount of metal contained in the fine metal wire per unit area is 0.5. 010 g/m 2 or more and 10 g/m 2 or less, the adhesive layer contains a benzotriazole-based compound, and the content of the benzotriazole-based compound is 0.05% by mass or more and 1.5% by mass with respect to the total amount of the adhesive layer.
  • a laminate for a touch panel is disclosed, which has a mass % or less.
  • An object of the present invention is to suppress the curling of the transparent conductive film laminate during the heating process and ensure the yield in subsequent processes when an amorphous cycloolefin resin is used as the base material of the transparent conductive film.
  • An object of the present invention is to provide a transparent conductive film laminate capable of reducing manufacturing costs and a method for manufacturing the same.
  • the present invention has the following embodiments.
  • a transparent conductive film laminate including a transparent conductive film and a carrier film laminated on the transparent conductive film, wherein the transparent conductive film includes thin metal wires on one or both main surfaces of a transparent resin film. and an overcoat layer are laminated in this order, and the transparent resin film is a film of amorphous cycloolefin resin, and the thickness Ts of the transparent resin film is 30 150 ⁇ m, the carrier film is a polyolefin film, only one main surface has adhesiveness, and the transparent conductive film laminate has the transparent conductive film so that the overcoat layer is the outermost layer.
  • a film is detachably laminated on one adhesive main surface of the carrier film, and the ratio (Tc/Ts) of the thickness Tc of the carrier film to the thickness Ts of the transparent resin film is 0.2 ⁇ A transparent conductive film laminate, wherein Tc/Ts ⁇ 0.8.
  • the present invention when an amorphous cycloolefin resin is used for the base material (transparent resin film) of the transparent conductive film, the curling of the transparent conductive film laminate during the heating process is suppressed, and the subsequent process yield is improved. can be ensured and the manufacturing cost can be reduced, and a method for manufacturing the transparent conductive film laminate can be provided.
  • FIG. 3 is a schematic cross-sectional view of a transparent conductive film laminate according to a second embodiment of the invention; It is process drawing of the manufacturing method of the transparent conductive film laminated body which concerns on 1st embodiment. It is process drawing of the modification of the manufacturing method of the transparent conductive film laminated body which concerns on 1st embodiment. It is process drawing of the manufacturing method of the transparent conductive film laminated body which concerns on 2nd embodiment. It is process drawing of the modification of the manufacturing method of the transparent conductive film laminated body which concerns on 2nd embodiment.
  • FIG. 4 is an explanatory diagram of a curl value measuring method according to the embodiment;
  • the transparent conductive film laminate according to this embodiment is a transparent conductive film laminate including a transparent conductive film 10 or 20 and a carrier film 1 laminated on the transparent conductive film 10 or 20 . Only one main surface of the carrier film 1 has adhesiveness.
  • the transparent conductive film 10 is constructed by laminating a transparent conductive layer 3 containing fine metal wires on one main surface of a transparent resin film 2 and an overcoat layer 4 in this order. , a transparent conductive layer 3 containing fine metal wires on both main surfaces of a transparent resin film 2, and an overcoat layer 4 are laminated in this order.
  • the transparent resin film 2 is a film made of an amorphous cycloolefin resin, and has a thickness Ts of 30 to 150 ⁇ m.
  • the transparent conductive A film 10 or 20 is releasably laminated on one main adhesive surface of the carrier film 1 .
  • the carrier film 1 is a polyolefin film, and the ratio (Tc/Ts) of the thickness Tc of the carrier film 1 to the thickness Ts of the transparent resin film 2 is 0.2 ⁇ Tc/Ts ⁇ 0.8. .
  • the transparent conductive film laminate according to the first embodiment is a transparent conductive film laminate including a transparent conductive film 10 and a carrier film 1 laminated on the transparent conductive film 10, as shown in FIG. , the transparent conductive film 10 has a transparent conductive layer 3 containing fine metal wires and an overcoat layer 4 laminated in this order on one main surface of the transparent resin film 2 , and the carrier film 1 Only the main surface has adhesiveness, and the carrier film 1 is detachably laminated on the main surface of the transparent resin film 2 on the other side from the transparent conductive layer 3 on the main surface having adhesiveness.
  • the transparent conductive film laminate according to the second embodiment is a transparent conductive film laminate including a transparent conductive film 20 and a carrier film 1 laminated on the transparent conductive film 20, as shown in FIG.
  • a transparent conductive layer 3 containing thin metal wires and an overcoat layer 4 are laminated in this order on both main surfaces of the transparent resin film 2, and the carrier film 1 is laminated on one side.
  • the carrier film 1 is detachably laminated on the surface of the overcoat layer 4 on one side of the transparent conductive film 20 on the main surface having adhesiveness.
  • an amorphous cycloolefin resin is used as the transparent resin film 2 .
  • the amorphous cycloolefin resin means a (co)polymer containing 50 mol % or more of cycloolefin such as norbornene. Examples thereof include norbornene hydrogenation ring-opening metathesis polymerization type cycloolefin polymers and norbornene/ethylene addition copolymerization type cycloolefin polymers.
  • amorphous cycloolefin polymer resins include, for example, ZEONOR (registered trademark) and ZEONEX (registered trademark) manufactured by Zeon Corporation, ARTON (registered trademark) manufactured by JSR Corporation, and manufactured by Mitsui Chemicals, Inc.
  • APEL registered trademark
  • TOPAS registered trademark manufactured by Polyplastics Co., Ltd.
  • ZEONOR ZF-14, ZF-16, ARTON RX4500, RH4900, and R5000 Specific examples include ZEONOR ZF-14, ZF-16, ARTON RX4500, RH4900, and R5000.
  • Tg glass transition temperature
  • these resin films are preferable because they can withstand heating in subsequent processes such as lead wires and connector portions, and those having a glass transition temperature (Tg) of 130 to 170° C. are more preferable.
  • Tg glass transition temperature
  • the fact that these resin films are amorphous can be confirmed by the fact that no peak based on the crystallization temperature is observed by DSC measurement based on JIS K7121 plastic transition temperature measurement method.
  • the thickness Ts of the transparent resin film 2 is within the range of 30-150 ⁇ m, preferably within the range of 40-125 ⁇ m, and more preferably within the range of 50-100 ⁇ m.
  • the thickness of the transparent resin film 2 is 30 ⁇ m or more, it is easy to handle, and when it is 150 ⁇ m or less, cracks are less likely to occur when a touch panel having a curved surface shape is formed.
  • the transparent conductive layer 3 is formed on the transparent resin film so that the fine metal wires have crossing portions, and has a structure in which light can pass through the openings where the fine metal wires are not formed.
  • metal fine wire means a conductive fiber (metal nanowire) or a lattice pattern (metal mesh) made of metal.
  • a metal nanowire is a metal whose diameter is on the order of nanometers, and is a conductive material having a wire-like shape.
  • a metal mesh is a conductive material having a grid-like pattern of linear metal wires with submicron to micron-order widths.
  • Gold, silver, platinum, copper, nickel, palladium, aluminum, iron, chromium, and alloys thereof can be used as the metal constituting the thin metal wire.
  • Gold, silver, platinum, copper, nickel, and palladium are particularly preferred from the viewpoint of conductivity, and silver is particularly preferred.
  • Metal nanowires can be suitably used as the conductive material that constitutes the metal thin wires. It is preferable that the metal nanowires form a nanostructured network having intersections, and more preferably form a nanostructured network in which at least a part of the intersections are fused. It can be confirmed from the analysis of the electron beam diffraction pattern of a transmission electron microscope (TEM) that the intersections of the metal nanowires are fused.
  • TEM transmission electron microscope
  • the electron beam diffraction patterns of the metal nanowires that are sufficiently distant from the intersections of the metal nanowires and the intersections of the metal nanowires are analyzed, and the crystal structures of the two are different (solvent It can be confirmed from the fact that the crystal structure changes (occurrence of recrystallization) due to heating for drying.
  • a known manufacturing method can be used as a method for manufacturing metal nanowires.
  • silver nanowires can be synthesized by reducing silver nitrate in the presence of poly-N-vinylpyrrolidone using the Poly-ol method (see Chem. Mater., 2002, 14, 4736).
  • Gold nanowires can also be synthesized by reducing chloroauric acid hydrate in the presence of polyvinylpyrrolidone (see J. Am. Chem. Soc., 2007, 129, 1733).
  • WO2008/073143 pamphlet and WO2008/046058 pamphlet regarding large-scale synthesis and purification techniques for silver nanowires and gold nanowires.
  • the average diameter (average diameter) of the metal nanowires is preferably 1 to 500 nm, more preferably 5 to 200 nm, even more preferably 5 to 100 nm, and particularly preferably 10 to 50 nm.
  • the average length of the long axis of the metal nanowires (average length) is preferably 1 to 100 ⁇ m, more preferably 1 to 80 ⁇ m, still more preferably 2 to 70 ⁇ m, and particularly preferably 5 to 50 ⁇ m.
  • the metal nanowires preferably have an average diameter and an average major axis length that satisfy the above ranges, and an average aspect ratio of more than 5, more preferably 10 or more, and further preferably 100 or more. It is preferably 200 or more, and particularly preferably 200 or more.
  • the aspect ratio is a value obtained by a/b when the average diameter of the metal nanowires is approximated by b and the average length of the long axis by a.
  • a and b can be measured using scanning electron microscopy (SEM) and optical microscopy.
  • b average diameter is a measured value obtained by measuring the dimensions of 100 arbitrarily selected silver nanowires using a field emission scanning electron microscope JSM-7000F (manufactured by JEOL Ltd.).
  • a shape measurement laser microscope VK-X200 manufactured by Keyence Corporation is used to measure the dimensions of 100 arbitrarily selected silver nanowires, and the obtained measurement value is determined as the arithmetic mean of
  • Materials for metal nanowires include, for example, at least one selected from the group consisting of gold, silver, platinum, copper, nickel, and palladium, and alloys in which these metals are combined.
  • the fine metal wires can be formed in a shape such as a metal mesh (lattice pattern) on a transparent resin film using a known photolithography technique.
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2015-22397 discloses a method of forming a silver salt emulsion layer containing silver halide, exposing the silver salt emulsion layer, and then developing the layer.
  • the width of the fine metal wire is preferably 0.1 to 300 ⁇ m, more preferably 0.1 to 100 ⁇ m, even more preferably 0.2 to 50 ⁇ m, from the viewpoint of high integration of the fine metal wire.
  • the interval between the metal fine wires is not particularly limited, it is preferably 0.1 to 300 ⁇ m, more preferably 0.1 to 100 ⁇ m, and still more preferably 0.2 to 50 ⁇ m from the viewpoint of high integration of the metal fine wires.
  • the thickness of the metal fine wire is not particularly limited, it is preferably 0.01 to 0.3 ⁇ m, more preferably 0.01 to 0.2 ⁇ m, and further preferably 0.02 to 0.2 ⁇ m from the viewpoint of high integration of the metal fine wire. preferable.
  • the composition for forming the silver salt emulsion layer contains silver halide.
  • the halogen element contained in the silver halide may be any one of chlorine, bromine, iodine and fluorine, and may be combined.
  • silver halide silver halide mainly composed of silver chloride, silver bromide and silver iodide is preferably used, and silver halide mainly composed of silver bromide and silver chloride is more preferably used.
  • the transparent conductive layer 3 may contain a binder resin in addition to the fine metal wires.
  • a binder resin generally, those having transparency and excellent workability can be applied.
  • metal nanowires obtained by the polyol method it is preferable to use a binder resin soluble in alcohol or water from the viewpoint of compatibility with the solvent (polyol) for the production.
  • a binder resin soluble in alcohol or water from the viewpoint of compatibility with the solvent (polyol) for the production.
  • water-soluble cellulosic resins such as poly-N-vinylpyrrolidone, methylcellulose, hydroxyethylcellulose, and carboxymethylcellulose, butyral resins, and poly-N-vinylacetamide (PNVA (registered trademark)
  • PNVA poly-N-vinylacetamide
  • Poly-N-vinylacetamide is a homopolymer of N-vinylacetamide (NVA), but copolymers containing N-vinylacetamide (NVA) as monomer units can also be used.
  • monomers copolymerizable with NVA include N-vinylformamide, N-vinylpyrrolidone, acrylic acid, methacrylic acid, sodium acrylate, sodium methacrylate, acrylamide, acrylonitrile and the like.
  • the polymer preferably contains 70 mol% or more of N-vinylacetamide as a monomer unit, and more preferably contains 80 mol% or more. Preferably, it is more preferably contained in an amount of 90 mol % or more.
  • the weight average molecular weight of the polymer (homopolymer and copolymer) containing N-vinylacetamide as a monomer unit is preferably 30,000 to 4,000,000, more preferably 100,000 to 3,000,000. More preferably, it is 300,000 to 1,500,000.
  • the weight average molecular weight of poly-N-vinylacetamide and N-vinylacetamide copolymer is measured by the following method.
  • a binder resin was dissolved in the following eluent and allowed to stand for 20 hours.
  • the concentration of the binder resin in this solution is 0.05 mass %.
  • gelatin is preferably used as the binder resin.
  • a wet process that is advantageous in terms of manufacturing cost is preferably used.
  • the transparent conductive layer 3 is formed by coating one side of the transparent resin film 2 with a conductive ink (metal nanowire ink) containing the metal nanowires, a binder resin and a solvent as a coating liquid.
  • a conductive ink metal nanowire ink
  • it can be formed by printing on both major surfaces and drying off the solvent.
  • the solvent is not particularly limited as long as the solvent disperses the metal nanowires satisfactorily and dissolves the binder resin but does not dissolve the transparent resin film.
  • Alcohols are saturated monohydric alcohols (methanol, ethanol, normal propanol and isopropanol) having 1 to 3 carbon atoms represented by C n H 2n+1 OH (n is an integer of 1 to 3) [hereinafter simply “carbon atoms It is preferable that at least one type of saturated monohydric alcohol having 1 to 3 carbon atoms is included, and more preferably 40% by mass or more of the total alcohol is saturated monohydric alcohol having 1 to 3 carbon atoms. The use of a saturated monohydric alcohol having 1 to 3 carbon atoms facilitates drying, which is advantageous in terms of the process.
  • Alcohols other than saturated monohydric alcohols having 1 to 3 carbon atoms represented by C n H 2n+1 OH (n is an integer of 1 to 3) can be used in combination.
  • Examples of alcohols other than the saturated monohydric alcohol having 1 to 3 carbon atoms that can be used in combination include ethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, and propylene glycol monoethyl ether. is mentioned.
  • the drying rate can be adjusted.
  • the total alcohol content in the mixed solvent is preferably 5 to 90% by mass. When the content of alcohol in the mixed solvent is 5% by mass or more and 90% by mass or less, it is possible to suppress the occurrence of striped patterns (coating spots) during coating.
  • the conductive ink can be produced by stirring and mixing the metal nanowires, the binder resin and the solvent using a rotation or revolution stirrer.
  • the content of the binder resin contained in the conductive ink is preferably in the range of 0.01 to 1.0% by mass.
  • the content of metal nanowires contained in the conductive ink is preferably in the range of 0.01 to 1.0% by mass.
  • the content of the solvent contained in the conductive ink is preferably in the range of 98.0 to 99.98% by mass.
  • a more preferable viscosity of the conductive ink is 1 to 20 mPa ⁇ s, and a further preferable viscosity is 1 to 10 mPa ⁇ s. Viscosity is a value measured at 25° C. with a digital viscometer DV-E (spindle: SC4-18) manufactured by Brookfield.
  • the conductive ink can be printed by, for example, a bar coat printing method, a gravure printing method, an inkjet method, or a slit coating method.
  • the bar coat printing method has good applicability of low-viscosity ink and is excellent in forming a thin film.
  • the bar coat printing method can print even low-viscosity ink containing inorganic or metal particles without clogging.
  • the pattern formed by printing the conductive ink becomes the transparent conductive layer 3 having conductivity by heating and drying the solvent.
  • the thickness of the transparent conductive layer 3 is preferably in the range of 10 nm to 500 nm, more preferably in the range of 10 nm to 300 nm, even more preferably in the range of 15 nm to 200 nm, even more preferably in the range of 20 nm to 100 nm. is particularly preferred.
  • the thickness of the transparent conductive layer 3 is smaller than the thickness of the transparent conductive film 10 or 20 and the carrier film 1, the effect on the curling property is extremely small.
  • the transparent conductive layer 3 is formed by using a silver salt emulsion layer-forming composition containing the silver salt emulsion, a binder resin and a solvent as a coating liquid. It is formed by coating one or both main surfaces of the resin film 2 and performing an exposure and development process.
  • the light source used for exposure is not particularly limited, and includes light such as visible light and ultraviolet rays, and radiation such as X-rays.
  • the method of pattern exposure is not particularly limited, and for example, surface exposure using a photomask or scanning exposure with a laser beam may be used.
  • the shape of the pattern is not particularly limited as long as the fine metal wires are formed to have crossing portions, and is appropriately adjusted according to the pattern of the fine metal wires to be formed, but a lattice pattern is preferable.
  • the method of development processing is not particularly limited, and known methods can be employed. For example, it is possible to use the usual developing techniques used for silver salt photographic films, photographic papers, printing plate-making films, and emulsion masks for photomasks.
  • Development processing can include fixing processing for the purpose of removing and stabilizing silver salts in unexposed areas.
  • a fixing process technique used for silver salt photographic film, photographic paper, printing plate-making film, emulsion mask for photomask, and the like can be used.
  • the metal fine line pattern obtained by rinsing with pure water and drying has a thickness of preferably 0.5 to 5 ⁇ m, more preferably 0.5 to 3 ⁇ m. 0.8 to 1.5 ⁇ m is more preferred.
  • a protective film (overcoat layer) for protecting a transparent conductive film (transparent conductive layer) is a thermosetting film of a curable resin composition (overcoat ink) from the viewpoint of mechanically protecting the transparent conductive film.
  • the cured film is slightly inferior in moldability, it is preferable to use it as a protective film for three-dimensional molding.
  • thermoplastic resin which is excellent in moldability
  • the transparent conductive film laminate is usually used by bonding it to another member, that is, it is mechanically protected by the other member. In that case, high mechanical strength is not required. Therefore, it is preferable that the protective film (overcoat layer 4) constituting the transparent conductive film laminate of one embodiment for three-dimensional molding uses a thermoplastic resin having excellent moldability as a main component.
  • the curable resin composition When a cured film of a curable resin composition is used as the protective film (overcoat layer 4), the curable resin composition includes (A) a polyurethane containing a carboxy group and (B) two groups per molecule. It is preferable to contain the above epoxy compound having an epoxy group and (C) a curing accelerator.
  • a curable resin composition is formed on the transparent conductive film by printing, coating, or the like, and cured to form a protective film. Curing of the curable resin composition can be carried out by, for example, heating and drying the thermosetting resin composition to thermally cure it.
  • (B) epoxy compound having two or more epoxy groups in one molecule may be simply described as "(B) epoxy compound”.
  • the (A) polyurethane containing a carboxyl group preferably has a weight average molecular weight of 1,000 to 100,000, more preferably 2,000 to 70,000, more preferably 3,000 to 50,000. 000 is more preferred.
  • the weight-average molecular weight of a polyurethane containing a carboxyl group is a polystyrene-equivalent value measured by GPC. When the weight-average molecular weight of the carboxy group-containing polyurethane is 1,000 or more, the elongation, flexibility and strength of the coating film after printing are sufficiently exhibited.
  • the weight average molecular weight of the carboxyl group-containing polyurethane is 100,000 or less, the solubility in a solvent is good, and the viscosity of the polyurethane solution after dissolution does not become too high, resulting in excellent handleability.
  • the GPC measurement conditions for the weight average molecular weight of polyurethane containing carboxyl groups are as follows. Apparatus name: HPLC unit HSS-2000 manufactured by JASCO Corporation Column: Shodex column LF-804 Mobile phase: Tetrahydrofuran Flow rate: 1.0 mL/min Detector: RI-2031Plus manufactured by JASCO Corporation Temperature: 40.0°C Sample amount: sample loop 100 ⁇ l Sample concentration: about 0.1% by mass
  • the acid value of the carboxy group-containing polyurethane is preferably 10 to 140 mg-KOH/g, more preferably 15 to 130 mg-KOH/g.
  • the acid value of the carboxy group-containing polyurethane is 10 mg-KOH/g or more, both the curability of the curable resin composition and the solvent resistance of the cured product are good.
  • the acid value of the carboxy group-containing polyurethane is 140 mg-KOH/g or less, the carboxy group-containing polyurethane itself has good solubility in a solvent, and the viscosity of the resin composition can be easily adjusted to a desired viscosity. .
  • problems such as warping of the base film due to excessive hardening of the cured product are less likely to occur.
  • Acid value [B x f x 5.611]/S B: Amount of 0.1N potassium hydroxide-ethanol solution used (ml) f: Factor S of 0.1N potassium hydroxide-ethanol solution: Amount of sample collected (g)
  • Polyurethane containing a carboxy group is, more specifically, a polyurethane synthesized using (a1) a polyisocyanate compound, (a2) a polyol compound, and (a3) a dihydroxy compound having a carboxy group as monomers. be. From the viewpoint of weather resistance and light resistance, it is desirable that each of (a1), (a2) and (a3) does not contain a conjugated functional group such as an aromatic compound. Each monomer will be described in more detail below.
  • (a1) Polyisocyanate compound As the (a1) polyisocyanate compound, a diisocyanate having two isocyanato groups per molecule is usually used. Examples of polyisocyanate compounds include aliphatic polyisocyanates and alicyclic polyisocyanates, and these can be used alone or in combination of two or more. (A) A small amount of polyisocyanate having 3 or more isocyanato groups can be used as long as the carboxy group-containing polyurethane does not gel.
  • aliphatic polyisocyanates examples include 1,3-trimethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,9-nonamethylene diisocyanate, 1,10-decamethylene diisocyanate, 2 , 2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,2′-diethyl ether diisocyanate, dimer acid diisocyanate and the like.
  • Alicyclic polyisocyanates include, for example, 1,4-cyclohexanediisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, 1,4-bis(isocyanatomethyl)cyclohexane, 3-isocyanatomethyl-3,5 , 5-trimethylcyclohexyl isocyanate (IPDI, isophorone diisocyanate), bis-(4-isocyanatocyclohexyl) methane (hydrogenated MDI), hydrogenated (1,3- or 1,4-) xylylene diisocyanate, norbornane diisocyanate, etc. mentioned.
  • the content of these in the (a1) polyisocyanate compound (a1) the total amount of the polyisocyanate compound (100 mol%)
  • it is preferably 50 mol % or less, more preferably 30 mol % or less, still more preferably 10 mol % or less.
  • (a2) Polyol compound (a2) Polyol compound (however, (a2) polyol compound does not include (a3) a dihydroxy compound having a carboxyl group described later) usually has a number average molecular weight of 250 to 50,000. Yes, preferably 400 to 10,000, more preferably 500 to 5,000.
  • the number average molecular weight of the polyol compound is a polystyrene-equivalent value measured by GPC under the conditions described above.
  • Examples of (a2) polyol compounds include polycarbonate polyols, polyether polyols, polyester polyols, polylactone polyols, polysilicones with hydroxyl groups on both ends, and C18 (18 carbon atoms) unsaturated fatty acids made from vegetable oils and fats. and a polyol compound having 18 to 72 carbon atoms obtained by hydrogenating a polyvalent carboxylic acid derived from a polymer thereof and converting the carboxylic acid into a hydroxyl group. From the viewpoint of the balance between the water resistance of the protective film, the insulation reliability, and the adhesion to the substrate, the (a2) polyol compound is preferably a polycarbonate polyol.
  • a polycarbonate polyol can be obtained by reacting it with a diol having 3 to 18 carbon atoms, a carbonate ester or phosgene, and is represented by the following structural formula (1), for example.
  • R 3 is a residue of the corresponding diol (HO--R 3 --OH) from which the hydroxyl group has been removed and is an alkanediyl group having 3 to 18 carbon atoms, n 3 is a positive integer, Preferably it is 2-50.
  • the polycarbonate polyol represented by formula (1) is 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1 ,5-pentanediol, 1,8-octanediol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 1,10 -Decamethylene glycol or 1,2-tetradecanediol can be used as a starting material.
  • the polycarbonate polyol may be a polycarbonate polyol (copolymerized polycarbonate polyol) having multiple types of alkanediyl groups in its skeleton.
  • the use of a copolymerized polycarbonate polyol is often advantageous from the viewpoint of preventing crystallization of (A) polyurethanes containing carboxy groups. Considering solubility in a solvent, it is preferable to use a polycarbonate polyol having a branched skeleton and a hydroxyl group at the end of the branched chain.
  • a dihydroxy compound containing a carboxy group (a3)
  • the dihydroxy compound containing a carboxy group has two selected from a hydroxy group and a hydroxyalkyl group having 1 or 2 carbon atoms, and has a molecular weight of A carboxylic acid or aminocarboxylic acid having a molecular weight of 200 or less is preferable because the cross-linking point can be controlled.
  • Dihydroxy compounds containing a carboxy group include, for example, 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, N,N-bishydroxyethylglycine, N,N-bishydroxyethyl Among these, 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid are preferred in terms of solubility in solvents.
  • the dihydroxy compound containing a carboxy group can be used alone or in combination of two or more.
  • Polyurethane containing a carboxyl group can be synthesized only from the above three components ((a1), (a2) and (a3)). Furthermore, it can be synthesized by reacting (a4) a monohydroxy compound and/or (a5) a monoisocyanate compound. From the viewpoint of weather resistance and light resistance, (a4) monohydroxy compound and (a5) monoisocyanate compound are preferably compounds containing no aromatic ring or carbon-carbon double bond in the molecule.
  • Polyurethanes containing carboxyl groups can be prepared by using a suitable organic solvent in the presence or absence of a known urethanization catalyst such as dibutyltin dilaurate. ) a polyol compound and (a3) a dihydroxy compound having a carboxyl group. It is advantageous to synthesize a polyurethane containing a carboxyl group without a catalyst because it is not necessary to consider contamination with tin or the like in the end.
  • a known urethanization catalyst such as dibutyltin dilaurate.
  • the organic solvent is not particularly limited as long as it has low reactivity with the isocyanate compound.
  • the organic solvent preferably does not contain a basic functional group such as amine and has a boiling point of 50° C. or higher, preferably 80° C. or higher, more preferably 100° C. or higher.
  • solvents examples include toluene, xylene, ethylbenzene, nitrobenzene, cyclohexane, isophorone, diethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, Propylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, methyl methoxypropionate, ethyl methoxypropionate, methyl ethoxypropionate, ethyl ethoxypropionate, ethyl acetate, acetic acid n-butyl, isoamyl acetate, ethyl lactate, acetone, methyl ethyl ketone, cyclohexanone, N,N-dimethylformamide, N,N-di
  • the organic solvent is propylene.
  • Glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, ⁇ -butyrolactone, or combinations thereof are preferred.
  • the order in which the raw materials are added is not particularly limited, but usually (a2) the polyol compound and (a3) the dihydroxy compound having a carboxyl group are first placed in a reaction vessel, dissolved or dispersed in a solvent, and then heated to 20 to 150°C. , more preferably at 60 to 120°C, (a1) the polyisocyanate compound is added dropwise, and then these are reacted at 30 to 160°C, more preferably 50 to 130°C.
  • the molar ratio of raw materials charged is adjusted according to the molecular weight and acid value of the target polyurethane containing carboxyl groups.
  • the molar ratio of (a1) the isocyanato group of the polyisocyanate compound to ((a2) the hydroxyl group of the polyol compound + (a3) the hydroxyl group of the dihydroxy compound having a carboxyl group) is preferably 0.5 to 1.5. :1, more preferably 0.8-1.2:1, more preferably 0.95-1.05:1.
  • the molar ratio of (a2) hydroxyl group of the polyol compound to (a3) hydroxyl group of the dihydroxy compound having a carboxyl group is preferably 1:0.1-30, more preferably 1:0.3-10.
  • Epoxy compounds having two or more epoxy groups in one molecule include, for example, bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, phenol novolac type Epoxy resins, cresol novolak type epoxy resins, N-glycidyl type epoxy resins, bisphenol A novolak type epoxy resins, chelate type epoxy resins, glyoxal type epoxy resins, amino group-containing epoxy resins, rubber-modified epoxy resins, dicyclopentadiene phenolic type Epoxy resins, silicone-modified epoxy resins, ⁇ -caprolactone-modified epoxy resins, glycidyl group-containing aliphatic epoxy resins, and glycidyl group-containing alicyclic epoxy resins can be mentioned.
  • An epoxy compound having 3 or more epoxy groups in one molecule can be used more preferably.
  • examples of such epoxy compounds include EHPE (registered trademark) 3150 (manufactured by Daicel Corporation), jER604 (manufactured by Mitsubishi Chemical Corporation), EPICLON EXA-4700 (manufactured by DIC Corporation), and EPICLON HP-7200 (manufactured by DIC Corporation). company), pentaerythritol tetraglycidyl ether, pentaerythritol triglycidyl ether, and TEPIC-S (manufactured by Nissan Chemical Industries, Ltd.).
  • the (B) epoxy compound may have an aromatic ring in the molecule.
  • the mass of the epoxy compound is preferably 20% by mass or less.
  • the mixing ratio of (A) the carboxy group-containing polyurethane to the (B) epoxy compound is 0.5 to 1.5 in terms of the equivalent ratio of the carboxy group in the polyurethane to the epoxy group of the (B) epoxy compound. It is preferably from 0.7 to 1.3, even more preferably from 0.9 to 1.1.
  • Curing accelerators include, for example, phosphine compounds such as triphenylphosphine and tributylphosphine (manufactured by Hokko Chemical Industry Co., Ltd.), Curesol (registered trademark) (imidazole-based epoxy resin curing agent: manufactured by Shikoku Kasei Kogyo Co., Ltd. ), 2-phenyl-4-methyl-5-hydroxymethylimidazole, U-CAT (registered trademark) SA series (DBU salt: manufactured by San-Apro Co., Ltd.), and Irgacure (registered trademark) 184.
  • phosphine compounds such as triphenylphosphine and tributylphosphine (manufactured by Hokko Chemical Industry Co., Ltd.)
  • Curesol registered trademark
  • imidazole-based epoxy resin curing agent manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • 2-phenyl-4-methyl-5-hydroxymethylimidazole
  • the amount of curing accelerator used if the amount used is too small, the effect of the addition will not be obtained, and if the amount used is too large, the electrical insulation will decrease.
  • Curing aids include, for example, polyfunctional thiol compounds and oxetane compounds.
  • polyfunctional thiol compounds include pentaerythritol tetrakis (3-mercaptopropionate), tris-[(3-mercaptopropionyloxy)-ethyl]-isocyanurate, trimethylolpropane tris (3-mercaptopropionate), and Karenz. (registered trademark) MT series (manufactured by Showa Denko KK) and the like.
  • oxetane compound examples include Aron Oxetane (registered trademark) series (manufactured by Toagosei Co., Ltd.), ETERNACOLL (registered trademark) OXBP and OXMA (manufactured by Ube Industries, Ltd.).
  • the amount of the curing aid used is preferably 0 per 100 parts by mass of the epoxy compound (B) because the effect of the addition can be obtained and the handling property can be maintained by avoiding an excessive increase in the curing speed. .1 to 10 parts by mass, more preferably 0.5 to 6 parts by mass.
  • the curable resin composition preferably contains 95.0% by mass or more and 99.9% by mass or less of the solvent (D), more preferably 96% by mass or more and 99.7% by mass or less, and 97% by mass or more and 99% by mass. It is more preferable to contain 0.5% by mass or less.
  • D As the solvent, a solvent that does not attack the transparent conductive film or the transparent substrate can be used.
  • A The solvent used for synthesizing the carboxy group-containing polyurethane can be used as it is, or other solvents can be used to adjust the solubility or printability of the polyurethane.
  • the solvent used for synthesizing the carboxy group-containing polyurethane may be distilled off before and after adding the new solvent to replace the solvent.
  • the boiling point of the solvent is preferably 80°C to 300°C, more preferably 80°C to 250°C. If the boiling point of the solvent is 80° C. or higher, it is possible to suppress coating unevenness caused by excessively quick drying.
  • the boiling point of the solvent is 300° C. or less, the heat treatment time required for drying and curing can be shortened, and productivity during industrial production can be improved.
  • solvents examples include propylene glycol monomethyl ether acetate (boiling point 146°C), ⁇ -butyrolactone (boiling point 204°C), diethylene glycol monoethyl ether acetate (boiling point 218°C), and tripropylene glycol dimethyl ether (boiling point 243°C) for polyurethane synthesis.
  • ether solvents such as propylene glycol dimethyl ether (boiling point 97° C.) and diethylene glycol dimethyl ether (boiling point 162° C.), isopropyl alcohol (boiling point 82° C.), t-butyl alcohol (boiling point 82° C.), 1-hexanol ( boiling point 157°C), propylene glycol monomethyl ether (boiling point 120°C), diethylene glycol monomethyl ether (boiling point 194°C), diethylene glycol monoethyl ether (boiling point 196°C), diethylene glycol monobutyl ether (boiling point 230°C), triethylene glycol (boiling point 276°C) ), a solvent containing a hydroxyl group such as ethyl lactate (boiling point 154° C.), methyl ethyl ketone (boiling point 80° C.), and eth
  • solvents can be used alone or in combination of two or more.
  • the solubility of the polyurethane, epoxy compound, etc. to be used should be taken into consideration so that aggregation and precipitation do not occur.
  • a solvent having a boiling point of more than 100°C having a hydroxy group, or a solvent having a boiling point of 100°C or less from the viewpoint of the drying property of the ink.
  • Solvents that attack the transparent conductive film or transparent substrate when used alone can be used as a mixed solvent with another solvent so long as they have a composition that does not attack the transparent conductive film or transparent resin film.
  • the curable resin composition comprises (A) a polyurethane containing a carboxyl group, (B) an epoxy compound, (C) a curing accelerator, and (D) a solvent, and (D) in the curable resin composition. It can be produced by blending such that the content of the solvent is 95.0% by mass or more and 99.9% by mass or less, and stirring so that these components are uniform.
  • the solid content concentration in the curable resin composition varies depending on the desired film thickness and printing method, but is preferably 0.1 to 10% by mass, more preferably 0.5% to 5% by mass. preferable.
  • the solid content concentration is in the range of 0.1 to 10% by mass, the film thickness does not become excessively thick when the curable resin composition is applied on the transparent conductive film, and the electrical connection with the transparent conductive film is maintained.
  • sufficient weather resistance and light resistance can be imparted to the protective film.
  • the protective film solid content in the curable resin composition (A) a polyurethane containing a carboxy group, (B) an epoxy compound, and (C) curing in a curing accelerator
  • the ratio of the aromatic ring-containing compound defined by the following formula contained in (residue) is preferably suppressed to 15% by mass or less.
  • (C) curing residue in the curing accelerator used herein means that all or part of the curing accelerator (C) may disappear (decompose, volatilize, etc.) depending on the curing conditions, so it is protected under the curing conditions. It means the (C) curing accelerator remaining in the film.
  • (C) curing accelerator remaining in the protective film after curing cannot be accurately quantified, it is calculated based on the charged amount assuming that it does not disappear due to curing conditions, and the ratio of the aromatic ring-containing compound is It is preferable to use (C) the curing accelerator within the range of 15% by mass or less.
  • the protective film When a resin composition containing a thermoplastic resin having excellent molding processability as a main component is used as the protective film (overcoat layer 4), 94% by mass or more of the resin component constituting the protective film is derived from the thermoplastic resin. is preferred. 6 mass % or less of the resin component constituting the protective film may be derived from the curable resin (compound). If the amount of the curable resin (compound) of the resin component in the resin composition is in the range of 6% by mass or less, the function as a protective film can be improved without significantly deteriorating the three-dimensional moldability. However, three-dimensional moldability is best when the resin composition does not contain a curable resin (compound).
  • the protective film can be formed by applying a resin composition in which a resin is dissolved in a solvent onto the transparent conductive film.
  • a resin composition having a Applicable resin compositions include, for example, ethyl cellulose or a resin composition containing (A) a polyurethane containing a carboxyl group, which is a thermoplastic resin component in the curable resin composition described above, as a main component.
  • a resin composition containing a polyurethane containing a carboxy group is a thermoplastic resin component in the above-mentioned curable resin composition (A) a polyurethane containing a carboxy group as a main component (containing 94% by mass or more of the resin component).
  • thermoplastic resin used for forming the protective film, such as a polyurethane containing a carboxyl group, protects
  • the thermosetting resin used to form the protective film which accounts for 94% by mass or more of the resin component of the film, such as an epoxy resin (compound) having two or more epoxy groups in one molecule, and a curing accelerator (curing (including auxiliaries) corresponds to 6% by mass or less of the resin component of the protective film.
  • an epoxy resin having two or more epoxy groups in one molecule is more than 0% by mass and 6% by mass or less in the resin component.
  • the blending ratio of the epoxy resin (compound) and the carboxy group-containing polyurethane is determined by the molar ratio (Ep/COOH) of the epoxy group (Ep) of the epoxy resin to the carboxy group (COOH) of the carboxy group-containing polyurethane. It is preferably more than 0 and 0.02 or less.
  • curable resin composition or resin composition containing a thermoplastic resin as a main component for example, by printing such as bar coat printing method, gravure printing method, ink jet method, slit coating method, etc., thin metal wires are formed.
  • a curable resin composition or a resin composition containing a thermoplastic resin as a main component is applied on a substrate on which a transparent conductive layer is formed, and the solvent is dried and removed. Then, the curable resin is cured to form a protective film (overcoat layer 4).
  • the thickness of the resulting protective film is preferably more than 30 nm and 1 ⁇ m or less.
  • the thickness of the protective film is more than 50 nm and 500 nm or less, and more preferably more than 100 nm and 200 nm or less.
  • the thickness of the protective film is 1 ⁇ m or less, it becomes easy to conduct with the wiring in the post-process.
  • the thickness of the protective film is more than 30 nm, the effect of protecting the transparent conductive layer is sufficiently exhibited.
  • the thickness of the protective film (overcoat layer 4) is approximately 1 ⁇ m or less, which is smaller than the thicknesses of the transparent conductive film and the carrier film, so that the effect on the curling property is extremely small.
  • This carrier film 1 forms a transparent conductive film laminate together with the transparent conductive film 10 or 20 laminated so as to be peelable.
  • the carrier film 1 may be a polyolefin film as a base film with an adhesive layer of polyolefin resin on one side, or may be a laminate of a polyolefin film having adhesiveness and a polyolefin film having no adhesiveness.
  • a polyolefin film is used for the carrier film 1.
  • Polyolefins include, for example, polyethylene, polypropylene, or mixtures thereof.
  • polyethylene includes homopolymers of ethylene and copolymers of ethylene and other olefins.
  • Polypropylene also includes homopolymers of propylene and copolymers of propylene with other olefins.
  • Examples of the other olefins include ethylene, propylene, butene, pentene, hexene, heptene, octene, nonene, and decene. Among these, ethylene, propylene and butene are preferred.
  • the blending ratio of the other olefin in the copolymer of ethylene or propylene and the other olefin is preferably 40% by mass or less based on the total mass of ethylene or propylene as a monomer and the other olefin, 30% by mass or less is more preferable, and 20% by mass or less is particularly preferable.
  • polyethylene examples include high-density polyethylene (HDPE), low-density polyethylene (LDPE), and linear low-density polyethylene (L-LDPE).
  • HDPE high-density polyethylene
  • LDPE low-density polyethylene
  • L-LDPE linear low-density polyethylene
  • the polyolefin film preferably contains at least polypropylene. Specifically, it preferably contains at least one selected from the group consisting of propylene homopolymers and copolymers of propylene and other olefins.
  • copolymers of propylene and other olefins examples include copolymers of propylene and ethylene, copolymers of propylene and butene, and copolymers of propylene, ethylene and butene. These copolymers may be random copolymers or block copolymers.
  • the blending ratio of other olefins in the copolymer is preferably 40% by mass or less, preferably 30% by mass or less, and 20% by mass or less, based on the total mass of propylene as a monomer and other olefins. Especially preferred.
  • the polyolefin film can contain a mixture of polypropylene and polyethylene.
  • the content of polypropylene in the mixture of polypropylene and polyethylene is preferably 60% by mass or more, more preferably 70% by mass or more, and particularly preferably 80% by mass or more, based on the total mass of polypropylene and polyethylene.
  • the content ratio is preferably 97% by mass or less.
  • the content of polyethylene in the mixture of polypropylene and polyethylene is preferably 40% by mass or less, more preferably 30% by mass or less, and particularly preferably 20% by mass or less, based on the total mass of polypropylene and polyethylene.
  • the content ratio is preferably 3% by mass or more.
  • the polyolefin film in the present embodiment may be a mixture containing, in addition to the above polyolefin, a copolymer of an olefin and a compound having a vinyl group other than the above olefin.
  • a copolymer of an olefin and a compound having a vinyl group other than the above olefin.
  • substituents e.g., vinyl acetate
  • cyclic (aromatic ring , alicyclic) structure eg, styrene, hydrogenated styrene.
  • the adhesive force can be further increased.
  • the polyolefin film in this embodiment may have a polyolefin single-layer structure or may have a multi-layer polyolefin structure.
  • each layer is composed of the above polyolefin, and the composition may be the same or different.
  • Examples of the multilayer lamination structure include a two-layer lamination structure of A layer/B layer, a three-layer lamination structure of A layer/B layer/A layer or A layer/B layer/C layer.
  • the A layer, the B layer, and the C layer mean different compositions.
  • a layer with high adhesion e.g., a layer containing an olefin elastomer
  • a layer with high surface smoothness is used on one main surface (layer A), and the other main surface (layer B in the case of a two-layer laminate structure)
  • a layer with low adhesion e.g., a layer that does not contain an olefin elastomer
  • a layer with low surface smoothness for the layer C in the case of a three-layer laminate structure blocking when wound with a roll is suppressed. easier to do.
  • a commercially available polyolefin film can be used.
  • Toraytec registered trademark
  • FSA registered trademark
  • SANITECT registered trademark
  • Specific model numbers include, for example, Tretec N711, Tretec A521, FSA010M, FSA020M, FSA030M, and PAC-3-70.
  • the thickness Tc of the carrier film 1 is 0.2 times or more and 0.8 times or less the thickness Ts of the transparent resin film 2, that is, 0.2 ⁇ Tc/Ts ⁇ 0.8, preferably 0.2 ⁇ Tc. /Ts ⁇ 0.6. Within this range, the curl generated when the transparent conductive film laminate is heated can be reduced, the curl after standing to cool is relatively small, and the carrier film can be replaced and flattened easily. , there is no problem in manufacturing during the production of the transparent conductive film laminate and in the post-process using the transparent conductive film laminate.
  • the thickness Tc of the carrier film 1 is preferably 25 ⁇ m or more in terms of workability and availability.
  • the transparent conductive film laminate is a transparent conductive film laminate including a transparent conductive film 10 or 20 and a carrier film 1 laminated on the transparent conductive film 10 or 20.
  • the carrier film 1 has one main surface only has stickiness.
  • a transparent conductive layer 3 containing fine metal wires, an overcoat layer 4 are laminated in this order.
  • One main surface having adhesiveness is detachably laminated to the coat layer 4 (FIGS. 1 and 2).
  • the transparent resin film 2 and the transparent conductive layer 3 are adjacent, and the transparent conductive layer 3 and the overcoat layer 4 are adjacent.
  • the transparent conductive film laminate having the above structure was cut into a size of 10 cm ⁇ 10 cm, and the curl value immediately after heating at 80 ° C. for 30 minutes was 0 to 5 mm, and the curl value after standing to cool for 30 minutes was 0 to 0. 20 mm is preferred. This makes it possible to control the amount and direction of curling during and after the heating process such as drying, so that the transparent conductive film laminate can be easily transported.
  • the method for manufacturing the transparent conductive film laminate (FIG. 1) comprises the steps of: laminating a carrier film 1 on one main surface of a transparent resin film 2; and forming a transparent conductive layer 3 and an overcoat layer 4 in this order on the main surface opposite (the other side) to the laminated side.
  • the transparent resin film 2 on which the first carrier film 1 is detachably laminated is placed on the side on which the carrier film 1 is laminated.
  • FIGS. 3A to 3D show process diagrams of the method for manufacturing the transparent conductive film laminate according to the first embodiment
  • FIGS. 4A to 4D show the first embodiment. Process drawing of the modification of the manufacturing method of the transparent conductive film laminated body concerning a form is shown.
  • the transparent conductive film laminate is a transparent resin film in which a transparent resin film 2 is detachably laminated on the main surface of a carrier film 1 having adhesiveness.
  • a laminate is formed (FIGS. 3(a) and 3(b)), and a transparent conductive layer 3 is formed on the main surface of the transparent resin film 2 opposite (the other side) to the main surface on which the carrier film 1 is laminated. (FIG. 3(c)) and then forming an overcoat layer 4 on the transparent conductive layer 3 (FIG. 3(d)).
  • the transparent resin film 2 and the transparent conductive layer 3 are adjacent, and the transparent conductive layer 3 and the overcoat layer 4 are adjacent.
  • the transparent conductive film laminate has adhesiveness between the transparent conductive film 10 and the carrier film 1. It can also be manufactured by a process of laminating the main surfaces of. As shown in FIGS. 4A to 4C, the step of preparing the transparent conductive film 10 is to form a transparent conductive layer 3 on one main surface of the transparent resin film 2 (FIG. 4A). , (b)), and then an overcoat layer 4 is formed on the transparent conductive layer 3 (FIG. 4(c)). Next, as shown in FIG.
  • a step of releasably laminating the main surface is carried out to manufacture a transparent conductive film laminate.
  • FIGS. 5A to 5I show process diagrams of the method for manufacturing a transparent conductive film laminate according to the second embodiment
  • FIGS. 6A to 6G show the second embodiment. Process drawing of the modification of the manufacturing method of the transparent conductive film laminated body concerning a form is shown.
  • the transparent conductive film laminate is laminated with the first carrier film 1A of the transparent resin film 2 in which the first carrier film 1A is detachably laminated.
  • a transparent conductive layer 3 and an overcoat layer 4 were sequentially formed on the main surface opposite (the other side) to the side where the layer is formed (FIGS. 5(a) to 5(d)).
  • the carrier film 1B is detachably laminated (FIG. 5(e)), and then the first carrier film 1A laminated on the transparent resin film 2 is detached (FIGS. 5(f), (g), FIG. 5 ( Fig.
  • the transparent conductive layer 3 is placed on the main surface of the transparent resin film 2 opposite (the other side) to the main surface on which the transparent conductive layer 3 is laminated. It can be manufactured by the step of sequentially forming the coat layer 4 (FIGS. 5(h) and (i)).
  • the transparent resin film 2 and the two transparent conductive layers 3, 3 respectively formed on both main surfaces thereof are adjacent to each other, and the two transparent conductive layers 3, 3 and the transparent resin film 2
  • the overcoat layers 4, 4 respectively formed on the main surfaces of the two transparent conductive layers 3, 3 on the side opposite to (the other side of) the side on which the is laminated are adjacent to each other.
  • the transparent conductive film laminate is obtained by preparing the transparent conductive film 20 and then laminating the transparent conductive film 20 and the carrier film 1 in a detachable manner. It can also be manufactured in a process.
  • the step of preparing the transparent conductive film 20 includes sequentially forming the transparent conductive layer 3 and the overcoat layer 4 on one main surface of the transparent resin film 2, as shown in FIGS. 6(a)-(c)), then the transparent conductive layer 3 and the overcoat layer 4 are sequentially formed on the other main surface of the transparent resin film 2 (FIGS. 6(d)-(c)). f)).
  • a step of detachably laminating the carrier film 1 on the surface of the overcoat layer 4 on one side of the transparent conductive film 20 is carried out to produce a transparent conductive film laminate. be.
  • the Young's modulus (modulus of longitudinal elasticity) was measured using a precision universal It was measured using a testing machine.
  • the experimental conditions and Young's modulus calculation method were set with reference to JIS K7161. The measurement was performed under heating at 80°C so as to match the manufacturing conditions of the transparent conductive film, but when the polyethylene film was measured under heating at 80°C, the flexibility became too low and the Young's modulus could not be calculated. I didn't. Therefore, the polyethylene film was tested at room temperature (25° C.).
  • the Young's modulus of the polyolefin film is smaller than that of the amorphous cycloolefin polymer film. That is, the polyolefin film was shown to be more flexible and softer than the amorphous cycloolefin polymer film.
  • the Young's modulus of the PET film is greater than that of the amorphous cycloolefin polymer film. That is, it was shown that the PET film is less flexible and stiffer than the amorphous cycloolefin polymer film.
  • ⁇ Production of silver nanowire ink> 5 g of a water/ethanol mixed solvent dispersion of silver nanowires synthesized by the above polyol method (silver nanowire concentration 3% by mass, water/ethanol 41/56 [mass ratio]), 6.4 g of water, 20 g of methanol (Fujifilm Sum Ko Junyaku Co., Ltd.), 39 g of ethanol (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), 25 g of propylene glycol monomethyl ether (PGME, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), 3 g of propylene glycol (PG, manufactured by Asahi Glass Co., Ltd.), PNVA (registered trademark) aqueous solution (manufactured by Showa Denko K.K., solid content concentration 10% by mass, weight average molecular weight 900,000) was mixed with 1.8 g and mixed with a mix rotor VMR-5R (man
  • 100 g of silver nanowire ink was prepared by stirring in an air atmosphere (rotational speed: 100 rpm).
  • the temperature of the reaction solution was lowered to 70° C., and 59.69 g of Desmodur (registered trademark)-W (bis-(4-isocyanatocyclohexyl)methane), manufactured by Sumika Covestrourethane Co., Ltd., was added as a polyisocyanate through a dropping funnel. was added dropwise over 30 minutes. After completion of the dropwise addition, the temperature was raised to 120°C and the reaction was carried out at 120°C for 6 hours. After confirming by IR that the isocyanate had almost disappeared, 0.5 g of isobutanol was added and the reaction was further carried out at 120°C for 6 hours. went.
  • the weight average molecular weight of the resulting carboxy group-containing polyurethane determined by GPC was 32,300, and the acid value of the resin solution was 35.8 mgKOH/g.
  • Overcoat ink 1 10.0 g of the (A) polyurethane solution containing a carboxy group obtained above (content of carboxy group-containing polyurethane: 45% by mass) was weighed into a plastic container, and (D) 1-hexanol (COH) 85 was added as a solvent. 3 g of ethyl acetate (EA) and 85.2 g of ethyl acetate (EA) were added, and the mixture was stirred for 12 hours at room temperature in an air atmosphere (rotational speed: 100 rpm) using a mix rotor VMR-5R (manufactured by AS ONE Corporation).
  • overcoat ink 2 7.1 g of the (A) carboxyl group-containing polyurethane solution obtained above (carboxyl group-containing polyurethane content: 45% by mass), 46.5 g of 1-hexanol (C6OH) and 46.5 g of ethyl acetate (EA) as solvents. 5 g was added, and the mixture was stirred with a mix rotor VMR-5R (manufactured by AS ONE Co., Ltd.) for 12 hours at room temperature in an air atmosphere (rotational speed: 100 rpm). Uniformity was visually confirmed, and overcoat ink 2 was obtained.
  • the non-volatile (solid) concentration (content of polyurethane containing carboxy groups) of Overcoat Ink 2 calculated from the mass before and after solvent drying was 3% by mass.
  • overcoat ink 3 10.0 g of the (A) polyurethane solution containing a carboxy group obtained above (content of carboxy group-containing polyurethane: 45% by mass) was weighed into a plastic container, and (D) 1-hexanol (COH) 74 was used as a solvent. .6 g and 74.6 g of ethyl acetate (EA) were added, and the mixture was stirred for 12 hours at room temperature in an air atmosphere with a mix rotor VMR-5R (manufactured by AS ONE Corporation) (rotational speed: 100 rpm).
  • EA ethyl acetate
  • the nonvolatile content (solid content) concentration (total amount of polyurethane containing carboxy group, epoxy compound, and curing accelerator) of overcoat ink 3 calculated from the mass before and after solvent drying was 3% by mass.
  • the molar ratio (Ep/COOH) of the epoxy group (Ep) of the epoxy resin to the carboxy group (COOH) of the carboxy group-containing polyurethane in the overcoat ink 3 was 0.02.
  • overcoat ink 4 The carboxy group-containing polyurethane solution blended in overcoat ink 2 was changed to 30.0 g of Ethocel (registered trademark) STD 100 cps (ethyl cellulose manufactured by Dow Chemical (U.S.)) solution (ethanol solution with a solid concentration of 10% by mass), Overcoat ink 4 was obtained in the same manner as overcoat ink 2, except that 35.0 g of 1-hexanol (C6OH) and 35.0 g of ethyl acetate (EA) were added as solvents.
  • Example 1 ⁇ Formation of transparent conductive layer (silver nanowire layer)> Using an A4 size corona discharge surface treatment apparatus (manufactured by Wedge Co., Ltd.) A4SW-FLNW type, an A4 size amorphous cycloolefin polymer film ZF14-100 (manufactured by Nippon Zeon Co., Ltd., thickness Ts of 100 ⁇ m, used as a transparent resin film, A glass transition temperature of 136° C. [catalog value]) was subjected to corona discharge treatment (conveyance speed: 3 m/min, number of treatments: 2 times, output: 0.3 kW).
  • A4 size corona discharge surface treatment apparatus manufactured by Wedge Co., Ltd.
  • A4SW-FLNW type an A4 size amorphous cycloolefin polymer film ZF14-100 (manufactured by Nippon Zeon Co., Ltd., thickness Ts of 100 ⁇ m, used as
  • the wet film thickness A silver nanowire ink was applied to the entire surface of the film (surface treated with corona discharge) so that the thickness of the film was 22 ⁇ m (coating speed: 500 mm/sec). After that, it was dried with hot air at 80° C.
  • a thermostat HISPEC HS350 manufactured by Kusumoto Kasei Co., Ltd.
  • the film thickness of the silver nanowire layer was measured using a film thickness measurement system F20-UV (manufactured by Filmetrics Co., Ltd.) based on optical interferometry. The average value obtained by measuring three points at different measurement points was used as the film thickness. The spectrum from 450 nm to 800 nm was used for analysis.
  • This measurement system can directly measure the film thickness (T cn ) of the silver nanowire layer formed on the transparent substrate. As a result, it was 80 nm.
  • overcoat ink 1 was applied to the entire surface so that the wet film thickness was 5 ⁇ m (coating speed: 333 mm/sec). After that, hot air drying (thermal curing) was performed at 80° C.
  • HISPEC HS350 manufactured by Kusumoto Kasei Co., Ltd.
  • the film thickness of the overcoat layer was measured using a film thickness measurement system F20-UV (manufactured by Filmetrics Co., Ltd.) based on the optical interferometry, as in the case of the film thickness of the silver nanowire layer.
  • the average value obtained by measuring three points at different measurement points was used as the film thickness.
  • the spectrum from 450 nm to 800 nm was used for analysis.
  • the total thickness (T cn + T p ) can be directly measured, the film thickness (T p ) of the overcoat layer can be obtained by subtracting the previously measured film thickness (T cn ) of the silver nanowire layer from this measured value.
  • the film thickness (T p ) of the overcoat layer was 90 nm.
  • a transparent conductive film laminate having a transparent conductive layer on one main surface of a transparent resin film On the side of the transparent resin film on which the transparent conductive layer (silver nanowire layer) of the transparent resin film constituting the transparent conductive film with the overcoat layer formed is not formed, a PE-based adhesive film Tretec A521 (processed by Toray Film Co., Ltd.) is used as a carrier film. (manufactured by Co., Ltd., thickness Tc: 25 ⁇ m). The main surface of the sticky side was press-bonded and laminated to form a transparent conductive film laminate.
  • Example 2 Amorphous cycloolefin polymer film ZF14-050 (manufactured by Nippon Zeon Co., Ltd., thickness Ts: 50 ⁇ m, glass transition temperature: 136° C. [catalog value]) was used as the transparent resin film, and Tretec N711 (a PE adhesive film) was used as the carrier film.
  • a transparent conductive film laminate was formed under the same conditions as in Example 1, except that Toray Advanced Film Co., Ltd. (thickness Tc: 30 ⁇ m) was used.
  • Example 3 Transparent under the same conditions as in Example 2, except that an amorphous cycloolefin polymer film ZF16-040 (manufactured by Nippon Zeon Co., Ltd., thickness Ts: 40 ⁇ m, glass transition temperature: 163° C. [catalog value]) was used as the transparent resin film.
  • a conductive film laminate was formed.
  • Example 4 A transparent conductive film laminate was formed under the same conditions as in Example 3, except that a PP adhesive film FSA010M (manufactured by Futamura Chemical Co., Ltd., thickness Tc: 30 ⁇ m) was used as the carrier film.
  • a PP adhesive film FSA010M manufactured by Futamura Chemical Co., Ltd., thickness Tc: 30 ⁇ m
  • Example 5 A4 size amorphous cycloolefin polymer film ZF14-100 (manufactured by Nippon Zeon Co., Ltd., thickness Ts: 100 ⁇ m, glass transition temperature: 136° C. [catalog value]) as a transparent resin film was coated on one main surface with a carrier film as a carrier film. The sticky main surface of Toretec A521 PE-based adhesive film (manufactured by Toray Advanced Film Co., Ltd., thickness Tc: 25 ⁇ m) was pressed and laminated.
  • Example 1 Subsequently, on the main surface of the transparent resin film opposite to the side on which the carrier film is laminated, using the silver nanowire ink and overcoat ink used in Example 1, under the same conditions, a transparent conductive film was formed. A layer (silver nanowire layer) and an overcoat layer were sequentially formed to form a transparent conductive film laminate having the same structure as in Example 1.
  • Example 6 A transparent conductive film laminate was formed under the same conditions as in Example 1, except that a PE-based self-adhesive film PAC-3-70 (manufactured by San A Kaken Co., Ltd., thickness Tc: 70 ⁇ m) was used as the carrier film.
  • a PE-based self-adhesive film PAC-3-70 manufactured by San A Kaken Co., Ltd., thickness Tc: 70 ⁇ m
  • Example 7 A transparent conductive film laminate was formed under the same conditions as in Example 1, except that overcoat ink 2 was used as the overcoat ink.
  • Example 8 A transparent conductive film laminate was formed under the same conditions as in Example 1, except that Overcoat Ink 3 was used as the overcoat ink.
  • Example 9 A transparent conductive film laminate was formed under the same conditions as in Example 1, except that Overcoat Ink 4 was used as the overcoat ink.
  • Example 10 ⁇ Preparation of Transparent Conductive Film Laminate Having Transparent Conductive Layers on Both Main Surfaces of Transparent Resin Film> Under the same conditions as in Example 1, both main surfaces of an amorphous cycloolefin polymer film ZF14-100 (manufactured by Nippon Zeon Co., Ltd., thickness Ts: 100 ⁇ m, glass transition temperature: 136° C. [catalog value]) as a transparent resin film. Corona treated. Subsequently, a transparent conductive layer (silver nanowire layer) and an overcoat layer were formed on one main surface (first surface) under the same conditions as in Example 1.
  • an amorphous cycloolefin polymer film ZF14-100 manufactured by Nippon Zeon Co., Ltd., thickness Ts: 100 ⁇ m, glass transition temperature: 136° C. [catalog value]
  • a transparent conductive layer (silver nanowire layer) and an overcoat layer were formed under the same conditions as in Example 1 on the other main surface (second surface) on which the transparent conductive layer was not formed, and a transparent resin film was formed.
  • a transparent conductive film having transparent conductive layers (silver nanowire layers) on both main surfaces was obtained.
  • the main surface having adhesiveness of PE-based adhesive film Tretec A521 manufactured by Toray Advanced Film Co., Ltd., thickness Tc is 25 ⁇ m) as a carrier film is crimped, They were laminated to form a transparent conductive film laminate.
  • Example 11 Under the same conditions as in Example 1, both main surfaces of an amorphous cycloolefin polymer film ZF14-100 (manufactured by Nippon Zeon Co., Ltd., thickness Ts: 100 ⁇ m, glass transition temperature: 136° C. [catalog value]) as a transparent resin film. Corona treated. Subsequently, on one main surface (second surface), the main surface having adhesiveness of PE-based adhesive film Tretec A521 (manufactured by Toray Advanced Film Co., Ltd., thickness Tc is 25 ⁇ m) as a carrier film is crimped, Laminated.
  • PE-based adhesive film Tretec A521 manufactured by Toray Advanced Film Co., Ltd., thickness Tc is 25 ⁇ m
  • the silver nanowire ink and overcoat ink used in Example 1 were applied under the same conditions. Then, a first transparent conductive layer (silver nanowire layer) and a first overcoat layer were sequentially formed to form a transparent conductive film laminate having the same structure as in Example 1. Subsequently, on the first overcoat layer, the adhesive main surface of a PE-based adhesive film Toretec A521 (manufactured by Toray Advanced Film Co., Ltd., thickness Tc: 25 ⁇ m) as a carrier film is crimped and laminated.
  • a PE-based adhesive film Toretec A521 manufactured by Toray Advanced Film Co., Ltd., thickness Tc: 25 ⁇ m
  • the carrier film that had been press-bonded and laminated on one main surface (second surface) of the transparent resin film was peeled off. After that, on one main surface (second surface) of the exposed transparent resin film, using the silver nanowire ink and overcoat ink used in Example 1, under the same conditions, a second transparent conductive layer (silver nanowire layer) and a second overcoat layer were sequentially formed to form a transparent conductive film laminate having the same structure as in Example 10.
  • Example 12 A transparent conductive film laminate was formed under the same conditions as in Example 11, except that overcoat ink 2 was used as the overcoat ink.
  • Example 13 A transparent conductive film laminate was formed under the same conditions as in Example 11, except that Overcoat Ink 3 was used as the overcoat ink.
  • Example 14 A transparent conductive film laminate was formed under the same conditions as in Example 11, except that Overcoat Ink 4 was used as the overcoat ink.
  • Comparative example 1 Transparent conductive film under the same conditions as in Example 1 except that T2-50 (manufactured by Sanei Kaken Co., Ltd., thickness Tc is 50 ⁇ m) of PET film having an acrylic pressure-sensitive adhesive layer (thickness of about 10 ⁇ m) was used as the carrier film. A laminate was formed.
  • Comparative example 2 Transparent conductive film under the same conditions as in Example 2 except that T2-50 (manufactured by Sanei Kaken Co., Ltd., thickness Tc is 50 ⁇ m) of PET film having an acrylic pressure-sensitive adhesive layer (thickness of about 10 ⁇ m) was used as the carrier film. A laminate was formed.
  • Comparative example 3 A transparent conductive film laminate was prepared under the same conditions as in Comparative Example 2 except that a PET film EXR911 (manufactured by Sanei Kaken Co., Ltd., thickness Tc of 125 ⁇ m) having an acrylic pressure-sensitive adhesive layer (thickness of about 10 ⁇ m) was used as the carrier film. formed.
  • a PET film EXR911 manufactured by Sanei Kaken Co., Ltd., thickness Tc of 125 ⁇ m
  • an acrylic pressure-sensitive adhesive layer thickness of about 10 ⁇ m
  • Comparative example 4 Amorphous cycloolefin polymer film ZF14-023 (manufactured by Nippon Zeon, thickness Ts: 23 ⁇ m, glass transition temperature: 136° C. [catalog value]) was used as the transparent resin film, and PE adhesive film Tretec N711 (Toray Film Co., Ltd.) was used as the carrier film.
  • a transparent conductive film laminate was formed under the same conditions as in Example 1, except that the film (manufactured by Kako Co., Ltd., having a thickness Tc of 30 ⁇ m) was used.
  • Comparative example 5 A transparent conductive film laminate was formed under the same conditions as in Comparative Example 4, except that Overcoat Ink 2 was used as the overcoat ink.
  • Comparative example 6 A transparent conductive film laminate was formed under the same conditions as in Example 4, except that Overcoat Ink 3 was used as the overcoat ink.
  • Comparative example 7 A transparent conductive film laminate was formed under the same conditions as in Example 4, except that Overcoat Ink 4 was used as the overcoat ink.
  • Comparative example 8 A transparent conductive film laminate was formed under the same conditions as in Comparative Example 2, except that a PE adhesive film PAC-3-50THK (manufactured by San A Kaken Co., Ltd., thickness Tc: 50 ⁇ m) was used as the carrier film.
  • a PE adhesive film PAC-3-50THK manufactured by San A Kaken Co., Ltd., thickness Tc: 50 ⁇ m
  • the uneven shape of the transparent conductive film laminate was observed through the glass window.
  • the test piece was placed on a horizontal surface with the overcoat layer facing up, and the curl value was quickly measured with a ruler. This was taken as the curl value during heating. Further, it was allowed to cool at room temperature for 30 minutes, and the curl value was measured with a ruler. This was taken as the curl value after standing to cool.
  • FIGS. 7(a) and (b) show explanatory diagrams of the method of measuring the curl value.
  • FIG. 7A shows the case where the transparent conductive film laminate curls convexly
  • FIG. 7B shows the case where the transparent conductive film laminate curls concavely.
  • the height hmax of the highest point of the transparent conductive film laminate from the horizontal plane Hs on which the transparent conductive film laminate is placed was measured and used as the curl value.
  • the material of the carrier film is polyolefin, and the ratio of the thickness Ts of the amorphous cycloolefin polymer film to the thickness Tc of the carrier film (Tc/Ts) is 0.2.
  • Tc/Ts the ratio of the thickness Ts of the amorphous cycloolefin polymer film to the thickness Tc of the carrier film
  • Example 1 After standing to cool, the thermal shrinkage rate of polyolefin is greater than that of amorphous cycloolefin polymer. It was confirmed that the transparent conductive film laminate can be reattached to a carrier film, and that the transparent conductive film laminate becomes flat after the reattachment. In Example 1 and Examples 7 to 9 in which only the overcoat layer was changed, the curl values during heating and after standing to cool were the same. It is presumed that the curling was hardly affected because the thickness of the overcoat layer was small relative to the thickness of the entire transparent conductive film laminate.
  • Example 10 to 14 Even when the transparent resin film has transparent conductive layers on both sides (Examples 10 to 14), deformation can be suppressed in the same way as when the transparent resin film has a transparent conductive layer on one side (Examples 1 to 9).
  • Example 1 and 5 and in Examples 10 and 11 the same evaluation results were obtained because the structures of the obtained transparent conductive film laminates were the same although the manufacturing processes were different.
  • Example 11 and Examples 12 to 14 in which only the overcoat layer was changed the curl values during heating and after standing to cool were the same. It is presumed that the curling was hardly affected because the thickness of the overcoat layer was small relative to the thickness of the entire transparent conductive film laminate.
  • Comparative Example 1 in which the material of the carrier film is PET, the deformation during heating was so large that it interfered with roll conveyance. This is probably because the carrier film (PET) could not follow the thermal expansion of the transparent resin film (amorphous cycloolefin polymer) because PET is more rigid than polyolefin. Even if the material of the carrier film was polyolefin, when Tc/Ts exceeded 0.8 (Comparative Examples 4 to 8), the deformation during heating became so large that it interfered with roll transport.

Abstract

[Problem] To provide a transparent conductive film laminate and a method for manufacturing the same, whereby, when an amorphous cycloolefin-based resin is used in a base material of a transparent conductive film, curling of a transparent conductive film laminate during a heating process is suppressed, the yield of a subsequent process can be ensured, and manufacturing costs can be reduced. [Solution] Provided is a transparent conductive film laminate containing a transparent conductive film 10 and a carrier film 1 laminated thereto. The transparent conductive film 10 is obtained by laminating a transparent conductive layer 3, that contains a fine metal wire, and an overcoat layer 4, in this order, onto one main surface of a transparent resin film 2 comprising an amorphous cycloolefin-based resin (thickness Ts = 30 to 150 µm). The carrier film 1 comprises a polyolefin film, and only one main surface of the carrier film 1 is adhesive. The transparent conductive film 10 is releasably laminated to the one adhesive main surface of the carrier film 1 such that the overcoat layer 4 becomes the outermost layer. The ratio (Tc/Ts) of the thickness Tc of the carrier film 1 to the thickness Ts of the transparent resin film 2 satisfies 0.2 ≦ Tc/Ts ≦ 0.8.

Description

透明導電フィルム積層体及びその製造方法Transparent conductive film laminate and manufacturing method thereof
 本発明は、透明導電フィルム積層体及びその製造方法に関し、特に加熱工程中に発生するカールの抑制に有用な透明導電フィルム積層体及びその製造方法に関する。 The present invention relates to a transparent conductive film laminate and a method for producing the same, and more particularly to a transparent conductive film laminate useful for suppressing curling that occurs during a heating process, and a method for producing the same.
 情報通信技術の進展に伴って、身の回りの種々の物品にタッチパネルが搭載されるようになった。自動車においても、従来はカーナビゲーションシステムなどの一部に用いられる程度であったものが、ダッシュボードやセンターコンソール全体をタッチパネル化するものも開発されるなど、その使用範囲が広がりを見せている。ダッシュボードやセンターコンソールは多くの場合曲面形状を有することから、搭載するタッチパネルにも曲面形状への適応性が求められている。 With the advancement of information and communication technology, touch panels have come to be mounted on various items around us. In the field of automobiles as well, the scope of use is expanding, with the development of touch panels for dashboards and center consoles, which used to be limited to only a part of the car navigation system. Since dashboards and center consoles often have curved surfaces, it is required that the touch panels mounted on them also have adaptability to curved surfaces.
 タッチパネルを構成する透明導電フィルムの透明導電層として、金属酸化物であるITO(酸化インジウム錫)が広く用いられている。しかし、ITOを用いた透明導電フィルムは曲げると割れてしまい、導電性が顕著に悪化するという課題があった。この問題を解決する次世代の透明導電材料として、金属細線を含む透明導電膜が開発されている。具体的には、金属ナノワイヤを用いた透明導電膜や、銀塩乳剤に露光処理を施し、その後現像処理を行って得られる金属細線を用いた透明導電膜が挙げられる。 ITO (indium tin oxide), which is a metal oxide, is widely used as the transparent conductive layer of the transparent conductive film that constitutes the touch panel. However, there is a problem that the transparent conductive film using ITO is broken when bent, and the conductivity is remarkably deteriorated. As a next-generation transparent conductive material to solve this problem, a transparent conductive film containing fine metal wires has been developed. Specific examples include a transparent conductive film using metal nanowires and a transparent conductive film using fine metal wires obtained by subjecting a silver salt emulsion to exposure treatment and then performing development treatment.
 透明導電フィルムの基材として非晶性シクロオレフィン系樹脂が車載用曲面タッチパネル用途に適している。非晶性シクロオレフィン系樹脂はリタデーションが低いため、偏光サングラスを着用して自動車を運転する場合、視認性が良好となるからである。  Amorphous cycloolefin resin is suitable for automotive curved touch panels as a base material for transparent conductive films. This is because the amorphous cycloolefin-based resin has a low retardation, so that visibility is improved when wearing polarized sunglasses while driving a car.
 すなわち、非晶性シクロオレフィン系樹脂フィルム上に金属細線を含む透明導電層を形成した透明導電フィルムは、次世代の透明導電フィルムとして有望視されている。 That is, a transparent conductive film in which a transparent conductive layer containing fine metal wires is formed on an amorphous cycloolefin resin film is considered promising as a next-generation transparent conductive film.
 一般に、基材フィルム上に導電層や保護層(オーバーコート層)を形成して透明導電フィルムを作製する場合、搬送時の基材の傷つき防止のため、裏面に保護フィルムを貼り合わせ、積層体とする必要がある。しかし、基材フィルムと保護フィルムの線膨張係数が異なると、加熱工程中に透明導電フィルム積層体にカール(反り)が発生しやすい。その結果、透明導電フィルム積層体を搬送する際に、反った透明導電フィルム積層体が乾燥炉の上部又は下部に接触するなどの不具合が発生し、安定かつ連続して生産を行うことが困難となる。 In general, when a conductive layer and a protective layer (overcoat layer) are formed on a substrate film to produce a transparent conductive film, a protective film is attached to the back surface to prevent the substrate from being damaged during transportation. should be However, if the base film and the protective film have different linear expansion coefficients, the transparent conductive film laminate tends to curl (warp) during the heating process. As a result, when transporting the transparent conductive film laminate, problems such as the warped transparent conductive film laminate coming into contact with the upper or lower part of the drying furnace occur, making it difficult to carry out stable and continuous production. Become.
 特許文献1には、透明導電性フィルムの基板フィルム及び表面保護フィルム(離型フィルム)が、ともにPETフィルムである積層体が開示されている。アモルファス透明導電性薄膜(ITO膜)を備えた透明導電性フィルム及び保護フィルム(離型フィルム)の熱収縮率を調整してカールの低減を実現しているが、金属細線により構成された透明導電膜を備えた透明導電性フィルムに対する実施例はなく、明細書に記載も示唆もされていない。 Patent Document 1 discloses a laminate in which both the substrate film and the surface protective film (release film) of the transparent conductive film are PET films. A transparent conductive film with an amorphous transparent conductive thin film (ITO film) and a protective film (release film) are adjusted to reduce curling by adjusting the thermal shrinkage rate. There are no examples for transparent conductive films with membranes, neither mentioned nor suggested in the specification.
 特許文献2には、保護フィルムの少なくとも一方の面側に粘着剤層を有するキャリアフィルムと、前記粘着剤層を介して剥離可能に積層された、透明樹脂フィルムと透明導電膜を有する透明導電性フィルムと、を含み、前記透明樹脂フィルムは非晶性シクロオレフィン系樹脂又はポリカーボネート系樹脂からなり、前記保護フィルムが非晶性樹脂で形成されている透明導電性フィルム積層体が開示されている。保護フィルムを形成する非晶性樹脂としては、ポリカーボネートとシクロオレフィンが用いられているが、いずれも樹脂種としては高価な部類に属し、最終的に廃棄される保護フィルムとしてこれら樹脂種を用いることは、透明導電性フィルムの製造コストの増大につながる。 Patent Document 2 discloses a transparent conductive film having a carrier film having an adhesive layer on at least one surface side of a protective film, and a transparent resin film and a transparent conductive film that are peelably laminated via the adhesive layer. a film, wherein the transparent resin film is made of an amorphous cycloolefin-based resin or a polycarbonate-based resin, and the protective film is made of an amorphous resin. Polycarbonate and cycloolefin are used as amorphous resins for forming protective films. leads to an increase in manufacturing cost of the transparent conductive film.
 なお、本出願人は、透明導電フィルムの基材である透明樹脂フィルムが非晶性シクロオレフィン系樹脂であるフィルム積層体を特許文献3、4により開示している。 The present applicant discloses film laminates in which the transparent resin film, which is the base material of the transparent conductive film, is an amorphous cycloolefin resin in Patent Documents 3 and 4.
 特許文献3により開示されたフィルム積層体は、透明樹脂フィルムの厚みが5~25μmの範囲に限られている。折り曲げ可能なスマートフォン用のタッチパネルを製造するためには、透明導電フィルムの厚みは25μm以下であることが好ましいが、曲率がより緩やかな曲面形状を有する車載用タッチパネルを製造するためには、そこまで薄い透明導電フィルムを用いる必要は無い。あまりに薄い透明導電フィルムを用いると、タッチパネル化工程時におけるフィルム破断のリスクが高まることから、携帯する必要がなく、所定の曲面形状を有する頻繁な開閉動作を求められない車載用タッチパネルを製造する場合は、透明樹脂フィルムの厚みは製造歩留まりが高い25μmを超える厚みであることが好ましい。すなわち、特許文献3に開示されているフィルム積層体は、曲面形状を有する車載用タッチパネルを作製するための透明導電フィルムの生産には適していない。 In the film laminate disclosed in Patent Document 3, the thickness of the transparent resin film is limited to a range of 5-25 μm. In order to manufacture a bendable touch panel for smartphones, the thickness of the transparent conductive film is preferably 25 μm or less. There is no need to use a thin transparent conductive film. If an excessively thin transparent conductive film is used, the risk of film breakage during the touch panel manufacturing process increases. Therefore, in the case of manufacturing an in-vehicle touch panel that does not need to be carried around and does not require frequent opening and closing operations with a predetermined curved surface shape. Preferably, the thickness of the transparent resin film is more than 25 μm with high production yield. In other words, the film laminate disclosed in Patent Document 3 is not suitable for production of a transparent conductive film for manufacturing an in-vehicle touch panel having a curved surface shape.
 特許文献4により開示されたフィルム積層体は、粘着剤層を設けず、キャリアフィルム(ポリカーボネートフィルム)の自己粘着性を利用してキャリアフィルムを透明導電フィルムに密着させることで、糊残りや粘着層の硬化収縮による変形を防いでいる。特許文献4で利用している自己粘着性は、ポリカーボネートフィルムの表面の平滑性が優れていることによって発現するため、キャリアフィルムの粘着性を維持するためには、取り扱い中に表面の平滑性が失われないよう、厳重に品質管理しなければならず、技術上の困難が伴う。また、比較的高価な部類に属するポリカーボネートフィルムを最終的に廃棄されるキャリアフィルムとして用いることは、透明導電性フィルムの製造コストの増大につながる。 The film laminate disclosed in Patent Document 4 does not have an adhesive layer, and the carrier film (polycarbonate film) is adhered to the transparent conductive film by utilizing the self-adhesiveness of the carrier film (polycarbonate film). Prevents deformation due to curing shrinkage. The self-adhesiveness used in Patent Document 4 is manifested by the excellent smoothness of the surface of the polycarbonate film. In order not to lose it, strict quality control is required, which entails technical difficulties. Moreover, using a polycarbonate film, which belongs to a relatively expensive category, as a carrier film that is finally discarded leads to an increase in the manufacturing cost of the transparent conductive film.
 特許文献5には、基板と、前記基板上に配置された金属細線と、前記金属細線上に配置された粘着層とを備え、前記金属細線中に含まれる単位面積当たりの金属量が0.010g/m以上10g/m以下であり、前記粘着層にベンゾトリアゾール系化合物が含まれ、前記ベンゾトリアゾール系化合物の含有量が前記粘着層全量に対して0.05質量%以上1.5質量%以下である、タッチパネル用積層体が開示されている。 Patent Document 5 discloses a device comprising a substrate, a fine metal wire arranged on the substrate, and an adhesive layer arranged on the fine metal wire, wherein the amount of metal contained in the fine metal wire per unit area is 0.5. 010 g/m 2 or more and 10 g/m 2 or less, the adhesive layer contains a benzotriazole-based compound, and the content of the benzotriazole-based compound is 0.05% by mass or more and 1.5% by mass with respect to the total amount of the adhesive layer. A laminate for a touch panel is disclosed, which has a mass % or less.
特開2008-251529号公報JP 2008-251529 A 特開2016-107504号公報JP 2016-107504 A 国際公開第2020/255458号WO2020/255458 国際公開第2021/075424号WO2021/075424 特開2015-22397号公報JP 2015-22397 A
 本発明の目的は、透明導電フィルムの基材に非晶性シクロオレフィン系樹脂を用いた場合において、加熱工程中の透明導電フィルム積層体のカールを抑制し、その後の工程歩留まりを確保可能で、製造コストを低減可能な透明導電フィルム積層体及びその製造方法を提供することにある。 An object of the present invention is to suppress the curling of the transparent conductive film laminate during the heating process and ensure the yield in subsequent processes when an amorphous cycloolefin resin is used as the base material of the transparent conductive film. An object of the present invention is to provide a transparent conductive film laminate capable of reducing manufacturing costs and a method for manufacturing the same.
 上記目的を達成するために、本発明は以下の実施形態を有する。 In order to achieve the above objects, the present invention has the following embodiments.
 [1]透明導電フィルムと、前記透明導電フィルムに積層されたキャリアフィルムと、を含む透明導電フィルム積層体であって、前記透明導電フィルムは、透明樹脂フィルムの一方又は両方の主面に金属細線を含む透明導電層と、オーバーコート層と、がこの順序に積層されて構成され、前記透明樹脂フィルムは、非晶性シクロオレフィン系樹脂のフィルムであって、前記透明樹脂フィルムの厚みTsは30~150μmであり、前記キャリアフィルムがポリオレフィンフィルムであって、一方の主面のみが粘着性を有し、前記透明導電フィルム積層体は、前記オーバーコート層が最外層となるように、前記透明導電フィルムが前記キャリアフィルムの粘着性を有する一方の主面に剥離可能に積層されており、前記キャリアフィルムの厚みTcと前記透明樹脂フィルムの厚みTsの比(Tc/Ts)が、0.2≦Tc/Ts≦0.8であることを特徴とする透明導電フィルム積層体。 [1] A transparent conductive film laminate including a transparent conductive film and a carrier film laminated on the transparent conductive film, wherein the transparent conductive film includes thin metal wires on one or both main surfaces of a transparent resin film. and an overcoat layer are laminated in this order, and the transparent resin film is a film of amorphous cycloolefin resin, and the thickness Ts of the transparent resin film is 30 150 μm, the carrier film is a polyolefin film, only one main surface has adhesiveness, and the transparent conductive film laminate has the transparent conductive film so that the overcoat layer is the outermost layer. A film is detachably laminated on one adhesive main surface of the carrier film, and the ratio (Tc/Ts) of the thickness Tc of the carrier film to the thickness Ts of the transparent resin film is 0.2≦ A transparent conductive film laminate, wherein Tc/Ts≦0.8.
 [2]前記金属細線を含む透明導電層と、オーバーコート層と、がこの順序で、前記透明樹脂フィルムの一方の主面のみに積層されている、[1]に記載の透明導電フィルム積層体。 [2] The transparent conductive film laminate according to [1], wherein the transparent conductive layer containing the fine metal wires and the overcoat layer are laminated in this order on only one main surface of the transparent resin film. .
 [3]前記金属細線を含む透明導電層と、オーバーコート層と、がこの順序で、前記透明樹脂フィルムの両方の主面にそれぞれ積層されている、[1]に記載の透明導電フィルム積層体。 [3] The transparent conductive film laminate according to [1], wherein the transparent conductive layer containing the fine metal wires and the overcoat layer are laminated in this order on both main surfaces of the transparent resin film. .
 [4]前記金属細線を構成する元素が、銀又は銅である、[1]~[3]のいずれか一項に記載の透明導電フィルム積層体。 [4] The transparent conductive film laminate according to any one of [1] to [3], wherein the element constituting the fine metal wires is silver or copper.
 [5]前記金属細線が、銀ナノワイヤの交差部を有するナノ構造ネットワークである、[4]に記載の透明導電フィルム積層体。 [5] The transparent conductive film laminate according to [4], wherein the fine metal wires are a nanostructured network having intersections of silver nanowires.
 [6]前記キャリアフィルムが、プロピレンを重合単位として含むポリオレフィンフィルムである、[1]~[5]のいずれか一項に記載の透明導電フィルム積層体。 [6] The transparent conductive film laminate according to any one of [1] to [5], wherein the carrier film is a polyolefin film containing propylene as a polymerized unit.
 [7]前記透明樹脂フィルムに前記キャリアフィルムを剥離可能に積層する工程と、前記透明樹脂フィルムの、前記キャリアフィルムが積層されている側とは反対側の主面上に前記透明導電層と前記オーバーコート層とを順次形成する工程と、を含む、[2]に記載の透明導電フィルム積層体の製造方法。 [7] A step of detachably laminating the carrier film on the transparent resin film; and the step of sequentially forming an overcoat layer.
 [8]前記透明樹脂フィルムに第一の前記キャリアフィルムを剥離可能に積層する工程と、前記透明樹脂フィルムの、第一の前記キャリアフィルムが積層されている側とは反対側の主面上に前記透明導電層と前記オーバーコート層とを順次形成する工程と、前記オーバーコート層に第二の前記キャリアフィルムを剥離可能に積層する工程と、前記透明樹脂フィルムに積層された第一の前記キャリアフィルムを剥離する工程と、前記透明樹脂フィルムの、前記透明導電層が積層された主面とは反対側の主面上に前記透明導電層と前記オーバーコート層とを順次形成する工程と、を含む、[3]に記載の透明導電フィルム積層体の製造方法。 [8] A step of detachably laminating the first carrier film on the transparent resin film; a step of sequentially forming the transparent conductive layer and the overcoat layer; a step of detachably laminating the second carrier film on the overcoat layer; and a first carrier laminated on the transparent resin film. a step of peeling off a film; and a step of sequentially forming the transparent conductive layer and the overcoat layer on the main surface of the transparent resin film opposite to the main surface on which the transparent conductive layer is laminated. The method for producing a transparent conductive film laminate according to [3], comprising:
 [9]前記透明導電層を湿式工程で形成する、[7]又は[8]に記載の透明導電フィルム積層体の製造方法。 [9] The method for producing a transparent conductive film laminate according to [7] or [8], wherein the transparent conductive layer is formed by a wet process.
 本発明によれば、透明導電フィルムの基材(透明樹脂フィルム)に非晶性シクロオレフィン系樹脂を用いた場合において、加熱工程中の透明導電フィルム積層体のカールを抑制し、その後の工程歩留まりを確保可能で、製造コストを低減可能な透明導電フィルム積層体及びその製造方法を提供することができる。 According to the present invention, when an amorphous cycloolefin resin is used for the base material (transparent resin film) of the transparent conductive film, the curling of the transparent conductive film laminate during the heating process is suppressed, and the subsequent process yield is improved. can be ensured and the manufacturing cost can be reduced, and a method for manufacturing the transparent conductive film laminate can be provided.
本発明の第一の実施形態に係る透明導電フィルム積層体の模式的断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is typical sectional drawing of the transparent conductive film laminated body which concerns on 1st embodiment of this invention. 本発明の第二の実施形態に係る透明導電フィルム積層体の模式的断面図である。FIG. 3 is a schematic cross-sectional view of a transparent conductive film laminate according to a second embodiment of the invention; 第一の実施形態に係る透明導電フィルム積層体の製造方法の工程図である。It is process drawing of the manufacturing method of the transparent conductive film laminated body which concerns on 1st embodiment. 第一の実施形態に係る透明導電フィルム積層体の製造方法の変形例の工程図である。It is process drawing of the modification of the manufacturing method of the transparent conductive film laminated body which concerns on 1st embodiment. 第二の実施形態に係る透明導電フィルム積層体の製造方法の工程図である。It is process drawing of the manufacturing method of the transparent conductive film laminated body which concerns on 2nd embodiment. 第二の実施形態に係る透明導電フィルム積層体の製造方法の変形例の工程図である。It is process drawing of the modification of the manufacturing method of the transparent conductive film laminated body which concerns on 2nd embodiment. 実施形態に係るカール値の測定方法の説明図である。FIG. 4 is an explanatory diagram of a curl value measuring method according to the embodiment;
 以下、本発明を実施するための形態(以下、実施形態という)を図面に従って説明する。 Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.
 図1、2には、実施形態に係る透明導電フィルム積層体の模式的断面図が示される。本実施形態に係る透明導電フィルム積層体は、透明導電フィルム10又は20と、上記透明導電フィルム10又は20に積層されたキャリアフィルム1と、を含む透明導電フィルム積層体である。上記キャリアフィルム1は、一方の主面のみが粘着性を有する。上記透明導電フィルム10は、透明樹脂フィルム2の一方の主面上に金属細線を含む透明導電層3と、オーバーコート層4と、がこの順序に積層されて構成され、上記透明導電フィルム20は、透明樹脂フィルム2の両方の主面に金属細線を含む透明導電層3と、オーバーコート層4と、がこの順序に積層されて構成されている。上記透明樹脂フィルム2は、非晶性シクロオレフィン系樹脂からなるフィルムであり、上記透明樹脂フィルム2の厚みTsは30~150μmである。上記透明導電フィルム積層体は、上記オーバーコート層(透明導電フィルム20のように2つのオーバーコート層を有する両面構成の場合は一方のオーバーコート層)4が最外層となるように、上記透明導電フィルム10又は20が上記キャリアフィルム1の粘着性を有する一方の主面上に剥離可能に積層されている。上記キャリアフィルム1は、ポリオレフィンフィルムであって、上記キャリアフィルム1の厚みTcと上記透明樹脂フィルム2の厚みTsの比(Tc/Ts)が、0.2≦Tc/Ts≦0.8 である。 1 and 2 show schematic cross-sectional views of the transparent conductive film laminate according to the embodiment. The transparent conductive film laminate according to this embodiment is a transparent conductive film laminate including a transparent conductive film 10 or 20 and a carrier film 1 laminated on the transparent conductive film 10 or 20 . Only one main surface of the carrier film 1 has adhesiveness. The transparent conductive film 10 is constructed by laminating a transparent conductive layer 3 containing fine metal wires on one main surface of a transparent resin film 2 and an overcoat layer 4 in this order. , a transparent conductive layer 3 containing fine metal wires on both main surfaces of a transparent resin film 2, and an overcoat layer 4 are laminated in this order. The transparent resin film 2 is a film made of an amorphous cycloolefin resin, and has a thickness Ts of 30 to 150 μm. In the transparent conductive film laminate, the transparent conductive A film 10 or 20 is releasably laminated on one main adhesive surface of the carrier film 1 . The carrier film 1 is a polyolefin film, and the ratio (Tc/Ts) of the thickness Tc of the carrier film 1 to the thickness Ts of the transparent resin film 2 is 0.2≦Tc/Ts≦0.8. .
 第一の実施形態に係る透明導電フィルム積層体は、図1に示すように、透明導電フィルム10と、透明導電フィルム10に積層されたキャリアフィルム1と、を含む透明導電フィルム積層体であって、透明導電フィルム10は、金属細線を含む透明導電層3と、オーバーコート層4と、がこの順序で、透明樹脂フィルム2の一方の主面に積層されており、キャリアフィルム1は、一方の主面のみが粘着性を有し、該キャリアフィルム1は、粘着性を有する方の主面で透明樹脂フィルム2の透明導電層3とは他方側の主面に剥離可能に積層されている。 The transparent conductive film laminate according to the first embodiment is a transparent conductive film laminate including a transparent conductive film 10 and a carrier film 1 laminated on the transparent conductive film 10, as shown in FIG. , the transparent conductive film 10 has a transparent conductive layer 3 containing fine metal wires and an overcoat layer 4 laminated in this order on one main surface of the transparent resin film 2 , and the carrier film 1 Only the main surface has adhesiveness, and the carrier film 1 is detachably laminated on the main surface of the transparent resin film 2 on the other side from the transparent conductive layer 3 on the main surface having adhesiveness.
 第二の実施形態に係る透明導電フィルム積層体は、図2に示すように、透明導電フィルム20と、透明導電フィルム20に積層されたキャリアフィルム1と、を含む透明導電フィルム積層体であって、透明導電フィルム20は、金属細線を含む透明導電層3と、オーバーコート層4と、がこの順序で、透明樹脂フィルム2の両方の主面にそれぞれ積層されており、キャリアフィルム1は、一方の主面のみが粘着性を有し、該キャリアフィルム1は、粘着性を有する主面で透明導電フィルム20の一方のオーバーコート層4の表面に剥離可能に積層されている。 The transparent conductive film laminate according to the second embodiment is a transparent conductive film laminate including a transparent conductive film 20 and a carrier film 1 laminated on the transparent conductive film 20, as shown in FIG. In the transparent conductive film 20, a transparent conductive layer 3 containing thin metal wires and an overcoat layer 4 are laminated in this order on both main surfaces of the transparent resin film 2, and the carrier film 1 is laminated on one side. The carrier film 1 is detachably laminated on the surface of the overcoat layer 4 on one side of the transparent conductive film 20 on the main surface having adhesiveness.
<透明樹脂フィルム2>
 本実施形態において透明樹脂フィルム2としては、非晶性シクロオレフィン系樹脂を用いる。本明細書において、非晶性シクロオレフィン系樹脂とは、ノルボルネン等のシクロオレフィンを50モル%以上含有する(共)重合体を意味する。例えば、ノルボルネンの水素化開環メタセシス重合型シクロオレフィンポリマーや、ノルボルネン/エチレン付加共重合型シクロオレフィンポリマーが挙げられる。非晶性シクロオレフィンポリマー樹脂の市販品としては、例えば、日本ゼオン株式会社製のZEONOR(登録商標)やZEONEX(登録商標)、JSR株式会社製のARTON(登録商標)、三井化学株式会社製のAPEL(登録商標)、ポリプラスチックス株式会社製のTOPAS(登録商標)を用いることができる。具体的には、ZEONOR ZF-14、ZF-16、ARTON RX4500、RH4900、R5000が挙げられる。これらの中でもガラス転移温度(Tg)が100~170℃のものが引き出し配線やコネクタ部分などの後工程における加熱に耐えうるため好ましく、130~170℃のものがより好ましい。これらの樹脂フィルムが非晶性であることは、JIS K7121 プラスチックの転移温度測定方法に準拠したDSC測定により結晶化温度に基づくピークが認められないことで確認できる。
<Transparent resin film 2>
In this embodiment, an amorphous cycloolefin resin is used as the transparent resin film 2 . In the present specification, the amorphous cycloolefin resin means a (co)polymer containing 50 mol % or more of cycloolefin such as norbornene. Examples thereof include norbornene hydrogenation ring-opening metathesis polymerization type cycloolefin polymers and norbornene/ethylene addition copolymerization type cycloolefin polymers. Commercially available amorphous cycloolefin polymer resins include, for example, ZEONOR (registered trademark) and ZEONEX (registered trademark) manufactured by Zeon Corporation, ARTON (registered trademark) manufactured by JSR Corporation, and manufactured by Mitsui Chemicals, Inc. APEL (registered trademark) and TOPAS (registered trademark) manufactured by Polyplastics Co., Ltd. can be used. Specific examples include ZEONOR ZF-14, ZF-16, ARTON RX4500, RH4900, and R5000. Among these, those having a glass transition temperature (Tg) of 100 to 170° C. are preferable because they can withstand heating in subsequent processes such as lead wires and connector portions, and those having a glass transition temperature (Tg) of 130 to 170° C. are more preferable. The fact that these resin films are amorphous can be confirmed by the fact that no peak based on the crystallization temperature is observed by DSC measurement based on JIS K7121 plastic transition temperature measurement method.
 透明樹脂フィルム2の厚みTsは、30~150μmの範囲内であり、40~125μmの範囲内であることが好ましく、50~100μmの範囲内であることがより好ましい。透明樹脂フィルム2の厚みが30μm以上であるとハンドリングしやすく、150μm以下であると曲面形状を有するタッチパネル化した際にクラックが入りにくくなる。 The thickness Ts of the transparent resin film 2 is within the range of 30-150 μm, preferably within the range of 40-125 μm, and more preferably within the range of 50-100 μm. When the thickness of the transparent resin film 2 is 30 μm or more, it is easy to handle, and when it is 150 μm or less, cracks are less likely to occur when a touch panel having a curved surface shape is formed.
<透明導電層3>
 本実施形態において透明導電層3は、金属細線が交差部を有するように透明樹脂フィルム上に形成され、金属細線が形成されていない開口部を光が透過できる構成を有する。本明細書において「金属細線」とは、金属で構成された導電性繊維(金属ナノワイヤ)又は格子状パターン(メタルメッシュ)を意味する。金属ナノワイヤは、径がナノメーターオーダーのサイズである金属であり、ワイヤ状の形状を有する導電性材料である。メタルメッシュは、幅がサブミクロン~ミクロンオーダーのサイズである線状金属により、格子状に構成されたパターンを有する導電性材料である。金属細線を構成する金属としては、金、銀、白金、銅、ニッケル、パラジウム、アルミニウム、鉄、クロムやこれらの合金を用いることができる。特に導電性の観点から、金、銀、白金、銅、ニッケル、パラジウムが好ましく、銀が特に好ましい。金属細線を構成する導電材料として、金属ナノワイヤを好適に用いることができる。金属ナノワイヤが交差部を有するナノ構造ネットワークを構成することが好ましく、交差部の少なくとも一部が融着したナノ構造ネットワークを形成することがより好ましい。金属ナノワイヤの交差部が融着していることは、透過型電子顕微鏡(TEM)の電子線回折パターンの解析から確認できる。具体的には、金属ナノワイヤ同士が交差している箇所と交差している箇所から十分離れた金属ナノワイヤの電子線回折パターンを解析し、両者の結晶構造が異なる(後述する導電インク印刷後の溶媒を乾燥するための加熱等により結晶構造が変化すること(再結晶の発生)から確認することができる。
<Transparent conductive layer 3>
In this embodiment, the transparent conductive layer 3 is formed on the transparent resin film so that the fine metal wires have crossing portions, and has a structure in which light can pass through the openings where the fine metal wires are not formed. As used herein, the term “metal fine wire” means a conductive fiber (metal nanowire) or a lattice pattern (metal mesh) made of metal. A metal nanowire is a metal whose diameter is on the order of nanometers, and is a conductive material having a wire-like shape. A metal mesh is a conductive material having a grid-like pattern of linear metal wires with submicron to micron-order widths. Gold, silver, platinum, copper, nickel, palladium, aluminum, iron, chromium, and alloys thereof can be used as the metal constituting the thin metal wire. Gold, silver, platinum, copper, nickel, and palladium are particularly preferred from the viewpoint of conductivity, and silver is particularly preferred. Metal nanowires can be suitably used as the conductive material that constitutes the metal thin wires. It is preferable that the metal nanowires form a nanostructured network having intersections, and more preferably form a nanostructured network in which at least a part of the intersections are fused. It can be confirmed from the analysis of the electron beam diffraction pattern of a transmission electron microscope (TEM) that the intersections of the metal nanowires are fused. Specifically, the electron beam diffraction patterns of the metal nanowires that are sufficiently distant from the intersections of the metal nanowires and the intersections of the metal nanowires are analyzed, and the crystal structures of the two are different (solvent It can be confirmed from the fact that the crystal structure changes (occurrence of recrystallization) due to heating for drying.
 金属ナノワイヤの製造方法としては、公知の製造方法を用いることができる。例えば銀ナノワイヤは、ポリオール(Poly-ol)法を用いて、ポリ-N-ビニルピロリドン存在下で硝酸銀を還元することによって合成することができる(Chem.Mater.,2002,14,4736参照)。金ナノワイヤも同様に、ポリビニルピロリドン存在下で塩化金酸水和物を還元することによって合成することができる(J.Am.Chem.Soc.,2007,129,1733参照)。銀ナノワイヤ、金ナノワイヤの大規模な合成及び精製の技術に関しては国際公開第2008/073143号パンフレットと国際公開第2008/046058号パンフレットに詳細な記述がある。 A known manufacturing method can be used as a method for manufacturing metal nanowires. For example, silver nanowires can be synthesized by reducing silver nitrate in the presence of poly-N-vinylpyrrolidone using the Poly-ol method (see Chem. Mater., 2002, 14, 4736). Gold nanowires can also be synthesized by reducing chloroauric acid hydrate in the presence of polyvinylpyrrolidone (see J. Am. Chem. Soc., 2007, 129, 1733). There are detailed descriptions in WO2008/073143 pamphlet and WO2008/046058 pamphlet regarding large-scale synthesis and purification techniques for silver nanowires and gold nanowires.
 金属ナノワイヤの径の平均(平均直径)は、1~500nmが好ましく、5~200nmがより好ましく、5~100nmがさらに好ましく、10~50nmが特に好ましい。また、金属ナノワイヤの長軸の長さの平均(平均長さ)は、1~100μmが好ましく、1~80μmがより好ましく、2~70μmがさらに好ましく、5~50μmが特に好ましい。金属ナノワイヤは、径の平均及び長軸の長さの平均が上記範囲を満たすとともに、アスペクト比の平均が5より大きいことが好ましく、10以上であることがより好ましく、100以上であることがさらに好ましく、200以上であることが特に好ましい。ここで、アスペクト比は、金属ナノワイヤの平均直径をb、長軸の平均長さをaと近似した場合、a/bで求められる値である。a及びbは、走査型電子顕微鏡(SEM)及び光学顕微鏡を用いて測定できる。具体的には、b(平均直径)は電界放出形走査電子顕微鏡JSM-7000F(日本電子株式会社製)を用い、任意に選択した100本の銀ナノワイヤの寸法を測定し、得られた測定値の算術平均値として決定される。また、a(平均長さ)の算出には、形状測定レーザマイクロスコープVK-X200(キーエンス株式会社製)を用い、任意に選択した100本の銀ナノワイヤの寸法を測定し、得られた測定値の算術平均値として決定される。 The average diameter (average diameter) of the metal nanowires is preferably 1 to 500 nm, more preferably 5 to 200 nm, even more preferably 5 to 100 nm, and particularly preferably 10 to 50 nm. The average length of the long axis of the metal nanowires (average length) is preferably 1 to 100 μm, more preferably 1 to 80 μm, still more preferably 2 to 70 μm, and particularly preferably 5 to 50 μm. The metal nanowires preferably have an average diameter and an average major axis length that satisfy the above ranges, and an average aspect ratio of more than 5, more preferably 10 or more, and further preferably 100 or more. It is preferably 200 or more, and particularly preferably 200 or more. Here, the aspect ratio is a value obtained by a/b when the average diameter of the metal nanowires is approximated by b and the average length of the long axis by a. a and b can be measured using scanning electron microscopy (SEM) and optical microscopy. Specifically, b (average diameter) is a measured value obtained by measuring the dimensions of 100 arbitrarily selected silver nanowires using a field emission scanning electron microscope JSM-7000F (manufactured by JEOL Ltd.). is determined as the arithmetic mean of In addition, to calculate a (average length), a shape measurement laser microscope VK-X200 (manufactured by Keyence Corporation) is used to measure the dimensions of 100 arbitrarily selected silver nanowires, and the obtained measurement value is determined as the arithmetic mean of
 金属ナノワイヤの材料としては、例えば、金、銀、白金、銅、ニッケル、パラジウム、からなる群から選ばれる少なくとも1種及びこれらの金属を組み合わせた合金等が挙げられる。低いシート抵抗かつ高い全光線透過率を有する塗膜を得るためには、金、銀及び銅のいずれかを少なくとも1種含むことが好ましい。これらの金属は導電性が高いため、一定のシート抵抗を得る際に面に占める金属の密度を減らすことができるので、高い全光線透過率を実現できる。これらの金属の中でも、銀又は銅の少なくとも1種を含むことがより好ましく、銀ナノワイヤであることが最も好ましい。 Materials for metal nanowires include, for example, at least one selected from the group consisting of gold, silver, platinum, copper, nickel, and palladium, and alloys in which these metals are combined. In order to obtain a coating film having low sheet resistance and high total light transmittance, it is preferable to contain at least one of gold, silver and copper. Since these metals have high conductivity, it is possible to reduce the density of the metal occupying the surface when obtaining a constant sheet resistance, so that a high total light transmittance can be realized. Among these metals, it is more preferable to contain at least one of silver and copper, and silver nanowires are most preferable.
 また、金属細線は、公知のフォトリソグラフィ技術を用いて、透明樹脂フィルム上にメタルメッシュ(格子状パターン)等の形状となるように形成することもできる。例えば、ハロゲン化銀を含有する銀塩乳剤層を形成し、銀塩乳剤層を露光した後、現像処理する方法で形成することが特許文献5(特開2015-22397号公報)に開示されている。金属細線の幅は、金属細線の高集積化の点から、0.1~300μmが好ましく、0.1~100μmがより好ましく、0.2~50μmがさらに好ましい。金属細線間の間隔は特に制限されないが、金属細線の高集積化の点から、0.1~300μmが好ましく、0.1~100μmがより好ましく、0.2~50μmがさらに好ましい。金属細線の厚みは特に制限されないが、金属細線の高集積化の点から、0.01~0.3μmが好ましく、0.01~0.2μmがより好ましく、0.02~0.2μmがさらに好ましい。 Also, the fine metal wires can be formed in a shape such as a metal mesh (lattice pattern) on a transparent resin film using a known photolithography technique. For example, Patent Document 5 (Japanese Unexamined Patent Application Publication No. 2015-22397) discloses a method of forming a silver salt emulsion layer containing silver halide, exposing the silver salt emulsion layer, and then developing the layer. there is The width of the fine metal wire is preferably 0.1 to 300 μm, more preferably 0.1 to 100 μm, even more preferably 0.2 to 50 μm, from the viewpoint of high integration of the fine metal wire. Although the interval between the metal fine wires is not particularly limited, it is preferably 0.1 to 300 μm, more preferably 0.1 to 100 μm, and still more preferably 0.2 to 50 μm from the viewpoint of high integration of the metal fine wires. Although the thickness of the metal fine wire is not particularly limited, it is preferably 0.01 to 0.3 μm, more preferably 0.01 to 0.2 μm, and further preferably 0.02 to 0.2 μm from the viewpoint of high integration of the metal fine wire. preferable.
 銀塩乳剤層を形成するための組成物には、ハロゲン化銀が含有される。ハロゲン化銀に含有されるハロゲン元素は、塩素、臭素、ヨウ素及びフッ素のいずれであってもよく、これを組み合わせてもよい。ハロゲン化銀としては、例えば、塩化銀、臭化銀、ヨウ化銀を主体としたハロゲン化銀が好ましく用いられ、さらに臭化銀、塩化銀を主体としたハロゲン化銀が好ましく用いられる。 The composition for forming the silver salt emulsion layer contains silver halide. The halogen element contained in the silver halide may be any one of chlorine, bromine, iodine and fluorine, and may be combined. As the silver halide, silver halide mainly composed of silver chloride, silver bromide and silver iodide is preferably used, and silver halide mainly composed of silver bromide and silver chloride is more preferably used.
 透明導電層3は、金属細線以外にバインダー樹脂を含んでいてもよい。バインダー樹脂としては、一般に、透明性を有し、加工性に優れるものを適用できる。導電材料としてポリオール法を用いた金属ナノワイヤを使用する場合は、その製造用溶媒(ポリオール)との相溶性の観点から、アルコール又は水に可溶なバインダー樹脂を使用することが好ましい。具体的には、ポリ-N-ビニルピロリドン、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロースといった水溶性セルロース系樹脂、ブチラール樹脂、ポリ-N-ビニルアセトアミド(PNVA(登録商標))を用いることができる。上記樹脂は単独で使用してもよいし、2種以上組み合わせて使用してもよい。ポリ-N-ビニルアセトアミドは、N-ビニルアセトアミド(NVA)のホモポリマーであるが、N-ビニルアセトアミド(NVA)をモノマー単位として含む共重合体を使用することもできる。NVAと共重合できるモノマーとしては、例えば、N-ビニルホルムアミド、N-ビニルピロリドン、アクリル酸、メタクリル酸、アクリル酸ナトリウム、メタクリル酸ナトリウム、アクリルアミド、アクリロニトリル等が挙げられる。共重合成分の含有量が多くなると、得られる透明導電パターン(透明導電層)のシート抵抗が高くなり、銀ナノワイヤ(金属ナノワイヤ)との混和性、又は基材フィルムとの密着性が低下する傾向があり、また、耐熱性(熱分解開始温度)も低下する傾向があるので、重合体中にN-ビニルアセトアミドをモノマー単位として70モル%以上含むことが好ましく、80モル%以上含むことがより好ましく、90モル%以上含むことがさらに好ましい。N-ビニルアセトアミドをモノマー単位として含む重合体(ホモポリマー及び共重合体)は絶対分子量による重量平均分子量が3万~400万であることが好ましく、10万~300万であることがより好ましく、30万~150万であることがさらに好ましい。ポリ-N-ビニルアセトアミド及びN-ビニルアセトアミド共重合体の絶対分子量による重量平均分子量は以下の方法により測定される。 The transparent conductive layer 3 may contain a binder resin in addition to the fine metal wires. As the binder resin, generally, those having transparency and excellent workability can be applied. When using metal nanowires obtained by the polyol method as the conductive material, it is preferable to use a binder resin soluble in alcohol or water from the viewpoint of compatibility with the solvent (polyol) for the production. Specifically, water-soluble cellulosic resins such as poly-N-vinylpyrrolidone, methylcellulose, hydroxyethylcellulose, and carboxymethylcellulose, butyral resins, and poly-N-vinylacetamide (PNVA (registered trademark)) can be used. The above resins may be used alone or in combination of two or more. Poly-N-vinylacetamide is a homopolymer of N-vinylacetamide (NVA), but copolymers containing N-vinylacetamide (NVA) as monomer units can also be used. Examples of monomers copolymerizable with NVA include N-vinylformamide, N-vinylpyrrolidone, acrylic acid, methacrylic acid, sodium acrylate, sodium methacrylate, acrylamide, acrylonitrile and the like. When the content of the copolymer component increases, the sheet resistance of the resulting transparent conductive pattern (transparent conductive layer) increases, and miscibility with silver nanowires (metal nanowires) or adhesion with the substrate film tends to decrease. Also, since the heat resistance (thermal decomposition initiation temperature) tends to decrease, the polymer preferably contains 70 mol% or more of N-vinylacetamide as a monomer unit, and more preferably contains 80 mol% or more. Preferably, it is more preferably contained in an amount of 90 mol % or more. The weight average molecular weight of the polymer (homopolymer and copolymer) containing N-vinylacetamide as a monomer unit is preferably 30,000 to 4,000,000, more preferably 100,000 to 3,000,000. More preferably, it is 300,000 to 1,500,000. The weight average molecular weight of poly-N-vinylacetamide and N-vinylacetamide copolymer is measured by the following method.
<バインダー樹脂の分子量測定>
 下記溶離液にバインダー樹脂を溶解させ、20時間静置した。この溶液におけるバインダー樹脂の濃度は0.05質量%である。
<Measurement of molecular weight of binder resin>
A binder resin was dissolved in the following eluent and allowed to stand for 20 hours. The concentration of the binder resin in this solution is 0.05 mass %.
 これを0.45μmメンブレンフィルターにて濾過し、濾液をGPC-MALSにて測定を実施し、絶対分子量基準の重量平均分子量を算出する。
GPC:昭和電工株式会社製Shodex(登録商標)SYSTEM21
カラム:東ソー株式会社製TSKgel(登録商標)G6000PW
カラム温度:40℃
溶離液:0.1mol/L NaHPO水溶液+0.1mol/L NaHPO水溶液
流速:0.64mL/min
試料注入量:100μL
MALS検出器:ワイアットテクノロジーコーポレーション、DAWN(登録商標) DSP
レーザー波長:633nm
多角度フィット法:Berry法
This is filtered through a 0.45 μm membrane filter, the filtrate is measured by GPC-MALS, and the weight average molecular weight is calculated based on the absolute molecular weight.
GPC: Shodex (registered trademark) SYSTEM21 manufactured by Showa Denko K.K.
Column: TSKgel (registered trademark) G6000PW manufactured by Tosoh Corporation
Column temperature: 40°C
Eluent: 0.1 mol/L NaH2PO4 aqueous solution +0.1 mol/L Na2HPO4 aqueous solution Flow rate: 0.64 mL/min
Sample injection volume: 100 μL
MALS detector: Wyatt Technology Corporation, DAWN® DSP
Laser wavelength: 633nm
Multi-angle fitting method: Berry method
 導電材料として銀塩乳剤を露光現像して得られる金属細線を用いる場合、バインダー樹脂としてはゼラチンが好適に用いられる。 When thin metal wires obtained by exposing and developing a silver salt emulsion are used as the conductive material, gelatin is preferably used as the binder resin.
 上記透明導電層3を形成する方法としては製造コストの点で有利な湿式工程が好適に用いられる。 As a method for forming the transparent conductive layer 3, a wet process that is advantageous in terms of manufacturing cost is preferably used.
 導電材料としてポリオール法を用いた金属ナノワイヤを使用する場合、上記透明導電層3は、上記金属ナノワイヤ、バインダー樹脂及び溶媒を含む導電性インク(金属ナノワイヤインク)を塗布液として透明樹脂フィルム2の一方又は両方の主面上に印刷し、溶媒を乾燥除去することによって形成することができる。 When metal nanowires obtained by the polyol method are used as the conductive material, the transparent conductive layer 3 is formed by coating one side of the transparent resin film 2 with a conductive ink (metal nanowire ink) containing the metal nanowires, a binder resin and a solvent as a coating liquid. Alternatively, it can be formed by printing on both major surfaces and drying off the solvent.
 溶媒は、金属ナノワイヤが良好に分散し、かつバインダー樹脂を溶解するが透明樹脂フィルムを溶解しない溶媒であれば特に限定されない。導電材料としてポリオール法で合成した金属ナノワイヤを用いる場合には、その製造用溶媒(ポリオール)との相溶性の観点から、アルコール、水あるいはアルコールと水との混合溶媒を使用することが好ましい。前述の通りバインダー樹脂もアルコール、水あるいはアルコールと水との混合溶媒に可溶なバインダー樹脂を用いることが好ましい。バインダー樹脂の乾燥速度を容易に制御できることからアルコールと水との混合溶媒を用いることがより好ましい。アルコールは、C2n+1OH(nは1~3の整数)で表される炭素原子数が1~3の飽和一価アルコール(メタノール、エタノール、ノルマルプロパノール及びイソプロパノール)[以下、単に「炭素原子数が1~3の飽和一価アルコール」と表記]を少なくとも1種含むことが好ましく、炭素原子数が1~3の飽和一価アルコールを全アルコール中40質量%以上含むことがより好ましい。炭素原子数が1~3の飽和一価アルコールを用いると乾燥が容易となるため工程上有利である。 The solvent is not particularly limited as long as the solvent disperses the metal nanowires satisfactorily and dissolves the binder resin but does not dissolve the transparent resin film. When using metal nanowires synthesized by the polyol method as the conductive material, it is preferable to use alcohol, water, or a mixed solvent of alcohol and water from the viewpoint of compatibility with the solvent (polyol) for its production. As described above, it is preferable to use a binder resin that is soluble in alcohol, water, or a mixed solvent of alcohol and water. It is more preferable to use a mixed solvent of alcohol and water because the drying speed of the binder resin can be easily controlled. Alcohols are saturated monohydric alcohols (methanol, ethanol, normal propanol and isopropanol) having 1 to 3 carbon atoms represented by C n H 2n+1 OH (n is an integer of 1 to 3) [hereinafter simply “carbon atoms It is preferable that at least one type of saturated monohydric alcohol having 1 to 3 carbon atoms is included, and more preferably 40% by mass or more of the total alcohol is saturated monohydric alcohol having 1 to 3 carbon atoms. The use of a saturated monohydric alcohol having 1 to 3 carbon atoms facilitates drying, which is advantageous in terms of the process.
 アルコールとして、C2n+1OH(nは1~3の整数)で表される炭素原子数が1~3の飽和一価アルコール以外のアルコールを併用することができる。併用できる上記炭素原子数が1~3の飽和一価アルコール以外のアルコールとしては、例えば、エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルが挙げられる。これらのアルコールを上記C2n+1OH(nは1~3の整数)で表される炭素原子数が1~3の飽和一価アルコールと併用する事により乾燥速度を調整する事が出来る。また、混合溶媒における全アルコールの含有率は、5~90質量%であることが好適である。混合溶媒におけるアルコールの含有率が5質量%以上から90質量%以内であるとコーティングした際に縞模様(塗布斑)の発生を抑制することができる。 Alcohols other than saturated monohydric alcohols having 1 to 3 carbon atoms represented by C n H 2n+1 OH (n is an integer of 1 to 3) can be used in combination. Examples of alcohols other than the saturated monohydric alcohol having 1 to 3 carbon atoms that can be used in combination include ethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, and propylene glycol monoethyl ether. is mentioned. By using these alcohols together with a saturated monohydric alcohol having 1 to 3 carbon atoms represented by the above C n H 2n+1 OH (n is an integer of 1 to 3), the drying rate can be adjusted. Also, the total alcohol content in the mixed solvent is preferably 5 to 90% by mass. When the content of alcohol in the mixed solvent is 5% by mass or more and 90% by mass or less, it is possible to suppress the occurrence of striped patterns (coating spots) during coating.
 導電性インクは、金属ナノワイヤ、バインダー樹脂及び溶媒を自転公転攪拌機を用いて攪拌して混合することにより製造することができる。導電性インク中に含有されるバインダー樹脂の含有量は0.01から1.0質量%の範囲であることが好ましい。導電性インク中に含有される金属ナノワイヤの含有量は0.01から1.0質量%の範囲であることが好ましい。導電性インク中に含有される溶媒の含有量は98.0から99.98質量%の範囲であることが好ましい。上記組成とすることにより1~50mPa・sの粘度の導電性インクが得られ、これを透明樹脂フィルム2の主面上に印刷し、溶媒を乾燥除去することによって膜厚20~200nmの透明導電層3が得られる。導電性インクのより好ましい粘度は1~20mPa・sであり、さらに好ましい粘度は1~10mPa・sである。粘度は25℃でブルックフィールド社製デジタル粘度計DV-E(スピンドル:SC4-18)により測定した値である。 The conductive ink can be produced by stirring and mixing the metal nanowires, the binder resin and the solvent using a rotation or revolution stirrer. The content of the binder resin contained in the conductive ink is preferably in the range of 0.01 to 1.0% by mass. The content of metal nanowires contained in the conductive ink is preferably in the range of 0.01 to 1.0% by mass. The content of the solvent contained in the conductive ink is preferably in the range of 98.0 to 99.98% by mass. By using the above composition, a conductive ink having a viscosity of 1 to 50 mPa·s is obtained. This is printed on the main surface of the transparent resin film 2, and the solvent is removed by drying to obtain a transparent conductive ink having a film thickness of 20 to 200 nm. Layer 3 is obtained. A more preferable viscosity of the conductive ink is 1 to 20 mPa·s, and a further preferable viscosity is 1 to 10 mPa·s. Viscosity is a value measured at 25° C. with a digital viscometer DV-E (spindle: SC4-18) manufactured by Brookfield.
 導電性インクの印刷は、例えば、バーコート印刷法、グラビア印刷法、インクジェット法、スリットコート法により行うことができる。その中でバーコート印刷法は低粘度のインクの塗布性が良好で、且つ、薄膜の形成に優れている。また、インクジェット法と異なり、バーコート印刷法は無機や金属粒子などを含有した低粘度インクも目詰まりなく印刷できる。 The conductive ink can be printed by, for example, a bar coat printing method, a gravure printing method, an inkjet method, or a slit coating method. Among them, the bar coat printing method has good applicability of low-viscosity ink and is excellent in forming a thin film. Moreover, unlike the inkjet method, the bar coat printing method can print even low-viscosity ink containing inorganic or metal particles without clogging.
 導電性インクの印刷により形成したパターンは、加熱して溶媒を乾燥させることにより導電性を有する透明導電層3となる。透明導電層3の厚みは10nm~500nmの範囲であることが好ましく、10nm~300nmの範囲であることがより好ましく、15nm~200nmの範囲であることがさらに好ましく、20nm~100nmの範囲であることが特に好ましい。なお、透明導電層3の厚さは、透明導電フィルム10又は20、キャリアフィルム1の厚さに比較して小さいので、カール性への影響は極めて小さい。 The pattern formed by printing the conductive ink becomes the transparent conductive layer 3 having conductivity by heating and drying the solvent. The thickness of the transparent conductive layer 3 is preferably in the range of 10 nm to 500 nm, more preferably in the range of 10 nm to 300 nm, even more preferably in the range of 15 nm to 200 nm, even more preferably in the range of 20 nm to 100 nm. is particularly preferred. In addition, since the thickness of the transparent conductive layer 3 is smaller than the thickness of the transparent conductive film 10 or 20 and the carrier film 1, the effect on the curling property is extremely small.
 導電材料として銀塩乳剤を露光現像して得られる金属細線を用いる場合、上記透明導電層3は、上記銀塩乳剤、バインダー樹脂及び溶媒を含む銀塩乳剤層形成用組成物を塗布液として透明樹脂フィルム2の一方又は両方の主面上に塗布し、露光現像工程を施すことで形成される。 When fine metal wires obtained by exposing and developing a silver salt emulsion are used as the conductive material, the transparent conductive layer 3 is formed by using a silver salt emulsion layer-forming composition containing the silver salt emulsion, a binder resin and a solvent as a coating liquid. It is formed by coating one or both main surfaces of the resin film 2 and performing an exposure and development process.
<露光処理>
 銀塩乳剤層に対してパターン状の露光を施すことにより、露光領域における銀塩乳剤層中のハロゲン化銀が潜像を形成する。この潜像が形成された領域は、後述する現像処理によって金属細線を形成する。一方、露光がなされなかった未露光領域では、後述する定着処理の際にハロゲン化銀が溶解して銀塩乳剤層から流出し、透明な膜が得られる。
<Exposure processing>
By subjecting the silver salt emulsion layer to patterned exposure, the silver halide in the silver salt emulsion layer in the exposed regions forms a latent image. The area where this latent image is formed forms a fine metal wire by a development process, which will be described later. On the other hand, in the unexposed area where no exposure has been made, the silver halide dissolves and flows out from the silver salt emulsion layer during the fixing treatment, which will be described later, to obtain a transparent film.
 露光の際に使用される光源は特に制限されず、可視光線、紫外線などの光、又は、X線などの放射線などが挙げられる。 The light source used for exposure is not particularly limited, and includes light such as visible light and ultraviolet rays, and radiation such as X-rays.
 パターン露光を行う方法は特に制限されず、例えば、フォトマスクを利用した面露光で行ってもよいし、レーザービームによる走査露光で行ってもよい。なお、パターンの形状は金属細線が交差部を有するように形成されれば特に制限されず、形成したい金属細線のパターンに合わせて適宜調整されるが、格子状パターンであることが好ましい。 The method of pattern exposure is not particularly limited, and for example, surface exposure using a photomask or scanning exposure with a laser beam may be used. The shape of the pattern is not particularly limited as long as the fine metal wires are formed to have crossing portions, and is appropriately adjusted according to the pattern of the fine metal wires to be formed, but a lattice pattern is preferable.
<現像処理>
 現像処理の方法は特に制限されず、公知の方法を採用できる。例えば、銀塩写真フィルム、印画紙、印刷製版用フィルム、フォトマスク用エマルジョンマスクに用いられる通常の現像処理の技術を用いることができる。
<Development processing>
The method of development processing is not particularly limited, and known methods can be employed. For example, it is possible to use the usual developing techniques used for silver salt photographic films, photographic papers, printing plate-making films, and emulsion masks for photomasks.
 現像処理は、未露光部分の銀塩を除去して安定化させる目的で行われる定着処理を含むことができる。定着処理は、銀塩写真フィルムや印画紙、印刷製版用フィルム、フォトマスク用エマルジョンマスクなどに用いられる定着処理の技術を用いることができる。現像(及び定着)処理後、純水でリンスし、乾燥することにより得られる金属細線パターンの厚みは0.5~5μmであることが好ましく、0.5~3μmであることがより好ましく、0.8~1.5μmであることがさらに好ましい。 Development processing can include fixing processing for the purpose of removing and stabilizing silver salts in unexposed areas. For the fixing process, a fixing process technique used for silver salt photographic film, photographic paper, printing plate-making film, emulsion mask for photomask, and the like can be used. After developing (and fixing) treatment, the metal fine line pattern obtained by rinsing with pure water and drying has a thickness of preferably 0.5 to 5 μm, more preferably 0.5 to 3 μm. 0.8 to 1.5 μm is more preferred.
<オーバーコート層4>
 透明導電層3を機械的に保護するため、透明導電層3上にオーバーコート層4を形成する。一般的に、透明導電膜(透明導電層)を保護する保護膜(オーバーコート層)は、透明導電膜を機械的に保護する観点から、硬化性樹脂組成物(オーバーコートインク)の熱硬化膜であることが好ましい。しかし、硬化膜は成形加工性にやや劣るため、三次元成形に用いられる保護膜としては工夫して用いることが好ましい。透明導電フィルム積層体を変形させず平坦な状態で使用する、あるいはフォルダブル用途等一方向に折り曲げて使用する場合には硬化性樹脂組成物の硬化膜を適用できるが、透明導電フィルムを三次元曲面(平面を変形させることによって成立させることの出来ない曲面)を有するように成形加工する場合には、成形加工性に優れる熱可塑性樹脂を主成分とするのが好ましい。例えば、タッチパネルに適用する場合には、透明導電フィルム積層体は通常他の部材と貼り合わせて使用される、すなわち他の部材により機械的に保護された形態となる。その場合、高い機械的強度は必要とされない。そのため、三次元成形用途向けの一実施形態の透明導電フィルム積層体を構成する保護膜(オーバーコート層4)は、成形加工性に優れる熱可塑性樹脂を主成分とするのが好ましい。
<Overcoat layer 4>
An overcoat layer 4 is formed on the transparent conductive layer 3 to protect the transparent conductive layer 3 mechanically. In general, a protective film (overcoat layer) for protecting a transparent conductive film (transparent conductive layer) is a thermosetting film of a curable resin composition (overcoat ink) from the viewpoint of mechanically protecting the transparent conductive film. is preferably However, since the cured film is slightly inferior in moldability, it is preferable to use it as a protective film for three-dimensional molding. When the transparent conductive film laminate is used in a flat state without being deformed, or when it is folded in one direction such as for foldable applications, a cured film of a curable resin composition can be applied. In the case of molding to have a curved surface (a curved surface that cannot be formed by deforming a flat surface), it is preferable to use a thermoplastic resin, which is excellent in moldability, as the main component. For example, when applied to a touch panel, the transparent conductive film laminate is usually used by bonding it to another member, that is, it is mechanically protected by the other member. In that case, high mechanical strength is not required. Therefore, it is preferable that the protective film (overcoat layer 4) constituting the transparent conductive film laminate of one embodiment for three-dimensional molding uses a thermoplastic resin having excellent moldability as a main component.
 保護膜(オーバーコート層4)として硬化性樹脂組成物の硬化膜を使用する場合の硬化性樹脂組成物としては、(A)カルボキシ基を含有するポリウレタンと、(B)一分子中に二個以上のエポキシ基を有するエポキシ化合物と、(C)硬化促進剤と、を含むものが好ましい。硬化性樹脂組成物を上記透明導電膜上に印刷、塗布等により形成し、硬化させて保護膜を形成する。硬化性樹脂組成物の硬化は、例えば熱硬化性樹脂組成物を用いる場合、これを加熱・乾燥し、熱硬化させることにより行うことができる。なお、以降は、表記の簡略化のため、「(B)一分子中に二個以上のエポキシ基を有するエポキシ化合物」を単に「(B)エポキシ化合物」と記述することがある。 When a cured film of a curable resin composition is used as the protective film (overcoat layer 4), the curable resin composition includes (A) a polyurethane containing a carboxy group and (B) two groups per molecule. It is preferable to contain the above epoxy compound having an epoxy group and (C) a curing accelerator. A curable resin composition is formed on the transparent conductive film by printing, coating, or the like, and cured to form a protective film. Curing of the curable resin composition can be carried out by, for example, heating and drying the thermosetting resin composition to thermally cure it. Hereinafter, for the sake of simplification of notation, "(B) epoxy compound having two or more epoxy groups in one molecule" may be simply described as "(B) epoxy compound".
 上記(A)カルボキシ基を含有するポリウレタンは、その重量平均分子量が1,000~100,000であることが好ましく、2,000~70,000であることがより好ましく、3,000~50,000であると更に好ましい。本明細書において、カルボキシ基を含有するポリウレタンの重量平均分子量は、GPCで測定したポリスチレン換算の値である。カルボキシ基を含有するポリウレタンの重量平均分子量が1,000以上であると、印刷後の塗膜の伸度、可撓性、並びに強度が十分発揮される。カルボキシ基を含有するポリウレタンの重量平均分子量が100,000以下であると、溶媒への溶解性が良好で、かつ、溶解後のポリウレタン溶液の粘度も高くなりすぎず、ハンドリング性に優れる。 The (A) polyurethane containing a carboxyl group preferably has a weight average molecular weight of 1,000 to 100,000, more preferably 2,000 to 70,000, more preferably 3,000 to 50,000. 000 is more preferred. As used herein, the weight-average molecular weight of a polyurethane containing a carboxyl group is a polystyrene-equivalent value measured by GPC. When the weight-average molecular weight of the carboxy group-containing polyurethane is 1,000 or more, the elongation, flexibility and strength of the coating film after printing are sufficiently exhibited. When the weight average molecular weight of the carboxyl group-containing polyurethane is 100,000 or less, the solubility in a solvent is good, and the viscosity of the polyurethane solution after dissolution does not become too high, resulting in excellent handleability.
 本明細書においては、特に断りのない限り、カルボキシ基を含有するポリウレタンの重量平均分子量に関するGPC測定条件は以下のとおりである。
装置名:日本分光株式会社製HPLCユニット HSS-2000
カラム:ShodexカラムLF-804
移動相:テトラヒドロフラン
流速 :1.0mL/min
検出器:日本分光株式会社製 RI-2031Plus
温度 :40.0℃
試料量:サンプルル-プ 100μリットル
試料濃度:約0.1質量%
In the present specification, unless otherwise specified, the GPC measurement conditions for the weight average molecular weight of polyurethane containing carboxyl groups are as follows.
Apparatus name: HPLC unit HSS-2000 manufactured by JASCO Corporation
Column: Shodex column LF-804
Mobile phase: Tetrahydrofuran Flow rate: 1.0 mL/min
Detector: RI-2031Plus manufactured by JASCO Corporation
Temperature: 40.0°C
Sample amount: sample loop 100 μl Sample concentration: about 0.1% by mass
 (A)カルボキシ基を含有するポリウレタンの酸価は10~140mg-KOH/gであることが好ましく、15~130mg-KOH/gであることがより好ましい。カルボキシ基を含有するポリウレタンの酸価が10mg-KOH/g以上であれば、硬化性樹脂組成物の硬化性、硬化物の耐溶剤性とも良好である。カルボキシ基を含有するポリウレタンの酸価が140mg-KOH/g以下であるとカルボキシ基を含有するポリウレタン自体の溶媒への溶解性が良好であり、樹脂組成物の粘度を所望の粘度に調整し易い。また、硬化物が硬くなりすぎることによる基材フィルムの反り等の問題を起こし難くなる。 (A) The acid value of the carboxy group-containing polyurethane is preferably 10 to 140 mg-KOH/g, more preferably 15 to 130 mg-KOH/g. When the acid value of the carboxy group-containing polyurethane is 10 mg-KOH/g or more, both the curability of the curable resin composition and the solvent resistance of the cured product are good. When the acid value of the carboxy group-containing polyurethane is 140 mg-KOH/g or less, the carboxy group-containing polyurethane itself has good solubility in a solvent, and the viscosity of the resin composition can be easily adjusted to a desired viscosity. . In addition, problems such as warping of the base film due to excessive hardening of the cured product are less likely to occur.
 本明細書において、カルボキシ基を含有するポリウレタンの酸価は以下の方法により測定した値である。
 100ml三角フラスコに試料約0.2gを精密天秤にて精秤し、これにエタノール/トルエン=1/2(質量比)の混合溶媒10mlを加えて溶解する。更に、この容器に指示薬としてフェノールフタレインエタノール溶液を1~3滴添加し、試料が均一になるまで十分に攪拌する。これを、0.1N水酸化カリウム-エタノール溶液で滴定し、指示薬の微紅色が30秒間続いたときを、中和の終点とする。下記の計算式を用いて得た値を、樹脂の酸価とする。
酸価(mg-KOH/g)=〔B×f×5.611〕/S
B:0.1N水酸化カリウム-エタノール溶液の使用量(ml)
f:0.1N水酸化カリウム-エタノール溶液のファクター
S:試料の採取量(g)
As used herein, the acid value of a polyurethane containing a carboxyl group is a value measured by the following method.
About 0.2 g of a sample is accurately weighed in a 100 ml Erlenmeyer flask using a precision balance, and 10 ml of a mixed solvent of ethanol/toluene=1/2 (mass ratio) is added and dissolved. Furthermore, 1 to 3 drops of phenolphthalein ethanol solution is added as an indicator to this container, and the sample is sufficiently stirred until it becomes homogeneous. This is titrated with a 0.1N potassium hydroxide-ethanol solution, and neutralization is terminated when the indicator remains slightly red for 30 seconds. The value obtained using the following formula is taken as the acid value of the resin.
Acid value (mg-KOH/g) = [B x f x 5.611]/S
B: Amount of 0.1N potassium hydroxide-ethanol solution used (ml)
f: Factor S of 0.1N potassium hydroxide-ethanol solution: Amount of sample collected (g)
 (A)カルボキシ基を含有するポリウレタンは、より具体的には、(a1)ポリイソシアネート化合物、(a2)ポリオール化合物、及び(a3)カルボキシ基を有するジヒドロキシ化合物をモノマーとして用いて合成されるポリウレタンである。耐候性及び耐光性の観点では(a1)、(a2)、(a3)はそれぞれ芳香族化合物などの共役性を有する官能基を含まないことが望ましい。以下、各モノマーについてより詳細に説明する。 (A) Polyurethane containing a carboxy group is, more specifically, a polyurethane synthesized using (a1) a polyisocyanate compound, (a2) a polyol compound, and (a3) a dihydroxy compound having a carboxy group as monomers. be. From the viewpoint of weather resistance and light resistance, it is desirable that each of (a1), (a2) and (a3) does not contain a conjugated functional group such as an aromatic compound. Each monomer will be described in more detail below.
(a1)ポリイソシアネート化合物
 (a1)ポリイソシアネート化合物としては、通常、1分子当たりのイソシアナト基が2個であるジイソシアネートが用いられる。ポリイソシアネート化合物としては、例えば、脂肪族ポリイソシアネート、脂環式ポリイソシアネート等が挙げられ、これらを単独で又は2種以上を組み合わせて用いることができる。(A)カルボキシ基を含有するポリウレタンがゲル化をしない範囲で、イソシアナト基を3個以上有するポリイソシアネートも少量使用することができる。
(a1) Polyisocyanate compound As the (a1) polyisocyanate compound, a diisocyanate having two isocyanato groups per molecule is usually used. Examples of polyisocyanate compounds include aliphatic polyisocyanates and alicyclic polyisocyanates, and these can be used alone or in combination of two or more. (A) A small amount of polyisocyanate having 3 or more isocyanato groups can be used as long as the carboxy group-containing polyurethane does not gel.
 脂肪族ポリイソシアネートとしては、例えば、1,3-トリメチレンジイソシアネート、1,4-テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,9-ノナメチレンジイソシアネート、1,10-デカメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,2’-ジエチルエ-テルジイソシアネート、ダイマー酸ジイソシアネート等が挙げられる。 Examples of aliphatic polyisocyanates include 1,3-trimethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,9-nonamethylene diisocyanate, 1,10-decamethylene diisocyanate, 2 , 2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,2′-diethyl ether diisocyanate, dimer acid diisocyanate and the like.
 脂環式ポリイソシアネートとしては、例えば、1,4-シクロヘキサンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(IPDI、イソホロンジイソシアネート)、ビス-(4-イソシアナトシクロヘキシル)メタン(水添MDI)、水素化(1,3-又は1,4-)キシリレンジイソシアネート、ノルボルナンジイソシアネート等が挙げられる。 Alicyclic polyisocyanates include, for example, 1,4-cyclohexanediisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, 1,4-bis(isocyanatomethyl)cyclohexane, 3-isocyanatomethyl-3,5 , 5-trimethylcyclohexyl isocyanate (IPDI, isophorone diisocyanate), bis-(4-isocyanatocyclohexyl) methane (hydrogenated MDI), hydrogenated (1,3- or 1,4-) xylylene diisocyanate, norbornane diisocyanate, etc. mentioned.
 (a1)ポリイソシアネート化合物として、イソシアナト基(-NCO基)中の炭素原子以外の炭素原子の数が6~30である脂環式化合物を用いることにより、高温高湿時の信頼性が高く、電子機器部品の部材に適した保護膜を得ることができる。上記例示した脂環式ポリイソシアネートの中でも、1,4-シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ビス-(4-イソシアナトシクロヘキシル)メタン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサンが好ましい。 (a1) By using an alicyclic compound having 6 to 30 carbon atoms other than the carbon atoms in the isocyanato group (-NCO group) as the polyisocyanate compound, the reliability at high temperature and high humidity is high, It is possible to obtain a protective film suitable for members of electronic equipment parts. Among the alicyclic polyisocyanates exemplified above, 1,4-cyclohexane diisocyanate, isophorone diisocyanate, bis-(4-isocyanatocyclohexyl)methane, 1,3-bis(isocyanatomethyl)cyclohexane, 1,4-bis( isocyanatomethyl)cyclohexane is preferred.
 上述の通り耐候性及び耐光性の観点では(a1)ポリイソシアネート化合物としては芳香環を有さない化合物を用いる方が好ましい。そのため、必要に応じて芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネートを用いる場合は、これらの含有量は、(a1)ポリイソシアネート化合物の中に、(a1)ポリイソシアネート化合物の総量(100mol%)に対して、好ましくは50mol%以下、より好ましくは30mol%以下、さらに好ましくは10mol%以下である。 As described above, from the viewpoint of weather resistance and light resistance, it is preferable to use a compound that does not have an aromatic ring as the (a1) polyisocyanate compound. Therefore, when using an aromatic polyisocyanate or an araliphatic polyisocyanate as necessary, the content of these in the (a1) polyisocyanate compound, (a1) the total amount of the polyisocyanate compound (100 mol%) On the other hand, it is preferably 50 mol % or less, more preferably 30 mol % or less, still more preferably 10 mol % or less.
(a2)ポリオール化合物
 (a2)ポリオール化合物(ただし、(a2)ポリオール化合物には、後述する(a3)カルボキシ基を有するジヒドロキシ化合物は含まれない。)の数平均分子量は通常250~50,000であり、好ましくは400~10,000、より好ましくは500~5,000である。ポリオール化合物の数平均の分子量は前述した条件でGPCにより測定したポリスチレン換算の値である。
(a2) Polyol compound (a2) Polyol compound (however, (a2) polyol compound does not include (a3) a dihydroxy compound having a carboxyl group described later) usually has a number average molecular weight of 250 to 50,000. Yes, preferably 400 to 10,000, more preferably 500 to 5,000. The number average molecular weight of the polyol compound is a polystyrene-equivalent value measured by GPC under the conditions described above.
 (a2)ポリオール化合物としては、例えば、ポリカーボネートポリオール、ポリエ-テルポリオール、ポリエステルポリオール、ポリラクトンポリオール、両末端水酸基化ポリシリコーン、及び植物系油脂を原料とするC18(炭素原子数18)不飽和脂肪酸及びその重合物由来の多価カルボン酸を水素添加しカルボン酸を水酸基に変換して得られる炭素原子数が18~72であるポリオール化合物である。保護膜の耐水性、絶縁信頼性、及び基材との密着性のバランスの観点からは、(a2)ポリオール化合物はポリカーボネートポリオールであることが好ましい。 Examples of (a2) polyol compounds include polycarbonate polyols, polyether polyols, polyester polyols, polylactone polyols, polysilicones with hydroxyl groups on both ends, and C18 (18 carbon atoms) unsaturated fatty acids made from vegetable oils and fats. and a polyol compound having 18 to 72 carbon atoms obtained by hydrogenating a polyvalent carboxylic acid derived from a polymer thereof and converting the carboxylic acid into a hydroxyl group. From the viewpoint of the balance between the water resistance of the protective film, the insulation reliability, and the adhesion to the substrate, the (a2) polyol compound is preferably a polycarbonate polyol.
 ポリカーボネートポリオールは、炭素原子数3~18のジオール、炭酸エステル又はホスゲンと反応させることにより得ることができ、例えば、以下の構造式(1)で表される。
Figure JPOXMLDOC01-appb-C000001
A polycarbonate polyol can be obtained by reacting it with a diol having 3 to 18 carbon atoms, a carbonate ester or phosgene, and is represented by the following structural formula (1), for example.
Figure JPOXMLDOC01-appb-C000001
 式(1)において、Rは対応するジオール(HO-R-OH)から水酸基を除いた残基であって炭素原子数3~18のアルカンジイル基であり、nは正の整数、好ましくは2~50である。 In formula (1), R 3 is a residue of the corresponding diol (HO--R 3 --OH) from which the hydroxyl group has been removed and is an alkanediyl group having 3 to 18 carbon atoms, n 3 is a positive integer, Preferably it is 2-50.
 式(1)で表されるポリカーボネートポリオールは、具体的には、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、1,10-デカメチレングリコール又は1,2-テトラデカンジオールなどを原料として用いることにより製造することができる。 Specifically, the polycarbonate polyol represented by formula (1) is 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1 ,5-pentanediol, 1,8-octanediol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 1,10 -Decamethylene glycol or 1,2-tetradecanediol can be used as a starting material.
 ポリカーボネートポリオールは、その骨格中に複数種のアルカンジイル基を有するポリカーボネートポリオール(共重合ポリカーボネートポリオール)であってもよい。共重合ポリカーボネートポリオールの使用は、(A)カルボキシ基を含有するポリウレタンの結晶化防止の観点から有利な場合が多い。溶媒への溶解性を考慮すると、分岐骨格を有し、分岐鎖の末端に水酸基を有するポリカーボネートポリオールが併用されることが好ましい。 The polycarbonate polyol may be a polycarbonate polyol (copolymerized polycarbonate polyol) having multiple types of alkanediyl groups in its skeleton. The use of a copolymerized polycarbonate polyol is often advantageous from the viewpoint of preventing crystallization of (A) polyurethanes containing carboxy groups. Considering solubility in a solvent, it is preferable to use a polycarbonate polyol having a branched skeleton and a hydroxyl group at the end of the branched chain.
(a3)カルボキシ基を含有するジヒドロキシ化合物
 (a3)カルボキシ基を含有するジヒドロキシ化合物としては、ヒドロキシ基、炭素原子数が1又は2のヒドロキシアルキル基から選択されるいずれかを2つ有する、分子量が200以下のカルボン酸又はアミノカルボン酸であることが架橋点を制御できる点で好ましい。(a3)カルボキシ基を含有するジヒドロキシ化合物としては、例えば、2,2-ジメチロ-ルプロピオン酸、2,2-ジメチロ-ルブタン酸、N,N-ビスヒドロキシエチルグリシン、N,N-ビスヒドロキシエチルアラニンが挙げられ、これらの中でも、溶媒への溶解度から、2,2-ジメチロ-ルプロピオン酸、2,2-ジメチロ-ルブタン酸が好ましい。(a3)カルボキシ基を含有するジヒドロキシ化合物は、単独で又は2種以上を組み合わせて用いることができる。
(a3) A dihydroxy compound containing a carboxy group (a3) The dihydroxy compound containing a carboxy group has two selected from a hydroxy group and a hydroxyalkyl group having 1 or 2 carbon atoms, and has a molecular weight of A carboxylic acid or aminocarboxylic acid having a molecular weight of 200 or less is preferable because the cross-linking point can be controlled. (a3) Dihydroxy compounds containing a carboxy group include, for example, 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, N,N-bishydroxyethylglycine, N,N-bishydroxyethyl Among these, 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid are preferred in terms of solubility in solvents. (a3) The dihydroxy compound containing a carboxy group can be used alone or in combination of two or more.
 (A)カルボキシ基を含有するポリウレタンは、上記の3成分((a1)、(a2)及び(a3))のみから合成が可能である。さらに(a4)モノヒドロキシ化合物及び/又は(a5)モノイソシアネート化合物を反応させて合成することもできる。耐候性及び耐光性の観点からは、(a4)モノヒドロキシ化合物及び(a5)モノイソシアネート化合物は、分子内に芳香環や炭素-炭素二重結合を含まない化合物であることが好ましい。 (A) Polyurethane containing a carboxyl group can be synthesized only from the above three components ((a1), (a2) and (a3)). Furthermore, it can be synthesized by reacting (a4) a monohydroxy compound and/or (a5) a monoisocyanate compound. From the viewpoint of weather resistance and light resistance, (a4) monohydroxy compound and (a5) monoisocyanate compound are preferably compounds containing no aromatic ring or carbon-carbon double bond in the molecule.
 (A)カルボキシ基を含有するポリウレタンは、ジブチル錫ジラウリレートのような公知のウレタン化触媒の存在下又は非存在下で、適切な有機溶媒を用いて、上記した(a1)ポリイソシアネート化合物、(a2)ポリオール化合物、及び(a3)カルボキシ基を有するジヒドロキシ化合物を反応させることにより合成ができる。カルボキシ基を含有するポリウレタンを無触媒で合成することが、最終的に錫等の混入を考慮する必要がないため有利である。 (A) Polyurethanes containing carboxyl groups can be prepared by using a suitable organic solvent in the presence or absence of a known urethanization catalyst such as dibutyltin dilaurate. ) a polyol compound and (a3) a dihydroxy compound having a carboxyl group. It is advantageous to synthesize a polyurethane containing a carboxyl group without a catalyst because it is not necessary to consider contamination with tin or the like in the end.
 有機溶媒は、イソシアネート化合物と反応性が低いものであれば特に限定されない。有機溶媒は、アミン等の塩基性官能基を含まず、沸点が50℃以上、好ましくは80℃以上、より好ましくは100℃以上である溶媒が好ましい。このような溶媒としては、例えば、トルエン、キシレン、エチルベンゼン、ニトロベンゼン、シクロヘキサン、イソホロン、ジエチレングリコールジメチルエ-テル、エチレングリコールジエチルエ-テル、エチレングリコールモノメチルエ-テルアセテート、プロピレングリコールモノメチルエ-テルアセテート、プロピレングリコールモノエチルエ-テルアセテート、ジプロピレングリコールモノメチルエ-テルアセテート、ジエチレングリコールモノエチルエ-テルアセテート、メトキシプロピオン酸メチル、メトキシプロピオン酸エチル、エトキシプロピオン酸メチル、エトキシプロピオン酸エチル、酢酸エチル、酢酸n-ブチル、酢酸イソアミル、乳酸エチル、アセトン、メチルエチルケトン、シクロヘキサノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、γ-ブチロラクトン、及びジメチルスルホキシドが挙げられる。 The organic solvent is not particularly limited as long as it has low reactivity with the isocyanate compound. The organic solvent preferably does not contain a basic functional group such as amine and has a boiling point of 50° C. or higher, preferably 80° C. or higher, more preferably 100° C. or higher. Examples of such solvents include toluene, xylene, ethylbenzene, nitrobenzene, cyclohexane, isophorone, diethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, Propylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, methyl methoxypropionate, ethyl methoxypropionate, methyl ethoxypropionate, ethyl ethoxypropionate, ethyl acetate, acetic acid n-butyl, isoamyl acetate, ethyl lactate, acetone, methyl ethyl ketone, cyclohexanone, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, γ-butyrolactone, and dimethylsulfoxide.
 生成するカルボキシ基を含有するポリウレタンの溶解性が低い有機溶媒は好ましくないこと、及び電子材料用途においてカルボキシ基を含有するポリウレタンを保護膜用インクの原料にすることを考慮すると、有機溶媒は、プロピレングリコールモノメチルエ-テルアセテート、プロピレングリコールモノエチルエ-テルアセテート、ジプロピレングリコールモノメチルエ-テルアセテート、ジエチレングリコールモノエチルエ-テルアセテート、γ-ブチロラクトン、又はそれらの組合せであることが好ましい。 Considering that an organic solvent in which the generated polyurethane containing a carboxy group has low solubility is not preferable, and that polyurethane containing a carboxy group is used as a raw material for the protective film ink in electronic material applications, the organic solvent is propylene. Glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, γ-butyrolactone, or combinations thereof are preferred.
 原料の投入順序については特に制約はないが、通常は(a2)ポリオール化合物及び(a3)カルボキシ基を有するジヒドロキシ化合物を先に反応容器に入れ、溶媒に溶解又は分散させた後、20~150℃、より好ましくは60~120℃で、(a1)ポリイソシアネート化合物を滴下しながら加え、その後、30~160℃、より好ましくは50~130℃でこれらを反応させる。 The order in which the raw materials are added is not particularly limited, but usually (a2) the polyol compound and (a3) the dihydroxy compound having a carboxyl group are first placed in a reaction vessel, dissolved or dispersed in a solvent, and then heated to 20 to 150°C. , more preferably at 60 to 120°C, (a1) the polyisocyanate compound is added dropwise, and then these are reacted at 30 to 160°C, more preferably 50 to 130°C.
 原料の仕込みモル比は、目的とするカルボキシ基を含有するポリウレタンの分子量及び酸価に応じて調節する。 The molar ratio of raw materials charged is adjusted according to the molecular weight and acid value of the target polyurethane containing carboxyl groups.
 具体的には、(a1)ポリイソシアネート化合物のイソシアナト基:((a2)ポリオール化合物の水酸基+(a3)カルボキシ基を有するジヒドロキシ化合物の水酸基)のモル比は、好ましくは0.5~1.5:1、より好ましくは0.8~1.2:1、さらに好ましくは0.95~1.05:1である。 Specifically, the molar ratio of (a1) the isocyanato group of the polyisocyanate compound to ((a2) the hydroxyl group of the polyol compound + (a3) the hydroxyl group of the dihydroxy compound having a carboxyl group) is preferably 0.5 to 1.5. :1, more preferably 0.8-1.2:1, more preferably 0.95-1.05:1.
 (a2)ポリオール化合物の水酸基:(a3)カルボキシ基を有するジヒドロキシ化合物の水酸基のモル比は、好ましくは1:0.1~30、より好ましくは1:0.3~10である。 The molar ratio of (a2) hydroxyl group of the polyol compound to (a3) hydroxyl group of the dihydroxy compound having a carboxyl group is preferably 1:0.1-30, more preferably 1:0.3-10.
 (B)一分子中に2個以上のエポキシ基を有するエポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、N-グリシジル型エポキシ樹脂、ビスフェノールAのノボラック型エポキシ樹脂、キレート型エポキシ樹脂、グリオキザール型エポキシ樹脂、アミノ基含有エポキシ樹脂、ゴム変性エポキシ樹脂、ジシクロペンタジエンフェノリック型エポキシ樹脂、シリコーン変性エポキシ樹脂、ε-カプロラクトン変性エポキシ樹脂、グリシジル基を含有した脂肪族型エポキシ樹脂、グリシジル基を含有した脂環式エポキシ樹脂を挙げることができる。 (B) Epoxy compounds having two or more epoxy groups in one molecule include, for example, bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, phenol novolac type Epoxy resins, cresol novolak type epoxy resins, N-glycidyl type epoxy resins, bisphenol A novolak type epoxy resins, chelate type epoxy resins, glyoxal type epoxy resins, amino group-containing epoxy resins, rubber-modified epoxy resins, dicyclopentadiene phenolic type Epoxy resins, silicone-modified epoxy resins, ε-caprolactone-modified epoxy resins, glycidyl group-containing aliphatic epoxy resins, and glycidyl group-containing alicyclic epoxy resins can be mentioned.
 一分子中に3個以上のエポキシ基を有するエポキシ化合物をより好適に使用することができる。このようなエポキシ化合物としては、例えば、EHPE(登録商標)3150(株式会社ダイセル製)、jER604(三菱化学株式会社製)、EPICLON EXA-4700(DIC株式会社製)、EPICLON HP-7200(DIC株式会社製)、ペンタエリスリトールテトラグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル、TEPIC-S(日産化学株式会社製)が挙げられる。 An epoxy compound having 3 or more epoxy groups in one molecule can be used more preferably. Examples of such epoxy compounds include EHPE (registered trademark) 3150 (manufactured by Daicel Corporation), jER604 (manufactured by Mitsubishi Chemical Corporation), EPICLON EXA-4700 (manufactured by DIC Corporation), and EPICLON HP-7200 (manufactured by DIC Corporation). company), pentaerythritol tetraglycidyl ether, pentaerythritol triglycidyl ether, and TEPIC-S (manufactured by Nissan Chemical Industries, Ltd.).
 上記(B)エポキシ化合物としては、分子内に芳香環を有していても良く、その場合、上記(A)カルボキシ基を含有するポリウレタンと(B)エポキシ化合物の合計質量に対して(B)エポキシ化合物の質量は20質量%以下が好ましい。 The (B) epoxy compound may have an aromatic ring in the molecule. In that case, (B) The mass of the epoxy compound is preferably 20% by mass or less.
 上記(B)エポキシ化合物に対する(A)カルボキシ基を含有するポリウレタンの配合割合は、(B)エポキシ化合物のエポキシ基に対するポリウレタン中のカルボキシ基の当量比で0.5~1.5であることが好ましく、0.7~1.3であることがより好ましく、0.9~1.1であることがさらに好ましい。 The mixing ratio of (A) the carboxy group-containing polyurethane to the (B) epoxy compound is 0.5 to 1.5 in terms of the equivalent ratio of the carboxy group in the polyurethane to the epoxy group of the (B) epoxy compound. It is preferably from 0.7 to 1.3, even more preferably from 0.9 to 1.1.
 (C)硬化促進剤としては、例えば、トリフェニルホスフィン、トリブチルホスフィンなどのホスフィン系化合物(北興化学工業株式会社製)、キュアゾール(登録商標)(イミダゾール系エポキシ樹脂硬化剤:四国化成工業株式会社製)、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、U-CAT(登録商標)SAシリーズ(DBU塩:サンアプロ株式会社製)、Irgacure(登録商標)184が挙げられる。 (C) Curing accelerators include, for example, phosphine compounds such as triphenylphosphine and tributylphosphine (manufactured by Hokko Chemical Industry Co., Ltd.), Curesol (registered trademark) (imidazole-based epoxy resin curing agent: manufactured by Shikoku Kasei Kogyo Co., Ltd. ), 2-phenyl-4-methyl-5-hydroxymethylimidazole, U-CAT (registered trademark) SA series (DBU salt: manufactured by San-Apro Co., Ltd.), and Irgacure (registered trademark) 184.
 (C)硬化促進剤の使用量としては、使用量があまりに少ないと添加した効果が無く、使用量が多すぎると電気絶縁性が低下するので、(A)カルボキシ基を含有するポリウレタンと(B)エポキシ化合物の合計100質量部に対して好ましくは0.1~10質量部、より好ましくは0.5~6質量部、さらに好ましくは0.5~5質量部、特に好ましくは0.5~3質量部使用される。 (C) As for the amount of curing accelerator used, if the amount used is too small, the effect of the addition will not be obtained, and if the amount used is too large, the electrical insulation will decrease. ) Preferably 0.1 to 10 parts by mass, more preferably 0.5 to 6 parts by mass, still more preferably 0.5 to 5 parts by mass, particularly preferably 0.5 to 100 parts by mass of the total epoxy compound 3 parts by mass are used.
 硬化助剤を併用してもよい。硬化助剤としては、例えば、多官能チオール化合物やオキセタン化合物が挙げられる。多官能チオール化合物としては、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、カレンズ(登録商標)MTシリーズ(昭和電工株式会社製)などが挙げられる。オキセタン化合物としては、アロンオキセタン(登録商標)シリーズ(東亞合成株式会社製)、ETERNACOLL(登録商標)OXBPやOXMA(宇部興産株式会社製)が挙げられる。硬化助剤の使用量は、添加した効果が得られ、かつ硬化速度の過度の上昇を回避しハンドリング性を維持することができるため、(B)エポキシ化合物100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.5~6質量部である。 A curing aid may be used together. Curing aids include, for example, polyfunctional thiol compounds and oxetane compounds. Examples of polyfunctional thiol compounds include pentaerythritol tetrakis (3-mercaptopropionate), tris-[(3-mercaptopropionyloxy)-ethyl]-isocyanurate, trimethylolpropane tris (3-mercaptopropionate), and Karenz. (registered trademark) MT series (manufactured by Showa Denko KK) and the like. Examples of the oxetane compound include Aron Oxetane (registered trademark) series (manufactured by Toagosei Co., Ltd.), ETERNACOLL (registered trademark) OXBP and OXMA (manufactured by Ube Industries, Ltd.). The amount of the curing aid used is preferably 0 per 100 parts by mass of the epoxy compound (B) because the effect of the addition can be obtained and the handling property can be maintained by avoiding an excessive increase in the curing speed. .1 to 10 parts by mass, more preferably 0.5 to 6 parts by mass.
 硬化性樹脂組成物には(D)溶媒を95.0質量%以上99.9質量%以下含むことが好ましく、96質量%以上99.7質量%以下含むことがより好ましく、97質量%以上99.5質量%以下含むことがさらに好ましい。(D)溶媒としては、透明導電膜や透明基材を侵さないものを使用することができる。(A)カルボキシ基を含有するポリウレタンの合成に用いた溶媒をそのまま使用することもできるし、ポリウレタンの溶解性又は印刷性を調整するために他の溶媒を用いることもできる。他の溶媒を用いる場合には、新たな溶媒を添加する前後にカルボキシ基を含有するポリウレタンの合成に用いた溶媒を留去し、溶媒を置換してもよい。操作の煩雑性やエネルギーコストを考えると、(A)カルボキシ基を含有するポリウレタンの合成に用いた溶媒の少なくとも一部をそのまま用いることが好ましい。保護膜用樹脂組成物の安定性を考慮すると、溶媒の沸点は、80℃から300℃であることが好ましく、80℃から250℃であることがより好ましい。溶媒の沸点が80℃以上であると、速乾過ぎることにより生じる塗布ムラを抑制することができる。溶媒の沸点が300℃以下であると、乾燥及び硬化に要する加熱処理時間を短くすることができ、工業生産時の生産性を向上させることができる。 The curable resin composition preferably contains 95.0% by mass or more and 99.9% by mass or less of the solvent (D), more preferably 96% by mass or more and 99.7% by mass or less, and 97% by mass or more and 99% by mass. It is more preferable to contain 0.5% by mass or less. (D) As the solvent, a solvent that does not attack the transparent conductive film or the transparent substrate can be used. (A) The solvent used for synthesizing the carboxy group-containing polyurethane can be used as it is, or other solvents can be used to adjust the solubility or printability of the polyurethane. When another solvent is used, the solvent used for synthesizing the carboxy group-containing polyurethane may be distilled off before and after adding the new solvent to replace the solvent. Considering the complexity of the operation and the energy cost, it is preferable to use at least part of the solvent used for synthesizing the (A) carboxy group-containing polyurethane as it is. Considering the stability of the protective film resin composition, the boiling point of the solvent is preferably 80°C to 300°C, more preferably 80°C to 250°C. If the boiling point of the solvent is 80° C. or higher, it is possible to suppress coating unevenness caused by excessively quick drying. When the boiling point of the solvent is 300° C. or less, the heat treatment time required for drying and curing can be shortened, and productivity during industrial production can be improved.
 溶媒としては、プロピレングリコールモノメチルエ-テルアセテート(沸点146℃)、γ-ブチロラクトン(沸点204℃)、ジエチレングリコールモノエチルエーテルアセテート(沸点218℃)、トリプロピレングリコールジメチルエーテル(沸点243℃)等のポリウレタン合成に用いる溶媒や、プロピレングリコールジメチルエーテル(沸点97℃)、ジエチレングリコールジメチルエーテル(沸点162℃)などのエーテル系の溶媒、イソプロピルアルコール(沸点82℃)、t-ブチルアルコール(沸点82℃)、1-ヘキサノール(沸点157℃)、プロピレングリコールモノメチルエーテル(沸点120℃)、ジエチレングリコールモノメチルエーテル(沸点194℃)、ジエチレングリコールモノエチルエーテル(沸点196℃)、ジエチレングリコールモノブチルエーテル(沸点230℃)、トリエチレングリコール(沸点276℃)、乳酸エチル(沸点154℃)等の水酸基を含む溶媒、メチルエチルケトン(沸点80℃)、酢酸エチル(沸点77℃)を用いることができる。これらの溶媒は、単独で又は2種類以上を混合して用いることができる。2種類以上を混合する場合には、(A)カルボキシ基を含有するポリウレタンの合成に用いた溶媒に加えて、使用するポリウレタン、エポキシ化合物などの溶解性を考慮して、凝集及び沈殿が生じない、ヒドロキシ基を有する沸点が100℃超である溶媒、又はインクの乾燥性の観点から沸点が100℃以下の溶媒を併用することが好ましい。溶媒単独では透明導電膜又は透明基材を侵す溶媒も、他の溶媒との混合溶媒として透明導電膜又は透明樹脂フィルムを侵さない組成とすれば適用できる。 Examples of solvents include propylene glycol monomethyl ether acetate (boiling point 146°C), γ-butyrolactone (boiling point 204°C), diethylene glycol monoethyl ether acetate (boiling point 218°C), and tripropylene glycol dimethyl ether (boiling point 243°C) for polyurethane synthesis. and ether solvents such as propylene glycol dimethyl ether (boiling point 97° C.) and diethylene glycol dimethyl ether (boiling point 162° C.), isopropyl alcohol (boiling point 82° C.), t-butyl alcohol (boiling point 82° C.), 1-hexanol ( boiling point 157°C), propylene glycol monomethyl ether (boiling point 120°C), diethylene glycol monomethyl ether (boiling point 194°C), diethylene glycol monoethyl ether (boiling point 196°C), diethylene glycol monobutyl ether (boiling point 230°C), triethylene glycol (boiling point 276°C) ), a solvent containing a hydroxyl group such as ethyl lactate (boiling point 154° C.), methyl ethyl ketone (boiling point 80° C.), and ethyl acetate (boiling point 77° C.) can be used. These solvents can be used alone or in combination of two or more. When two or more types are mixed, in addition to the solvent used in the synthesis of (A) the carboxyl group-containing polyurethane, the solubility of the polyurethane, epoxy compound, etc. to be used should be taken into consideration so that aggregation and precipitation do not occur. , a solvent having a boiling point of more than 100°C having a hydroxy group, or a solvent having a boiling point of 100°C or less from the viewpoint of the drying property of the ink. Solvents that attack the transparent conductive film or transparent substrate when used alone can be used as a mixed solvent with another solvent so long as they have a composition that does not attack the transparent conductive film or transparent resin film.
 硬化性樹脂組成物は、(A)カルボキシ基を含有するポリウレタンと、(B)エポキシ化合物と、(C)硬化促進剤と、(D)溶媒とを、硬化性樹脂組成物中の(D)溶媒の含有率が95.0質量%以上99.9質量%以下となるように配合し、これらの成分が均一になるように攪拌して製造することができる。 The curable resin composition comprises (A) a polyurethane containing a carboxyl group, (B) an epoxy compound, (C) a curing accelerator, and (D) a solvent, and (D) in the curable resin composition. It can be produced by blending such that the content of the solvent is 95.0% by mass or more and 99.9% by mass or less, and stirring so that these components are uniform.
 硬化性樹脂組成物中の固形分濃度は所望する膜厚や印刷方法によっても異なるが、0.1~10質量%であることが好ましく、0.5質量%~5質量%であることがより好ましい。固形分濃度が0.1~10質量%の範囲であると、硬化性樹脂組成物を透明導電膜上に塗布したときに膜厚が過度に厚くなることがなく、透明導電膜との電気的なコンタクトがとれる状態を保持することができ、かつ保護膜に十分な耐候性及び耐光性を付与することができる。 The solid content concentration in the curable resin composition varies depending on the desired film thickness and printing method, but is preferably 0.1 to 10% by mass, more preferably 0.5% to 5% by mass. preferable. When the solid content concentration is in the range of 0.1 to 10% by mass, the film thickness does not become excessively thick when the curable resin composition is applied on the transparent conductive film, and the electrical connection with the transparent conductive film is maintained. In addition, sufficient weather resistance and light resistance can be imparted to the protective film.
 なお、耐候性及び耐光性の観点から、保護膜(硬化性樹脂組成物中の固形分である(A)カルボキシ基を含有するポリウレタン、(B)エポキシ化合物及び、(C)硬化促進剤における硬化残基)中に含有する下式で定義される芳香環含有化合物の割合は15質量%以下に抑えることが好ましい。ここでいう「(C)硬化促進剤における硬化残基」とは、硬化条件により(C)硬化促進剤の全て又は一部が消失(分解、揮発など)するものがあるので、硬化条件で保護膜中に残留する(C)硬化促進剤を意味する。硬化後の保護膜中に残留する(C)硬化促進剤の量を正確に定量できない場合は、硬化条件による消失はないと仮定した仕込み量をもとに算出し、芳香環含有化合物の割合が15質量%以下となる範囲で(C)硬化促進剤を使用することが好ましい。「芳香環含有化合物」とは、分子内に芳香環を少なくとも1つ有する化合物を意味する。
芳香環含有化合物の割合=[(芳香環含有化合物使用量)/(保護膜の質量((A)カルボキシ基を含有するポリウレタン質量+(B)エポキシ化合物質量+(C)硬化促進剤における硬化残基質量)]×100(%)
In addition, from the viewpoint of weather resistance and light resistance, the protective film (solid content in the curable resin composition (A) a polyurethane containing a carboxy group, (B) an epoxy compound, and (C) curing in a curing accelerator The ratio of the aromatic ring-containing compound defined by the following formula contained in (residue) is preferably suppressed to 15% by mass or less. The term "(C) curing residue in the curing accelerator" used herein means that all or part of the curing accelerator (C) may disappear (decompose, volatilize, etc.) depending on the curing conditions, so it is protected under the curing conditions. It means the (C) curing accelerator remaining in the film. If the amount of (C) curing accelerator remaining in the protective film after curing cannot be accurately quantified, it is calculated based on the charged amount assuming that it does not disappear due to curing conditions, and the ratio of the aromatic ring-containing compound is It is preferable to use (C) the curing accelerator within the range of 15% by mass or less. “Aromatic ring-containing compound” means a compound having at least one aromatic ring in the molecule.
Proportion of aromatic ring-containing compound = [(amount of aromatic ring-containing compound used) / (mass of protective film ((A) mass of polyurethane containing carboxy group + (B) mass of epoxy compound + (C) curing residue in curing accelerator Substrate amount)] × 100 (%)
 保護膜(オーバーコート層4)として成形加工性に優れる熱可塑性樹脂を主成分とする樹脂組成物を使用する場合は、保護膜を構成する樹脂成分の94質量%以上が熱可塑性樹脂に由来することが好ましい。保護膜を構成する樹脂成分の6質量%以下が硬化性樹脂(化合物)に由来してもよい。樹脂組成物中の樹脂成分の硬化性樹脂(化合物)の量が6質量%以下の範囲であれば、3次元成形加工性の顕著な低下を招くことなく、保護膜としての機能を向上させることができるが、樹脂組成物中に硬化性樹脂(化合物)を含まない場合が3次元成形加工性は最も良好である。後述するように、保護膜は樹脂を溶媒に溶解した樹脂組成物を透明導電膜の上に塗布することにより形成することができる。この場合、透明導電層3のバインダー樹脂及び透明樹脂フィルム2を侵すことがなく、かつ透明導電層3上に良好に塗布することが可能な溶媒を含み、透明導電層3上に膜形成が可能な樹脂組成物を用いるのが好ましい。適用できる樹脂組成物としては、例えば、エチルセルロース又は前述の硬化性樹脂組成物中の熱可塑性樹脂成分である(A)カルボキシ基を含有するポリウレタンを主成分として含む樹脂組成物が挙げられる。エチルセルロースを含む樹脂組成物としては、例えばエトセル(登録商標)STD-100(ダウ・ケミカル社製エチルセルロース、重量平均分子量:180,000、分子量分布(Mw/Mn)=3.0[カタログ値])が挙げられる。カルボキシ基を含有するポリウレタンを含む樹脂組成物は、前述の硬化性樹脂組成物中の熱可塑性樹脂成分である(A)カルボキシ基を含有するポリウレタンを主成分(樹脂成分の94質量%以上含有)とするものである以外は、前述の硬化性樹脂組成物と同等である。本明細書において、「保護膜を構成する樹脂成分の94質量%以上が熱可塑性樹脂に由来する」とは、保護膜の形成に使用した熱可塑性樹脂、例えばカルボキシ基を含有するポリウレタンが、保護膜の樹脂成分の94質量%以上に相当し、保護膜の形成に使用した熱硬化性樹脂、例えば一分子中に2個以上のエポキシ基を有するエポキシ樹脂(化合物)、及び硬化促進剤(硬化助剤を含む)が、保護膜の樹脂成分の6質量%以下に相当することを意味する。保護膜を形成する樹脂成分が、カルボキシ基を含有するポリウレタンと一分子中に2個以上のエポキシ基を有するエポキシ樹脂に由来する場合、一分子中に2個以上のエポキシ基を有するエポキシ樹脂(化合物)の含有量が、上記樹脂成分中、0質量%超、6質量%以下であることを意味する。エポキシ樹脂(化合物)とカルボキシ基を含有するポリウレタンとの配合割合は、カルボキシ基を含有するポリウレタンが有するカルボキシ基(COOH)に対するエポキシ樹脂が有するエポキシ基(Ep)のモル比(Ep/COOH)が0超、0.02以下であることが好ましい。 When a resin composition containing a thermoplastic resin having excellent molding processability as a main component is used as the protective film (overcoat layer 4), 94% by mass or more of the resin component constituting the protective film is derived from the thermoplastic resin. is preferred. 6 mass % or less of the resin component constituting the protective film may be derived from the curable resin (compound). If the amount of the curable resin (compound) of the resin component in the resin composition is in the range of 6% by mass or less, the function as a protective film can be improved without significantly deteriorating the three-dimensional moldability. However, three-dimensional moldability is best when the resin composition does not contain a curable resin (compound). As will be described later, the protective film can be formed by applying a resin composition in which a resin is dissolved in a solvent onto the transparent conductive film. In this case, it contains a solvent that does not damage the binder resin of the transparent conductive layer 3 and the transparent resin film 2 and that can be applied well on the transparent conductive layer 3, so that a film can be formed on the transparent conductive layer 3. It is preferable to use a resin composition having a Applicable resin compositions include, for example, ethyl cellulose or a resin composition containing (A) a polyurethane containing a carboxyl group, which is a thermoplastic resin component in the curable resin composition described above, as a main component. Examples of the resin composition containing ethyl cellulose include Ethocel (registered trademark) STD-100 (ethyl cellulose manufactured by Dow Chemical Company, weight average molecular weight: 180,000, molecular weight distribution (Mw/Mn) = 3.0 [catalog value]). is mentioned. A resin composition containing a polyurethane containing a carboxy group is a thermoplastic resin component in the above-mentioned curable resin composition (A) a polyurethane containing a carboxy group as a main component (containing 94% by mass or more of the resin component). It is the same as the curable resin composition described above, except that As used herein, "94% by mass or more of the resin component constituting the protective film is derived from a thermoplastic resin" means that the thermoplastic resin used for forming the protective film, such as a polyurethane containing a carboxyl group, protects The thermosetting resin used to form the protective film, which accounts for 94% by mass or more of the resin component of the film, such as an epoxy resin (compound) having two or more epoxy groups in one molecule, and a curing accelerator (curing (including auxiliaries) corresponds to 6% by mass or less of the resin component of the protective film. When the resin component forming the protective film is derived from a polyurethane containing a carboxyl group and an epoxy resin having two or more epoxy groups in one molecule, an epoxy resin having two or more epoxy groups in one molecule ( compound) is more than 0% by mass and 6% by mass or less in the resin component. The blending ratio of the epoxy resin (compound) and the carboxy group-containing polyurethane is determined by the molar ratio (Ep/COOH) of the epoxy group (Ep) of the epoxy resin to the carboxy group (COOH) of the carboxy group-containing polyurethane. It is preferably more than 0 and 0.02 or less.
 以上に述べた硬化性樹脂組成物または熱可塑性樹脂を主成分とする樹脂組成物を使用し、例えば、バーコート印刷法、グラビア印刷法、インクジェット法、スリットコート法等の印刷により、金属細線を含む透明導電層が形成された基材上に硬化性樹脂組成物または熱可塑性樹脂を主成分とする樹脂組成物を塗布し、溶媒を乾燥及び除去、硬化性樹脂組成物を使用する場合には、その後硬化性樹脂を硬化して保護膜(オーバーコート層4)が形成される。得られる保護膜の厚みは、30nm超1μm以下であることが好ましい。保護膜の厚みは、50nm超500nm以下であることがより好ましく、100nm超200nm以下であることがさらに好ましい。保護膜の厚みが1μm以下であると、後工程での配線との導通が容易となる。保護膜の厚みが30nm超であると、透明導電層を保護する効果が十分発揮される。なお、保護膜(オーバーコート層4)の厚さは、おおむね1μm以下であり、透明導電フィルム、キャリアフィルムの厚さに比較して小さいので、カール性への影響は極めて小さい。 Using the above-described curable resin composition or resin composition containing a thermoplastic resin as a main component, for example, by printing such as bar coat printing method, gravure printing method, ink jet method, slit coating method, etc., thin metal wires are formed. A curable resin composition or a resin composition containing a thermoplastic resin as a main component is applied on a substrate on which a transparent conductive layer is formed, and the solvent is dried and removed. Then, the curable resin is cured to form a protective film (overcoat layer 4). The thickness of the resulting protective film is preferably more than 30 nm and 1 μm or less. More preferably, the thickness of the protective film is more than 50 nm and 500 nm or less, and more preferably more than 100 nm and 200 nm or less. When the thickness of the protective film is 1 μm or less, it becomes easy to conduct with the wiring in the post-process. When the thickness of the protective film is more than 30 nm, the effect of protecting the transparent conductive layer is sufficiently exhibited. The thickness of the protective film (overcoat layer 4) is approximately 1 μm or less, which is smaller than the thicknesses of the transparent conductive film and the carrier film, so that the effect on the curling property is extremely small.
<キャリアフィルム1>
 キャリアフィルム1は、一方の主面のみが粘着性を有する。このキャリアフィルム1は、剥離可能に積層された透明導電フィルム10又は20とともに透明導電フィルム積層体を形成する。キャリアフィルム1は、ベースフィルムとなるポリオレフィンフィルムの片面にポリオレフィン系樹脂の粘着剤層を設けたものでもよく、粘着性を有するポリオレフィンフィルムと粘着性のないポリオレフィンフィルムの積層体であってもよい。
<Carrier film 1>
Only one main surface of the carrier film 1 has adhesiveness. This carrier film 1 forms a transparent conductive film laminate together with the transparent conductive film 10 or 20 laminated so as to be peelable. The carrier film 1 may be a polyolefin film as a base film with an adhesive layer of polyolefin resin on one side, or may be a laminate of a polyolefin film having adhesiveness and a polyolefin film having no adhesiveness.
 キャリアフィルム1には、ポリオレフィンフィルムが用いられる。ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、又はこれらの混合物が挙げられる。 A polyolefin film is used for the carrier film 1. Polyolefins include, for example, polyethylene, polypropylene, or mixtures thereof.
 ここで、ポリエチレンには、エチレンのホモポリマー及びエチレンと他のオレフィンとの共重合体が含まれる。また、ポリプロピレンにはプロピレンのホモポリマー及びプロピレンと他のオレフィンとの共重合体が含まれる。 Here, polyethylene includes homopolymers of ethylene and copolymers of ethylene and other olefins. Polypropylene also includes homopolymers of propylene and copolymers of propylene with other olefins.
 上記他のオレフィンとしては、例えば、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、ヘプテン、オクテン、ノネン、デセンなどが挙げられる。これらの中でも、エチレン、プロピレン、ブテンが好ましい。 Examples of the other olefins include ethylene, propylene, butene, pentene, hexene, heptene, octene, nonene, and decene. Among these, ethylene, propylene and butene are preferred.
 上記のエチレン又はプロピレンと他のオレフィンとの共重合体における他のオレフィンの配合割合は、単量体としてのエチレン又はプロピレンと他のオレフィンとの合計質量に基づいて、40質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下が特に好ましい。 The blending ratio of the other olefin in the copolymer of ethylene or propylene and the other olefin is preferably 40% by mass or less based on the total mass of ethylene or propylene as a monomer and the other olefin, 30% by mass or less is more preferable, and 20% by mass or less is particularly preferable.
 上記ポリエチレンとしては、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、線状低密度ポリエチレン(L-LDPE)が挙げられる。 Examples of the polyethylene include high-density polyethylene (HDPE), low-density polyethylene (LDPE), and linear low-density polyethylene (L-LDPE).
 ポリオレフィンフィルムは、少なくともポリプロピレンを含むことが好ましい。具体的には、プロピレンのホモポリマー及びプロピレンと他のオレフィンとの共重合体からなる群から選択される少なくとも1種を含むことが好ましい。 The polyolefin film preferably contains at least polypropylene. Specifically, it preferably contains at least one selected from the group consisting of propylene homopolymers and copolymers of propylene and other olefins.
 プロピレンと他のオレフィンとの共重合体としては、例えば、プロピレンとエチレンとの共重合体、プロピレンとブテンとの共重合体、プロピレンとエチレンとブテンとの共重合体が挙げられる。これらの共重合体はランダム共重合体であってもよいし、ブロック共重合体であってもよい。上記共重合体における他のオレフィンの配合割合は、単量体としてのプロピレンと他のオレフィンとの合計質量に基づいて、40質量%以下が好ましく、30質量%以下が好ましく、20質量%以下が特に好ましい。 Examples of copolymers of propylene and other olefins include copolymers of propylene and ethylene, copolymers of propylene and butene, and copolymers of propylene, ethylene and butene. These copolymers may be random copolymers or block copolymers. The blending ratio of other olefins in the copolymer is preferably 40% by mass or less, preferably 30% by mass or less, and 20% by mass or less, based on the total mass of propylene as a monomer and other olefins. Especially preferred.
 また、ポリオレフィンフィルムは、ポリプロピレンとポリエチレンとの混合物を含むことができる。ポリプロピレンとポリエチレンとの混合物におけるポリプロピレンの含有割合は、ポリプロピレンとポリエチレンの合計質量に基づいて、60質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が特に好ましい。上記含有割合は97質量%以下が好ましい。 Also, the polyolefin film can contain a mixture of polypropylene and polyethylene. The content of polypropylene in the mixture of polypropylene and polyethylene is preferably 60% by mass or more, more preferably 70% by mass or more, and particularly preferably 80% by mass or more, based on the total mass of polypropylene and polyethylene. The content ratio is preferably 97% by mass or less.
 また、ポリプロピレンとポリエチレンとの混合物におけるポリエチレンの含有割合は、ポリプロピレンとポリエチレンの合計質量に基づいて、40質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下が特に好ましい。上記含有割合は3質量%以上が好ましい。 Also, the content of polyethylene in the mixture of polypropylene and polyethylene is preferably 40% by mass or less, more preferably 30% by mass or less, and particularly preferably 20% by mass or less, based on the total mass of polypropylene and polyethylene. The content ratio is preferably 3% by mass or more.
 本実施形態におけるポリオレフィンフィルムは、上記ポリオレフィン以外に、オレフィンと、上記他のオレフィン以外のビニル基を有する化合物の共重合体を含む混合物であってもよい。他のオレフィン以外のビニル基を有する化合物としては、炭素原子及び水素原子以外の原子(例えば酸素原子、窒素原子等)を置換基に含む化合物(例えば、酢酸ビニル)や置換基に環状(芳香環、脂環)構造を有する化合物(例えば、スチレン、水添スチレン)が挙げられる。 The polyolefin film in the present embodiment may be a mixture containing, in addition to the above polyolefin, a copolymer of an olefin and a compound having a vinyl group other than the above olefin. As other compounds having a vinyl group other than olefins, compounds containing atoms other than carbon atoms and hydrogen atoms (e.g., oxygen atoms, nitrogen atoms, etc.) as substituents (e.g., vinyl acetate) and cyclic (aromatic ring , alicyclic) structure (eg, styrene, hydrogenated styrene).
 また、キャリアフィルム1として、ポリオレフィン樹脂にオレフィン系エラストマーを混合したものを用いると、粘着力をより高めることができる。 In addition, if a mixture of polyolefin resin and olefinic elastomer is used as the carrier film 1, the adhesive force can be further increased.
 本実施形態におけるポリオレフィンフィルムは、ポリオレフィンの単層構成であってもよいし、ポリオレフィンの多層積層構成であってもよい。多層積層構成の場合は、各層はいずれも上記ポリオレフィンより構成されるが、組成は同一であってもよいし、異なっていてもよい。 The polyolefin film in this embodiment may have a polyolefin single-layer structure or may have a multi-layer polyolefin structure. In the case of a multi-layered structure, each layer is composed of the above polyolefin, and the composition may be the same or different.
 多層積層構成としては、例えば、A層/B層の2層積層構成、A層/B層/A層あるいはA層/B層/C層の3層積層構成が挙げられる。ここで、A層、B層及びC層は、それぞれ組成が異なることを意味する。 Examples of the multilayer lamination structure include a two-layer lamination structure of A layer/B layer, a three-layer lamination structure of A layer/B layer/A layer or A layer/B layer/C layer. Here, the A layer, the B layer, and the C layer mean different compositions.
 キャリアフィルムを多層積層構成とすると、ロールで巻いたときのブロッキングを抑制しやすくなる。一方の主面(A層)に粘着性の高い層(例えば、オレフィン系エラストマーを含む層など)や表面平滑性が高い層を用い、もう一方の主面(2層積層構成の場合はB層、3層積層構成の場合はC層)に粘着性の低い層(例えば、オレフィン系エラストマーを含まない層など)や表面平滑性が低い層を用いることで、ロールで巻いたときのブロッキングを抑制しやすくなる。 When the carrier film has a multi-layered structure, it becomes easier to suppress blocking when it is wound with a roll. A layer with high adhesion (e.g., a layer containing an olefin elastomer) or a layer with high surface smoothness is used on one main surface (layer A), and the other main surface (layer B in the case of a two-layer laminate structure) By using a layer with low adhesion (e.g., a layer that does not contain an olefin elastomer) or a layer with low surface smoothness for the layer C in the case of a three-layer laminate structure, blocking when wound with a roll is suppressed. easier to do.
 ポリオレフィンフィルムは一般に市販されているものを用いることができる。例えば、東レフィルム加工株式会社製のトレテック(登録商標)シリーズ、フタムラ化学株式会社製のFSA(登録商標)シリーズ、株式会社サンエー化研製のサニテクト(登録商標)のPACタイプが挙げられる。 A commercially available polyolefin film can be used. For example, Toraytec (registered trademark) series manufactured by Toray Advanced Film Co., Ltd., FSA (registered trademark) series manufactured by Futamura Chemical Co., Ltd., and SANITECT (registered trademark) PAC type manufactured by Sanei Kaken Co., Ltd. can be mentioned.
 具体的な型番としては、例えば、トレテックN711、トレテックA521、FSA010M、FSA020M、FSA030M、PAC-3-70が挙げられる。 Specific model numbers include, for example, Tretec N711, Tretec A521, FSA010M, FSA020M, FSA030M, and PAC-3-70.
 キャリアフィルム1の厚みTcは、透明樹脂フィルム2の厚みTsの0.2倍以上0.8倍以下、すなわち、0.2≦Tc/Ts≦0.8であり、好ましくは0.2≦Tc/Ts≦0.6である。この範囲であると、透明導電フィルム積層体が加熱された際に発生するカールを小さくすることができ、放冷後のカールも比較的小さく、キャリアフィルムを貼り替えてフラットに戻すことが容易となり、透明導電フィルム積層体の製造時及び透明導電フィルム積層体を用いた後工程での製造上の不具合を発生することがない。作業性及び入手がしやすいことから、キャリアフィルム1の厚みTcは25μm以上であることが好ましい。 The thickness Tc of the carrier film 1 is 0.2 times or more and 0.8 times or less the thickness Ts of the transparent resin film 2, that is, 0.2≦Tc/Ts≦0.8, preferably 0.2≦Tc. /Ts≦0.6. Within this range, the curl generated when the transparent conductive film laminate is heated can be reduced, the curl after standing to cool is relatively small, and the carrier film can be replaced and flattened easily. , there is no problem in manufacturing during the production of the transparent conductive film laminate and in the post-process using the transparent conductive film laminate. The thickness Tc of the carrier film 1 is preferably 25 μm or more in terms of workability and availability.
<透明導電フィルム積層体>
 透明導電フィルム積層体は、透明導電フィルム10又は20と、透明導電フィルム10又は20に積層されたキャリアフィルム1と、を含む透明導電フィルム積層体であって、キャリアフィルム1は、一方の主面のみが粘着性を有する。透明導電フィルム10では、透明樹脂フィルム2の一方の主面に、透明導電フィルム20では、透明樹脂フィルム2の両方の主面に、金属細線を含む透明導電層3と、オーバーコート層4と、がこの順序に積層されて構成されており、キャリアフィルム1は、透明導電フィルム10では、透明導電フィルム10の透明樹脂フィルム2に、また、透明導電フィルム20では、透明導電フィルム20の一方のオーバーコート層4に、その粘着性を有する一方の主面が剥離可能に積層されている(図1、図2)。一実施態様では、透明樹脂フィルム2と透明導電層3とは隣接しており、透明導電層3とオーバーコート層4とは隣接している。
<Transparent conductive film laminate>
The transparent conductive film laminate is a transparent conductive film laminate including a transparent conductive film 10 or 20 and a carrier film 1 laminated on the transparent conductive film 10 or 20. The carrier film 1 has one main surface only has stickiness. In the transparent conductive film 10, on one main surface of the transparent resin film 2, in the transparent conductive film 20, on both main surfaces of the transparent resin film 2, a transparent conductive layer 3 containing fine metal wires, an overcoat layer 4, are laminated in this order. One main surface having adhesiveness is detachably laminated to the coat layer 4 (FIGS. 1 and 2). In one embodiment, the transparent resin film 2 and the transparent conductive layer 3 are adjacent, and the transparent conductive layer 3 and the overcoat layer 4 are adjacent.
 前述の構成である透明導電フィルム積層体を10cm×10cmの大きさにカットし、80℃で30分間加熱した直後のカール値は0~5mmであり、30分放冷後のカール値は0~20mmであることが好ましい。これにより、乾燥等の加熱工程中及び加熱工程後におけるカールの発生量や向きが制御できるため、透明導電フィルム積層体の搬送が容易となる。 The transparent conductive film laminate having the above structure was cut into a size of 10 cm × 10 cm, and the curl value immediately after heating at 80 ° C. for 30 minutes was 0 to 5 mm, and the curl value after standing to cool for 30 minutes was 0 to 0. 20 mm is preferred. This makes it possible to control the amount and direction of curling during and after the heating process such as drying, so that the transparent conductive film laminate can be easily transported.
<透明導電フィルム積層体の製造方法>
 第一の実施形態にかかる透明導電フィルム積層体(図1)の製造方法は、透明樹脂フィルム2の一方の主面上にキャリアフィルム1を積層する工程と、透明樹脂フィルム2のキャリアフィルム1が積層されている側とは反対(他方)側の主面上に透明導電層3とオーバーコート層4とをこの順序で形成する工程と、を含む。
<Method for producing transparent conductive film laminate>
The method for manufacturing the transparent conductive film laminate (FIG. 1) according to the first embodiment comprises the steps of: laminating a carrier film 1 on one main surface of a transparent resin film 2; and forming a transparent conductive layer 3 and an overcoat layer 4 in this order on the main surface opposite (the other side) to the laminated side.
 第二の実施形態にかかる透明導電フィルム積層体(図2)の製造方法は、第一のキャリアフィルム1が剥離可能に積層された透明樹脂フィルム2の、上記キャリアフィルム1が積層されている側とは反対(他方)側の主面上に透明導電層3とオーバーコート層4とをこの順序で形成する工程と、オーバーコート層4に第二のキャリアフィルム1を剥離可能に積層する工程と、透明樹脂フィルム2に積層された第一のキャリアフィルム1を剥離する工程と、透明樹脂フィルム2の、透明導電層3が積層された主面とは反対(他方)側の主面上に透明導電層3とオーバーコート層4をこの順序で形成する工程と、を含む。 In the method for manufacturing a transparent conductive film laminate (FIG. 2) according to the second embodiment, the transparent resin film 2 on which the first carrier film 1 is detachably laminated is placed on the side on which the carrier film 1 is laminated. A step of forming a transparent conductive layer 3 and an overcoat layer 4 in this order on the main surface opposite to (the other) side, and a step of detachably laminating the second carrier film 1 on the overcoat layer 4. a step of peeling off the first carrier film 1 laminated on the transparent resin film 2; and forming the conductive layer 3 and the overcoat layer 4 in this order.
 図3(a)~(d)には、第一の実施形態にかかる透明導電フィルム積層体の製造方法の工程図が示され、図4(a)~(d)には、第一の実施形態にかかる透明導電フィルム積層体の製造方法の変形例の工程図が示される。 FIGS. 3A to 3D show process diagrams of the method for manufacturing the transparent conductive film laminate according to the first embodiment, and FIGS. 4A to 4D show the first embodiment. Process drawing of the modification of the manufacturing method of the transparent conductive film laminated body concerning a form is shown.
 透明導電フィルム積層体は、図3(a)~(d)に示されるように、キャリアフィルム1の粘着性を有する方の主面上に透明樹脂フィルム2が剥離可能に積層された透明樹脂フィルム積層体を形成し(図3(a)、(b))、透明樹脂フィルム2のキャリアフィルム1が積層された主面とは反対(他方)側の主面上に透明導電層3を形成し(図3(c))、次いで透明導電層3上にオーバーコート層4を形成する(図3(d))工程で製造できる。一実施態様では、透明樹脂フィルム2と透明導電層3とは隣接しており、透明導電層3とオーバーコート層4とは隣接している。 As shown in FIGS. 3(a) to 3(d), the transparent conductive film laminate is a transparent resin film in which a transparent resin film 2 is detachably laminated on the main surface of a carrier film 1 having adhesiveness. A laminate is formed (FIGS. 3(a) and 3(b)), and a transparent conductive layer 3 is formed on the main surface of the transparent resin film 2 opposite (the other side) to the main surface on which the carrier film 1 is laminated. (FIG. 3(c)) and then forming an overcoat layer 4 on the transparent conductive layer 3 (FIG. 3(d)). In one embodiment, the transparent resin film 2 and the transparent conductive layer 3 are adjacent, and the transparent conductive layer 3 and the overcoat layer 4 are adjacent.
 また、透明導電フィルム積層体は、図4(a)~(d)に示される変形例のように、透明導電フィルム10を準備したのち、透明導電フィルム10とキャリアフィルム1の粘着性を有する方の主面を貼合する工程でも製造できる。透明導電フィルム10を準備する工程は、図4(a)~(c)に示されるように、透明樹脂フィルム2の一方の主面上に、透明導電層3を形成し(図4(a)、(b))、次いで透明導電層3上にオーバーコート層4を形成する(図4(c))工程である。次に、図4(d)に示されるように、透明樹脂フィルム2の透明導電層3が積層されている側とは反対(他方)側の主面とキャリアフィルム1の粘着性を有する方の主面とを剥離可能に貼合する工程が実施され、透明導電フィルム積層体が製造される。 4(a) to 4(d), after preparing the transparent conductive film 10, the transparent conductive film laminate has adhesiveness between the transparent conductive film 10 and the carrier film 1. It can also be manufactured by a process of laminating the main surfaces of. As shown in FIGS. 4A to 4C, the step of preparing the transparent conductive film 10 is to form a transparent conductive layer 3 on one main surface of the transparent resin film 2 (FIG. 4A). , (b)), and then an overcoat layer 4 is formed on the transparent conductive layer 3 (FIG. 4(c)). Next, as shown in FIG. 4( d ), the main surface of the transparent resin film 2 on the opposite side (the other side) to the side where the transparent conductive layer 3 is laminated and the adhesive side of the carrier film 1 are separated. A step of releasably laminating the main surface is carried out to manufacture a transparent conductive film laminate.
 図5(a)~(i)には、第二の実施形態にかかる透明導電フィルム積層体の製造方法の工程図が示され、図6(a)~(g)には、第二の実施形態にかかる透明導電フィルム積層体の製造方法の変形例の工程図が示される。 FIGS. 5A to 5I show process diagrams of the method for manufacturing a transparent conductive film laminate according to the second embodiment, and FIGS. 6A to 6G show the second embodiment. Process drawing of the modification of the manufacturing method of the transparent conductive film laminated body concerning a form is shown.
 透明導電フィルム積層体は、図5(a)~(i)に示されるように、第一のキャリアフィルム1Aが剥離可能に積層された透明樹脂フィルム2の、上記第一のキャリアフィルム1Aが積層されている側とは反対(他方)側の主面上に透明導電層3とオーバーコート層4を順次形成した(図5(a)~(d))のち、オーバーコート層4に第二のキャリアフィルム1Bを剥離可能に積層し(図5(e))、次に透明樹脂フィルム2に積層された第一のキャリアフィルム1Aを剥離し(図5(f)、(g)、図5(f)は図5(e)を上下反転させている)、透明樹脂フィルム2の、透明導電層3が積層された主面とは反対(他方)側の主面上に透明導電層3、オーバーコート層4を順次形成する(図5(h)、(i))工程で製造できる。一実施態様では、透明樹脂フィルム2と、その両主面にそれぞれ形成された2つの透明導電層3、3と、は隣接しており、2つの透明導電層3、3と、透明樹脂フィルム2が積層されている側とは反対(他方)側の、2つの透明導電層3、3の主面にそれぞれ形成されたオーバーコート層4、4と、は隣接している。 As shown in FIGS. 5(a) to 5(i), the transparent conductive film laminate is laminated with the first carrier film 1A of the transparent resin film 2 in which the first carrier film 1A is detachably laminated. A transparent conductive layer 3 and an overcoat layer 4 were sequentially formed on the main surface opposite (the other side) to the side where the layer is formed (FIGS. 5(a) to 5(d)). The carrier film 1B is detachably laminated (FIG. 5(e)), and then the first carrier film 1A laminated on the transparent resin film 2 is detached (FIGS. 5(f), (g), FIG. 5 ( Fig. 5(e) is flipped upside down), and the transparent conductive layer 3 is placed on the main surface of the transparent resin film 2 opposite (the other side) to the main surface on which the transparent conductive layer 3 is laminated. It can be manufactured by the step of sequentially forming the coat layer 4 (FIGS. 5(h) and (i)). In one embodiment, the transparent resin film 2 and the two transparent conductive layers 3, 3 respectively formed on both main surfaces thereof are adjacent to each other, and the two transparent conductive layers 3, 3 and the transparent resin film 2 The overcoat layers 4, 4 respectively formed on the main surfaces of the two transparent conductive layers 3, 3 on the side opposite to (the other side of) the side on which the is laminated are adjacent to each other.
 また、透明導電フィルム積層体は、図6(a)~(g)に示される変形例のように、透明導電フィルム20を準備したのち、透明導電フィルム20とキャリアフィルム1を剥離可能に積層する工程でも製造できる。透明導電フィルム20を準備する工程は、図6(a)~(f)に示されるように、透明樹脂フィルム2の一方の主面上に透明導電層3とオーバーコート層4を順次形成し(図6(a)~(c))、続いて、透明樹脂フィルム2のもう一方(他方)の主面上に透明導電層3とオーバーコート層4を順次形成する(図6(d)~(f))工程である。次に、図6(g)に示されるように、透明導電フィルム20の一方のオーバーコート層4の表面にキャリアフィルム1を剥離可能に積層する工程が実施され、透明導電フィルム積層体が製造される。 6(a) to 6(g), the transparent conductive film laminate is obtained by preparing the transparent conductive film 20 and then laminating the transparent conductive film 20 and the carrier film 1 in a detachable manner. It can also be manufactured in a process. The step of preparing the transparent conductive film 20 includes sequentially forming the transparent conductive layer 3 and the overcoat layer 4 on one main surface of the transparent resin film 2, as shown in FIGS. 6(a)-(c)), then the transparent conductive layer 3 and the overcoat layer 4 are sequentially formed on the other main surface of the transparent resin film 2 (FIGS. 6(d)-(c)). f)). Next, as shown in FIG. 6(g), a step of detachably laminating the carrier film 1 on the surface of the overcoat layer 4 on one side of the transparent conductive film 20 is carried out to produce a transparent conductive film laminate. be.
 以下、本発明の実施例を具体的に説明する。なお、以下の実施例は、本発明の理解を容易にするためのものであり、本発明はこれらの実施例に制限されるものではない。 Examples of the present invention will be specifically described below. The following examples are intended to facilitate understanding of the present invention, and the present invention is not limited to these examples.
<ポリオレフィンフィルムのDSC測定>
 実施例で使用したキャリアフィルムとしてのポリオレフィンフィルムが結晶性を有する(融解に対応する吸発熱ピークを有する)ことと、ガラス転移温度を確認するため、JIS K7121 プラスチックの転移温度測定方法に準拠してDSC測定を実施した。
・実験条件
使用機器:メトラー・トレド株式会社製DSC1(HSS8)
リファレンス:空容器
キャリアガス:窒素
キャリアガス流量:30mL/min
温度条件:-80℃~170℃(PP製キャリアフィルムのFSA010M測定時のみ、-80℃~200℃の範囲で測定した)
昇温・降温速度:10℃/min
使用容器:T-zero Pan(ティー・エイ・インスツルメント・ジャパン株式会社製)
サンプリング方法:各ポリオレフィンフィルムについて、厚さが概ね200μmになる枚数のシートを重ね、4.5Φの穴あけポンチで打ち抜いたものを容器に入れた。
・測定結果
1)トレテック(登録商標)A521:ガラス転移温度46℃、融解ピーク温度(融点)129℃
2)トレテック(登録商標)N711:ガラス転移温度47℃、融解ピーク温度(融点)129℃
3)FSA(登録商標)010M:ガラス転移温度49℃、融解ピーク温度(融点)163℃
4)PAC(登録商標)-3-70:ガラス転移温度47℃、融解ピーク温度(融点)108℃
5)PAC(登録商標)-3-50THK:ガラス転移温度45℃、融解ピーク温度(融点)115℃
ガラス転移温度は、中間点ガラス転移温度を求めた。
<DSC measurement of polyolefin film>
In order to confirm that the polyolefin film as the carrier film used in the examples has crystallinity (has an endothermic peak corresponding to melting) and the glass transition temperature, it was measured according to JIS K7121 Plastic transition temperature measurement method. DSC measurements were performed.
・Experimental conditions Equipment used: DSC1 (HSS8) manufactured by Mettler-Toledo Co., Ltd.
Reference: Empty container Carrier gas: Nitrogen Carrier gas flow rate: 30 mL/min
Temperature conditions: -80°C to 170°C (measured in the range of -80°C to 200°C only when measuring FSA010M of a PP carrier film)
Temperature rising/falling rate: 10°C/min
Container used: T-zero Pan (manufactured by TA Instruments Japan Co., Ltd.)
Sampling method: For each polyolefin film, a number of sheets having a thickness of approximately 200 μm were superimposed and punched out with a hole punch of 4.5Φ and placed in a container.
・Measurement results 1) Tretec (registered trademark) A521: glass transition temperature 46 ° C., melting peak temperature (melting point) 129 ° C.
2) Tretec (registered trademark) N711: glass transition temperature 47°C, melting peak temperature (melting point) 129°C
3) FSA (registered trademark) 010M: glass transition temperature 49°C, melting peak temperature (melting point) 163°C
4) PAC (registered trademark)-3-70: glass transition temperature 47°C, melting peak temperature (melting point) 108°C
5) PAC (registered trademark)-3-50THK: glass transition temperature 45°C, melting peak temperature (melting point) 115°C
As for the glass transition temperature, the midpoint glass transition temperature was determined.
<樹脂フィルムのヤング率測定>
 ポリオレフィンフィルムが非晶性シクロオレフィンポリマーフィルムより可撓性が高く、PETフィルムが非晶性シクロオレフィンポリマーフィルムより可撓性が低いことを確認するため、ヤング率(縦弾性係数)を、精密万能試験機を用いて測定した。実験条件及びヤング率の算出方法は、JIS K7161を参考に設定した。透明導電フィルムの製造条件と一致するように、80℃加熱下で測定を行ったが、ポリエチレンフィルムを80℃加熱下で測定すると、可撓性が低くなりすぎてヤング率を算出することができなかった。このため、ポリエチレンフィルムについては、室温(25℃)下で実験を行った。
<Young's modulus measurement of resin film>
To confirm that the polyolefin film is more flexible than the amorphous cycloolefin polymer film and the PET film is less flexible than the amorphous cycloolefin polymer film, the Young's modulus (modulus of longitudinal elasticity) was measured using a precision universal It was measured using a testing machine. The experimental conditions and Young's modulus calculation method were set with reference to JIS K7161. The measurement was performed under heating at 80°C so as to match the manufacturing conditions of the transparent conductive film, but when the polyethylene film was measured under heating at 80°C, the flexibility became too low and the Young's modulus could not be calculated. I didn't. Therefore, the polyethylene film was tested at room temperature (25° C.).
(1)実験条件
・試験片作製方法:測定対象の樹脂フィルムロールから、160mm×30mm大の長方形を、試験片の長手方向(160mm)と樹脂フィルムロールのMD方向が一致するように切り出した。
・使用機器:精密万能試験機AG-X及び恒温槽TCR1A(いずれも島津製作所製)
・温度条件:80℃又は室温(25℃)
・延伸条件:0%~5%ひずみ
・延伸速度:1mm/min
・掴み治具間の距離:100mm
・試験片の設置方法:160mm長さの試験片の、上部約30mmを上側掴み治具で固定し、試験片がたるまないように注意しながら、試験片の下部約30mmを下側掴み治具で固定した。
・測定数:N=3
(1) Experimental conditions and test piece preparation method: A 160 mm x 30 mm rectangle was cut out from the resin film roll to be measured so that the longitudinal direction (160 mm) of the test piece coincided with the MD direction of the resin film roll.
・Equipment used: Precision universal testing machine AG-X and constant temperature bath TCR1A (both manufactured by Shimadzu Corporation)
・Temperature conditions: 80°C or room temperature (25°C)
・ Stretching conditions: 0% to 5% strain ・ Stretching speed: 1 mm / min
・Distance between gripping jigs: 100mm
・How to install the test piece: Fix the upper part of about 30 mm of the test piece with a length of 160 mm with the upper gripping jig, and be careful not to sag the test piece, and lower the lower part of about 30 mm with the lower gripping jig. fixed with .
・ Number of measurements: N = 3
(2)ヤング率の算出方法
 上記手法で得られたひずみ-試験力(単位:ニュートン)曲線と試験片の断面積(フィルム厚み×フィルム幅30mm)から、ひずみ-応力(単位;メガパスカル)曲線(S-Sカーブ)を得た。応力が加わり始めた点を0%ひずみとし、0.05%ひずみ(ε)を加えたときの応力(σ)と、0.25%ひずみ(ε)を加えたときの応力(σ)から、以下の式に基づいてヤング率(E)を算出した。
 E=(σ-σ)/(ε-ε
 N=3で得た結果の平均値を、その樹脂フィルムのヤング率とした。
(2) Calculation method of Young's modulus Strain-stress (unit: megapascal) curve obtained from the strain-test force (unit: Newton) curve obtained by the above method and the cross-sectional area of the test piece (film thickness × film width 30 mm) (SS curve) was obtained. The point where the stress starts to be applied is set to 0% strain, the stress (σ 1 ) when 0.05% strain ( ε 1 ) is applied, and the stress (σ 2 ), the Young's modulus (E) was calculated based on the following formula.
E=(σ 2 −σ 1 )/(ε 2 −ε 1 )
The average value of the results obtained with N=3 was taken as the Young's modulus of the resin film.
(3)実験結果
 表1に示す通り、ポリオレフィンフィルムのヤング率は非晶性シクロオレフィンポリマーフィルムのヤング率より小さい。すなわち、ポリオレフィンフィルムは非晶性シクロオレフィンポリマーフィルムより可撓性が高く、柔軟であることが示された。一方、PETフィルムのヤング率は非晶性シクロオレフィンポリマーフィルムのヤング率より大きい。すなわち、PETフィルムは非晶性シクロオレフィンポリマーフィルムより可撓性が低く、剛直なことが示された。
Figure JPOXMLDOC01-appb-T000002
(3) Experimental Results As shown in Table 1, the Young's modulus of the polyolefin film is smaller than that of the amorphous cycloolefin polymer film. That is, the polyolefin film was shown to be more flexible and softer than the amorphous cycloolefin polymer film. On the other hand, the Young's modulus of the PET film is greater than that of the amorphous cycloolefin polymer film. That is, it was shown that the PET film is less flexible and stiffer than the amorphous cycloolefin polymer film.
Figure JPOXMLDOC01-appb-T000002
<銀ナノワイヤの合成>
 200mLガラス容器にプロピレングリコール100g(富士フイルム和光純薬株式会社製)を秤量し、金属塩として硝酸銀2.3g(13mmol)(東洋化学工業株式会社製)を加えて室温で2時間撹拌することで硝酸銀溶液(第二溶液)を調製した。
<Synthesis of silver nanowires>
100 g of propylene glycol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was weighed into a 200 mL glass container, 2.3 g (13 mmol) of silver nitrate (manufactured by Toyo Kagaku Kogyo Co., Ltd.) was added as a metal salt, and the mixture was stirred at room temperature for 2 hours. A silver nitrate solution (second solution) was prepared.
 1L四つ口フラスコ(メカニカルスターラー、滴下漏斗、還流管、温度計、窒素ガス導入管)に、窒素ガス雰囲気下、プロピレングリコール600g、イオン性誘導体としての塩化テトラエチルアンモニウム0.052g(0.32mmol)(ライオン・スペシャリティ・ケミカルズ株式会社製)及び臭化ナトリウム0.008g(0.08mmol)(マナック株式会社製)、構造規定剤としてポリビニルピロリドンK-90(PVP)7.2g(富士フイルム和光純薬株式会社製、重量平均分子量35万)を仕込み、200rpmの回転数で150℃にて1時間撹拌することで完全に溶解させ、第一溶液を得た。先に調製した硝酸銀溶液(第二溶液)を滴下漏斗に入れ、上記第一溶液の温度150℃にて2.5時間かけて滴下(硝酸銀の供給モル数が0.087mmol/min)することで銀ナノワイヤを合成した。滴下終了後さらに1時間加熱撹拌を継続し反応を完結させた。 600 g of propylene glycol and 0.052 g (0.32 mmol) of tetraethylammonium chloride as an ionic derivative were placed in a 1 L four-necked flask (mechanical stirrer, dropping funnel, reflux tube, thermometer, nitrogen gas inlet tube) under a nitrogen gas atmosphere. (manufactured by Lion Specialty Chemicals Co., Ltd.) and 0.008 g (0.08 mmol) of sodium bromide (manufactured by Manac Co., Ltd.), and 7.2 g of polyvinylpyrrolidone K-90 (PVP) as a structure-directing agent (Fujifilm Wako Pure Chemical Industries, Ltd.) Co., Ltd., weight average molecular weight 350,000) was charged and stirred at 200 rpm at 150° C. for 1 hour to completely dissolve, thereby obtaining a first solution. The previously prepared silver nitrate solution (second solution) was placed in a dropping funnel and added dropwise over 2.5 hours at a temperature of 150° C. to the first solution (the number of moles of silver nitrate supplied was 0.087 mmol/min). Synthesized silver nanowires. After completion of the dropwise addition, heating and stirring was continued for an additional hour to complete the reaction.
<銀ナノワイヤ分散液のクロスフローろ過>
 得られた銀ナノワイヤ粗分散液を水2000mlに分散させ、卓上小型試験機(日本ガイシ株式会社製、セラミック膜フィルター セフィルト使用、膜面積0.24m、孔径2.0μm、寸法Φ30mm×250mm、ろ過差圧0.01MPa)に流し入れ、循環流速12L/min、分散液温度25℃にてクロスフロー濾過を実施し不純物を除去し、銀ナノワイヤ(平均直径:26nm、平均長さ:20μm)を得た。クロスフローろ過しながらエタノール置換を行い、最終的に水/エタノール混合溶媒の分散液(銀ナノワイヤ濃度3質量%、水/エタノール=41/56[質量比])を得た。得られた銀ナノワイヤの平均径の算出には、電界放出形走査電子顕微鏡JSM-7000F(日本電子株式会社製)を用い、任意に選択した100本の銀ナノワイヤ寸法(径)を測定し、その算術平均値を求めた。また、得られた銀ナノワイヤの平均長さの算出には、形状測定レーザマイクロスコープVK-X200(キーエンス株式会社製)を用い、任意に選択した100本の銀ナノワイヤ寸法(長さ)を測定し、その算術平均値を求めた。
<Cross-flow filtration of silver nanowire dispersion>
The obtained silver nanowire coarse dispersion was dispersed in 2000 ml of water, and a desktop small tester (manufactured by NGK INSULATORS, LTD., ceramic membrane filter Sepilt used, membrane area 0.24 m 2 , pore size 2.0 μm, dimension Φ 30 mm × 250 mm, filtration 0.01 MPa), cross-flow filtration was performed at a circulation flow rate of 12 L/min and a dispersion temperature of 25 ° C. to remove impurities, and silver nanowires (average diameter: 26 nm, average length: 20 μm) were obtained. . Ethanol substitution was performed while performing cross-flow filtration, and finally a water/ethanol mixed solvent dispersion (silver nanowire concentration 3% by mass, water/ethanol = 41/56 [mass ratio]) was obtained. To calculate the average diameter of the obtained silver nanowires, a field emission scanning electron microscope JSM-7000F (manufactured by JEOL Ltd.) was used to measure the dimension (diameter) of 100 arbitrarily selected silver nanowires. Arithmetic mean values were obtained. In addition, to calculate the average length of the obtained silver nanowires, a shape measuring laser microscope VK-X200 (manufactured by Keyence Corporation) was used to measure the dimension (length) of 100 arbitrarily selected silver nanowires. , the arithmetic mean was obtained.
<銀ナノワイヤインクの作製>
 上記ポリオール法で合成した銀ナノワイヤの水/エタノール混合溶媒の分散液5g(銀ナノワイヤ濃度3質量%、水/エタノール=41/56[質量比])、水6.4g、メタノール20g(富士フイルム和光純薬株式会社製)、エタノール39g(富士フイルム和光純薬株式会社製)、プロピレングリコールモノメチルエーテル(PGME、富士フイルム和光純薬株式会社製)25g、プロピレングリコール3g(PG、旭硝子株式会社製)、PNVA(登録商標)水溶液(昭和電工株式会社製、固形分濃度10質量%、重量平均分子量90万)1.8gを混合し、ミックスローターVMR-5R(アズワン株式会社製)で1時間、室温、大気雰囲気下で撹拌(回転速度100rpm)して銀ナノワイヤインク100gを作製した。最終的な混合比[質量比]は、銀ナノワイヤ/PNVA/水/メタノール/エタノール/PGME/PG=0.15/0.18/10/20/42/25/3であった。
<Production of silver nanowire ink>
5 g of a water/ethanol mixed solvent dispersion of silver nanowires synthesized by the above polyol method (silver nanowire concentration 3% by mass, water/ethanol = 41/56 [mass ratio]), 6.4 g of water, 20 g of methanol (Fujifilm Sum Ko Junyaku Co., Ltd.), 39 g of ethanol (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), 25 g of propylene glycol monomethyl ether (PGME, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), 3 g of propylene glycol (PG, manufactured by Asahi Glass Co., Ltd.), PNVA (registered trademark) aqueous solution (manufactured by Showa Denko K.K., solid content concentration 10% by mass, weight average molecular weight 900,000) was mixed with 1.8 g and mixed with a mix rotor VMR-5R (manufactured by AS ONE Corporation) for 1 hour at room temperature. 100 g of silver nanowire ink was prepared by stirring in an air atmosphere (rotational speed: 100 rpm). The final mixing ratio [mass ratio] was silver nanowire/PNVA/water/methanol/ethanol/PGME/PG=0.15/0.18/10/20/42/25/3.
<オーバーコートインク(樹脂組成物)の作製>
(A)カルボキシ基を含有するポリウレタンの合成例
 攪拌装置、温度計、コンデンサーを備えた2L三口フラスコに、ポリオール化合物としてC-1015N(株式会社クラレ製、ポリカーボネートジオール、原料ジオールモル比:1,9-ノナンジオール:2-メチル-1,8-オクタンジオール=15:85、分子量964)42.32g、カルボキシ基を含有するジヒドロキシ化合物として2,2-ジメチロールブタン酸(日本化成株式会社製)27.32g、及び溶媒としてジエチレングリコールモノエチルエーテルアセテート(株式会社ダイセル製)158gを仕込み、90℃で上記2,2-ジメチロールブタン酸を溶解させた。
<Production of overcoat ink (resin composition)>
(A) Synthesis Example of Polyurethane Containing Carboxy Group In a 2 L three-necked flask equipped with a stirrer, thermometer and condenser, C-1015N (manufactured by Kuraray Co., Ltd., polycarbonate diol, raw material diol molar ratio: 1,9- Nonanediol: 2-methyl-1,8-octanediol=15:85, molecular weight 964) 42.32 g; 32 g and 158 g of diethylene glycol monoethyl ether acetate (manufactured by Daicel Corporation) as a solvent were charged, and the 2,2-dimethylolbutanoic acid was dissolved at 90°C.
 反応液の温度を70℃まで下げ、滴下ロートにより、ポリイソシアネートとしてデスモジュール(登録商標)-W(ビス-(4-イソシアナトシクロヘキシル)メタン)、住化コベストロウレタン株式会社製)59.69gを30分かけて滴下した。滴下終了後、120℃に昇温し、120℃で6時間反応を行い、ほぼイソシアネートが消失したことをIRによって確認した後、イソブタノールを0.5g加え、更に120℃にて6時間反応を行った。得られたカルボキシ基含有ポリウレタンのGPCにより求められた重量平均分子量は32300、その樹脂溶液の酸価は35.8mgKOH/gであった。 The temperature of the reaction solution was lowered to 70° C., and 59.69 g of Desmodur (registered trademark)-W (bis-(4-isocyanatocyclohexyl)methane), manufactured by Sumika Covestrourethane Co., Ltd., was added as a polyisocyanate through a dropping funnel. was added dropwise over 30 minutes. After completion of the dropwise addition, the temperature was raised to 120°C and the reaction was carried out at 120°C for 6 hours. After confirming by IR that the isocyanate had almost disappeared, 0.5 g of isobutanol was added and the reaction was further carried out at 120°C for 6 hours. went. The weight average molecular weight of the resulting carboxy group-containing polyurethane determined by GPC was 32,300, and the acid value of the resin solution was 35.8 mgKOH/g.
オーバーコートインク1
 上記で得られた(A)カルボキシ基を含有するポリウレタンの溶液(カルボキシ基含有ポリウレタン含有率:45質量%)10.0gをポリ容器に量り取り、(D)溶媒として1-ヘキサノール(C6OH)85.3gと酢酸エチル(EA)85.2gを加え、ミックスローターVMR-5R(アズワン株式会社製)で12時間、室温、大気雰囲気下で撹拌(回転速度100rpm)した。均一であることを目視で確認したのち、(B)エポキシ化合物としてペンタエリスリトールテトラグリシジルエーテル(昭和電工株式会社製)0.63g、(C)硬化促進剤として、U-CAT5003(化合物名:ベンジルトリフェニルホスホニウムブロマイド、サンアプロ株式会社製)0.31gを加え、再度ミックスローターを用いて1時間撹拌し、オーバーコートインクを得た。溶媒乾燥前後の質量より算出したオーバーコートインク1の不揮発分(固形分)濃度(カルボキシ基を含有するポリウレタン、エポキシ化合物、硬化促進剤の総量)は3質量%であった。オーバーコートインク1中のカルボキシ基を含有するポリウレタンが有するカルボキシ基(COOH)に対するエポキシ樹脂が有するエポキシ基(Ep)のモル比(Ep/COOH)は1.10である。
Overcoat ink 1
10.0 g of the (A) polyurethane solution containing a carboxy group obtained above (content of carboxy group-containing polyurethane: 45% by mass) was weighed into a plastic container, and (D) 1-hexanol (COH) 85 was added as a solvent. 3 g of ethyl acetate (EA) and 85.2 g of ethyl acetate (EA) were added, and the mixture was stirred for 12 hours at room temperature in an air atmosphere (rotational speed: 100 rpm) using a mix rotor VMR-5R (manufactured by AS ONE Corporation). After visually confirming uniformity, (B) 0.63 g of pentaerythritol tetraglycidyl ether (manufactured by Showa Denko Co., Ltd.) as an epoxy compound, and (C) U-CAT5003 (compound name: benzyltris) as a curing accelerator. 0.31 g of phenylphosphonium bromide (manufactured by San-Apro Co., Ltd.) was added, and the mixture was stirred again using the mix rotor for 1 hour to obtain an overcoat ink. The nonvolatile content (solid content) concentration (total amount of polyurethane containing carboxy group, epoxy compound, and curing accelerator) of Overcoat Ink 1 calculated from the mass before and after solvent drying was 3% by mass. The molar ratio (Ep/COOH) of the epoxy group (Ep) of the epoxy resin to the carboxy group (COOH) of the carboxy group-containing polyurethane in the overcoat ink 1 was 1.10.
オーバーコートインク2
 上記で得られた(A)カルボキシ基を含有するポリウレタン溶液(カルボキシ基含有ポリウレタン含有率:45質量%)7.1g、溶媒として1-ヘキサノール(C6OH)46.5gと酢酸エチル(EA)46.5gを加え、ミックスローターVMR-5R(アズワン株式会社製)で12時間、室温、大気雰囲気下で撹拌(回転速度100rpm)した。均一であることを目視で確認し、オーバーコートインク2を得た。溶媒乾燥前後の質量より算出したオーバーコートインク2の不揮発分(固形分)濃度(カルボキシ基を含有するポリウレタン含有率)は3質量%であった。
overcoat ink 2
7.1 g of the (A) carboxyl group-containing polyurethane solution obtained above (carboxyl group-containing polyurethane content: 45% by mass), 46.5 g of 1-hexanol (C6OH) and 46.5 g of ethyl acetate (EA) as solvents. 5 g was added, and the mixture was stirred with a mix rotor VMR-5R (manufactured by AS ONE Co., Ltd.) for 12 hours at room temperature in an air atmosphere (rotational speed: 100 rpm). Uniformity was visually confirmed, and overcoat ink 2 was obtained. The non-volatile (solid) concentration (content of polyurethane containing carboxy groups) of Overcoat Ink 2 calculated from the mass before and after solvent drying was 3% by mass.
オーバーコートインク3
 上記で得られた(A)カルボキシ基を含有するポリウレタンの溶液(カルボキシ基含有ポリウレタン含有率:45質量%)10.0gをポリ容器に量り取り、(D)溶媒として1-ヘキサノール(C6OH)74.6gと酢酸エチル(EA)74.6gを加え、ミックスローターVMR-5R(アズワン株式会社製)で12時間、室温、大気雰囲気下で撹拌(回転速度100rpm)した。均一であることを目視で確認したのち、(B)エポキシ化合物としてペンタエリスリトールテトラグリシジルエーテル(昭和電工株式会社製)0.01g、(C)硬化促進剤として、U-CAT5003(化合物名:ベンジルトリフェニルホスホニウムブロマイド、サンアプロ株式会社製)0.27gを加え、再度ミックスローターを用いて1時間撹拌し、オーバーコートインクを得た。溶媒乾燥前後の質量より算出したオーバーコートインク3の不揮発分(固形分)濃度(カルボキシ基を含有するポリウレタン、エポキシ化合物、硬化促進剤の総量)は3質量%であった。オーバーコートインク3中のカルボキシ基を含有するポリウレタンが有するカルボキシ基(COOH)に対するエポキシ樹脂が有するエポキシ基(Ep)のモル比(Ep/COOH)は0.02である。
overcoat ink 3
10.0 g of the (A) polyurethane solution containing a carboxy group obtained above (content of carboxy group-containing polyurethane: 45% by mass) was weighed into a plastic container, and (D) 1-hexanol (COH) 74 was used as a solvent. .6 g and 74.6 g of ethyl acetate (EA) were added, and the mixture was stirred for 12 hours at room temperature in an air atmosphere with a mix rotor VMR-5R (manufactured by AS ONE Corporation) (rotational speed: 100 rpm). After visually confirming uniformity, (B) 0.01 g of pentaerythritol tetraglycidyl ether (manufactured by Showa Denko Co., Ltd.) as an epoxy compound, and (C) U-CAT5003 (compound name: benzyltris) as a curing accelerator. 0.27 g of phenylphosphonium bromide (manufactured by San-Apro Co., Ltd.) was added, and the mixture was stirred again using the mix rotor for 1 hour to obtain an overcoat ink. The nonvolatile content (solid content) concentration (total amount of polyurethane containing carboxy group, epoxy compound, and curing accelerator) of overcoat ink 3 calculated from the mass before and after solvent drying was 3% by mass. The molar ratio (Ep/COOH) of the epoxy group (Ep) of the epoxy resin to the carboxy group (COOH) of the carboxy group-containing polyurethane in the overcoat ink 3 was 0.02.
オーバーコートインク4
 オーバーコートインク2において配合したカルボキシ基を含有するポリウレタン溶液をエトセル(登録商標)STD100cps(ダウ・ケミカル(米)社製 エチルセルロース)溶液(固形分濃度10質量%エタノール溶液)30.0gに変更し、溶媒として1-ヘキサノール(C6OH)35.0gと酢酸エチル(EA)35.0gを加えた以外はオーバーコートインク2と同様に調製し、オーバーコートインク4を得た。溶媒乾燥前後の質量より算出したオーバーコートインク4の不揮発分(固形分)濃度(エトセル(登録商標)の量)は3質量%であった。
overcoat ink 4
The carboxy group-containing polyurethane solution blended in overcoat ink 2 was changed to 30.0 g of Ethocel (registered trademark) STD 100 cps (ethyl cellulose manufactured by Dow Chemical (U.S.)) solution (ethanol solution with a solid concentration of 10% by mass), Overcoat ink 4 was obtained in the same manner as overcoat ink 2, except that 35.0 g of 1-hexanol (C6OH) and 35.0 g of ethyl acetate (EA) were added as solvents. The non-volatile (solid) concentration (amount of Ethocel (registered trademark)) of overcoat ink 4 calculated from the mass before and after solvent drying was 3% by mass.
実施例1
<透明導電層(銀ナノワイヤ層)の形成>
 A4size用コロナ放電表面処理装置(ウェッジ株式会社製)A4SW-FLNW型を用い、透明樹脂フィルムとして用いるA4サイズの非晶性シクロオレフィンポリマーフィルムZF14-100(日本ゼオン株式会社製、厚みTsが100μm、ガラス転移温度136℃[カタログ値])の一方の主面にコロナ放電処理(搬送速度:3m/min、処理回数:2回、出力:0.3kW)を施した。コロナ放電処理を施した上記非晶性シクロオレフィンポリマーフィルムと、TQC自動フィルムアプリケータースタンダード(コーテック株式会社製)と、ワイヤレスバーコータOSP-CN-22L(コーテック株式会社製)とを用い、ウェット膜厚が22μmとなるように銀ナノワイヤインクをフィルム全面(コロナ放電処理した面)に塗布した(塗工速度500mm/sec)。その後、恒温器HISPEC HS350(楠本化成株式会社製)で80℃、3分間、大気雰囲気下で熱風乾燥し、第一の透明導電膜(銀ナノワイヤ層)を形成した。銀ナノワイヤ層の膜厚は光干渉法に基づく膜厚測定システムF20-UV(フィルメトリクス株式会社製)を用いて測定した。測定箇所を変え、3点測定した平均値を膜厚として用いた。解析には450nmから800nmのスペクトルを用いた。この測定システムによると、透明基材上に形成された銀ナノワイヤ層の膜厚(Tcn)が直接測定できる。その結果80nmであった。
Example 1
<Formation of transparent conductive layer (silver nanowire layer)>
Using an A4 size corona discharge surface treatment apparatus (manufactured by Wedge Co., Ltd.) A4SW-FLNW type, an A4 size amorphous cycloolefin polymer film ZF14-100 (manufactured by Nippon Zeon Co., Ltd., thickness Ts of 100 μm, used as a transparent resin film, A glass transition temperature of 136° C. [catalog value]) was subjected to corona discharge treatment (conveyance speed: 3 m/min, number of treatments: 2 times, output: 0.3 kW). Using the above amorphous cycloolefin polymer film subjected to corona discharge treatment, TQC automatic film applicator standard (manufactured by Kotec Co., Ltd.), and wireless bar coater OSP-CN-22L (manufactured by Kotec Co., Ltd.), the wet film thickness A silver nanowire ink was applied to the entire surface of the film (surface treated with corona discharge) so that the thickness of the film was 22 μm (coating speed: 500 mm/sec). After that, it was dried with hot air at 80° C. for 3 minutes in a thermostat HISPEC HS350 (manufactured by Kusumoto Kasei Co., Ltd.) in an air atmosphere to form a first transparent conductive film (silver nanowire layer). The film thickness of the silver nanowire layer was measured using a film thickness measurement system F20-UV (manufactured by Filmetrics Co., Ltd.) based on optical interferometry. The average value obtained by measuring three points at different measurement points was used as the film thickness. The spectrum from 450 nm to 800 nm was used for analysis. This measurement system can directly measure the film thickness (T cn ) of the silver nanowire layer formed on the transparent substrate. As a result, it was 80 nm.
<銀ナノワイヤ交差部の融着の確認>
 透明導電層が形成された上記非晶性シクロオレフィンポリマーフィルムから金属ナノワイヤ同士の交差部(交点)を含む厚さ約100nmの透過型電子顕微鏡観察用薄片化試料を作製した。これを、透過型電子顕微鏡HF-2200(株式会社日立ハイテク製)を用いて、加速電圧200kVで観察した。銀ナノワイヤの交差部(交点)が複数確認された。続いて、銀ナノワイヤの交差部(交点)及び銀ナノワイヤの交差部(交点)から十分はなれた位置で電子線回折パターンをそれぞれ観察した結果、銀ナノワイヤの交点付近では銀ナノワイヤ特有の5角柱双晶構造に基づく典型的な回折パターンが認められなかった。これより銀ナノワイヤの交点付近で銀ナノワイヤが融解し再結晶したこと、すなわち融着したことを確認した。
<Confirmation of fusion bonding at intersections of silver nanowires>
From the amorphous cycloolefin polymer film on which the transparent conductive layer was formed, a sliced sample for transmission electron microscope observation with a thickness of about 100 nm including intersections (intersecting points) between metal nanowires was produced. This was observed using a transmission electron microscope HF-2200 (manufactured by Hitachi High-Tech Co., Ltd.) at an accelerating voltage of 200 kV. A plurality of intersections (intersection points) of silver nanowires were confirmed. Subsequently, as a result of observing the electron beam diffraction patterns at the intersections (intersections) of the silver nanowires and at positions sufficiently distant from the intersections (intersections) of the silver nanowires, it was found that near the intersections of the silver nanowires, pentagonal prismatic twins peculiar to silver nanowires were observed. A typical structure-based diffraction pattern was not observed. From this, it was confirmed that the silver nanowires were melted and recrystallized near the intersections of the silver nanowires, that is, they were fused.
<オーバーコート層の形成>
 透明樹脂フィルムとしての上記非晶性シクロオレフィンポリマーフィルムの第一の主面上に形成した銀ナノワイヤ層の上に、TQC自動フィルムアプリケータースタンダード(コーテック株式会社製)とワイヤレスバーコータOSP-CN-05M(コーテック株式会社製)を用い、ウェット膜厚が5μmになるようにオーバーコートインク1を全面に塗布した(塗工速度333mm/sec)。その後、恒温器HISPEC HS350(楠本化成株式会社製)で80℃、1分間、大気雰囲気下で熱風乾燥(熱硬化)し、オーバーコート層を形成した。オーバーコート層の膜厚は、前述の銀ナノワイヤ層の膜厚同様光干渉法に基づく膜厚測定システムF20-UV(フィルメトリクス株式会社製)を用いて測定した。測定箇所を変え、3点測定した平均値を膜厚として用いた。解析には450nmから800nmのスペクトルを用いた。この測定システムによると、透明基材上に形成された銀ナノワイヤ層の膜厚(Tcn)とその上に形成されたオーバーコート層の膜厚(T)との総膜厚(Tcn+T)が直接測定できるので、この測定値から先に測定した銀ナノワイヤ層の膜厚(Tcn)を差し引くことによりオーバーコート層の膜厚(T)が得られる。その結果オーバーコート層の膜厚(T)は90nmであった。
<Formation of overcoat layer>
On the silver nanowire layer formed on the first main surface of the amorphous cycloolefin polymer film as the transparent resin film, TQC automatic film applicator standard (manufactured by Kotec Co., Ltd.) and wireless bar coater OSP-CN-05M (manufactured by Cortec Co., Ltd.), overcoat ink 1 was applied to the entire surface so that the wet film thickness was 5 μm (coating speed: 333 mm/sec). After that, hot air drying (thermal curing) was performed at 80° C. for 1 minute in a constant temperature device HISPEC HS350 (manufactured by Kusumoto Kasei Co., Ltd.) in an air atmosphere to form an overcoat layer. The film thickness of the overcoat layer was measured using a film thickness measurement system F20-UV (manufactured by Filmetrics Co., Ltd.) based on the optical interferometry, as in the case of the film thickness of the silver nanowire layer. The average value obtained by measuring three points at different measurement points was used as the film thickness. The spectrum from 450 nm to 800 nm was used for analysis. According to this measurement system, the total thickness (T cn + T p ) can be directly measured, the film thickness (T p ) of the overcoat layer can be obtained by subtracting the previously measured film thickness (T cn ) of the silver nanowire layer from this measured value. As a result, the film thickness (T p ) of the overcoat layer was 90 nm.
<透明樹脂フィルムの一方の主面に透明導電層を有する透明導電フィルム積層体の形成>
 上記オーバーコート層を形成済みの透明導電フィルムを構成する透明樹脂フィルムの透明導電層(銀ナノワイヤ層)が形成されていない側の面に、キャリアフィルムとしてPE系粘着フィルムのトレテックA521(東レフィルム加工株式会社製、厚みTcが25μm)の粘着性を有する方の主面を圧着、積層し、透明導電フィルム積層体を形成した。
<Formation of a transparent conductive film laminate having a transparent conductive layer on one main surface of a transparent resin film>
On the side of the transparent resin film on which the transparent conductive layer (silver nanowire layer) of the transparent resin film constituting the transparent conductive film with the overcoat layer formed is not formed, a PE-based adhesive film Tretec A521 (processed by Toray Film Co., Ltd.) is used as a carrier film. (manufactured by Co., Ltd., thickness Tc: 25 μm). The main surface of the sticky side was press-bonded and laminated to form a transparent conductive film laminate.
実施例2
 透明樹脂フィルムとして非晶性シクロオレフィンポリマーフィルムZF14-050(日本ゼオン株式会社製、厚みTsが50μm、ガラス転移温度136℃[カタログ値])を用い、キャリアフィルムとしてPE系粘着フィルムのトレテックN711(東レフィルム加工株式会社製、厚みTcが30μm)を用いた以外は、実施例1と同条件で透明導電フィルム積層体を形成した。
Example 2
Amorphous cycloolefin polymer film ZF14-050 (manufactured by Nippon Zeon Co., Ltd., thickness Ts: 50 μm, glass transition temperature: 136° C. [catalog value]) was used as the transparent resin film, and Tretec N711 (a PE adhesive film) was used as the carrier film. A transparent conductive film laminate was formed under the same conditions as in Example 1, except that Toray Advanced Film Co., Ltd. (thickness Tc: 30 μm) was used.
実施例3
 透明樹脂フィルムとして非晶性シクロオレフィンポリマーフィルムZF16-040(日本ゼオン株式会社製、厚みTsが40μm、ガラス転移温度163℃[カタログ値])を用いた以外は、実施例2と同条件で透明導電フィルム積層体を形成した。
Example 3
Transparent under the same conditions as in Example 2, except that an amorphous cycloolefin polymer film ZF16-040 (manufactured by Nippon Zeon Co., Ltd., thickness Ts: 40 μm, glass transition temperature: 163° C. [catalog value]) was used as the transparent resin film. A conductive film laminate was formed.
実施例4
 キャリアフィルムとしてPP系粘着フィルムのFSA010M(フタムラ化学株式会社製、厚みTcが30μm)を用いた以外は、実施例3と同条件で透明導電フィルム積層体を形成した。
Example 4
A transparent conductive film laminate was formed under the same conditions as in Example 3, except that a PP adhesive film FSA010M (manufactured by Futamura Chemical Co., Ltd., thickness Tc: 30 μm) was used as the carrier film.
実施例5
 透明樹脂フィルムとしてのA4サイズの非晶性シクロオレフィンポリマーフィルムZF14-100(日本ゼオン株式会社製、厚みTsが100μm、ガラス転移温度136℃[カタログ値])の一方の主面にキャリアフィルムとしてのPE系粘着フィルムのトレテックA521(東レフィルム加工株式会社製、厚みTcが25μm)の粘着性を有する方の主面を圧着、積層した。続いて、透明樹脂フィルムの、上記キャリアフィルムが積層されている側とは反対側の主面上に、実施例1で使用した銀ナノワイヤインク、オーバーコートインクを用い、同様の条件で、透明導電層(銀ナノワイヤ層)、オーバーコート層を順次形成し、実施例1と同様の構成の透明導電フィルム積層体を形成した。
Example 5
A4 size amorphous cycloolefin polymer film ZF14-100 (manufactured by Nippon Zeon Co., Ltd., thickness Ts: 100 μm, glass transition temperature: 136° C. [catalog value]) as a transparent resin film was coated on one main surface with a carrier film as a carrier film. The sticky main surface of Toretec A521 PE-based adhesive film (manufactured by Toray Advanced Film Co., Ltd., thickness Tc: 25 μm) was pressed and laminated. Subsequently, on the main surface of the transparent resin film opposite to the side on which the carrier film is laminated, using the silver nanowire ink and overcoat ink used in Example 1, under the same conditions, a transparent conductive film was formed. A layer (silver nanowire layer) and an overcoat layer were sequentially formed to form a transparent conductive film laminate having the same structure as in Example 1.
実施例6
 キャリアフィルムとしてPE系自己粘着フィルムのPAC-3-70(サンエー化研株式会社製、厚みTcが70μm)を用いた以外は、実施例1と同条件で透明導電フィルム積層体を形成した。
Example 6
A transparent conductive film laminate was formed under the same conditions as in Example 1, except that a PE-based self-adhesive film PAC-3-70 (manufactured by San A Kaken Co., Ltd., thickness Tc: 70 μm) was used as the carrier film.
実施例7
 オーバーコートインクとしてオーバーコートインク2を用いた以外は、実施例1と同条件で透明導電フィルム積層体を形成した。
Example 7
A transparent conductive film laminate was formed under the same conditions as in Example 1, except that overcoat ink 2 was used as the overcoat ink.
実施例8
 オーバーコートインクとしてオーバーコートインク3を用いた以外は、実施例1と同条件で透明導電フィルム積層体を形成した。
Example 8
A transparent conductive film laminate was formed under the same conditions as in Example 1, except that Overcoat Ink 3 was used as the overcoat ink.
実施例9
 オーバーコートインクとしてオーバーコートインク4を用いた以外は、実施例1と同条件で透明導電フィルム積層体を形成した。
Example 9
A transparent conductive film laminate was formed under the same conditions as in Example 1, except that Overcoat Ink 4 was used as the overcoat ink.
実施例10
<透明樹脂フィルムの両方の主面に透明導電層を有する透明導電フィルム積層体の作製>
 透明樹脂フィルムとしての非晶性シクロオレフィンポリマーフィルムZF14-100(日本ゼオン株式会社製、厚みTsが100μm、ガラス転移温度136℃[カタログ値])の両方の主面に実施例1と同条件でコロナ処理を施した。続いて、一方の主面(第一面)上に、実施例1と同条件で透明導電層(銀ナノワイヤ層)とオーバーコート層を作製した。続いて、透明導電層が形成されていないもう一方の主面(第二面)上に、実施例1と同条件で透明導電層(銀ナノワイヤ層)とオーバーコート層を形成し、透明樹脂フィルムの両方の主面に透明導電層(銀ナノワイヤ層)を有する透明導電フィルムを得た。この透明導電フィルムの第一面のオーバーコート層に、キャリアフィルムとしてのPE系粘着フィルムのトレテックA521(東レフィルム加工株式会社製、厚みTcが25μm)の粘着性を有する方の主面を圧着、積層し、透明導電フィルム積層体を形成した。
Example 10
<Preparation of Transparent Conductive Film Laminate Having Transparent Conductive Layers on Both Main Surfaces of Transparent Resin Film>
Under the same conditions as in Example 1, both main surfaces of an amorphous cycloolefin polymer film ZF14-100 (manufactured by Nippon Zeon Co., Ltd., thickness Ts: 100 μm, glass transition temperature: 136° C. [catalog value]) as a transparent resin film. Corona treated. Subsequently, a transparent conductive layer (silver nanowire layer) and an overcoat layer were formed on one main surface (first surface) under the same conditions as in Example 1. Subsequently, a transparent conductive layer (silver nanowire layer) and an overcoat layer were formed under the same conditions as in Example 1 on the other main surface (second surface) on which the transparent conductive layer was not formed, and a transparent resin film was formed. A transparent conductive film having transparent conductive layers (silver nanowire layers) on both main surfaces was obtained. To the overcoat layer on the first surface of this transparent conductive film, the main surface having adhesiveness of PE-based adhesive film Tretec A521 (manufactured by Toray Advanced Film Co., Ltd., thickness Tc is 25 μm) as a carrier film is crimped, They were laminated to form a transparent conductive film laminate.
実施例11
 透明樹脂フィルムとしての非晶性シクロオレフィンポリマーフィルムZF14-100(日本ゼオン株式会社製、厚みTsが100μm、ガラス転移温度136℃[カタログ値])の両方の主面に実施例1と同条件でコロナ処理を施した。続いて、一方の主面(第二面)に、キャリアフィルムとしてのPE系粘着フィルムのトレテックA521(東レフィルム加工株式会社製、厚みTcが25μm)の粘着性を有する方の主面を圧着、積層した。その後、透明樹脂フィルムの、上記キャリアフィルムが積層されている側とは反対側の主面(第一面)上に、実施例1で使用した銀ナノワイヤインク、オーバーコートインクを用い、同様の条件で、第一の透明導電層(銀ナノワイヤ層)、第一のオーバーコート層を順次形成し、実施例1と同様の構成の透明導電フィルム積層体を形成した。続いて、第一のオーバーコート層上に、キャリアフィルムとしてPE系粘着フィルムのトレテックA521(東レフィルム加工株式会社製、厚みTcが25μm)の粘着性を有する方の主面を圧着、積層後、上記透明樹脂フィルムの一方の主面(第二面)に圧着、積層していたキャリアフィルムを剥離した。その後、露出した上記透明樹脂フィルムの一方の主面(第二面)上に、実施例1で使用した銀ナノワイヤインク、オーバーコートインクを用い、同様の条件で、第二の透明導電層(銀ナノワイヤ層)、第二のオーバーコート層を順次形成し、実施例10と同様の構成の透明導電フィルム積層体を形成した。
Example 11
Under the same conditions as in Example 1, both main surfaces of an amorphous cycloolefin polymer film ZF14-100 (manufactured by Nippon Zeon Co., Ltd., thickness Ts: 100 μm, glass transition temperature: 136° C. [catalog value]) as a transparent resin film. Corona treated. Subsequently, on one main surface (second surface), the main surface having adhesiveness of PE-based adhesive film Tretec A521 (manufactured by Toray Advanced Film Co., Ltd., thickness Tc is 25 μm) as a carrier film is crimped, Laminated. After that, on the main surface (first surface) of the transparent resin film opposite to the side on which the carrier film is laminated, the silver nanowire ink and overcoat ink used in Example 1 were applied under the same conditions. Then, a first transparent conductive layer (silver nanowire layer) and a first overcoat layer were sequentially formed to form a transparent conductive film laminate having the same structure as in Example 1. Subsequently, on the first overcoat layer, the adhesive main surface of a PE-based adhesive film Toretec A521 (manufactured by Toray Advanced Film Co., Ltd., thickness Tc: 25 μm) as a carrier film is crimped and laminated. The carrier film that had been press-bonded and laminated on one main surface (second surface) of the transparent resin film was peeled off. After that, on one main surface (second surface) of the exposed transparent resin film, using the silver nanowire ink and overcoat ink used in Example 1, under the same conditions, a second transparent conductive layer (silver nanowire layer) and a second overcoat layer were sequentially formed to form a transparent conductive film laminate having the same structure as in Example 10.
実施例12
 オーバーコートインクとしてオーバーコートインク2を用いた以外は、実施例11と同条件で透明導電フィルム積層体を形成した。
Example 12
A transparent conductive film laminate was formed under the same conditions as in Example 11, except that overcoat ink 2 was used as the overcoat ink.
実施例13
 オーバーコートインクとしてオーバーコートインク3を用いた以外は、実施例11と同条件で透明導電フィルム積層体を形成した。
Example 13
A transparent conductive film laminate was formed under the same conditions as in Example 11, except that Overcoat Ink 3 was used as the overcoat ink.
実施例14
 オーバーコートインクとしてオーバーコートインク4を用いた以外は、実施例11と同条件で透明導電フィルム積層体を形成した。
Example 14
A transparent conductive film laminate was formed under the same conditions as in Example 11, except that Overcoat Ink 4 was used as the overcoat ink.
比較例1
 キャリアフィルムとしてアクリル系粘着剤層(厚み約10μm)を有するPETフィルムのT2-50(サンエー化研株式会社製、厚みTcが50μm)を用いた以外は、実施例1と同条件で透明導電フィルム積層体を形成した。
Comparative example 1
Transparent conductive film under the same conditions as in Example 1 except that T2-50 (manufactured by Sanei Kaken Co., Ltd., thickness Tc is 50 μm) of PET film having an acrylic pressure-sensitive adhesive layer (thickness of about 10 μm) was used as the carrier film. A laminate was formed.
比較例2
 キャリアフィルムとしてアクリル系粘着剤層(厚み約10μm)を有するPETフィルムのT2-50(サンエー化研株式会社製、厚みTcが50μm)を用いた以外は、実施例2と同条件で透明導電フィルム積層体を形成した。
Comparative example 2
Transparent conductive film under the same conditions as in Example 2 except that T2-50 (manufactured by Sanei Kaken Co., Ltd., thickness Tc is 50 μm) of PET film having an acrylic pressure-sensitive adhesive layer (thickness of about 10 μm) was used as the carrier film. A laminate was formed.
比較例3
 キャリアフィルムとしてアクリル系粘着剤層(厚み約10μm)を有するPETフィルムのEXR911(サンエー化研株式会社製、厚みTcが125μm)を用いた以外は、比較例2と同条件で透明導電フィルム積層体を形成した。
Comparative example 3
A transparent conductive film laminate was prepared under the same conditions as in Comparative Example 2 except that a PET film EXR911 (manufactured by Sanei Kaken Co., Ltd., thickness Tc of 125 μm) having an acrylic pressure-sensitive adhesive layer (thickness of about 10 μm) was used as the carrier film. formed.
比較例4
 透明樹脂フィルムとして非晶性シクロオレフィンポリマーフィルムZF14-023(日本ゼオン製、厚みTsが23μm、ガラス転移温度136℃[カタログ値])を用い、キャリアフィルムとしてPE系粘着フィルムのトレテックN711(東レフィルム加工株式会社製、厚みTcが30μm)を用いた以外は、実施例1と同条件で透明導電フィルム積層体を形成した。
Comparative example 4
Amorphous cycloolefin polymer film ZF14-023 (manufactured by Nippon Zeon, thickness Ts: 23 μm, glass transition temperature: 136° C. [catalog value]) was used as the transparent resin film, and PE adhesive film Tretec N711 (Toray Film Co., Ltd.) was used as the carrier film. A transparent conductive film laminate was formed under the same conditions as in Example 1, except that the film (manufactured by Kako Co., Ltd., having a thickness Tc of 30 μm) was used.
比較例5
 オーバーコートインクとしてオーバーコートインク2を用いた以外は、比較例4と同条件で透明導電フィルム積層体を形成した。
Comparative example 5
A transparent conductive film laminate was formed under the same conditions as in Comparative Example 4, except that Overcoat Ink 2 was used as the overcoat ink.
比較例6
 オーバーコートインクとしてオーバーコートインク3を用いた以外は、実施例4と同条件で透明導電フィルム積層体を形成した。
Comparative example 6
A transparent conductive film laminate was formed under the same conditions as in Example 4, except that Overcoat Ink 3 was used as the overcoat ink.
比較例7
 オーバーコートインクとしてオーバーコートインク4を用いた以外は、実施例4と同条件で透明導電フィルム積層体を形成した。
Comparative example 7
A transparent conductive film laminate was formed under the same conditions as in Example 4, except that Overcoat Ink 4 was used as the overcoat ink.
比較例8
 キャリアフィルムとしてPE系粘着フィルムのPAC-3-50THK(サンエー化研株式会社製、厚みTcが50μm) を用いた以外は、比較例2と同条件で透明導電フィルム積層体を形成した。
Comparative example 8
A transparent conductive film laminate was formed under the same conditions as in Comparative Example 2, except that a PE adhesive film PAC-3-50THK (manufactured by San A Kaken Co., Ltd., thickness Tc: 50 μm) was used as the carrier film.
<評価(80℃、30分加熱条件)>
(1)カール値の測定
 実施例及び比較例で得られたA4サイズの透明導電フィルム積層体を長手方向の略中央で裁断して10cm角の試験片を作製した。この試験片を、前面扉にガラス窓のついた乾燥機VO-420(Advantec製)に入れ、オーバーコート層が上になる状態で80℃、30分加熱した。
<Evaluation (80°C, 30 minutes heating conditions)>
(1) Measurement of Curl Value A4-size transparent conductive film laminates obtained in Examples and Comparative Examples were cut at approximately the center in the longitudinal direction to prepare a 10 cm square test piece. This test piece was placed in a dryer VO-420 (manufactured by Advantec) having a front door with a glass window, and heated at 80° C. for 30 minutes with the overcoat layer facing upward.
 加熱途中、ガラス窓から透明導電フィルム積層体の凹凸形状を観察した。加熱終了後、オーバーコート層が上になる状態で水平な面上に試験片を置き、素早くカール値を定規で計測した。これを加熱中のカール値とした。さらに室温で30分放冷し、カール値を定規で計測した。これを放冷後のカール値とした。 During heating, the uneven shape of the transparent conductive film laminate was observed through the glass window. After heating, the test piece was placed on a horizontal surface with the overcoat layer facing up, and the curl value was quickly measured with a ruler. This was taken as the curl value during heating. Further, it was allowed to cool at room temperature for 30 minutes, and the curl value was measured with a ruler. This was taken as the curl value after standing to cool.
 図7(a)、(b)には、カール値の測定方法の説明図が示される。図7(a)が、透明導電フィルム積層体が凸にカールする場合であり、図7(b)が、透明導電フィルム積層体が凹にカールする場合である。いずれの場合にも、透明導電フィルム積層体を置いた水平面Hsから最も高い透明導電フィルム積層体の点の高さhmaxを測定し、カール値とした。 FIGS. 7(a) and (b) show explanatory diagrams of the method of measuring the curl value. FIG. 7A shows the case where the transparent conductive film laminate curls convexly, and FIG. 7B shows the case where the transparent conductive film laminate curls concavely. In any case, the height hmax of the highest point of the transparent conductive film laminate from the horizontal plane Hs on which the transparent conductive film laminate is placed was measured and used as the curl value.
(2)放冷後の貼り替え可否
 放冷後のカール値を測定した透明導電フィルム積層体を、キャリアフィルムが上になる状態で水平な台の上に置き、隣り合う2頂点(試験片の1辺)を市販のセロテープ(登録商標)を用いて台に固定した。続いて、テープ固定していない2頂点のいずれかの頂点(テープ固定した辺に対向する辺の角)を起点に、キャリアフィルムを透明導電フィルムから剥離した。剥離できた場合は、熱履歴のない同一型番のキャリアフィルムを圧着・積層したのちセロテープ(登録商標)固定を外し、透明導電フィルム積層体がフラットに戻ることを確認した。
(2) Possibility of repositioning after standing to cool Place the transparent conductive film laminate whose curl value after standing to cool was measured on a horizontal table with the carrier film facing up, and 1 side) was fixed to a table using commercially available Sellotape (registered trademark). Subsequently, the carrier film was peeled off from the transparent conductive film starting from one of the two vertices not fixed with tape (the corner of the side opposite to the side fixed with tape). If it could be peeled off, it was confirmed that the transparent conductive film laminate returned to a flat state after pressing and laminating a carrier film of the same model number without heat history, removing the cellotape (registered trademark) fixation.
 結果を表2に示す。表中「フラット」とはカール値が5mm以下であることを意味し、「凸」又は「凹」はカール値が5mm超であることを意味する。また、「凸」は透明導電フィルム積層体の中央部が端部に対してオーバーコート層側に突出した状態であり、「凹」は透明導電フィルム積層体の中央部が端部に対してキャリアフィルム側に突出した状態である。 The results are shown in Table 2. In the table, "flat" means a curl value of 5 mm or less, and "convex" or "concave" means a curl value of more than 5 mm. In addition, "convex" is a state in which the central portion of the transparent conductive film laminate protrudes toward the overcoat layer with respect to the edges, and "concave" is a state in which the central portion of the transparent conductive film laminate protrudes toward the carrier from the edges. It is in a state of protruding toward the film side.
 総合評価は下記基準で判断した。
◎:「加熱中の変形が小さい(カール値が5mm以下)」かつ「放冷後のカール値が特に小さく(10mm以下)、貼り替えが容易に可能」
○:「加熱中の変形が小さい(カール値が5mm以下)」かつ「放冷後のカール値が小さく(10mm超、20mm以下)、貼り替えが可能」
×:「加熱中の変形が大きい(カール値が5mm超)」又は「放冷後のカール値が大きく(20mm超)、貼り替えが不可能」
Comprehensive evaluation was determined according to the following criteria.
◎: "The deformation during heating is small (curl value is 5 mm or less)" and "The curl value after standing to cool is particularly small (10 mm or less), and can be easily replaced"
○: “Small deformation during heating (curl value is 5 mm or less)” and “Small curl value after standing to cool (more than 10 mm, 20 mm or less), and can be replaced”
×: “large deformation during heating (curl value exceeds 5 mm)” or “large curl value after standing to cool (exceeds 20 mm), impossible to replace”
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~14に示されるとおり、キャリアフィルムの材質がポリオレフィンであって、かつ、非晶性シクロオレフィンポリマーフィルムの厚みTsとキャリアフィルムの厚みTcの比(Tc/Ts)が、0.2≦Tc/Ts≦0.8の範囲内であるとき、加熱中の変形がロール搬送の障害とならない程度まで抑制可能であった。キャリアフィルム(ポリオレフィン)が、透明樹脂フィルム(非晶性シクロオレフィンポリマー)よりも可撓性が高く、かつ厚みが薄いため、透明樹脂フィルム(非晶性シクロオレフィンポリマー)の熱膨張に追従して変形するため、加熱中にフラットな状態を保ったものと考えられる。放冷後は、非晶性シクロオレフィンポリマーの熱収縮率よりポリオレフィンの熱収縮率が大きいために、加熱中よりは変形が多少大きいものもあるものの、上記方法で熱履歴のない(熱収縮していない)キャリアフィルムへの貼り替えが可能であり、貼り替えた後は透明導電フィルム積層体がフラットになることを確認した。実施例1とオーバーコート層のみを変更した実施例7~9では、加熱中及び放冷後のカール値は同等であった。透明導電フィルム積層体全体の厚みに対するオーバーコート層の厚みが薄いためカールには殆ど影響しなかったと推定される。 As shown in Examples 1 to 14, the material of the carrier film is polyolefin, and the ratio of the thickness Ts of the amorphous cycloolefin polymer film to the thickness Tc of the carrier film (Tc/Ts) is 0.2. When within the range of ≦Tc/Ts≦0.8, the deformation during heating could be suppressed to such an extent that it did not interfere with roll conveyance. Since the carrier film (polyolefin) is more flexible and thinner than the transparent resin film (amorphous cycloolefin polymer), it follows the thermal expansion of the transparent resin film (amorphous cycloolefin polymer). Because it deforms, it is thought that it kept a flat state during heating. After standing to cool, the thermal shrinkage rate of polyolefin is greater than that of amorphous cycloolefin polymer. It was confirmed that the transparent conductive film laminate can be reattached to a carrier film, and that the transparent conductive film laminate becomes flat after the reattachment. In Example 1 and Examples 7 to 9 in which only the overcoat layer was changed, the curl values during heating and after standing to cool were the same. It is presumed that the curling was hardly affected because the thickness of the overcoat layer was small relative to the thickness of the entire transparent conductive film laminate.
 透明樹脂フィルムの両面に透明導電層を有する場合(実施例10~14)でも、片面に透明導電層を有する場合(実施例1~9)と同様に変形が抑制可能であった。実施例1と実施例5、実施例10と実施例11では、製造工程は異なるが、得られた透明導電フィルム積層体の構造は同一であるため、同等の評価結果が得られた。また、実施例11とオーバーコート層のみを変更した実施例12~14では、加熱中及び放冷後のカール値は同等であった。透明導電フィルム積層体全体の厚みに対するオーバーコート層の厚みが薄いためカールには殆ど影響しなかったと推定される。 Even when the transparent resin film has transparent conductive layers on both sides (Examples 10 to 14), deformation can be suppressed in the same way as when the transparent resin film has a transparent conductive layer on one side (Examples 1 to 9). In Examples 1 and 5, and in Examples 10 and 11, the same evaluation results were obtained because the structures of the obtained transparent conductive film laminates were the same although the manufacturing processes were different. Further, in Example 11 and Examples 12 to 14 in which only the overcoat layer was changed, the curl values during heating and after standing to cool were the same. It is presumed that the curling was hardly affected because the thickness of the overcoat layer was small relative to the thickness of the entire transparent conductive film laminate.
 一方、キャリアフィルムの材質がPETである比較例1では、加熱中の変形が、ロール搬送の障害となるほど大きかった。PETはポリオレフィンより剛直なため、キャリアフィルム(PET)が、透明樹脂フィルム(非晶性シクロオレフィンポリマー)の熱膨張に追従できなかったためであると考えられる。キャリアフィルムの材質がポリオレフィンであっても、Tc/Tsが0.8を超える場合(比較例4~8)、加熱中の変形がロール搬送の障害となるほど大きくなった。これは、キャリアフィルム(ポリオレフィン)の熱膨張が透明樹脂フィルム(非晶性シクロオレフィンポリマー)の熱膨張より大きく、透明樹脂フィルムがキャリアフィルムの膨張に押し負けてしまったためと考えられる。放冷後の変形は、Tc/Tsが1.0の比較例8では貼り替え作業は可能であったが(カール値20mm)、Tc/Tsが1.3とさらに大きい比較例4~7では、カール値の測定が不可能なほど変形が大きく、キャリアフィルムを貼り替える作業が不可能なほどいびつな変形を示した。なお、比較例4~7では、使用したオーバーコートインクの相違による加熱による変形程度は同等であった。キャリアフィルムの材質がPETで、かつ、Tc/Tsが0.8を超える比較例2、3では、比較例1と同様に、放冷後の貼り替えは可能であったが、加熱中の変形が、ロール搬送の障害となるほど大きかった。 On the other hand, in Comparative Example 1, in which the material of the carrier film is PET, the deformation during heating was so large that it interfered with roll conveyance. This is probably because the carrier film (PET) could not follow the thermal expansion of the transparent resin film (amorphous cycloolefin polymer) because PET is more rigid than polyolefin. Even if the material of the carrier film was polyolefin, when Tc/Ts exceeded 0.8 (Comparative Examples 4 to 8), the deformation during heating became so large that it interfered with roll transport. This is probably because the thermal expansion of the carrier film (polyolefin) is larger than the thermal expansion of the transparent resin film (amorphous cycloolefin polymer), and the transparent resin film is overwhelmed by the expansion of the carrier film. Regarding the deformation after standing to cool, in Comparative Example 8 where Tc/Ts was 1.0, re-sticking work was possible (curl value of 20 mm), but in Comparative Examples 4 to 7 where Tc/Ts was as large as 1.3. , the deformation was so large that it was impossible to measure the curl value, and the deformation was so distorted that it was impossible to replace the carrier film. In Comparative Examples 4 to 7, the degrees of deformation due to heating were the same due to differences in the overcoat inks used. In Comparative Examples 2 and 3 in which the material of the carrier film was PET and Tc/Ts exceeded 0.8, it was possible to replace the film after standing to cool as in Comparative Example 1, but deformation during heating However, it was large enough to interfere with roll conveyance.
<評価(100℃、30分加熱条件)>
 本発明の透明導電フィルム積層体が80℃より高い温度での加熱工程においても使用可能であることを確認するため、100℃、30分の加熱条件でのカール値の測定と放冷後の貼り替え可否を評価した。カール値の測定方法と、放冷後の貼り替え可否の確認方法と、総合評価の判断基準は、80℃、30分加熱条件の実験と同様に実施した。結果を表3に示す。なお、表3に示される実施例15で使用した透明導電フィルム積層体の構成は、上記実施例4と同じである。実施例16~18で使用した透明導電フィルム積層体の構成は、オーバーコートインクとしてオーバーコートインク1の代わりにそれぞれオーバーコートインク2~4を用いた以外は、実施例15と同じである。
<Evaluation (100°C, heating conditions for 30 minutes)>
In order to confirm that the transparent conductive film laminate of the present invention can also be used in a heating process at a temperature higher than 80°C, the curl value was measured under heating conditions of 100°C for 30 minutes, and the adhesion after cooling was performed. Evaluate whether it is possible to change. The method of measuring the curl value, the method of confirming whether or not the film can be reattached after standing to cool, and the judgment criteria for comprehensive evaluation were the same as in the experiment under the heating conditions of 80° C. and 30 minutes. Table 3 shows the results. The structure of the transparent conductive film laminate used in Example 15 shown in Table 3 is the same as in Example 4 above. The structures of the transparent conductive film laminates used in Examples 16 to 18 are the same as in Example 15, except that Overcoat Inks 2 to 4 are used instead of Overcoat Ink 1 as the overcoat ink.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3に示されるとおり、PP系キャリアフィルムFSA010Mを用いると、80℃加熱時より変形が大きくなる傾向は認められるが、すべての場合において、ロール搬送の障害とならない程度であった。放冷後も、80℃加熱・放冷後より大きく変形したものの、熱履歴のないキャリアフィルムへの貼り替え作業が可能な程度の変形であった。このように、プロピレンを重合単位として含むポリオレフィンフィルムを用いることで、80℃より高温の加熱条件でもロール搬送の障害とならない程度に変形を抑制することができた。オーバーコート層の変更によるカールの程度の相違は認められなかった。透明導電フィルム積層体全体の厚みに対するオーバーコート層の厚みが薄いためカールには殆ど影響しなかったと推定される。 As shown in Table 3, when the PP-based carrier film FSA010M was used, there was a tendency for deformation to become greater than when heated to 80°C, but in all cases the deformation was to the extent that it did not interfere with roll transport. Even after standing to cool, the film was deformed more than after heating to 80° C. and standing to cool, but the deformation was such that it could be replaced with a carrier film having no heat history. Thus, by using a polyolefin film containing propylene as a polymerized unit, it was possible to suppress deformation to such an extent that it did not interfere with roll conveyance even under heating conditions at a temperature higher than 80°C. No difference in the degree of curling due to changes in the overcoat layer was observed. It is presumed that the curling was hardly affected because the thickness of the overcoat layer was small relative to the thickness of the entire transparent conductive film laminate.
 1 キャリアフィルム、2 透明樹脂フィルム、3 透明導電層、4 オーバーコート層、10 透明導電フィルム、20 透明導電フィルム。 1 Carrier film, 2 Transparent resin film, 3 Transparent conductive layer, 4 Overcoat layer, 10 Transparent conductive film, 20 Transparent conductive film.

Claims (9)

  1.  透明導電フィルムと、前記透明導電フィルムに積層されたキャリアフィルムと、を含む透明導電フィルム積層体であって、
     前記透明導電フィルムは、透明樹脂フィルムの一方又は両方の主面に金属細線を含む透明導電層と、オーバーコート層と、がこの順序に積層されて構成され、
     前記透明樹脂フィルムは、非晶性シクロオレフィン系樹脂のフィルムであって、前記透明樹脂フィルムの厚みTsは30~150μmであり、
     前記キャリアフィルムがポリオレフィンフィルムであって、一方の主面のみが粘着性を有し、
     前記透明導電フィルム積層体は、前記オーバーコート層が最外層となるように、前記透明導電フィルムが前記キャリアフィルムの粘着性を有する一方の主面に剥離可能に積層されており、
     前記キャリアフィルムの厚みTcと前記透明樹脂フィルムの厚みTsの比(Tc/Ts)が、0.2≦Tc/Ts≦0.8であることを特徴とする透明導電フィルム積層体。
    A transparent conductive film laminate including a transparent conductive film and a carrier film laminated on the transparent conductive film,
    The transparent conductive film is configured by laminating a transparent conductive layer containing fine metal wires on one or both main surfaces of a transparent resin film and an overcoat layer in this order,
    The transparent resin film is an amorphous cycloolefin resin film, and the transparent resin film has a thickness Ts of 30 to 150 μm,
    The carrier film is a polyolefin film, and only one main surface has adhesiveness,
    In the transparent conductive film laminate, the transparent conductive film is detachably laminated on one adhesive main surface of the carrier film so that the overcoat layer is the outermost layer,
    A transparent conductive film laminate, wherein a ratio (Tc/Ts) of the thickness Tc of the carrier film to the thickness Ts of the transparent resin film is 0.2≦Tc/Ts≦0.8.
  2.  前記金属細線を含む透明導電層と、オーバーコート層と、がこの順序で、前記透明樹脂フィルムの一方の主面のみに積層されている、請求項1に記載の透明導電フィルム積層体。 The transparent conductive film laminate according to claim 1, wherein the transparent conductive layer containing the fine metal wires and the overcoat layer are laminated in this order on only one main surface of the transparent resin film.
  3.  前記金属細線を含む透明導電層と、オーバーコート層と、がこの順序で、前記透明樹脂フィルムの両方の主面にそれぞれ積層されている、請求項1に記載の透明導電フィルム積層体。 The transparent conductive film laminate according to claim 1, wherein the transparent conductive layer containing the fine metal wires and the overcoat layer are laminated in this order on both main surfaces of the transparent resin film.
  4.  前記金属細線を構成する元素が、銀又は銅である、請求項1~3のいずれか一項に記載の透明導電フィルム積層体。 The transparent conductive film laminate according to any one of claims 1 to 3, wherein the element constituting the fine metal wires is silver or copper.
  5.  前記金属細線が、銀ナノワイヤの交差部を有するナノ構造ネットワークである、請求項4に記載の透明導電フィルム積層体。 The transparent conductive film laminate according to claim 4, wherein the metal fine wires are a nanostructured network having intersections of silver nanowires.
  6.  前記キャリアフィルムが、プロピレンを重合単位として含むポリオレフィンフィルムである、請求項1~3のいずれか一項に記載の透明導電フィルム積層体。 The transparent conductive film laminate according to any one of claims 1 to 3, wherein the carrier film is a polyolefin film containing propylene as a polymerized unit.
  7.  前記透明樹脂フィルムに前記キャリアフィルムを剥離可能に積層する工程と、
     前記透明樹脂フィルムの、前記キャリアフィルムが積層されている側とは反対側の主面上に前記透明導電層と前記オーバーコート層とを順次形成する工程と、
    を含む、請求項2に記載の透明導電フィルム積層体の製造方法。
    a step of detachably laminating the carrier film on the transparent resin film;
    sequentially forming the transparent conductive layer and the overcoat layer on the main surface of the transparent resin film opposite to the side on which the carrier film is laminated;
    The method for producing a transparent conductive film laminate according to claim 2, comprising
  8.  前記透明樹脂フィルムに第一の前記キャリアフィルムを剥離可能に積層する工程と、
     前記透明樹脂フィルムの、第一の前記キャリアフィルムが積層されている側とは反対側の主面上に前記透明導電層と前記オーバーコート層とを順次形成する工程と、
     前記オーバーコート層に第二の前記キャリアフィルムを剥離可能に積層する工程と、
     前記透明樹脂フィルムに積層された第一の前記キャリアフィルムを剥離する工程と、
     前記透明樹脂フィルムの、前記透明導電層が積層された主面とは反対側の主面上に前記透明導電層と前記オーバーコート層とを順次形成する工程と、
    を含む、請求項3に記載の透明導電フィルム積層体の製造方法。
    a step of detachably laminating the first carrier film on the transparent resin film;
    sequentially forming the transparent conductive layer and the overcoat layer on the main surface of the transparent resin film opposite to the side on which the first carrier film is laminated;
    releasably laminating a second carrier film to the overcoat layer;
    a step of peeling off the first carrier film laminated on the transparent resin film;
    sequentially forming the transparent conductive layer and the overcoat layer on the main surface of the transparent resin film opposite to the main surface on which the transparent conductive layer is laminated;
    The method for producing a transparent conductive film laminate according to claim 3, comprising
  9.  前記透明導電層を湿式工程で形成する、請求項7又は8に記載の透明導電フィルム積層体の製造方法。 The method for producing a transparent conductive film laminate according to claim 7 or 8, wherein the transparent conductive layer is formed by a wet process.
PCT/JP2022/025919 2021-07-15 2022-06-29 Transparent conductive film laminate and method for manufacturing same WO2023286602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-117465 2021-07-15
JP2021117465 2021-07-15

Publications (1)

Publication Number Publication Date
WO2023286602A1 true WO2023286602A1 (en) 2023-01-19

Family

ID=84920044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025919 WO2023286602A1 (en) 2021-07-15 2022-06-29 Transparent conductive film laminate and method for manufacturing same

Country Status (2)

Country Link
TW (1) TW202317375A (en)
WO (1) WO2023286602A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020088112A (en) * 2018-11-22 2020-06-04 日東電工株式会社 Method for manufacturing conductive film
WO2021075424A1 (en) * 2019-10-18 2021-04-22 昭和電工株式会社 Transparent electroconductive film laminate and method for processing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020088112A (en) * 2018-11-22 2020-06-04 日東電工株式会社 Method for manufacturing conductive film
WO2021075424A1 (en) * 2019-10-18 2021-04-22 昭和電工株式会社 Transparent electroconductive film laminate and method for processing same

Also Published As

Publication number Publication date
TW202317375A (en) 2023-05-01

Similar Documents

Publication Publication Date Title
JP6732161B1 (en) Transparent conductive film laminate and processing method thereof
WO2021075424A1 (en) Transparent electroconductive film laminate and method for processing same
KR101587397B1 (en) Alkali developable transparent resin composition
WO2023286602A1 (en) Transparent conductive film laminate and method for manufacturing same
WO2023286601A1 (en) Transparent conductive film laminate and method for producing same
WO2022210585A1 (en) Transparent conductive film and transparent conductive pattern forming method
WO2022210586A1 (en) Transparent conductive film and method for forming transparent conductive pattern
JP7435831B2 (en) Transparent conductive film laminate
WO2023120620A1 (en) Touch panel and method for manufacturing touch panel
JP2024067269A (en) Transparent conductive film laminate, its manufacturing method, and moldable transparent conductive film laminate
JP2023095412A (en) Decorative touch panel and touch panel built-in display
JP2023095255A (en) heater
JP2023095223A (en) Touch sensor and device provided with touch sensor
JP2024066311A (en) Silver nanowire ink and transparent conductive film
TW202212143A (en) Transparent conductive substrate
JP2019179223A (en) Dry film, cured product and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE