WO2023286453A1 - Gas engine system - Google Patents

Gas engine system Download PDF

Info

Publication number
WO2023286453A1
WO2023286453A1 PCT/JP2022/021099 JP2022021099W WO2023286453A1 WO 2023286453 A1 WO2023286453 A1 WO 2023286453A1 JP 2022021099 W JP2022021099 W JP 2022021099W WO 2023286453 A1 WO2023286453 A1 WO 2023286453A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
gas engine
valve
gas
engine system
Prior art date
Application number
PCT/JP2022/021099
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 仲井
洋輔 野中
幹生 ▲高▼橋
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2023286453A1 publication Critical patent/WO2023286453A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present disclosure relates to gas engine systems including hydrogen gas engines.
  • a 4-cycle reciprocating engine includes a crank chamber containing a crankshaft, a cylinder connected to the crank chamber, a piston arranged in a cylinder bore which is an internal space of the cylinder, and a cylinder bore opposite to the crank chamber. Including the cylinder head covering from the side. A combustion chamber is formed between the cylinder head and the piston.
  • the cylinder head has an intake port for supplying air-fuel mixture to the combustion chamber and an exhaust port for discharging combustion gas from the combustion chamber.
  • An exhaust valve is provided that opens and closes.
  • a valve operating chamber is formed on the side opposite to the combustion chamber with the cylinder head interposed therebetween, and a drive mechanism for driving the intake valve and the exhaust valve is arranged in this valve operating chamber.
  • valve train chamber communicates with the crank chamber in order to drop the lubricating oil used for lubricating the drive mechanism into the crank chamber.
  • the blow-by gas mentioned above contains hydrogen, so the crank chamber becomes a hydrogen atmosphere. Therefore, measures against hydrogen embrittlement are applied to parts such as the crankshaft arranged in the crank chamber.
  • valve gear chamber communicates with the crank chamber, it is necessary to take measures against hydrogen embrittlement for the parts placed in the valve gear chamber.
  • an object of the present disclosure is to provide a gas engine system capable of reducing the number of parts requiring measures against hydrogen embrittlement.
  • a gas engine system of the present disclosure includes a hydrogen gas engine including a crank chamber and a valve chamber communicating with the crank chamber, and a gas supplier that supplies gas having a pressure higher than atmospheric pressure to the valve chamber. .
  • FIG. 1 is a schematic configuration diagram of a gas engine system according to a first embodiment
  • FIG. It is a schematic block diagram of the gas engine system which concerns on 2nd Embodiment. It is a schematic block diagram of the gas engine system which concerns on 3rd Embodiment. It is a schematic block diagram of the gas engine system which concerns on other embodiment.
  • FIG. 1 shows a gas engine system 1A according to the first embodiment.
  • the gas engine system 1A may be installed on land and used to drive a generator, or may be mounted on a ship and used to drive a propulsion propeller or a generator.
  • the gas engine system 1A includes a supercharger 2 and a hydrogen gas engine 4.
  • the hydrogen gas engine 4 is a four-cycle reciprocating engine that uses hydrogen as fuel.
  • the hydrogen gas engine 4 may be a gas-only combustion engine that burns only hydrogen, or a dual-fuel engine that burns one or both of hydrogen and another fuel (for example, fuel oil or natural gas). good.
  • the hydrogen gas engine 4 includes a crankshaft 51, a crankcase 41 that houses the crankshaft 51, a cylinder 42 that is connected to the crankcase 41, and a cylinder bore 40 that is an internal space of the cylinder 42, which is opened from the opposite side of the crankcase 41. It includes a covering cylinder head 43 .
  • the number of cylinders 42 is one in FIG. 1, the actual number of cylinders 42 is plural.
  • the hydrogen gas engine 4 includes a piston 53 arranged within the cylinder bore 40 and a rod 52 connecting the piston 53 with the crankshaft 51 .
  • a combustion chamber is formed between the piston 53 and the cylinder head 43 .
  • the cylinder head 43 is formed with an air supply port 61 for supplying a mixture of air and fuel to the combustion chamber and an exhaust port 62 for discharging combustion gas from the combustion chamber.
  • the cylinder head 43 is also provided with an air supply valve 63 that opens and closes the downstream end of the air supply port 61 and an exhaust valve 64 that opens and closes the upstream end of the exhaust port 62 .
  • the hydrogen gas engine 4 includes a valve gear chamber 44 formed on the side opposite to the combustion chamber with the cylinder head 43 interposed therebetween. That is, the cylinder 42 and the cylinder head 43 are interposed between the crank chamber 41 and the valve gear chamber 44 .
  • a driving mechanism for driving the air supply valve 63 and the exhaust valve 64 is arranged in the valve operating chamber 44 .
  • the hydrogen gas engine 4 includes a cam chamber 45 located on the side of the cylinder 42 and a connecting pipe 46 connecting the cam chamber 45 and the valve gear chamber 44 .
  • a camshaft 54 that determines opening/closing timings of the intake valve 63 and the exhaust valve 64, which rotates in conjunction with the crankshaft 51, is arranged.
  • a rod for transmitting power from the camshaft 54 to the drive mechanism is arranged in the connecting tube 46 .
  • the cam chamber 45 is positioned above the crank chamber 41 .
  • An opening 47 is provided at the bottom of the cam chamber 45 .
  • the cam chamber 45 communicates with the crank chamber 41 through this opening 47 .
  • the cam chamber 45 also communicates with the valve gear chamber 44 through a connecting pipe 46 .
  • the valve gear chamber 44 communicates with the crank chamber 41 through the connecting pipe 46 and the cam chamber 45 .
  • the driving mechanism in the valve chamber 44 is supplied with lubricating oil.
  • Lubricating oil used for lubricating the drive mechanism drops from the valve gear chamber 44 into the crank chamber 41 through the connecting pipe 46 , the cam chamber 45 and the opening 47 .
  • the lubricating oil may be stored in the bottom of the crank chamber 41 and supplied again from there to the drive mechanism in the valve gear chamber 44 .
  • blow-by gas leaks into the crank chamber 41 from the gap between the cylinder 42 and the piston 53 (more precisely, the sealing piston ring attached to the piston 53).
  • the air mixed with the blow-by gas in the crank chamber 41 is released into the atmosphere through a mist separator in order to remove the lubricating oil contained in the air.
  • the supercharger 2 includes a compressor 21 connected to an air supply port 61 of the hydrogen gas engine 4 via an air supply path 31 and a turbine 22 connected to an exhaust port 62 of the hydrogen gas engine 4 via an exhaust path 32 .
  • the compressed air pressurized by the compressor 21 flows through the air supply passage 31 and the air supply port 61, and hydrogen, which is fuel, is injected from the fuel injection valve into the compressed air while flowing through the air supply passage 31 and the air supply port 61. air-fuel mixture is generated.
  • the gas engine system 1A includes a gas supplier 7 that supplies gas having a pressure higher than atmospheric pressure to the valve gear chamber 44 of the hydrogen gas engine 4.
  • the gas supplied to the valve gear chamber 44 by the gas supplier 7 is compressed air pressurized by the compressor 21 .
  • the gas supplier 7 includes a supply path 71 branched from the air supply path 31 and connected to the valve operating chamber 44 , and a flow control valve 72 provided in the supply path 71 .
  • the pressure in the valve operating chamber 44 is detected by a pressure sensor, and the flow control valve 72 is controlled so that the detected pressure in the valve operating chamber 44 is constant.
  • gas compressed air in the present embodiment
  • gas having a pressure higher than the atmospheric pressure
  • the flow of blow-by gas into the valve operating chamber 44 is suppressed. Therefore, it is not necessary to take measures against hydrogen embrittlement for the parts arranged in the valve operating chamber 44, and the number of parts requiring measures against hydrogen embrittlement can be reduced.
  • the supply passage 71 of the gas supply device 7 branches from the air supply passage 31 and connects to the valve chamber 44, the compressed air pressurized by the compressor 21 of the supercharger 2 is It can lead to chamber 44 .
  • the flow control valve 72 is controlled so that the pressure in the valve chamber 44 is constant, the amount of compressed air introduced to the valve chamber 44 can be minimized. As a result, a large amount of compressed air to be supplied to the hydrogen gas engine 4 can be ensured.
  • FIG. 2 shows a gas engine system 1B according to the second embodiment.
  • the same constituent elements as those in the first embodiment are denoted by the same reference numerals, and redundant explanations are omitted.
  • the gas supplier 7 that supplies gas having a pressure higher than atmospheric pressure to the valve chamber 44 of the hydrogen gas engine 4 has a supply passage 73 that branches off from the exhaust passage 32 and leads to the valve chamber 44, It includes a flow control valve 74 provided in the supply line 73 . That is, the gas supplied to the valve gear chamber 44 by the gas supplier 7 is the exhaust gas from the combustion chamber.
  • the gas (exhaust gas in this embodiment) having a pressure higher than the atmospheric pressure is supplied to the valve chamber 44, so that the blow-by gas leaking into the crank chamber 41 moves.
  • the flow into the valve chamber 44 is suppressed. Therefore, it is not necessary to take measures against hydrogen embrittlement for the parts arranged in the valve chamber 44, and the number of parts requiring measures against hydrogen embrittlement can be reduced.
  • the exhaust gas before being expanded by the turbine 22 of the supercharger 2 can be guided to the valve gear chamber 44 .
  • FIG. 3 shows a gas engine system 1C according to the third embodiment.
  • the gas supplier 7 that supplies gas having a pressure higher than the atmospheric pressure to the valve chamber 44 of the hydrogen gas engine 4 comprises a tank 75 that stores compressed air, and the tank 75 and the valve chamber 44. It includes a connecting supply line 76 and a flow control valve 77 provided in the supply line 76 .
  • the compressed air stored in the tank 75 is used for the air starter of the hydrogen gas engine 4, for example.
  • gas compressed air in this embodiment
  • gas having a pressure higher than the atmospheric pressure
  • the flow into the valve operating chamber 44 is suppressed. Therefore, it is not necessary to take measures against hydrogen embrittlement for the parts arranged in the valve operating chamber 44, and the number of parts requiring measures against hydrogen embrittlement can be reduced.
  • the compressed air stored in the tank 75 can be used to suppress the inflow of blow-by gas into the valve gear chamber 44 .
  • the camshaft 54 may be arranged in the valve gear chamber 44 without the hydrogen gas engine 4 having the cam chamber 45 .
  • the valve gear chamber 44 may communicate with the crank chamber 41 via a through hole provided in the cylinder head 43 and a communication passage formed along the cylinder 42 .
  • a J-shaped tube 8 is provided at the bottom of the cam chamber 45 instead of the opening 47 (see FIG. 1).
  • the shape of the tube 8 may be a sideways S-shape.
  • a gas engine system of the present disclosure includes a hydrogen gas engine including a crank chamber and a valve chamber communicating with the crank chamber, and a gas supplier that supplies gas having a pressure higher than atmospheric pressure to the valve chamber. .
  • a cylinder and a cylinder head interposed between the crank chamber and the valve chamber, a cam chamber located on the side of the cylinder, and the cam chamber and the valve chamber are connected.
  • the valve train chamber may communicate with the crank chamber via the connecting pipe and the cam chamber.
  • the above gas engine system further comprises a supercharger including a compressor connected to the hydrogen gas engine by an air supply line and a turbine connected to the hydrogen gas engine by an exhaust line, wherein the gas feeder comprises: A supply path branching from the air supply path and leading to the valve operating chamber may be included. According to this configuration, the compressed air pressurized by the compressor of the supercharger can be guided to the valve gear chamber.
  • a flow control valve may be provided in the supply path, and the flow control valve may be controlled so that the pressure in the valve operating chamber is constant. According to this configuration, the amount of compressed air guided to the valve gear chamber can be minimized, and a large amount of compressed air to be supplied to the hydrogen gas engine can be ensured.
  • the above gas engine system further comprises a supercharger including a compressor connected to the hydrogen gas engine by an air supply line and a turbine connected to the hydrogen gas engine by an exhaust line, wherein the gas feeder comprises: A supply path branched from the exhaust path and connected to the valve operating chamber may be included. According to this configuration, the exhaust gas before being expanded by the turbine of the supercharger can be guided to the valve gear chamber.
  • the gas supplier may include a tank that stores compressed air, and a supply path that connects the tank and the valve gear chamber. According to this configuration, the compressed air stored in the tank can be used to suppress blow-by gas from flowing into the valve gear chamber.

Abstract

A gas engine system (1A) according to an embodiment comprises: a hydrogen gas engine (4) including a crankcase (41) and a valve chamber (44) in communication with the crankcase (41); and a gas supply device (7) that supplies, to the valve chamber (44), gas at a pressure higher than atmospheric pressure. For example, the hydrogen gas engine (4) includes: a cylinder (42) and a cylinder head (43) disposed between the crankcase (41) and the valve chamber (44); a cam chamber (45) located beside the cylinder (42); and a connecting pipe (46) connecting the cam chamber (45) and the valve chamber (44). The valve chamber (44) is in communication with the crankcase (41) through the connecting pipe (46) and the cam chamber (45).

Description

ガスエンジンシステムgas engine system
 本開示は、水素ガスエンジンを含むガスエンジンシステムに関する。 The present disclosure relates to gas engine systems including hydrogen gas engines.
 4サイクルのレシプロエンジンでは、空気と燃料の混合気が燃焼室内で圧縮される際に、シリンダとピストン(正確には、ピストンに装着されたシール用のピストンリング)との隙間からクランク室へブローバイガスが漏れ出す(例えば、特許文献1参照)。このブローバイガスには燃料が含まれる。 In a 4-cycle reciprocating engine, when the air-fuel mixture is compressed in the combustion chamber, it blows through the gap between the cylinder and the piston (more precisely, the sealing piston ring attached to the piston) into the crank chamber. Gas leaks out (see Patent Literature 1, for example). This blow-by gas contains fuel.
 一般的に、4サイクルのレシプロエンジンは、クランクシャフトを収容するクランク室と、クランク室と接続されたシリンダと、シリンダの内部空間であるシリンダボア内に配置されたピストンと、シリンダボアをクランク室と反対側から覆うシリンダヘッドを含む。シリンダヘッドとピストンとの間に燃焼室が形成される。 Generally, a 4-cycle reciprocating engine includes a crank chamber containing a crankshaft, a cylinder connected to the crank chamber, a piston arranged in a cylinder bore which is an internal space of the cylinder, and a cylinder bore opposite to the crank chamber. Including the cylinder head covering from the side. A combustion chamber is formed between the cylinder head and the piston.
 シリンダヘッドには、燃焼室へ混合気を供給するための給気口と燃焼室から燃焼ガスを排出するための排気口が形成されるとともに、給気口を開閉する給気弁と排気口を開閉する排気弁が設けられる。また、レシプロエンジンでは、シリンダヘッドを挟んで燃焼室と反対側に動弁室が形成され、この動弁室内に給気弁および排気弁を駆動する駆動機構が配置される。 The cylinder head has an intake port for supplying air-fuel mixture to the combustion chamber and an exhaust port for discharging combustion gas from the combustion chamber. An exhaust valve is provided that opens and closes. Further, in the reciprocating engine, a valve operating chamber is formed on the side opposite to the combustion chamber with the cylinder head interposed therebetween, and a drive mechanism for driving the intake valve and the exhaust valve is arranged in this valve operating chamber.
特開2017-2790号公報Japanese Patent Application Laid-Open No. 2017-2790
 一般的に、上述した動弁室は、駆動機構の潤滑に使用された潤滑油をクランク室に落とすために、クランク室と連通している。 Generally, the above-mentioned valve train chamber communicates with the crank chamber in order to drop the lubricating oil used for lubricating the drive mechanism into the crank chamber.
 ところで、水素を燃料とする水素ガスエンジンでは、上述したブローバイガスに水素が含まれるため、クランク室が水素雰囲気となる。それ故、クランク室内に配置されるクランクシャフトなどの部品に水素脆化対策が施される。 By the way, in a hydrogen gas engine that uses hydrogen as fuel, the blow-by gas mentioned above contains hydrogen, so the crank chamber becomes a hydrogen atmosphere. Therefore, measures against hydrogen embrittlement are applied to parts such as the crankshaft arranged in the crank chamber.
 しかし、動弁室がクランク室と連通する場合、動弁室内に配置される部品にも水素脆化対策を施す必要がある。 However, when the valve gear chamber communicates with the crank chamber, it is necessary to take measures against hydrogen embrittlement for the parts placed in the valve gear chamber.
 そこで、本開示は、水素脆化対策が必要な部品点数を低減することができるガスエンジンシステムを提供することを目的とする。 Therefore, an object of the present disclosure is to provide a gas engine system capable of reducing the number of parts requiring measures against hydrogen embrittlement.
 本開示のガスエンジンシステムは、クランク室および前記クランク室と連通する動弁室を含む水素ガスエンジンと、前記動弁室に大気圧よりも高い圧力のガスを供給するガス供給機と、を備える。 A gas engine system of the present disclosure includes a hydrogen gas engine including a crank chamber and a valve chamber communicating with the crank chamber, and a gas supplier that supplies gas having a pressure higher than atmospheric pressure to the valve chamber. .
 本開示によれば、水素脆化対策が必要な部品点数を低減することができる。 According to the present disclosure, it is possible to reduce the number of parts that require measures against hydrogen embrittlement.
第1実施形態に係るガスエンジンシステムの概略構成図である。1 is a schematic configuration diagram of a gas engine system according to a first embodiment; FIG. 第2実施形態に係るガスエンジンシステムの概略構成図である。It is a schematic block diagram of the gas engine system which concerns on 2nd Embodiment. 第3実施形態に係るガスエンジンシステムの概略構成図である。It is a schematic block diagram of the gas engine system which concerns on 3rd Embodiment. その他の実施形態に係るガスエンジンシステムの概略構成図である。It is a schematic block diagram of the gas engine system which concerns on other embodiment.
 (第1実施形態)
 図1に、第1実施形態に係るガスエンジンシステム1Aを示す。ガスエンジンシステム1Aは、陸上に設置されて発電機の駆動に使用されてもよいし、船舶に搭載されて推進プロペラまたは発電機の駆動に使用されてもよい。
(First embodiment)
FIG. 1 shows a gas engine system 1A according to the first embodiment. The gas engine system 1A may be installed on land and used to drive a generator, or may be mounted on a ship and used to drive a propulsion propeller or a generator.
 具体的に、ガスエンジンシステム1Aは、過給機2および水素ガスエンジン4を含む。水素ガスエンジン4は、水素を燃料とする4サイクルのレシプロエンジンである。水素ガスエンジン4は、水素のみを燃焼させるガス専焼エンジンであってもよいし、水素と別燃料(例えば、燃料油や天然ガスなど)の一方または双方を燃焼させる二元燃料エンジンであってもよい。 Specifically, the gas engine system 1A includes a supercharger 2 and a hydrogen gas engine 4. The hydrogen gas engine 4 is a four-cycle reciprocating engine that uses hydrogen as fuel. The hydrogen gas engine 4 may be a gas-only combustion engine that burns only hydrogen, or a dual-fuel engine that burns one or both of hydrogen and another fuel (for example, fuel oil or natural gas). good.
 水素ガスエンジン4は、クランクシャフト51と、クランクシャフト51を収容するクランク室41と、クランク室41と接続されたシリンダ42と、シリンダ42の内部空間であるシリンダボア40をクランク室41と反対側から覆うシリンダヘッド43を含む。なお、シリンダ42の数は図1では1つであるが、実際のシリンダ42の数は複数である。 The hydrogen gas engine 4 includes a crankshaft 51, a crankcase 41 that houses the crankshaft 51, a cylinder 42 that is connected to the crankcase 41, and a cylinder bore 40 that is an internal space of the cylinder 42, which is opened from the opposite side of the crankcase 41. It includes a covering cylinder head 43 . Although the number of cylinders 42 is one in FIG. 1, the actual number of cylinders 42 is plural.
 さらに、水素ガスエンジン4は、シリンダボア40内に配置されたピストン53と、ピストン53をクランクシャフト51と連結するロッド52を含む。ピストン53とシリンダヘッド43との間に燃焼室が形成される。 Furthermore, the hydrogen gas engine 4 includes a piston 53 arranged within the cylinder bore 40 and a rod 52 connecting the piston 53 with the crankshaft 51 . A combustion chamber is formed between the piston 53 and the cylinder head 43 .
 シリンダヘッド43には、燃焼室へ空気と燃料の混合気を供給するための給気口61と、燃焼室から燃焼ガスを排出するための排気口62が形成されている。また、シリンダヘッド43には、給気口61の下流端を開閉する給気弁63と、排気口62の上流端を開閉する排気弁64が設けられている。 The cylinder head 43 is formed with an air supply port 61 for supplying a mixture of air and fuel to the combustion chamber and an exhaust port 62 for discharging combustion gas from the combustion chamber. The cylinder head 43 is also provided with an air supply valve 63 that opens and closes the downstream end of the air supply port 61 and an exhaust valve 64 that opens and closes the upstream end of the exhaust port 62 .
 水素ガスエンジン4は、シリンダヘッド43を挟んで燃焼室と反対側に形成された動弁室44を含む。すなわち、シリンダ42およびシリンダヘッド43は、クランク室41と動弁室44の間に介在する。動弁室44内には、給気弁63および排気弁64を駆動する駆動機構が配置されている。 The hydrogen gas engine 4 includes a valve gear chamber 44 formed on the side opposite to the combustion chamber with the cylinder head 43 interposed therebetween. That is, the cylinder 42 and the cylinder head 43 are interposed between the crank chamber 41 and the valve gear chamber 44 . A driving mechanism for driving the air supply valve 63 and the exhaust valve 64 is arranged in the valve operating chamber 44 .
 さらに、水素ガスエンジン4は、シリンダ42の脇に位置するカム室45と、カム室45と動弁室44とを接続する接続管46を含む。カム室45内には、クランクシャフト51と連動して回転する、給気弁63および排気弁64の開閉タイミングを決定するカムシャフト54が配置されている。接続管46内には、カムシャフト54から駆動機構へ動力を伝達するロッドが配置されている。 Furthermore, the hydrogen gas engine 4 includes a cam chamber 45 located on the side of the cylinder 42 and a connecting pipe 46 connecting the cam chamber 45 and the valve gear chamber 44 . In the cam chamber 45, a camshaft 54 that determines opening/closing timings of the intake valve 63 and the exhaust valve 64, which rotates in conjunction with the crankshaft 51, is arranged. A rod for transmitting power from the camshaft 54 to the drive mechanism is arranged in the connecting tube 46 .
 カム室45は、クランク室41の上方に位置する。カム室45の底には開口47が設けられている。この開口47を通じて、カム室45はクランク室41と連通している。また、カム室45は接続管46を通じて動弁室44とも連通している。換言すれば、動弁室44は、接続管46およびカム室45を通じてクランク室41と連通している。 The cam chamber 45 is positioned above the crank chamber 41 . An opening 47 is provided at the bottom of the cam chamber 45 . The cam chamber 45 communicates with the crank chamber 41 through this opening 47 . The cam chamber 45 also communicates with the valve gear chamber 44 through a connecting pipe 46 . In other words, the valve gear chamber 44 communicates with the crank chamber 41 through the connecting pipe 46 and the cam chamber 45 .
 動弁室44内の駆動機構には潤滑油が供給される。駆動機構の潤滑に使用された潤滑油は、動弁室44から接続管46、カム室45および開口47を通じてクランク室41に落下する。潤滑油はクランク室41の底に貯留され、ここから動弁室44内の駆動機構に再度供給されてもよい。 The driving mechanism in the valve chamber 44 is supplied with lubricating oil. Lubricating oil used for lubricating the drive mechanism drops from the valve gear chamber 44 into the crank chamber 41 through the connecting pipe 46 , the cam chamber 45 and the opening 47 . The lubricating oil may be stored in the bottom of the crank chamber 41 and supplied again from there to the drive mechanism in the valve gear chamber 44 .
 クランク室41内には、シリンダ42とピストン53(正確には、ピストン53に装着されたシール用のピストンリング)との隙間からクランク室41へブローバイガスが漏れ出す。クランク室41内の、ブローバイガスと混合された空気は、当該空気中に含まれる潤滑油を除去するためにミストセパレータを経て大気中に放出される。 In the crank chamber 41, blow-by gas leaks into the crank chamber 41 from the gap between the cylinder 42 and the piston 53 (more precisely, the sealing piston ring attached to the piston 53). The air mixed with the blow-by gas in the crank chamber 41 is released into the atmosphere through a mist separator in order to remove the lubricating oil contained in the air.
 過給機2は、給気路31により水素ガスエンジン4の給気口61と接続された圧縮機21と、排気路32により水素ガスエンジン4の排気口62と接続されたタービン22を含む。圧縮機21で加圧された圧縮空気は給気路31および給気口61を流れ、給気路31および給気口61を流れる途中で圧縮空気中に燃料噴射弁から燃料である水素が噴射されて混合気が生成される。 The supercharger 2 includes a compressor 21 connected to an air supply port 61 of the hydrogen gas engine 4 via an air supply path 31 and a turbine 22 connected to an exhaust port 62 of the hydrogen gas engine 4 via an exhaust path 32 . The compressed air pressurized by the compressor 21 flows through the air supply passage 31 and the air supply port 61, and hydrogen, which is fuel, is injected from the fuel injection valve into the compressed air while flowing through the air supply passage 31 and the air supply port 61. air-fuel mixture is generated.
 さらに、ガスエンジンシステム1Aは、水素ガスエンジン4の動弁室44に大気圧よりも高い圧力のガスを供給するガス供給機7を含む。本実施形態では、ガス供給機7により動弁室44に供給されるガスが圧縮機21で加圧された圧縮空気である。 Furthermore, the gas engine system 1A includes a gas supplier 7 that supplies gas having a pressure higher than atmospheric pressure to the valve gear chamber 44 of the hydrogen gas engine 4. In this embodiment, the gas supplied to the valve gear chamber 44 by the gas supplier 7 is compressed air pressurized by the compressor 21 .
 具体的に、ガス供給機7は、給気路31から分岐して動弁室44につながる供給路71と、供給路71に設けられた流量制御弁72を含む。本実施形態では、動弁室44の圧力が圧力センサにより検出され、検出される動弁室44の圧力が一定となるように流量制御弁72が制御される。 Specifically, the gas supplier 7 includes a supply path 71 branched from the air supply path 31 and connected to the valve operating chamber 44 , and a flow control valve 72 provided in the supply path 71 . In this embodiment, the pressure in the valve operating chamber 44 is detected by a pressure sensor, and the flow control valve 72 is controlled so that the detected pressure in the valve operating chamber 44 is constant.
 以上説明したように、本実施形態のガスエンジンシステム1Aでは、動弁室44に大気圧よりも高い圧力のガス(本実施形態では圧縮空気)が供給されるので、クランク室41内に漏れ出すブローバイガスが動弁室44へ流入することが抑制される。従って、動弁室44内に配置される部品には水素脆化対策を施す必要がなく、水素脆化対策が必要な部品点数を低減することができる。 As described above, in the gas engine system 1A of the present embodiment, gas (compressed air in the present embodiment) having a pressure higher than the atmospheric pressure is supplied to the valve chamber 44, so that gas leaks into the crank chamber 41. The flow of blow-by gas into the valve operating chamber 44 is suppressed. Therefore, it is not necessary to take measures against hydrogen embrittlement for the parts arranged in the valve operating chamber 44, and the number of parts requiring measures against hydrogen embrittlement can be reduced.
 さらに、本実施形態では、ガス供給機7の供給路71が給気路31から分岐して動弁室44につながるので、過給機2の圧縮機21で加圧された圧縮空気を動弁室44へ導くことができる。しかも、動弁室44の圧力が一定となるように流量制御弁72が制御されるので、動弁室44へ導かれる圧縮空気の量を最小限に抑えることができる。その結果、水素ガスエンジン4へ供給される圧縮空気の量を多く確保することができる。 Furthermore, in this embodiment, since the supply passage 71 of the gas supply device 7 branches from the air supply passage 31 and connects to the valve chamber 44, the compressed air pressurized by the compressor 21 of the supercharger 2 is It can lead to chamber 44 . Moreover, since the flow control valve 72 is controlled so that the pressure in the valve chamber 44 is constant, the amount of compressed air introduced to the valve chamber 44 can be minimized. As a result, a large amount of compressed air to be supplied to the hydrogen gas engine 4 can be ensured.
 (第2実施形態)
 図2に、第2実施形態に係るガスエンジンシステム1Bを示す。なお、本実施形態および後述する第3実施形態において、第1実施形態と同一構成要素には同一符号を付し、重複した説明は省略する。
(Second embodiment)
FIG. 2 shows a gas engine system 1B according to the second embodiment. In addition, in this embodiment and a third embodiment described later, the same constituent elements as those in the first embodiment are denoted by the same reference numerals, and redundant explanations are omitted.
 本実施形態では、水素ガスエンジン4の動弁室44に大気圧よりも高い圧力のガスを供給するガス供給機7が、排気路32から分岐して動弁室44につながる供給路73と、供給路73に設けられた流量制御弁74を含む。すなわち、ガス供給機7により動弁室44に供給されるガスは、燃焼室からの排ガスである。 In this embodiment, the gas supplier 7 that supplies gas having a pressure higher than atmospheric pressure to the valve chamber 44 of the hydrogen gas engine 4 has a supply passage 73 that branches off from the exhaust passage 32 and leads to the valve chamber 44, It includes a flow control valve 74 provided in the supply line 73 . That is, the gas supplied to the valve gear chamber 44 by the gas supplier 7 is the exhaust gas from the combustion chamber.
 本実施形態でも、第1実施形態と同様に、動弁室44に大気圧よりも高い圧力のガス(本実施形態では排ガス)が供給されるので、クランク室41内に漏れ出すブローバイガスが動弁室44へ流入することが抑制される。従って、動弁室44内に配置される部品には水素脆化対策を施す必要がなく、水素脆化対策が必要な部品点数を低減することができる。 In this embodiment, as in the first embodiment, the gas (exhaust gas in this embodiment) having a pressure higher than the atmospheric pressure is supplied to the valve chamber 44, so that the blow-by gas leaking into the crank chamber 41 moves. The flow into the valve chamber 44 is suppressed. Therefore, it is not necessary to take measures against hydrogen embrittlement for the parts arranged in the valve chamber 44, and the number of parts requiring measures against hydrogen embrittlement can be reduced.
 さらに、本実施形態では、過給機2のタービン22で膨張される前の排ガスを動弁室44へ導くことができる。 Furthermore, in this embodiment, the exhaust gas before being expanded by the turbine 22 of the supercharger 2 can be guided to the valve gear chamber 44 .
 (第3実施形態)
 図3に、第3実施形態に係るガスエンジンシステム1Cを示す。本実施形態では、水素ガスエンジン4の動弁室44に大気圧よりも高い圧力のガスを供給するガス供給機7が、圧縮空気を貯留するタンク75と、タンク75と動弁室44とを接続する供給路76と、供給路76に設けられた流量制御弁77を含む。タンク75に貯留された圧縮空気は、例えば、水素ガスエンジン4のエアースタータなどに使用される。
(Third Embodiment)
FIG. 3 shows a gas engine system 1C according to the third embodiment. In this embodiment, the gas supplier 7 that supplies gas having a pressure higher than the atmospheric pressure to the valve chamber 44 of the hydrogen gas engine 4 comprises a tank 75 that stores compressed air, and the tank 75 and the valve chamber 44. It includes a connecting supply line 76 and a flow control valve 77 provided in the supply line 76 . The compressed air stored in the tank 75 is used for the air starter of the hydrogen gas engine 4, for example.
 本実施形態でも、第1実施形態と同様に、動弁室44に大気圧よりも高い圧力のガス(本実施形態では圧縮空気)が供給されるので、クランク室41内に漏れ出すブローバイガスが動弁室44へ流入することが抑制される。従って、動弁室44内に配置される部品には水素脆化対策を施す必要がなく、水素脆化対策が必要な部品点数を低減することができる。 In this embodiment, as in the first embodiment, gas (compressed air in this embodiment) having a pressure higher than the atmospheric pressure is supplied to the valve chamber 44, so that blow-by gas leaking into the crank chamber 41 is prevented. The flow into the valve operating chamber 44 is suppressed. Therefore, it is not necessary to take measures against hydrogen embrittlement for the parts arranged in the valve operating chamber 44, and the number of parts requiring measures against hydrogen embrittlement can be reduced.
 さらに、本実施形態では、タンク75に貯留された圧縮空気を利用して動弁室44へのブローバイガスの流入を抑制することができる。 Furthermore, in this embodiment, the compressed air stored in the tank 75 can be used to suppress the inflow of blow-by gas into the valve gear chamber 44 .
 (その他の実施形態)
 本開示は上述した実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲で種々の変形が可能である。
(Other embodiments)
The present disclosure is not limited to the embodiments described above, and various modifications are possible without departing from the gist of the present disclosure.
 例えば、水素ガスエンジン4がカム室45を有さずに、カムシャフト54が動弁室44内に配置されてもよい。この場合、動弁室44は、シリンダヘッド43に設けられる貫通穴およびシリンダ42に沿って形成される連通路を介してクランク室41と連通してもよい。 For example, the camshaft 54 may be arranged in the valve gear chamber 44 without the hydrogen gas engine 4 having the cam chamber 45 . In this case, the valve gear chamber 44 may communicate with the crank chamber 41 via a through hole provided in the cylinder head 43 and a communication passage formed along the cylinder 42 .
 また、クランク室41内に漏れ出すブローバイガスが動弁室44へ流入することを抑制するための手段としては、ガス供給機7を用いる代わりに、図4に示す変形例のガスエンジンシステム1Dのような構成を採用してもよい。 As a means for suppressing blow-by gas leaking into the crank chamber 41 from flowing into the valve gear chamber 44, instead of using the gas supplier 7, the gas engine system 1D of the modified example shown in FIG. Such a configuration may be adopted.
 具体的に、ガスエンジンシステム1Dでは、カム室45の底に、開口47(図1参照)の代わりにJ字状の管8が設けられている。管8の形状は、横向きのS字状であってもよい。 Specifically, in the gas engine system 1D, a J-shaped tube 8 is provided at the bottom of the cam chamber 45 instead of the opening 47 (see FIG. 1). The shape of the tube 8 may be a sideways S-shape.
 この構成では、管8の向きが下向きから上向きに変わる折れ曲がり部に潤滑油が溜まることによってカム室45とクランク室41との連通が遮断される。従って、この構成でもクランク室41内に漏れ出すブローバイガスが動弁室44へ流入することを抑制することができる。 In this configuration, communication between the cam chamber 45 and the crank chamber 41 is cut off due to the accumulation of lubricating oil in the bent portion where the direction of the pipe 8 changes from downward to upward. Therefore, even with this configuration, blow-by gas leaking into the crank chamber 41 can be prevented from flowing into the valve gear chamber 44 .
 (まとめ)
 本開示のガスエンジンシステムは、クランク室および前記クランク室と連通する動弁室を含む水素ガスエンジンと、前記動弁室に大気圧よりも高い圧力のガスを供給するガス供給機と、を備える。
(summary)
A gas engine system of the present disclosure includes a hydrogen gas engine including a crank chamber and a valve chamber communicating with the crank chamber, and a gas supplier that supplies gas having a pressure higher than atmospheric pressure to the valve chamber. .
 上記の構成によれば、動弁室に大気圧よりも高い圧力のガスが供給されるので、クランク室内に漏れ出すブローバイガスが動弁室へ流入することが抑制される。従って、動弁室内に配置される部品には水素脆化対策を施す必要がなく、水素脆化対策が必要な部品点数を低減することができる。 According to the above configuration, since gas having a pressure higher than the atmospheric pressure is supplied to the valve chamber, blow-by gas leaking into the crank chamber is suppressed from flowing into the valve chamber. Therefore, it is not necessary to take measures against hydrogen embrittlement for the parts arranged in the valve chamber, and the number of parts requiring measures against hydrogen embrittlement can be reduced.
 例えば、前記水素ガスエンジンは、前記クランク室と前記動弁室との間に介在するシリンダおよびシリンダヘッドと、前記シリンダの脇に位置するカム室と、前記カム室と前記動弁室とを接続する接続管を含み、前記動弁室は、前記接続管および前記カム室を介して前記クランク室と連通してもよい。 For example, in the hydrogen gas engine, a cylinder and a cylinder head interposed between the crank chamber and the valve chamber, a cam chamber located on the side of the cylinder, and the cam chamber and the valve chamber are connected. The valve train chamber may communicate with the crank chamber via the connecting pipe and the cam chamber.
 上記のガスエンジンシステムは、給気路により前記水素ガスエンジンと接続された圧縮機、および排気路により前記水素ガスエンジンと接続されたタービンを含む過給機をさらに備え、前記ガス供給機は、前記給気路から分岐して前記動弁室につながる供給路を含んでもよい。この構成によれば、過給機の圧縮機で加圧された圧縮空気を動弁室へ導くことができる。 The above gas engine system further comprises a supercharger including a compressor connected to the hydrogen gas engine by an air supply line and a turbine connected to the hydrogen gas engine by an exhaust line, wherein the gas feeder comprises: A supply path branching from the air supply path and leading to the valve operating chamber may be included. According to this configuration, the compressed air pressurized by the compressor of the supercharger can be guided to the valve gear chamber.
 前記供給路には流量制御弁が設けられており、前記流量制御弁は、前記動弁室の圧力が一定となるように制御されてもよい。この構成によれば、動弁室へ導かれる圧縮空気の量を最小限に抑えることができ、水素ガスエンジンへ供給される圧縮空気の量を多く確保することができる。 A flow control valve may be provided in the supply path, and the flow control valve may be controlled so that the pressure in the valve operating chamber is constant. According to this configuration, the amount of compressed air guided to the valve gear chamber can be minimized, and a large amount of compressed air to be supplied to the hydrogen gas engine can be ensured.
 上記のガスエンジンシステムは、給気路により前記水素ガスエンジンと接続された圧縮機、および排気路により前記水素ガスエンジンと接続されたタービンを含む過給機をさらに備え、前記ガス供給機は、前記排気路から分岐して前記動弁室につながる供給路を含んでもよい。この構成によれば、過給機のタービンで膨張される前の排ガスを動弁室へ導くことができる。 The above gas engine system further comprises a supercharger including a compressor connected to the hydrogen gas engine by an air supply line and a turbine connected to the hydrogen gas engine by an exhaust line, wherein the gas feeder comprises: A supply path branched from the exhaust path and connected to the valve operating chamber may be included. According to this configuration, the exhaust gas before being expanded by the turbine of the supercharger can be guided to the valve gear chamber.
 前記ガス供給機は、圧縮空気を貯留するタンクと、前記タンクと前記動弁室とを接続する供給路を含んでもよい。この構成によれば、タンクに貯留された圧縮空気を利用して動弁室へのブローバイガスの流入を抑制することができる。
 
The gas supplier may include a tank that stores compressed air, and a supply path that connects the tank and the valve gear chamber. According to this configuration, the compressed air stored in the tank can be used to suppress blow-by gas from flowing into the valve gear chamber.

Claims (6)

  1.  クランク室および前記クランク室と連通する動弁室を含む水素ガスエンジンと、
     前記動弁室に大気圧よりも高い圧力のガスを供給するガス供給機と、
    を備える、ガスエンジンシステム。
    a hydrogen gas engine including a crankcase and a valve gear chamber communicating with the crankcase;
    a gas supplier that supplies gas having a pressure higher than atmospheric pressure to the valve chamber;
    A gas engine system comprising:
  2.  前記水素ガスエンジンは、前記クランク室と前記動弁室との間に介在するシリンダおよびシリンダヘッドと、前記シリンダの脇に位置するカム室と、前記カム室と前記動弁室とを接続する接続管を含み、
     前記動弁室は、前記接続管および前記カム室を介して前記クランク室と連通する、請求項1に記載のガスエンジンシステム。
    The hydrogen gas engine includes a cylinder and a cylinder head interposed between the crank chamber and the valve operating chamber, a cam chamber located on the side of the cylinder, and a connection connecting the cam chamber and the valve operating chamber. including tubes,
    2. The gas engine system according to claim 1, wherein said valve gear chamber communicates with said crank chamber via said connecting pipe and said cam chamber.
  3.  給気路により前記水素ガスエンジンと接続された圧縮機、および排気路により前記水素ガスエンジンと接続されたタービンを含む過給機をさらに備え、
     前記ガス供給機は、前記給気路から分岐して前記動弁室につながる供給路を含む、請求項1または2に記載のガスエンジンシステム。
    further comprising a turbocharger including a compressor connected to the hydrogen gas engine by an air supply line, and a turbine connected to the hydrogen gas engine by an exhaust line;
    The gas engine system according to claim 1 or 2, wherein said gas supplier includes a supply passage branching from said air supply passage and leading to said valve gear chamber.
  4.  前記供給路には流量制御弁が設けられており、
     前記流量制御弁は、前記動弁室の圧力が一定となるように制御される、請求項3に記載のガスエンジンシステム。
    A flow control valve is provided in the supply path,
    4. The gas engine system according to claim 3, wherein said flow control valve is controlled such that pressure in said valve chamber is constant.
  5.  給気路により前記水素ガスエンジンと接続された圧縮機、および排気路により前記水素ガスエンジンと接続されたタービンを含む過給機をさらに備え、
     前記ガス供給機は、前記排気路から分岐して前記動弁室につながる供給路を含む、請求項1または2に記載のガスエンジンシステム。
    further comprising a turbocharger including a compressor connected to the hydrogen gas engine by an air supply line, and a turbine connected to the hydrogen gas engine by an exhaust line;
    3. The gas engine system according to claim 1, wherein said gas supplier includes a supply passage branching from said exhaust passage and leading to said valve gear chamber.
  6.  前記ガス供給機は、圧縮空気を貯留するタンクと、前記タンクと前記動弁室とを接続する供給路を含む、請求項1または2に記載のガスエンジンシステム。 The gas engine system according to claim 1 or 2, wherein the gas supplier includes a tank that stores compressed air, and a supply path that connects the tank and the valve gear chamber.
PCT/JP2022/021099 2021-07-15 2022-05-23 Gas engine system WO2023286453A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021116846A JP2023012999A (en) 2021-07-15 2021-07-15 gas engine system
JP2021-116846 2021-07-15

Publications (1)

Publication Number Publication Date
WO2023286453A1 true WO2023286453A1 (en) 2023-01-19

Family

ID=84919949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021099 WO2023286453A1 (en) 2021-07-15 2022-05-23 Gas engine system

Country Status (2)

Country Link
JP (1) JP2023012999A (en)
WO (1) WO2023286453A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029934A (en) * 1973-04-12 1975-03-26
JPH04362227A (en) * 1991-06-06 1992-12-15 Advance Koojienereeshiyon Syst Gijutsu Kenkyu Kumiai Spark ignition gas internal combustion engine
JPH0979022A (en) * 1995-09-08 1997-03-25 Osaka Gas Co Ltd Engine oil degradation preventing method
US6606982B1 (en) * 2002-04-17 2003-08-19 Ford Global Technologies, Llc Crankcase ventilation system for a hydrogen fueled engine
JP2004028287A (en) * 2002-06-28 2004-01-29 Kubota Corp Engine
JP2006527113A (en) * 2003-01-04 2006-11-30 フォード グローバル テクノロジーズ、リミテッド ライアビリティ カンパニー Hydrogen fuel type hybrid powertrain and vehicle
JP2008002316A (en) * 2006-06-21 2008-01-10 Toyota Motor Corp Control device of internal combustion engine
JP2008008247A (en) * 2006-06-30 2008-01-17 Toyota Motor Corp Working gas circulation type hydrogen engine
JP2008111422A (en) * 2006-10-06 2008-05-15 Toyota Motor Corp Blow-by gas processing apparatus
JP2012082840A (en) * 2008-03-04 2012-04-26 Toyota Motor Engineering & Manufacturing North America Inc Two-way valve for turbocharged engine pcv system
US20130042844A1 (en) * 2011-08-17 2013-02-21 GM Global Technology Operations LLC Engine assembly including positive crankcase ventilation with oil surge protection
US9243527B2 (en) * 2013-08-29 2016-01-26 Ford Global Technologies, Llc System and method for reducing friction in engines
JP2020070737A (en) * 2018-10-30 2020-05-07 愛三工業株式会社 Engine system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029934A (en) * 1973-04-12 1975-03-26
JPH04362227A (en) * 1991-06-06 1992-12-15 Advance Koojienereeshiyon Syst Gijutsu Kenkyu Kumiai Spark ignition gas internal combustion engine
JPH0979022A (en) * 1995-09-08 1997-03-25 Osaka Gas Co Ltd Engine oil degradation preventing method
US6606982B1 (en) * 2002-04-17 2003-08-19 Ford Global Technologies, Llc Crankcase ventilation system for a hydrogen fueled engine
JP2004028287A (en) * 2002-06-28 2004-01-29 Kubota Corp Engine
JP2006527113A (en) * 2003-01-04 2006-11-30 フォード グローバル テクノロジーズ、リミテッド ライアビリティ カンパニー Hydrogen fuel type hybrid powertrain and vehicle
JP2008002316A (en) * 2006-06-21 2008-01-10 Toyota Motor Corp Control device of internal combustion engine
JP2008008247A (en) * 2006-06-30 2008-01-17 Toyota Motor Corp Working gas circulation type hydrogen engine
JP2008111422A (en) * 2006-10-06 2008-05-15 Toyota Motor Corp Blow-by gas processing apparatus
JP2012082840A (en) * 2008-03-04 2012-04-26 Toyota Motor Engineering & Manufacturing North America Inc Two-way valve for turbocharged engine pcv system
US20130042844A1 (en) * 2011-08-17 2013-02-21 GM Global Technology Operations LLC Engine assembly including positive crankcase ventilation with oil surge protection
US9243527B2 (en) * 2013-08-29 2016-01-26 Ford Global Technologies, Llc System and method for reducing friction in engines
JP2020070737A (en) * 2018-10-30 2020-05-07 愛三工業株式会社 Engine system

Also Published As

Publication number Publication date
JP2023012999A (en) 2023-01-26

Similar Documents

Publication Publication Date Title
AU2009298633B2 (en) Crankcase pressure regulator for an internal combustion engine
US6575145B2 (en) Fuel supply system for four-cycle outboard motor
US20110277733A1 (en) Engine including positive crankcase ventilation
CN108138664B (en) Engine device
CN102378859B (en) Two-stroke internal combustion engine
PL347373A1 (en) Method for operating a diesel engine
JP5842078B1 (en) Self-igniting large low-speed turbocharged two-stroke internal combustion engine with starting air system
EP0831217B1 (en) Multi-cylinder internal combustion engine
US9085998B2 (en) Engine ventilation apparatus
US7685982B2 (en) Outboard engine unit
KR101681363B1 (en) Gas exchange valve arrangement and cylinder head
US6763795B2 (en) Outboard motor arrangement
WO2023286453A1 (en) Gas engine system
JP4669066B2 (en) Fuel injection system for large two-cycle diesel engines
US11598234B2 (en) Breather device and engine
US6142116A (en) Internal combustion engine with cylinder head having unique head bolt mounting and port arrangement
CN112135963B (en) Internal combustion engine for ship
JP2001082156A (en) Four-cycle internal combustion engine
US20060112912A1 (en) Internal combustion engine
JP4709277B2 (en) Gas fuel internal combustion engine
JP2001012323A (en) Four cycle engine
KR870004227A (en) Manifold Device
CN110725753B (en) Internal combustion engine and modular system for an internal combustion engine
JP2023131355A (en) gas engine system
JP2006144686A (en) Ventilation device for engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE