WO2023286284A1 - Terminal and communication method - Google Patents

Terminal and communication method Download PDF

Info

Publication number
WO2023286284A1
WO2023286284A1 PCT/JP2021/026893 JP2021026893W WO2023286284A1 WO 2023286284 A1 WO2023286284 A1 WO 2023286284A1 JP 2021026893 W JP2021026893 W JP 2021026893W WO 2023286284 A1 WO2023286284 A1 WO 2023286284A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcs
terminal
delta
ack
harq
Prior art date
Application number
PCT/JP2021/026893
Other languages
French (fr)
Japanese (ja)
Inventor
優元 ▲高▼橋
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2023534576A priority Critical patent/JPWO2023286284A1/ja
Priority to PCT/JP2021/026893 priority patent/WO2023286284A1/en
Publication of WO2023286284A1 publication Critical patent/WO2023286284A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to terminals and communication methods.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • LTE-A Long Term Evolution-Advanced
  • FAA Future Radio Access
  • 5G 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • New-RAT Radio Access Technology
  • NR Radio
  • Non-Patent Document 1 For example, in NR, strengthening the function of feedback from terminals to base stations is under consideration in order to improve communication quality (for example, Non-Patent Document 1).
  • One aspect of the present disclosure provides a terminal and communication method capable of determining an appropriate format of an uplink control signal used for transmitting information transmitted from the terminal to the base station.
  • a terminal a control unit that determines the format of an uplink control signal used for transmission of difference information of modulation and coding schemes based on one or both of notification in higher layer signaling and terminal capability, and a transmission unit that transmits the difference information using the uplink control signal in the determined format.
  • a communication method determines a format of an uplink control signal used for transmission of differential information of modulation and coding schemes based on one or both of notification in higher layer signaling and terminal capability, and The difference information is transmitted using the uplink control signal in the format specified.
  • FIG. 4 is a diagram illustrating an example of UCI mapping for PUCCH format 0;
  • FIG. 4 is a diagram illustrating an example of UCI mapping in PUCCH format 1;
  • 1 is a diagram showing an example of Opt.1 in PF0 of Proposal 1.
  • FIG. 2 is a diagram showing an example of Opt.2 in PF0 of Proposal 1.
  • FIG. 1 is a diagram showing an example of Opt.1 in PF1 of Proposal 1.
  • FIG. FIG. 10 is a diagram showing an example of Proposal 2; 1-1 of Proposal 2 is a diagram showing an example.
  • FIG. 10 is a diagram showing an example of Opt.1-3 of Proposal 2; 1-4 of Proposal 2 are examples.
  • FIG. 1-5 of Proposal 2 are examples.
  • FIG. 1-6 of Proposal 2 are examples.
  • FIG. FIG. 10 is a diagram showing an example of Proposal 3;
  • FIG. 10 is a diagram showing an example of Proposal 4;
  • FIG. 10 is a diagram showing an example of Proposal 5;
  • 1 is a diagram illustrating an example of a radio communication system according to an embodiment;
  • FIG. 1 is a block diagram showing an example of the configuration of a base station according to this embodiment;
  • FIG. FIG. 2 is a block diagram showing an example of a configuration of a terminal according to this embodiment;
  • FIG. 1 is a diagram illustrating an example of hardware configurations of a base station and a terminal according to an embodiment of the present disclosure;
  • FIG. 1 is a diagram illustrating an example of hardware configurations of a base station and a terminal according to
  • URLLC will consider enhancing terminal feedback for Hybrid Automatic Repeat request - Acknowledgment (HARQ-ACK) and enhancing Channel State Information (CSI) feedback for more accurate Modulation and Coding Scheme (MCS) selection.
  • HARQ-ACK is an example of information related to acknowledgment (eg, acknowledgment) for data received by the terminal. Physical layer feedback enhancements are being considered for these URLLC considerations.
  • the terminals feed back information on MCS to the base station.
  • Information fed back from the terminal to the base station is included, for example, in uplink control information (eg, Uplink Control Information (UCI)).
  • uplink control information eg, Uplink Control Information (UCI)
  • the information about the MCS includes information indicating the desired MCS, information indicating the difference between the current MCS (MCS at a certain timing) and the desired MCS, the desired MCS, or the current MCS and/or information indicating an index associated with the difference from the desired MCS.
  • information indicating a desired MCS may include an MCS Index.
  • the information indicating the desired MCS may use, for example, the MCS Index defined in the MCS Index table defined in 3GPP TS38.214.
  • the terminal fails to decode a Physical Downlink Shared Channel (PDSCH) transmitted with a certain MCS Index (MCS Index #i (i is an integer of 0 or more)).
  • MCS Index #j lower than MCS Index #i used in (j is an integer greater than or equal to 0 and less than i) is set to the desired MCS Index, and the desired MCS index #j is included in the information to be fed back. good.
  • the terminal may transmit feedback including MCS Index#0 lower than MCS Index#5 to the base station.
  • Information indicating the difference between the current MCS and the desired MCS is determined based on the current MCS and the desired MCS.
  • the current MCS and the desired MCS may use the MCS Index defined in the MCS Index table defined in 3GPP TS38.214.
  • the terminal when the terminal fails to decode PDSCH transmitted with a certain MCS Index#i, the terminal sets desired MCS Index#j, The difference from MCSIndex#j (for example, "ji") may be included in the feedback information.
  • the desired MCS Index may be lower than the current MCS Index. For example, if the terminal fails to decode the PDSCH transmitted with MCS Index#5 and sets the desired MCS Index to MCS Index#2, the terminal may transmit feedback including "-3" to the base station. good.
  • a table defined for feedback may be introduced. Two examples of tables defined for feedback are given below.
  • a table in which desired MCSs and indexes are associated may be defined, and an index associated with the desired MCS may be selected from the defined table. The selected index may be included in the feedback information.
  • FIG. 1 is a diagram showing a first example of the table.
  • the table defined for feedback may be a table that associates a specifiable MCS Index with an Index that is information to be fed back.
  • the MCS Index that can be specified using the table shown in FIG. 1 may be associated with the MCS Index table defined in 3GPP TS38.214.
  • the MCS Index specifiable using the table shown in FIG. 1 may be part of the MCS Index specifiable in the MCS Index table defined in 3GPP TS38.214.
  • the terminal may select a desired MCS Index from the table shown in FIG. 1 and transmit feedback information including the Index associated with the selected MCS Index to the base station.
  • the bit size of Index associated with MCS Index may be smaller than the bit size of MCS Index.
  • the bit size of feedback can be reduced, and the signaling load can be suppressed.
  • a table may be defined in which the difference between the current MCS and the desired MCS (hereafter referred to as delta value) is associated with an index, and the index associated with the delta value may be selected from the defined table.
  • the selected index may be included in the feedback information.
  • FIG. 2 is a diagram showing a second example of the table.
  • the table defined for feedback may be a table that associates Delta values with Indexes that are information to be fed back. Delta values may be associated with the MCS Index table defined in 3GPP TS38.214.
  • Delta value in the table shown in FIG. 2 may mean the difference of MCS Index that can be specified in the MCS Index table defined in 3GPPTS38.214.
  • the terminal sets the desired MCS and determines the Delta value, which is the difference between the current MCS and the desired MCS. Then, the terminal may select the determined delta value from the table shown in FIG. 2 and transmit feedback information including the index associated with the selected delta value to the base station.
  • the bit size of the Index associated with the Delta value may be smaller than the bit size of the Delta value.
  • the bit size of feedback can be reduced, and the signaling load can be suppressed.
  • delta-MCS information on MCS mentioned above is referred to as “delta-MCS”.
  • delta-MCS is not limited to the above information example, and may be information different from the above example.
  • delta-MCS may be information about MCS that is different from the information examples described above.
  • delta-MCS may be replaced with other names such as “delta-CQI”.
  • PUCCH is an abbreviation for Physical Uplink Control Channel.
  • UCI stands for Uplink Control Information.
  • Sending may also be translated as reporting, notification, or feedback.
  • FIG. 3 is a diagram illustrating an example of UCI mapping for PUCCH format 0.
  • ⁇ 0 , ⁇ 1 , . . . , ⁇ 11 shown in FIG. 3 indicate cyclic shift values (cyclic shift amounts).
  • ⁇ 0 , ⁇ 1 , . . . , ⁇ 11 may each have values of 0, 1, .
  • x in ⁇ x shown in FIG. 3 takes values of 0, 1, .
  • the cyclic shift amount of the base sequence is "3".
  • a cyclically shifted base sequence is mapped to a 1-symbol or 2-symbol Physical Resource Block (PRB).
  • PRB Physical Resource Block
  • the terminal determines the values of m0 and m_cs to calculate the cyclic shift amount.
  • the terminal may, for example, set the value obtained by adding the determined m0 and m_cs as the cyclic shift amount “ ⁇ ”.
  • m 0 is provided to the terminal based on Radio Resource Control (RRC) parameters (eg, initialCyclicShift).
  • RRC Radio Resource Control
  • m 0 is used for multiplexing UCI between terminals.
  • m_cs may be determined based on the HARQ-ACK (HARQ-ACK information bits) transmitted to the base station.
  • m_cs when HARQ-ACK is indicated by 1 bit and HARQ-ACK of "0" is transmitted to the base station, m_cs may be “0". In addition, when HARQ-ACK is indicated by 1 bit and HARQ-ACK of "1" is transmitted to the base station, m_cs may be "6" (for example, TS 38.213 V16.6.0 See Table 9.2.3-3).
  • m_cs may be "0".
  • m_cs may be '3' (for example, TS 38.213 V16.6.0 See Table 9.2.3-4).
  • m_cs may be determined based on the Scheduling Request (SR) sent to the base station. For example, m_cs may be '0' when sending a positive SR to the base station.
  • SR Scheduling Request
  • m_cs may be determined based on the HARQ-ACK value sent to the base station and the Scheduling Request (SR) sent to the base station. That is, HARQ-ACK and SR may be multiplexed in one PUCCH (PUCCH resource) and transmitted to the base station.
  • PUCCH PUCCH resource
  • m_cs when HARQ-ACK is indicated by 1 bit and HARQ-ACK of "0" and negative SR are transmitted to the base station (when SR is not transmitted to the base station), m_cs is "0 ' may be Also, when HARQ-ACK is indicated by 1 bit and HARQ-ACK of "1" and negative SR are transmitted to the base station, m_cs may be "6". Also, when HARQ-ACK is indicated by 1 bit and HARQ-ACK of "0" and positive SR are transmitted to the base station, m_cs may be "3".
  • m_cs may be "9” (for example, TS See Table 9.2.5-1 in 38.213 V16.6.0).
  • m_cs when HARQ-ACK is indicated by 2 bits and HARQ-ACK of "00" and negative SR are transmitted to the base station, m_cs may be “0". In addition, when HARQ-ACK is indicated by 2 bits and HARQ-ACK of "00" and positive SR are transmitted to the base station, m_cs may be “1”. Further, when HARQ-AC is indicated by 2 bits and HARQ-ACK of "01" and negative SR are transmitted to the base station, m_cs may be "3".
  • m_cs may be '4' (for example, TS See Table 9.2.5-2 in 38.213 V16.6.0).
  • FIG. 4 is a diagram illustrating an example of UCI mapping for PUCCH format 1.
  • ⁇ 0 , ⁇ 1 , . . . , ⁇ 11 shown in FIG. 4 indicate cyclic shift amounts.
  • ⁇ 0 , ⁇ 1 , . . . , ⁇ 11 may each have values of 0, 1, .
  • UCI d(0) and Demodulation Reference Signal are multiplied by base sequence, cyclic shift, and time domain- Orthogonal cover code (TD-OCC).
  • UCI d(0) multiplied by base sequence, cyclic shift, and TD-OCC and DMRS are mapped to PRBs of n symbols (where n is an integer from 4 to 14).
  • UCI d(0) may be determined based on the 1-bit or 2-bit HARQ-ACK sent to the base station. UCI d(0) may be determined based on positive SRs sent to the base station.
  • m0 indicates the amount of cyclic shift and is provided to the terminal based on Radio Resource Control (RRC) parameters (eg, initialCyclicShift).
  • RRC Radio Resource Control
  • m 0 is used for multiplexing UCI between terminals.
  • TD-OCC is used for multiplexing UCI between terminals.
  • HARQ-ACK and SR may be multiplexed and transmitted to the base station.
  • the terminal determines PUCCH resources to be used for HARQ-ACK transmission depending on whether the SR is positive SR or negative SR.
  • the terminal when the terminal transmits HARQ-ACK and positive SR to the base station, it uses PUCCH resources for SR transmission to transmit HARQ-ACK to the base station.
  • the terminal uses PUCCH resources for HARQ-ACK transmission to transmit HARQ-ACK to the base station.
  • the base station determines that a positive SR has been transmitted when HARQ-ACK is transmitted using PUCCH resources for SR transmission.
  • the base station determines that a positive SR was transmitted when HARQ-ACK was transmitted using the PUCCH resource for HARQ-ACK transmission.
  • delta-MCS is transmitted in PUCCH format 0 and/or PUCCH format 1.
  • delta-MCS is transmitted in PUCCH format 0 and/or PUCCH format 1
  • mapping rule method of delta-MCS (delta-MCS information bits) to the PUCCH format sequence.
  • delta-MCS when delta-MCS is transmitted with HARQ-ACK and/or SR in PUCCH format 0 and/or PUCCH format 1 (when delta-MCS is multiplexed with HARQ-ACK and/or SR),
  • the rules for mapping delta-MCS to PUCCH format sequences are subject to discussion.
  • the PUCCH format used for transmitting information from the terminal to the base station is determined appropriately.
  • the rules for mapping delta-MCS to the PUCCH format sequence are determined.
  • a mapping rule for delta-MCS multiplexed with HARQ-ACK and/or SR to the PUCCH format sequence is determined.
  • PUCCH may be rephrased as an uplink control signal.
  • PUCCH format may be referred to as PF.
  • the terminal may determine whether it can send delta-MCS on PF0 and/or PF1 (PF0/1).
  • the terminal may decide to send delta-MCS in PF0.
  • the terminal may decide to send delta-MCS on PF1.
  • the terminal may decide to send delta-MCS on PF0 and PF1.
  • the terminal may decide not to send delta-MCS on PF0 and PF1.
  • the terminal may transmit delta-MCS in PFs other than PF0 and PF1.
  • the terminal may transmit delta-MCS in at least one PF of PF2, PF3, and PF4.
  • the terminal which of the above Opt.1 to Opt.4 is used, may be determined by information on the terminal's capabilities (eg, UE Capability), may be determined by RRC parameters, or may be determined by the UE It may be defined by both Capability and RRC parameters.
  • UE Capability information on the terminal's capabilities
  • RRC parameters may be determined by the UE It may be defined by both Capability and RRC parameters.
  • UE Capability and/or RRC parameters may be defined for each PF, may be defined for each UCI type, or may be defined for each UCI payload size. That is, transmission using PF0/1 of delta-MCS may be defined for each PF, may be defined for each UCI type, or may be defined for each UCI payload size in the UE Capability and/or RRC parameters. may be Note that UCI type indicates whether or not delta-MCS, HARQ-ACK, and SR are multiplexed and transmitted.
  • delta-MCS transmission may be specified in the UE Capability that PF0/1 is supported.
  • delta-MCS transmission may be defined in the UE Capability that only delta-MCS transmission is supported in PF0/1.
  • delta-MCS transmission may be specified in the UE Capability that transmission (multiplexing) with HARQ-ACK is supported in PF0/1.
  • delta-MCS transmission may be specified in the UE Capability that transmission (multiplexing) with SR is supported in PF0/1.
  • delta-MCS transmission may be defined in UE Capability that 1-bit delta-MCS transmission and 1-bit HARQ-ACK transmission are supported in PF0/1.
  • UE Capability may define that 2-bit delta-MCS transmission and 1-bit HARQ-ACK transmission are supported in PF0/1.
  • delta-MCS transmission may be specified in the UE Capability that 1-bit delta-MCS transmission and 2-bit HARQ-ACK transmission are supported in PF0/1.
  • ⁇ Proposal 1 mapping rule of delta-MCS on PF0/1 only> ⁇ On PF0>
  • the terminal may map delta-MCS to PUCCH resources of PF0 without multiplexing with other UCI (eg, HARQ-ACK and/or SR) using the following rules.
  • the terminal may use (reuse) the mapping rule of HARQ-ACK to the PUCCH resource of PF0. For example, the terminal may map delta-MCS to the PUCCH resource of PF0 based on the same rule as the mapping rule of HARQ-ACK to the PUCCH resource of PF0 described in FIG.
  • Fig. 5 is a diagram showing an example of Opt.1 in PF0 of Proposal 1.
  • the terminal may determine m_cs based on the value of delta-MCS transmitted to the base station.
  • the terminal may use a new rule to map delta-MCS to the PUCCH resource of PF0 without multiplexing it with other UCIs.
  • the terminal may use a different rule for mapping HARQ-ACK to PUCCH resources of PF0.
  • Fig. 6 is a diagram showing an example of Opt.2 in PF0 of Proposal 1.
  • the terminal may determine m_cs based on the value of delta-MCS transmitted to the base station.
  • the terminal may decide whether to apply Opt.1 or Opt.2 based on UE Capability and/or RRC parameters.
  • the terminal may use (reuse) the mapping rule of HARQ-ACK to the PUCCH resource of PF1. For example, the terminal may map delta-MCS to the PUCCH resource of PF1 based on the same rule as the mapping rule of HARQ-ACK to the PUCCH resource of PF1 described in FIG.
  • Fig. 7 is a diagram showing an example of Opt.1 in PF1 of Proposal 1.
  • the terminal may determine UCI d(0) based on the value of delta-MCS transmitted to the base station. For example, if the delta-MCS is indicated by 1 bit, the terminal may determine the binary phase-shift keying (BPSK) signal point (UCI d(0)) based on the 1-bit delta-MCS. . If the delta-MCS is indicated by 2 bits, the terminal may determine the quadrature phase shift keying (QPSK) signal point (UCI d(0)) based on the 2-bit delta-MCS.
  • BPSK binary phase-shift keying
  • QPSK quadrature phase shift keying
  • ⁇ Proposal 2 Delta-MCS of PF0 with other UCI of PF0> ⁇ Opt.1>
  • the terminal may multiplex the delta-MCS in PF0 with other UCI in PF0 and map it to the PUCCH resource of PF0. For example, when the transmission timing of delta-MCS in PF0 and the transmission timing of another UCI in PF0 overlap (collide), the terminal multiplexes the delta-MCS in PF0 and the other UCI in PF0. , may be mapped to the PUCCH resource of PF0.
  • the terminal uses (r recipients) the mapping rule of HARQ-ACK and SR to the PUCCH resource of PF0 for the mapping rule of delta-MCS and other UCI to the PUCCH resource of PF0.
  • the terminal may drop the delta-MCS in PF0 when the transmission timing of delta-MCS in PF0 overlaps with the transmission timing of another UCI in PF0. For example, the terminal may not map delta-MCS to the PUCCH resource of PF0 and map other UCI to the PUCCH resource of PF0.
  • the terminal may drop the other UCI. For example, the terminal may map delta-MCS to the PUCCH resource of PF0 without mapping other UCIs to the PUCCH resource of PF0.
  • FIG. 8 is a diagram showing an example of Proposal 2.
  • FIG. 8 shows an operation example of a terminal when the transmission timing of 1-bit delta-MCS in PF0 overlaps with the transmission timing of another UCI in PF0.
  • FIG. 8 shows an operation example of a terminal when the transmission timing of 2-bit delta-MCS in PF0 overlaps with the transmission timing of another UCI in PF0.
  • Opt.1-1 to Opt.1-6 shown in FIG. 8 are derivatives of ⁇ Opt.1> above.
  • Opt.2 to Opt.4 shown in FIG. 8 correspond to ⁇ Opt.2> to ⁇ Opt.4> above.
  • Opt.1-1 to Opt.1-6 which are derived from Opt.1, will be explained below.
  • FIG. 9 is a diagram showing an example of Opt.1-1 of Proposal 2.
  • FIG. 9 1-bit delta-MCS and 1-bit HARQ-ACK may be multiplexed.
  • FIG. 10 is a diagram showing an example of Opt.1-2 of Proposal 2.
  • FIG. 10 As shown in FIG. 10, 1-bit delta-MCS and 2-bit HARQ-ACK may be multiplexed.
  • FIG. 11 is a diagram showing an example of Opt.1-3 of Proposal 2.
  • FIG. 11 As shown in FIG. 11, 1-bit SR and 1-bit delta-MCS may be multiplexed.
  • FIG. 12 is a diagram showing an example of Opt.1-4 of Proposal 2.
  • FIG. 12 As shown in FIG. 12, 1-bit HARQ-ACK, 1-bit SR, and 1-bit delta-MCS may be multiplexed.
  • FIG. 13 is a diagram showing an example of Opt.1-5 of Proposal 2.
  • FIG. 13 As shown in FIG. 13, 1-bit HARQ-ACK and 2-bit delta-MCS may be multiplexed.
  • ⁇ Opt.1-6> 14 is a diagram showing an example of Opt.1-6 of Proposal 2.
  • FIG. 14 As shown in FIG. 14, 1-bit SR and 2-bit delta-MCS may be multiplexed.
  • ⁇ Case 1a Case where the transmission timing of 1-bit delta-MCS overlaps with the transmission timing of 1-bit HARQ-ACK>
  • the terminal may multiplex 1-bit delta-MCS and 1-bit HARQ-ACK in case 1a.
  • the terminal may apply Opt.1-1 described in FIG. 9 to multiplex 1-bit delta-MCS and 1-bit HARQ-ACK.
  • the terminal may apply Opt.2 in Case 1a.
  • the terminal may drop delta-MCS.
  • the terminal may apply Opt.3.
  • the terminal may drop 1-bit HARQ-ACK.
  • the terminal may drop HARQ-ACK and transmit delta-MCS to the base station.
  • ⁇ Case 2a Case where the transmission timing of 1-bit delta-MCS and the transmission timing of 2-bit HARQ-ACK overlap>
  • the terminal may multiplex 1-bit delta-MCS and 2-bit HARQ-ACK in case 2a.
  • the terminal may apply Opt.1-2 described in FIG. 10 to multiplex 1-bit delta-MCS and 2-bit HARQ-ACK.
  • the terminal may apply Opt.2 in Case 2a.
  • the terminal may drop delta-MCS.
  • ⁇ Case 3a Case where the transmission timing of 1-bit delta-MCS overlaps with the transmission timing of 1-bit SR>
  • the terminal may multiplex 1-bit delta-MCS and 1-bit SR in case 3a.
  • the terminal may apply Opt.1-3 described in FIG. 11 to multiplex 1-bit delta-MCS and 1-bit SR.
  • the terminal may apply Opt.2 in Case 3a.
  • the terminal may drop delta-MCS.
  • ⁇ Case 4a Case where the transmission timing of 1-bit delta-MCS, the transmission timing of 1-bit HARQ-ACK, and the transmission timing of 1-bit SR overlap>
  • the terminal may multiplex 1-bit delta-MCS, 1-bit HARQ-ACK, and 1-bit SR.
  • the terminal may apply Opt.1-4 described in FIG. 12 and multiplex 1-bit delta-MCS, 1-bit HARQ-ACK, and 1-bit SR.
  • the terminal may apply Opt.2 in Case 4a.
  • the terminal may drop delta-MCS.
  • the terminal may multiplex 1-bit HARQ-ACK and 1-bit SR.
  • the terminal may apply Opt.3 in case 4a.
  • the terminal may drop the SR.
  • the terminal may multiplex 1-bit delta-MCS and 1-bit HARQ-ACK.
  • the terminal may apply Opt.1-1 or 1-2 described in FIG. 9 to multiplex 1-bit delta-MCS and 1-bit HARQ-ACK.
  • the terminal may apply Opt.4 in case 4a.
  • the terminal may drop HARQ-ACK.
  • the terminal may multiplex 1-bit delta-MCS and 1-bit SR.
  • the terminal may apply Opt.1-3 described in FIG. 11 and multiplex 1-bit delta-MCS and 1-bit HARQ-ACK.
  • ⁇ Case 5a Case where the transmission timing of 1-bit delta-MCS, the transmission timing of 2-bit HARQ-ACK, and the transmission timing of 1-bit SR overlap>
  • the terminal may apply Opt.2 and drop the delta-MCS in Case 5a.
  • the terminal may multiplex 2-bit HARQ-ACK and 1-bit SR in Case 5a.
  • the terminal may apply Opt.3 and drop the SR.
  • the terminal may multiplex 1-bit delta-MCS and 2-bit HARQ-ACK in case 5a.
  • the terminal may apply Opt.1-2 described in FIG. 10 and multiplex 2-bit HARQ-ACK and 1-bit delta-MCS.
  • the terminal may apply Opt.4 and drop the HARQ-ACK.
  • the terminal may multiplex 1-bit delta-MCS and 1-bit SR in case 5a.
  • the terminal may apply Opt.1-3 described in FIG. 11 to multiplex 1-bit delta-MCS and 1-bit SR.
  • ⁇ Case 1b Case where the transmission timing of 2-bit delta-MCS and the transmission timing of 1-bit HARQ-ACK overlap>
  • the terminal may multiplex 2-bit delta-MCS and 1-bit HARQ-ACK in case 1b.
  • the terminal may apply Opt.1-5 described in FIG. 13 and multiplex 2-bit delta-MCS and 1-bit HARQ-ACK.
  • the terminal may apply Opt.2 in case 1b.
  • the terminal may drop delta-MCS.
  • ⁇ Case 2b Case where the transmission timing of 2-bit delta-MCS and the transmission timing of 2-bit HARQ-ACK overlap>
  • the terminal may apply Opt.2 and drop the delta-MCS in case 2b.
  • the terminal may apply Opt.3 and drop the HARQ-ACK.
  • the terminal when applying Opt.3 and dropping HARQ-ACK, if the reception result of the downlink signal is NACK, the terminal drops HARQ-ACK and transmits delta-MCS to the base station.
  • ⁇ Case 3b Case where the transmission timing of 2-bit delta-MCS and the transmission timing of 1-bit SR overlap>
  • the terminal may multiplex 2-bit delta-MCS and 1-bit SR in case 3b.
  • the terminal may apply Opt.1-6 described in FIG. 14 and multiplex 2-bit delta-MCS and 1-bit SR.
  • the terminal may apply Opt.2 and drop the delta-MCS.
  • ⁇ Case 4b Case where the transmission timing of 2-bit delta-MCS, the transmission timing of 1-bit HARQ-ACK, and the transmission timing of 1-bit SR overlap>
  • the terminal may apply Opt.2 and drop the delta-MCS in case 4b.
  • the terminal may apply Opt.3 and drop the SR.
  • the terminal may multiplex 2-bit delta-MCS and 1-bit HARQ-ACK.
  • the terminal may apply Opt.1-5 described in FIG. 13 and multiplex 2-bit delta-MCS and 1-bit HARQ-ACK.
  • the terminal may apply Opt.4 and drop the HARQ-ACK.
  • the terminal may multiplex 2-bit delta-MCS and 1-bit SR.
  • the terminal when applying Opt.4 and dropping HARQ-ACK, if the reception result of the downlink signal is NACK, the terminal drops HARQ-ACK and transmits delta-MCS to the base station.
  • ⁇ Case 5b Case where the transmission timing of 2-bit delta-MCS, the transmission timing of 2-bit HARQ-ACK, and the transmission timing of 1-bit SR overlap>
  • the terminal may apply Opt.2 and drop the delta-MCS in Case 5b.
  • the terminal may multiplex 2-bit HARQ-ACK and 1-bit SR in case 5b.
  • the terminal may apply Opt.3 and drop the HARQ-ACK.
  • the terminal may multiplex 1-bit delta-MCS and 1-bit SR in case 5b.
  • the terminal may apply Opt.1-6 described in FIG. 14 to multiplex 2-bit delta-MCS and 1-bit SR.
  • the terminal may multiplex the delta-MCS in PF1 with other UCI in PF1 and map it to the PUCCH resource of PF1. For example, when the transmission timing of delta-MCS in PF1 and the transmission timing of another UCI in PF1 overlap, the terminal multiplexes the delta-MCS in PF1 and the other UCI in PF1, and uses the PUCCH resource of PF1. can be mapped to FIG. 15 is a diagram showing an example of Proposal 3. FIG.
  • ⁇ Case 1 Case where the transmission timing of delta-MCS and the transmission timing of HARQ-ACK overlap> ⁇ Opt.1>
  • the terminal determines PUCCH resources to be used for transmitting delta-MCS and HARQ-ACK.
  • a terminal may select a PUCCH resource based on whether delta-MCS has delta information.
  • the terminal uses PUCCH resources for delta-MCS transmission to transmit HARQ-ACK to the base station.
  • the terminal uses PUCCH resources for HARQ-ACK transmission to transmit HARQ-ACK to the base station.
  • the terminal uses the PUCCH resource for delta-MCS transmission, HARQ-ACK to the base station Send.
  • the terminal uses PUCCH resources for HARQ-ACK transmission to transmit HARQ-ACK to the base station. .
  • the terminal may select PUCCH resources based on the delta value. For example, the terminal may select PUCCH resources based on delta values such as '-1' and '1'. For example, if the current MCS is greater than the desired MCS, the terminal determines a delta value of '-1' and uses PUCCH resources corresponding to the delta value of '-1' to transmit HARQ-ACK. may If the current MCS is less than the desired MCS, the terminal may determine a delta value of '1' and transmit HARQ-ACK using PUCCH resources corresponding to the delta value of '1'.
  • the terminal may select PUCCH resources based on whether HARQ-ACK is ACK (or NACK).
  • the terminal uses PUCCH resources for HARQ-ACK transmission to transmit HARQ-ACK to the base station.
  • the terminal uses PUCCH resources for delta-MCS transmission to transmit HARQ-ACK to the base station.
  • either Delta-MCS or HARQ-ACK is 1 bit.
  • the terminal may drop the delta-MCS and send HARQ-ACK to the base station.
  • the terminal may drop HARQ-ACK and send delta-MCS to the base station.
  • ⁇ Case 2 Case where delta-MCS transmission timing and SR transmission timing overlap> ⁇ Opt.1>
  • the terminal determines PUCCH resources to be used for transmitting delta-MCS and SR.
  • the terminal determines PUCCH resources to be used for delta-MCS transmission depending on whether the SR is positive SR or negative SR.
  • the terminal when the terminal transmits delta-MCS and positive SR to the base station, it uses PUCCH resources for SR transmission to transmit delta-MCS to the base station.
  • the terminal uses PUCCH resources for delta-MCS transmission to transmit delta-MCS to the base station.
  • the terminal may drop the SR and send the delta-MCS to the base station.
  • the terminal may drop delta-MCS and send SR to the base station.
  • the terminal may drop the delta-MCS and send HARQ-ACK and SR to the base station (eg, see FIG. 4).
  • the terminal may drop the SR and send HARQ-ACK and delta-MCS to the base station.
  • the terminal may apply Option 1 of case 1 and transmit HARQ-ACK and SR to the base station.
  • the terminal may drop HARQ-ACK and send delta-MCS and SR to the base station.
  • the terminal may apply Option 1 of case 2 and transmit delta-MCS and SR to the base station.
  • ⁇ Proposal 4 Delta-MCS of PF0 with other UCI of PF1>
  • the terminal may multiplex the delta-MCS in PF0 with other UCIs in PF1 and map them to PUCCH resources in PF0/1. For example, when the transmission timing of delta-MCS in PF0 and the transmission timing of another UCI in PF1 overlap, the terminal multiplexes the delta-MCS in PF0 and the other UCI in PF1, and It may be mapped to a PUCCH resource.
  • FIG. 16 is a diagram showing an example of Proposal 4. FIG.
  • ⁇ Case 1 Case where the transmission timing of delta-MCS and the transmission timing of HARQ-ACK overlap> ⁇ Opt.1>
  • the terminal may multiplex delta-MCS and HARQ-ACK and map them to PUCCH resources in PF0. In this case, the terminal may apply any of Opt.1-1, Opt.1-2, and Opt.1-5 described in Proposal 2.
  • the terminal may multiplex delta-MCS and HARQ-ACK and map them to PUCCH resources in PF1.
  • the terminal may apply either Alt.1 or Alt.2 of Opt.1 in Case 1 described in Proposal 3.
  • the terminal may drop delta-MCS and map HARQ-ACK to PUCCH resources in PF1.
  • the terminal may drop HARQ-ACK and map delta-MCS to PUCCH resources in PF0.
  • ⁇ Case 2 Case where delta-MCS transmission timing and SR transmission timing overlap> ⁇ Opt.1>
  • the terminal may multiplex delta-MCS and SR and map them to PUCCH resources in PF0. In this case, the terminal may apply either Opt.1-3 or Opt.1-6 described in Proposal 2.
  • the terminal may multiplex delta-MCS and SR and map them to PUCCH resources in PF1. In this case, the terminal may apply Opt.1 in Case 2 described in Proposal 3.
  • the terminal may drop SR and map delta-MCS to PUCCH resources in PF0.
  • the terminal may drop delta-MCS and map SR to PUCCH resources in PF1.
  • ⁇ Case 3 Case where the delta-MCS transmission timing, the HARQ-ACK transmission timing, and the SR transmission timing overlap> ⁇ Opt.1>
  • the terminal may multiplex delta-MCS, HARQ-ACK, and SR and map them to PUCCH resources in PF0. In this case, the terminal may apply any of Cases 4a, 4b, 5a, and 5b described in Proposal 2.
  • the terminal may multiplex delta-MCS, HARQ-ACK, and SR and map them to PUCCH resources in PF1.
  • the terminal may apply Case 3 described in Proposal 3.
  • the terminal may drop delta-MCS, multiplex HARQ-ACK and SR, and map them to PUCCH resources in PF1.
  • the terminal may drop HARQ-ACK and SR and map delta-MCS to PUCCH resources in PF0.
  • ⁇ Proposal 5 Delta-MCS of PF1 with other UCI of PF0>
  • the terminal may multiplex delta-MCS in PF1 with other UCIs in PF0 and map them to PUCCH resources in PF0/1. For example, when the transmission timing of delta-MCS in PF1 and the transmission timing of another UCI in PF0 overlap, the terminal multiplexes the delta-MCS in PF1 and the other UCI in PF0, and It may be mapped to a PUCCH resource.
  • 17 is a diagram showing an example of Proposal 5. FIG.
  • ⁇ Case 1 Case where the transmission timing of delta-MCS and the transmission timing of HARQ-ACK overlap> ⁇ Opt.1>
  • the terminal may multiplex delta-MCS and HARQ-ACK and map them to PUCCH resources in PF0. In this case, the terminal may apply any of Opt.1-1, Opt.1-2, and Opt.1-5 described in Proposal 2.
  • the terminal may multiplex delta-MCS and HARQ-ACK and map them to PUCCH resources in PF1.
  • the terminal may apply either Alt.1 or Alt.2 of Opt.1 in Case 1 described in Proposal 3.
  • the terminal may drop delta-MCS and map HARQ-ACK to PUCCH resources in PF0.
  • the terminal may drop HARQ-ACK and map delta-MCS to PUCCH resources in PF1.
  • ⁇ Case 2 Case where delta-MCS transmission timing and SR transmission timing overlap> ⁇ Opt.1>
  • the terminal may multiplex delta-MCS and SR and map them to PUCCH resources in PF0. In this case, the terminal may apply either Opt.1-3 or Opt.1-6 described in Proposal 2.
  • the terminal may multiplex delta-MCS and SR and map them to PUCCH resources in PF1. In this case, the terminal may apply Opt.1 in Case 2 described in Proposal 3.
  • the terminal may drop SR and map delta-MCS to PUCCH resources in PF1.
  • the terminal may drop delta-MCS and map SR to PUCCH resources in PF0.
  • ⁇ Case 3 Case where the delta-MCS transmission timing, the HARQ-ACK transmission timing, and the SR transmission timing overlap> ⁇ Opt.1>
  • the terminal may multiplex delta-MCS, HARQ-ACK, and SR and map them to PUCCH resources in PF0. In this case, the terminal may apply any of Cases 4a, 4b, 5a, and 5b described in Proposal 2.
  • the terminal may multiplex delta-MCS, HARQ-ACK, and SR and map them to PUCCH resources in PF1.
  • the terminal may apply Case 3 described in Proposal 3.
  • the terminal may drop delta-MCS, multiplex HARQ-ACK and SR, and map them to PUCCH resources in PF1.
  • the terminal may drop HARQ-ACK and SR and map delta-MCS to PUCCH resources in PF0.
  • the terminal may notify the Opt that can be used as UE Capability.
  • the Opts that can be used by the terminal may be determined in the specifications.
  • each Opt described above is notified using higher layer signaling, and the terminal may notify the Opt that can be used as UE Capability.
  • the number of bits of delta-MCS is not limited to the above example.
  • the number of bits of delta-MCS may be 3 bits.
  • FIG. 18 is a diagram showing an example of a wireless communication system 10 according to one embodiment.
  • the radio communication system 10 may be a radio communication system according to New Radio (NR).
  • NR New Radio
  • the wireless communication system 10 may be a wireless communication system according to a scheme called URLLC and/or Industrial Internet of Things (IIoT).
  • the radio communication system 10 may include a Next Generation-Radio Access Network 20 (hereinafter referred to as NG-RAN 20) and a terminal 200.
  • NG-RAN 20 Next Generation-Radio Access Network 20
  • the wireless communication system 10 may be a wireless communication system that conforms to (or conforms to) a scheme called 5G, Beyond 5G, 5G Evolution, or 6G. Also, the wireless communication system 10 may be a system of a generation after 6G.
  • NG-RAN 20 includes base stations 100 (base station 100A and base station 100B).
  • the number of base stations 100 and the number of terminals 200 are not limited to the example shown in FIG.
  • the NG-RAN 20 includes multiple NG-RAN Nodes, such as gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown).
  • NG-RAN 20 and 5GC may simply be referred to as a "network”.
  • the base station 100 may also be called an NG-RAN Node, ng-eNB, eNodeB (eNB), or gNodeB (gNB).
  • Terminal 200 may be called User Equipment (UE).
  • base station 100 may be regarded as a device included in a network to which terminal 200 connects.
  • the base station 100 performs wireless communication with the terminal 200.
  • the wireless communication performed complies with NR.
  • At least one of the base station 100 and the terminal 200 uses Massive MIMO (Multiple-Input Multiple-Output) to generate beams (BM) with higher directivity by controlling radio signals transmitted from a plurality of antenna elements. You can respond.
  • at least one of base station 100 and terminal 200 may support carrier aggregation (CA) in which multiple component carriers (CC) are bundled and used.
  • CA carrier aggregation
  • CC component carriers
  • at least one of the base station 100 and the terminal 200 may support dual connectivity (DC), etc., in which communication is performed between the terminal 200 and each of the plurality of base stations 100 .
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 10 may support multiple frequency bands.
  • wireless communication system 10 supports Frequency Ranges (FR) 1 and FR2.
  • the frequency bands of each FR are, for example, as follows. ⁇ FR1: 410MHz to 7.125GHz ⁇ FR2: 24.25GHz to 52.6GHz
  • FR1 Sub-Carrier Spacing (SCS) of 15 kHz, 30 kHz or 60 kHz may be used, and a bandwidth (BW) of 5 MHz to 100 MHz may be used.
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 is, for example, a higher frequency than FR1.
  • FR2 may use an SCS of 60 kHz or 120 kHz and a bandwidth (BW) of 50 MHz to 400 MHz.
  • FR2 may include a 240 kHz SCS.
  • the wireless communication system 10 may support a frequency band higher than the FR2 frequency band.
  • the wireless communication system 10 in this embodiment can support frequency bands exceeding 52.6 GHz and up to 114.25 GHz.
  • Such high frequency bands may be referred to as "FR2x.”
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT-S-OFDM Discrete Fourier Transform - Spread - Orthogonal Frequency Division Multiplexing
  • SCS Sub-Carrier Spacing
  • DFT-S-OFDM may be applied to both uplink and downlink, or may be applied to either one.
  • a time division duplex (TDD) slot configuration pattern may be set.
  • DDDSU downlink (DL) symbol
  • S DL/uplink (UL) or guard symbol
  • U UL symbol
  • channel estimation of PUSCH can be performed using a demodulation reference signal (DMRS) for each slot.
  • DMRS demodulation reference signal
  • Such channel estimation may be called joint channel estimation. Alternatively, it may be called by another name such as cross-slot channel estimation.
  • Terminal 200 may transmit DMRS assigned to (spanning over) multiple slots so that base station 100 can perform joint channel estimation using DMRS.
  • an enhanced function may be added to the feedback function from the terminal 200 to the base station 100.
  • enhanced functionality of terminal feedback for HARQ-ACK and enhanced functionality of CSI feedback for more accurate MCS selection may be added.
  • base station 100 and the terminal 200 will be described.
  • the configurations of base station 100 and terminal 200 described below are examples of functions related to the present embodiment.
  • Base station 100 and terminal 200 may have functions not shown.
  • the functional division and/or the name of the functional unit are not limited as long as the function executes the operation according to the present embodiment.
  • FIG. 19 is a block diagram showing an example of the configuration of base station 100 according to this embodiment.
  • the base station 100 may include a transmitter 101, a receiver 102, and a controller 103, for example.
  • Base station 100 wirelessly communicates with terminal 200 (see FIG. 20).
  • the transmission section 101 transmits a downlink (DL) signal to the terminal 200 .
  • the transmitter 101 transmits a DL signal under the control of the controller 103 .
  • a DL signal may include, for example, a downlink data signal and control information (eg, Downlink Control Information (DCI)). Also, the DL signal may include information (for example, UL grant) indicating scheduling regarding signal transmission of terminal 200 . Also, the DL signal may include higher layer control information (for example, Radio Resource Control (RRC) control information). Also, the DL signal may include a reference signal.
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • RRC Radio Resource Control
  • Channels used for transmitting DL signals include, for example, data channels and control channels.
  • the data channel may include a PDSCH (Physical Downlink Shared Channel)
  • the control channel may include a PDCCH (Physical Downlink Control Channel).
  • base station 100 transmits control information to terminal 200 using PDCCH, and transmits downlink data signals using PDSCH.
  • reference signals included in DL signals include demodulation reference signals (DMRS), phase tracking reference signals (PTRS), channel state information-reference signals (CSI-RS), sounding reference signals (SRS ), and Positioning Reference Signal (PRS) for position information.
  • DMRS demodulation reference signals
  • PTRS phase tracking reference signals
  • CSI-RS channel state information-reference signals
  • SRS sounding reference signals
  • PRS Positioning Reference Signal
  • reference signals such as DMRS and PTRS are used for demodulation of downlink data signals and transmitted using PDSCH.
  • the receiving unit 102 receives an uplink (UL) signal transmitted from the terminal 200.
  • the receiving unit 102 receives the UL signal under the control of the control unit 103.
  • the control unit 103 controls the communication operation of the base station 100, including the transmission processing of the transmission unit 101 and the reception processing of the reception unit 102.
  • control unit 103 acquires information such as data and control information from the upper layer and outputs it to the transmission unit 101 .
  • Control section 103 also outputs the data received from receiving section 102, control information, and the like to an upper layer.
  • control unit 103 allocates resources (or channels) used for transmitting/receiving DL signals and/or resources used for transmitting/receiving UL signals. Information about allocated resources may be included in control information to be transmitted to terminal 200 .
  • the control section 103 may configure a plurality of PUCCH resource sets as an example of allocation of resources used for transmission and reception of UL signals. Information on the configured multiple PUCCH resource sets may be notified to terminal 200 by RRC.
  • FIG. 20 is a block diagram showing an example of the configuration of terminal 200 according to this embodiment.
  • the terminal 200 may include a receiver 201, a transmitter 202, and a controller 203, for example.
  • the terminal 200 wirelessly communicates with the base station 100, for example.
  • the receiving unit 201 receives the DL signal transmitted from the base station 100.
  • the receiver 201 receives a DL signal under the control of the controller 203 .
  • the transmission unit 202 transmits the UL signal to the base station 100.
  • the transmitter 202 transmits UL signals under the control of the controller 203 .
  • the UL signal may include, for example, an uplink data signal and control information (eg, UCI).
  • control information eg, UCI
  • information about the processing capability of terminal 200 eg, UE capability
  • the UL signal may include a reference signal.
  • Channels used to transmit UL signals include, for example, data channels and control channels.
  • the data channel includes PUSCH (Physical Uplink Shared Channel)
  • the control channel includes PUCCH (Physical Uplink Control Channel).
  • terminal 200 receives control information from base station 100 using PUCCH, and transmits uplink data signals using PUSCH.
  • the reference signal included in the UL signal may include at least one of DMRS, PTRS, CSI-RS, SRS, and PRS, for example.
  • reference signals such as DMRS and PTRS are used for demodulation of uplink data signals and transmitted using PUSCH.
  • the control unit 203 controls communication operations of the terminal 200, including reception processing in the reception unit 201 and transmission processing in the transmission unit 202.
  • control unit 203 acquires information such as data and control information from the upper layer and outputs it to the transmission unit 202 . Also, the control unit 203 outputs, for example, the data and control information received from the receiving unit 201 to the upper layer.
  • control unit 203 controls transmission of information to be fed back to the base station 100 .
  • Information fed back to the base station 100 may include, for example, HARQ-ACK and/or delta-MCS.
  • Information to be fed back to the base station 100 may be included in the UCI.
  • UCI is transmitted on PUCCH resources.
  • the control section 203 sets a plurality of PUCCH resource sets based on the control information received from the base station 100, and selects at least one PUCCH resource set from among the plurality of PUCCH resource sets. Then, control section 203 determines PUCCH resources to be used for transmitting information to be fed back to base station 100 from among the resources of the selected PUCCH resource set. Under the control of control section 203 , transmission section 202 transmits information to be fed back to base station 100 on the PUCCH resource determined by control section 203 .
  • control unit 203 may determine the priority of information on MCS (eg, delta-MCS) with respect to feedback information on DL data reception.
  • MCS eg, delta-MCS
  • the transmission section 202 may perform UL transmission according to the priority determined by the control section 203, for example.
  • channels used for DL transmission and the channels used for UL transmission are not limited to the above examples.
  • channels used for DL transmissions and channels used for UL transmissions may include Random Access Channel (RACH) and Physical Broadcast Channel (PBCH).
  • RACH may be used, for example, to transmit DCI including Random Access Radio Network Temporary Identifier (RA-RNTI).
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • the control unit 203 may determine the PUCCH format (PF0/1) for transmitting information on MCS based on one or both of the notification in RRC and UE Capability.
  • the information about MCS may be, for example, MCS difference information such as delta-MCS.
  • the MCS difference information may be, for example, difference information between a first MCS value and a second MCS value determined before the first MCS. In other words, the MCS difference information may be difference information between the first MCS value determined at the first timing and the second MCS value determined at the second timing.
  • Transmitting section 202 may transmit information on MCS (delta-MCS) using PUCCH in the format determined by control section 203 .
  • the control section 203 may determine the cyclic shift value based on the delta-MCS, and map the base sequence cyclically shifted by the determined cyclic shift value to the uplink control signal PUCCH resource.
  • control unit 203 may also determine the cyclic shift value based on another UCI.
  • Control section 203 uses a signal based on delta-MCS (UCI d (0)) mapped on the IQ plane, base sequence, m 0 notified in RRC, and TD-OCC as PUCCH resources. can be mapped to
  • the control section 203 may determine the PUCCH resource to which the signal is mapped, or may determine the PUCCH resource to which the other UCI is mapped, based on another UCI.
  • the terminal can appropriately determine the format of the uplink control signal used for transmission of uplink control information to be transmitted to the base station. Therefore, for example, it contributes to improvement in delay reduction of uplink control signals and contributes to improvement in reliability.
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that makes transmission work is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • a base station, a terminal, etc. may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 21 is a diagram illustrating an example of hardware configurations of a base station and terminals according to an embodiment of the present disclosure.
  • the base station 100 and terminal 200 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • base station 100 and terminal 200 can be read as a circuit, device, unit, or the like.
  • the hardware configuration of base station 100 and terminal 200 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • Each function of the base station 100 and the terminal 200 is implemented by loading predetermined software (programs) onto hardware such as the processor 1001 and memory 1002 so that the processor 1001 performs calculations and controls communication by the communication device 1004. , and controlling at least one of reading and writing of data in the memory 1002 and the storage 1003 .
  • the processor 1001 for example, operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • the control unit 103 and the control unit 203 described above may be implemented by the processor 1001 .
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • the control unit 203 of the terminal 200 may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be implemented similarly.
  • FIG. Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from a network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), and RAM (Random Access Memory). may be
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrical Erasable Programmable ROM
  • RAM Random Access Memory
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • Storage 1003 may also be called an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). may consist of For example, the transmitting unit 101, the receiving unit 102, the receiving unit 201, the transmitting unit 202, etc. described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 100 and the terminal 200 include hardware such as microprocessors, digital signal processors (DSPs), ASICs (Application Specific Integrated Circuits), PLDs (Programmable Logic Devices), and FPGAs (Field Programmable Gate Arrays). , and part or all of each functional block may be implemented by the hardware.
  • processor 1001 may be implemented using at least one of these pieces of hardware.
  • Notification of information is not limited to the embodiments described in the present disclosure, and may be performed using other methods.
  • notification of information includes physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • Embodiments described in the present disclosure are LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system) , FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) , IEEE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, other suitable systems and next generations based on these It may be applied to at least one of the systems. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G, etc.).
  • various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc. (including but not limited to).
  • MME or S-GW network nodes other than the base station
  • the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • ⁇ Direction of input/output> Information and the like can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information and the like may be stored in a specific location (for example, memory), or may be managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
  • the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software may use wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be referred to as a carrier frequency, cell, frequency carrier, or the like.
  • ⁇ Name of parameter and channel> the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indexed.
  • Base station In the present disclosure, “base station (BS)”, “radio base station”, “fixed station”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “"accesspoint”,”transmissionpoint”,”receptionpoint”,”transmission/receptionpoint”,”cell”,”sector”,”cellgroup”,” Terms such as “carrier”, “component carrier” may be used interchangeably.
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being associated with a base station subsystem (e.g., an indoor small base station (RRH:
  • RRH indoor small base station
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems serving communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of a base station and a mobile station may be called a transmitter, a receiver, a communication device, and the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a terminal.
  • terminal 200 may have the functions of base station 100 described above.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side").
  • uplink channels, downlink channels, etc. may be read as side channels.
  • a terminal in the present disclosure may be read as a base station.
  • the base station 100 may have the functions that the terminal 200 described above has.
  • determining may encompass a wide variety of actions.
  • “Judgement”, “determining” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “decision” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that something has been "determined” or “decided”.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • connection means any direct or indirect connection or connection between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are in the radio frequency domain using at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-exhaustive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
  • the reference signal may be abbreviated as RS (Reference Signal), or may be referred to as Pilot according to the applicable standard.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • number of symbols per TTI radio frame structure
  • transmission and reception specific filtering operations performed by the receiver in the frequency domain specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a Transmission Time Interval (TTI)
  • TTI Transmission Time Interval
  • multiple consecutive subframes may be called a TTI
  • one slot or minislot may be called a TTI.
  • TTI Transmission Time Interval
  • at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • TTI that is shorter than a regular TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each consist of one or more resource blocks.
  • One or more RBs are physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. may be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. may be called.
  • a resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier. good.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • Maximum transmit power as described in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may refer to the rated maximum transmit power ( the rated UE maximum transmit power).
  • One aspect of the present disclosure is useful for wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention comprises: a control unit that determines, on the basis of a notification in higher layer signaling and/or a terminal capability, a format of an uplink control signal used in transmission of difference information of a modulating/coding scheme; and a transmission unit that transmits the difference information using an uplink control signal of the determined format.

Description

端末及び通信方法Terminal and communication method
 本開示は、端末及び通信方法に関する。 The present disclosure relates to terminals and communication methods.
 Universal Mobile Telecommunication System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(Long Term Evolution(LTE))が仕様化された。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システムも検討されている。LTEの後継システムには、例えば、LTE-Advanced(LTE-A)、Future Radio Access(FRA)、5th generation mobile communication system(5G)、5G plus(5G+)、Radio Access Technology(New-RAT)、New Radio(NR)などと呼ばれるシステムがある。 In the Universal Mobile Telecommunication System (UMTS) network, Long Term Evolution (LTE) has been specified with the aim of achieving even higher data rates and lower delays. In addition, a successor system to LTE is also under consideration for the purpose of further widening the bandwidth and speeding up from LTE. LTE successor systems include, for example, LTE-Advanced (LTE-A), Future Radio Access (FRA), 5th generation mobile communication system (5G), 5G plus (5G+), Radio Access Technology (New-RAT), New There is a system called Radio (NR).
 例えば、NRでは、通信品質の向上のために、端末から基地局へのフィードバックの機能を強化することが検討されている(例えば、非特許文献1)。 For example, in NR, strengthening the function of feedback from terminals to base stations is under consideration in order to improve communication quality (for example, Non-Patent Document 1).
 端末から基地局へ送信(フィードバック)する情報の送信に用いられる上り制御信号のフォーマットの決定には検討の余地がある。 There is room for further study in determining the format of the uplink control signal used to transmit (feedback) information from the terminal to the base station.
 本開示の一態様は、端末から基地局へ送信する情報の送信に用いられる上り制御信号の適切なフォーマットを決定できる端末及び通信方法を提供する。 One aspect of the present disclosure provides a terminal and communication method capable of determining an appropriate format of an uplink control signal used for transmitting information transmitted from the terminal to the base station.
 本開示の一態様に係る端末は、変調符号化方式の差分情報の送信に用いられる上り制御信号のフォーマットを、上位レイヤシグナリングにおける通知及び端末能力の一方又は両方に基づいて決定する制御部と、前記決定されたフォーマットの上り制御信号を用いて、前記差分情報を送信する送信部と、を有する。 A terminal according to an aspect of the present disclosure, a control unit that determines the format of an uplink control signal used for transmission of difference information of modulation and coding schemes based on one or both of notification in higher layer signaling and terminal capability, and a transmission unit that transmits the difference information using the uplink control signal in the determined format.
 本開示の一態様に係る通信方法は、変調符号化方式の差分情報の送信に用いられる上り制御信号のフォーマットを、上位レイヤシグナリングにおける通知及び端末能力の一方又は両方に基づいて決定し、前記決定されたフォーマットの上り制御信号を用いて、前記差分情報を送信する。 A communication method according to an aspect of the present disclosure determines a format of an uplink control signal used for transmission of differential information of modulation and coding schemes based on one or both of notification in higher layer signaling and terminal capability, and The difference information is transmitted using the uplink control signal in the format specified.
テーブルの第1の例を示す図である。It is a figure which shows the 1st example of a table. テーブルの第2の例を示す図である。It is a figure which shows the 2nd example of a table. PUCCH format 0のUCIマッピング例を説明する図である。FIG. 4 is a diagram illustrating an example of UCI mapping for PUCCH format 0; PUCCH format 1のUCIマッピング例を説明する図である。FIG. 4 is a diagram illustrating an example of UCI mapping in PUCCH format 1; Proposal 1のPF0におけるOpt.1の一例を示す図である。1 is a diagram showing an example of Opt.1 in PF0 of Proposal 1. FIG. Proposal 1のPF0におけるOpt.2の一例を示す図である。2 is a diagram showing an example of Opt.2 in PF0 of Proposal 1. FIG. Proposal 1のPF1におけるOpt.1の一例を示す図である。1 is a diagram showing an example of Opt.1 in PF1 of Proposal 1. FIG. Proposal 2の一例を示す図である。FIG. 10 is a diagram showing an example of Proposal 2; Proposal 2のOpt.1-1の一例を示す図である。1-1 of Proposal 2 is a diagram showing an example. FIG. Proposal 2のOpt.1-2の一例を示す図である。1-2 of Proposal 2 is a diagram showing an example. FIG. Proposal 2のOpt.1-3の一例を示す図である。FIG. 10 is a diagram showing an example of Opt.1-3 of Proposal 2; Proposal 2のOpt.1-4の一例を示す図である。1-4 of Proposal 2 are examples. FIG. Proposal 2のOpt.1-5の一例を示す図である。1-5 of Proposal 2 are examples. FIG. Proposal 2のOpt.1-6の一例を示す図である。1-6 of Proposal 2 are examples. FIG. Proposal 3の一例を示す図である。FIG. 10 is a diagram showing an example of Proposal 3; Proposal 4の一例を示す図である。FIG. 10 is a diagram showing an example of Proposal 4; Proposal 5の一例を示す図である。FIG. 10 is a diagram showing an example of Proposal 5; 一実施の形態に係る無線通信システムの一例を示す図である。1 is a diagram illustrating an example of a radio communication system according to an embodiment; FIG. 本実施の形態に係る基地局の構成の一例を示すブロック図である。1 is a block diagram showing an example of the configuration of a base station according to this embodiment; FIG. 本実施の形態に係る端末の構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a configuration of a terminal according to this embodiment; FIG. 本開示の一実施の形態に係る基地局及び端末のハードウェア構成の一例を示す図である。1 is a diagram illustrating an example of hardware configurations of a base station and a terminal according to an embodiment of the present disclosure; FIG.
 以下、本開示の一態様に係る実施の形態を、図面を参照して説明する。 An embodiment according to one aspect of the present disclosure will be described below with reference to the drawings.
 3GPPでは、Rel.17において、Ultra-Reliable and Low Latency Communications(URLLC)及びIndustrial Internet of Things(IIoT)と呼ばれる方式についての技術が検討されている。  3GPP, in Rel.17, is studying technologies for methods called Ultra-Reliable and Low Latency Communications (URLLC) and Industrial Internet of Things (IIoT).
 URLLCでは、Hybrid Automatic Repeat request - Acknowledgement(HARQ-ACK)に対する端末のフィードバックの機能強化、及び、より正確なModulation and Coding Scheme(MCS)選択に対するChannel State Information(CSI)フィードバックの機能強化について検討される。HARQ-ACKは、端末が受信したデータに対する確認応答(例えば、acknowledgement)に関する情報の一例である。これらのURLLCの検討事項に対して、物理層のフィードバックの機能強化が検討されている。 URLLC will consider enhancing terminal feedback for Hybrid Automatic Repeat request - Acknowledgment (HARQ-ACK) and enhancing Channel State Information (CSI) feedback for more accurate Modulation and Coding Scheme (MCS) selection. . HARQ-ACK is an example of information related to acknowledgment (eg, acknowledgment) for data received by the terminal. Physical layer feedback enhancements are being considered for these URLLC considerations.
 例えば、より正確なMCS選択に対するCSIフィードバックの機能強化の一例として、MCSに関する情報を、端末が基地局にフィードバックすることが検討される。端末から基地局へフィードバックされる情報は、例えば、上りリンクの制御情報(例えば、Uplink Cotrol Information(UCI))に含まれる。また、例えば、MCSに関する情報は、所望のMCSを示す情報と、現在のMCS(或るたタイミングにおけるMCS)と所望のMCSとの差異を示す情報と、所望のMCS、又は、現在のMCSと所望のMCSとの差異に関連付けられたインデックスを示す情報との少なくともいずれか1つを含む。以下、<所望のMCSを示す情報>、<現在のMCSと所望のMCSとの差異を示す情報>、及び、<所望のMCS、又は、現在のMCSと所望のMCSとの差異に関連付けられたインデックスを示す情報>の3通りの例のそれぞれを説明する。 For example, as an example of enhancing CSI feedback for more accurate MCS selection, it is being considered that terminals feed back information on MCS to the base station. Information fed back from the terminal to the base station is included, for example, in uplink control information (eg, Uplink Control Information (UCI)). Also, for example, the information about the MCS includes information indicating the desired MCS, information indicating the difference between the current MCS (MCS at a certain timing) and the desired MCS, the desired MCS, or the current MCS and/or information indicating an index associated with the difference from the desired MCS. Below, <Information indicating the desired MCS>, <Information indicating the difference between the current MCS and the desired MCS>, and <The desired MCS, or the difference between the current MCS and the desired MCS Associated with Information Indicating Index> will be described below.
 <所望のMCSを示す情報>
 例えば、所望のMCSを示す情報は、MCS Indexを含んでもよい。所望のMCSを示す情報は、例えば、3GPP TS38.214で定義されるMCS Index tableで定義されるMCS Indexが用いられてもよい。
<Information indicating the desired MCS>
For example, information indicating a desired MCS may include an MCS Index. The information indicating the desired MCS may use, for example, the MCS Index defined in the MCS Index table defined in 3GPP TS38.214.
 例えば、端末は、或るMCS Index(MCS Index #i(iは、0以上の整数)と記載)で送信されたPhysical Downlink Shared Channel(PDSCH)のデコードに失敗した場合に、デコードに失敗したPDSCHで用いられたMCS Index#iよりも低いMCS Index#j(jは、0以上、i未満の整数)を所望のMCS Indexに設定し、所望のMCS index#jをフィードバックする情報に含めてもよい。例えば、端末は、MCS Index#5で送信されたPDSCHのデコードに失敗した場合に、MCS index#5よりも低いMCS Index#0を含むフィードバックを基地局に送信してもよい。 For example, the terminal fails to decode a Physical Downlink Shared Channel (PDSCH) transmitted with a certain MCS Index (MCS Index #i (i is an integer of 0 or more)). MCS Index #j lower than MCS Index #i used in (j is an integer greater than or equal to 0 and less than i) is set to the desired MCS Index, and the desired MCS index #j is included in the information to be fed back. good. For example, if the terminal fails to decode PDSCH transmitted with MCS Index#5, the terminal may transmit feedback including MCS Index#0 lower than MCS Index#5 to the base station.
 このような構成によれば、基地局に対して要求可能なMCSの柔軟性を向上できる。 With such a configuration, it is possible to improve the flexibility of the MCS that can be requested from the base station.
 <現在のMCSと所望のMCSとの差異を示す情報>
 現在のMCSと所望のMCSとの差異を示す情報は、現在のMCSと所望のMCSとに基づいて決定される。例えば、現在のMCSと所望のMCSとには、3GPP TS38.214で定義されるMCS Index tableで定義されるMCS Indexが用いられてよい。
<Information indicating the difference between the current MCS and the desired MCS>
Information indicating the difference between the current MCS and the desired MCS is determined based on the current MCS and the desired MCS. For example, the current MCS and the desired MCS may use the MCS Index defined in the MCS Index table defined in 3GPP TS38.214.
 例えば、端末は、或るMCS Index#iで送信されたPDSCHのデコードに失敗した場合に、所望のMCS Index#jを設定し、デコードに失敗したPDSCHで用いられたMCS Index#iと所望のMCS Index#jとの差異(例えば、「j―i」)をフィードバックする情報に含めてよい。所望のMCS Indexは、現在のMCS Indexよりも低くてもよい。例えば、端末は、MCS Index#5で送信されたPDSCHのデコードに失敗し、所望のMCS IndexをMCS Index#2に設定した場合に、「-3」を含むフィードバックを基地局に送信してもよい。 For example, when the terminal fails to decode PDSCH transmitted with a certain MCS Index#i, the terminal sets desired MCS Index#j, The difference from MCSIndex#j (for example, "ji") may be included in the feedback information. The desired MCS Index may be lower than the current MCS Index. For example, if the terminal fails to decode the PDSCH transmitted with MCS Index#5 and sets the desired MCS Index to MCS Index#2, the terminal may transmit feedback including "-3" to the base station. good.
 このような構成によれば、基地局に対して要求可能なMCSの柔軟性を向上でき、フィードバックする情報のビットサイズを抑えることができる。 With such a configuration, it is possible to improve the flexibility of the MCS that can be requested from the base station, and to reduce the bit size of the information to be fed back.
 <所望のMCS、又は、現在のMCSと所望のMCSとの差異に関連付けられたインデックスを示す情報>
 フィードバックのために定義されるテーブルが導入されてもよい。フィードバックのために定義されるテーブルとしては、以下に示す2つの例が考えられる。
<Information indicating the desired MCS or the index associated with the difference between the current MCS and the desired MCS>
A table defined for feedback may be introduced. Two examples of tables defined for feedback are given below.
 <テーブル例1>
 所望のMCSとインデックスとが関連づけられたテーブルが定義され、所望のMCSに関連づけられるインデックスが、定義されるテーブルの中から選択されてもよい。選択されたインデックスは、フィードバックする情報に含まれてよい。
<Table example 1>
A table in which desired MCSs and indexes are associated may be defined, and an index associated with the desired MCS may be selected from the defined table. The selected index may be included in the feedback information.
 図1は、テーブルの第1の例を示す図である。図1に示すように、フィードバックのために定義されるテーブルは、指定可能なMCS Indexと、フィードバックする情報であるIndexとを対応付けるテーブルであってもよい。図1に示すテーブルを用いて指定可能なMCS Indexは、3GPP TS38.214で定義されるMCS Index tableと関連付けられていてもよい。例えば、図1に示すテーブルを用いて指定可能なMCS Indexは、3GPP TS38.214で定義されるMCS Index tableで指定可能なMCS Indexの一部であってもよい。 FIG. 1 is a diagram showing a first example of the table. As shown in FIG. 1, the table defined for feedback may be a table that associates a specifiable MCS Index with an Index that is information to be fed back. The MCS Index that can be specified using the table shown in FIG. 1 may be associated with the MCS Index table defined in 3GPP TS38.214. For example, the MCS Index specifiable using the table shown in FIG. 1 may be part of the MCS Index specifiable in the MCS Index table defined in 3GPP TS38.214.
 端末は、図1に示すテーブルの中から所望のMCS Indexを選択し、選択されたMCS Indexと関連付けられたIndexを含むフィードバックの情報を基地局に送信してもよい。MCS Indexと対応付けられたIndexのビットサイズは、MCS Indexのビットサイズよりも小さくてよい。 The terminal may select a desired MCS Index from the table shown in FIG. 1 and transmit feedback information including the Index associated with the selected MCS Index to the base station. The bit size of Index associated with MCS Index may be smaller than the bit size of MCS Index.
 このような構成によれば、フィードバックのビットサイズを小さくでき、シグナリング負荷を抑制することができる。 According to such a configuration, the bit size of feedback can be reduced, and the signaling load can be suppressed.
 <テーブル例2>
 現在のMCSと所望のMCSとの差異(以下、Delta value)とインデックスとが関連付けられたテーブルが定義され、Delta valueに関連付けられるインデックスが、定義されるテーブルの中から選択されてもよい。選択されたインデックスは、フィードバックされる情報に含まれてよい。
<Table example 2>
A table may be defined in which the difference between the current MCS and the desired MCS (hereafter referred to as delta value) is associated with an index, and the index associated with the delta value may be selected from the defined table. The selected index may be included in the feedback information.
 図2は、テーブルの第2の例を示す図である。図2に示すように、フィードバックのために定義されるテーブルは、Delta valueとフィードバックする情報であるIndexとを対応付けるテーブルであってもよい。Delta valueは、3GPP TS38.214で定義されるMCS Index tableと関連付けられていてもよい。例えば、図2に示すテーブルでDelta valueは、3GPPTS38.214で定義されるMCS Index tableで指定可能なMCS Indexの差異を意味してもよい。 FIG. 2 is a diagram showing a second example of the table. As shown in FIG. 2, the table defined for feedback may be a table that associates Delta values with Indexes that are information to be fed back. Delta values may be associated with the MCS Index table defined in 3GPP TS38.214. For example, Delta value in the table shown in FIG. 2 may mean the difference of MCS Index that can be specified in the MCS Index table defined in 3GPPTS38.214.
 端末は、所望のMCSを設定し、現在のMCSと所望のMCSとの差異であるDelta valueを決定する。そして、端末は、図2に示すテーブルの中から決定したDelta valueを選択し、選択されたDelta valueと関連付けられたIndexを含むフィードバックの情報を、基地局に送信してもよい。Delta valueと関連付けられたIndexのビットサイズは、Delta valueのビットサイズよりも小さくてよい。 The terminal sets the desired MCS and determines the Delta value, which is the difference between the current MCS and the desired MCS. Then, the terminal may select the determined delta value from the table shown in FIG. 2 and transmit feedback information including the index associated with the selected delta value to the base station. The bit size of the Index associated with the Delta value may be smaller than the bit size of the Delta value.
 このような構成によれば、フィードバックのビットサイズが小さくでき、シグナリング負荷を抑制することができる。 According to such a configuration, the bit size of feedback can be reduced, and the signaling load can be suppressed.
 以下では、上述したMCSに関する情報は、「delta-MCS」と記載する。なお、「delta-MCS」は、上述した情報の例に限定されず、上述した例と異なる情報であってもよい。例えば、「delta-MCS」は、上述した情報の例と異なる、MCSに関する情報であってもよい。また、「delta-MCS」は、「delta-CQI」等の他の呼称に置き換えられてもよい。 Below, the information on MCS mentioned above is referred to as "delta-MCS". Note that "delta-MCS" is not limited to the above information example, and may be information different from the above example. For example, "delta-MCS" may be information about MCS that is different from the information examples described above. Also, "delta-MCS" may be replaced with other names such as "delta-CQI".
 delta-MCSの送信において、送信に用いるリソースのフォーマットに関して、PUCCH format 0、及び、PUCCH format 1を用いることが検討されている。以下、<PUCCH format 0のUCIマッピング>、及び、<PUCCH format 1のUCIマッピング>の例について説明する。なお、PUCCHは、Physical Uplink Control Channelの略である。UCIは、Uplink Control Informationの略である。送信は、報告、通知、又はフィードバックと言い換えられてもよい。 In delta-MCS transmission, the use of PUCCH format 0 and PUCCH format 1 is being considered for the resource format used for transmission. Examples of <UCI mapping of PUCCH format 0> and <UCI mapping of PUCCH format 1> are described below. PUCCH is an abbreviation for Physical Uplink Control Channel. UCI stands for Uplink Control Information. Sending may also be translated as reporting, notification, or feedback.
 <PUCCH format 0のUCIマッピング>
 図3は、PUCCH format 0のUCIマッピング例を説明する図である。図3に示すα、α、…、α11は、cyclic shiftの値(cyclic shift量)を示す。α、α、…、α11は各々、0,1,…,11の値であってもよい。
<UCI mapping for PUCCH format 0>
FIG. 3 is a diagram illustrating an example of UCI mapping for PUCCH format 0. In FIG. α 0 , α 1 , . . . , α 11 shown in FIG. 3 indicate cyclic shift values (cyclic shift amounts). α 0 , α 1 , . . . , α 11 may each have values of 0, 1, .
 図3に示すαのxは、0,1,…,11の値を取る。例えば、x=3(α3)の場合、base sequenceのcyclic shift量は「3」となる。cyclic shiftされたbase sequenceが、1シンボル、又は、2シンボルのPhysical Resource Block(PRB)にマッピングされる。 x in α x shown in FIG. 3 takes values of 0, 1, . For example, when x=3 (α 3 ), the cyclic shift amount of the base sequence is "3". A cyclically shifted base sequence is mapped to a 1-symbol or 2-symbol Physical Resource Block (PRB).
 端末は、cyclic shift量を計算するため、m0とm_csとの値を決定する。端末は、例えば、決定したm0とm_csとを加算した値をcyclic shift量「α」としてもよい。 The terminal determines the values of m0 and m_cs to calculate the cyclic shift amount. The terminal may, for example, set the value obtained by adding the determined m0 and m_cs as the cyclic shift amount “α”.
 m0は、Radio Resource Control(RRC)のパラメータ(例えば、initialCyclicShift)に基づいて、端末に提供される。m0は、端末間のUCIの多重のために用いられる。 m 0 is provided to the terminal based on Radio Resource Control (RRC) parameters (eg, initialCyclicShift). m 0 is used for multiplexing UCI between terminals.
 m_csは、基地局に送信するHARQ-ACK(HARQ-ACK情報ビット)に基づいて、決定されてもよい。 m_cs may be determined based on the HARQ-ACK (HARQ-ACK information bits) transmitted to the base station.
 例えば、HARQ-ACKが1ビットで示される場合であって、「0」のHARQ-ACKを基地局に送信する場合、m_csは「0」であってもよい。また、HARQ-ACKが1ビットで示される場合であって、「1」のHARQ-ACKを基地局に送信する場合、m_csは「6」であってもよい(例えば、TS 38.213 V16.6.0のTable 9.2.3-3を参照)。 For example, when HARQ-ACK is indicated by 1 bit and HARQ-ACK of "0" is transmitted to the base station, m_cs may be "0". In addition, when HARQ-ACK is indicated by 1 bit and HARQ-ACK of "1" is transmitted to the base station, m_cs may be "6" (for example, TS 38.213 V16.6.0 See Table 9.2.3-3).
 また、例えば、HARQ-ACKが2ビットで示される場合であって、「00」のHARQ-ACKを基地局に送信する場合、m_csは「0」であってもよい。また、HARQ-ACKが2ビットで示される場合であって、「01」のHARQ-ACKを基地局に送信する場合、m_csは「3」であってもよい(例えば、TS 38.213 V16.6.0のTable 9.2.3-4を参照)。 Also, for example, when HARQ-ACK is indicated by 2 bits and HARQ-ACK of "00" is transmitted to the base station, m_cs may be "0". In addition, when HARQ-ACK is indicated by 2 bits, and HARQ-ACK of '01' is transmitted to the base station, m_cs may be '3' (for example, TS 38.213 V16.6.0 See Table 9.2.3-4).
 m_csは、基地局に送信するScheduling Request(SR)に基づいて、決定されてもよい。例えば、ポジティブSRを基地局に送信する場合、m_csは「0」であってもよい。 m_cs may be determined based on the Scheduling Request (SR) sent to the base station. For example, m_cs may be '0' when sending a positive SR to the base station.
 m_csは、基地局に送信するHARQ-ACKの値と、基地局に送信するScheduling Request(SR)とに基づいて、決定されてもよい。すなわち、HARQ-ACKと、SRとが、1つのPUCCH(PUCCHリソース)において多重され、基地局に送信されてもよい。 m_cs may be determined based on the HARQ-ACK value sent to the base station and the Scheduling Request (SR) sent to the base station. That is, HARQ-ACK and SR may be multiplexed in one PUCCH (PUCCH resource) and transmitted to the base station.
 例えば、HARQ-ACKが1ビットで示される場合であって、「0」のHARQ-ACKと、ネガティブSRとを基地局に送信する場合(SRを基地局に送信しない場合)、m_csは「0」であってもよい。また、HARQ-ACKが1ビットで示される場合であって、「1」のHARQ-ACKと、ネガティブSRとを基地局に送信する場合、m_csは「6」であってもよい。また、HARQ-ACKが1ビットで示される場合であって、「0」のHARQ-ACKと、ポジティブSRとを基地局に送信する場合、m_csは「3」であってもよい。また、HARQ-ACKが1ビットで示される場合であって、「1」のHARQ-ACKと、ポジティブSRとを基地局に送信する場合、m_csは「9」であってもよい(例えば、TS 38.213 V16.6.0のTable 9.2.5-1を参照)。 For example, when HARQ-ACK is indicated by 1 bit and HARQ-ACK of "0" and negative SR are transmitted to the base station (when SR is not transmitted to the base station), m_cs is "0 ' may be Also, when HARQ-ACK is indicated by 1 bit and HARQ-ACK of "1" and negative SR are transmitted to the base station, m_cs may be "6". Also, when HARQ-ACK is indicated by 1 bit and HARQ-ACK of "0" and positive SR are transmitted to the base station, m_cs may be "3". Also, when HARQ-ACK is indicated by 1 bit and HARQ-ACK of "1" and positive SR are transmitted to the base station, m_cs may be "9" (for example, TS See Table 9.2.5-1 in 38.213 V16.6.0).
 また、例えば、HARQ-ACKが2ビットで示される場合であって、「00」のHARQ-ACKと、ネガティブSRとを基地局に送信する場合、m_csは「0」であってもよい。また、HARQ-ACKが2ビットで示される場合であって、「00」のHARQ-ACKと、ポジティブSRとを基地局に送信する場合、m_csは「1」であってもよい。また、HARQ-ACが2ビットで示される場合であって、「01」のHARQ-ACKと、ネガティブSRとを基地局に送信する場合、m_csは「3」であってもよい。また、HARQ-ACKが2ビットで示される場合であって、「01」のHARQ-ACKと、ポジティブSRとを基地局に送信する場合、m_csは「4」であってもよい(例えば、TS 38.213 V16.6.0のTable 9.2.5-2を参照)。 Also, for example, when HARQ-ACK is indicated by 2 bits and HARQ-ACK of "00" and negative SR are transmitted to the base station, m_cs may be "0". In addition, when HARQ-ACK is indicated by 2 bits and HARQ-ACK of "00" and positive SR are transmitted to the base station, m_cs may be "1". Further, when HARQ-AC is indicated by 2 bits and HARQ-ACK of "01" and negative SR are transmitted to the base station, m_cs may be "3". Also, when HARQ-ACK is indicated by 2 bits and HARQ-ACK of '01' and positive SR are transmitted to the base station, m_cs may be '4' (for example, TS See Table 9.2.5-2 in 38.213 V16.6.0).
 <PUCCH format 1のUCIマッピング>
 図4は、PUCCH format 1のUCIマッピング例を説明する図である。図4に示すα、α、…、α11は、cyclic shift量を示す。α、α、…、α11は各々、0,1,…,11の値であってもよい。
<UCI mapping for PUCCH format 1>
FIG. 4 is a diagram illustrating an example of UCI mapping for PUCCH format 1. In FIG. α 0 , α 1 , . . . , α 11 shown in FIG. 4 indicate cyclic shift amounts. α 0 , α 1 , . . . , α 11 may each have values of 0, 1, .
 UCI d(0)及びDemodulation Reference Signal(DMRS)には、base sequence、cyclic shift、及びtime domain- Orthogonal cover code(TD-OCC)が乗算される。base sequence、cyclic shift、及びTD-OCCが乗算されたUCI d(0)及びDMRSが、n個(nは、4から14のいずれかの整数)のシンボルのPRBにマッピングされる。  UCI d(0) and Demodulation Reference Signal (DMRS) are multiplied by base sequence, cyclic shift, and time domain- Orthogonal cover code (TD-OCC). UCI d(0) multiplied by base sequence, cyclic shift, and TD-OCC and DMRS are mapped to PRBs of n symbols (where n is an integer from 4 to 14).
 UCI d(0)は、基地局に送信する1ビット又は2ビットのHARQ-ACKに基づいて決定されてもよい。UCI d(0)は、基地局に送信するポジティブSRに基づいて決定されてもよい。m0は、cyclic shift量を示し、Radio Resource Control(RRC)のパラメータ(例えば、initialCyclicShift)に基づいて、端末に提供される。m0は、端末間のUCIの多重のために用いられる。TD-OCCは、端末間のUCIの多重のために用いられる。 UCI d(0) may be determined based on the 1-bit or 2-bit HARQ-ACK sent to the base station. UCI d(0) may be determined based on positive SRs sent to the base station. m0 indicates the amount of cyclic shift and is provided to the terminal based on Radio Resource Control (RRC) parameters (eg, initialCyclicShift). m 0 is used for multiplexing UCI between terminals. TD-OCC is used for multiplexing UCI between terminals.
 HARQ-ACK及びSRは、多重されて基地局に送信されてもよい。例えば、端末は、SRがポジティブSRであるか、又は、ネガティブSRであるかによって、HARQ-ACKの送信に用いるPUCCHリソースを決定する。 HARQ-ACK and SR may be multiplexed and transmitted to the base station. For example, the terminal determines PUCCH resources to be used for HARQ-ACK transmission depending on whether the SR is positive SR or negative SR.
 具体的には、端末は、HARQ-ACKと、ポジティブSRとを基地局に送信する場合、SR送信のためのPUCCHリソースを用いて、HARQ-ACKを基地局に送信する。端末は、HARQ-ACKと、ネガティブSRとを基地局に送信する場合、HARQ-ACK送信のためのPUCCHリソースを用いて、HARQ-ACKを基地局に送信する。 Specifically, when the terminal transmits HARQ-ACK and positive SR to the base station, it uses PUCCH resources for SR transmission to transmit HARQ-ACK to the base station. When transmitting HARQ-ACK and negative SR to the base station, the terminal uses PUCCH resources for HARQ-ACK transmission to transmit HARQ-ACK to the base station.
 なお、基地局は、HARQ-ACKが、SR送信のためのPUCCHリソースを用いて送信された場合、ポジティブSRが送信されたことを判定する。基地局は、HARQ-ACKが、HARQ-ACK送信のためのPUCCHリソースを用いて送信された場合、ポジティブSRが送信されたことを判定する。 Note that the base station determines that a positive SR has been transmitted when HARQ-ACK is transmitted using PUCCH resources for SR transmission. The base station determines that a positive SR was transmitted when HARQ-ACK was transmitted using the PUCCH resource for HARQ-ACK transmission.
 ここで、端末から基地局へ送信する情報(UCI)の送信に用いられるPUCCHのフォーマットの決定には検討の余地がある。 Here, there is room for consideration in determining the PUCCH format used for transmitting information (UCI) transmitted from the terminal to the base station.
 例えば、delta-MCSが、PUCCH format 0及び/又はPUCCH format 1において送信されるのか否か、検討の余地がある。 For example, there is room for consideration as to whether delta-MCS is transmitted in PUCCH format 0 and/or PUCCH format 1.
 また、delta-MCSが、PUCCH format 0及び/又はPUCCH format 1において送信される場合、delta-MCS(delta-MCS情報ビット)のPUCCH formatシーケンスへのマッピングルール(方法)について、検討の余地がある。 Also, if delta-MCS is transmitted in PUCCH format 0 and/or PUCCH format 1, there is room for discussion about the mapping rule (method) of delta-MCS (delta-MCS information bits) to the PUCCH format sequence. .
 また、delta-MCSが、PUCCH format 0及び/又はPUCCH format 1において、HARQ-ACK及び/又はSRとともに送信される場合(delta-MCSが、HARQ-ACK及び/又はSRと多重される場合)、delta-MCSのPUCCH formatシーケンスへのマッピングルールについて、検討の余地がある。 Also, when delta-MCS is transmitted with HARQ-ACK and/or SR in PUCCH format 0 and/or PUCCH format 1 (when delta-MCS is multiplexed with HARQ-ACK and/or SR), The rules for mapping delta-MCS to PUCCH format sequences are subject to discussion.
 本実施の形態においては、端末から基地局へ送信する情報の送信に用いられるPUCCHのフォーマットを適切に決定する。 In this embodiment, the PUCCH format used for transmitting information from the terminal to the base station is determined appropriately.
 また、本実施の形態においては、delta-MCSのPUCCH formatシーケンスへのマッピングルールについて、決定する。 Also, in the present embodiment, the rules for mapping delta-MCS to the PUCCH format sequence are determined.
 また、本実施の形態においては、HARQ-ACK及び/又はSRが多重されるdelta-MCSのPUCCH formatシーケンスへのマッピングルールについて、決定する。 Also, in the present embodiment, a mapping rule for delta-MCS multiplexed with HARQ-ACK and/or SR to the PUCCH format sequence is determined.
 なお、PUCCHは、上り制御信号と言い換えられてもよい。以下では、PUCCH formatをPFと記載することがある。 It should be noted that the PUCCH may be rephrased as an uplink control signal. In the following, PUCCH format may be referred to as PF.
 <Proposal 0:delta-MCS transmission on PF0/1>
 端末は、delta-MCSをPF0及び/又はPF1(PF0/1)において送信できるか否かを決定してもよい。
<Proposal 0: delta-MCS transmission on PF0/1>
The terminal may determine whether it can send delta-MCS on PF0 and/or PF1 (PF0/1).
 <Opt.1>
 端末は、delta-MCSをPF0において送信すると決定してもよい。
<Opt.1>
The terminal may decide to send delta-MCS in PF0.
 <Opt.2>
 端末は、delta-MCSをPF1において送信すると決定してもよい。
<Opt.2>
The terminal may decide to send delta-MCS on PF1.
 <Opt.3>
 端末は、delta-MCSをPF0及びPF1において送信すると決定してもよい。
<Opt.3>
The terminal may decide to send delta-MCS on PF0 and PF1.
 <Opt.4>
 端末は、delta-MCSをPF0及びPF1において送信しないと決定してもよい。この場合、端末は、PF0及びPF1以外のPFにおいてdelta-MCSを送信してもよい。例えば、端末は、PF2、PF3、及びPF4の少なくとも1つのPFおいてdelta-MCSを送信してもよい。
<Opt.4>
The terminal may decide not to send delta-MCS on PF0 and PF1. In this case, the terminal may transmit delta-MCS in PFs other than PF0 and PF1. For example, the terminal may transmit delta-MCS in at least one PF of PF2, PF3, and PF4.
 なお、端末は、上記のOpt.1からOpt.4のいずれを用いるか、端末の能力に関する情報(例えば、UE Capability)によって定められてもよいし、RRCパラメータによって定められてもよいし、UE Capability及びRRCパラメータの双方によって定められてもよい。 Note that the terminal, which of the above Opt.1 to Opt.4 is used, may be determined by information on the terminal's capabilities (eg, UE Capability), may be determined by RRC parameters, or may be determined by the UE It may be defined by both Capability and RRC parameters.
 また、UE Capability及び/又はRRCパラメータは、PFごとに定められてもよいし、UCI typeごとに定められてもよいし、UCIペイロードサイズごとに定められてもよい。すなわち、delta-MCSのPF0/1を用いる送信は、UE Capability及び/又はRRCパラメータにおいて、PFごとに定められてもよいし、UCI typeごとに定められてもよいし、UCIペイロードサイズごとに定められてもよい。なお、UCI typeとは、delta-MCS、HARQ-ACK、及びSRを多重して送信するか否かを示す。 Also, UE Capability and/or RRC parameters may be defined for each PF, may be defined for each UCI type, or may be defined for each UCI payload size. That is, transmission using PF0/1 of delta-MCS may be defined for each PF, may be defined for each UCI type, or may be defined for each UCI payload size in the UE Capability and/or RRC parameters. may be Note that UCI type indicates whether or not delta-MCS, HARQ-ACK, and SR are multiplexed and transmitted.
 例えば、delta-MCS送信は、UE Capabilityにおいて、PF0/1がサポートされると定められてもよい。 For example, delta-MCS transmission may be specified in the UE Capability that PF0/1 is supported.
 例えば、delta-MCS送信は、UE Capabilityにおいて、delta-MCS送信のみがPF0/1においてサポートされると定められてもよい。delta-MCS送信は、UE Capabilityにおいて、HARQ-ACKとの送信(多重)がPF0/1においてサポートされると定められてもよい。delta-MCS送信は、UE Capabilityにおいて、SRとの送信(多重)がPF0/1においてサポートされると定められてもよい。 For example, delta-MCS transmission may be defined in the UE Capability that only delta-MCS transmission is supported in PF0/1. delta-MCS transmission may be specified in the UE Capability that transmission (multiplexing) with HARQ-ACK is supported in PF0/1. delta-MCS transmission may be specified in the UE Capability that transmission (multiplexing) with SR is supported in PF0/1.
 例えば、delta-MCS送信は、UE Capabilityにおいて、1ビットのdelta-MCS送信と1ビットのHARQ-ACK送信とが、PF0/1においてサポートされると定められてもよい。なお、delta-MCS送信は、UE Capabilityにおいて、2ビットのdelta-MCS送信と1ビットのHARQ-ACK送信とが、PF0/1においてサポートされると定められてもよい。delta-MCS送信は、UE Capabilityにおいて、1ビットのdelta-MCS送信と2ビットのHARQ-ACK送信とが、PF0/1においてサポートされると定められてもよい。 For example, delta-MCS transmission may be defined in UE Capability that 1-bit delta-MCS transmission and 1-bit HARQ-ACK transmission are supported in PF0/1. For delta-MCS transmission, UE Capability may define that 2-bit delta-MCS transmission and 1-bit HARQ-ACK transmission are supported in PF0/1. delta-MCS transmission may be specified in the UE Capability that 1-bit delta-MCS transmission and 2-bit HARQ-ACK transmission are supported in PF0/1.
 <Proposal 1:mapping rule of delta-MCS on PF0/1 only>
 <On PF0>
 端末は、下記のルールを用いて、delta-MCSを、他のUCI(例えば、HARQ-ACK及び/又はSR)と多重せずに、PF0のPUCCHリソースにマッピングしてもよい。
<Proposal 1: mapping rule of delta-MCS on PF0/1 only>
<On PF0>
The terminal may map delta-MCS to PUCCH resources of PF0 without multiplexing with other UCI (eg, HARQ-ACK and/or SR) using the following rules.
 <Opt.1>
 端末は、HARQ-ACKの、PF0のPUCCHリソースへのマッピングルールを利用(再利用)してもよい。例えば、端末は、図3で説明したHARQ-ACKの、PF0のPUCCHリソースへのマッピングルールと同じルールに基づいて、delta-MCSを、PF0のPUCCHリソースにマッピングしてもよい。
<Opt.1>
The terminal may use (reuse) the mapping rule of HARQ-ACK to the PUCCH resource of PF0. For example, the terminal may map delta-MCS to the PUCCH resource of PF0 based on the same rule as the mapping rule of HARQ-ACK to the PUCCH resource of PF0 described in FIG.
 図5は、Proposal 1のPF0におけるOpt.1の一例を示す図である。端末は、基地局に送信するdelta-MCSの値に基づいて、m_csを決定してもよい。 Fig. 5 is a diagram showing an example of Opt.1 in PF0 of Proposal 1. The terminal may determine m_cs based on the value of delta-MCS transmitted to the base station.
 例えば、delta-MCSが1ビットで示される場合であって、「0」のdelta-MCSを基地局に送信する場合、端末は、m_cs=0を決定してもよい。また、delta-MCSが1ビットで示される場合であって、「1」のdelta-MCSを基地局に送信する場合、端末は、m_cs=6を決定してもよい。 For example, when delta-MCS is indicated by 1 bit and delta-MCS of "0" is transmitted to the base station, the terminal may determine m_cs=0. Also, when the delta-MCS is indicated by 1 bit and a delta-MCS of "1" is transmitted to the base station, the terminal may determine m_cs=6.
 また、例えば、delta-MCSが2ビットで示される場合であって、「00」のdelta-MCSを基地局に送信する場合、端末は、m_cs=0を決定してもよい。また、delta-MCSが2ビットで示される場合であって、「01」のdelta-MCSを基地局に送信する場合、端末は、m_cs=3を決定してもよい。 Also, for example, when delta-MCS is indicated by 2 bits and delta-MCS of "00" is transmitted to the base station, the terminal may determine m_cs=0. Also, when the delta-MCS is indicated by 2 bits and the delta-MCS of "01" is transmitted to the base station, the terminal may determine m_cs=3.
 <Opt.2>
 端末は、新たなルールを用いて、delta-MCSを、他のUCIと多重せずに、PF0のPUCCHリソースにマッピングしてもよい。例えば、端末は、HARQ-ACKの、PF0のPUCCHリソースへのマッピングルールとは異なるルールを利用してもよい。
<Opt.2>
The terminal may use a new rule to map delta-MCS to the PUCCH resource of PF0 without multiplexing it with other UCIs. For example, the terminal may use a different rule for mapping HARQ-ACK to PUCCH resources of PF0.
 図6は、Proposal 1のPF0におけるOpt.2の一例を示す図である。端末は、基地局に送信するdelta-MCSの値に基づいて、m_csを決定してもよい。 Fig. 6 is a diagram showing an example of Opt.2 in PF0 of Proposal 1. The terminal may determine m_cs based on the value of delta-MCS transmitted to the base station.
 例えば、delta-MCSが1ビットで示される場合であって、「0」のdelta-MCSを基地局に送信する場合、端末は、m_cs=3を決定してもよい。また、delta-MCSが1ビットで示される場合であって、「1」のdelta-MCSを基地局に送信する場合、端末は、m_cs=9を決定してもよい。 For example, when delta-MCS is indicated by 1 bit and delta-MCS of "0" is transmitted to the base station, the terminal may determine m_cs=3. Also, when the delta-MCS is indicated by 1 bit and a delta-MCS of "1" is transmitted to the base station, the terminal may determine m_cs=9.
 また、例えば、delta-MCSが2ビットで示される場合であって、「00」のdelta-MCSを基地局に送信する場合、端末は、m_cs=1を決定してもよい。また、delta-MCSが2ビットで示される場合であって、「01」のdelta-MCSを基地局に送信する場合、端末は、m_cs=4を決定してもよい。 Also, for example, when delta-MCS is indicated by 2 bits and delta-MCS of "00" is transmitted to the base station, the terminal may determine m_cs=1. Also, when the delta-MCS is indicated by 2 bits and the delta-MCS of "01" is transmitted to the base station, the terminal may determine m_cs=4.
 なお、端末は、Opt.1及びOpt.2のいずれを適用するか、UE Capability及び/又はRRCパラメータに基づいて、決定してもよい。 It should be noted that the terminal may decide whether to apply Opt.1 or Opt.2 based on UE Capability and/or RRC parameters.
 <On PF1>
 <Opt.1>
 端末は、HARQ-ACKの、PF1のPUCCHリソースへのマッピングルールを利用(再利用)してもよい。例えば、端末は、図4で説明したHARQ-ACKの、PF1のPUCCHリソースへのマッピングルールと同じルールに基づいて、delta-MCSを、PF1のPUCCHリソースにマッピングしてもよい。
<On PF1>
<Opt.1>
The terminal may use (reuse) the mapping rule of HARQ-ACK to the PUCCH resource of PF1. For example, the terminal may map delta-MCS to the PUCCH resource of PF1 based on the same rule as the mapping rule of HARQ-ACK to the PUCCH resource of PF1 described in FIG.
 図7は、Proposal 1のPF1におけるOpt.1の一例を示す図である。端末は、基地局に送信するdelta-MCSの値に基づいて、UCI d(0)を決定してもよい。例えば、端末は、delta-MCSが1ビットで示される場合、1ビットのdelta-MCSに基づいて、binary phase-shift keying(BPSK)の信号点(UCI d(0))を決定してもよい。端末は、delta-MCSが2ビットで示される場合、2ビットのdelta-MCSに基づいて、quadrature phase shift keying(QPSK)の信号点(UCI d(0))を決定してもよい。 Fig. 7 is a diagram showing an example of Opt.1 in PF1 of Proposal 1. The terminal may determine UCI d(0) based on the value of delta-MCS transmitted to the base station. For example, if the delta-MCS is indicated by 1 bit, the terminal may determine the binary phase-shift keying (BPSK) signal point (UCI d(0)) based on the 1-bit delta-MCS. . If the delta-MCS is indicated by 2 bits, the terminal may determine the quadrature phase shift keying (QPSK) signal point (UCI d(0)) based on the 2-bit delta-MCS.
 <Proposal 2:Delta-MCS of PF0 with other UCI of PF0>
 <Opt.1>
 端末は、PF0におけるdelta-MCSを、PF0における他のUCIと多重し、PF0のPUCCHリソースにマッピングしてもよい。例えば、端末は、PF0におけるdelta-MCSの送信タイミングと、PF0における他のUCIの送信タイミングとが重なった場合(衝突した場合)、PF0におけるdelta-MCSと、PF0における他のUCIとを多重し、PF0のPUCCHリソースにマッピングしてもよい。
<Proposal 2: Delta-MCS of PF0 with other UCI of PF0>
<Opt.1>
The terminal may multiplex the delta-MCS in PF0 with other UCI in PF0 and map it to the PUCCH resource of PF0. For example, when the transmission timing of delta-MCS in PF0 and the transmission timing of another UCI in PF0 overlap (collide), the terminal multiplexes the delta-MCS in PF0 and the other UCI in PF0. , may be mapped to the PUCCH resource of PF0.
 なお、端末は、delta-MCSと、他のUCIとの、PF0のPUCCHリソースへのマッピングルールについて、HARQ-ACKと、SRとの、PF0のPUCCHリソースへのマッピングルールを利用(再利用)してもよい。 Note that the terminal uses (reuses) the mapping rule of HARQ-ACK and SR to the PUCCH resource of PF0 for the mapping rule of delta-MCS and other UCI to the PUCCH resource of PF0. may
 <Opt.2>
 端末は、PF0におけるdelta-MCSの送信タイミングと、PF0における他のUCIの送信タイミングとが重なった場合、PF0におけるdelta-MCSをドロップしてもよい。例えば、端末は、delta-MCSをPF0のPUCCHリソースにマッピングせず、他のUCIをPF0のPUCCHリソースにマッピングしてもよい。
<Opt.2>
The terminal may drop the delta-MCS in PF0 when the transmission timing of delta-MCS in PF0 overlaps with the transmission timing of another UCI in PF0. For example, the terminal may not map delta-MCS to the PUCCH resource of PF0 and map other UCI to the PUCCH resource of PF0.
 <Opt.3>、<Opt.4>
 端末は、PF0におけるdelta-MCSの送信タイミングと、PF0における他のUCIの送信タイミングとが重なった場合、他のUCIをドロップしてもよい。例えば、端末は、他のUCIをPF0のPUCCHリソースにマッピングせず、delta-MCSをPF0のPUCCHリソースにマッピングしてもよい。
<Opt.3>, <Opt.4>
If the transmission timing of delta-MCS in PF0 overlaps with the transmission timing of another UCI in PF0, the terminal may drop the other UCI. For example, the terminal may map delta-MCS to the PUCCH resource of PF0 without mapping other UCIs to the PUCCH resource of PF0.
 図8は、Proposal 2の一例を示す図である。図8には、PF0における1ビットのdelta-MCSの送信タイミングと、PF0における他のUCIの送信タイミングとが重なった場合の端末の動作例が示してある。また、図8には、PF0における2ビットのdelta-MCSの送信タイミングと、PF0における他のUCIの送信タイミングとが重なった場合の端末の動作例が示してある。図8に示すOpt.1-1~Opt.1-6は、上記の<Opt.1>の派生である。図8に示すOpt.2~Opt.4は、上記の<Opt.2>~<Opt.4>に対応する。 Fig. 8 is a diagram showing an example of Proposal 2. FIG. 8 shows an operation example of a terminal when the transmission timing of 1-bit delta-MCS in PF0 overlaps with the transmission timing of another UCI in PF0. Also, FIG. 8 shows an operation example of a terminal when the transmission timing of 2-bit delta-MCS in PF0 overlaps with the transmission timing of another UCI in PF0. Opt.1-1 to Opt.1-6 shown in FIG. 8 are derivatives of <Opt.1> above. Opt.2 to Opt.4 shown in FIG. 8 correspond to <Opt.2> to <Opt.4> above.
 以下、Opt.1の派生であるOpt.1-1~Opt.1-6について説明する。 Opt.1-1 to Opt.1-6, which are derived from Opt.1, will be explained below.
 <Opt.1-1>
 図9は、Proposal 2のOpt.1-1の一例を示す図である。図9に示すように、1ビットのdelta-MCSと、1ビットのHARQ-ACKとが多重されてもよい。
<Opt.1-1>
FIG. 9 is a diagram showing an example of Opt.1-1 of Proposal 2. FIG. As shown in FIG. 9, 1-bit delta-MCS and 1-bit HARQ-ACK may be multiplexed.
 例えば、HARQ-ACKが「0」であって、delta-MCSが「0」の場合、端末は、m_cs=0を決定してもよい。また、HARQ-ACKが「1」であって、delta-MCSが「0」の場合、端末は、m_cs=3を決定してもよい。 For example, when HARQ-ACK is "0" and delta-MCS is "0", the terminal may determine m_cs=0. Also, when HARQ-ACK is '1' and delta-MCS is '0', the terminal may determine m_cs=3.
 <Opt.1-2>
 図10は、Proposal 2のOpt.1-2の一例を示す図である。図10に示すように、1ビットのdelta-MCSと、2ビットのHARQ-ACKとが多重されてもよい。
<Opt.1-2>
FIG. 10 is a diagram showing an example of Opt.1-2 of Proposal 2. FIG. As shown in FIG. 10, 1-bit delta-MCS and 2-bit HARQ-ACK may be multiplexed.
 例えば、HARQ-ACKが「00」であって、delta-MCSが「0」の場合、端末は、m_cs=0を決定してもよい。また、HARQ-ACKが「01」であって、delta-MCSが「0」の場合、端末は、m_cs=3を決定してもよい。 For example, when HARQ-ACK is "00" and delta-MCS is "0", the terminal may determine m_cs=0. Also, when HARQ-ACK is '01' and delta-MCS is '0', the terminal may determine m_cs=3.
 <Opt.1-3>
 図11は、Proposal 2のOpt.1-3の一例を示す図である。図11に示すように、1ビットのSRと、1ビットのdelta-MCSとが多重されてもよい。
<Opt.1-3>
FIG. 11 is a diagram showing an example of Opt.1-3 of Proposal 2. FIG. As shown in FIG. 11, 1-bit SR and 1-bit delta-MCS may be multiplexed.
 例えば、SRが「0」であって、delta-MCSが「0」の場合、端末は、m_cs=0を決定してもよい。また、SRが「1」であって、delta-MCSが「0」の場合、端末は、m_cs=3を決定してもよい。 For example, if SR is "0" and delta-MCS is "0", the terminal may determine m_cs=0. Also, when SR is '1' and delta-MCS is '0', the terminal may determine m_cs=3.
 <Opt.1-4>
 図12は、Proposal 2のOpt.1-4の一例を示す図である。図12に示すように、1ビットのHARQ-ACKと、1ビットのSRと、1ビットのdelta-MCSとが多重されてもよい。
<Opt.1-4>
FIG. 12 is a diagram showing an example of Opt.1-4 of Proposal 2. FIG. As shown in FIG. 12, 1-bit HARQ-ACK, 1-bit SR, and 1-bit delta-MCS may be multiplexed.
 例えば、HARQ-ACKが「0」、SRが「0」、及びdelta-MCSが「0」の場合、端末は、m_cs=0を決定してもよい。また、HARQ-ACKが「1」、SRが「0」、及びdelta-MCSが「0」の場合、端末は、m_cs=3を決定してもよい。 For example, when HARQ-ACK is "0", SR is "0", and delta-MCS is "0", the terminal may determine m_cs=0. Also, when HARQ-ACK is '1', SR is '0', and delta-MCS is '0', the terminal may determine m_cs=3.
 <Opt.1-5>
 図13は、Proposal 2のOpt.1-5の一例を示す図である。図13に示すように、1ビットのHARQ-ACKと、2ビットのdelta-MCSとが多重されてもよい。
<Opt.1-5>
FIG. 13 is a diagram showing an example of Opt.1-5 of Proposal 2. FIG. As shown in FIG. 13, 1-bit HARQ-ACK and 2-bit delta-MCS may be multiplexed.
 例えば、HARQ-ACKが「0」であって、delta-MCSが「00」の場合、端末は、m_cs=0を決定してもよい。また、HARQ-ACKが「0」であって、delta-MCSが「01」の場合、端末は、m_cs=3を決定してもよい。 For example, when HARQ-ACK is "0" and delta-MCS is "00", the terminal may determine m_cs=0. Also, when HARQ-ACK is '0' and delta-MCS is '01', the terminal may determine m_cs=3.
 <Opt.1-6>
 図14は、Proposal 2のOpt.1-6の一例を示す図である。図14に示すように、1ビットのSRと、2ビットのdelta-MCSとが多重されてもよい。
<Opt.1-6>
14 is a diagram showing an example of Opt.1-6 of Proposal 2. FIG. As shown in FIG. 14, 1-bit SR and 2-bit delta-MCS may be multiplexed.
 例えば、SRが「0」であって、delta-MCSが「00」の場合、端末は、m_cs=0を決定してもよい。また、SRが「0」であって、delta-MCSが「01」の場合、端末は、m_cs=3を決定してもよい。 For example, if SR is "0" and delta-MCS is "00", the terminal may determine m_cs=0. Also, when SR is '0' and delta-MCS is '01', the terminal may determine m_cs=3.
 図8の説明に戻る。 Return to the description of Fig. 8.
 <ケース1a:1ビットのdelta-MCSの送信タイミングと、1ビットのHARQ-ACKの送信タイミングとが重なるケース>
 端末は、ケース1aにおいては、1ビットのdelta-MCSと、1ビットのHARQ-ACKとを多重してもよい。例えば、端末は、図9で説明したOpt.1-1を適用し、1ビットのdelta-MCSと、1ビットのHARQ-ACKとを多重してもよい。
<Case 1a: Case where the transmission timing of 1-bit delta-MCS overlaps with the transmission timing of 1-bit HARQ-ACK>
The terminal may multiplex 1-bit delta-MCS and 1-bit HARQ-ACK in case 1a. For example, the terminal may apply Opt.1-1 described in FIG. 9 to multiplex 1-bit delta-MCS and 1-bit HARQ-ACK.
 また、端末は、ケース1aにおいては、Opt.2を適用してもよい。例えば、端末は、delta-MCSをドロップしてもよい。 Also, the terminal may apply Opt.2 in Case 1a. For example, the terminal may drop delta-MCS.
 また、端末は、Opt.3を適用してもよい。例えば、端末は、1ビットのHARQ-ACKをドロップしてもよい。 Also, the terminal may apply Opt.3. For example, the terminal may drop 1-bit HARQ-ACK.
 なお、端末は、Opt.3を適用する場合において、下り信号の受信結果がNACKであった場合、HARQ-ACKをドロップして、delta-MCSを基地局に送信してもよい。 Note that, when applying Opt.3, if the downlink signal reception result is NACK, the terminal may drop HARQ-ACK and transmit delta-MCS to the base station.
 <ケース2a:1ビットのdelta-MCSの送信タイミングと、2ビットのHARQ-ACKの送信タイミングとが重なるケース>
 端末は、ケース2aにおいては、1ビットのdelta-MCSと、2ビットのHARQ-ACKとを多重してもよい。例えば、端末は、図10で説明したOpt.1-2を適用し、1ビットのdelta-MCSと、2ビットのHARQ-ACKとを多重してもよい。
<Case 2a: Case where the transmission timing of 1-bit delta-MCS and the transmission timing of 2-bit HARQ-ACK overlap>
The terminal may multiplex 1-bit delta-MCS and 2-bit HARQ-ACK in case 2a. For example, the terminal may apply Opt.1-2 described in FIG. 10 to multiplex 1-bit delta-MCS and 2-bit HARQ-ACK.
 また、端末は、ケース2aにおいては、Opt.2を適用してもよい。例えば、端末は、delta-MCSをドロップしてもよい。 In addition, the terminal may apply Opt.2 in Case 2a. For example, the terminal may drop delta-MCS.
 <ケース3a:1ビットのdelta-MCSの送信タイミングと、1ビットのSRの送信タイミングとが重なるケース>
 端末は、ケース3aにおいては、1ビットのdelta-MCSと、1ビットのSRとを多重してもよい。例えば、端末は、図11で説明したOpt.1-3を適用し、1ビットのdelta-MCSと、1ビットのSRとを多重してもよい。
<Case 3a: Case where the transmission timing of 1-bit delta-MCS overlaps with the transmission timing of 1-bit SR>
The terminal may multiplex 1-bit delta-MCS and 1-bit SR in case 3a. For example, the terminal may apply Opt.1-3 described in FIG. 11 to multiplex 1-bit delta-MCS and 1-bit SR.
 また、端末は、ケース3aにおいては、Opt.2を適用してもよい。例えば、端末は、delta-MCSをドロップしてもよい。 Also, the terminal may apply Opt.2 in Case 3a. For example, the terminal may drop delta-MCS.
 <ケース4a:1ビットのdelta-MCSの送信タイミングと、1ビットのHARQ-ACKの送信タイミングと、1ビットのSRの送信タイミングとが重なるケース>
 端末は、ケース4aにおいては、1ビットのdelta-MCSと、1ビットのHARQ-ACKと、1ビットのSRとを多重してもよい。例えば、端末は、図12で説明したOpt.1-4を適用し、1ビットのdelta-MCSと、1ビットのHARQ-ACKと、1ビットのSRとを多重してもよい。
<Case 4a: Case where the transmission timing of 1-bit delta-MCS, the transmission timing of 1-bit HARQ-ACK, and the transmission timing of 1-bit SR overlap>
In Case 4a, the terminal may multiplex 1-bit delta-MCS, 1-bit HARQ-ACK, and 1-bit SR. For example, the terminal may apply Opt.1-4 described in FIG. 12 and multiplex 1-bit delta-MCS, 1-bit HARQ-ACK, and 1-bit SR.
 また、端末は、ケース4aにおいては、Opt.2を適用してもよい。例えば、端末は、delta-MCSをドロップしてもよい。この場合、端末は、1ビットのHARQ-ACKと、1ビットのSRとを多重してもよい。 Also, the terminal may apply Opt.2 in Case 4a. For example, the terminal may drop delta-MCS. In this case, the terminal may multiplex 1-bit HARQ-ACK and 1-bit SR.
 また、端末は、ケース4aにおいては、Opt.3を適用してもよい。例えば、端末は、SRをドロップしてもよい。この場合、端末は、1ビットのdelta-MCSと、1ビットのHARQ-ACKとを多重してもよい。例えば、端末は、図9で説明したOpt.1-1又は1-2を適用し、1ビットのdelta-MCSと、1ビットのHARQ-ACKとを多重してもよい。 Also, the terminal may apply Opt.3 in case 4a. For example, the terminal may drop the SR. In this case, the terminal may multiplex 1-bit delta-MCS and 1-bit HARQ-ACK. For example, the terminal may apply Opt.1-1 or 1-2 described in FIG. 9 to multiplex 1-bit delta-MCS and 1-bit HARQ-ACK.
 また、端末は、ケース4aにおいては、Opt.4を適用してもよい。例えば、端末は、HARQ-ACKをドロップしてもよい。この場合、端末は、1ビットのdelta-MCSと、1ビットのSRとを多重してもよい。例えば、端末は、図11で説明したOpt.1-3を適用し、1ビットのdelta-MCSと、1ビットのHARQ-ACKとを多重してもよい。 In addition, the terminal may apply Opt.4 in case 4a. For example, the terminal may drop HARQ-ACK. In this case, the terminal may multiplex 1-bit delta-MCS and 1-bit SR. For example, the terminal may apply Opt.1-3 described in FIG. 11 and multiplex 1-bit delta-MCS and 1-bit HARQ-ACK.
 <ケース5a:1ビットのdelta-MCSの送信タイミングと、2ビットのHARQ-ACKの送信タイミングと、1ビットのSRの送信タイミングとが重なるケース>
 端末は、ケース5aにおいては、Opt.2を適用し、delta-MCSをドロップしてもよい。端末は、ケース5aにおいては、2ビットのHARQ-ACKと、1ビットのSRとを多重してもよい。
<Case 5a: Case where the transmission timing of 1-bit delta-MCS, the transmission timing of 2-bit HARQ-ACK, and the transmission timing of 1-bit SR overlap>
The terminal may apply Opt.2 and drop the delta-MCS in Case 5a. The terminal may multiplex 2-bit HARQ-ACK and 1-bit SR in Case 5a.
 また、端末は、ケース5aにおいては、Opt.3を適用し、SRをドロップしてもよい。端末は、ケース5aにおいては、1ビットのdelta-MCSと、2ビットのHARQ-ACKとを多重してもよい。この場合、端末は、図10で説明したOpt.1-2を適用し、2ビットのHARQ-ACKと、1ビットのdelta-MCSとを多重してもよい。 Also, in Case 5a, the terminal may apply Opt.3 and drop the SR. The terminal may multiplex 1-bit delta-MCS and 2-bit HARQ-ACK in case 5a. In this case, the terminal may apply Opt.1-2 described in FIG. 10 and multiplex 2-bit HARQ-ACK and 1-bit delta-MCS.
 また、端末は、ケース5aにおいては、Opt.4を適用し、HARQ-ACKをドロップしてもよい。端末は、ケース5aにおいては、1ビットのdelta-MCSと、1ビットのSRとを多重してもよい。この場合、端末は、図11で説明したOpt.1-3を適用し、1ビットのdelta-MCSと、1ビットのSRとを多重してもよい。 Also, in Case 5a, the terminal may apply Opt.4 and drop the HARQ-ACK. The terminal may multiplex 1-bit delta-MCS and 1-bit SR in case 5a. In this case, the terminal may apply Opt.1-3 described in FIG. 11 to multiplex 1-bit delta-MCS and 1-bit SR.
 <ケース1b:2ビットのdelta-MCSの送信タイミングと、1ビットのHARQ-ACKの送信タイミングとが重なるケース>
 端末は、ケース1bにおいては、2ビットのdelta-MCSと、1ビットのHARQ-ACKとを多重してもよい。例えば、端末は、図13で説明したOpt.1-5を適用し、2ビットのdelta-MCSと、1ビットのHARQ-ACKとを多重してもよい。
<Case 1b: Case where the transmission timing of 2-bit delta-MCS and the transmission timing of 1-bit HARQ-ACK overlap>
The terminal may multiplex 2-bit delta-MCS and 1-bit HARQ-ACK in case 1b. For example, the terminal may apply Opt.1-5 described in FIG. 13 and multiplex 2-bit delta-MCS and 1-bit HARQ-ACK.
 また、端末は、ケース1bにおいては、Opt.2を適用してもよい。例えば、端末は、delta-MCSをドロップしてもよい。 Also, the terminal may apply Opt.2 in case 1b. For example, the terminal may drop delta-MCS.
 <ケース2b:2ビットのdelta-MCSの送信タイミングと、2ビットのHARQ-ACKの送信タイミングとが重なるケース>
 端末は、ケース2bにおいては、Opt.2を適用し、delta-MCSをドロップしてもよい。
<Case 2b: Case where the transmission timing of 2-bit delta-MCS and the transmission timing of 2-bit HARQ-ACK overlap>
The terminal may apply Opt.2 and drop the delta-MCS in case 2b.
 また、端末は、ケース2bにおいては、Opt.3を適用し、HARQ-ACKをドロップしてもよい。 Also, in case 2b, the terminal may apply Opt.3 and drop the HARQ-ACK.
 なお、端末は、Opt.3を適用し、HARQ-ACKをドロップする場合において、下り信号の受信結果がNACKであった場合、HARQ-ACKをドロップして、delta-MCSを基地局に送信してもよい。 Note that, when applying Opt.3 and dropping HARQ-ACK, if the reception result of the downlink signal is NACK, the terminal drops HARQ-ACK and transmits delta-MCS to the base station. may
 <ケース3b:2ビットのdelta-MCSの送信タイミングと、1ビットのSRの送信タイミングとが重なるケース>
 端末は、ケース3bにおいては、2ビットのdelta-MCSと、1ビットのSRとを多重してもよい。例えば、端末は、図14で説明したOpt.1-6を適用し、2ビットのdelta-MCSと、1ビットのSRとを多重してもよい。
<Case 3b: Case where the transmission timing of 2-bit delta-MCS and the transmission timing of 1-bit SR overlap>
The terminal may multiplex 2-bit delta-MCS and 1-bit SR in case 3b. For example, the terminal may apply Opt.1-6 described in FIG. 14 and multiplex 2-bit delta-MCS and 1-bit SR.
 また、端末は、ケース3bにおいては、Opt.2を適用し、delta-MCSをドロップしてもよい。 Also, in case 3b, the terminal may apply Opt.2 and drop the delta-MCS.
 <ケース4b:2ビットのdelta-MCSの送信タイミングと、1ビットのHARQ-ACKの送信タイミングと、1ビットのSRの送信タイミングとが重なるケース>
 端末は、ケース4bにおいては、Opt.2を適用し、delta-MCSをドロップしてもよい。
<Case 4b: Case where the transmission timing of 2-bit delta-MCS, the transmission timing of 1-bit HARQ-ACK, and the transmission timing of 1-bit SR overlap>
The terminal may apply Opt.2 and drop the delta-MCS in case 4b.
 また、端末は、ケース4bにおいては、Opt.3を適用し、SRをドロップしてもよい。この場合、端末は、2ビットのdelta-MCSと、1ビットのHARQ-ACKとを多重してもよい。例えば、端末は、図13で説明したOpt.1-5を適用し、2ビットのdelta-MCSと、1ビットのHARQ-ACKとを多重してもよい。 Also, in case 4b, the terminal may apply Opt.3 and drop the SR. In this case, the terminal may multiplex 2-bit delta-MCS and 1-bit HARQ-ACK. For example, the terminal may apply Opt.1-5 described in FIG. 13 and multiplex 2-bit delta-MCS and 1-bit HARQ-ACK.
 また、端末は、ケース4bにおいては、Opt.4を適用し、HARQ-ACKをドロップしてもよい。この場合、端末は、2ビットのdelta-MCSと、1ビットのSRとを多重してもよい。 Also, in case 4b, the terminal may apply Opt.4 and drop the HARQ-ACK. In this case, the terminal may multiplex 2-bit delta-MCS and 1-bit SR.
 なお、端末は、Opt.4を適用し、HARQ-ACKをドロップする場合において、下り信号の受信結果がNACKであった場合、HARQ-ACKをドロップして、delta-MCSを基地局に送信してもよい。 Note that, when applying Opt.4 and dropping HARQ-ACK, if the reception result of the downlink signal is NACK, the terminal drops HARQ-ACK and transmits delta-MCS to the base station. may
 <ケース5b:2ビットのdelta-MCSの送信タイミングと、2ビットのHARQ-ACKの送信タイミングと、1ビットのSRの送信タイミングとが重なるケース>
 端末は、ケース5bにおいては、Opt.2を適用し、delta-MCSをドロップしてもよい。端末は、ケース5bにおいては、2ビットのHARQ-ACKと、1ビットのSRとを多重してもよい。
<Case 5b: Case where the transmission timing of 2-bit delta-MCS, the transmission timing of 2-bit HARQ-ACK, and the transmission timing of 1-bit SR overlap>
The terminal may apply Opt.2 and drop the delta-MCS in Case 5b. The terminal may multiplex 2-bit HARQ-ACK and 1-bit SR in case 5b.
 また、端末は、ケース5bにおいては、Opt.3を適用し、HARQ-ACKをドロップしてもよい。端末は、ケース5bにおいては、1ビットのdelta-MCSと、1ビットのSRとを多重してもよい。この場合、端末は、図14で説明したOpt.1-6を適用し、2ビットのdelta-MCSと、1ビットのSRとを多重してもよい。 Also, in case 5b, the terminal may apply Opt.3 and drop the HARQ-ACK. The terminal may multiplex 1-bit delta-MCS and 1-bit SR in case 5b. In this case, the terminal may apply Opt.1-6 described in FIG. 14 to multiplex 2-bit delta-MCS and 1-bit SR.
 <Proposal 3:Delta-MCS of PF1 with other UCI of PF1>
 端末は、PF1におけるdelta-MCSを、PF1における他のUCIと多重し、PF1のPUCCHリソースにマッピングしてもよい。例えば、端末は、PF1におけるdelta-MCSの送信タイミングと、PF1における他のUCIの送信タイミングとが重なった場合、PF1におけるdelta-MCSと、PF1における他のUCIとを多重し、PF1のPUCCHリソースにマッピングしてもよい。図15は、Proposal 3の一例を示す図である。
<Proposal 3: Delta-MCS of PF1 with other UCI of PF1>
The terminal may multiplex the delta-MCS in PF1 with other UCI in PF1 and map it to the PUCCH resource of PF1. For example, when the transmission timing of delta-MCS in PF1 and the transmission timing of another UCI in PF1 overlap, the terminal multiplexes the delta-MCS in PF1 and the other UCI in PF1, and uses the PUCCH resource of PF1. can be mapped to FIG. 15 is a diagram showing an example of Proposal 3. FIG.
 <ケース1:delta-MCSの送信タイミングと、HARQ-ACKの送信タイミングとが重なるケース>
 <Opt.1>
 端末は、delta-MCSとHARQ-ACKとの送信に用いるPUCCHリソースを決定する。
<Case 1: Case where the transmission timing of delta-MCS and the transmission timing of HARQ-ACK overlap>
<Opt.1>
The terminal determines PUCCH resources to be used for transmitting delta-MCS and HARQ-ACK.
 <Alt.1>
 端末は、delta-MCSがdelta informationを有しているか否かに基づいて、PUCCHリソースを選択してもよい。
<Alt.1>
A terminal may select a PUCCH resource based on whether delta-MCS has delta information.
 例えば、端末は、delta-MCSがdelta informationを有している場合、delta-MCS送信のためのPUCCHリソースを用いて、HARQ-ACKを基地局に送信する。一方、端末は、delta-MCSがdelta informationを有していな場合、HARQ-ACK送信のためのPUCCHリソースを用いて、HARQ-ACKを基地局に送信する。 For example, when delta-MCS has delta information, the terminal uses PUCCH resources for delta-MCS transmission to transmit HARQ-ACK to the base station. On the other hand, when the delta-MCS does not have delta information, the terminal uses PUCCH resources for HARQ-ACK transmission to transmit HARQ-ACK to the base station.
 より具体的には、delta informationが「-1」といったdelta valueを有する場合(delta informationが有る場合)、端末は、delta-MCS送信のためのPUCCHリソースを用いて、HARQ-ACKを基地局に送信する。一方、端末は、delta informationが「0」といったdelta valueを有する場合(delta informationが無い場合)、端末は、HARQ-ACK送信のためのPUCCHリソースを用いて、HARQ-ACKを基地局に送信する。 More specifically, if the delta information has a delta value such as "-1" (if there is delta information), the terminal uses the PUCCH resource for delta-MCS transmission, HARQ-ACK to the base station Send. On the other hand, when the delta information has a delta value such as "0" (when there is no delta information), the terminal uses PUCCH resources for HARQ-ACK transmission to transmit HARQ-ACK to the base station. .
 なお、端末は、delta valueに基づいて、PUCCHリソースを選択してもよい。例えば、端末は、「-1」及び「1」といったdelta valueに基づいて、PUCCHリソースを選択してもよい。例えば、端末は、現在のMCSが、所望のMCSより大きい場合、「-1」のdelta valueを決定し、「-1」のdelta valueに対応するPUCCHリソースを用いて、HARQ-ACKを送信してもよい。端末は、現在のMCSが、所望のMCSより小さい場合、「1」のdelta valueを決定し、「1」のdelta valueに対応するPUCCHリソースを用いて、HARQ-ACKを送信してもよい。 Note that the terminal may select PUCCH resources based on the delta value. For example, the terminal may select PUCCH resources based on delta values such as '-1' and '1'. For example, if the current MCS is greater than the desired MCS, the terminal determines a delta value of '-1' and uses PUCCH resources corresponding to the delta value of '-1' to transmit HARQ-ACK. may If the current MCS is less than the desired MCS, the terminal may determine a delta value of '1' and transmit HARQ-ACK using PUCCH resources corresponding to the delta value of '1'.
 <Alt.2>
 端末は、HARQ-ACKがACK(又はNACK)であるかに基づいて、PUCCHリソースを選択してもよい。
<Alt.2>
The terminal may select PUCCH resources based on whether HARQ-ACK is ACK (or NACK).
 例えば、端末は、HARQ-ACKがACK(又はNACK)の場合、HARQ-ACK送信のためのPUCCHリソースを用いて、HARQ-ACKを基地局に送信する。一方、端末は、端末は、HARQ-ACKがNACK(又はACK)の場合、delta-MCS送信のためのPUCCHリソースを用いて、HARQ-ACKを基地局に送信する。 For example, when HARQ-ACK is ACK (or NACK), the terminal uses PUCCH resources for HARQ-ACK transmission to transmit HARQ-ACK to the base station. On the other hand, if the HARQ-ACK is NACK (or ACK), the terminal uses PUCCH resources for delta-MCS transmission to transmit HARQ-ACK to the base station.
 なお、Opt.1では、Delta-MCS及びHARQ-ACKのいずれかは、1ビットである。  In Opt.1, either Delta-MCS or HARQ-ACK is 1 bit.
 <Opt.2>
 端末は、delta-MCSをドロップし、HARQ-ACKを基地局に送信してもよい。
<Opt.2>
The terminal may drop the delta-MCS and send HARQ-ACK to the base station.
 <Opt.3>
 端末は、HARQ-ACKをドロップし、delta-MCSを基地局に送信してもよい。
<Opt.3>
The terminal may drop HARQ-ACK and send delta-MCS to the base station.
 <ケース2:delta-MCSの送信タイミングと、SRの送信タイミングとが重なるケース>
 <Opt.1>
 端末は、delta-MCSとSRとの送信に用いるPUCCHリソースを決定する。
<Case 2: Case where delta-MCS transmission timing and SR transmission timing overlap>
<Opt.1>
The terminal determines PUCCH resources to be used for transmitting delta-MCS and SR.
 例えば、端末は、SRがポジティブSRであるか、又は、ネガティブSRであるかによって、delta-MCSの送信に用いるPUCCHリソースを決定する。 For example, the terminal determines PUCCH resources to be used for delta-MCS transmission depending on whether the SR is positive SR or negative SR.
 より具体的には、端末は、delta-MCSと、ポジティブSRとを基地局に送信する場合、SR送信のためのPUCCHリソースを用いて、delta-MCSを基地局に送信する。端末は、delta-MCSと、ネガティブSRとを基地局に送信する場合、delta-MCS送信のためのPUCCHリソースを用いて、delta-MCSを基地局に送信する。 More specifically, when the terminal transmits delta-MCS and positive SR to the base station, it uses PUCCH resources for SR transmission to transmit delta-MCS to the base station. When transmitting delta-MCS and negative SR to the base station, the terminal uses PUCCH resources for delta-MCS transmission to transmit delta-MCS to the base station.
 <Opt.2>
 端末は、SRをドロップし、delta-MCSを基地局に送信してもよい。
<Opt.2>
The terminal may drop the SR and send the delta-MCS to the base station.
 <Opt.3>
 端末は、delta-MCSをドロップし、SRを基地局に送信してもよい。
<Opt.3>
The terminal may drop delta-MCS and send SR to the base station.
 <ケース3:delta-MCSの送信タイミングと、HARQ-ACKの送信タイミングと、SRの送信タイミングとが重なるケース> <Case 3: delta-MCS transmission timing, HARQ-ACK transmission timing, and SR transmission timing overlap>
 <Opt.1>
 端末は、delta-MCSをドロップし、HARQ-ACKとSRとを基地局に送信してもよい(例えば、図4を参照)。
<Opt.1>
The terminal may drop the delta-MCS and send HARQ-ACK and SR to the base station (eg, see FIG. 4).
 <Opt.2>
 端末は、SRをドロップし、HARQ-ACKとdelta-MCSとを基地局に送信してもよい。例えば、端末は、ケース1のOpt.1を適用し、HARQ-ACKとSRとを基地局に送信してもよい。
<Opt.2>
The terminal may drop the SR and send HARQ-ACK and delta-MCS to the base station. For example, the terminal may apply Option 1 of case 1 and transmit HARQ-ACK and SR to the base station.
 <Opt.3>
 端末は、HARQ-ACKをドロップし、delta-MCSとSRとを基地局に送信してもよい。例えば、端末は、ケース2のOpt.1を適用し、delta-MCSとSRとを基地局に送信してもよい。
<Opt.3>
The terminal may drop HARQ-ACK and send delta-MCS and SR to the base station. For example, the terminal may apply Option 1 of case 2 and transmit delta-MCS and SR to the base station.
 <Proposal 4:Delta-MCS of PF0 with other UCI of PF1>
 端末は、PF0におけるdelta-MCSを、PF1における他のUCIと多重し、PF0/1のPUCCHリソースにマッピングしてもよい。例えば、端末は、PF0におけるdelta-MCSの送信タイミングと、PF1における他のUCIの送信タイミングとが重なった場合、PF0におけるdelta-MCSと、PF1における他のUCIとを多重し、PF0/1のPUCCHリソースにマッピングしてもよい。図16は、Proposal 4の一例を示す図である。
<Proposal 4: Delta-MCS of PF0 with other UCI of PF1>
The terminal may multiplex the delta-MCS in PF0 with other UCIs in PF1 and map them to PUCCH resources in PF0/1. For example, when the transmission timing of delta-MCS in PF0 and the transmission timing of another UCI in PF1 overlap, the terminal multiplexes the delta-MCS in PF0 and the other UCI in PF1, and It may be mapped to a PUCCH resource. FIG. 16 is a diagram showing an example of Proposal 4. FIG.
 <ケース1:delta-MCSの送信タイミングと、HARQ-ACKの送信タイミングとが重なるケース>
 <Opt.1>
 端末は、delta-MCSと、HARQ-ACKとを多重し、PF0におけるPUCCHリソースにマッピングしてもよい。この場合、端末は、Proposal 2において説明したOpt.1-1、Opt.1-2、及びOpt.1-5のいずれかを適用してもよい。
<Case 1: Case where the transmission timing of delta-MCS and the transmission timing of HARQ-ACK overlap>
<Opt.1>
The terminal may multiplex delta-MCS and HARQ-ACK and map them to PUCCH resources in PF0. In this case, the terminal may apply any of Opt.1-1, Opt.1-2, and Opt.1-5 described in Proposal 2.
 <Opt.2>
 端末は、delta-MCSと、HARQ-ACKとを多重し、PF1におけるPUCCHリソースにマッピングしてもよい。この場合、端末は、Proposal 3において説明したケース1におけるOpt.1のAlt.1及びAlt.2のいずれかを適用してもよい。
<Opt.2>
The terminal may multiplex delta-MCS and HARQ-ACK and map them to PUCCH resources in PF1. In this case, the terminal may apply either Alt.1 or Alt.2 of Opt.1 in Case 1 described in Proposal 3.
 <Opt.3>
 端末は、delta-MCSをドロップし、HARQ-ACKをPF1におけるPUCCHリソースにマッピングしてもよい。
<Opt.3>
The terminal may drop delta-MCS and map HARQ-ACK to PUCCH resources in PF1.
 <Opt.4>
 端末は、HARQ-ACKをドロップし、delta-MCSをPF0におけるPUCCHリソースにマッピングしてもよい。
<Opt.4>
The terminal may drop HARQ-ACK and map delta-MCS to PUCCH resources in PF0.
 <ケース2:delta-MCSの送信タイミングと、SRの送信タイミングとが重なるケース>
 <Opt.1>
 端末は、delta-MCSと、SRとを多重し、PF0におけるPUCCHリソースにマッピングしてもよい。この場合、端末は、Proposal 2において説明したOpt.1-3及びOpt.1-6のいずれかを適用してもよい。
<Case 2: Case where delta-MCS transmission timing and SR transmission timing overlap>
<Opt.1>
The terminal may multiplex delta-MCS and SR and map them to PUCCH resources in PF0. In this case, the terminal may apply either Opt.1-3 or Opt.1-6 described in Proposal 2.
 <Opt.2>
 端末は、delta-MCSと、SRとを多重し、PF1におけるPUCCHリソースにマッピングしてもよい。この場合、端末は、Proposal 3において説明したケース2におけるOpt.1を適用してもよい。
<Opt.2>
The terminal may multiplex delta-MCS and SR and map them to PUCCH resources in PF1. In this case, the terminal may apply Opt.1 in Case 2 described in Proposal 3.
 <Opt.3>
 端末は、SRをドロップし、delta-MCSをPF0におけるPUCCHリソースにマッピングしてもよい。
<Opt.3>
The terminal may drop SR and map delta-MCS to PUCCH resources in PF0.
 <Opt.4>
 端末は、delta-MCSをドロップし、SRをPF1におけるPUCCHリソースにマッピングしてもよい。
<Opt.4>
The terminal may drop delta-MCS and map SR to PUCCH resources in PF1.
 <ケース3:delta-MCSの送信タイミングと、HARQ-ACKの送信タイミングと、SRの送信タイミングとが重なるケース>
 <Opt.1>
 端末は、delta-MCSと、HARQ-ACKと、SRとを多重し、PF0におけるPUCCHリソースにマッピングしてもよい。この場合、端末は、Proposal 2において説明したケース4a,4b,5a,5bのいずれかを適用してもよい。
<Case 3: Case where the delta-MCS transmission timing, the HARQ-ACK transmission timing, and the SR transmission timing overlap>
<Opt.1>
The terminal may multiplex delta-MCS, HARQ-ACK, and SR and map them to PUCCH resources in PF0. In this case, the terminal may apply any of Cases 4a, 4b, 5a, and 5b described in Proposal 2.
 <Opt.2>
 端末は、delta-MCSと、HARQ-ACKと、SRとを多重し、PF1におけるPUCCHリソースにマッピングしてもよい。この場合、端末は、Proposal 3において説明したケース3を適用してもよい。
<Opt.2>
The terminal may multiplex delta-MCS, HARQ-ACK, and SR and map them to PUCCH resources in PF1. In this case, the terminal may apply Case 3 described in Proposal 3.
 <Opt.3>
 端末は、delta-MCSをドロップし、HARQ-ACKとSRとを多重してPF1におけるPUCCHリソースにマッピングしてもよい。
<Opt.3>
The terminal may drop delta-MCS, multiplex HARQ-ACK and SR, and map them to PUCCH resources in PF1.
 <Opt.4>
 端末は、HARQ-ACKとSRとをドロップし、delta-MCSをPF0におけるPUCCHリソースにマッピングしてもよい。
<Opt.4>
The terminal may drop HARQ-ACK and SR and map delta-MCS to PUCCH resources in PF0.
 <Proposal 5:Delta-MCS of PF1 with other UCI of PF0>
 端末は、PF1におけるdelta-MCSを、PF0における他のUCIと多重し、PF0/1のPUCCHリソースにマッピングしてもよい。例えば、端末は、PF1におけるdelta-MCSの送信タイミングと、PF0における他のUCIの送信タイミングとが重なった場合、PF1におけるdelta-MCSと、PF0における他のUCIとを多重し、PF0/1のPUCCHリソースにマッピングしてもよい。図17は、Proposal 5の一例を示す図である。
<Proposal 5: Delta-MCS of PF1 with other UCI of PF0>
The terminal may multiplex delta-MCS in PF1 with other UCIs in PF0 and map them to PUCCH resources in PF0/1. For example, when the transmission timing of delta-MCS in PF1 and the transmission timing of another UCI in PF0 overlap, the terminal multiplexes the delta-MCS in PF1 and the other UCI in PF0, and It may be mapped to a PUCCH resource. 17 is a diagram showing an example of Proposal 5. FIG.
 <ケース1:delta-MCSの送信タイミングと、HARQ-ACKの送信タイミングとが重なるケース>
 <Opt.1>
 端末は、delta-MCSと、HARQ-ACKとを多重し、PF0におけるPUCCHリソースにマッピングしてもよい。この場合、端末は、Proposal 2において説明したOpt.1-1、Opt.1-2、及びOpt.1-5のいずれかを適用してもよい。
<Case 1: Case where the transmission timing of delta-MCS and the transmission timing of HARQ-ACK overlap>
<Opt.1>
The terminal may multiplex delta-MCS and HARQ-ACK and map them to PUCCH resources in PF0. In this case, the terminal may apply any of Opt.1-1, Opt.1-2, and Opt.1-5 described in Proposal 2.
 <Opt.2>
 端末は、delta-MCSと、HARQ-ACKとを多重し、PF1におけるPUCCHリソースにマッピングしてもよい。この場合、端末は、Proposal 3において説明したケース1におけるOpt.1のAlt.1及びAlt.2のいずれかを適用してもよい。
<Opt.2>
The terminal may multiplex delta-MCS and HARQ-ACK and map them to PUCCH resources in PF1. In this case, the terminal may apply either Alt.1 or Alt.2 of Opt.1 in Case 1 described in Proposal 3.
 <Opt.3>
 端末は、delta-MCSをドロップし、HARQ-ACKをPF0におけるPUCCHリソースにマッピングしてもよい。
<Opt.3>
The terminal may drop delta-MCS and map HARQ-ACK to PUCCH resources in PF0.
 <Opt.4>
 端末は、HARQ-ACKをドロップし、delta-MCSをPF1におけるPUCCHリソースにマッピングしてもよい。
<Opt.4>
The terminal may drop HARQ-ACK and map delta-MCS to PUCCH resources in PF1.
 <ケース2:delta-MCSの送信タイミングと、SRの送信タイミングとが重なるケース>
 <Opt.1>
 端末は、delta-MCSと、SRとを多重し、PF0におけるPUCCHリソースにマッピングしてもよい。この場合、端末は、Proposal 2において説明したOpt.1-3及びOpt.1-6のいずれかを適用してもよい。
<Case 2: Case where delta-MCS transmission timing and SR transmission timing overlap>
<Opt.1>
The terminal may multiplex delta-MCS and SR and map them to PUCCH resources in PF0. In this case, the terminal may apply either Opt.1-3 or Opt.1-6 described in Proposal 2.
 <Opt.2>
 端末は、delta-MCSと、SRとを多重し、PF1におけるPUCCHリソースにマッピングしてもよい。この場合、端末は、Proposal 3において説明したケース2におけるOpt.1を適用してもよい。
<Opt.2>
The terminal may multiplex delta-MCS and SR and map them to PUCCH resources in PF1. In this case, the terminal may apply Opt.1 in Case 2 described in Proposal 3.
 <Opt.3>
 端末は、SRをドロップし、delta-MCSをPF1におけるPUCCHリソースにマッピングしてもよい。
<Opt.3>
The terminal may drop SR and map delta-MCS to PUCCH resources in PF1.
 <Opt.4>
 端末は、delta-MCSをドロップし、SRをPF0におけるPUCCHリソースにマッピングしてもよい。
<Opt.4>
The terminal may drop delta-MCS and map SR to PUCCH resources in PF0.
 <ケース3:delta-MCSの送信タイミングと、HARQ-ACKの送信タイミングと、SRの送信タイミングとが重なるケース>
 <Opt.1>
 端末は、delta-MCSと、HARQ-ACKと、SRとを多重し、PF0におけるPUCCHリソースにマッピングしてもよい。この場合、端末は、Proposal 2において説明したケース4a,4b,5a,5bのいずれかを適用してもよい。
<Case 3: Case where the delta-MCS transmission timing, the HARQ-ACK transmission timing, and the SR transmission timing overlap>
<Opt.1>
The terminal may multiplex delta-MCS, HARQ-ACK, and SR and map them to PUCCH resources in PF0. In this case, the terminal may apply any of Cases 4a, 4b, 5a, and 5b described in Proposal 2.
 <Opt.2>
 端末は、delta-MCSと、HARQ-ACKと、SRとを多重し、PF1におけるPUCCHリソースにマッピングしてもよい。この場合、端末は、Proposal 3において説明したケース3を適用してもよい。
<Opt.2>
The terminal may multiplex delta-MCS, HARQ-ACK, and SR and map them to PUCCH resources in PF1. In this case, the terminal may apply Case 3 described in Proposal 3.
 <Opt.3>
 端末は、delta-MCSをドロップし、HARQ-ACKとSRとを多重してPF1におけるPUCCHリソースにマッピングしてもよい。
<Opt.3>
The terminal may drop delta-MCS, multiplex HARQ-ACK and SR, and map them to PUCCH resources in PF1.
 <Opt.4>
 端末は、HARQ-ACKとSRとをドロップし、delta-MCSをPF0におけるPUCCHリソースにマッピングしてもよい。
<Opt.4>
The terminal may drop HARQ-ACK and SR and map delta-MCS to PUCCH resources in PF0.
 <Variation>
 上記で説明した各Optの機能は、上位レイヤのシグナリングを用いて通知されてもよい。
<Variation>
The functionality of each Opt described above may be signaled using higher layer signaling.
 端末は、使用できるOptについて、UE Capabilityとして通知してもよい。 The terminal may notify the Opt that can be used as UE Capability.
 端末が使用できるOptは、仕様において決まっていてもよい。 The Opts that can be used by the terminal may be determined in the specifications.
 上記で説明した各Optの機能は、上位レイヤのシグナリングを用いて通知され、かつ、端末は、使用できるOptについて、UE Capabilityとして通知してもよい。 The function of each Opt described above is notified using higher layer signaling, and the terminal may notify the Opt that can be used as UE Capability.
 また、delta-MCSのビット数は、上記例に限られない。例えば、delta-MCSのビット数は、3ビットであってもよい。 Also, the number of bits of delta-MCS is not limited to the above example. For example, the number of bits of delta-MCS may be 3 bits.
 <無線通信システムの例>
 図18は、一実施の形態に係る無線通信システム10の一例を示す図である。無線通信システム10は、New Radio(NR)に従った無線通信システムであってよい。例示的に、無線通信システム10は、URLLC及び/又はIndustrial Internet of Things(IIoT)と呼ばれる方式に従った無線通信システムであってよい。無線通信システム10は、Next Generation-Radio Access Network20(以下、NG-RAN20)、及び、端末200を含んでよい。
<Example of wireless communication system>
FIG. 18 is a diagram showing an example of a wireless communication system 10 according to one embodiment. The radio communication system 10 may be a radio communication system according to New Radio (NR). Exemplarily, the wireless communication system 10 may be a wireless communication system according to a scheme called URLLC and/or Industrial Internet of Things (IIoT). The radio communication system 10 may include a Next Generation-Radio Access Network 20 (hereinafter referred to as NG-RAN 20) and a terminal 200.
 なお、無線通信システム10は、5G、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った(あるいは準拠した)無線通信システムでもよい。また、無線通信システム10は、6Gよりも後の世代のシステムであってもよい。 Note that the wireless communication system 10 may be a wireless communication system that conforms to (or conforms to) a scheme called 5G, Beyond 5G, 5G Evolution, or 6G. Also, the wireless communication system 10 may be a system of a generation after 6G.
 NG-RAN20は、基地局100(基地局100Aと基地局100B)を含む。基地局100の数及び端末200の数は、図1に示した例に限定されない。 NG-RAN 20 includes base stations 100 (base station 100A and base station 100B). The number of base stations 100 and the number of terminals 200 are not limited to the example shown in FIG.
 NG-RAN20は、複数のNG-RAN Node、例えば、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。NG-RAN20および5GCは、単に「ネットワーク」と表現されてもよい。 The NG-RAN 20 includes multiple NG-RAN Nodes, such as gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). NG-RAN 20 and 5GC may simply be referred to as a "network".
 基地局100は、NG-RAN Node、ng-eNB、eNodeB(eNB)、又は、gNodeB(gNB)と呼ばれてもよい。端末200は、User Equipment(UE)と呼ばれてもよい。また、基地局100は、端末200が接続するネットワークに含まれる装置と捉えてもよい。 The base station 100 may also be called an NG-RAN Node, ng-eNB, eNodeB (eNB), or gNodeB (gNB). Terminal 200 may be called User Equipment (UE). Also, base station 100 may be regarded as a device included in a network to which terminal 200 connects.
 基地局100は、端末200と無線通信を実行する。例えば、実行される無線通信は、NRに従う。基地局100及び端末200の少なくとも一方は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビーム(BM)を生成するMassive MIMO(Multiple-Input Multiple-Output)に対応してもよい。また、基地局100及び端末200の少なくとも一方は、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)に対応してもよい。また、基地局100及び端末200の少なくとも一方は、端末200と複数の基地局100それぞれとの間において通信を行うデュアルコネクティビティ(DC)などに対応してもよい。 The base station 100 performs wireless communication with the terminal 200. For example, the wireless communication performed complies with NR. At least one of the base station 100 and the terminal 200 uses Massive MIMO (Multiple-Input Multiple-Output) to generate beams (BM) with higher directivity by controlling radio signals transmitted from a plurality of antenna elements. You can respond. Also, at least one of base station 100 and terminal 200 may support carrier aggregation (CA) in which multiple component carriers (CC) are bundled and used. Also, at least one of the base station 100 and the terminal 200 may support dual connectivity (DC), etc., in which communication is performed between the terminal 200 and each of the plurality of base stations 100 .
 無線通信システム10は、複数の周波数帯に対応してよい。例えば、無線通信システム10は、Frequency Range(FR)1及びFR2に対応する。各FRの周波数帯は、例えば、次のとおりである。
  ・FR1:410MHz~7.125GHz
  ・FR2:24.25GHz~52.6GHz
The wireless communication system 10 may support multiple frequency bands. For example, wireless communication system 10 supports Frequency Ranges (FR) 1 and FR2. The frequency bands of each FR are, for example, as follows.
・FR1: 410MHz to 7.125GHz
・FR2: 24.25GHz to 52.6GHz
 FR1では、15kHz、30kHzまたは60kHzのSub-Carrier Spacing(SCS)が用いられ、5MHz~100MHzの帯域幅(BW)が用いられてもよい。FR2は、例えば、FR1よりも高い周波数である。FR2では、60kHzまたは120kHzのSCSが用いられ、50MHz~400MHzの帯域幅(BW)が用いられてもよい。また、FR2では、240kHzのSCSが含まれてもよい。 In FR1, Sub-Carrier Spacing (SCS) of 15 kHz, 30 kHz or 60 kHz may be used, and a bandwidth (BW) of 5 MHz to 100 MHz may be used. FR2 is, for example, a higher frequency than FR1. FR2 may use an SCS of 60 kHz or 120 kHz and a bandwidth (BW) of 50 MHz to 400 MHz. Also, FR2 may include a 240 kHz SCS.
 本実施の形態における無線通信システム10は、FR2の周波数帯よりも高い周波数帯に対応してもよい。例えば、本実施の形態における無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯に対応し得る。このような高周波数帯は、「FR2x」と呼ばれてもよい。 The wireless communication system 10 according to the present embodiment may support a frequency band higher than the FR2 frequency band. For example, the wireless communication system 10 in this embodiment can support frequency bands exceeding 52.6 GHz and up to 114.25 GHz. Such high frequency bands may be referred to as "FR2x."
 また、上述した例よりも大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread - Orthogonal Frequency Division Multiplexing(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンクと下りリンクとの両方に適用されてもよいし、何れか一方に適用されてもよい。 Also, Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform - Spread - Orthogonal Frequency Division Multiplexing (DFT-S-OFDM) with larger Sub-Carrier Spacing (SCS) than the above example is applied. may Also, DFT-S-OFDM may be applied to both uplink and downlink, or may be applied to either one.
 無線通信システム10では、時分割複信(TDD)のスロット設定パターン(Slot Configuration pattern)が設定されてよい。例えば、DDDSU(D:下りリンク(DL)シンボル、S:DL/上りリンク(UL)またはガードシンボル、U:ULシンボル)が規定(3GPP TS38.101-4参照)されてよい。 In the radio communication system 10, a time division duplex (TDD) slot configuration pattern may be set. For example, DDDSU (D: downlink (DL) symbol, S: DL/uplink (UL) or guard symbol, U: UL symbol) may be defined (see 3GPP TS38.101-4).
 また、無線通信システム10では、スロット毎に復調用参照信号(DMRS)を用いてPUSCH(またはPUCCH(Physical Uplink Control Channel))のチャネル推定を実行できるが、さらに、複数スロットにそれぞれ割り当てられたDMRSを用いてPUSCH(またはPUCCH)のチャネル推定を実行できる。このようなチャネル推定は、Joint channel estimationと呼ばれてもよい。或いは、cross-slot channel estimationなど、別の名称で呼ばれてもよい。 Further, in the radio communication system 10, channel estimation of PUSCH (or PUCCH (Physical Uplink Control Channel)) can be performed using a demodulation reference signal (DMRS) for each slot. can be used to perform channel estimation for PUSCH (or PUCCH). Such channel estimation may be called joint channel estimation. Alternatively, it may be called by another name such as cross-slot channel estimation.
 端末200は、基地局100がDMRSを用いたJoint channel estimationを実行できるように、複数スロットに割り当てられた(跨がった)DMRSを送信してよい。 Terminal 200 may transmit DMRS assigned to (spanning over) multiple slots so that base station 100 can perform joint channel estimation using DMRS.
 また、無線通信システム10では、基地局100に対する端末200からのフィードバック機能に強化された機能が追加されてよい。例えば、HARQ-ACKに対する端末のフィードバックの強化された機能、及び、より正確なMCS選択に対するCSIフィードバックの強化された機能が追加されてよい。 Also, in the radio communication system 10, an enhanced function may be added to the feedback function from the terminal 200 to the base station 100. For example, enhanced functionality of terminal feedback for HARQ-ACK and enhanced functionality of CSI feedback for more accurate MCS selection may be added.
 次に、基地局100及び端末200の構成について説明する。なお、以下に説明する基地局100および端末200の構成は、本実施の形態に関連する機能の一例を示すものである。基地局100および端末200には、図示しない機能を有してもよい。また、本実施の形態に係る動作を実行する機能であれば、機能区分、および/または、機能部の名称は限定されない。 Next, configurations of the base station 100 and the terminal 200 will be described. The configurations of base station 100 and terminal 200 described below are examples of functions related to the present embodiment. Base station 100 and terminal 200 may have functions not shown. Also, the functional division and/or the name of the functional unit are not limited as long as the function executes the operation according to the present embodiment.
 <基地局の構成>
 図19は、本実施の形態に係る基地局100の構成の一例を示すブロック図である。基地局100は、例えば、送信部101と、受信部102と、制御部103と、を含んでよい。基地局100は、端末200(図20参照)と無線によって通信する。
<Configuration of base station>
FIG. 19 is a block diagram showing an example of the configuration of base station 100 according to this embodiment. The base station 100 may include a transmitter 101, a receiver 102, and a controller 103, for example. Base station 100 wirelessly communicates with terminal 200 (see FIG. 20).
 送信部101は、下りリンク(downlink(DL))信号を端末200へ送信する。例えば、送信部101は、制御部103による制御の下に、DL信号を送信する。 The transmission section 101 transmits a downlink (DL) signal to the terminal 200 . For example, the transmitter 101 transmits a DL signal under the control of the controller 103 .
 DL信号には、例えば、下りリンクのデータ信号、及び、制御情報(例えば、Downlink Control Information(DCI))が含まれてよい。また、DL信号には、端末200の信号送信に関するスケジューリングを示す情報(例えば、ULグラント)が含まれてよい。また、DL信号には、上位レイヤの制御情報(例えば、Radio Resource Control(RRC)の制御情報)が含まれてもよい。また、DL信号には、参照信号が含まれてもよい。 A DL signal may include, for example, a downlink data signal and control information (eg, Downlink Control Information (DCI)). Also, the DL signal may include information (for example, UL grant) indicating scheduling regarding signal transmission of terminal 200 . Also, the DL signal may include higher layer control information (for example, Radio Resource Control (RRC) control information). Also, the DL signal may include a reference signal.
 DL信号の送信に使用されるチャネルには、例えば、データチャネルと制御チャネルとが含まれる。例えば、データチャネルには、PDSCH(Physical Downlink Shared Channel)が含まれ、制御チャネルには、PDCCH(Physical Downlink Control Channel)が含まれてよい。例えば、基地局100は、端末200に対して、PDCCHを用いて、制御情報を送信し、PDSCHを用いて、下りリンクのデータ信号を送信する。 Channels used for transmitting DL signals include, for example, data channels and control channels. For example, the data channel may include a PDSCH (Physical Downlink Shared Channel), and the control channel may include a PDCCH (Physical Downlink Control Channel). For example, base station 100 transmits control information to terminal 200 using PDCCH, and transmits downlink data signals using PDSCH.
 DL信号に含まれる参照信号には、例えば、復調用参照信号(Demodulation Reference Signal(DMRS))、Phase Tracking Reference Signal(PTRS)、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)のいずれか少なくとも1つが含まれてよい。例えば、DMRS、PTRS等の参照信号は、下りリンクのデータ信号の復調のために使用され、PDSCHを用いて送信される。 Examples of reference signals included in DL signals include demodulation reference signals (DMRS), phase tracking reference signals (PTRS), channel state information-reference signals (CSI-RS), sounding reference signals (SRS ), and Positioning Reference Signal (PRS) for position information. For example, reference signals such as DMRS and PTRS are used for demodulation of downlink data signals and transmitted using PDSCH.
 受信部102は、端末200から送信された上りリンク(uplink(UL)信号を受信する。例えば、受信部102は、制御部103による制御の下に、UL信号を受信する。 The receiving unit 102 receives an uplink (UL) signal transmitted from the terminal 200. For example, the receiving unit 102 receives the UL signal under the control of the control unit 103.
 制御部103は、送信部101の送信処理、及び、受信部102の受信処理を含む、基地局100の通信動作を制御する。 The control unit 103 controls the communication operation of the base station 100, including the transmission processing of the transmission unit 101 and the reception processing of the reception unit 102.
 例えば、制御部103は、上位レイヤからデータおよび制御情報といった情報を取得し、送信部101へ出力する。また、制御部103は、受信部102から受信したデータおよび制御情報等を上位レイヤへ出力する。 For example, the control unit 103 acquires information such as data and control information from the upper layer and outputs it to the transmission unit 101 . Control section 103 also outputs the data received from receiving section 102, control information, and the like to an upper layer.
 例えば、制御部103は、DL信号の送受信に用いるリソース(又はチャネル)及び/又はUL信号の送受信に用いるリソースの割り当てを行う。割り当てたリソースに関する情報は、端末200に送信する制御情報に含まれてよい。 For example, the control unit 103 allocates resources (or channels) used for transmitting/receiving DL signals and/or resources used for transmitting/receiving UL signals. Information about allocated resources may be included in control information to be transmitted to terminal 200 .
 制御部103は、UL信号の送受信に用いるリソースの割り当ての一例として、複数のPUCCHリソースセットを設定してよい。設定した複数のPUCCHリソースセットに関する情報は、RRCによって端末200に通知されてよい。 The control section 103 may configure a plurality of PUCCH resource sets as an example of allocation of resources used for transmission and reception of UL signals. Information on the configured multiple PUCCH resource sets may be notified to terminal 200 by RRC.
 <端末の構成>
 図20は、本実施の形態に係る端末200の構成の一例を示すブロック図である。端末200は、例えば、受信部201と、送信部202と、制御部203と、を含んでよい。端末200は、例えば、基地局100と無線によって通信する。
<Device configuration>
FIG. 20 is a block diagram showing an example of the configuration of terminal 200 according to this embodiment. The terminal 200 may include a receiver 201, a transmitter 202, and a controller 203, for example. The terminal 200 wirelessly communicates with the base station 100, for example.
 受信部201は、基地局100から送信されたDL信号を受信する。例えば、受信部201は、制御部203による制御の下に、DL信号を受信する。 The receiving unit 201 receives the DL signal transmitted from the base station 100. For example, the receiver 201 receives a DL signal under the control of the controller 203 .
 送信部202は、UL信号を基地局100へ送信する。例えば、送信部202は、制御部203による制御の下に、UL信号を送信する。 The transmission unit 202 transmits the UL signal to the base station 100. For example, the transmitter 202 transmits UL signals under the control of the controller 203 .
 UL信号には、例えば、上りリンクのデータ信号、及び、制御情報(例えば、UCI)が含まれてよい。例えば、端末200の処理能力に関する情報(例えば、UE capability)が含まれてよい。また、UL信号には、参照信号が含まれてもよい。 The UL signal may include, for example, an uplink data signal and control information (eg, UCI). For example, information about the processing capability of terminal 200 (eg, UE capability) may be included. Also, the UL signal may include a reference signal.
 UL信号の送信に使用されるチャネルには、例えば、データチャネルと制御チャネルとが含まれる。例えば、データチャネルには、PUSCH(Physical Uplink Shared Channel)が含まれ、制御チャネルには、PUCCH(Physical Uplink Control Channel)が含まれる。例えば、端末200は、基地局100から、PUCCHを用いて、制御情報を受信し、PUSCHを用いて、上りリンクのデータ信号を送信する。 Channels used to transmit UL signals include, for example, data channels and control channels. For example, the data channel includes PUSCH (Physical Uplink Shared Channel), and the control channel includes PUCCH (Physical Uplink Control Channel). For example, terminal 200 receives control information from base station 100 using PUCCH, and transmits uplink data signals using PUSCH.
 UL信号に含まれる参照信号には、例えば、DMRS、PTRS、CSI-RS、SRS、及び、PRSのいずれか少なくとも1つが含まれてよい。例えば、DMRS、PTRS等の参照信号は、上りリンクのデータ信号の復調のために使用され、PUSCHを用いて送信される。 The reference signal included in the UL signal may include at least one of DMRS, PTRS, CSI-RS, SRS, and PRS, for example. For example, reference signals such as DMRS and PTRS are used for demodulation of uplink data signals and transmitted using PUSCH.
 制御部203は、受信部201における受信処理、及び、送信部202における送信処理を含む、端末200の通信動作を制御する。 The control unit 203 controls communication operations of the terminal 200, including reception processing in the reception unit 201 and transmission processing in the transmission unit 202.
 例えば、制御部203は、上位レイヤからデータおよび制御情報といった情報を取得し、送信部202へ出力する。また、制御部203は、例えば、受信部201から受信したデータおよび制御情報等を上位レイヤへ出力する。 For example, the control unit 203 acquires information such as data and control information from the upper layer and outputs it to the transmission unit 202 . Also, the control unit 203 outputs, for example, the data and control information received from the receiving unit 201 to the upper layer.
 例えば、制御部203は、基地局100へフィードバックする情報の送信を制御する。基地局100へフィードバックする情報には、例えば、HARQ-ACK及び/又はdelta-MCSが含まれてよい。基地局100へフィードバックする情報は、UCIに含まれてよい。UCIは、PUCCHのリソースにおいて送信される。 For example, the control unit 203 controls transmission of information to be fed back to the base station 100 . Information fed back to the base station 100 may include, for example, HARQ-ACK and/or delta-MCS. Information to be fed back to the base station 100 may be included in the UCI. UCI is transmitted on PUCCH resources.
 制御部203は、基地局100から受信した制御情報に基づいて、複数のPUCCHリソースセットを設定し、複数のPUCCHリソースセットの中から、少なくとも1つのPUCCHリソースセットを選択する。そして、制御部203は、選択したPUCCHリソースセットのリソースの中から、基地局100へフィードバックする情報の送信に使用するPUCCHリソースを決定する。送信部202は、制御部203の制御により、制御部203が決定したPUCCHリソースにおいて、基地局100へフィードバックする情報を送信する。 The control section 203 sets a plurality of PUCCH resource sets based on the control information received from the base station 100, and selects at least one PUCCH resource set from among the plurality of PUCCH resource sets. Then, control section 203 determines PUCCH resources to be used for transmitting information to be fed back to base station 100 from among the resources of the selected PUCCH resource set. Under the control of control section 203 , transmission section 202 transmits information to be fed back to base station 100 on the PUCCH resource determined by control section 203 .
 また、制御部203は、例えば、UL送信において、DLデータ受信のフィードバック情報に対する、MCSに関する情報(例えば、delta-MCS)の優先度を決定してよい。送信部202は、例えば、制御部203において決定した優先度に従ってUL送信を行ってよい。 Also, for example, in UL transmission, the control unit 203 may determine the priority of information on MCS (eg, delta-MCS) with respect to feedback information on DL data reception. The transmission section 202 may perform UL transmission according to the priority determined by the control section 203, for example.
 なお、DL送信に使用されるチャネル及びUL送信に使用されるチャネルは、上述した例に限定されない。例えば、DL送信に使用されるチャネル及びUL送信に使用されるチャネルには、Random Access Channel(RACH)及びPhysical Broadcast Channel(PBCH)が含まれてよい。RACHは、例えば、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDCIの送信に用いられてよい。 Note that the channels used for DL transmission and the channels used for UL transmission are not limited to the above examples. For example, channels used for DL transmissions and channels used for UL transmissions may include Random Access Channel (RACH) and Physical Broadcast Channel (PBCH). RACH may be used, for example, to transmit DCI including Random Access Radio Network Temporary Identifier (RA-RNTI).
 制御部203は、MCSに関する情報を送信するPUCCHのフォーマット(PF0/1)を、RRCにおける通知及びUE Capabilityの一方又は両方に基づいて決定してもよい。MCSに関する情報は、例えば、delta-MCSといったMCSの差分情報であってもよい。MCSの差分情報は、例えば、第1のMCSの値と、第1のMCSより前に決定した第2のMCSの値との差分情報であってもよい。別言すれば、MCSの差分情報は、第1のタイミングにおいて決定した第1のMCSの値と、第2のタイミングにおいて決定した第2のMCSの値との差分情報であってもよい。送信部202は、制御部203が決定したフォーマットのPUCCHを用いて、MCSに関する情報(delta-MCS)を送信してもよい。 The control unit 203 may determine the PUCCH format (PF0/1) for transmitting information on MCS based on one or both of the notification in RRC and UE Capability. The information about MCS may be, for example, MCS difference information such as delta-MCS. The MCS difference information may be, for example, difference information between a first MCS value and a second MCS value determined before the first MCS. In other words, the MCS difference information may be difference information between the first MCS value determined at the first timing and the second MCS value determined at the second timing. Transmitting section 202 may transmit information on MCS (delta-MCS) using PUCCH in the format determined by control section 203 .
 制御部203は、delta-MCSに基づいてcyclic shiftの値を決定し、決定したcyclic shiftの値においてサイクリックシフトしたbase sequenceを、上り制御信号PUCCHのリソースにマッピングしてもよい。 The control section 203 may determine the cyclic shift value based on the delta-MCS, and map the base sequence cyclically shifted by the determined cyclic shift value to the uplink control signal PUCCH resource.
 制御部203は、delta-MCSに加え、さらに他のUCIに基づいて、cyclic shiftの値を決定してもよい。 In addition to delta-MCS, the control unit 203 may also determine the cyclic shift value based on another UCI.
 制御部203は、I-Q平面上にマッピングしたdelta-MCS(UCI d(0))と、base sequenceと、RRCにおいて通知されたm0と、TD-OCCとに基づく信号を、PUCCHのリソースにマッピングしてもよい。 Control section 203 uses a signal based on delta-MCS (UCI d (0)) mapped on the IQ plane, base sequence, m 0 notified in RRC, and TD-OCC as PUCCH resources. can be mapped to
 制御部203は、他のUCIに基づいて、前記信号をマッピングするPUCCHのリソースを決定し、又は、他のUCIをマッピングするPUCCHのリソースを決定してもよい。 The control section 203 may determine the PUCCH resource to which the signal is mapped, or may determine the PUCCH resource to which the other UCI is mapped, based on another UCI.
 以上説明した本実施の形態によれば、例えば、端末は、基地局へ送信する上り制御情報の送信に用いられる上り制御信号のフォーマットを適切に決定できる。したがって、例えば、上り制御信号の低遅延化の向上に寄与し、信頼性の向上に寄与する。 According to the present embodiment described above, for example, the terminal can appropriately determine the format of the uplink control signal used for transmission of uplink control information to be transmitted to the base station. Therefore, for example, it contributes to improvement in delay reduction of uplink control signals and contributes to improvement in reliability.
 以上、本開示について説明した。 This concludes the explanation of the present disclosure.
<ハードウェア構成等>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
<Hardware configuration, etc.>
It should be noted that the block diagrams used in the description of the above embodiments show blocks in units of functions. These functional blocks (components) are realized by any combination of at least one of hardware and software. Also, the method of implementing each functional block is not particularly limited. That is, each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't For example, a functional block (component) that makes transmission work is called a transmitting unit or transmitter. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施の形態における基地局、端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図21は、本開示の一実施の形態に係る基地局及び端末のハードウェア構成の一例を示す図である。上述の基地局100及び端末200は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a terminal, etc. according to an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 21 is a diagram illustrating an example of hardware configurations of a base station and terminals according to an embodiment of the present disclosure. The base station 100 and terminal 200 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局100及び端末200のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the term "apparatus" can be read as a circuit, device, unit, or the like. The hardware configuration of base station 100 and terminal 200 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
 基地局100及び端末200における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function of the base station 100 and the terminal 200 is implemented by loading predetermined software (programs) onto hardware such as the processor 1001 and memory 1002 so that the processor 1001 performs calculations and controls communication by the communication device 1004. , and controlling at least one of reading and writing of data in the memory 1002 and the storage 1003 .
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の制御部103および制御部203などは、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like. For example, the control unit 103 and the control unit 203 described above may be implemented by the processor 1001 .
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、端末200の制御部203は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。 Also, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 203 of the terminal 200 may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be implemented similarly. Although it has been described that the above-described various processes are executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. FIG. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one of, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), and RAM (Random Access Memory). may be The memory 1002 may also be called a register, cache, main memory (main storage device), or the like. The memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like. Storage 1003 may also be called an auxiliary storage device. The storage medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送信部101、受信部102、受信部201および送信部202などは、通信装置1004によって実現されてもよい。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). may consist of For example, the transmitting unit 101, the receiving unit 102, the receiving unit 201, the transmitting unit 202, etc. described above may be realized by the communication device 1004. FIG.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 また、基地局100及び端末200は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the base station 100 and the terminal 200 include hardware such as microprocessors, digital signal processors (DSPs), ASICs (Application Specific Integrated Circuits), PLDs (Programmable Logic Devices), and FPGAs (Field Programmable Gate Arrays). , and part or all of each functional block may be implemented by the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
<情報の通知、シグナリング>
 情報の通知は、本開示において説明した実施の形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
<Notification of information, signaling>
Notification of information is not limited to the embodiments described in the present disclosure, and may be performed using other methods. For example, notification of information includes physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
<適用システム>
 本開示において説明した実施の形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
<Applicable system>
Embodiments described in the present disclosure are LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system) , FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) , IEEE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, other suitable systems and next generations based on these It may be applied to at least one of the systems. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G, etc.).
<処理手順等>
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
<Processing procedure, etc.>
The processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
<基地局の動作>
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
<Base station operation>
Certain operations that are described in this disclosure as being performed by a base station may also be performed by its upper node in some cases. In a network consisting of one or more network nodes with a base station, various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc. (including but not limited to). Although the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
<入出力の方向>
 情報等(<情報、信号>の項目参照)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
<Direction of input/output>
Information and the like (see the item <information, signal>) can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
<入出力された情報等の扱い>
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
<Handling of input/output information, etc.>
Input/output information and the like may be stored in a specific location (for example, memory), or may be managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
<判定方法>
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
<Determination method>
The determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
<態様のバリエーション等>
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
<Variation of mode, etc.>
Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching according to execution. In addition, the notification of predetermined information (for example, notification of “being X”) is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be practiced with modifications and variations without departing from the spirit and scope of the present disclosure as defined by the claims. Accordingly, the description of the present disclosure is for illustrative purposes and is not meant to be limiting in any way.
<ソフトウェア>
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
<Software>
Software, whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the software may use wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
<情報、信号>
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
<Information, signal>
Information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, the channel and/or symbols may be signaling. A signal may also be a message. A component carrier (CC) may also be referred to as a carrier frequency, cell, frequency carrier, or the like.
<システム、ネットワーク>
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
<System, Network>
As used in this disclosure, the terms "system" and "network" are used interchangeably.
<パラメータ、チャネルの名称>
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
<Name of parameter and channel>
In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indexed.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters described above are not restrictive names in any respect. Further, the formulas, etc., using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (e.g., PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in no way restrictive names. is not.
<基地局>
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
<Base station>
In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", ""accesspoint","transmissionpoint","receptionpoint","transmission/receptionpoint","cell","sector","cellgroup"," Terms such as "carrier", "component carrier" may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being associated with a base station subsystem (e.g., an indoor small base station (RRH: The term "cell" or "sector" refers to part or all of the coverage area of at least one of the base stations and base station subsystems serving communication services in this coverage. point to
<移動局>
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
<Mobile station>
In this disclosure, terms such as “Mobile Station (MS),” “user terminal,” “User Equipment (UE),” “terminal,” etc. may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
<基地局/移動局>
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
<Base station/mobile station>
At least one of a base station and a mobile station may be called a transmitter, a receiver, a communication device, and the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like. The mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、端末で読み替えてもよい。例えば、基地局及び端末間の通信を、複数の端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の実施の形態を適用してもよい。この場合、上述の基地局100が有する機能を端末200が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Also, the base station in the present disclosure may be read as a terminal. For example, regarding a configuration in which communication between a base station and a terminal is replaced with communication between a plurality of terminals (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.) , the embodiments of the present disclosure may be applied. In this case, terminal 200 may have the functions of base station 100 described above. Also, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be read as side channels.
 同様に、本開示における端末は、基地局で読み替えてもよい。この場合、上述の端末200が有する機能を基地局100が有する構成としてもよい。 Similarly, a terminal in the present disclosure may be read as a base station. In this case, the base station 100 may have the functions that the terminal 200 described above has.
<用語の意味、解釈>
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
<Meaning and Interpretation of Terms>
As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of actions. "Judgement", "determining" are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as "judged" or "determined", and the like. Also, "judgment" and "decision" are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that something has been "determined" or "decided". In addition, "judgment" and "decision" are considered to be "judgment" and "decision" by resolving, selecting, choosing, establishing, comparing, etc. can contain. In other words, "judgment" and "decision" may include considering that some action is "judgment" and "decision". Also, "judgment (decision)" may be read as "assuming", "expecting", "considering", or the like.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected," "coupled," or any variation thereof mean any direct or indirect connection or connection between two or more elements, It can include the presence of one or more intermediate elements between two elements being "connected" or "coupled." Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in this disclosure, two elements are in the radio frequency domain using at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-exhaustive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
<参照信号>
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
<Reference signal>
The reference signal may be abbreviated as RS (Reference Signal), or may be referred to as Pilot according to the applicable standard.
<「に基づいて」の意味>
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
<Meaning of "based on">
As used in this disclosure, the phrase "based on" does not mean "based only on," unless expressly specified otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
<「第1の」、「第2の」>
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
<“First”, “Second”>
Any reference to elements using the "first,""second," etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, reference to a first and second element does not imply that only two elements can be employed or that the first element must precede the second element in any way.
<手段>
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
<Means>
The “means” in the configuration of each device described above may be replaced with “unit”, “circuit”, “device”, or the like.
<オープン形式>
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
<Open format>
Where "include,""including," and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising." is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
<TTI等の時間単位、RBなどの周波数単位、無線フレーム構成>
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
<Time unit such as TTI, frequency unit such as RB, radio frame configuration>
A radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 A numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a Transmission Time Interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or minislot may be called a TTI. may That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum scheduling time unit in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 A TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like. A TTI that is shorter than a regular TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms, and the short TTI (e.g., shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms A TTI having the above TTI length may be read instead.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve. The number of subcarriers included in an RB may be determined based on neumerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Also, the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long. One TTI, one subframe, etc. may each consist of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. may be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Also, a resource block may be composed of one or more resource elements (RE: Resource Element). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A bandwidth part (BWP) (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier. good. Here, the common RB may be identified by an RB index based on the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP). One or multiple BWPs may be configured for a UE within one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The structures such as radio frames, subframes, slots, minislots and symbols described above are only examples. For example, the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
<最大送信電力>
 本開示に記載の「最大送信電力」は、送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
<Maximum transmission power>
“Maximum transmit power” as described in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may refer to the rated maximum transmit power ( the rated UE maximum transmit power).
<冠詞>
 本開示において、例えば、英語でのa、an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
<article>
In this disclosure, where articles have been added by translation, such as a, an, and the in English, the disclosure may include the plural nouns following these articles.
<「異なる」>
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
<"Different">
In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate,""coupled," etc. may also be interpreted in the same manner as "different."
 本開示の一態様は、無線通信システムに有用である。 One aspect of the present disclosure is useful for wireless communication systems.
 10 無線通信システム
 20 NG-RAN
 100 基地局
 200 端末
 101,202 送信部
 102,201 受信部
 103,203 制御部
10 wireless communication system 20 NG-RAN
100 base station 200 terminal 101, 202 transmitter 102, 201 receiver 103, 203 controller

Claims (6)

  1.  変調符号化方式の差分情報の送信に用いられる上り制御信号のフォーマットを、上位レイヤシグナリングにおける通知及び端末能力の一方又は両方に基づいて決定する制御部と、
     前記決定されたフォーマットの上り制御信号を用いて、前記差分情報を送信する送信部と、
     を有する端末。
    a control unit that determines the format of an uplink control signal used for transmission of differential information of modulation and coding schemes based on one or both of notification in higher layer signaling and terminal capability;
    a transmission unit that transmits the difference information using the uplink control signal in the determined format;
    terminal with
  2.  前記制御部は、前記差分情報に基づいてサイクリックシフト値を決定し、前記決定したサイクリックシフト値においてサイクリックシフトしたシーケンスを、前記上り制御信号のリソースにマッピングする、
     請求項1に記載の端末。
    The control unit determines a cyclic shift value based on the difference information, and maps a sequence cyclically shifted by the determined cyclic shift value to a resource of the uplink control signal.
    A terminal according to claim 1 .
  3.  前記制御部は、前記差分情報及び上り制御情報に基づいて、サイクリックシフト値を決定する、
     請求項2に記載の端末。
    The control unit determines a cyclic shift value based on the difference information and the uplink control information.
    A terminal according to claim 2.
  4.  前記制御部は、前記差分情報と、シーケンスと、前記上位レイヤシグナリングにおいて通知された前記シーケンスのサイクリックシフト値と、直交コードとに基づく信号を、前記上り制御信号のリソースにマッピングする、
     請求項1に記載の端末。
    The control unit maps a signal based on the difference information, the sequence, the cyclic shift value of the sequence notified in the higher layer signaling, and the orthogonal code to the resource of the uplink control signal.
    A terminal according to claim 1 .
  5.  前記制御部は、上り制御情報に基づいて、前記信号がマッピングされる前記上り制御信号のリソース又は前記上り制御情報がマッピングされる前記上り制御信号のリソースを決定する、
     請求項4に記載の端末。
    The control unit determines a resource of the uplink control signal to which the signal is mapped or a resource of the uplink control signal to which the uplink control information is mapped, based on uplink control information.
    A terminal according to claim 4.
  6.  変調符号化方式の差分情報の送信に用いられる上り制御信号のフォーマットを、上位レイヤシグナリングにおける通知及び端末能力の一方又は両方に基づいて決定し、
     前記決定されたフォーマットの上り制御信号を用いて、前記差分情報を送信する、
     通信方法。
    determining the format of the uplink control signal used for transmitting the differential information of the modulation and coding scheme based on one or both of the notification in the higher layer signaling and the terminal capability;
    Transmitting the differential information using the uplink control signal in the determined format;
    Communication method.
PCT/JP2021/026893 2021-07-16 2021-07-16 Terminal and communication method WO2023286284A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023534576A JPWO2023286284A1 (en) 2021-07-16 2021-07-16
PCT/JP2021/026893 WO2023286284A1 (en) 2021-07-16 2021-07-16 Terminal and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/026893 WO2023286284A1 (en) 2021-07-16 2021-07-16 Terminal and communication method

Publications (1)

Publication Number Publication Date
WO2023286284A1 true WO2023286284A1 (en) 2023-01-19

Family

ID=84918835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026893 WO2023286284A1 (en) 2021-07-16 2021-07-16 Terminal and communication method

Country Status (2)

Country Link
JP (1) JPWO2023286284A1 (en)
WO (1) WO2023286284A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015512174A (en) * 2012-01-17 2015-04-23 エルジー エレクトロニクス インコーポレイティド Method and apparatus for transferring uplink control information in wireless communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015512174A (en) * 2012-01-17 2015-04-23 エルジー エレクトロニクス インコーポレイティド Method and apparatus for transferring uplink control information in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "CSI Feedback Enhancements for IIoT/URLLC", 3GPP DRAFT; R1-2104218, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Electronic meeting; 20210510 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052010678 *

Also Published As

Publication number Publication date
JPWO2023286284A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
WO2021171594A1 (en) Terminal
WO2023007565A1 (en) Terminal and wireless communication method
WO2023286284A1 (en) Terminal and communication method
WO2023281608A1 (en) Terminal and radio communication method
WO2023281677A1 (en) Terminal and wireless communication method
WO2023017571A1 (en) Terminal and wireless communication method
WO2023053393A1 (en) Terminal and wireless communication method
WO2023286260A1 (en) Terminal and wireless communication method
WO2023286261A1 (en) Terminal and wireless communication method
WO2023007564A1 (en) Terminal and radio communication method
WO2023286262A1 (en) Terminal and wireless communication method
WO2023007563A1 (en) Terminal and wireless communication method
WO2023012955A1 (en) Terminal and wireless communication method
WO2023012956A1 (en) Terminal and wireless communication method
WO2023037479A1 (en) Terminal and wireless communication method
WO2022201462A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022244504A1 (en) Terminal, wireless communication system, and wireless communication method
WO2023021712A1 (en) Terminal and wireless communication method
WO2023021710A1 (en) Terminal and wireless communication method
WO2023053232A1 (en) Terminal and wireless communication method
WO2022239078A1 (en) Terminal, radio communication system, and radio communication method
WO2022201404A1 (en) Terminal
WO2023021711A1 (en) Terminal and wireless communication method
WO2023053433A1 (en) Terminal and communication method
WO2022244496A1 (en) Terminal, wireless communication system, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950220

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023534576

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21950220

Country of ref document: EP

Kind code of ref document: A1