WO2023284541A1 - 天线装置和基站 - Google Patents

天线装置和基站 Download PDF

Info

Publication number
WO2023284541A1
WO2023284541A1 PCT/CN2022/101591 CN2022101591W WO2023284541A1 WO 2023284541 A1 WO2023284541 A1 WO 2023284541A1 CN 2022101591 W CN2022101591 W CN 2022101591W WO 2023284541 A1 WO2023284541 A1 WO 2023284541A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
antenna
port
control unit
baseband processing
Prior art date
Application number
PCT/CN2022/101591
Other languages
English (en)
French (fr)
Inventor
王春旭
王宁
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023284541A1 publication Critical patent/WO2023284541A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present application relates to but not limited to the technical field of wireless communication, and in particular relates to an antenna device, a microwave communication system and a base station.
  • E-Band refers to the microwave frequency band with a frequency of 80 GHz (71-76 GHz and 81-86 GHz), which is currently the highest frequency band used for commercial microwave communication. Due to its small antenna beam angle and high requirements on antenna stability, the smart beam antenna is applied to the microwave E-band all-outdoor communication system, which can effectively improve the anti-wind performance of the antenna and improve the stability of the communication system.
  • the control scheme of the smart beam antenna mainly adopts the standard interface of the Antenna Interface Standards Group (AISG) on the base station system.
  • AISG Antenna Interface Standards Group
  • USB Universal Serial Bus
  • USB interface solution is limited by the power supply capability of the USB standard, the load scalability is not high, and it cannot meet the application requirements of smart beam antenna adjustment.
  • the embodiment of the present application provides an antenna device, including: an antenna, the antenna includes a control unit for adjusting the antenna beam; a baseband processing unit, the baseband processing unit is used for processing the signal of the antenna processing; a transmission cable, the transmission cable is used to connect the control unit and the baseband processing unit; an interface module, the interface module includes a first detection port and a second detection port, and the first detection port is used for In order to transmit the load detection signal of the antenna to the baseband processing unit, the second detection port is used to transmit the feed detection signal of the control unit to the baseband processing unit when the control unit feeds power , the control unit and the baseband processing unit are respectively connected to the transmission cable through the interface module.
  • the embodiment of the present application further provides a microwave communication system, including the antenna device in the embodiment of the first aspect above.
  • the embodiment of the present application further provides a base station, including the antenna device described in the embodiment of the first aspect above or the microwave communication system in the embodiment of the second aspect above.
  • FIG. 1 is a functional block diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 2 is an interface signal definition information table of an interface module provided by an embodiment of the present application
  • Fig. 3 is a functional block diagram of automatic load monitoring and feed control provided by an embodiment of the present application.
  • Feed control circuit 600 power controller 610 ; power supply 620 ; protection module 630 .
  • orientation descriptions such as “up”, “down”, etc. indicated orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, and are only for the convenience of describing this application.
  • the application and simplified description do not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operate in a specific orientation, and thus should not be construed as limiting the application.
  • microwave communication The method of using the microwave band for communication is called microwave communication. It has long transmission distance, large capacity, fast deployment, and strong stability. It is widely used in the relay and backhaul of various communication systems.
  • microwave communication especially the microwave E-Band frequency band communication system, is currently the highest frequency band used for commercial microwave communication.
  • E-Band refers to the microwave frequency band with a frequency of 80 GHz (71-76 GHz and 81-86 GHz).
  • the angle of the microwave antenna is adjusted by the antenna adjustment system, so as to achieve more accurate wireless data transmission function, realize the circuit operation of the base station without optical cable and the data transmission of the data line customer, so the angle of the microwave antenna is very important. Due to the small beam angle of microwave antennas, the requirements for antenna stability are high. Smart beam antennas are applied to microwave E-band all-outdoor communication systems, which can effectively improve the anti-wind performance of antennas and improve the stability of communication systems.
  • the control scheme of the smart beam antenna mainly adopts the AISG standard interface on the base station system. There is no unified standard on the microwave system.
  • the USB interface is mainly used in the market.
  • the USB interface scheme is limited by its standard power supply capacity and load scalability. not tall.
  • the AISG interface solution is not fully applicable to microwave communication systems, and there are obvious deficiencies in physical cost and product maintenance versatility.
  • the embodiment of the present application provides an antenna device, a microwave communication system and a base station, which can effectively solve the problems of insufficient power supply capacity of the communication interface of the smart beam antenna and low application scalability, and are simple, practical, easy to implement, and have high reliability.
  • a self-defined interface is used for transmission, and an interface module 300 is respectively provided on the control unit 110 and the baseband processing unit 200 of the antenna 100, and the control unit 110 is connected to the control unit 110 through the transmission cable 400 as a transmission medium.
  • the interface module 300 connects with the interface module 300 of the baseband processing unit 200, the interface module 300 utilizes the data transmission port for data transmission between the antenna 100 and the baseband processing unit 200, and performs power supply and signal and signal processing for the antenna 100 through the power supply port and the ground port respectively The ground of the power supply is returned, and the load detection signal is transmitted through the first detection port, and the feed detection signal is transmitted through the second detection port.
  • the first detection port and the second detection port can realize load monitoring and feed control, provide a more practical and easy-to-implement communication interface solution, which is conducive to improving power supply capacity, high versatility, and stronger application scalability, especially suitable for E-Band frequency band communication system.
  • the antenna device includes an antenna 100 and a baseband processing unit 200, the antenna 100 is a smart beam antenna suitable for microwave E-Band frequency band, and the smart beam antenna used can determine the signal
  • the spatial information (such as the direction of propagation) and the intelligent algorithm for tracking and locating the signal source, and the antenna 100 array that can perform spatial filtering according to this information, is also called an adaptive array antenna, and will not be described here.
  • the antenna 100 includes a control unit 110, the baseband processing unit 200 has power management and load management functions, the control unit 110 is powered through the baseband processing unit 200, and the antenna 100 can be electrically adjusted through the control unit 110, thereby realizing adjustment Antenna 100 beam angle.
  • the baseband processing unit 200 is connected to the control unit 110 through a transmission cable 400, and the transmission cable 400 is used as a transmission medium through which data and power can be transmitted to the control unit 110.
  • the transmission cable 400 can be Composed of multiple conductive wires, it can not only transmit data signals, but also be used for power supply.
  • the base station system includes a radio remote unit (Radio Remote Unit, RRU) and a base station antenna, the input end of the radio remote unit is connected to the indoor base band processing unit (building base band unit, BBU) through optical fiber,
  • the terminal is connected to the base station antenna through a feeder, and the radio remote unit is used to receive the radio frequency analog signal processed by the indoor baseband processing unit such as modulation and demodulation, and amplify the power of the radio frequency analog signal and transmit it to the base station antenna.
  • RRU Radio Remote Unit
  • BBU base band unit
  • the microwave communication system uses the control unit 110 to connect to the antenna 100
  • the control unit 110 can be understood as the radio frequency unit of the antenna 100
  • the control unit 110 is further used to convert the baseband signal and the radio frequency signal and process the radio frequency signal, In order to meet the requirements of communication services.
  • the control unit 110 and the baseband processing unit 200 are respectively provided with an interface module 300, the control unit 110 is connected to one end of the transmission cable 400 through the interface module 300, and the baseband processing unit 200 is connected to the transmission cable 400 through the interface module 300. The other end is connected, so that the baseband processing unit 200 establishes a connection with the control unit 110 .
  • the interface module 300 includes a data transmission port, a power supply port and a grounding port.
  • the transmission cable 400 is composed of multiple wires, the two ends of the transmission cable 400 are respectively connected to the interface module 300, and the data transmission port, the power supply port and the grounding port are respectively connected to corresponding wires, so that the baseband processing unit 200 There is a one-to-one correspondence between the ports on the control unit 110 and the ports on the control unit 110 .
  • the data transmission port is used for signal transmission between the control unit 110 and the baseband processing unit 200
  • the power supply port is used for the baseband processing unit 200 to supply power to the control unit 110
  • the ground port is used for signal and power return to realize baseband processing
  • the signal transmission and voltage power supply between the unit 200 and the antenna 100 , the power supply voltage can be set according to the requirements of the load, and the power supply voltage can be 3V, 4V, 6V, etc., which is not limited here.
  • the interface module 300 of the embodiment adopts a self-defined interface, and the load power supply is not limited to the standard power supply capability of USB, and has high versatility and high application scalability.
  • the interface module 300 also includes a first detection port and a second detection port, the load detection signal is transmitted to the baseband processing unit 200 through the first detection port, and the feed detection signal of the control unit 110 is transmitted to the baseband processing unit 200 through the second detection port.
  • the baseband processing unit 200 can accurately detect the load by using the load detection signal, so as to ensure that the baseband processing unit 200 establishes an effective connection with the antenna 100 .
  • the working status of the load can be judged through the feed detection signal, which is convenient for managing the feed output, can match the working voltage of different loads, and effectively improves the application scalability.
  • the main control board of the baseband processing unit 200 can determine the connection state and working state of the antenna 100 according to the load detection signal and the feed detection signal.
  • load monitoring and feed control can be realized through the first detection port and the second detection port, Provide a more practical and easy-to-implement communication interface solution, which is conducive to improving power supply capacity, high versatility, and stronger application scalability, especially suitable for E-Band frequency band communication systems.
  • the interface module 300 uses a pair of data differential lines for data transmission, that is to say, there are two data transmission ports, and each data transmission port is correspondingly connected to a data differential line. Therefore, the data transmission Ports occupy 2 ports on the interface module 300 .
  • the power supply of the baseband processing unit 200 is specific to positive and negative electrodes. There are two power supply ports, and the power supply ports occupy two ports on the interface module 300 . Considering the signal and power return, there are two ground ports, one for signal return and the other for power return. Therefore, the ground port occupies two ports on the interface module 300 .
  • the detection signals of the first detection port and the second detection port are level signals, and a single port can be used to complete signal transmission. Therefore, the first detection port and the second detection port occupy one port on the interface module 300 . It can be understood that the interface module 300 needs to be provided with at least 8 ports to meet the feeding and communication requirements between the baseband processing unit 200 and the antenna 100 .
  • the interface module 300 may adopt an interface structure with 8 pins, wherein the data transmission port, the power supply port and the grounding port occupy 2 pins respectively, and the first detection port and the second detection port occupy 1 pin respectively.
  • an interface module 300 with more than 8 pins, such as 10 pins, 12 pins, etc., can also be used, which is more conducive to the application expansion of the microwave communication system, which is not limited here.
  • the transmission cable 400 is respectively connected to the baseband processing unit 200 and the control unit 110 through the interface module 300.
  • the transmission cable 400 has 8 wires arranged side by side.
  • the plug-in interface structure for example, has an 8-pin connection plug and socket, so that the baseband processing unit 200 and the control unit 110 can quickly establish connections with the transmission cable 400 respectively.
  • the interface module 300 used in the embodiment is an RJ45 connector, wherein RJ is the abbreviation of Registered Jack, which means a registered socket, and is also a common name for a standard 8-bit modular interface.
  • the RJ45 connector is composed of a plug and a socket Composition, wherein, the plug has 8 grooves and 8 contacts, the plug is connected with the transmission cable 400, the socket is respectively set on the baseband processing unit 200 and the control unit 110, and the connector is formed by the cooperation of the plug and the socket to realize the transmission line Quick connection of the cable 400.
  • the accompanying drawings do not show the specific structure of the RJ45 connector.
  • the interface module 300 adopts a self-defined interface structure.
  • an RJ45 connector is used as the docking structure of the transmission cable 400.
  • Each contact is used as a port of the interface module 300, that is, it has an 8pin interface, and the 8pin interface
  • the core of the RJ45 module is the modular jack. Due to the friction between the shrapnel and the jack, the electrical contact is further strengthened with the insertion of the plug.
  • the main body of the jack is designed with an integral locking mechanism, so that when the plug is inserted, the interface between the plug and the jack can produce the maximum pulling strength, and the connection structure is stable and reliable, so as to ensure the communication stability between the baseband processing unit 200 and the antenna 100 .
  • the transmission cable 400 used in the embodiment is a twisted pair, and the twisted pair is Category 5 or above.
  • the maximum transmission distance can exceed 30m, which can effectively improve the reliability of data transmission and power supply.
  • Fig. 2 is the interface signal definition information table of interface module 300, wherein, the data transmission port is defined as RS485 interface, The RS485 bus standard is adopted, occupying 2 pins, and a pair of data differential lines are used for data transmission, so as to realize the interaction of control signaling between the baseband processing unit 200 and the control unit 110 .
  • the power supply port is defined as a POWER interface, which is used for power supply and occupies 2 pins. The current of a single port can reach 1.5A.
  • the ground port is defined as the GND interface, occupying 2pins, used for signal and power ground return, and the current of a single port can reach 1.5A.
  • the first detection port is defined as the MBS_ID interface, which occupies 1 pin and is used to transmit the load detection signal.
  • MBS is the abbreviation of Millimeter Beam Stablization, which means the millimeter wave antenna stabilization system.
  • the main control board determines the connection status of the load according to the signal voltage value of this port, and realizes accurate load detection and handshake.
  • the second detection port is defined as the POWER_GD interface, which occupies 1 pin, and is used to transmit the feedback signal of the load power supply status. The main control board monitors the signal status, judges the load working status, and manages the output of the power feed.
  • the embodiment uses the RJ45 connector and twisted pair as the transmission medium between the baseband processing unit 200 and the control unit 110.
  • the RJ45 connector is suitable for outdoor communication equipment, has waterproof and dustproof effects, and has strong versatility. The maintenance is easier, and a more economical and easier-to-use smart beam antenna communication interface solution is provided for the antenna device, and the power feeding and communication interaction of the smart beam antenna control unit 110 are realized with low cost and high versatility.
  • FIG. 3 is a functional block diagram of the automatic load monitoring and feeding control of the antenna device.
  • the main control board is provided with a load monitoring circuit 500 and a feed control circuit 600, wherein the load monitoring circuit 500 determines the connection status of the antenna 100 according to the signal voltage value of the first detection port, and realizes automatic load accurate detection and handshake.
  • different loads have different identification marks, which are used to identify the identity information of the device.
  • a load detection signal can be generated according to the identification mark of the load, and the load detection signal is passed through the first A detection port is transmitted to the load monitoring circuit 500 of the main control board, thereby judging whether the load is a legal device according to the detection signal.
  • the signal voltage value matches the preset value
  • the antenna 100 handshakes successfully, so as to establish a connection and perform power feeding; otherwise, the main control board fails to shake hands with the antenna 100, and the main control board controls not to perform power feeding.
  • the load monitoring circuit 500 includes a comparator 510, and the comparator 510 includes two input terminals and an output terminal, wherein the first input terminal is connected to the first detection port, and the second input terminal is connected to a Level setting device 520, the level setting device 520 is used to set the preset voltage value, the comparator 510 compares the load detection signal of the MBS_ID interface with the preset voltage value, if the signal voltage of the MBS_ID interface falls into the preset voltage value If the range of the voltage value is set, it is judged that a legal load is connected, the main control board and the control unit 110 shake hands successfully, the output terminal of the comparator 510 sends a control signal, and the feed control circuit 600 feeds power to the control unit 110 according to the control signal. Put the antenna 100 into the working state.
  • the feed control circuit 600 is used to control the feed of the control unit 110, the feed control circuit 600 includes a power controller 610 and a power supply 620, the input terminal of the power controller 610 and the output terminal of the comparator 510 connected, the output terminal of the power controller 610 is connected with the power supply 620 .
  • the power controller 610 receives the control signal, and outputs a control power supply 620 to supply power to the control unit 110 .
  • the power controller 610 is also connected to the second detection port, that is, after feeding the control unit 110, the power controller 610 obtains the load detection signal through the POWER_GD interface, Whether the control unit 110 is in a normal power feeding state is judged according to the load detection signal, so as to realize power feeding management and ensure normal power feeding and communication services.
  • the operating voltage specified in the interface protocol is in the range of 3v-4v. If the signal voltage of the POWER_GD interface falls within the operating voltage range, it is judged that the load is in normal power feeding; otherwise, it is judged that the feeding is abnormal and the power supply to the load is stopped. That is to say, after the load is connected, the detection signal of the MBS_ID interface needs to be in the range of the preset voltage value, and the detection signal of the POWER_GD interface needs to be in the operating voltage range.
  • the 620 supplies power to the control voltage; if the signal of the MBS_ID interface or the signal of the POWER_GD interface does not meet the preset adjustment, it is judged that the load is abnormal, and the power supply is stopped, and the feeding attempt is made after a certain period of time, and the connection status of the load is re-determined and feed status.
  • a protection module 630 is provided between the power supply 620 and the control unit 110. When the feed current surges, the protection module 630 will cut off the power supply from the power supply 620 to the control unit 110 to avoid The equipment is damaged due to short circuit, which plays a protective role.
  • the protection module 630 used includes a self-recovery fuse, which can be understood as an overcurrent electronic protection component.
  • the action principle of the self-recovery fuse is the dynamic balance of energy. When the fuse is used, due to the thermal effect of the current, a certain degree of heat is generated, and all or part of the generated heat is dissipated to the environment, and the heat that is not dissipated will increase the temperature of the resettable fuse element. The temperature during normal operation is low, and the heat generated and dissipated reach a balance. At this time, the self-recovery fuse does not operate.
  • the feed current will increase sharply, causing the current flowing through the resettable fuse to increase, and when the heat generated is greater than the heat dissipated, the temperature of the resettable fuse will increase sharply.
  • the self-recovery fuse element is in a high-impedance protection state.
  • the increase in impedance limits the current, and the current drops sharply in a short period of time, thereby protecting the circuit equipment from damage and playing an effective short-circuit protection role.
  • the self-recovery fuse can automatically restore the conduction state, which can meet the long-term effective protection function of the equipment.
  • the embodiment of the present application also provides a microwave communication system, including the antenna device of the above embodiment, which is especially suitable for a microwave E-Band frequency band communication system.
  • the microwave communication system applies the antenna device of the above embodiment, and the drawings do not show the microwave communication system. structure.
  • an RJ45 connector and a twisted pair are used as physical transmission media, so that the control unit 110 and the baseband processing unit 200 can establish a connection.
  • the form of self-defined interface can be adopted, and the RJ45 connector can provide a data transmission port, a power supply port, a grounding port, a first detection port and a second detection port, wherein the data transmission port is used for data transmission between the antenna 100 and the baseband processing unit 200
  • the antenna 100 is supplied with power and the signal and power ground return through the power supply port and the ground port respectively, and the load detection signal is transmitted through the first detection port, and the feed detection signal is transmitted through the second detection port.
  • the load power supply is not limited to the standard power supply capability of USB. It has high versatility and high application scalability, which is conducive to providing a more economical and easier-to-use smart beam antenna communication interface solution.
  • the high versatility realizes the feeding and communication interaction of the smart beam antenna control unit 110, which has a better application prospect.
  • the embodiment of the present application also provides a base station, including the antenna device or the microwave communication system as in the above-mentioned embodiment. Since the base station adopts all the technical solutions of the above-mentioned embodiment, it has at least the following technical effects: high application scalability, which is beneficial to It provides a more economical and easier-to-use smart beam antenna communication interface solution to realize the power feeding and communication interaction of the smart beam antenna control unit 110 with low cost and high versatility, which has a better application prospect.
  • the embodiment of the present application includes: setting an interface module on the control unit of the antenna and the baseband processing unit respectively, and using a transmission cable as a transmission medium to connect the control unit and the interface module of the baseband processing unit, and the interface module includes a first detection port And the second detection port, the load detection signal is transmitted to the baseband processing unit through the first detection port, the feed detection signal of the control unit is transmitted to the baseband processing unit through the second detection port, and the load power supply is not limited to USB standard power supply Capability, in the case of satisfying antenna feeding, load monitoring and feeding control can be realized through the first detection port and the second detection port, providing a more practical and easy-to-implement communication interface solution, which is conducive to improving power supply capacity and high versatility , with stronger application scalability, especially suitable for E-Band frequency band communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Transceivers (AREA)

Abstract

本申请提供了一种天线装置和基站,其中天线装置包括天线(100)和基带处理单元(200),在控制单元(110)和基带处理单元(200)上分别设置接口模块(300),并通过传输线缆(400)作为传输媒介,接口模块(300)包括第一检测端口和第二检测端口,第一检测端口用于将天线(100)的负载检测信号传输至基带处理单元(200),第二检测端口用于在控制单元(110)馈电时将控制单元(110)的馈电检测信号传输至基带处理单元(200),控制单元(110)和基带处理单元(200)分别通过接口模块(300)与传输线缆连接(400)。

Description

天线装置和基站
相关申请的交叉引用
本申请基于申请号为202110785975.X、申请日为2021年7月12日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及但不限于无线通信技术领域,尤其涉及一种天线装置、微波通信***及基站。
背景技术
在微波通信中,尤其是微波E-Band频段通信***,E-Band是指频率在80GHz(71-76GHz和81-86GHz)的微波频段,是目前用于商用微波通信的最高频段。由于其天线波束角度较小,对天线稳定度要求高,智能波束天线应用于微波E-band全室外通信***,可有效提升天线抗风摆特性,提升通信***的稳定性。
智能波束天线的控制方案,在基站***上主要采用电调天线设备标准组织(Antenna Interface Standards Group,AISG)的标准接口,在微波***上目前无统一标准,市场上主要采用通用串行总线(Universal Serial Bus,USB)接口形式,USB接口方案受限于USB标准的供电能力,负载可扩展性不高,无法满足智能波束天线调节的应用要求。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
第一方面,本申请实施例提供了一种天线装置,包括:天线,所述天线包括用于调节天线波束的控制单元;基带处理单元,所述基带处理单元用于对所述天线的信号进行处理;传输线缆,所述传输线缆用于连接所述控制单元和所述基带处理单元;接口模块,所述接口模块包括第一检测端口和第二检测端口,所述第一检测端口用于将所述天线的负载检测信号传输至所述基带处理单元,所述第二检测端口用于在所述控制单元馈电时将所述控制单元的馈电检测信号传输至所述基带处理单元,所述控制单元和所述基带处理单元分别通过所述接口模块与所述传输线缆连接。
第二方面,本申请实施例还提供了一种微波通信***,包括如上述第一方面实施例的天线装置。
第三方面,本申请实施例还提供了一种基站,包括如上述第一方面实施例所述的天线装置或上述第二方面实施例的微波通信***。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请一实施例提供的天线装置的原理框图;
图2是本申请一实施例提供的接口模块的接口信号定义信息表;
图3是本申请一实施例提供的自动负载监测和馈电控制的原理框图。
附图标记:
天线100;控制单元110;
基带处理单元200;
接口模块300;
传输线缆400;
负载监测电路500;比较器510;电平设定装置520;
馈电控制电路600;电源控制器610;供电电源620;保护模块630。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,需要理解的是,涉及到方位描述,例如“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书、权利要求书或上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请的描述中,需要说明的是,除非另有明确的限定,术语“安装”、“连接”等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本申请中的具体含义。
利用微波波段进行通信的方式称为微波通信,其传输距离远、容量大、部署快捷、稳定性强,广泛用于各类通信***的中继和回传。在微波通信中,尤其是微波E-Band频段通信***,是目前用于商用微波通信的最高频段,E-Band是指频率在80GHz(71-76GHz和81-86GHz)的微波频段。通过天线调节***来调节微波天线角度,从而达到更精准的无线传输数据的功能,实现无光缆基站的电路运行及数据专线客户的数据传输,因此微波天线的角度至关重要。由于微波天线波束角度较小,对天线稳定度要求高,智能波束天线应用于微波E-band全室外通信***,可有效提升天线抗风摆特性,提升通信***的稳定性。
智能波束天线的控制方案,在基站***上主要采用AISG标准接口,在微波***上目前无统一标准,市场上主要采用USB接口形式,USB接口方案受限于其标准的供电能力,负载可扩展性不高。而AISG接口方案不完全适用与微波通信***,且在物理成本和产品维护通用性 上明显存在不足。
因此,在满足微波天线电动调节的应用要求的情况下,提升通讯接口的供电能力成为了本领域技术人员需要解决的问题。
本申请实施例提供了一种天线装置、微波通信***和基站,能够有效解决智能波束天线通讯接口供电能力不足、应用扩展性低的问题,简单实用且容易实现,可靠性较高。
本申请的实施例的天线装置中,采用自定义接口进行传输,在天线100的控制单元110和基带处理单元200上分别设置接口模块300,并通过传输线缆400作为传输媒介,将控制单元110和基带处理单元200的接口模块300连接起来,接口模块300利用数据传输端口用于天线100与基带处理单元200之间的数据传输,通过供电端口和接地端口分别对天线100进行电源供电和信号及电源地回流,并通过第一检测端口传输负载检测信号,第二检测端口传输馈电检测信号,负载供电不受限于USB的标准供电能力,而且在满足天线100馈电的情况下,通过第一检测端口和第二检测端口能够实现负载监测和馈电控制,提供更加实用且容易实现的通讯接口方案,有利于提高供电能力,通用性高,应用扩展性更强,特别适用于E-Band频段通信***。
下面结合附图,对本申请实施例作进一步阐述,参考图1至图3描述本申请实施例的天线装置,但不限于实施例所示的应用情景。
参见图1所示,本申请实施例提供的天线装置,包括天线100和基带处理单元200,该天线100为适用于微波E-Band频段的智能波束天线,采用的智能波束天线带有可以判定信号的空间信息(比如传播方向)和跟踪、定位信号源的智能算法,并且可以根据此信息,进行空域滤波的天线100阵列,也称为自适应阵列天线,此处不再赘述。实施例中,天线100包括控制单元110,基带处理单元200具有电源管理和负载管理功能,通过基带处理单元200对控制单元110进行供电,通过控制单元110能够对天线100进行电调节,从而实现调节天线100波束角度。
具体来说,基带处理单元200通过传输线缆400与控制单元110连接,传输线缆400作为传输媒介,通过传输线缆400可以向控制单元110传输数据以及供电,例如,传输线缆400可以由多根导电电线组成,既可以传输数据信号,也可以用于电源供电。
可理解到,在基站***中,包括射频拉远单元(Radio Remote Unit,RRU)和基站天线,射频拉远单元的输入端通过光纤与室内基带处理单元(building base band unit,BBU)连接,输出端通过馈线与基站天线相连,射频拉远单元用于接收经室内基带处理单元调制解调等处理后的射频模拟信号,并将射频模拟信号功率放大后传输给基站天线。实施例中,微波通信***采用控制单元110与天线100连接,控制单元110可理解为天线100的射频单元,该控制单元110进一步用于进行基带信号与射频信号的转换以及对射频信号进行处理,从而满足通信业务的要求。
参见图1所示,控制单元110和基带处理单元200分别设置有接口模块300,控制单元110通过接口模块300与传输线缆400的一端连接,基带处理单元200通过接口模块300与传输线缆400的另一端连接,从而使基带处理单元200与控制单元110建立连接。为了使接口模块300能够满足传输数据和供电的要求,实施例中,接口模块300包括有数据传输端口、供电端口和接地端口。
可以理解的是,传输线缆400由多根电线组成,传输线缆400的两端分别连接接口模块 300,数据传输端口、供电端口和接地端口分别连接相应的电线,从而使基带处理单元200上的端口与控制单元110上的端口能够一一对应。其中,数据传输端口用于控制单元110与基带处理单元200之间的信号传输,供电端口用于基带处理单元200对控制单元110进行电源供电,接地端口用于信号及电源地回流,实现基带处理单元200与天线100的信号传输以及电压供电,供电电压可根据负载的使用要求而进行设定,供电电压可以是3V、4V、6V等,此处不作限定。相对于传统的USB接口方案,实施例的接口模块300采用自定义接口,负载供电不受限于USB的标准供电能力,通用性高,应用扩展性较高。
此外,接口模块300还包括有第一检测端口和第二检测端口,通过第一检测端口将负载检测信号传输至基带处理单元200,通过第二检测端口将控制单元110的馈电检测信号传输至基带处理单元200,利用负载检测信号能够对负载实现精准的检测,以保证基带处理单元200与天线100建立有效的连接。而且通过馈电检测信号能够判断负载的工作状态,便于管理馈电输出,能够匹配不同负载的工作电压,有效提升应用扩展性。可以理解的是,基带处理单元200的主控板可根据负载检测信号和馈电检测信号确定天线100的连接状态和工作状态。本申请实施例通过在接口模块300上增加第一检测端口和第二检测端口,在满足天线100馈电的情况下,通过第一检测端口和第二检测端口能够实现负载监测和馈电控制,提供更加实用且容易实现的通讯接口方案,有利于提高供电能力,通用性高,应用扩展性更强,特别适用于E-Band频段通信***。
需要说明的是,实施例中接口模块300采用一对数据差分线进行数据传输,也就是说,数据传输端口设置有2个,每个数据传输端口对应连接有一条数据差分线,因此,数据传输端口在接口模块300上占据2个端口。基带处理单元200的电源供电具体正负电极,供电端口设置有2个,供电端口在接口模块300上占据2个端口。考虑到信号和电源地回流,接地端口设置有2个,一个用于信号地回流,另一个用于电源地回流,因此,接地端口在接口模块300上占据2个端口。第一检测端口和第二检测端口的检测信号为电平信号,采用单个端口即可完成信号的传输,因此,第一检测端口和第二检测端口在接口模块300上分别占据1个端口。可理解到,接口模块300至少需要设置有8个端口,满足基带处理单元200与天线100之间的馈电以及通讯要求。
可以理解的是,接口模块300可采用具有8针(pin)的接口结构,其中,数据传输端口、供电端口和接地端口分别占据2pin,第一检测端口和第二检测端口分别占据1pin。当然,也可以采用大于8pin的接口模块300,如10pin、12pin等,更有利于微波通信***的应用扩展,此处不作限定。
以具有8pin的接口模块300为示例进行说明,传输线缆400通过接口模块300分别与基带处理单元200和控制单元110进行连接,传输线缆400具有8条电线并排组成,接口模块300可采用快速插接形式的接口结构,例如,具有8pin的接线插头和插座,能够实现基带处理单元200和控制单元110分别与传输线缆400快速建立连接。
参见图1所示,实施例采用的接口模块300为RJ45连接器,其中,RJ是Registered Jack的缩写,意思是注册的插座,也是标准8位模块化接口的俗称,RJ45连接器由插头和插座组成,其中,插头有8个凹槽和8个触点,插头与传输线缆400连接,插座分别设置在基带处理单元200和控制单元110上,通过插头与插座配合组成连接器,实现传输线缆400的快速连接。附图未示出RJ45连接器的具体结构。
具体来说,接口模块300采用自定义接口结构,在物理形式上采用RJ45连接器作为传输线缆400的对接结构,每个触点作为接口模块300的端口,即具有8pin接口,且对8pin接口自定义信号内容,实现电性连接,能够同时实现对天线100的状态监测、馈电和通讯管理。RJ45模块的核心是模块化插孔,由于弹片与插孔间的摩擦作用,电接触随着插头的***而得到进一步加强。插孔主体设计采用整体锁定机制,这样当插头***时,插头和插孔的界面外可产生最大的拉拔强度,连接结构稳定可靠,以保证基带处理单元200与天线100之间的通讯稳定性。
需要说明的是,实施例采用的传输线缆400为双绞线,且双绞线为5类及以上,5类双绞线增加了绕线密度,外侧套设有高质量的绝缘材料,类型越高,技术越先进,结构更可靠耐用,性能也更稳定,最大传输距离可超过30m,能够有效提高数据传输及供电的可靠性。
参见图2所示,采用RJ45连接器和双绞线配合的物理传输结构,而接口信号进行自定义,图2为接口模块300的接口信号定义信息表,其中,数据传输端口定义为RS485接口,采用RS485总线标准,占据2pin,采用一对数据差分线进行数据传输,实现基带处理单元200与控制单元110的控制信令的交互。供电端口定义为POWER接口,用于电源供电,占据2pin,单个端口的电流可达1.5A。接地端口定义为GND接口,占据2pin,用于信号及电源地回流,单个端口的电流可达1.5A。通过POWER和GND接口,主控板实现对天线100调节***的馈电,最大通流3A,可实现20W以上带载能力。第一检测端口定义为MBS_ID接口,占据1pin,用于传输负载检测信号,其中,MBS为Millimeter Beam Stablization的简称,意思是毫米波天线稳定***。主控板根据此端口的信号电压值确定负载的连接状态,实现负载精准检测和握手。第二检测端口定义为POWER_GD接口,占据1pin,用于传输负载电源状态的反馈信号,主控板监测此信号状态,判断负载工作状态,从而管理馈电的输出。
可理解到,实施例以RJ45连接器和双绞线作为基带处理单元200与控制单元110之间的传输媒介,RJ45连接器适用于室外通信设备,具有防水防尘效果,通用性较强,工程维护更加简便,为天线装置提供更经济、更易用的智能波束天线通讯接口方案,以低成本、高通用性实现智能波束天线控制单元110的馈电和通讯交互。
参见图3所示,图3为天线装置的自动负载监测和馈电控制的原理框图。主控板设置有负载监测电路500和馈电控制电路600,其中,负载监测电路500根据第一检测端口的信号电压值确定天线100的连接状态,实现自动负载精准检测和握手。可理解到,不同负载具有不同的识别标识,用于识别设备的身份信息,在负载通过接口模块300与传输线缆400连接时,可根据负载的识别标识生成负载检测信号,负载检测信号经第一检测端口传输至主控板的负载监测电路500,从而根据检测信号判断负载是否为合法设备,例如,信号电压值与预设值匹配时,判断合法天线100接入,此时主控板与天线100握手成功,从而建立连接并进行馈电;否则主控板与天线100握手失败,主控板控制不进行馈电。
具体来说,如图3所示,负载监测电路500包括比较器510,比较器510包括两个输入端和一个输出端,其中第一输入端与第一检测端口连接,第二输入端连接有电平设定装置520,该电平设定装置520用于设定预设电压值,比较器510将MBS_ID接口的负载检测信号与预设电压值进行比较,若MBS_ID接口的信号电压落入预设电压值的范围,则判断为合法负载接入,主控板与控制单元110握手成功,比较器510的输出端发出控制信号,馈电控制电路600根据控制信号向控制单元110进行馈电,使天线100进入工作状态。
可以理解的是,馈电控制电路600用于对控制单元110的馈电控制,馈电控制电路600包括电源控制器610和供电电源620,电源控制器610的输入端与比较器510的输出端连接,电源控制器610的输出端与供电电源620连接。主控板与控制单元110握手成功后,电源控制器610接收到控制信号,并输出控制供电电源620对控制单元110进行供电。
参见图3所示,馈电控制电路600中,电源控制器610还与第二检测端口连接,也就是说,在对控制单元110馈电后,电源控制器610通过POWER_GD接口获取负载检测信号,根据负载检测信号判断控制单元110是否处于正常馈电状态,从而实现馈电管理,以保证正常的馈电和通信业务。
例如,接口协议规定的运行电压为3v-4v范围,若POWER_GD接口的信号电压落在该运行电压范围内,则判断负载处于正常馈电整体;否则,判断馈电异常,停止对负载的供电。也就是说,在负载接入后,MBS_ID接口的检测信号需要在预设电压值的范围,且POWER_GD接口的检测信号需要在运行电压范围时,确定满足预设条件,电源控制器610控制供电电源620对控制电压进行供电;若MBS_ID接口的信号或POWER_GD接口的信号不满足预设调节,则判定负载出现异常情况,停止供电,并间隔一定时间后再进行馈电尝试,重新确定负载的连接状态以及馈电状态。
考虑到当天线100负载或传输线缆400出现异常短路时,会导致馈电电流异常增大,损坏传输***。参见图3所示,在一些实施例中,在供电电源620与控制单元110之间设置保护模块630,当馈电电流激增,保护模块630会断开供电电源620对控制单元110的供电,避免因短路造成设备损坏,起到保护作用。
实施例中,采用的保护模块630包括自恢复保险丝,自恢复保险丝可理解是过流电子保护元件,自恢复保险丝的动作原理是能量的动态平衡,自恢复保险丝存在阻值,电流流过自恢复保险丝时,由于电流热效应的关系,产生一定程度的热量,产生的热全部或部分散发到环境中,而没有散发出去的热便会提高自恢复保险丝元件的温度。正常工作时的温度较低,产生的热和散发的热达到平衡,此时自恢复保险丝不动作。
在天线100负载或传输线缆400发生短路时,馈电电流会剧增,导致流过自恢复保险丝的电流增大,且产生的热量大于散发出去的热量时,使得自恢复保险丝温度骤增,此时自恢复保险丝元件处于高阻保护状态,阻抗的增加限制了电流,电流在很短时间内急剧下降,从而保护电路设备免受损坏,起到有效的短路防护作用。当短路故障消除时,自恢复保险丝可以自动恢复导通状态,可满足设备长期有效的保护作用。
本申请实施例还提供微波通信***,包括上述实施例的天线装置,特别适用于微波E-Band频段通信***,该微波通信***应用上述实施例的天线装置,附图未示出微波通信***的结构。其中,天线100的控制单元110和基带处理单元200之间以RJ45连接器和双绞线作为物理形式上的传输媒介,使控制单元110和基带处理单元200能够建立连接。而且采用自定义接口形式,RJ45连接器能够提供数据传输端口、供电端口、接地端口、第一检测端口和第二检测端口,其中,数据传输端口用于天线100与基带处理单元200之间的数据传输,通过供电端口和接地端口分别对天线100进行电源供电和信号及电源地回流,并通过第一检测端口传输负载检测信号,第二检测端口传输馈电检测信号。相对于传统的USB接口方案,负载供电不受限于USB的标准供电能力,通用性高,应用扩展性较高,有利于提供更经济、更易用的智能波束天线通讯接口方案,以低成本、高通用性实现智能波束天线控制单元110的馈电 和通讯交互,具有较佳的应用前景。
本申请实施例还提供一种基站,包括如上述实施例的天线装置或微波通信***,由于基站采用了上述实施例的全部技术方案,因此至少具有以下技术效果:应用扩展性较高,有利于提供更经济、更易用的智能波束天线通讯接口方案,以低成本、高通用性实现智能波束天线控制单元110的馈电和通讯交互,具有较佳的应用前景。
本申请实施例包括:在天线的控制单元和基带处理单元上分别设置接口模块,并通过传输线缆作为传输媒介,将控制单元和基带处理单元的接口模块连接起来,接口模块包括第一检测端口和第二检测端口,通过第一检测端口将负载检测信号传输至基带处理单元,通过第二检测端口将控制单元的馈电检测信号传输至基带处理单元,负载供电不受限于USB的标准供电能力,在满足天线馈电的情况下,通过第一检测端口和第二检测端口能够实现负载监测和馈电控制,提供更加实用且容易实现的通讯接口方案,有利于提高供电能力,通用性高,应用扩展性更强,特别适用于E-Band频段通信***。
以上是对本申请的较佳实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

  1. 一种天线装置,包括:
    天线,所述天线包括用于调节天线波束的控制单元;
    基带处理单元,所述基带处理单元用于对所述天线的信号进行处理;
    传输线缆,所述传输线缆用于连接所述控制单元和所述基带处理单元;
    接口模块,所述接口模块包括第一检测端口和第二检测端口,所述第一检测端口用于将所述天线的负载检测信号传输至所述基带处理单元,所述第二检测端口用于在所述控制单元馈电时将所述控制单元的馈电检测信号传输至所述基带处理单元,所述控制单元和所述基带处理单元分别通过所述接口模块与所述传输线缆连接。
  2. 根据权利要求1所述的天线装置,其中,所述天线装置还包括负载监测电路和馈电控制电路,所述负载监测电路包括比较器,所述比较器的第一输入端与所述第一检测端口连接,所述比较器的第二输入端连接有电平设定装置,所述比较器的输出端与所述馈电控制电路连接,用于根据所述负载检测信号与所述电平设定装置的预设电压值的对比结果向所述馈电控制电路输出控制信号,并根据所述控制信号控制对所述控制单元的馈电。
  3. 根据权利要求2所述的天线装置,其中,所述馈电控制电路包括电源控制器和供电电源,所述电源控制器的输入端与所述比较器的输出端连接,所述电源控制器的输出端与所述供电电源连接,所述电源控制器接收所述控制信号,并根据所述控制信号控制所述供电电源对所述控制单元的馈电。
  4. 根据权利要求3所述的天线装置,其中,所述电源控制器的输入端还与所述第二检测端口连接,用于在所述控制信号与所述馈电检测信号均满足预设条件时,控制所述供电电源对所述控制单元进行馈电。
  5. 根据权利要求3所述的天线装置,其中,所述馈电控制电路还包括保护模块,所述保护模块连接于所述供电电源与所述控制单元之间,用于在所述传输线缆或所述控制单元短路时断开所述供电电源的馈电。
  6. 根据权利要求5所述的天线装置,其中,所述保护模块包括自恢复保险丝。
  7. 根据权利要求1所述的天线装置,其中,所述接口模块还包括数据传输端口、供电端口和接地端口,所述数据传输端口、所述供电端口和所述接地端口分别设有两个,所述第一检测端口和所述第二检测端口分别设有一个,所述数据传输端口为RS485总线接口。
  8. 根据权利要求7所述的天线装置,其中,所述接口模块为RJ45连接器,所述传输线缆为五类及以上的双绞线。
  9. 一种微波通信***,包括如权利要求1至8任意一项所述的天线装置。
  10. 一种基站,包括如权利要求1至8任意一项所述的天线装置或权利要求9所述的微波通信***。
PCT/CN2022/101591 2021-07-12 2022-06-27 天线装置和基站 WO2023284541A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110785975.XA CN115621706A (zh) 2021-07-12 2021-07-12 天线装置和基站
CN202110785975.X 2021-07-12

Publications (1)

Publication Number Publication Date
WO2023284541A1 true WO2023284541A1 (zh) 2023-01-19

Family

ID=84855833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101591 WO2023284541A1 (zh) 2021-07-12 2022-06-27 天线装置和基站

Country Status (2)

Country Link
CN (1) CN115621706A (zh)
WO (1) WO2023284541A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040257284A1 (en) * 2003-06-23 2004-12-23 Netgear Inc. Detachable 802.11a antenna detection
CN1836379A (zh) * 2003-08-11 2006-09-20 索尼株式会社 无线通信***和无线通信设备
WO2014161580A1 (en) * 2013-04-04 2014-10-09 Nokia Solutions And Networks Oy Antenna port identification
JP2021019444A (ja) * 2019-07-22 2021-02-15 京セラ株式会社 光給電システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040257284A1 (en) * 2003-06-23 2004-12-23 Netgear Inc. Detachable 802.11a antenna detection
CN1836379A (zh) * 2003-08-11 2006-09-20 索尼株式会社 无线通信***和无线通信设备
WO2014161580A1 (en) * 2013-04-04 2014-10-09 Nokia Solutions And Networks Oy Antenna port identification
JP2021019444A (ja) * 2019-07-22 2021-02-15 京セラ株式会社 光給電システム

Also Published As

Publication number Publication date
CN115621706A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
EP1769315B1 (en) Improved power delivery over ethernet cables
CN103178405B (zh) 可侦测连接状态的连接装置、电连接组件及电子装置
CN110289972B (zh) 一种基于以太网的网络设备及网络***
WO2023284541A1 (zh) 天线装置和基站
CN108400623B (zh) 一种终端及其实现多路径供电管理的方法
CN204946001U (zh) USB Type-C转换模块
CN211959571U (zh) 一种电信息采集终端通信模块和采集终端
CN212256300U (zh) 一种方便的多串口卡
CN113300174A (zh) 插头连接器及连接器组合
CN217562996U (zh) 一种充电线缆和充电装置
CN218383951U (zh) 一种多路串口通讯电路
CN201742427U (zh) 智能保护接口电路
CN215581199U (zh) 配电信息传递设备
CN219780159U (zh) 一种插拔式poe供电电路及poe供电器
CN218243092U (zh) 一种供电组件及受电设备
CN215682331U (zh) 一种嵌入式以太网交换机插件
CN220823072U (zh) Plc多模扩展电路以及plc通讯设备
CN207869121U (zh) 改进的网络信号处理电路
US20240130067A1 (en) Power distribution subrack and power distribution equipment
CN217063727U (zh) 一种智能物联终端设备的rj45接口
CN218162704U (zh) 一种基于poe供电的5g路由器电路
CN211062949U (zh) 高低频弹性连接器集成互联框架
CN216086880U (zh) 一种响应灵敏的无线通信装置
CN209658902U (zh) 射频信号与直流电源合路装置
WO2023131297A1 (zh) 供电方法及其装置、存储介质、程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE