WO2023284320A1 - 用于光热反射显微热成像的三维位移补偿方法及控制装置 - Google Patents

用于光热反射显微热成像的三维位移补偿方法及控制装置 Download PDF

Info

Publication number
WO2023284320A1
WO2023284320A1 PCT/CN2022/081398 CN2022081398W WO2023284320A1 WO 2023284320 A1 WO2023284320 A1 WO 2023284320A1 CN 2022081398 W CN2022081398 W CN 2022081398W WO 2023284320 A1 WO2023284320 A1 WO 2023284320A1
Authority
WO
WIPO (PCT)
Prior art keywords
microthermography
dimensional displacement
fourier transform
photothermal reflection
photothermal
Prior art date
Application number
PCT/CN2022/081398
Other languages
English (en)
French (fr)
Inventor
刘岩
吴爱华
王维
翟玉卫
李灏
丁晨
荆晓冬
盛百城
Original Assignee
中国电子科技集团公司第十三研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第十三研究所 filed Critical 中国电子科技集团公司第十三研究所
Priority to US17/859,845 priority Critical patent/US12025501B2/en
Publication of WO2023284320A1 publication Critical patent/WO2023284320A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/026Control of working procedures of a pyrometer, other than calibration; Bandwidth calculation; Gain control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0275Control or determination of height or distance or angle information for sensors or receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/084Adjustable or slidable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging

Definitions

  • the present application relates to the technical field of micro-temperature imaging, and in particular to a three-dimensional displacement compensation method and control device for photothermal reflection micro-thermal imaging.
  • Photothermal reflection temperature measurement technology is a non-contact temperature measurement technology based on the phenomenon of photothermal reflection.
  • the basic feature of photothermal reflection phenomenon is that the reflectivity of the object will change with the temperature of the object, and the reflectivity will change with the temperature. It can usually be characterized by the light-thermal reflectance coefficient or the light-thermal reflectance calibration coefficient CTR .
  • a photothermal reflection microscopic imaging device is usually built based on a high-performance optical microscope. The illumination system of the optical microscope is used to provide the probe light, and the microscopic image is recorded by a high-performance camera, and the output camera reading is used as the measurement value.
  • the camera readings at the reference temperature and the camera readings at the temperature to be measured usually require multiple frames of images to take the average. This requires a stable correspondence between the data on each pixel of the camera and the spatial position of the measured surface during the entire measurement process. If the correspondence is disturbed, it will affect the accuracy of the temperature measurement results. There are several temperature changes during the test, and there are factors such as vibration and drift at the same time, which will cause the position of the tested part to shift relative to the initial position, including horizontal translation and vertical defocus. Due to the low value of CTR , small displacements may also cause obvious errors in the final temperature data in the part where the gray level of the image changes steeply.
  • the existing published sub-pixel image registration algorithm and auto-focus algorithm can be applied to photothermal reflection microthermography.
  • the image registration algorithm is used to compensate horizontal translation
  • the auto-focus algorithm can solve the problem of vertical displacement, that is, defocusing.
  • the sub-pixel image registration needs to be performed after the focus is completed, so it needs to focus first and then register, the work efficiency is low, and it is not conducive to the realization of continuous real-time focus and translation compensation.
  • the embodiment of the present application provides a three-dimensional displacement compensation method and control device for photothermal reflection microthermography to solve the problem of compensating the offset in the horizontal direction and vertical direction of photothermal reflection microthermography in the prior art
  • the work efficiency is not high, which is not conducive to the realization of continuous real-time focus and translation compensation.
  • the present application provides a three-dimensional displacement compensation method for photothermal reflection microthermography, including:
  • the first Fourier transform of the reference image is calculated according to the reference image
  • the second Fourier transform of the collected image is calculated according to the collected image
  • the reference image is the photothermal reflection microscope
  • the reference position is a position where the tested part is in a focus position and has no horizontal displacement
  • the first Fourier transform and the second Fourier transform determine the peak point coordinates and fitting diameter of the point spread function of the optical subsystem in the photothermal reflection microthermography device
  • the three-dimensional displacement is used to perform three-dimensional displacement compensation on the measured object.
  • the present application provides a control device, including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • a control device including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the computer program, the above Steps in the method described in the first aspect or any possible implementation manner of the first aspect.
  • the present application provides a photothermal reflection microthermography system, including the control device described in the second aspect above, a photothermal reflection microthermography device, and a displacement stage;
  • the control device is electrically connected to the photothermal reflection microthermography device and the displacement stage respectively;
  • the photothermal reflection microthermography device is used to collect images when the tested part is located at a position to be compensated, and collect a reference image when the tested part is located at a reference position;
  • the displacement platform is used to place the measured object, and move the measured object according to the three-dimensional displacement, so as to perform three-dimensional displacement compensation on the measured object.
  • the photothermal reflection microthermography system further includes: a temperature control platform; the photothermal reflection microthermography device includes an optical platform and an optical subsystem;
  • the temperature control platform is located on the displacement platform, and the temperature control platform is electrically connected to the control device; the optical subsystem and the displacement platform are respectively located on the optical platform;
  • the temperature control table is used to place the tested part; the optical subsystem is used to collect the collected image when the tested part is at the position to be compensated, and collect the reference image when the tested part is at the reference position ;
  • the optical platform is used to provide support for the optical subsystem and the displacement stage.
  • the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, any one of the above first aspect or the first aspect is implemented. Possible implementations of the steps of the method.
  • the three-dimensional displacement compensation method and control device for photothermal reflection microscopic thermal imaging realized by this application realize the three-dimensional compensation in photothermal reflection microscopic imaging through the following steps:
  • the first Fourier transform and the second Fourier transform determine the peak point coordinates and fitting diameter of the point spread function of the optical subsystem in the photothermal reflection microthermography device
  • the three-dimensional displacement of the measured part relative to the reference position is calculated at the same time when the measured part is located at the position to be compensated, and the measured part is carried out Three-dimensional displacement compensation.
  • the obtained three-dimensional displacement includes horizontal displacement and vertical displacement. That is to say, the three-dimensional displacement compensation method provided by the embodiment of the present application can calculate the horizontal displacement and the vertical displacement of the measured object at the same time, and compensate the displacements of these two aspects at the same time. Therefore, the problem of low work efficiency in the prior art method of first focusing on compensating for vertical displacement and then registering and compensating for horizontal displacement can be avoided.
  • the three-dimensional compensation method and control device provided in the present application can effectively reduce the time-consuming displacement compensation process, and because the three-dimensional displacement of the collected images can be calculated, it is beneficial to realize continuous real-time focus and translation compensation.
  • FIG. 1 is an application scene diagram of a three-dimensional displacement compensation method for photothermal reflection microthermography provided by an embodiment of the present application
  • Fig. 2 is an implementation flow chart of a three-dimensional displacement compensation method for photothermal reflection microthermography provided by an embodiment of the present application;
  • Fig. 3 is a schematic structural diagram of a three-dimensional displacement compensation device for photothermal reflection microthermography provided by an embodiment of the present application;
  • Fig. 4 is a schematic diagram of a control device provided by an embodiment of the present application.
  • the change of reflectivity with temperature can be considered to be linear, so it can be characterized by a coefficient of change.
  • rate of change coefficient is usually called the Thermoreflectance Coefficiency or the Thermoreflectance Calibration Coefficiency, which is represented by C TR , and the definition formula is:
  • R is the reference reflectance
  • ⁇ R is the reflectivity change
  • ⁇ T is the temperature change
  • C TR usually ranges from (10 -2 to 10 -5 ) K -1 , and is related to the material, incident light wavelength, and incident angle. If the surface of the tested object has a multi-layer structure, the material composition of each layer and the interference of light between the multi-layer materials will also directly affect the value of CTR.
  • a common practice is to select an appropriate measurement wavelength and measure C TR for each sample under test (the difference between different samples under test generally lies in the type or model). This process is usually called CTR calibration ( CTR calibration). After the C TR calibration is completed, the calibrated C TR can be used for temperature measurement.
  • the temperature can be calculated according to the following formula by measuring the change of the reflectivity of the tested object:
  • T x is the temperature to be measured
  • T 0 is the reference temperature
  • R x is the reflectance at the temperature to be measured
  • R 0 is the reflectance at the reference temperature
  • a beam of probe light (incident light) can be projected to the surface of the tested object, and then the rate of change of the reflected light intensity can be measured.
  • the change rate of the reflectivity of the measured object can be obtained through the change rate of the reflected light intensity, thereby realizing temperature measurement.
  • This is also the current mainstream implementation of photothermal reflection temperature measurement technology. Assuming that the detection light intensity is constant, the rate of change of reflectivity in the formula for calculating temperature can be equivalent to the rate of change of detector readings, that is, the formula for calculating temperature changes to:
  • c x is the detector reading at the temperature to be measured
  • c 0 is the detector reading at the reference temperature
  • a photothermal reflection microthermal imaging device is usually built based on a high-performance optical microscope.
  • the illumination optical path system of the optical microscope is used to provide probe light
  • a high-performance camera is used to record the microscopic imaging
  • the output camera reading is taken as the measured value c.
  • the existing public sub-pixel image registration algorithm and auto-focus algorithm can be used for photothermal reflection microthermography, in which the image registration algorithm is used to compensate for horizontal translation, and the auto-focus algorithm can solve vertical displacement, that is, defocus question.
  • sub-pixel image registration needs to be performed after the focus is completed. Therefore, it is necessary to focus first and then register. The work efficiency is low, and it is not conducive to the realization of continuous real-time focus and translation compensation.
  • Figure 1 shows the three-dimensional displacement compensation method for photothermal reflection microthermography provided by the embodiment of this application application scenario diagram. This method can be applied to but not limited to this application scenario.
  • the three-dimensional displacement compensation method for photothermal reflection microthermography is combined with a photothermal reflection microthermography device to form a photothermal reflection microthermography system.
  • the photothermal reflection microthermography system includes a photothermal reflection microthermography device, a displacement stage 30 and the like.
  • the photothermal reflection microthermography device includes a control device 10 , an optical platform 21 , an optical subsystem 22 and the like.
  • the photothermal reflection microthermography device is used to collect the collected image when the tested part is located at the position to be compensated, and to collect the reference image when the tested part is located at the reference position.
  • Both the photothermal reflection microthermography device and the displacement stage 30 are electrically connected to the control device 10 .
  • the control device 10 obtains the collected image and the reference image collected by the photothermal reflection microthermography device, and executes the processing process of the three-dimensional displacement compensation method for photothermal reflection microthermography provided by the embodiment of the present application to obtain the measured object
  • the displacement stage 30 is used to place the measured object, and move the measured object according to the three-dimensional displacement obtained by the control device 10, so as to perform three-dimensional displacement compensation on the measured object.
  • the translation stage 30 and the optical subsystem 22 can be respectively located on the optical platform 21 , and the optical platform 21 is used to provide support for the optical subsystem 22 and the translation platform 30 .
  • the displacement stage 30 can be a 3-axis nanometer displacement stage, so as to compensate the displacement of the measured object caused by factors such as temperature changes during the temperature test, such as horizontal translation and vertical defocus.
  • the photothermal reflection microthermography system may also include a temperature control platform 40 .
  • the temperature control platform 40 is located on the displacement platform 30 , and the temperature control platform 40 may also be electrically connected with the control device 10 .
  • the temperature control table 40 is used to place the tested part, so as to control the temperature environment of the tested part.
  • the temperature control platform 40 may be a program-controlled heating and cooling platform.
  • the control device is a device that performs processing according to the following three-dimensional displacement compensation method for photothermal reflection microthermography, it can calculate in real time where the measured object is located.
  • the three-dimensional displacement relative to the reference position is used to compensate the three-dimensional displacement of the measured part.
  • Three-dimensional displacement includes horizontal displacement and vertical displacement. That is to say, the imaging system provided by the embodiment of the present application can simultaneously calculate the horizontal displacement and the vertical displacement of the object under test, and simultaneously compensate the displacements of the two aspects.
  • the method of first focusing on compensating for vertical displacement and then registering and compensating for horizontal displacement the imaging system provided by the embodiment of the present application can effectively reduce the time consumption of the displacement compensation process, and because it can calculate the three-dimensional displacement of the captured image, it is beneficial to realize continuous real-time follow-focus and translation compensation.
  • FIG. 2 shows a flow chart of the implementation of the three-dimensional displacement compensation method for photothermal reflection microthermography provided by the embodiment of the present application, which is described in detail as follows:
  • step 201 an image collected by a photothermal reflectance microthermography device when the object under test is located at a position to be compensated is acquired.
  • step 202 a first Fourier transform of the reference image is calculated according to the reference image, and a second Fourier transform of the captured image is calculated according to the captured image.
  • the reference image is the image collected by the photothermal reflectance microthermography device when the tested part is at the reference position; the reference position is the position where the tested part is in the focus position and has no horizontal displacement.
  • calculating the first Fourier transform of the reference image according to the reference image, and calculating the second Fourier transform of the acquired image according to the acquired image may include:
  • step 203 according to the first Fourier transform and the second Fourier transform, determine the peak point coordinates and fitting diameter of the point spread function of the optical subsystem in the photothermal reflection microthermography device .
  • determining the peak point coordinates and the Airy disk diameter of the point spread function of the optical subsystem in the photothermal reflection microthermography device may include:
  • the point spread function of the optical subsystem in the photothermal reflection microthermography device is calculated; according to the point spread function, the peak point coordinates and fitting of the point spread function are determined diameter.
  • the point spread function of the optical subsystem in the photothermal reflection microthermography device is calculated, which may include:
  • the point spread function of the optical subsystem in the photothermal reflection microthermography device is calculated.
  • p(x,y) is the point spread function of the optical subsystem in the photothermal reflection microthermography device
  • R(u,v) is the first Fourier transform
  • C(u,v) is the second Fourier transform
  • Lie transform is the inverse Fourier transform
  • determining the peak point coordinates and fitting diameter of the point spread function may include: solving the analytical formula of the preset fitting objective function, and determining the unknown parameters in the analytical formula of the preset fitting objective function ; Determine the peak point coordinates and fitting diameter of the point spread function according to the analytical formula of the preset fitting objective function after determining the unknown parameters.
  • the point spread function p(x, y) is an Airy disc or other approximate forms centered on its peak point coordinates (x p , y p ).
  • the analytical formula of the Airy disk intensity profile or its approximation (such as Gaussian type) is used as the analytical formula of the preset fitting objective function to determine the preset fitting The unknown parameters in the analytical formula of the objective function, and then determine the peak point coordinates and fitting diameter of the fitted point spread function p(x, y).
  • the intensity value corresponding to the diameter is different according to the definition method, such as the diameter when the peak value drops to half, the diameter when the peak value drops to 1/e, the diameter when the peak value drops to 0 for the first time, etc.
  • the definition method such as the diameter when the peak value drops to half, the diameter when the peak value drops to 1/e, the diameter when the peak value drops to 0 for the first time, etc.
  • step 204 the three-dimensional displacement of the position to be compensated relative to the reference position is calculated according to the coordinates of the peak point, the fitted diameter, and the imaging parameters of the optical subsystem in the photothermal reflection microthermography device.
  • the three-dimensional displacement is used for three-dimensional displacement compensation of the measured piece.
  • the imaging parameters of the optical subsystem in the photothermal reflection microthermography device include one or more of the following: camera pixel size parameters, magnification parameters, and objective lens aperture angle parameters.
  • calculating the three-dimensional displacement of the collected image according to the coordinates of the peak point, the fitting diameter, and the imaging parameters of the optical subsystem in the photothermal reflection microthermography device may include:
  • ⁇ x, ⁇ y and ⁇ z are the corresponding displacements in the x, y and z directions of the captured image respectively
  • (x p , y p ) is the peak point coordinates
  • a is the camera pixel size parameter
  • m is the magnification parameter
  • is one-half of the aperture angle parameter of the objective lens.
  • NA sin ⁇
  • d is the fitting diameter
  • the three-dimensional displacement compensation method for photothermal reflection microthermography may also include:
  • Proportional integral differential control is performed according to the three-dimensional displacement amount to obtain the three-dimensional displacement compensation amount of the position to be compensated relative to the reference position; according to the three-dimensional displacement compensation amount, the displacement stage is controlled to perform three-dimensional displacement compensation on the measured object.
  • the vertical direction of the 3-axis nano-displacement stage in the photothermal reflection microthermography system can be operated through the proportional integral differential control algorithm to perform closed-loop displacement compensation.
  • the first Fourier transform and the second Fourier transform determine the peak point coordinates and fitting diameter of the point spread function of the optical subsystem in the photothermal reflection microthermography device
  • the three-dimensional displacement relative to the reference position when the measured part is at the position to be compensated is calculated at the same time, so as to carry out the measurement of the measured part Three-dimensional displacement compensation.
  • the obtained three-dimensional displacement includes horizontal displacement and vertical displacement. That is to say, the three-dimensional displacement compensation method provided by the embodiment of the present application can calculate the horizontal displacement and the vertical displacement of the measured object at the same time, and compensate the displacements of these two aspects at the same time. Therefore, the problem of low work efficiency in the prior art method of first focusing on compensating for vertical displacement and then registering and compensating for horizontal displacement can be avoided.
  • the three-dimensional compensation method provided by the embodiment of the present application can effectively reduce the time consumption of the displacement compensation process, and since the three-dimensional displacement of the captured image can be calculated, it is beneficial to realize continuous real-time focus and translation compensation.
  • Figure 3 shows a schematic structural diagram of a three-dimensional displacement compensation device for photothermal reflection microthermography provided by the embodiment of the present application.
  • Figure 3 shows a schematic structural diagram of a three-dimensional displacement compensation device for photothermal reflection microthermography provided by the embodiment of the present application.
  • the details are as follows:
  • the three-dimensional displacement compensation device 3 for photothermal reflection microthermography includes: an acquisition module 31 , a first calculation module 32 , a second calculation module 33 and a third calculation module 34 .
  • An acquisition module 31, configured to acquire the acquired image collected by the photothermal reflection microthermography device when the measured piece is located at the position to be compensated;
  • the first calculation module 32 is configured to calculate the first Fourier transform of the reference image according to the reference image, and calculate the second Fourier transform of the acquired image according to the acquired image; wherein, the reference image An image collected by the photothermal reflection microthermography device when the tested part is at a reference position; the reference position is a position where the tested part is in focus and has no horizontal displacement;
  • the second calculation module 33 is used to determine the peak point coordinates of the point spread function of the optical subsystem in the photothermal reflection microthermography device according to the first Fourier transform and the second Fourier transform and fitted diameter;
  • the third calculation module 34 is used to calculate the position to be compensated relative to the reference according to the coordinates of the peak point, the fitting diameter, and the imaging parameters of the optical subsystem in the photothermal reflection microthermography device.
  • the three-dimensional displacement of the position; the three-dimensional displacement is used to perform three-dimensional displacement compensation on the measured object.
  • the three-dimensional displacement compensation device 3 provided by the embodiment of the present application can also reduce the time spent on displacement compensation in photothermal reflection microthermography because it can realize the three-dimensional displacement compensation method provided by the above embodiment, and It is beneficial to realize continuous real-time follow-focus and translation compensation.
  • the second calculation module 33 can be used to calculate, according to the first Fourier transform and the second Fourier transform, the The point spread function of the optical subsystem;
  • the peak point coordinates and fitting diameter of the point spread function are determined.
  • the second computing module 33 can be used to or Calculate and obtain the point spread function of the optical subsystem in the photothermal reflection microthermography device;
  • p(x, y) is the point spread function of the optical subsystem in the photothermal reflection microthermography device
  • R(u, v) is the first Fourier transform
  • C(u, v) is the second Fourier transform
  • inverse Fourier transform is the inverse Fourier transform
  • the peak point coordinates and the fitting diameter of the point spread function are determined.
  • the imaging parameters of the optical subsystem in the photothermal reflection microthermography device include one or more of the following: camera pixel size parameters, magnification parameters, and objective lens aperture angle parameters.
  • the third computing module 34 can be used to calculating the three-dimensional displacement of the collected image
  • ⁇ x, ⁇ y, and ⁇ z are displacements corresponding to the three directions of the acquired image x, y, and z respectively
  • (x p , y p ) are the coordinates of the peak point
  • a is the pixel size parameter of the camera
  • m is the magnification parameter
  • is one-half of the aperture angle parameter of the objective lens
  • d is the fitting diameter
  • s is a defocus direction parameter for displaying the collected image.
  • Fig. 4 is a schematic diagram of a control device provided by an embodiment of the present application.
  • the control device 4 of this embodiment includes: a processor 40 , a memory 41 and a computer program 42 stored in the memory 41 and operable on the processor 40 .
  • the processor 40 executes the computer program 42, it implements the steps in the above-mentioned embodiments of the three-dimensional displacement compensation method for photothermal reflection microthermography, such as steps 201 to 204 shown in FIG. 2 .
  • the processor 40 executes the computer program 42, it realizes the functions of the modules/units in the above-mentioned device embodiments, such as the functions of the modules 31 to 34 shown in FIG. 3 .
  • the computer program 42 can be divided into one or more modules/units, and the one or more modules/units are stored in the memory 41 and executed by the processor 40 to complete this application.
  • the one or more modules/units may be a series of computer program instruction segments capable of accomplishing specific functions, and the instruction segments are used to describe the execution process of the computer program 42 in the control device 4 .
  • the computer program 42 can be divided into the modules 31 to 34 shown in FIG. 3 .
  • the control device 4 may be a computing device such as a desktop computer, a notebook, a palmtop computer, or a cloud server.
  • the control device 4 may include, but not limited to, a processor 40 and a memory 41 .
  • FIG. 4 is only an example of the control device 4 and does not constitute a limitation to the control device 4. It may include more or less components than shown in the figure, or combine some components, or different components. , for example, the control device may also include input and output devices, network access devices, buses, and the like.
  • the so-called processor 40 can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory 41 may be an internal storage unit of the control device 4 , such as a hard disk or memory of the control device 4 .
  • the memory 41 can also be an external storage device of the control device 4, such as a plug-in hard disk equipped on the control device 4, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, flash card (Flash Card), etc.
  • the memory 41 may also include both an internal storage unit of the control device 4 and an external storage device.
  • the memory 41 is used to store the computer program and other programs and data required by the control device.
  • the memory 41 can also be used to temporarily store data that has been output or will be output.
  • the embodiment of the present application also provides a photothermal reflection microthermography system. Referring to FIG. .
  • the control device 10 is electrically connected to the photothermal reflection microthermography device and the displacement stage 30 respectively.
  • the photothermal reflectance microthermography device is used to collect the collected images when the tested part is located at the position to be compensated, and collect the reference image when the tested part is located at the reference position.
  • the displacement stage 30 is used to place the measured object, and move the measured object according to the three-dimensional displacement, so as to perform three-dimensional displacement compensation on the measured object.
  • the photothermal reflection microthermography system may further include: a temperature control table 40 ; the photothermal reflection microthermography device includes an optical platform 21 and an optical subsystem 22 .
  • the temperature control platform 40 is located on the translation platform 30 , and the temperature control platform 40 is electrically connected to the control device 10 ; the optical subsystem 22 and the translation platform 30 are respectively located on the optical platform 21 .
  • the temperature control table 40 is used to place the tested piece; the optical subsystem 22 is used to collect the collected image when the tested piece is located at the position to be compensated, and to collect the reference image when the tested piece is located at the reference position; the optical platform 21 is used for optical Subsystem 22 and stage 30 provide support.
  • the control device 10 of the photothermal reflection microthermography system provided in the embodiment of the present application can implement the three-dimensional compensation method provided in the above embodiment. Therefore, the imaging system can also reduce the time spent on displacement compensation in photothermal reflection microthermography, and is conducive to realizing continuous real-time follow-focus and translation compensation.
  • the disclosed device/control device and method may be implemented in other ways.
  • the device/control device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated module/unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, all or part of the processes in the methods of the above embodiments in the present application can also be completed by instructing related hardware through computer programs.
  • the computer programs can be stored in a computer-readable storage medium, and the computer When the program is executed by the processor, the steps of the above embodiments of the three-dimensional displacement compensation method for photothermal reflection microthermography can be realized.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, and a read-only memory (Read-Only Memory, ROM) , random access memory (Random Access Memory, RAM), electric carrier signal, telecommunication signal and software distribution medium, etc. It should be noted that the content contained in the computer-readable medium may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction. For example, in some jurisdictions, computer-readable media Excluding electrical carrier signals and telecommunication signals.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Radiation Pyrometers (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种用于光热反射显微热成像的三维位移补偿方法及控制装置,方法包括:获取被测件位于待补偿位置时的采集图像(201),及被测件位于参考位置时的参考图像;根据参考图像计算得到第一傅里叶变换,根据采集图像计算得到第二傅里叶变换(202);根据第一傅里叶变换和第二傅里叶变换,确定光热反射显微热成像装置中光学子***的点扩散函数的峰值点坐标和拟合直径(203);根据峰值点坐标、拟合直径和光热反射显微热成像装置中光学子***的成像参数,计算被测件位于待补偿位置时相对于参考位置的三维位移量(204),以对被测件进行三维位移补偿。能够同时计算被测件的水平位移和竖直位移,并同时进行位移补偿,进而提高位移补偿的工作效率。

Description

用于光热反射显微热成像的三维位移补偿方法及控制装置
本专利申请要求于2021年07月14日提交的中国专利申请No.CN 202110803448.7的优先权。在先申请的公开内容通过整体引用并入本申请。
技术领域
本申请涉及显微温度成像技术领域,尤其涉及一种用于光热反射显微热成像的三维位移补偿方法及控制装置。
背景技术
光热反射测温技术是一种非接触测温技术,其基础是光热反射现象,光热反射现象基本的特征是物体的反射率会随物体的温度变化而变化,反射率随温度的变化通常可以用光热反射系数或光热反射校准系数C TR来表征。基于光热反射进行测温时,为了实现高空间分辨力的显微热成像,通常基于高性能的光学显微镜来组建光热反射显微成像装置。利用光学显微镜的照明***提供探测光,使用高性能相机记录显微成像,输出的相机读数作为测量值。
但是测温过程中,为了保证测量精度,参考温度下的相机读数和待测温度下的相机读数通常需要多帧图像取均值。这就要求整个测量过程中,相机各像素上的数据与被测表面空间位置要有稳定的对应关系,若对应关系受到干扰则会影响温度测量结果的准确性。测试过程中有若干次温度变化,同时存在振动、漂移等因素的影响,会使被测件相对初始位置发生位置偏移,包括水平方向的平移和竖直方向的离焦。由于C TR量值低,在图像灰度变化陡峭的部分,微小位移也可能导致最终温度数据产生明显的误差。
现有公开的亚像素图像配准算法和自动对焦算法可以应用于光热反射显微热成像中。其中图像配准算法用于补偿水平方向平移,自动对焦算法可以解决竖直方向位移亦即离焦问题。为保证良好的应用效果,亚像素图像配准需要在对焦完成后再进行,故需要先对焦再配准,工作效率较低,且不利于实现连续的实时跟焦和平移补偿。
技术问题
本申请实施例提供了一种用于光热反射显微热成像的三维位移补偿方法及控制装置,以解决现有技术在补偿光热反射显微热成像的水平方向的偏移和竖直方向的离焦时,工作效率不高,不利于实现连续的实时跟焦和平移补偿的问题。
技术解决方案
第一方面,本申请提供了一种用于光热反射显微热成像的三维位移补偿方法,包括:
获取光热反射显微热成像装置采集的被测件位于待补偿位置时的采集图像;
根据参考图像计算得到所述参考图像的第一傅里叶变换,根据所述采集图像计算得到所述采集图像的第二傅里叶变换;其中,所述参考图像为所述光热反射显微热成像装置采集的所述被测件位于参考位置时的图像;所述参考位置为所述被测件位于对焦位置且未发生水平位移的位置;
根据所述第一傅里叶变换和所述第二傅里叶变换,确定所述光热反射显微热成像装置中光学子***的点扩散函数的峰值点坐标和拟合直径;
根据所述峰值点坐标、所述拟合直径和所述光热反射显微热成像装置中光学子***的成像参数,计算所述待补偿位置相对于所述参考位置的三维位移量;所述三维位移量用于对所述被测件进行三维位移补偿。
第二方面,本申请提供了一种控制装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上第一方面或第一方面的任一种可能的实现方式所述方法的步骤。
第三方面,本申请提供了一种光热反射显微热成像***,包括如上第二方面所述的控制装置、光热反射显微热成像装置和位移台;
所述控制装置分别与所述光热反射显微热成像装置和所述位移台电连接;
所述光热反射显微热成像装置用于采集被测件位于待补偿位置时的采集图像,以及采集所述被测件位于参考位置时的参考图像;
所述位移台用于放置被测件,并根据三维位移量移动所述被测件,以对所述被测件进行三维位移补偿。
在一种可能的实现方式中,所述的光热反射显微热成像***,还包括:控温台;所述光热反射显微热成像装置包括光学平台和光学子***;
所述控温台位于所述位移台上,且所述控温台与所述控制装置电连接;所述光学子***和所述位移台分别位于所述光学平台上;
所述控温台用于放置所述被测件;所述光学子***用于采集所述被测件位于待补偿位置时的采集图像,以及采集所述被测件位于参考位置时的参考图像;所述光学平台用于为所述光学子***和所述位移台提供支撑。
第四方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质存储有 计算机程序,所述计算机程序被处理器执行时实现如上第一方面或第一方面的任一种可能的实现方式所述方法的步骤。
有益效果
相比于现有技术,本申请提供的用于光热反射显微热成像的三维位移补偿方法及控制装置通过以下步骤实现光热反射显微成像中的三维补偿:
通过获取光热反射显微热成像装置采集的被测件位于待补偿位置时的采集图像,及采集的被测件位于参考位置时的参考图像;
根据参考图像计算得到参考图像的第一傅里叶变换,根据采集图像计算得到采集图像的第二傅里叶变换;
根据第一傅里叶变换和第二傅里叶变换,确定光热反射显微热成像装置中光学子***的点扩散函数的峰值点坐标和拟合直径;
根据峰值点坐标、拟合直径和光热反射显微热成像装置中光学子***的成像参数,同时计算被测件位于待补偿位置时相对于参考位置的三维位移量,并对被测件进行三维位移补偿。
上述三维位移补偿方法中,得到的三维位移量包括水平位移和竖直位移。也就是说本申请实施例提供的三维位移补偿方法,可以同时计算被测件的水平位移和竖直位移,并同时对这两方面的位移进行补偿。从而可以避免现有技术中,先对焦补偿竖直方向位移再配准补偿水平方向位移这一方法具有的工作效率低的问题。本申请提供的三维补偿方法和控制装置能够有效减少位移补偿过程的耗时,且由于可以计算采集图像的三维位移量,有利于实现连续的实时跟焦和平移补偿。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的用于光热反射显微热成像的三维位移补偿方法的应用场景图;
图2是本申请实施例提供的用于光热反射显微热成像的三维位移补偿方法的实现流程图;
图3是本申请实施例提供的用于光热反射显微热成像的三维位移补偿装置的结构示意 图;
图4是本申请实施例提供的控制装置的示意图。
本申请的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定***结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的***、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图通过具体实施例来进行说明。
在已有的报道中,反射率随温度的变化可以认为是线性的,因此可以用一个变化率系数来表征。文献中通常将上述变化率系数称为光热反射系数(Thermoreflectance Coefficience)或光热反射校准系数(Thermoreflectance Calibration Coefficience),用C TR来表示,定义式为:
Figure PCTCN2022081398-appb-000001
式中,R为参考反射率,ΔR为反射率变化量,ΔT为温度变化量。
对于多数金属和半导体材料,C TR的范围通常在(10 -2~10 -5)K -1,并且与材料、入射光波长、入射角相关。若被测件表面有多层结构,则每层的材料构成以及光在多层材料之间的干涉也会直接影响C TR的量值。通常的做法是针对每个被测件样品(不同被测件样品的区别一般在于类型或型号上),选择合适的测量波长,并测定C TR。这一过程通常称为C TR校准(C TR calibration)。C TR校准完成后即可使用已校准的C TR进行温度测量。
在C TR已知的情况下,可以通过测量被测件反射率的变化,根据下式计算温度:
Figure PCTCN2022081398-appb-000002
式中,T x为待测温度,T 0为参考温度,R x为待测温度下的反射率,R 0为参考温度下的反射率。
由于实际上关心的是反射率的变化率
Figure PCTCN2022081398-appb-000003
因而可以向被测件表面投射一束探测光(入射光),然后测量反射光强度的变化率。通过反射光强度的变化率即可得到被测件反射率的变化率,从而实现温度测量。这也是目前光热反射测温技术主流的实现方式。假设探测光强度不变,计算温度的公式中的反射率变化率可以等效于探测器读数的变化率,即计算温度的公式变化成:
Figure PCTCN2022081398-appb-000004
式中,c x为待测温度下的探测器读数,c 0为参考温度下的探测器读数。
为了实现高空间分辨力的显微热成像,通常基于高性能的光学显微镜来组建光热反射显微热成像装置。利用光学显微镜的照明光路***提供探测光,使用高性能相机记录显微成像,输出的相机读数作为测量值c。
由于C TR量值低,为了保证测量精度,在获取c 0和c x时通常需要多帧图像取均值,测量总帧数记为N,则有:
Figure PCTCN2022081398-appb-000005
从上述原理可知,整个测量过程中相机各像素上的数据与被测件表面空间位置要有稳定的对应关系,若对应关系受到干扰则会影响温度测量结果的准确性。测量过程中有若干次温度变化,同时存在振动、漂移等因素的影响,会使被测件相对初始位置发生位置偏移,包括水平方向的平移和竖直方向的离焦。由于C TR量值低,在图像灰度变化陡峭的部分,微小位移也可能导致最终温度数据产生明显的误差。
现有公开的亚像素图像配准算法和自动对焦算法可以用于光热反射显微热成像,其中图像配准算法用于补偿水平方向平移,自动对焦算法可以解决竖直方向位移亦即离焦问题。为保证良好的应用效果,亚像素图像配准需要在对焦完成后再进行,故需要先对焦再配准, 工作效率较低,且不利于实现连续的实时跟焦和平移补偿。
为了解决上述问题,本申请实施例提出一种用于光热反射显微热成像的三维位移补偿方法,图1为本申请实施例提供的用于光热反射显微热成像的三维位移补偿方法的应用场景图。该方法可以应用于但不限于该应用场景。
应用本申请实施例提供的用于光热反射显微热成像的三维位移补偿方法,结合光热反射显微热成像装置构成光热反射显微热成像***。如图1所示,光热反射显微热成像***包括光热反射显微热成像装置和位移台30等。光热反射显微热成像装置包括控制装置10、光学平台21和光学子***22等。
其中,利用光热反射显微热成像装置采集被测件位于待补偿位置时的采集图像,以及采集被测件位于参考位置时的参考图像。光热反射显微热成像装置和位移台30均与控制装置10电连接。控制装置10获取光热反射显微热成像装置采集的采集图像和参考图像,执行本申请实施例提供的用于光热反射显微热成像的三维位移补偿方法的处理过程后,得到被测件的三维位移量。位移台30用于放置被测件,并根据控制装置10得到的三维位移量移动被测件,以对被测件进行三维位移补偿。
其中,位移台30和光学子***22可以分别位于光学平台21上,光学平台21用于为光学子***22和位移台30提供支撑。
可选的,位移台30可以为3轴纳米位移台,以便于补偿温度测试过程中温度变化等因素引起的被测件的位移,如水平方向的平移和竖直方向的离焦。
可选的,光热反射显微热成像***还可以包括控温台40。控温台40位于位移台30上,且控温台40也可以与控制装置10电连接。控温台40用于放置被测件,以便于控制被测件的温度环境。示例性的,控温台40可以为程控冷热台。
本申请实施例提供的光热反射显微热成像***,由于控制装置为按照下述用于光热反射显微热成像的三维位移补偿方法进行处理的装置,因而可以实时计算被测件位于待补偿位置时相对于参考位置的三维位移量,以对被测件进行三维位移补偿。三维位移量包括水平位移和竖直位移。也就是说本申请实施例提供的成像***可以同时计算被测件的水平位移和竖直位移,并同时对这两方面的位移进行补偿。进而避免现有技术中,先对焦补偿竖直方向位移再配准补偿水平方向位移这一方法具有的工作效率低的问题。本申请实施例提供的成像***能够有效减少位移补偿过程的耗时,且由于可以计算采集图像的三维位移量,有利于实现连续的实时跟焦和平移补偿。
参见图2,其示出了本申请实施例提供的用于光热反射显微热成像的三维位移补偿方法的实现流程图,详述如下:
在步骤201中,获取光热反射显微热成像装置采集的被测件位于待补偿位置时的采集图像。
在步骤202中,根据参考图像计算得到参考图像的第一傅里叶变换,根据采集图像计算得到采集图像的第二傅里叶变换。
其中,参考图像为光热反射显微热成像装置采集的被测件位于参考位置时的图像;参考位置为被测件位于对焦位置且未发生水平位移的位置。
其中,可以首先对被测件进行一次人工对焦或自动对焦,并调整被测件至合适的参考位置,进而利用光热反射显微热成像装置采集此时对应的参考图像。后续测量过程中需要进行位移补偿时,均以此参考图像为基准对采集图像进行处理。
可选的,根据参考图像计算得到参考图像的第一傅里叶变换,根据采集图像计算得到采集图像的第二傅里叶变换,可以包括:
根据
Figure PCTCN2022081398-appb-000006
计算得到参考图像的第一傅里叶变换R(u,v),根据
Figure PCTCN2022081398-appb-000007
计算得到采集图像的第二傅里叶变换C(u,v)。其中,
Figure PCTCN2022081398-appb-000008
为傅里叶变换。
继续参考图2,在步骤203中,根据第一傅里叶变换和第二傅里叶变换,确定光热反射显微热成像装置中光学子***的点扩散函数的峰值点坐标和拟合直径。
可选的,根据第一傅里叶变换和第二傅里叶变换,确定光热反射显微热成像装置中光学子***的点扩散函数的峰值点坐标和艾里斑直径,可以包括:
根据第一傅里叶变换和第二傅里叶变换,计算得到光热反射显微热成像装置中光学子***的点扩散函数;根据点扩散函数,确定点扩散函数的峰值点坐标和拟合直径。
其中,根据第一傅里叶变换和第二傅里叶变换,计算得到光热反射显微热成像装置中光学子***的点扩散函数,可以包括:
根据
Figure PCTCN2022081398-appb-000009
Figure PCTCN2022081398-appb-000010
计算得到光热反射显微热成像装置中光学子***的点扩散函数。
其中,p(x,y)为光热反射显微热成像装置中光学子***的点扩散函数,R(u,v)为第一傅里叶变换,C(u,v)为第二傅里叶变换,
Figure PCTCN2022081398-appb-000011
为傅里叶反变换。
其中,根据点扩散函数,确定点扩散函数的峰值点坐标和拟合直径,可以包括:对预设拟合目标函数的解析式进行求解,确定预设拟合目标函数的解析式中的未知参数;根据 确定未知参数后的预设拟合目标函数的解析式,确定点扩散函数的峰值点坐标和拟合直径。
其中,点扩散函数p(x,y)是以其峰值点坐标(x p,y p)为中心的艾里斑或其他近似形式。根据点扩散函数p(x,y)上的离散点,按照艾里斑强度轮廓或其近似(如高斯型)的解析式作为预设拟合目标函数的解析式进行求解,确定预设拟合目标函数的解析式中的未知参数,进而确定拟合后的点扩散函数p(x,y)的峰值点坐标和拟合直径。
其中,直径对应的强度值根据定义方式不同而不同,如峰值降至一半时的直径、峰值降至1/e时的直径、峰值首次降至0时的直径等,在进行后续三维位移量的计算时均有明确的换算关系,不对三维位移量的计算结果构成实质影响。
继续参考图2,在步骤204中,根据峰值点坐标、拟合直径和光热反射显微热成像装置中光学子***的成像参数,计算待补偿位置相对于参考位置的三维位移量。
其中,三维位移量用于对被测件进行三维位移补偿。
可选的,光热反射显微热成像装置中光学子***的成像参数包括下述一项或多项:相机像元尺寸参数、放大倍率参数和物镜孔径角参数。
可选的,根据峰值点坐标、拟合直径和光热反射显微热成像装置中光学子***的成像参数,计算采集图像的三维位移量,可以包括:
根据
Figure PCTCN2022081398-appb-000012
计算采集图像的三维位移量。
其中,Δx、Δy和Δz分别为采集图像x、y和z三个方向对应的位移量,(x p,y p)为峰值点坐标,a为相机像元尺寸参数,m为放大倍率参数,θ为物镜孔径角参数的二分之一,空气中有数值孔径N.A.=sinθ,d为拟合直径,s=±1为显示采集图像的离焦方向参数,具体取值根据离焦方向和z轴方向定义确定。
可选的,用于光热反射显微热成像的三维位移补偿方法,还可以包括:
根据三维位移量进行比例积分微分控制,获得待补偿位置相对于参考位置的三维位移补偿量;根据三维位移补偿量控制位移台对被测件进行三维位移补偿。
获得三维位移量后,可以通过比例积分微分控制算法,操作光热反射显微热成像***中3轴纳米位移台的竖直方向,以进行闭环的位移补偿。
本申请实施例提供的三维位移补偿方法,通过以下方法实现了光热反射显微成像中的三维位移补偿:
获取光热反射显微热成像装置采集的被测件位于待补偿位置时的采集图像,及采集的被测件位于参考位置时的参考图像;
根据参考图像计算得到参考图像的第一傅里叶变换,根据采集图像计算得到采集图像的第二傅里叶变换;
根据第一傅里叶变换和第二傅里叶变换,确定光热反射显微热成像装置中光学子***的点扩散函数的峰值点坐标和拟合直径;
根据峰值点坐标、拟合直径和光热反射显微热成像装置中光学子***的成像参数,同时计算被测件位于待补偿位置时相对于参考位置的三维位移量,以对被测件进行三维位移补偿。
上述三维位移补偿方法中,得到的三维位移量包括水平位移和竖直位移。也就是说本申请实施例提供的三维位移补偿方法,可以同时计算被测件的水平位移和竖直位移,并同时对这两方面的位移进行补偿。从而可以避免现有技术中,先对焦补偿竖直方向位移再配准补偿水平方向位移这一方法具有的工作效率低的问题。本申请实施例提供的三维补偿方法能够有效减少位移补偿过程的耗时,且由于可以计算采集图像的三维位移量,有利于实现连续的实时跟焦和平移补偿。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以下为本申请的装置实施例,对于其中未详尽描述的细节,可以参考上述对应的方法实施例。
图3示出了本申请实施例提供的用于光热反射显微热成像的三维位移补偿装置的结构示意图,为了便于说明,仅示出了与本申请实施例相关的部分,详述如下:
如图3所示,用于光热反射显微热成像的三维位移补偿装置3包括:获取模块31、第一计算模块32、第二计算模块33和第三计算模块34。
获取模块31,用于获取光热反射显微热成像装置采集的被测件位于待补偿位置时的采集图像;
第一计算模块32,用于根据参考图像计算得到所述参考图像的第一傅里叶变换,根据所述采集图像计算得到所述采集图像的第二傅里叶变换;其中,所述参考图像为所述光热反射显微热成像装置采集的所述被测件位于参考位置时的图像;所述参考位置为所述被测件位于对焦位置且未发生水平位移的位置;
第二计算模块33,用于根据所述第一傅里叶变换和所述第二傅里叶变换,确定所述光热反射显微热成像装置中光学子***的点扩散函数的峰值点坐标和拟合直径;
第三计算模块34,用于根据所述峰值点坐标、所述拟合直径和所述光热反射显微热成像装置中光学子***的成像参数,计算所述待补偿位置相对于所述参考位置的三维位移量;所述三维位移量用于对所述被测件进行三维位移补偿。
相比现有技术,本申请实施例提供的三维位移补偿装置3,由于能够实现上述实施例提供的三维位移补偿方法,所以同样能够减少光热反射显微热成像中位移补偿耗费的时间,且有利于实现连续的实时跟焦和平移补偿。
在一种可能的实现方式中,第二计算模块33,可以用于根据所述第一傅里叶变换和所述第二傅里叶变换,计算得到所述光热反射显微热成像装置中光学子***的点扩散函数;
根据所述点扩散函数,确定所述点扩散函数的峰值点坐标和拟合直径。
在一种可能的实现方式中,第二计算模块33,可以用于根据
Figure PCTCN2022081398-appb-000013
Figure PCTCN2022081398-appb-000014
计算得到所述光热反射显微热成像装置中光学子***的点扩散函数;
其中,p(x,y)为所述光热反射显微热成像装置中光学子***的点扩散函数,R(u,v)为所述第一傅里叶变换,C(u,v)为所述第二傅里叶变换,
Figure PCTCN2022081398-appb-000015
为傅里叶反变换;
根据所述点扩散函数上的离散点,对预设拟合目标函数的解析式进行求解,确定所述预设拟合目标函数的解析式中的未知参数;
根据确定所述未知参数后的预设拟合目标函数的解析式,确定所述点扩散函数的峰值点坐标和拟合直径。
在一种可能的实现方式中,所述光热反射显微热成像装置中光学子***的成像参数包括下述一项或多项:相机像元尺寸参数、放大倍率参数和物镜孔径角参数。
在一种可能的实现方式中,第三计算模块34,可以用于根据
Figure PCTCN2022081398-appb-000016
计 算所述采集图像的三维位移量;
其中,Δx、Δy和Δz分别为所述采集图像x、y和z三个方向对应的位移量,(x p,y p)为所述峰值点坐标,a为所述相机像元尺寸参数,m为所述放大倍率参数,θ为所述物镜孔径角参数的二分之一,d为所述拟合直径,s为显示所述采集图像的离焦方向参数。
图4是本申请实施例提供的控制装置的示意图。如图4所示,该实施例的控制装置4包括:处理器40、存储器41以及存储在所述存储器41中并可在所述处理器40上运行的计算机程序42。所述处理器40执行所述计算机程序42时实现上述各个用于光热反射显微热成像的三维位移补偿方法实施例中的步骤,例如图2所示的步骤201至步骤204。或者,所述处理器40执行所述计算机程序42时实现上述各装置实施例中各模块/单元的功能,例如图3所示模块31至34的功能。
示例性的,所述计算机程序42可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器41中,并由所述处理器40执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序42在所述控制装置4中的执行过程。例如,所述计算机程序42可以被分割成图3所示的模块31至34。
所述控制装置4可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述控制装置4可包括,但不仅限于,处理器40、存储器41。本领域技术人员可以理解,图4仅仅是控制装置4的示例,并不构成对控制装置4的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述控制装置还可以包括输入输出设备、网络接入设备、总线等。
所称处理器40可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器41可以是所述控制装置4的内部存储单元,例如控制装置4的硬盘或内存。所述存储器41也可以是所述控制装置4的外部存储设备,例如所述控制装置4上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器41还可以既包括所述控制装置4的内部存储单元也包括外部存储设备。所述存储器41用于存储所述计算机程序以及所述控制 装置所需的其他程序和数据。所述存储器41还可以用于暂时地存储已经输出或者将要输出的数据。
本申请实施例还提供一种光热反射显微热成像***,参考图1,该***包括控制装置10、光学平台21和光学子***22构成的光热反射显微热成像装置和位移台30。
控制装置10分别与光热反射显微热成像装置和位移台30电连接。
光热反射显微热成像装置用于采集被测件位于待补偿位置时的采集图像,以及采集被测件位于参考位置时的参考图像。
位移台30用于放置被测件,并根据三维位移量移动被测件,以对被测件进行三维位移补偿。
可选的,光热反射显微热成像***,还可以包括:控温台40;光热反射显微热成像装置包括光学平台21和光学子***22。
控温台40位于位移台30上,且控温台40与控制装置10电连接;光学子***22和位移台30分别位于光学平台21上。
控温台40用于放置被测件;光学子***22用于采集被测件位于待补偿位置时的采集图像,以及采集被测件位于参考位置时的参考图像;光学平台21用于为光学子***22和位移台30提供支撑。
本申请实施例提供的光热反射显微热成像***,其控制装置10可以实现上述实施例提供的三维补偿方法。因此该成像***同样能够减少光热反射显微热成像中位移补偿耗费的时间,且有利于实现连续的实时跟焦和平移补偿。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述***中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及 算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/控制装置和方法,可以通过其它的方式实现。例如,以上所描述的装置/控制装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个用于光热反射显微热成像的三维位移补偿方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括是电载波信号和电信信号。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施 例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种用于光热反射显微热成像的三维位移补偿方法,其特征在于,包括:
    获取光热反射显微热成像装置采集的被测件位于待补偿位置时的采集图像;
    根据参考图像计算得到所述参考图像的第一傅里叶变换,根据所述采集图像计算得到所述采集图像的第二傅里叶变换;其中,所述参考图像为所述光热反射显微热成像装置采集的所述被测件位于参考位置时的图像;所述参考位置为所述被测件位于对焦位置且未发生水平位移的位置;
    根据所述第一傅里叶变换和所述第二傅里叶变换,确定所述光热反射显微热成像装置中光学子***的点扩散函数的峰值点坐标和拟合直径;
    根据所述峰值点坐标、所述拟合直径和所述光热反射显微热成像装置中光学子***的成像参数,计算所述待补偿位置相对于所述参考位置的三维位移量;所述三维位移量用于对所述被测件进行三维位移补偿。
  2. 根据权利要求1所述的用于光热反射显微热成像的三维位移补偿方法,其特征在于,所述根据所述第一傅里叶变换和第二傅里叶变换,确定所述光热反射显微热成像装置中光学子***的点扩散函数的峰值点坐标和艾里斑直径,包括:
    根据所述第一傅里叶变换和所述第二傅里叶变换,计算得到所述光热反射显微热成像装置中光学子***的点扩散函数;
    根据所述点扩散函数,确定所述点扩散函数的峰值点坐标和拟合直径。
  3. 根据权利要求2所述的用于光热反射显微热成像的三维位移补偿方法,其特征在于,所述根据所述第一傅里叶变换和所述第二傅里叶变换,计算得到所述光热反射显微热成像装置中光学子***的点扩散函数,包括:
    根据
    Figure PCTCN2022081398-appb-100001
    Figure PCTCN2022081398-appb-100002
    计算得到所述光热反射显微热成像装置中光学子***的点扩散函数;
    其中,p(x,y)为所述光热反射显微热成像装置中光学子***的点扩散函数,R(u,v)为所述第一傅里叶变换,C(u,v)为所述第二傅里叶变换,
    Figure PCTCN2022081398-appb-100003
    为傅里叶反变换;
    所述根据所述点扩散函数,确定所述点扩散函数的峰值点坐标和拟合直径,包括:
    根据所述点扩散函数上的离散点,对预设拟合目标函数的解析式进行求解,确定所述预设拟合目标函数的解析式中的未知参数;
    根据确定所述未知参数后的预设拟合目标函数的解析式,确定所述点扩散函数的峰值点坐标和拟合直径。
  4. 根据权利要求1-3任一项所述的用于光热反射显微热成像的三维位移补偿方法,其特征在于,所述光热反射显微热成像装置中光学子***的成像参数包括下述一项或多项:相机像元尺寸参数、放大倍率参数和物镜孔径角参数。
  5. 根据权利要求4所述的用于光热反射显微热成像的三维位移补偿方法,其特征在于,所述根据所述峰值点坐标、所述拟合直径和所述光热反射显微热成像装置中光学子***的成像参数,计算所述采集图像的三维位移量,包括:
    根据
    Figure PCTCN2022081398-appb-100004
    计算所述采集图像的三维位移量;
    其中,Δx、Δy和Δz分别为所述采集图像x、y和z三个方向对应的位移量,(x p,y p)为所述峰值点坐标,a为所述相机像元尺寸参数,m为所述放大倍率参数,θ为所述物镜孔径角参数的二分之一,d为所述拟合直径,s为显示所述采集图像的离焦方向参数。
  6. 根据权利要求1-3任一项所述的用于光热反射显微热成像的三维位移补偿方法,其特征在于,所述方法还包括:
    根据所述三维位移量进行比例积分微分控制,获得所述待补偿位置相对于所述参考位置的三维位移补偿量;
    根据所述三维位移补偿量控制位移台对所述被测件进行三维位移补偿。
  7. 一种控制装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如上的权利要求1至6中任一项所述方法的步骤。
  8. 一种光热反射显微热成像***,其特征在于,包括如权利要求7所述的控制装置、光热反射显微热成像装置和位移台;
    所述控制装置分别与所述光热反射显微热成像装置和所述位移台电连接;
    所述光热反射显微热成像装置用于采集被测件位于待补偿位置时的采集图像,以及采集所述被测件位于参考位置时的参考图像;
    所述位移台用于放置被测件,并根据三维位移量移动所述被测件,以对所述被测件进 行三维位移补偿。
  9. 根据权利要求8所述的光热反射显微热成像***,其特征在于,还包括:控温台;所述光热反射显微热成像装置包括光学平台和光学子***;
    所述控温台位于所述位移台上,且所述控温台与所述控制装置电连接;所述光学子***和所述位移台分别位于所述光学平台上;
    所述控温台用于放置所述被测件;所述光学子***用于采集所述被测件位于待补偿位置时的采集图像,以及采集所述被测件位于参考位置时的参考图像;所述光学平台用于为所述光学子***和所述位移台提供支撑。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如上的权利要求1至6中任一项所述方法的步骤。
  11. 一种用于光热反射显微热成像的三维位移补偿方法,其特征在于,包括:
    获取步骤:获取光热反射显微热成像装置采集的被测件位于待补偿位置时的采集图像;
    变换步骤:根据参考图像计算得到所述参考图像的第一傅里叶变换,根据所述采集图像计算得到所述采集图像的第二傅里叶变换;其中,所述参考图像为所述光热反射显微热成像装置采集的所述被测件位于参考位置时的图像;所述参考位置为所述被测件位于对焦位置且未发生水平位移的位置;
    第一确定步骤:根据所述第一傅里叶变换和所述第二傅里叶变换,确定所述光热反射显微热成像装置中光学子***的点扩散函数的峰值点坐标和拟合直径;
    第一计算步骤:根据所述峰值点坐标、所述拟合直径和所述光热反射显微热成像装置中光学子***的成像参数,计算所述待补偿位置相对于所述参考位置的三维位移量;以及
    补偿步骤:根据所述三维位移量对所述被测件的三维位移进行补偿。
  12. 根据权利要求11所述的三维位移补偿方法,其特征在于,所述第一确定步骤包括:
    第二计算步骤:根据所述第一傅里叶变换和所述第二傅里叶变换,计算得到所述光热反射显微热成像装置中光学子***的点扩散函数;
    第二确定步骤:根据所述点扩散函数,确定所述点扩散函数的峰值点坐标和拟合直径。
  13. 根据权利要求12所述的三维位移补偿方法,其特征在于,所述第二计算步骤包括:
    根据
    Figure PCTCN2022081398-appb-100005
    Figure PCTCN2022081398-appb-100006
    计算得到所述光热反 射显微热成像装置中光学子***的点扩散函数;
    其中,p(x,y)为所述光热反射显微热成像装置中光学子***的点扩散函数,R(u,v)为所述第一傅里叶变换,C(u,v)为所述第二傅里叶变换,
    Figure PCTCN2022081398-appb-100007
    为傅里叶反变换;
    所述第二确定步骤包括:
    根据所述点扩散函数上的离散点,对预设拟合目标函数的解析式进行求解,确定所述预设拟合目标函数的解析式中的未知参数;
    根据确定所述未知参数后的预设拟合目标函数的解析式,确定所述点扩散函数的峰值点坐标和拟合直径。
  14. 根据权利要求11至13任一项所述的三维位移补偿方法,其特征在于,所述光热反射显微热成像装置中光学子***的成像参数包括以下参数中的一项或多项:相机像元尺寸参数、放大倍率参数和物镜孔径角参数。
  15. 根据权利要求14所述的三维位移补偿方法,其特征在于,所述第一计算步骤包括:
    根据
    Figure PCTCN2022081398-appb-100008
    计算所述采集图像的三维位移量;
    其中,Δx、Δy和Δz分别为所述采集图像x、y和z三个方向对应的位移量,(x p,y p)为所述峰值点坐标,a为所述相机像元尺寸参数,m为所述放大倍率参数,θ为所述物镜孔径角参数的二分之一,d为所述拟合直径,s为显示所述采集图像的离焦方向参数。
  16. 根据权利要求11至13任一项所述的三维位移补偿方法,其特征在于,所述补偿步骤包括:
    根据所述三维位移量进行比例积分微分控制,获得所述待补偿位置相对于所述参考位置的三维位移补偿量;
    根据所述三维位移补偿量控制所述光热反射显微热成像装置的位移台对所述被测件进行三维位移补偿。
PCT/CN2022/081398 2021-07-14 2022-03-17 用于光热反射显微热成像的三维位移补偿方法及控制装置 WO2023284320A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/859,845 US12025501B2 (en) 2021-07-14 2022-07-07 Three-dimensional displacement compensation method for microscopic thermoreflectance thermography and control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110803448.7 2021-07-14
CN202110803448.7A CN113624358B (zh) 2021-07-14 2021-07-14 用于光热反射显微热成像的三维位移补偿方法及控制装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/859,845 Continuation US12025501B2 (en) 2021-07-14 2022-07-07 Three-dimensional displacement compensation method for microscopic thermoreflectance thermography and control device

Publications (1)

Publication Number Publication Date
WO2023284320A1 true WO2023284320A1 (zh) 2023-01-19

Family

ID=78379886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081398 WO2023284320A1 (zh) 2021-07-14 2022-03-17 用于光热反射显微热成像的三维位移补偿方法及控制装置

Country Status (3)

Country Link
US (1) US12025501B2 (zh)
CN (1) CN113624358B (zh)
WO (1) WO2023284320A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113624358B (zh) * 2021-07-14 2023-09-26 中国电子科技集团公司第十三研究所 用于光热反射显微热成像的三维位移补偿方法及控制装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090084959A1 (en) * 2005-03-15 2009-04-02 Hudgings Janice A Methods of Thermoreflectance Thermography
US20180094979A1 (en) * 2016-10-02 2018-04-05 Microsanj, LLC Hyperspectral thermoreflectance imaging
CN110298870A (zh) * 2019-07-02 2019-10-01 中国电子科技集团公司第十三研究所 图像的处理方法、处理装置及终端
CN113624358A (zh) * 2021-07-14 2021-11-09 中国电子科技集团公司第十三研究所 用于光热反射显微热成像的三维位移补偿方法及控制装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69022143T2 (de) * 1989-06-29 1996-03-07 The Research Foundation Of State University Of New York, Albany, N.Y. Rechnerische Methoden und elektronische Kameravorrichtung zur Bestimmung der Entfernung von Objekten, zum schnellen Autofokussieren und um eine verbesserte Bildschärfe zu erreichen.
JP4069545B2 (ja) * 1999-05-19 2008-04-02 株式会社日立製作所 電子顕微方法及びそれを用いた電子顕微鏡並び生体試料検査方法及び生体検査装置
DE10038527A1 (de) * 2000-08-08 2002-02-21 Zeiss Carl Jena Gmbh Anordnung zur Erhöhung der Tiefendiskriminierung optisch abbildender Systeme
US6552809B1 (en) * 2000-09-18 2003-04-22 Institut National D'optique Position encoding optical device and method
US7173245B2 (en) * 2001-01-04 2007-02-06 The Regents Of The University Of California Submicron thermal imaging method and enhanced resolution (super-resolved) AC-coupled imaging for thermal inspection of integrated circuits
US7116421B2 (en) * 2002-03-15 2006-10-03 Jose Agustin Garcia Device and method for differential sensing of hydrogen gas using thermoabsorptance or thermoreflectance
GB0216641D0 (en) * 2002-07-18 2002-08-28 Univ Nottingham Image analysis method, apparatus and software
US20060114965A1 (en) * 2003-10-10 2006-06-01 Murphy John C Thermal-based methods for nondestructive evaluation
WO2006090320A1 (en) * 2005-02-23 2006-08-31 Lyncee Tec S.A. Wave front sensing method and apparatus
US7429735B2 (en) * 2005-03-15 2008-09-30 Mass Institute Of Technology (Mit) High performance CCD-based thermoreflectance imaging using stochastic resonance
KR101350976B1 (ko) * 2010-12-22 2014-01-14 한국기초과학지원연구원 온도분포 측정장치
US9233572B2 (en) * 2013-08-30 2016-01-12 International Business Machines Corporation Anti-counterfeiting opto-thermal watermark for electronics
CN103591904B (zh) * 2013-09-18 2016-08-17 中国矿业大学(北京) 一种两步三维傅里叶变换测量物体内部三维变形场的方法
KR101555153B1 (ko) * 2014-09-03 2015-10-06 한국기초과학지원연구원 온도 분포 측정 장치 및 방법
CN105931196B (zh) * 2016-04-11 2018-10-19 天津大学 基于傅里叶光学建模的编码光圈相机图像恢复方法
US10670475B2 (en) * 2016-12-02 2020-06-02 Microsanj, LLC Method and system for thermal imaging with optical emissions from a device under test
US10180359B2 (en) * 2017-01-29 2019-01-15 Microsanj, LLC Method and system for calibrating thermal imaging systems
CN109668526B (zh) * 2019-01-29 2020-05-19 北京理工大学 基于光学传递函数的高精度测量倾斜角的方法
JP6892086B1 (ja) * 2019-06-20 2021-06-18 株式会社ピコサーム 熱物性値測定装置及び熱物性値測定方法
CN110310272B (zh) * 2019-07-01 2021-09-28 中国电子科技集团公司第十三研究所 图像配准方法及终端设备
CN111157226B (zh) * 2020-03-04 2024-07-23 山东理工大学 一种显微镜点扩散函数的测量方法和装置
CN111457859B (zh) * 2020-03-06 2022-12-09 奥比中光科技集团股份有限公司 3d测量装置对齐标定方法、***及计算机可读存储介质
CN111665227B (zh) * 2020-06-05 2023-02-03 哈工大机器人(中山)无人装备与人工智能研究院 基于虚拟调制成像的激光扫描显微成像方法、装置和***
CN112067136B (zh) * 2020-08-26 2021-09-28 中国电子科技集团公司第十三研究所 用于光热反射显微热成像的漂移修正方法及装置
US20220404204A1 (en) * 2021-06-17 2022-12-22 Georgia Tech Research Corporation Thermoreflectance enhancement coatings and methods of making and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090084959A1 (en) * 2005-03-15 2009-04-02 Hudgings Janice A Methods of Thermoreflectance Thermography
US20180094979A1 (en) * 2016-10-02 2018-04-05 Microsanj, LLC Hyperspectral thermoreflectance imaging
CN110298870A (zh) * 2019-07-02 2019-10-01 中国电子科技集团公司第十三研究所 图像的处理方法、处理装置及终端
CN113624358A (zh) * 2021-07-14 2021-11-09 中国电子科技集团公司第十三研究所 用于光热反射显微热成像的三维位移补偿方法及控制装置

Also Published As

Publication number Publication date
US20230036090A1 (en) 2023-02-02
CN113624358B (zh) 2023-09-26
CN113624358A (zh) 2021-11-09
US12025501B2 (en) 2024-07-02

Similar Documents

Publication Publication Date Title
CN108333145B (zh) 一种icf靶丸的检测新装置及定位方法
US9213003B2 (en) Method for characterizing a structure on a mask and device for carrying out said method
CN109061229B (zh) 一种光场Micro-PIV***的标定方法
CN110310245B (zh) 图像照明分布的修正方法、修正装置及终端
JPH10506460A (ja) 細胞学的システムの映像収集の統合性をチェックするための装置
CN100523720C (zh) 光学非接触式三维形状测量仪
WO2023284320A1 (zh) 用于光热反射显微热成像的三维位移补偿方法及控制装置
CN209992407U (zh) 线面阵相机结合的大口径超净光滑表面缺陷检测装置
CN101556141A (zh) 一种测量不规则缝宽的傅里叶变换方法及其装置
JP2000149011A (ja) イメ―ジングシステムで得られた信号からのノイズの除去
CN108007382B (zh) 基于结构光照明的面形测量装置和方法
US7518712B2 (en) Tilted edge for optical-transfer-function measurement
CN2914032Y (zh) 光学非接触式三维形状测量仪
EP3555685A1 (en) Surface sensing in optical microscopy and automated sample scanning systems
CN115096768A (zh) 可同时测量颗粒粒径与体积浓度的背光成像***和方法
CN113655610B (zh) 用于光热反射显微热成像的自动对焦方法及控制装置
CN210242713U (zh) 相机探测器指向和焦面组件安装面夹角的检测装置
CN114993505A (zh) 实现热反射成像测温的自动重聚焦的方法和装置
WO2018098833A1 (zh) 显微镜载玻片曲面高度值的测算方法以及一种显微镜
CN110375677B (zh) 相机探测器指向和焦面组件安装面夹角的检测装置及方法
Riesz Camera length and field of view in Makyoh-topography instruments
JP7191632B2 (ja) 偏心量測定方法
CN113916507B (zh) 小空间高集成度红外共孔径光学***测试装置及方法
CN114858060B (zh) 基于同轴激光三角法与显微成像的位移传感器及应用
CN116577075B (zh) 一种物镜远心度的测量***、方法及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22840965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22840965

Country of ref document: EP

Kind code of ref document: A1