WO2023284028A1 - 一种制备双氧水的微界面强化氧化***以及氧化方法 - Google Patents

一种制备双氧水的微界面强化氧化***以及氧化方法 Download PDF

Info

Publication number
WO2023284028A1
WO2023284028A1 PCT/CN2021/109758 CN2021109758W WO2023284028A1 WO 2023284028 A1 WO2023284028 A1 WO 2023284028A1 CN 2021109758 W CN2021109758 W CN 2021109758W WO 2023284028 A1 WO2023284028 A1 WO 2023284028A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
interface
liquid
gas
oxidation reaction
Prior art date
Application number
PCT/CN2021/109758
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
田洪舟
李磊
张锋
孟为民
王宝荣
杨高东
罗华勋
杨国强
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Priority to JP2023563961A priority Critical patent/JP2024515084A/ja
Priority to EP21949806.0A priority patent/EP4371934A1/en
Publication of WO2023284028A1 publication Critical patent/WO2023284028A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/022Preparation from organic compounds
    • C01B15/023Preparation from organic compounds by the alkyl-anthraquinone process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction

Definitions

  • the invention relates to the field of hydrogen peroxide preparation, in particular to a micro-interface enhanced oxidation system and an oxidation method for preparing hydrogen peroxide.
  • Hydrogen peroxide is an aqueous solution of hydrogen peroxide (H 2 O 2 ), which is an important inorganic peroxide. It has the characteristics of oxidation, bleaching and environmental protection during use. Treatment, medical treatment, metallurgy, military industry, food processing and other fields, as oxidizing agent, bleaching agent, disinfectant, polymer initiator and crosslinking agent, propellant, etc. With the increasingly stringent environmental protection regulations, the production capacity of propylene oxide, green caprolactam and other products by hydrogen peroxide direct oxidation method (HPPO method) has increased, resulting in strong market demand for H 2 O 2 .
  • HPPO method hydrogen peroxide direct oxidation method
  • the production methods of hydrogen peroxide include anthraquinone method, electrolysis method, isopropanol oxidation method, inorganic reaction method, direct synthesis method of hydrogen and oxygen, etc.
  • the anthraquinone method is the mainstream method for producing hydrogen peroxide at home and abroad.
  • the anthraquinone hydrogen peroxide production process uses 2-ethylanthraquinone (EAQ) as a carrier, heavy aromatics (AR) and trioctyl phosphate (TOP) as a mixed solvent, and is formulated into a solution (working solution) with a certain composition , under the catalysis of palladium or nickel catalysts, the catalytic hydrogenation and air oxidation of alkylanthraquinones are alternately carried out, and the hydrogen peroxide generated by oxidation is extracted with water to form crude hydrogen peroxide, and the alkylanthraquinones can be recycled.
  • EAQ 2-ethylanthraquinone
  • AR heavy aromatics
  • TOP trioctyl phosphate
  • the first object of the present invention is to provide a micro-interface enhanced oxidation system for preparing hydrogen peroxide.
  • the micro-interface enhanced oxidation system sets a mixed micro-interface unit inside the oxidation reaction tower, so that the air and hydrogenated anthraquinone are oxidized before the air Broken into micro-bubbles, increasing the mass transfer area of the phase boundary between air and hydrogenated anthraquinone, thereby solving the problem of low oxygen utilization rate in the prior art due to the inability to fully mix air and hydrogenated anthraquinone inside the oxidation reaction tower.
  • the problem of low yield is to provide a micro-interface enhanced oxidation system for preparing hydrogen peroxide.
  • the second purpose of the present invention is to provide a reaction method for preparing hydrogen peroxide using a micro-interface enhanced oxidation system.
  • the hydrogen peroxide obtained by the reaction has high purity and is widely used.
  • the invention provides a micro-interface enhanced oxidation system for preparing hydrogen peroxide, comprising: an oxidation reaction tower; a liquid-phase pipeline for transporting hydrogenated anthraquinone is arranged on the top side of the oxidation reaction tower, and a liquid phase pipeline is arranged on the side bottom of the oxidation reaction tower There are gas phase pipes for conveying air;
  • the oxidation reaction tower is provided with a liquid distributor, a packing section, a liquid receiving plate, and a mixed micro-interface unit in sequence from top to bottom, wherein the mixed micro-interface unit includes an upper-mounted micro-interface generator connected up and down and a lower-mounted micro-interface generator. Interface generator; the hydrogenated anthraquinone delivered in is distributed through the liquid distributor and then goes down in sequence until it is mixed with air in the mixing micro-interface unit, dispersed and crushed;
  • the oxidation reaction tower is provided with a mixed micro-interface unit, and the mixed micro-interface unit includes an upper-mounted micro-interface generator and a lower-mounted micro-interface generator connected up and down.
  • the liquid distributor can play a good role in liquid distribution.
  • a long and narrow gas-liquid emulsion channel is arranged between the upper-mounted micro-interface generator and the lower-mounted micro-interface generator, and the gas-liquid emulsion channel is connected with a gas-liquid emulsion outlet, and the gas-liquid emulsion channel is connected to the outlet of the gas-liquid emulsion.
  • the liquid emulsion outlet is close to the upper side wall of the down-mounted micro-interface generator.
  • the raw materials are hydrogenated anthraquinone and air
  • hydrogenated anthraquinone is a product obtained by hydrogenation in a hydrogenation tower.
  • Liquid and catalyst while sending hydrogen to the hydrogenation tower to generate a mixture containing 2-ethylhydroanthraquinone solution, which is subsequently filtered and cooled, then sent to the oxidation reaction tower, and passes through the micro interface in the oxidation reaction tower Disperse the broken air to form gas-liquid emulsion, carry out oxidation reaction, generate a mixture containing 2-ethylanthraquinone and hydrogen peroxide, and transmit it to the extraction tower, and mix the mixture containing 2-ethylanthraquinone and hydrogen peroxide with pure The water is extracted in the extraction tower, and the product obtained after extraction is hydrogen peroxide.
  • the utilization rate of air is improved by setting the mixed micro-interface unit in the oxidation reaction tower, and then the production rate of the product hydrogen peroxide is increased.
  • the mixed micro-interface unit combines the micro-interface generator through a specific structure. At the same time, it includes an upper-mounted micro-interface generator and a lower-mounted micro-interface generator. The two need to be combined up and down to communicate with each other and are not set separately. The reason for this setting is to improve the firmness of the entire micro-interface unit.
  • the oxidation reaction itself The space inside the tower is relatively narrow. If the micro-interface generators are set too scattered, it will also affect the normal operation of the oxidation reaction tower.
  • the overall design of the structure also shortens the distance between each micro-interface generator and strengthens the gap between the components.
  • the collision dispersion and breaking of the gas-liquid emulsion is strengthened through the interconnected channels.
  • the upper-mounted micro-interface generator and the lower-mounted micro-interface generator are connected up and down through the gas-liquid emulsion channel, and the gas-liquid emulsion channel is directly connected to the gas-liquid emulsion outlet.
  • the outlet of the gas-liquid emulsion is the outlet of the gas-liquid emulsion formed after the dispersion and crushing of the top-mounted micro-interface generator.
  • the reaction in the lower part is relatively severe, so in order to improve the reaction effect, the gas-liquid emulsion channel can be slightly longer, and through the guiding function of the gas-liquid emulsion channel, it can provide power for the material exiting the gas-liquid emulsion, and the gas-liquid emulsion
  • the outlet is just close to the upper side wall of the lower-mounted micro-interface generator, so that the gas-liquid emulsion exiting from the outlet immediately reacts with the lower-mounted micro-interface generator to improve the dispersion and crushing effect.
  • the gas-liquid emulsion channel is not clearly shown in the figure, its specific structure is relatively clear through the text description of the present invention.
  • the outlet of the gas-liquid emulsion can be set as a straight pipe along the horizontal direction, or as a 90° bent pipe, with the mouth of the gas-liquid emulsion facing vertically upward or vertically downward.
  • the upward or vertical downward direction is equivalent to setting a 180° return bend at the outlet, so as to further increase the circulation energy of the gas-liquid emulsion, and drive the materials with poor mixing effect at the upper part to back-mix and then crush.
  • the best way is to design the nozzle to go out in multiple directions, especially after the micro-interface generator in the lower part disperses and breaks the broken bubbles out of the micropores on the wall, just in line with the gas coming out of the gas-liquid emulsion outlet.
  • the liquid emulsion immediately collides, and the outlet of the gas-liquid emulsion can completely cover the micropores on the wall of the down-mounted micro-interface generator.
  • the upper microinterface generator is a gas-liquid linkage microinterface generator or a hydraulic microinterface generator
  • the lower microinterface generator is a pneumatic microinterface generator.
  • the broken gas phase of the pneumatic micro-interface generator disperses from the holes on the wall and interacts with the gas-liquid emulsion from the top-mounted micro-interface generator to enhance the effect of dispersion, fusion and collision.
  • the gas-liquid emulsion outlet of the mixed micro-interface unit located in the upper group can be designed to be along the horizontal direction, and the gas-liquid emulsion outlet of the mixed micro-interface unit in the lower group can be designed to be vertically upward, because the lower part belongs to the reaction Zone, in order to improve the reaction effect, the gas-liquid emulsion sprayed out will further improve the mixing effect with the materials in the upper area, improve the reaction effect, and then improve the utilization rate of raw materials.
  • the conversion rate of hydrogenated anthraquinone can reach more than 97%
  • the product yield can reach more than 97%
  • the oxygen utilization rate can also reach more than 99%, basically without any waste.
  • the upper-mounted micro-interface generator is located closer to the top of the oxidation reaction tower, the lower-mounted micro-interface generator is located closer to the bottom of the oxidation reaction tower, and the gas-liquid emulsion channel It runs between the upper-mounted micro-interface generator and the lower-mounted micro-interface generator. This can ensure that the gas-liquid emulsion is long enough to give enough momentum to move towards the direction of the down-mounted micro-interface generator.
  • the micro-interface enhanced oxidation system of the present invention also includes a liquid circulation pipeline, the gas-liquid linkage micro-interface generator or the liquid-dynamic micro-interface generator is connected to the liquid phase circulation pipeline, and the liquid phase circulation pipeline is A circulating pump is provided.
  • the liquid phase from the side of the oxidation reaction tower and from the bottom of the oxidation reaction tower returns to the top of the above-mentioned micro-interface generator through the liquid circulation pipeline, and the circulation pipeline provides liquid phase power to the gas phase continuously.
  • the entrainment achieves the effect of dispersion and crushing, and the oxygen at the top of the oxidation reaction tower is entrained in through the entrainment pipe for further utilization.
  • the upper-mounted micro-interface generator and the lower-mounted micro-interface generator are respectively provided with separate control valves for switching working states when the micro-interface generator is blocked.
  • the mounted micro-interface generator is a pneumatic micro-interface generator
  • the pores on the wall are easily blocked, so it can be directly cut out of the system to stop working. It is also possible to use only the top-mounted micro-interface generator to work.
  • the pneumatic micro-interface generator can be flushed by the momentum of the upper-mounted gas-liquid emulsion channel.
  • micro-interface generator used in the present invention has been embodied in the inventor's previous patents, such as application numbers CN201610641119.6, 201610641251.7, CN201710766435.0, CN106187660, CN105903425A, CN109437390A, Patents of CN205833127U and CN207581700U.
  • the specific product structure and working principle of the micro-bubble generator (that is, the micro-interface generator) were introduced in detail in the prior patent CN201610641119.6.
  • the body is provided with an inlet communicating with the cavity, the opposite first end and second end of the cavity are open, and the cross-sectional area of the cavity is from the middle of the cavity to the first end and the second end of the cavity.
  • the second end is reduced; the secondary broken piece is arranged at at least one of the first end and the second end of the cavity, a part of the secondary broken piece is set in the cavity, and the two ends of the secondary broken piece and the cavity are open
  • An annular channel is formed between the through holes.
  • the micron bubble generator also includes an inlet pipe and a liquid inlet pipe.” From the specific structure disclosed in the application document, it can be known that the specific working principle is: the liquid enters the micrometer tangentially through the liquid inlet pipe.
  • the gas is rotated and cut at a super high speed, so that the gas bubbles are broken into micron-level micro-bubbles, thereby increasing the mass transfer area between the liquid phase and the gas phase, and the micro-bubble generator in this patent belongs to the pneumatic micro-interface generation device.
  • the primary bubble breaker has a circulating liquid inlet, a circulating gas inlet, and a gas-liquid mixture outlet, while the secondary bubble breaker connects the feed port with the gas-liquid mixture outlet, indicating that the bubble breaker is both It needs to be mixed with gas and liquid.
  • the primary bubble breaker mainly uses circulating fluid as power, so in fact, the primary bubble breaker is a hydraulic micro-interface generator, and the secondary bubble breaker is a gas-liquid breaker.
  • the mixture is passed into the elliptical rotating ball for rotation at the same time, so that the bubbles are broken during the rotation process, so the secondary bubble breaker is actually a gas-liquid linkage micro-interface generator.
  • the micro-interface generator used in the present invention is not limited to the above-mentioned several forms
  • the specific structure of the bubble breaker described in the prior patents is only one of the forms that the micro-interface generator of the present invention can adopt.
  • the liquid phase coming in from the top provides the entrainment power, so as to achieve the effect of crushing into ultra-fine bubbles, which can also be seen in the attached drawings.
  • the bubble breaker has a conical structure, and the diameter of the upper part is larger than that of the lower part, which is also for the liquid phase to provide better entrainment power.
  • micro-interface generator Since the micro-interface generator was just developed in the early stage of the patent application, it was named micro-bubble generator (CN201610641119.6) and bubble breaker (201710766435.0) in the early stage. With continuous technological improvement, it was later renamed as micro-interface generator Device, now the micro-interface generator in the present invention is equivalent to the previous micro-bubble generator, bubble breaker, etc., but the name is different.
  • the micro-interface generator of the present invention belongs to the prior art, although some bubble breakers belong to the type of pneumatic bubble breaker, some bubble breakers belong to the type of hydraulic bubble breaker, and some belong to the type of pneumatic bubble breaker.
  • the connection between the micro-interface generator, the reactor, and other equipment, including the connection structure and connection position depends on the micro-interface generator. It depends on the structure of the interface generator, which is not limited.
  • both sides of the inner wall of the oxidation reaction tower are provided with grilles for improving the reaction effect. Because the material itself has a lot of foam, a number of grilles are correspondingly set in the middle of the oxidation reaction tower.
  • the micro-interface enhanced oxidation system of the present invention also includes a gas-liquid separator, the gas phase located at the upper part of the liquid distributor in the oxidation reaction tower is separated from gas and liquid by the gas-liquid separator, the gas phase is discharged for treatment, and the liquid phase Return to the lower part of the pan. Then the liquid phase participates in the reaction, and the gas phase part goes through the bubble cap to the top of the column.
  • a gas-liquid separator the gas phase located at the upper part of the liquid distributor in the oxidation reaction tower is separated from gas and liquid by the gas-liquid separator, the gas phase is discharged for treatment, and the liquid phase Return to the lower part of the pan. Then the liquid phase participates in the reaction, and the gas phase part goes through the bubble cap to the top of the column.
  • a downcomer is provided on the side of the bubble-cap tray, and the inside of the downcomer is a circular downcomer, and the downcomer is close to the inner wall of the downcomer or connected to the inner wall of the downcomer through a pipe.
  • a downcomer is provided outside the oxidation reaction tower, the upper end of the downcomer communicates with the bubble-cap tray, and the lower end communicates with the mixing micro-interface unit.
  • the downcomer can be installed inside the oxidation reaction tower or outside the oxidation reaction tower.
  • the specific structure of the downcomer installed inside is a circular downcomer.
  • the location of the downcomer can be directly attached to the wall The setting can also be kept at a certain distance from the wall.
  • the upper part of the mixed micro-interface generator is also equipped with multi-layer trays, the purpose is to change the state of fully mixed flow into plug flow, so as to better eliminate the foam generated by the reaction.
  • the present invention also provides an oxidation method of a micro-interface enhanced oxidation system for preparing hydrogen peroxide, comprising the following steps:
  • the oxidation reaction temperature is 35-60°C, preferably 45-55°C, and the reaction pressure is 0.2-0.4MPa, preferably 0.25-0.35MPa.
  • the hydrogen peroxide product obtained by the oxidation method of the invention has good quality and high yield. Moreover, the preparation method itself has low reaction temperature, greatly reduced pressure, and high liquid hourly space velocity, which is equivalent to increased production capacity.
  • a mixed micro-interface unit is arranged inside the oxidation reaction tower, so that the air is broken into microbubbles before the oxidation reaction between the air and the hydrogenated anthraquinone, and the phase boundary mass transfer area between the air and the hydrogenated anthraquinone is increased, whereby, the problem of low oxygen utilization rate and low product yield in the prior art is solved because air and hydrogenated anthraquinone cannot be fully mixed inside the oxidation reaction tower;
  • the oxidation method of the present invention is easy to operate, the hydrogen peroxide obtained by the reaction has high purity, and is widely used, which improves the applicable surface of the hydrogen peroxide itself, and is worthy of wide popularization and application.
  • Fig. 1 is a schematic structural diagram of a micro-interface enhanced oxidation system for preparing hydrogen peroxide provided by an embodiment of the present invention.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
  • FIG. 1 it is a micro-interface enhanced oxidation system for preparing hydrogen peroxide according to an embodiment of the present invention, which mainly includes an oxidation reaction tower 1, and a mixed micro-interface unit 13 arranged inside the oxidation reaction tower 1.
  • the oxidation reaction tower 1 Mainly hydrogenated anthraquinone reacts with air to produce hydrogen peroxide.
  • grids 14 are arranged on both sides of the inner wall of the oxidation reaction tower to improve the reaction effect, and the grids 14 are arranged symmetrically on the left and right.
  • the hybrid micro-interface unit 13 of this embodiment includes an upper-mounted micro-interface generator 131 and a lower-mounted micro-interface generator 132 that are connected up and down.
  • a gas-liquid emulsion channel 133 is arranged between them, and the gas-liquid emulsion channel 133 is connected with a gas-liquid emulsion outlet, and the gas-liquid emulsion outlet is close to the upper side wall of the down-mounted micro-interface generator 132,
  • the direction of the outlet of the gas-liquid emulsion is a straight pipe along the horizontal direction or a 90° bent pipe, and the mouth of the pipe is vertically upward or vertically downward. In this embodiment, the direction is horizontal.
  • the top of the upper-mounted micro-interface generator 131 is provided with an entrainment pipe for entraining the air at the top of the tower.
  • the upper microinterface generator 131 is a gas-liquid linkage microinterface generator or a hydraulic microinterface generator
  • the lower microinterface generator 132 is a pneumatic microinterface generator
  • the gas-liquid linkage type micro-interface generator or the liquid-dynamic micro-interface generator is connected with a liquid-phase circulation pipeline 135, and the liquid-phase circulation pipeline 135 is provided with a circulation pump 136, and the liquid-phase circulation pipeline 135 is used to feed the top-mounted micro-interface generator 131 provides entrainment power, and the liquid phase from the side of the oxidation reaction tower 1 and the bottom of the oxidation reaction tower 1 returns to the top of the overhead micro-interface generator 131 through the liquid circulation pipeline 135 .
  • part of the liquid phase coming out from the bottom of the oxidation reaction tower 1 is emptied, and the other part merges with the liquid phase coming out of the side of the oxidation reaction tower 1, passes through the gas-liquid separator for gas-liquid separation, and returns through the circulation pump 136.
  • the oxygen is broken into micro-scale micro-bubbles, and the bubbles are released into the inside of the oxidation reaction tower 1, so that the air can fully contact the hydrogenated anthraquinone in the state of micro-bubbles .
  • the upper-mounted micro-interface generator 131 and the lower-mounted micro-interface generator 132 are respectively provided with a separate control valve 134 to switch the working state when the micro-interface generator is blocked.
  • the lower-mounted micro-interface generator is generally selected as The pneumatic type is relatively prone to blockage, its control valve 134 can be closed, only the upper micro-interface generator 131 is used to work alone, and the lower micro-interface generator 132 can be controlled when the upper micro-interface generator 131 is working. Rinse. If the lower-mounted micro-interface generator is not used, the gas phase can directly go to the upper-mounted micro-interface generator for entrainment through the branch of the gas phase pipeline.
  • a liquid phase pipeline 11 for transporting hydrogenated anthraquinone is arranged on the side top of the oxidation reaction tower 1, and a gas phase pipeline 12 for transporting air is arranged at the side bottom of the oxidation reaction tower, and the liquid phase pipeline 11 is used for transporting the hydrogenated anthraquinone in , the gas phase pipeline 12 is used to transport air in, so as to pass the air into the micro-interface generator, so that the gas phase and the liquid flow countercurrently to increase the contact probability.
  • a liquid distributor 17, a packing section 16, a liquid receiving plate 15 and a mixing micro-interface unit 13 are sequentially arranged from top to bottom, so that the liquid phase from the upper part of the oxidation reaction tower is distributed through the liquid distributor. , After the rectification reaction in the packing section, the reaction effect can be improved after passing through the bubble cap effusion.
  • the gas phase coming out from the top of the oxidation reaction tower 1 will also go to the gas-liquid separator 18 connected to the oxidation reaction tower 1, and the gas phase at the upper part of the liquid distributor 17 in the oxidation reaction tower 1 will pass through the gas-liquid separator 18 after gas-liquid separation , the gas phase is discharged, and the liquid phase is returned to the bottom of the liquid receiving plate 15.
  • the liquid receiving plate There are a number of rising air pipes on the liquid receiving plate, the liquid overflows from the overflow weir to the bottom, and the gas phase goes to the packing section through the air rising pipes.
  • a downcomer is arranged on the side of the liquid receiving pan 15.
  • the inside of the downcomer 19 is a circular downcomer.
  • the pipe 19 can also be arranged outside.
  • the upper end of the downcomer 19 communicates with the liquid receiving pan 15, and the lower end communicates with the mixing micro-interface unit 13.
  • the downcomer 19 is mainly arranged inside.
  • the product generated by the oxidation reaction tower 1 goes to the next extraction section, and the tail gas is recycled.
  • the oxygen contained in the tail gas is not much, which shows that the oxygen utilization rate of the oxidation method of the present invention is very high.
  • micro-interface generators can also be added.
  • the installation position is actually not limited. It can be external or built-in. When built-in, it can also be installed on the side wall of the kettle. In order to realize the hedging of the micro-bubbles coming out from the exit of the micro-interface.
  • the mass concentration of hydrogenated anthraquinone is 120g/L
  • the organic solvent is an aromatic hydrocarbon
  • the oxidation heating constant temperature is 35°C
  • the reaction pressure of the oxidation reaction tower 1 is 0.2MPa
  • air is introduced at a flow rate of 15L/min
  • the reaction time is After 10 minutes, after the reaction was completed, samples were taken to analyze the conversion rate and oxygen utilization rate.
  • the conversion rate of hydrogenated anthraquinone reacted raw material amount/original raw material amount*100%
  • Oxygen utilization rate reacted oxygen amount/oxygen amount contained in original air*100%
  • Example 2 Other operating steps are consistent with Example 1, except that the oxidation heating constant temperature is 45° C., and the reaction pressure of oxidation reaction tower 1 is 0.25 MPa. Analysis results: the conversion rate of hydrogenated anthraquinone is 96.5%, and the utilization rate of oxygen is 96.5%.
  • Example 2 Other operating steps are consistent with Example 1, except that the oxidation heating constant temperature is 55° C., and the reaction pressure of oxidation reaction tower 1 is 0.35 MPa. Analysis results: the conversion rate of hydrogenated anthraquinone is 96.5%, and the utilization rate of oxygen is 96.5%.
  • Example 2 Other operating steps are consistent with Example 1, except that the mixed microinterface unit 13 is replaced by a single pneumatic type microinterface generator. Analysis results: the conversion rate of hydrogenated anthraquinone is 96.5%, and the utilization rate of oxygen is 96.5%.
  • the micro-interface enhanced oxidation system of the present invention has fewer equipment components, a small footprint, low energy consumption, low cost, high safety, and controllable reaction.
  • the high conversion rate of raw materials is equivalent to providing a more operable micro-interface enhanced oxidation system for the field of hydrogen peroxide preparation, which is worthy of wide application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种制备双氧水的微界面强化氧化***及氧化方法,微界面强化氧化***包括:氧化反应塔(1);所述氧化反应塔(1)的侧面顶部设置有用于输送氢化蒽醌的液相管道(11),所述氧化反应塔(1)的侧面底部设置有用于输送空气的气相管道(12);所述氧化反应塔(1)内由上至下依次设置有液体分布器(17)、填料段(16)、受液盘(15)以及混合微界面机组(13),其中所述混合微界面机组(13)包括上下连通的上置式微界面发生器(131)以及下置式微界面发生器(132);输送进来氢化蒽醌经过液体分布器(17)分布后依次向下直到在所述混合微界面机组(13)内与空气进行混合分散破碎。通过采用微界面强化氧化***能够提高氧气的利用率,占地面积小操作简便。

Description

一种制备双氧水的微界面强化氧化***以及氧化方法 技术领域
本发明涉及双氧水制备领域,具体而言,涉及一种制备双氧水的微界面强化氧化***以及氧化方法。
背景技术
双氧水为过氧化氢(H 2O 2)的水溶液,是一种重要的无机过氧化物,具有氧化性、漂白性和使用过程绿色环保等特点,可应用于织物、纸浆脱色、化工合成、废水处理、医疗、冶金、军工、食品加工等领域,充当氧化剂、漂白剂、消毒剂、聚合物引发剂和交联剂、推进剂等。随着环保法规的日益严格,过氧化氢直接氧化法(HPPO法)生产环氧丙烷、绿色己内酰胺等产品产能增加,导致H 2O 2的市场需求旺盛。
过氧化氢的生产方法有蒽醌法、电解法、异丙醇氧化法,无机反应法、氢氧直接合成法等。其中,蒽醌法是目前国内外生产过氧化氢的主流方法。
蒽醌法过氧化氢生产工艺是以2-乙基蒽醌(EAQ)为载体,重芳烃(AR)及磷酸三辛酯(TOP)为混合溶剂,配制成具有一定组成的溶液(工作液),在钯或镍催化剂的催化作用下,交替进行烷基蒽醌的催化加氢和空气氧化,氧化生成的过氧化氢用水萃取出来成粗品双氧水,烷基蒽醌可以循环使用。但是目前的工艺中,氧化过程中的氧气利用率比较低,导致制备得到的双氧水收率比较低。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种制备双氧水的微界面强化氧化***,该微界面强化氧化***通过在氧化反应塔内部设置混合微界面机组,使得在空气与 氢化蒽醌进行氧化反应之前将空气破碎为微气泡,提高空气与氢化蒽醌之间的相界传质面积,从而解决了现有技术中由于空气与氢化蒽醌在氧化反应塔内部无法得到充分混合,导致氧气利用率低,产品收率低的问题。
本发明的第二目的在于提供一种采用微界面强化氧化***制备双氧水的反应方法,反应得到的双氧水纯度高,应用广泛,提高了双氧水本身的适用面,值得广泛推广应用。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种制备双氧水的微界面强化氧化***,包括:氧化反应塔;所述氧化反应塔的侧面顶部设置有用于输送氢化蒽醌的液相管道,所述氧化反应塔的侧面底部设置有用于输送空气的气相管道;
所述氧化反应塔内由上至下依次设置有液体分布器、填料段、受液盘以及混合微界面机组,其中所述混合微界面机组包括上下连通的上置式微界面发生器以及下置式微界面发生器;输送进来氢化蒽醌经过液体分布器分布后依次向下直到在所述混合微界面机组内与空气进行混合分散破碎;
所述氧化反应塔内设置有混合微界面机组,混合微界面机组包括上下连通的上置式微界面发生器以及下置式微界面发生器。
其中液体分布器可以起到良好的布液作用。
优选地,所述上置式微界面发生器以及所述下置式微界面发生器之间设置有狭长的气液乳化物通道,所述气液乳化物通道连接有气液乳化物出口,所述气液乳化物出口紧贴于所述下置式微界面发生器的上侧壁。
在本发明的微界面强化氧化***中,原料为氢化蒽醌以及空气,氢化蒽醌是通过氢化塔加氢得到的产物,一般实际运行时,先向氢化塔内输送含蒽醌衍生物的工作液和催化剂,同时向氢化塔内输送氢气,以生成含2-乙基氢蒽醌溶液的混合物,该混合物后续通过过滤冷却后,输送至氧化反应塔中,在氧化反应塔内与经过微界面分散破碎的空气形成气液乳化物,进行氧化反应,生成含 2-乙基蒽醌和过氧化氢的混合物,并传输至萃取塔,含2-乙基蒽醌和过氧化氢的混合物与纯水在萃取塔内进行萃取,萃取后得到的产物即为双氧水。
本发明的方案中,通过在氧化反应塔内设置混合微界面机组,从而提高空气的利用率,继而提升产品双氧水的产率,该混合微界面机组是将微界面发生器通过特定的结构组合在一起,其包含了上置式微界面发生器以及下置式微界面发生器,两者需要结合上下互相贯通并不是单独设置的,之所以这样设置是为了提升整个微界面机组的牢固性,本身氧化反应塔内的空间比较窄小,如果微界面发生器设置的过于分散也会影响到氧化反应塔的正常工作,另外设计为整体的结构也缩短了各个微界面发生器的距离,加强各个部件之间的互相协作能力,通过微界面破碎的气泡互相碰撞冲击后,从而提高分散破碎效果。通过互相贯通的通道加强气液乳化物的碰撞分散破碎。
另外,在本发明的方案中,上置式微界面发生器与下置式微界面发生器是通过气液乳化物通道实现上下贯通的,而且气液乳化物通道直接连通有气液乳化物出口,该气液乳化物出口即是上置式微界面发生器分散破碎后形成的气液乳化物的出口,因为在该氧化反应塔内上部属于混合区,下部属于剧烈反应区,所以上部的物料混合比较平稳,下部反应比较剧烈,那么为了提高反应效果,气液乳化物通道可以稍微长一些,通过气液乳化物通道的引导作用,给气液乳化物出口出去的物料提供动力,且该气液乳化物出口正好紧贴于下置式微界面发生器的上侧壁,这样从出口出去的气液乳化物立刻与下置式的微界面发生器发生作用,提高分散破碎效果。气液乳化物通道虽然没有在图上明示出来,但是通过本发明的文字阐述对其具体的结构也比较明了清楚。
此外,该气液乳化物出口可以设置为沿水平方向的直管形状,还可以设置为为90°的折弯管,管口垂直朝上或者垂直朝下,水平方向就是直接喷射出去,垂直朝上或垂直朝下的方向相当于在出口处设置了180的回弯,从而更加提升气液乳化物的流通能量,带动位于上部的混合效果差的物料进行返混再破碎。当然最好的方式可以将管口设计成朝多个方向出去的形状,尤其是下部的微界 面发生器分散破碎的气泡从壁面的微孔出来之后,正好与从气液乳化物出口出来的气液乳化物立刻发生碰撞作用,气液乳化物出口可以完全覆盖住下置式微界面发生器壁面的微孔。
优选地,本发明的混合微界面机组中,上置式微界面发生器为气液联动式微界面发生器或液动式微界面发生器,下置式微界面发生器为气动式微界面发生器。气动式微界面发生器的破碎气相从壁面的孔中分散出与上置式微界面发生器出来的气液乳化物进行互相作用,加强分散融合碰撞效果。且位于上面一组的混合微界面机组的气液乳化物出口可以设计为沿水平方向,下面一组的混合微界面机组的气液乳化物出口可以设计为垂直朝上的方向,因为下部属于反应区,为了提高反应效果,喷射出的气液乳化物朝上出去后更加提高与上面区域的物料的混合效果,提高反应效果,进而提高原料的利用率,通过采用本发明的特定结构的氧化反应塔操作后,氢化蒽醌的转化率可以达到97%以上,产品收率可以达到97%以上,氧气利用率也能达到99%以上,基本不会有任何浪费。
优选地,所述上置式微界面发生器位于比较靠近所述氧化反应塔顶部的位置,所述下置式微界面发生器位于比较靠近所述氧化反应塔底部的位置,所述气液乳化物通道贯穿于所述上置式微界面发生器与所述下置式微界面发生器之间。这样可以保证气液乳化物足够的狭长,以给予足够的冲力朝向下置式微界面发生器的方向运动。
优选地,本发明的微界面强化氧化***还包括有液体循环管道,所述气液联动式微界面发生器或液动式微界面发生器连接有所述液相循环管道,所述液相循环管道上设置有循环泵。这样从所述氧化反应塔侧面以及从所述氧化反应塔的塔底出来的液相经过所述液体循环管道返回所述上置式微界面发生器的顶部,循环管道通过提供液相动力对气相不断卷吸从而达到分散破碎的效果,正好通过卷吸管将位于氧化反应塔顶部的氧气卷吸进来进行进一步的利用。
优选地,所述上置式微界面发生器以及所述下置式微界面发生器分别设置 有单独控制阀,以用于微界面发生器发生阻塞时切换工作状态。当下置式微界面发生器为气动式微界面发生器,壁面的细孔很容易发生阻塞,因此可以直接将其切出***之外停止工作,只采用上置式微界面发生器进行工作也是可以的,还可以利用上置式的气液乳化物通道的冲力对气动式微界面发生器进行冲洗。
本领域所属技术人员可以理解的是,本发明所采用的微界面发生器在本发明人在先专利中已有体现,如申请号CN201610641119.6、201610641251.7、CN201710766435.0、CN106187660、CN105903425A、CN109437390A、CN205833127U及CN207581700U的专利。在先专利CN201610641119.6中详细介绍了微米气泡发生器(即微界面发生器)的具体产品结构和工作原理,该申请文件中记载了“微米气泡发生器包括本体和二次破碎件、本体内具有空腔,本体上设有与空腔连通的进口,空腔的相对的第一端和第二端均敞开,其中空腔的横截面积从空腔的中部向空腔的第一端和第二端减小;二次破碎件设在空腔的第一端和第二端中的至少一个处,二次破碎件的一部分设在空腔内,二次破碎件与空腔两端敞开的通孔之间形成一个环形通道。微米气泡发生器还包括进气管和进液管。”从该申请文件中公开的具体结构可以知晓其具体工作原理为:液体通过进液管切向进入微米气泡发生器内,超高速旋转并切割气体,使气体气泡破碎成微米级别的微气泡,从而提高液相与气相之间的传质面积,而且该专利中的微米气泡发生器属于气动式微界面发生器。
另外,在先专利201610641251.7中有记载一次气泡破碎器具有循环液进口、循环气进口和气液混合物出口,二次气泡破碎器则是将进料口与气液混合物出口连通,说明气泡破碎器都是需要气液混合进入,另外从后面的附图中可知,一次气泡破碎器主要是利用循环液作为动力,所以其实一次气泡破碎器属于液动式微界面发生器,二次气泡破碎器是将气液混合物同时通入到椭圆形的旋转球中进行旋转,从而在旋转的过程中实现气泡破碎,所以二次气泡破碎器实际上是属于气液联动式微界面发生器。其实,无论是液动式微界面发生器, 还是气液联动式微界面发生器,都属于微界面发生器的一种具体形式,然而本发明所采用的微界面发生器并不局限于上述几种形式,在先专利中所记载的气泡破碎器的具体结构只是本发明微界面发生器可采用的其中一种形式而已。此外,在先专利201710766435.0中记载到“气泡破碎器的原理就是高速射流以达到气体相互碰撞”,并且也阐述了其可以用于微界面强化反应器,验证本身气泡破碎器与微界面发生器之间的关联性;而且在先专利CN106187660中对于气泡破碎器的具体结构也有相关的记载,具体见说明书中第[0031]-[0041]段,以及附图部分,其对气泡破碎器S-2的具体工作原理有详细的阐述,气泡破碎器顶部是液相进口,侧面是气相进口,通过从顶部进来的液相提供卷吸动力,从而达到粉碎成超细气泡的效果,附图中也可见气泡破碎器呈锥形的结构,上部的直径比下部的直径要大,也是为了液相能够更好的提供卷吸动力。
由于在先专利申请的初期,微界面发生器才刚研发出来,所以早期命名为微米气泡发生器(CN201610641119.6)、气泡破碎器(201710766435.0)等,随着不断技术改进,后期更名为微界面发生器,现在本发明中的微界面发生器相当于之前的微米气泡发生器、气泡破碎器等,只是名称不一样。
综上所述,本发明的微界面发生器属于现有技术,虽然有的气泡破碎器属于气动式气泡破碎器类型,有的气泡破碎器属于液动式气泡破碎器类型,还有的属于气液联动式气泡破碎器类型,但是类型之间的差别主要是根据具体工况的不同进行选择,另外关于微界面发生器与反应器、以及其他设备的连接,包括连接结构、连接位置,根据微界面发生器的结构而定,此不作限定。
优选地,所述氧化反应塔的内壁两侧均设置有用于提升反应效果的格栅。因为本身物料泡沫比较多,所以在氧化反应塔的中部也相应的设置有若干格栅。
优选地,本发明的微界面强化氧化***还包括有气液分离器,位于所述氧化反应塔内液体分布器上部的气相通过所述气液分离器气液分离后,气相排出处理,液相返回到受液盘的下部。然后液相参与反应,其中的气相部分通过泡 罩去往塔顶方向。
优选地,所述泡罩塔板的侧面设置有下降管,下降管内部为圆形的下降管,所述下降管紧贴下降管的内壁或者通过管道与所述下降管的内壁连接。
优选地,在氧化反应塔的外侧设置有下降管,下降管的上端与所述泡罩塔板连通,下端与所述混合微界面机组连通。下降管可以采用设置在氧化反应塔的内部或设置在氧化反应塔的外部的两种方式,设置在内部的下降管具体结构为具有圆形的下降管,当然下降管的设置位置可以直接贴壁设置也可以与壁面保持一定的距离。
另外,在混合微界面发生器的上部还相应的设置有多层塔板,目的是为了可以将全混流的状态转变为平推流,从而可以更好的消除反应产生的泡沫。
本发明还提供了一种制备双氧水的微界面强化氧化***的氧化方法,包括如下步骤:
将空气进行微界面破碎后,与氢化蒽醌进行氧化反应生成双氧水
优选地,氧化反应的温度为35-60℃,优选45-55℃,反应压力为0.2-0.4MPa,优选地0.25-0.35MPa。
采用本发明的氧化方法得到的双氧水产品品质好、收率高。且该制备方法本身反应温度低、压力大幅度下降,液时空速高,相当于提高了产能。
与现有技术相比,本发明的有益效果在于:
(1)本发明通过在氧化反应塔内部设置混合微界面机组,使得在空气与氢化蒽醌进行氧化反应之前将空气破碎为微气泡,提高空气与氢化蒽醌之间的相界传质面积,从而解决了现有技术中由于空气与氢化蒽醌在氧化反应塔内部无法得到充分混合,导致氧气利用率低,产品收率低的问题;
(2)本发明的氧化方法操作简便,反应得到的双氧水纯度高,应用广泛,提高了双氧水本身的适用面,值得广泛推广应用。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的制备双氧水的微界面强化氧化***结构示意图。
图中:
1-氧化反应塔;                  11-液相管道;
12-气相管道;                   13-混合微界面机组;
131-上置式微界面发生器;        132-下置式微界面发生器;
133-气液乳化物通道;            134-控制阀;
135-液相循环管道;              136-循环泵;
14-格栅;                       15-受液盘;
16-填料段;                     17-液体分布器;
18-气液分离器;                 19-下降管。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商 者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例
参阅图1所示,为本发明实施例的制备双氧水的微界面强化氧化***,其主要包括氧化反应塔1,以及设置在氧化反应塔1内部的混合微界面机组13,在氧化反应塔1内主要是氢化蒽醌与空气发生氧化反应生产双氧水,为了提高氧化效果,氧化反应塔的内壁两侧均设置有用于提升反应效果的格栅14,格栅14左右对称设置。
该实施例的混合微界面机组13包括连接上下连通的上置式微界面发生器131以及下置式微界面发生器132,所述上置式微界面发生器131以及所述下置式微界面发生器132之间设置有气液乳化物通道133,所述气液乳化物通道133连接有气液乳化物出口,所述气液乳化物出口紧贴于所述下置式微界面发 生器132的上侧壁,气液乳化物出口的朝向为沿水平方向的直管形状或为90°的折弯管,管口垂直朝上或者垂直朝下,本实施例为水平方向。上置式微界面发生器131的顶部设置有用于将塔内顶部的空气卷吸的卷吸管。
在本发明的实施例的混合微界面机组13中,上置式微界面发生器131为气液联动式微界面发生器或液动式微界面发生器,下置式微界面发生器132为气动式微界面发生器。气液联动式微界面发生器或液动式微界面发生器连接有液相循环管道135,所述液相循环管道135上设置有循环泵136,液相循环管道135用于给上置式微界面发生器131提供卷吸动力,从氧化反应塔1侧面以及从所氧化反应塔1的塔底出来的液相经过液体循环管道135返回上置式微界面发生器131的顶部。总之从氧化反应塔1的底部出来的液相一部分放空,另外一部分与从氧化反应塔1侧面出来的液相汇合经过气液分离器气液分离后,通过循环泵136返回。
通过微界面发生器机组的分散破碎作用,将氧气打碎成微米级尺度的微气泡,并将气泡释放到氧化反应塔1的内部,从而可以使空气以微气泡的状态与氢化蒽醌充分接触。
此外,上置式微界面发生器131以及所述下置式微界面发生器132分别设置有单独控制阀134,以用于微界面发生器阻塞时切换工作状态,下置式的微界面发生器一般选择为气动型所以比较容易发生阻塞,可以将其控制阀134关闭,只采用上置式微界面发生器131进行单独工作,且在上置式微界面发生器131进行工作时可以对下置式微界面发生器132进行冲洗。如果下置式微界面发生器不采用的情况下,气相可以直接通过气相管道的分支去往上置式微界面发生器进行卷吸。
在氧化反应塔1的侧面顶部设置有用于输送氢化蒽醌的液相管道11,在氧化反应塔的侧面底部设置有用于输送空气的气相管道12,液相管道11用于将氢化蒽醌输送进来,气相管道12用于将空气输送进来,以用于将空气通入微界面发生器中,这样气相与液相互逆流动增加接触几率。在氧化反应塔1内, 由上至下依次设置有液体分布器17、填料段16、受液盘15以及混合微界面机组13,这样从氧化反应塔上部来的液相通过液体分布器分布后,在填料段精馏反应后,通过泡罩积液后以提高反应效果。
且在氧化反应塔1顶部出来的气相还会去往与氧化反应塔1连接的气液分离器18,位于氧化反应塔1内液体分布器17上部的气相通过气液分离器18气液分离后,气相排出处理,液相返回到受液盘15的下部,受液盘上有若干升气管,液体从溢流堰溢流到下面来,气相通过升气管去往填料段。
在受液盘15的侧面设置有下降管,下降管19内部为圆形的下降管,所述下降管紧贴下降管19的内壁或者通过管道与所述下降管19的内壁连接,此外该下降管19也可以采用设置在外面的方式,下降管19的上端与所述受液盘15连通,下端与混合微界面机组13连通,该实施例主要采用将下降管19设置在内部的方式。
氧化反应塔1生成的产品去往下个萃取工段,尾气则进行回收处理,尾气中所含有的氧气不多,说明本发明的氧化方法氧气利用率很高。
为了增加分散、传质效果,也可以多增设额外的微界面发生器,安装位置其实也是不限的,可以外置也可以内置,内置时还可以采用安装在釜内的侧壁上相对设置,以实现从微界面发生的出口出来的微气泡发生对冲。
在上述实施例中,泵体的个数并没有具体要求,可根据需要在相应的位置设置。
该实施例中,氢化蒽醌的质量浓度为120g/L,有机溶剂为芳烃,氧化加热恒温为35℃,氧化反应塔1反应压力为0.2MPa,以15L/min流量通入空气,反应时间为10min,反应完成后取样分析转化率、氧气利用率。
氢化蒽醌的转化率=已反应的原料量/原始原料量*100%;
氧气的利用率=已反应的氧气量/原始空气中所含的氧气量*100%;
分析结果:氢化蒽醌的转化率为97.5%,氧气的利用率为97.5%。
实施例2
其他操作步骤与实施例1一致,只是氧化加热恒温为45℃,氧化反应塔1反应压力为0.25MPa,分析结果:氢化蒽醌的转化率为96.5%,氧气的利用率为96.5%。
实施例3
其他操作步骤与实施例1一致,只是氧化加热恒温为55℃,氧化反应塔1反应压力为0.35MPa,分析结果:氢化蒽醌的转化率为96.5%,氧气的利用率为96.5%。
比较例1
其他操作步骤与实施例1一致,只是不添加混合微界面机组13,分析结果:氢化蒽醌的转化率为91%,氧气的利用率为91%。
比较例2
其他操作步骤与实施例1一致,只是将混合微界面机组13更换为单个的气动类型的微界面发生器,分析结果:氢化蒽醌的转化率为96.5%,氧气的利用率为96.5%。
总之,与现有技术的制备双氧水的微界面强化氧化***相比,本发明的微界面强化氧化***设备组件少、占地面积小、能耗低、成本低、安全性高、反应可控,原料转化率高,相当于为双氧水制备领域提供了一种操作性更强的微界面强化氧化***,值得广泛推广应用。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相 应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (9)

  1. 一种制备双氧水的微界面强化氧化***,其特征在于,包括:氧化反应塔;所述氧化反应塔的侧面顶部设置有用于输送氢化蒽醌的液相管道,所述氧化反应塔的侧面底部设置有用于输送空气的气相管道;
    所述氧化反应塔内由上至下依次设置有液体分布器、填料段、受液盘以及混合微界面机组,其中所述混合微界面机组包括上下连通的上置式微界面发生器以及下置式微界面发生器;输送进来氢化蒽醌经过液体分布器分布后依次向下直到在所述混合微界面机组内与空气进行混合分散破碎。
  2. 根据权利要求1所述的微界面强化氧化***,其特征在于,还包括液体循环管道,从所述氧化反应塔侧面以及从所述氧化反应塔的塔底出来的液相经过所述液体循环管道返回所述上置式微界面发生器的顶部。
  3. 根据权利要求1所述的微界面强化氧化***,其特征在于,还包括气液分离器,位于所述氧化反应塔内液体分布器上部的气相通过所述气液分离器气液分离后,气相排出处理,液相返回到受液盘的下部。
  4. 根据权利要求1所述的微界面强化氧化***,其特征在于,所述泡罩塔板的侧面设置有下降管,下降管内部为圆形的下降管,所述下降管紧贴下降管的内壁或者通过管道与所述下降管的内壁连接。
  5. 根据权利要求1所述的微界面强化氧化***,其特征在于,在氧化反应塔的外侧设置有下降管。
  6. 根据权利要求1-5任一项所述的微界面强化氧化***,其特征在于,所述上置式微界面发生器以及所述下置式微界面发生器分别设置有单独控制阀,以用于微界面发生器阻塞时切换工作状态。
  7. 根据权利要求1-5任一项所述的微界面强化氧化***,其特征在于,所述上置式微界面发生器以及所述下置式微界面发生器之间设置有狭长的气液乳化物通道,所述气液乳化物通道连接有气液乳化物出口,所述气液乳化物出口紧贴于所述下置式微界面发生器的上侧壁。
  8. 采用权利要求1-7任一项所述的制备双氧水的微界面强化氧化***的氧化方法,其特征在于,包括如下步骤:
    将空气进行微界面破碎后,与氢化蒽醌进行氧化反应生成双氧水。
  9. 根据权利要求8所述的氧化方法,其特征在于,氧化反应的温度为35-60℃,优选45-55℃,反应压力为0.2-0.4MPa,优选地0.25-0.35MPa。
PCT/CN2021/109758 2021-07-16 2021-07-30 一种制备双氧水的微界面强化氧化***以及氧化方法 WO2023284028A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023563961A JP2024515084A (ja) 2021-07-16 2021-07-30 過酸化水素水を製造するマイクロ界面強化酸化システム及び酸化方法
EP21949806.0A EP4371934A1 (en) 2021-07-16 2021-07-30 Micro-interface enhanced oxidation system and oxidation method for preparing hydrogen peroxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110804027.6A CN113479851B (zh) 2021-07-16 2021-07-16 一种制备双氧水的微界面强化氧化***以及氧化方法
CN202110804027.6 2021-07-16

Publications (1)

Publication Number Publication Date
WO2023284028A1 true WO2023284028A1 (zh) 2023-01-19

Family

ID=77939757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109758 WO2023284028A1 (zh) 2021-07-16 2021-07-30 一种制备双氧水的微界面强化氧化***以及氧化方法

Country Status (4)

Country Link
EP (1) EP4371934A1 (zh)
JP (1) JP2024515084A (zh)
CN (1) CN113479851B (zh)
WO (1) WO2023284028A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114477387B (zh) * 2022-01-19 2023-04-28 南京延长反应技术研究院有限公司 一种海水电泳脱盐结合微界面强化制碱的装置及方法
CN114920346A (zh) * 2022-06-01 2022-08-19 江苏伟奥环境科技有限公司 一种用于废水氧化的多相强化反应器

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020065440A1 (en) * 2000-11-24 2002-05-30 Bernhard Maurer Process for continuous oxidation
CN102862961A (zh) * 2011-07-05 2013-01-09 上海睿思化工科技有限公司 一种蒽醌法制过氧化氢过程萃取新工艺
CN105903425A (zh) 2016-04-21 2016-08-31 南京大学 喷射反应器
CN106187660A (zh) 2016-09-08 2016-12-07 南京大学 苯加氢生产环己烷的装置和工艺
CN205833127U (zh) 2016-05-11 2016-12-28 南京大学 一种由环己烷制备环己酮的超高效氧化反应装置
CN206814394U (zh) * 2017-02-27 2017-12-29 中触媒新材料股份有限公司 一种蒽醌法制过氧化氢两相逆流接触式高效氧化塔式反应器
CN207581700U (zh) 2017-06-19 2018-07-06 南京大学 一种四氯-2-氰基吡啶的液相氯化法生产装置
CN109437390A (zh) 2018-12-19 2019-03-08 南京大学盐城环保技术与工程研究院 一种臭氧催化氧化废水的反应器及其使用方法
CN111389314A (zh) * 2020-03-31 2020-07-10 南京延长反应技术研究院有限公司 Px生产pta的内置微界面机组强化反应***及工艺
CN111569454A (zh) * 2020-03-31 2020-08-25 南京延长反应技术研究院有限公司 对二甲苯制备对苯二甲酸的内置微界面氧化***及方法
AU2020102890A4 (en) * 2020-07-13 2020-12-17 China National Air Separation Engineering Co., Ltd. Oxidation Tower System for Producing Hydrogen Peroxide with Anthraquinone Method
CN112499592A (zh) * 2019-09-14 2021-03-16 南京延长反应技术研究院有限公司 一种基于蒽醌法制备双氧水的***及工艺
CN112499593A (zh) * 2019-09-14 2021-03-16 南京延长反应技术研究院有限公司 一种基于蒽醌法制备双氧水的自动强化***及工艺
CN213505981U (zh) * 2019-09-14 2021-06-22 南京延长反应技术研究院有限公司 一种基于蒽醌法制备双氧水的***
CN213493579U (zh) * 2019-09-14 2021-06-22 南京延长反应技术研究院有限公司 一种基于蒽醌法制备双氧水的自动强化***
CN216038661U (zh) * 2021-07-16 2022-03-15 南京延长反应技术研究院有限公司 一种制备双氧水的微界面强化氧化***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204170713U (zh) * 2014-10-22 2015-02-25 中国石油化工股份有限公司 一种强化气液传质反应器
CN204265444U (zh) * 2014-10-22 2015-04-15 中国石油化工股份有限公司 一种双氧水生产用气液逆流反应器
CN111099563B (zh) * 2018-10-29 2021-06-11 中国石油化工股份有限公司 蒽醌法制备过氧化氢的氧化方法
CN112044364A (zh) * 2020-07-27 2020-12-08 南京延长反应技术研究院有限公司 一种氧化卤代甲苯制备卤代苯甲醛的智能反应***及方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020065440A1 (en) * 2000-11-24 2002-05-30 Bernhard Maurer Process for continuous oxidation
CN102862961A (zh) * 2011-07-05 2013-01-09 上海睿思化工科技有限公司 一种蒽醌法制过氧化氢过程萃取新工艺
CN105903425A (zh) 2016-04-21 2016-08-31 南京大学 喷射反应器
CN205833127U (zh) 2016-05-11 2016-12-28 南京大学 一种由环己烷制备环己酮的超高效氧化反应装置
CN106187660A (zh) 2016-09-08 2016-12-07 南京大学 苯加氢生产环己烷的装置和工艺
CN206814394U (zh) * 2017-02-27 2017-12-29 中触媒新材料股份有限公司 一种蒽醌法制过氧化氢两相逆流接触式高效氧化塔式反应器
CN207581700U (zh) 2017-06-19 2018-07-06 南京大学 一种四氯-2-氰基吡啶的液相氯化法生产装置
CN109437390A (zh) 2018-12-19 2019-03-08 南京大学盐城环保技术与工程研究院 一种臭氧催化氧化废水的反应器及其使用方法
CN112499593A (zh) * 2019-09-14 2021-03-16 南京延长反应技术研究院有限公司 一种基于蒽醌法制备双氧水的自动强化***及工艺
CN112499592A (zh) * 2019-09-14 2021-03-16 南京延长反应技术研究院有限公司 一种基于蒽醌法制备双氧水的***及工艺
CN213505981U (zh) * 2019-09-14 2021-06-22 南京延长反应技术研究院有限公司 一种基于蒽醌法制备双氧水的***
CN213493579U (zh) * 2019-09-14 2021-06-22 南京延长反应技术研究院有限公司 一种基于蒽醌法制备双氧水的自动强化***
CN111569454A (zh) * 2020-03-31 2020-08-25 南京延长反应技术研究院有限公司 对二甲苯制备对苯二甲酸的内置微界面氧化***及方法
CN111389314A (zh) * 2020-03-31 2020-07-10 南京延长反应技术研究院有限公司 Px生产pta的内置微界面机组强化反应***及工艺
AU2020102890A4 (en) * 2020-07-13 2020-12-17 China National Air Separation Engineering Co., Ltd. Oxidation Tower System for Producing Hydrogen Peroxide with Anthraquinone Method
CN216038661U (zh) * 2021-07-16 2022-03-15 南京延长反应技术研究院有限公司 一种制备双氧水的微界面强化氧化***

Also Published As

Publication number Publication date
CN113479851B (zh) 2023-02-03
JP2024515084A (ja) 2024-04-04
CN113479851A (zh) 2021-10-08
EP4371934A1 (en) 2024-05-22

Similar Documents

Publication Publication Date Title
WO2023284028A1 (zh) 一种制备双氧水的微界面强化氧化***以及氧化方法
WO2023284027A1 (zh) 一种制备双氧水的塔式强化氧化***以及方法
CN213505981U (zh) 一种基于蒽醌法制备双氧水的***
WO2022057004A1 (zh) 一种对甲基苯酚的微界面制备***及方法
US11919845B2 (en) Reaction system and method for preparing butyraldehyde by propylene carbonylation
WO2023284030A1 (zh) 一种即时脱水的dmc制备***及制备方法
CN111807926A (zh) 一种煤制乙醇的反应***及方法
CN112774592B (zh) 一种粗对苯二甲酸加氢精制的微界面反应***及方法
CN112499592A (zh) 一种基于蒽醌法制备双氧水的***及工艺
CN216038661U (zh) 一种制备双氧水的微界面强化氧化***
CN215540716U (zh) 一种制备双氧水的塔式强化氧化***
CN113546589A (zh) 一种微界面强化制备dmc的***及制备方法
CN113387332A (zh) 一种制备双氧水的微界面氧化***以及氧化方法
CN112142569A (zh) 一种对甲基苯酚的制备***及方法
CN216778779U (zh) 一种偏苯三甲酸的微界面制备***
CN113680286B (zh) 一种催化剂可循环使用的丙烯羰基化反应***及方法
CN216024809U (zh) 一种2-甲基四氢呋喃的微界面制备***
CN215540720U (zh) 一种微界面强化制备dmc的***
CN112774579B (zh) 一种粗对苯二甲酸加氢精制的智能微界面反应***及方法
WO2023284024A1 (zh) 正丁醛缩合制辛烯醛的微界面强化***及制备方法
CN215540715U (zh) 一种内置式即时脱水微界面强化dmc制备***
CN214598924U (zh) 一种丁辛醇的微界面制备装置
CN215559011U (zh) 一种制备双氧水的微界面氧化***
CN114471404A (zh) 一种偏苯三甲酸的微界面制备***及制备方法
CN113683545B (zh) 一种环己烷氧化制环己基过氧化氢的***及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949806

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023563961

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2021949806

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021949806

Country of ref document: EP

Effective date: 20240216