WO2023283871A1 - 光学***、取像模组及电子设备 - Google Patents

光学***、取像模组及电子设备 Download PDF

Info

Publication number
WO2023283871A1
WO2023283871A1 PCT/CN2021/106442 CN2021106442W WO2023283871A1 WO 2023283871 A1 WO2023283871 A1 WO 2023283871A1 CN 2021106442 W CN2021106442 W CN 2021106442W WO 2023283871 A1 WO2023283871 A1 WO 2023283871A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
image side
optical axis
concave
Prior art date
Application number
PCT/CN2021/106442
Other languages
English (en)
French (fr)
Inventor
杨健
华露
李明
Original Assignee
欧菲光集团股份有限公司
江西晶超光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 江西晶超光学有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2021/106442 priority Critical patent/WO2023283871A1/zh
Publication of WO2023283871A1 publication Critical patent/WO2023283871A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the invention relates to the field of imaging, in particular to an optical system, an imaging module and electronic equipment.
  • the nine-chip camera lens has obvious advantages and can obtain higher resolution, so it is often used in high-end electronic equipment to improve the image quality, resolution and clarity of shooting.
  • an optical system an imaging module and an electronic device are provided.
  • An optical system is characterized in that, along the optical axis, from the object side to the image side, sequentially comprising:
  • a first lens with positive refractive power the object side of the first lens is convex at the near optical axis, and the image side is concave at the near optical axis;
  • a second lens with negative refractive power the object side of the second lens is convex at the near optical axis, and the image side is concave at the near optical axis;
  • a seventh lens with refractive power the image side of the seventh lens is concave at the near optical axis;
  • An eighth lens with positive refractive power the object side of the eighth lens is convex at the near optical axis;
  • a ninth lens with negative refractive power the image side of the ninth lens is concave at the near optical axis;
  • TTL is the distance on the optical axis from the object side of the first lens to the imaging surface of the optical system, that is, the total optical length of the optical system
  • ImgH is the maximum field angle corresponding to the optical system Like half as high.
  • An image capturing module comprising a photosensitive element and the above-mentioned optical system, the photosensitive element is arranged on the image side of the optical system.
  • An electronic device includes a casing and the above-mentioned image-taking module, and the image-taking module is arranged on the casing.
  • FIG. 1 is a schematic structural view of the optical system in the first embodiment of the present application
  • Fig. 2 is the longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the first embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of an optical system in a second embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an optical system in a third embodiment of the present application.
  • FIG. 6 is a longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the third embodiment of the present application;
  • FIG. 7 is a schematic structural diagram of an optical system in a fourth embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an optical system in a fifth embodiment of the present application.
  • FIG. 10 is a longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the fifth embodiment of the present application;
  • FIG. 11 is a schematic structural diagram of an optical system in a sixth embodiment of the present application.
  • Fig. 12 is a longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the sixth embodiment of the present application;
  • FIG. 13 is a schematic structural diagram of an optical system in a seventh embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of an optical system in an eighth embodiment of the present application.
  • 16 is a longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the eighth embodiment of the present application;
  • Fig. 17 is a schematic diagram of an imaging module in an embodiment of the present application.
  • FIG. 18 is a schematic diagram of an electronic device in an embodiment of the present application.
  • the optical system 100 sequentially includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a Fifth lens L5, sixth lens L6, seventh lens L7, eighth lens L8, and ninth lens L9.
  • the first lens L1 includes the object side S1 and the image side S2
  • the second lens L2 includes the object side S3 and the image side S4
  • the third lens L3 includes the object side S5 and the image side S6
  • the fourth lens L4 includes the object side S7 and the image side S8
  • the fifth lens L5 includes the object side S9 and the image side S10
  • the sixth lens L6 includes the object side S11 and the image side S12
  • the seventh lens L7 includes the object side S13 and the image side S14
  • the eighth lens L8 includes the object side S11 and the image side S14.
  • the ninth lens L9 includes object side S17 and image side S18.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6, the seventh lens L7, the eighth lens L8 and the ninth lens L9 are coaxially arranged, and the optical system
  • the common axis of the lenses in 100 is the optical axis 110 of the optical system 100 .
  • the first lens L1 has a positive refractive power
  • the object side S1 of the first lens L1 is a convex surface at the near optical axis 110 , which is beneficial to shorten the total length of the optical system 100 and realize a miniaturized design.
  • the image side S2 of the first lens L1 is concave at the near optical axis 110 .
  • the second lens L2 has negative refractive power, and the image side S4 of the second lens S2 is concave at the near optical axis 110 , which is beneficial to correct the aberration generated by the first lens L1 .
  • the object side S3 of the second lens L2 is convex at the near optical axis 110 .
  • the cooperation between the refractive power and the corresponding surface shape of the first lens L1 and the second lens L2 is conducive to deflecting the light incident at a large angle, thereby helping to expand the field of view of the optical system 100, and at the same time it is beneficial to reduce the optical system 100. sensitivity.
  • the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 all have refractive power.
  • the image side S14 of the seventh lens L7 is concave at the near optical axis 110 .
  • the eighth lens L8 has positive refractive power, and the object side S15 of the eighth lens L8 is convex at the near optical axis 110 .
  • the ninth lens L9 has negative refractive power, and the image side S18 of the ninth lens L9 is concave at the near optical axis 110 .
  • At least one of the object side S17 and the image side S18 of the ninth lens L9 has an inflection point, and the setting of the inflection point is beneficial to make the refractive power configuration of the ninth lens L9 in the vertical axis direction more accurate. Balanced, which facilitates the correction of aberrations in the off-axis field of view.
  • the optical system 100 is provided with an aperture STO, and the aperture STO may be disposed on the object side of the first lens L1.
  • the optical system 100 also includes an image plane S21 located on the image side of the ninth lens L9, the image plane S21 is the imaging plane of the optical system 100, and the incident light passes through the first lens L1, the second lens L2, the third lens L3,
  • the fourth lens L4 , the fifth lens L5 , the sixth lens L6 , the seventh lens L7 , the eighth lens L8 and the ninth lens L9 can form an image on the image plane S21 after adjustment.
  • the optical system 100 further includes an infrared cutoff filter L10 disposed on the image side of the ninth lens L9, the infrared cutoff filter L10 is used to filter out interference light and prevent interference light from reaching the image surface of the optical system 100 S21 affects normal imaging.
  • the object side and the image side of each lens of the optical system 100 are both aspherical.
  • the adoption of aspheric structure can improve the flexibility of lens design, and effectively correct spherical aberration and improve imaging quality.
  • the object side and the image side of each lens of the optical system 100 may also be spherical. It should be noted that the above-mentioned embodiments are only examples of some embodiments of the present application, and in some embodiments, the surfaces of the lenses in the optical system 100 may be any combination of aspherical surfaces or spherical surfaces.
  • each lens in the optical system 100 may be made of glass or plastic.
  • the lens made of plastic material can reduce the weight of the optical system 100 and lower the production cost, and cooperate with the small size of the optical system 100 to realize the light and thin design of the optical system 100 .
  • the lens made of glass makes the optical system 100 have excellent optical performance and high temperature resistance.
  • the material of each lens in the optical system 100 may also be any combination of glass and plastic, not necessarily all glass or all plastic.
  • the first lens L1 does not mean that there is only one lens.
  • the surface of the cemented lens closest to the object side can be regarded as the object side S1, and the surface closest to the image side can be regarded as the image side S2.
  • no cemented lens is formed between the lenses in the first lens L1, but the distance between the lenses is relatively fixed.
  • the object side of the lens closest to the object side is the object side S1
  • the lens closest to the image side The image side is the image side S2.
  • the number of lenses in the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6, the seventh lens L7, the eighth lens L8 or the ninth lens L9 in some embodiments can also be greater than or equal to two pieces, and any adjacent lens can form a cemented lens, or it can be a non-cemented lens.
  • the optical system 100 satisfies the conditional formula: 1.35 ⁇ TTL/ImgH ⁇ 1.41; wherein, TTL is the distance from the object side S1 of the first lens L1 to the imaging plane of the optical system 100 on the optical axis 110 , ImgH is half of the image height corresponding to the maximum viewing angle of the optical system 100 .
  • TTL/ImgH can be: 1.364, 1.371, 1.382, 1.385, 1.390, 1.391, 1.395, 1.399, 1.401 or 1.402.
  • the optical system 100 can have a large image surface characteristic, so that it can cooperate with a photosensitive element with higher pixels to have better imaging quality, and it can also prevent the axial dimension of the optical system 100 from being too long, and then Taking into account the needs of electronic equipment for high imaging performance and miniaturization design.
  • the total optical length of the optical system 100 can be prevented from being too short relative to the height of the imaging image, so that the incident light has enough space to deflect when passing through each lens to achieve a smooth transition, and reduce the imaging definition to the system.
  • the sensitivity of the total optical length maintains the stability of the imaging quality, and also helps to reduce the design difficulty of the optical system 100 .
  • the optical system 100 with the above design can meet the requirements of high imaging performance and miniaturization design, and at the same time help to reduce the sensitivity and design difficulty of the optical system 100 .
  • the optical system 100 can match a photosensitive element with a rectangular photosensitive surface, and the imaging surface of the optical system 100 coincides with the photosensitive surface of the photosensitive element.
  • the effective pixel area on the imaging surface of the optical system 100 has a horizontal direction and a diagonal direction, then the maximum field of view FOV of the optical system 100 can be understood as the maximum field of view in the diagonal direction of the optical system 100, and ImgH can be understood is half of the length in the diagonal direction of the effective pixel area on the imaging plane of the optical system 100 .
  • the optical system 100 satisfies the conditional formula: 1.4 ⁇ f/EPD ⁇ 1.8; wherein, f is the effective focal length of the optical system 100 , and EPD is the entrance pupil diameter of the optical system 100 .
  • f/EPD may be: 1.482, 1.510, 1.533, 1.628, 1.632, 1.688, 1.703, 1.725, 1.765 or 1.800. Satisfying the upper limit of the above conditional formula is beneficial to enable the optical system 100 to have a larger aperture and higher light throughput, and further enable the optical system 100 to have good imaging quality even in low-light environments.
  • the incident light amount of the optical system 100 will not be too large, which is beneficial to limit the generation of aberrations in the peripheral field of view. Therefore, when the above conditional expression is satisfied, the optical system 100 can realize the characteristic of a large aperture and have good imaging quality in a low-light environment.
  • the optical system 100 satisfies the conditional formula: -6 ⁇ f2/f123 ⁇ -2.5; wherein, f2 is the effective focal length of the second lens L2, and f123 is the first lens L1, the second lens L2 and the third lens Combined focal length of L3.
  • f2/f123 may be: -5.900, -5.822, -5.112, -4.356, -4.212, -3.987, -3.555, -2.778, -2.612 or -2.563.
  • the refractive power of the second lens L2 in the first three lenses is reasonably configured, which is conducive to the smooth transition of the incident light through the first three lenses of the optical system 100, thereby helping to slow down the deflection angle of the peripheral field of view light , reducing the burden of light deflected by each lens on the image side of the third lens L3, which is beneficial to reducing the sensitivity of the optical system 100, and is also beneficial to suppressing the aberration of the first three lenses, thereby improving the imaging quality; in addition , rationally configuring the contribution of the negative refractive power of the second lens L2 is conducive to shortening the total length of the system and realizing a miniaturized design.
  • the surface shape of the second lens L2 will not be excessively curved, and the processability of the second lens L2 can be improved. The difficulty of forming the second lens L2 is reduced.
  • the optical system 100 satisfies the conditional formula: 1 ⁇ f45/f67 ⁇ 9; wherein, f45 is the combined focal length of the fourth lens L4 and the fifth lens L5, and f67 is the combined focal length of the sixth lens L6 and the seventh lens L7 Combined focal length.
  • f45/f67 may be: 1.224, 1.556, 1.842, 2.111, 2.124, 2.653, 3.451, 4.300, 4.414 or 8.67.
  • the ratio of the combined focal length of the fourth lens L4 and the fifth lens L5 and the combined focal length of the sixth lens L6 and the seventh lens L7 can be reasonably configured, so that the fourth lens L4 and the fifth lens L5 can effectively Balancing the aberrations produced by the object-side and image-side lenses is conducive to the mutual balance of aberrations between the fourth lens L4 and the fifth lens L5, as well as the sixth lens L6 and the seventh lens L7, and is conducive to improving the field curvature of the optical system 100 and distortion, improving the imaging quality of the optical system 100.
  • the total refractive power provided by the fourth lens L4 and the fifth lens L5 is too small to balance the aberrations produced by the front and rear lenses, resulting in reduced image quality; when f45/f67 ⁇ 1, the fourth lens The negative refractive power provided by the lens L4 and the fifth lens L5 is too strong, which may easily increase the sensitivity of the optical system 100 , which is not conducive to realizing the miniaturization and large aperture characteristics of the system.
  • the optical system 100 satisfies the conditional formula: 1 ⁇ f89/f ⁇ 7.5; wherein, f89 is the combined focal length of the eighth lens L8 and the ninth lens L9 , and f is the effective focal length of the optical system 100 .
  • f89/f can be: 1.311, 1.355, 1.377, 1.421, 1.455, 1.497, 1.502, 1.521, 1.566 or 7.271.
  • the contribution of the refractive power of the eighth lens L8 and the ninth lens L9 can be reasonably distributed, which is conducive to the reasonable transition of the incident light to the imaging surface at the eighth lens L8 and the ninth lens L9, thereby helping to reduce the optical
  • the deflection angle of the light in the system 100 reduces the sensitivity of the optical system 100 , which is beneficial to improve the imaging quality of the optical system 100 .
  • the refractive power provided by the eighth lens L8 and the ninth lens L9 is too small, which is not conducive to the deflection of light in the peripheral field of view, which will easily lead to serious stray light in the peripheral field of view, and will also increase ghosting.
  • the risk of shadows will reduce the imaging quality; when f89/f ⁇ 1, the refractive power provided by the eighth lens L8 and the ninth lens L9 is too strong, which is not conducive to the smooth transition of light, and it is easy to increase the sensitivity of the optical system 100.
  • the imaging quality of the optical system 100 is reduced.
  • the optical system 100 satisfies the conditional formula: 0.55 ⁇ ACT/TTL ⁇ 0.65; wherein, ACT is the sum of the thicknesses of the lenses in the optical system 100 on the optical axis 110 .
  • ACT/TTL may be: 0.596, 0.598, 0.601, 0.603, 0.608, 0.614, 0.617, 0.619, 0.621 or 0.624.
  • the optical system 100 satisfies the conditional formula: -18.3 ⁇ (SAG81-SAG72)/ET78 ⁇ 0.7; wherein, SAG81 is the sagittal height of the object side S15 of the eighth lens L8 at the maximum effective aperture, and SAG72 is the seventh The sagittal height of the image side S14 of the lens L7 at the maximum effective aperture, ET78 is the distance from the maximum effective aperture of the image side S14 of the seventh lens L7 to the maximum effective aperture of the object side S15 of the eighth lens L8 in the direction of the optical axis 110.
  • (SAG81-SAG72)/ET78 may be: -18.201, -1.995, -1.521, -1.112, 0.001, 0.335, 0.457, 0.512, 0.594 or 0.644.
  • the sagittal height and air gap of the image side S14 of the seventh lens L7 and the object side S15 of the eighth lens S8 can be reasonably arranged, which is beneficial to the effective deflection of the light at the seventh lens L7 and the eighth lens L8, thereby It is beneficial to reduce the chief ray angle on the imaging surface of the optical system 100, thereby effectively improving the relative brightness of the optical system 100 and improving the imaging definition.
  • the optical system 100 satisfies the conditional formula: 1.3 ⁇ SD62/SD41 ⁇ 1.6; wherein, SD62 is half of the maximum effective aperture of the image side S12 of the sixth lens L6, and SD41 is the maximum diameter of the object side S7 of the fourth lens L4. half of the effective diameter.
  • SD62/SD41 may be: 1.393, 1.401, 1.425, 1.453, 1.460, 1.477, 1.489, 1.501, 1.510 or 1.513.
  • the ratio of the maximum effective semi-diameter of the sixth lens L6 on the image side S12 to the maximum effective semi-diameter of the fourth lens L4 on the object side S7 can be reasonably configured, which is conducive to reducing the axial size of the front lens group, thereby having It is beneficial to the miniaturization design of the optical system 100 , and at the same time, it is beneficial for the optical system 100 to have a large image surface, which can match photosensitive elements with higher pixels, and improve the resolution of the system.
  • the step difference between the effective apertures of the fourth lens L4 to the sixth lens L6 is too large, which is not conducive to obtaining a smaller deflection angle for marginal rays, and at the same time reduces the assembly stability of the optical system 100 .
  • the optical system 100 satisfies the conditional formula: 2.8 ⁇ (SD92-SD22)/
  • the image side S4 of L2 is half of the maximum effective aperture
  • SAG92 is the sagittal height of the image side S18 of the ninth lens L9 at the maximum effective aperture.
  • may be: 2.856, 2.915, 3.022, 3.147, 3.268, 3.355, 3.474, 3.552, 3.632 or 3.749.
  • the difference between the maximum effective radius of the second lens L2 and the ninth lens L9 and the ratio of the height of the image side S18 of the ninth lens L9 can be reasonably configured, which is beneficial to the ratio of the second lens L2 to the ninth lens L18.
  • the effective aperture step difference is controlled within a reasonable range, which is conducive to shortening the total length of the system, and at the same time, it is beneficial to increase the aperture of the optical system 100; in addition, it is beneficial to reasonably restrict the sagittal height of the image side S18 of the ninth lens L9, thereby benefiting the ninth lens L9
  • the aberrations produced by the lenses on the object side are corrected, and at the same time, the surface shape of the image side S18 of the ninth lens L9 is not excessively curved, and the processability of the ninth lens L9 is improved.
  • the reference wavelength of the above effective focal length and combined focal length values is 555nm.
  • FIG. 1 is a schematic structural diagram of an optical system 100 in the first embodiment.
  • the optical system 100 includes an aperture STO, a first lens L1 with positive refractive power, and a first lens L1 with The second lens L2 with negative refractive power, the third lens L3 with positive refractive power, the fourth lens L4 with negative refractive power, the fifth lens L5 with positive refractive power, the sixth lens L6 with negative refractive power, Seventh lens L7 with negative refractive power, eighth lens L8 with positive refractive power, and ninth lens L9 with negative refractive power.
  • 2 is, from left to right, graphs of longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the first embodiment, where the reference wavelength of the astigmatism graph and distortion graph is 555nm, and other embodiments are the same.
  • the object side S1 of the first lens L1 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S2 of the first lens L1 is concave at the near optical axis 110 and convex at the circumference;
  • the object side S3 of the second lens L2 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the image side S4 of the second lens L2 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S6 of the third lens L3 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the object side S7 of the fourth lens L4 is concave at the near optical axis 110 and convex at the circumference;
  • the image side S8 of the fourth lens L4 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S9 of the fifth lens L5 is convex at the near optical axis 110 and convex at the circumference;
  • the image side S10 of the fifth lens L5 is convex at the near optical axis 110 and concave at the circumference;
  • the object side S11 of the sixth lens L6 is concave at the near optical axis 110 and convex at the circumference;
  • the image side S12 of the sixth lens L6 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the object side S13 of the seventh lens L7 is convex at the near optical axis 110 and convex at the circumference;
  • the image side S14 of the seventh lens L7 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S15 of the eighth lens L8 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S16 of the eighth lens L8 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S17 of the ninth lens L9 is a concave surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S18 of the ninth lens L9 is concave at the near optical axis 110 and convex at the circumference.
  • first lens L1, second lens L2, third lens L3, fourth lens L4, fifth lens L5, sixth lens L6, seventh lens L7, eighth lens L8, and ninth lens L9 All are aspherical.
  • one surface of the lens is convex at the near optical axis 110 (the central area of the surface)
  • the area of the surface of the lens near the optical axis 110 is convex .
  • one surface of a lens is concave at the circumference, it is understood that the surface is concave in a region near the maximum effective radius.
  • the surface when the surface is convex near the optical axis 110 and also convex at the circumference, the surface may be purely convex in shape from the center (the intersection of the surface and the optical axis 110 ) to the edge; Or transition from a convex shape in the center to a concave shape, then become convex as you approach the maximum effective radius.
  • the various shape structures (concave-convex relationship) of the surface are not fully reflected, but other situations can be deduced according to the above examples.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 , the seventh lens L7 , the eighth lens L8 and the ninth lens L9 are all plastic.
  • TTL is the distance from the object side S1 of the first lens L1 to the imaging plane of the optical system 100 on the optical axis 110
  • ImgH is the maximum Half of the image height corresponding to the field of view.
  • the refractive power of the second lens L2 in the first three lenses is reasonably configured, which is conducive to the smooth transition of the incident light through the first three lenses of the optical system 100, thereby helping to slow down the deflection angle of the peripheral field of view light , reducing the burden of light deflected by each lens on the image side of the third lens L3, which is beneficial to reducing the sensitivity of the optical system 100, and is also beneficial to suppressing the aberration of the first three lenses, thereby improving the imaging quality; in addition , rationally configuring the contribution of the negative refractive power of the second lens L2 is conducive to shortening the total length of the system and realizing a miniaturized design.
  • the surface shape of the second lens L2 will not be excessively curved, and the processability of the second lens L2 can be improved. The difficulty of forming the second lens L2 is reduced.
  • the ratio of the combined focal length of the fourth lens L4 and the fifth lens L5 and the combined focal length of the sixth lens L6 and the seventh lens L7 can be reasonably configured, so that the fourth lens L4 and the fifth lens L5 can effectively Balancing the aberrations produced by the object-side and image-side lenses is conducive to the mutual balance of aberrations between the fourth lens L4 and the fifth lens L5, as well as the sixth lens L6 and the seventh lens L7, and is conducive to improving the field curvature of the optical system 100 and distortion, improving the imaging quality of the optical system 100.
  • the total refractive power provided by the fourth lens L4 and the fifth lens L5 is too small to balance the aberrations produced by the front and rear lenses, resulting in reduced image quality; when f45/f67 ⁇ 1, the fourth lens The negative refractive power provided by the lens L4 and the fifth lens L5 is too strong, which may easily increase the sensitivity of the optical system 100 , which is not conducive to realizing the miniaturization and large aperture characteristics of the system.
  • f89 is the combined focal length of the eighth lens L8 and the ninth lens L9
  • f is the effective focal length of the optical system 100 .
  • the contribution of the refractive power of the eighth lens L8 and the ninth lens L9 can be reasonably distributed, which is conducive to the reasonable transition of the incident light to the imaging surface at the eighth lens L8 and the ninth lens L9, thereby helping to reduce the optical
  • the deflection angle of the light in the system 100 reduces the sensitivity of the optical system 100 , which is beneficial to improve the imaging quality of the optical system 100 .
  • the refractive power provided by the eighth lens L8 and the ninth lens L9 is too small, which is not conducive to the deflection of light in the peripheral field of view, which will easily lead to serious stray light in the peripheral field of view, and will also increase ghosting.
  • the risk of shadows will reduce the imaging quality; when f89/f ⁇ 1, the refractive power provided by the eighth lens L8 and the ninth lens L9 is too strong, which is not conducive to the smooth transition of light, and it is easy to increase the sensitivity of the optical system 100.
  • the imaging quality of the optical system 100 is reduced.
  • ACT is the sum of the thicknesses of the lenses in the optical system 100 on the optical axis 110 .
  • the ratio of the sum of the center thicknesses of each lens to the total optical length of the system can be reasonably configured, which is conducive to having sufficient air gaps between adjacent lenses, thereby reducing the difficulty of assembling the optical system 100 and improving assembly stability.
  • the sagittal height and air gap of the image side S14 of the seventh lens L7 and the object side S15 of the eighth lens S8 can be reasonably arranged, which is beneficial to the effective deflection of the light at the seventh lens L7 and the eighth lens L8, thereby It is beneficial to reduce the chief ray angle on the imaging surface of the optical system 100, thereby effectively improving the relative brightness of the optical system 100 and improving the imaging definition.
  • the ratio of the maximum effective semi-diameter of the sixth lens L6 on the image side S12 to the maximum effective semi-diameter of the fourth lens L4 on the object side S7 can be reasonably configured, which is conducive to reducing the axial size of the front lens group, thereby having It is beneficial to the miniaturization design of the optical system 100 , and at the same time, it is beneficial for the optical system 100 to have a large image surface, which can match photosensitive elements with higher pixels, and improve the resolution of the system.
  • the step difference between the effective apertures of the fourth lens L4 to the sixth lens L6 is too large, which is not conducive to obtaining a smaller deflection angle for marginal rays, and at the same time reduces the assembly stability of the optical system 100 .
  • the optical system 100 satisfies the conditional formula: (SD92-SD22)/
  • 2.926; wherein, SD92 is half of the maximum effective aperture of the image side S18 of the ninth lens L9, and SD22 is the maximum effective aperture of the image side S4 of the second lens L2 half of , SAG92 is the sagittal height of the image side S18 of the ninth lens L9 at the maximum effective aperture.
  • SD92 is half of the maximum effective aperture of the image side S18 of the ninth lens L9
  • SD22 is the maximum effective aperture of the image side S4 of the second lens L2 half of
  • SAG92 is the sagittal height of the image side S18 of the ninth lens L9 at the maximum effective aperture.
  • the effective aperture step difference is controlled within a reasonable range, which is conducive to shortening the total length of the system, and at the same time, it is beneficial to increase the aperture of the optical system 100; in addition, it is beneficial to reasonably restrict the sagittal height of the image side S18 of the ninth lens L9, thereby benefiting the ninth lens L9
  • the aberrations produced by the lenses on the object side are corrected, and at the same time, the surface shape of the image side S18 of the ninth lens L9 is not excessively curved, and the processability of the ninth lens L9 is improved.
  • the image plane S21 in Table 1 can be understood as the imaging plane of the optical system 100 .
  • the elements from the object plane (not shown in the figure) to the image plane S21 are arranged in sequence according to the order of the elements in Table 1 from top to bottom.
  • the Y radius in Table 1 is the radius of curvature at the optical axis 110 on the object side or image side of the corresponding plane number.
  • the surface number S1 and the surface number S2 are the object side S1 and the image side S2 of the first lens L1 respectively, that is, in the same lens, the surface with a smaller surface number is the object side, and the surface with a larger surface number is the image side.
  • the first value in the "thickness" parameter column of the first lens L1 is the thickness of the lens on the optical axis 110
  • the second value is the rear surface of the lens in the direction from the image side to the image side on the optical axis 110 distance.
  • the optical system 100 may not be provided with the infrared cut filter L10, but at this time the distance from the image side S18 to the image surface S21 of the ninth lens L9 remains unchanged.
  • the optical system 100 all satisfies the conditional formula: 1.4 ⁇ FNO ⁇ 1.8; 7.641mm ⁇ TTL ⁇ 7.720mm; 5.45mm ⁇ ImgH ⁇ 5.51mm; wherein, the numerical range of the aperture number FNO can be known
  • the optical system 100 has the characteristics of a large aperture, and can also have good imaging quality in low-light environments.
  • the numerical range of the total optical length TTL shows that the optical system 100 can meet the needs of miniaturized design
  • the numerical range of the half-image height ImgH shows that the optical system 100 It has the characteristics of a large image surface, can match a photosensitive element with high pixels, and improves the resolution of the optical system 100 .
  • the reference wavelength of the focal length of each lens is 555nm
  • the reference wavelength of the refractive index and Abbe number are both 587.56nm (d-line), and other embodiments are also the same.
  • the aspheric coefficients of each lens of the optical system 100 on the image side or the object side are given in Table 2.
  • the plane numbers from S1-S18 represent the image side or the object side S1-S18 respectively.
  • the K-A20 from top to bottom represent the types of aspheric coefficients, among which, K represents the conic coefficient, A4 represents the fourth degree aspheric coefficient, A6 represents the sixth degree aspheric coefficient, and A8 represents the eighth degree aspheric coefficient. analogy.
  • the aspheric coefficient formula is as follows:
  • Z is the distance from the corresponding point on the aspheric surface to the plane tangent to the vertex of the surface
  • r is the distance from the corresponding point on the aspheric surface to the optical axis 110
  • c is the curvature of the vertex of the aspheric surface
  • k is the conic coefficient
  • Ai is the The coefficient corresponding to the i-th high-order term in the spherical surface formula.
  • FIG. 2 includes a Longitudinal Spherical Aberration diagram (Longitudinal Spherical Aberration) of the optical system 100 , which indicates the deviation of converging focal points of light rays of different wavelengths after passing through the lens.
  • the ordinate of the longitudinal spherical aberration diagram represents the normalized pupil coordinate (Normalized Pupil Coordinator) from the pupil center to the pupil edge, and the abscissa represents the distance from the imaging plane to the intersection point of the ray and the optical axis 110 (in mm) .
  • FIG. 2 also includes the field curvature diagram (ASTIGMATIC FIELD CURVES) of the optical system 100, wherein the S curve represents the sagittal field curvature at 555nm, and the T curve represents the meridian field curvature at 555nm. It can be seen from the figure that the field curvature of the optical system 100 is small, the field curvature and astigmatism of each field of view are well corrected, and the center and edge of the field of view have clear imaging.
  • FIG. 2 also includes a distortion diagram (DISTORTION) of the optical system 100. It can be seen from the diagram that the image distortion caused by the main beam is small, and the imaging quality of the system is excellent.
  • DISTORTION distortion diagram
  • FIG. 3 is a schematic structural view of the optical system 100 in the second embodiment.
  • the optical system 100 includes an aperture STO, a first lens L1 with positive refractive power, and a first lens L1 with The second lens L2 with negative refractive power, the third lens L3 with positive refractive power, the fourth lens L4 with negative refractive power, the fifth lens L5 with negative refractive power, the sixth lens L6 with negative refractive power, Seventh lens L7 with negative refractive power, eighth lens L8 with positive refractive power, and ninth lens L9 with negative refractive power.
  • FIG. 4 is a graph of longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the second embodiment from left to right.
  • the object side S1 of the first lens L1 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S2 of the first lens L1 is concave at the near optical axis 110 and convex at the circumference;
  • the object side S3 of the second lens L2 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the image side S4 of the second lens L2 is concave at the near optical axis 110 and concave at the circumference;
  • the object side S5 of the third lens L3 is concave at the near optical axis 110 and concave at the circumference;
  • the image side S6 of the third lens L3 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the object side S7 of the fourth lens L4 is concave at the near optical axis 110 and convex at the circumference;
  • the image side S8 of the fourth lens L4 is convex at the near optical axis 110 and concave at the circumference;
  • the object side surface S9 of the fifth lens L5 is concave at the near optical axis 110 and convex at the circumference;
  • the image side S10 of the fifth lens L5 is concave at the near optical axis 110 and concave at the circumference;
  • the object side S11 of the sixth lens L6 is concave at the near optical axis 110 and convex at the circumference;
  • the image side S12 of the sixth lens L6 is convex at the near optical axis 110 and concave at the circumference;
  • the object side S13 of the seventh lens L7 is concave at the near optical axis 110 and convex at the circumference;
  • the image side S14 of the seventh lens L7 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S15 of the eighth lens L8 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S16 of the eighth lens L8 is convex at the near optical axis 110 and concave at the circumference;
  • the object side surface S17 of the ninth lens L9 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S18 of the ninth lens L9 is concave at the near optical axis 110 and convex at the circumference.
  • first lens L1, second lens L2, third lens L3, fourth lens L4, fifth lens L5, sixth lens L6, seventh lens L7, eighth lens L8, and ninth lens L9 All are aspherical.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 , the seventh lens L7 , the eighth lens L8 and the ninth lens L9 are all plastic.
  • FIG. 5 is a schematic structural view of the optical system 100 in the third embodiment.
  • the optical system 100 includes an aperture STO, a first lens L1 with positive refractive power, and a first lens L1 with The second lens L2 with negative refractive power, the third lens L3 with positive refractive power, the fourth lens L4 with positive refractive power, the fifth lens L5 with negative refractive power, the sixth lens L6 with positive refractive power, Seventh lens L7 with negative refractive power, eighth lens L8 with positive refractive power, and ninth lens L9 with negative refractive power.
  • FIG. 6 is a graph of longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the third embodiment from left to right.
  • the object side S1 of the first lens L1 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the image side S2 of the first lens L1 is concave at the near optical axis 110 and convex at the circumference;
  • the object side S3 of the second lens L2 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the image side S4 of the second lens L2 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S6 of the third lens L3 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the object side S7 of the fourth lens L4 is concave at the near optical axis 110 and convex at the circumference;
  • the image side S8 of the fourth lens L4 is convex at the near optical axis 110 and concave at the circumference;
  • the object side surface S9 of the fifth lens L5 is concave at the near optical axis 110 and concave at the circumference;
  • the image side S10 of the fifth lens L5 is concave at the near optical axis 110 and concave at the circumference;
  • the object side S11 of the sixth lens L6 is concave at the near optical axis 110 and concave at the circumference;
  • the image side S12 of the sixth lens L6 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the object side S13 of the seventh lens L7 is convex at the near optical axis 110 and convex at the circumference;
  • the image side S14 of the seventh lens L7 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S15 of the eighth lens L8 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S16 of the eighth lens L8 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S17 of the ninth lens L9 is a concave surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S18 of the ninth lens L9 is concave at the near optical axis 110 and convex at the circumference.
  • first lens L1, second lens L2, third lens L3, fourth lens L4, fifth lens L5, sixth lens L6, seventh lens L7, eighth lens L8, and ninth lens L9 All are aspherical.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 , the seventh lens L7 , the eighth lens L8 and the ninth lens L9 are all plastic.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 6, and the definition of each parameter can be obtained from the first embodiment, and will not be repeated here.
  • FIG. 7 is a schematic structural view of the optical system 100 in the fourth embodiment.
  • the optical system 100 includes an aperture STO, a first lens L1 with positive refractive power, and a first lens L1 with The second lens L2 with negative refractive power, the third lens L3 with positive refractive power, the fourth lens L4 with negative refractive power, the fifth lens L5 with negative refractive power, the sixth lens L6 with positive refractive power, Seventh lens L7 with negative refractive power, eighth lens L8 with positive refractive power, and ninth lens L9 with negative refractive power.
  • FIG. 8 is a graph of longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the fourth embodiment from left to right.
  • the object side S1 of the first lens L1 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the image side S2 of the first lens L1 is concave at the near optical axis 110 and convex at the circumference;
  • the object side S3 of the second lens L2 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the image side S4 of the second lens L2 is concave at the near optical axis 110 and concave at the circumference;
  • the object side S5 of the third lens L3 is convex at the near optical axis 110 and convex at the circumference;
  • the image side S6 of the third lens L3 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the object side S7 of the fourth lens L4 is concave at the near optical axis 110 and convex at the circumference;
  • the image side S8 of the fourth lens L4 is convex at the near optical axis 110 and concave at the circumference;
  • the object side surface S9 of the fifth lens L5 is concave at the near optical axis 110 and convex at the circumference;
  • the image side S10 of the fifth lens L5 is concave at the near optical axis 110 and concave at the circumference;
  • the object side S11 of the sixth lens L6 is concave at the near optical axis 110 and concave at the circumference;
  • the image side S12 of the sixth lens L6 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the object side S13 of the seventh lens L7 is convex at the near optical axis 110 and convex at the circumference;
  • the image side S14 of the seventh lens L7 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S15 of the eighth lens L8 is a convex surface at the near optical axis 110, and a convex surface at the circumference;
  • the image side S16 of the eighth lens L8 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S17 of the ninth lens L9 is a concave surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S18 of the ninth lens L9 is concave at the near optical axis 110 and convex at the circumference.
  • first lens L1, second lens L2, third lens L3, fourth lens L4, fifth lens L5, sixth lens L6, seventh lens L7, eighth lens L8, and ninth lens L9 All are aspherical.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 , the seventh lens L7 , the eighth lens L8 and the ninth lens L9 are all plastic.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 8, and the definition of each parameter can be obtained from the first embodiment, and will not be repeated here.
  • FIG. 9 is a schematic structural diagram of an optical system 100 in the fifth embodiment.
  • the optical system 100 includes an aperture STO, a first lens L1 with positive refractive power, and a first lens L1 with The second lens L2 with negative refractive power, the third lens L3 with positive refractive power, the fourth lens L4 with negative refractive power, the fifth lens L5 with negative refractive power, the sixth lens L6 with positive refractive power, Seventh lens L7 with negative refractive power, eighth lens L8 with positive refractive power, and ninth lens L9 with negative refractive power.
  • FIG. 10 is a graph of longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the fifth embodiment, from left to right.
  • the object side S1 of the first lens L1 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the image side S2 of the first lens L1 is concave at the near optical axis 110 and convex at the circumference;
  • the object side S3 of the second lens L2 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the image side S4 of the second lens L2 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S6 of the third lens L3 is concave at the near optical axis 110 and convex at the circumference;
  • the object side S7 of the fourth lens L4 is concave at the near optical axis 110 and convex at the circumference;
  • the image side S8 of the fourth lens L4 is convex at the near optical axis 110 and concave at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S10 of the fifth lens L5 is concave at the near optical axis 110 and concave at the circumference;
  • the object side S11 of the sixth lens L6 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S12 of the sixth lens L6 is concave at the near optical axis 110 and concave at the circumference;
  • the object side S13 of the seventh lens L7 is convex at the near optical axis 110 and convex at the circumference;
  • the image side S14 of the seventh lens L7 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S15 of the eighth lens L8 is a convex surface at the near optical axis 110, and a convex surface at the circumference;
  • the image side S16 of the eighth lens L8 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S17 of the ninth lens L9 is a concave surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S18 of the ninth lens L9 is concave at the near optical axis 110 and convex at the circumference.
  • first lens L1, second lens L2, third lens L3, fourth lens L4, fifth lens L5, sixth lens L6, seventh lens L7, eighth lens L8, and ninth lens L9 All are aspherical.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 , the seventh lens L7 , the eighth lens L8 and the ninth lens L9 are all plastic.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 10, and the definition of each parameter can be obtained from the first embodiment, and will not be repeated here.
  • the optical system 100 of this embodiment has good imaging quality.
  • FIG. 11 is a schematic structural diagram of an optical system 100 in the sixth embodiment.
  • the optical system 100 includes an aperture STO, a first lens L1 with positive refractive power, and a first lens L1 with The second lens L2 with negative refractive power, the third lens L3 with positive refractive power, the fourth lens L4 with negative refractive power, the fifth lens L5 with negative refractive power, the sixth lens L6 with negative refractive power, The seventh lens L7 with positive refractive power, the eighth lens L8 with positive refractive power, and the ninth lens L9 with negative refractive power.
  • FIG. 12 is a graph of longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the sixth embodiment from left to right.
  • the object side S1 of the first lens L1 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S2 of the first lens L1 is concave at the near optical axis 110 and convex at the circumference;
  • the object side S3 of the second lens L2 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the image side S4 of the second lens L2 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S6 of the third lens L3 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the object side S7 of the fourth lens L4 is concave at the near optical axis 110 and convex at the circumference;
  • the image side S8 of the fourth lens L4 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S9 of the fifth lens L5 is concave at the near optical axis 110 and convex at the circumference;
  • the image side S10 of the fifth lens L5 is convex at the near optical axis 110 and concave at the circumference;
  • the object side S11 of the sixth lens L6 is concave at the near optical axis 110 and convex at the circumference;
  • the image side S12 of the sixth lens L6 is convex at the near optical axis 110 and concave at the circumference;
  • the object side S13 of the seventh lens L7 is convex at the near optical axis 110 and convex at the circumference;
  • the image side S14 of the seventh lens L7 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S15 of the eighth lens L8 is a convex surface at the near optical axis 110, and a convex surface at the circumference;
  • the image side S16 of the eighth lens L8 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S17 of the ninth lens L9 is a concave surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S18 of the ninth lens L9 is concave at the near optical axis 110 and convex at the circumference.
  • first lens L1, second lens L2, third lens L3, fourth lens L4, fifth lens L5, sixth lens L6, seventh lens L7, eighth lens L8, and ninth lens L9 All are aspherical.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 , the seventh lens L7 , the eighth lens L8 and the ninth lens L9 are all plastic.
  • FIG. 13 is a schematic structural diagram of an optical system 100 in the seventh embodiment.
  • the optical system 100 includes an aperture STO, a first lens L1 with positive refractive power, and a first lens L1 with The second lens L2 with negative refractive power, the third lens L3 with negative refractive power, the fourth lens L4 with positive refractive power, the fifth lens L5 with negative refractive power, the sixth lens L6 with positive refractive power, Seventh lens L7 with negative refractive power, eighth lens L8 with positive refractive power, and ninth lens L9 with negative refractive power.
  • FIG. 14 is the graphs of the longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the seventh embodiment from left to right.
  • the object side S1 of the first lens L1 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S2 of the first lens L1 is concave at the near optical axis 110 and convex at the circumference;
  • the object side S3 of the second lens L2 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the image side S4 of the second lens L2 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S6 of the third lens L3 is concave at the near optical axis 110 and convex at the circumference;
  • the object side S7 of the fourth lens L4 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S8 of the fourth lens L4 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S9 of the fifth lens L5 is concave at the near optical axis 110 and concave at the circumference;
  • the image side S10 of the fifth lens L5 is concave at the near optical axis 110 and concave at the circumference;
  • the object side S11 of the sixth lens L6 is concave at the near optical axis 110 and concave at the circumference;
  • the image side S12 of the sixth lens L6 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the object side S13 of the seventh lens L7 is convex at the near optical axis 110 and convex at the circumference;
  • the image side S14 of the seventh lens L7 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S15 of the eighth lens L8 is a convex surface at the near optical axis 110, and a convex surface at the circumference;
  • the image side S16 of the eighth lens L8 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S17 of the ninth lens L9 is a concave surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S18 of the ninth lens L9 is concave at the near optical axis 110 and convex at the circumference.
  • first lens L1, second lens L2, third lens L3, fourth lens L4, fifth lens L5, sixth lens L6, seventh lens L7, eighth lens L8, and ninth lens L9 All are aspherical.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 , the seventh lens L7 , the eighth lens L8 and the ninth lens L9 are all plastic.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 14, and the definition of each parameter can be obtained from the first embodiment, and will not be repeated here.
  • FIG. 15 is a schematic structural diagram of an optical system 100 in the eighth embodiment.
  • the optical system 100 includes an aperture STO, a first lens L1 with positive refractive power, and a first lens L1 with The second lens L2 with negative refractive power, the third lens L3 with positive refractive power, the fourth lens L4 with negative refractive power, the fifth lens L5 with negative refractive power, the sixth lens L6 with negative refractive power, Seventh lens L7 with negative refractive power, eighth lens L8 with positive refractive power, and ninth lens L9 with negative refractive power.
  • 16 is a graph of longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the eighth embodiment from left to right.
  • the object side S1 of the first lens L1 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S2 of the first lens L1 is concave at the near optical axis 110 and convex at the circumference;
  • the object side S3 of the second lens L2 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the image side S4 of the second lens L2 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S6 of the third lens L3 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the object side S7 of the fourth lens L4 is convex at the near optical axis 110 and convex at the circumference;
  • the image side S8 of the fourth lens L4 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S9 of the fifth lens L5 is convex at the near optical axis 110 and convex at the circumference;
  • the image side S10 of the fifth lens L5 is concave at the near optical axis 110 and convex at the circumference;
  • the object side S11 of the sixth lens L6 is concave at the near optical axis 110 and concave at the circumference;
  • the image side S12 of the sixth lens L6 is convex at the near optical axis 110 and concave at the circumference;
  • the object side S13 of the seventh lens L7 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S14 of the seventh lens L7 is concave at the near optical axis 110 and convex at the circumference;
  • the object side surface S15 of the eighth lens L8 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S16 of the eighth lens L8 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S17 of the ninth lens L9 is concave at the near optical axis 110 and convex at the circumference;
  • the image side S18 of the ninth lens L9 is concave at the near optical axis 110 and convex at the circumference.
  • first lens L1, second lens L2, third lens L3, fourth lens L4, fifth lens L5, sixth lens L6, seventh lens L7, eighth lens L8, and ninth lens L9 All are aspherical.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 , the seventh lens L7 , the eighth lens L8 and the ninth lens L9 are all plastic.
  • the aspheric coefficients of each lens of the optical system 100 on the image side or the object side are given in Table 16, and the definition of each parameter can be obtained from the first embodiment, and will not be repeated here.
  • the optical system 100 can be assembled with the photosensitive element 210 to form an imaging module 200 .
  • the photosensitive surface of the photosensitive element 210 can be regarded as the image surface S21 of the optical system 100 .
  • the imaging module 200 can also be provided with an infrared cut filter L10, and the infrared cut filter L10 is disposed between the image side S18 and the image surface S21 of the ninth lens L9.
  • the photosensitive element 210 may be a charge coupled device (Charge Coupled Device, CCD) or a complementary metal oxide semiconductor device (Complementary Metal-Oxide Semiconductor Sensor, CMOS Sensor).
  • CCD Charge Coupled Device
  • CMOS Sensor complementary metal oxide semiconductor device
  • the imaging module 200 can be applied in an electronic device 300 , the electronic device includes a housing 310 , and the imaging module 200 is disposed in the housing 310 .
  • the electronic device 300 may be, but not limited to, a mobile phone, a video phone, a smart phone, an e-book reader, a driving recorder and other vehicle-mounted camera equipment or a smart watch and other wearable devices.
  • the casing 310 may be a middle frame of the electronic device 300 .
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学***(100),包括:具有正屈折力的第一透镜(L1),物侧面(S1)为凸面,像侧面(S2)为凹面;具有负屈折力的第二透镜(L2),物侧面(S3)为凸面,像侧面(S4)为凹面;具有屈折力的第三透镜(L3)、第四透镜(L4)、第五透镜(L5)与第六透镜(L6);具有屈折力的第七透镜(L7),像侧面(S14)为凹面;具有正屈折力的第八透镜(L8),物侧面(S15)为凸面;具有负屈折力的第九透镜(L9),像侧面(S18)为凹面;光学***(100)满足:1.35≤TTL/ImgH≤1.41;TTL为光学总长,ImgH为半像高。

Description

光学***、取像模组及电子设备 技术领域
本发明涉及摄像领域,特别是涉及一种光学***、取像模组及电子设备。
背景技术
随着科技的更新换代,消费者们对智能手机、平板电脑、电子阅读器等电子设备的拍摄质量的要求也越来越高。一般地,九片式的摄像镜头具有明显优势,能够获得更高的解析力,因此常用于高端电子设备中,以改善拍摄的画质感、提高分辨率以及清晰度。
但对于一般电子设备而言,市场往往希望电子设备不仅能够拥有优良摄像性能,同时还能够尽可能地减小厚度。但对于具有九片式结构的摄像镜头,由于透镜数量较多,这类摄像镜头光学***的轴向尺寸往往难以缩小,难以在满足优良摄像性能的同时还保持较短的尺寸,进而难以兼顾电子设备对高摄像性能及小型化设计的需求。
发明内容
根据本申请的各种实施例,提供一种光学***、取像模组及电子设备。
一种光学***,其特征在于,沿光轴由物侧至像侧依次包括:
具有正屈折力的第一透镜,所述第一透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
具有负屈折力的第二透镜,所述第二透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
具有屈折力的第三透镜;
具有屈折力的第四透镜;
具有屈折力的第五透镜;
具有屈折力的第六透镜;
具有屈折力的第七透镜,所述第七透镜的像侧面于近光轴处为凹面;
具有正屈折力的第八透镜,所述第八透镜的物侧面于近光轴处为凸面;
具有负屈折力的第九透镜,所述第九透镜的像侧面于近光轴处为凹面;
且所述光学***满足以下条件式:
1.35≤TTL/ImgH≤1.41;
其中,TTL为所述第一透镜的物侧面至所述光学***的成像面于光轴上的距离,即所述光学***的光学总长,ImgH为所述光学***的最大视场角所对应的像高的一半。
一种取像模组,包括感光元件以及上述的光学***,所述感光元件设置于所述光学***的像侧。
一种电子设备,包括壳体以及上述的取像模组,所述取像模组设置于所述壳体。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请第一实施例中的光学***的结构示意图;
图2为本申请第一实施例中的光学***的纵向球差图、像散图及畸变图;
图3为本申请第二实施例中的光学***的结构示意图;
图4为本申请第二实施例中的光学***的纵向球差图、像散图及畸变图;
图5为本申请第三实施例中的光学***的结构示意图;
图6为本申请第三实施例中的光学***的纵向球差图、像散图及畸变图;
图7为本申请第四实施例中的光学***的结构示意图;
图8为本申请第四实施例中的光学***的纵向球差图、像散图及畸变图;
图9为本申请第五实施例中的光学***的结构示意图;
图10为本申请第五实施例中的光学***的纵向球差图、像散图及畸变图;
图11为本申请第六实施例中的光学***的结构示意图;
图12为本申请第六实施例中的光学***的纵向球差图、像散图及畸变图;
图13为本申请第七实施例中的光学***的结构示意图;
图14为本申请第七实施例中的光学***的纵向球差图、像散图及畸变图;
图15为本申请第八实施例中的光学***的结构示意图;
图16为本申请第八实施例中的光学***的纵向球差图、像散图及畸变图;
图17为本申请一实施例中的取像模组的示意图;
图18为本申请一实施例中的电子设备的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参见图1,在本申请的一些实施例中,光学***100沿光轴110由物侧到像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8以及第九透镜L9。具体地,第一透镜L1包括物侧面S1及像侧面S2,第二透镜L2包括物侧面S3及像侧面S4,第三透镜L3包括物侧面S5及像侧面S6,第四透镜L4包括物侧面S7及像侧面S8,第五透镜L5包括物侧面S9及像侧面S10,第六透镜L6包括物侧面S11及像侧面S12,第七透镜L7包括物侧面S13及像侧面S14,第八透镜L8包括物侧面S15和像侧面S16,第九透镜L9包括物侧面S17和像侧面S18。第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8以及第九透镜L9同轴设置,光学***100中各透镜共同的轴线即为光学***100的光轴110。
其中,第一透镜L1具有正屈折力,第一透镜L1的物侧面S1于近光轴110处为凸面,有利于缩短光学***100的总长,实现小型化设计。第一透镜L1的像侧面S2于近光轴110处为凹面。第二透镜L2具有负屈折力,第二透镜S2的像侧面S4于近光轴110处为凹面,有利于校正第一透镜L1产生的像差。第二透镜L2的物侧面S3于近光轴110处为凸面。第一透镜L1与第二透镜L2的屈折力以及相应面型的配合,有利于对大角度入射的光线实现偏折,从而有利于扩大光学***100的视场角,同时有利于降低光学***100的敏感度。第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6与第七透镜L7均具有屈折力。第七透镜L7的像侧面S14于近光轴110处为凹面。第八透镜L8具有正屈折力,第八透镜L8的物侧面S15于近光轴110处为凸面。第九透镜L9具有负屈折力,第九透镜L9的像侧面S18于近光轴110处为凹面。
在一些实施例中,第九透镜L9的物侧面S17与像侧面S18中的至少一者存在反曲点,反曲点的设置有利于使得第九透镜L9在垂轴方向上的屈折力配置更加均衡,从而有利于校正离轴视场的像差。
另外,在一些实施例中,光学***100设置有光阑STO,光阑STO可设置于第一透镜L1的物侧。进一步地,光学***100还包括位于第九透镜L9像侧的像面S21,像面S21即为光学***100的成像面,入射光经第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8以及第九透镜L9调节后能够成像于像面S21。在一些实施例中,光学***100还包括设置于第九透镜L9像侧的红外截止滤光片L10,红外截止滤光片L10用于滤除干扰光,防止干扰光到达光学***100的像面S21而影响正常成像。
在一些实施例中,光学***100的各透镜的物侧面和像侧面均为非球面。非球面结构的采用能够提高 透镜设计的灵活性,并有效地校正球差,改善成像质量。在另一些实施例中,光学***100的各透镜的物侧面和像侧面也可以均为球面。需要注意的是,上述实施例仅是对本申请的一些实施例的举例,在一些实施例中,光学***100中各透镜的表面可以是非球面或球面的任意组合。
在一些实施例中,光学***100中的各透镜的材质可以均为玻璃或均为塑料。采用塑料材质的透镜能够减少光学***100的重量并降低生产成本,配合光学***100的小尺寸以实现光学***100的轻薄化设计。而采用玻璃材质的透镜使光学***100具备优良的光学性能以及较高的耐温性能。需要注意的是,光学***100中各透镜的材质也可以为玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。
需要注意的是,第一透镜L1并不意味着只存在一片透镜,在一些实施例中,第一透镜L1中也可以存在两片或多片透镜,两片或多片透镜能够形成胶合透镜,胶合透镜最靠近物侧的表面可视为物侧面S1,最靠近像侧的表面可视为像侧面S2。或者,第一透镜L1中的各透镜之间并不形成胶合透镜,但各透镜之间的距离相对固定,此时最靠近物侧的透镜的物侧面为物侧面S1,最靠近像侧的透镜的像侧面为像侧面S2。另外,一些实施例中的第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8或第九透镜L9中的透镜数量也可大于或等于两片,且任意相邻透镜之间可以形成胶合透镜,也可以为非胶合透镜。
进一步地,在一些实施例中,光学***100满足条件式:1.35≤TTL/ImgH≤1.41;其中,TTL为第一透镜L1的物侧面S1至光学***100的成像面于光轴110上的距离,ImgH为光学***100的最大视场角所对应的像高的一半。具体地,TTL/ImgH可以为:1.364、1.371、1.382、1.385、1.390、1.391、1.395、1.399、1.401或1.402。满足上述条件式的上限时,光学***100能够具备大像面特性,从而能够配合更高像素的感光元件以拥有更加良好的成像质量,另外也能够防止光学***100的轴向尺寸过长,进而兼顾电子设备对高摄像性能及小型化设计的需求。满足上述条件式的下限时,能够防止光学***100的光学总长相对成像像高而言过短,使入射光线在经过各透镜时有足够的空间偏折以实现平缓过渡,降低成像清晰度对***光学总长的敏感度,从而保持成像质量的稳定,同时也有利于降低光学***100的设计难度。拥有上述设计的光学***100,能够兼顾高摄像性能及小型化设计的需求,同时有利于降低光学***100的敏感度与设计难度。
需要说明的是,在一些实施例中,光学***100可以匹配具有矩形感光面的感光元件,光学***100的成像面与感光元件的感光面重合。此时,光学***100成像面上有效像素区域具有水平方向以及对角线方向,则光学***100的最大视场角FOV可以理解为光学***100对角线方向的最大视场角,ImgH可以理解为光学***100成像面上有效像素区域对角线方向的长度的一半。
在一些实施例中,光学***100满足条件式:1.4≤f/EPD≤1.8;其中,f为光学***100的有效焦距,EPD为光学***100的入瞳直径。具体地,f/EPD可以为:1.482、1.510、1.533、1.628、1.632、1.688、1.703、1.725、1.765或1.800。满足上述条件式的上限,有利于使得光学***100具备较大的孔径和较高的通光量,进而使得光学***100在弱光环境下也能够具备良好的成像质量。满足上述条件式的下限,光学***100的入光量不会过大,有利于限制边缘视场像差的产生。因而满足上述条件式时,光学***100能够实现大光圈特性,在弱光环境下具备良好的成像质量。
在一些实施例中,光学***100满足条件式:-6≤f2/f123≤-2.5;其中,f2为第二透镜L2的有效焦距,f123为第一透镜L1、第二透镜L2和第三透镜L3的组合焦距。具体地,f2/f123可以为:-5.900、-5.822、-5.112、-4.356、-4.212、-3.987、-3.555、-2.778、-2.612或-2.563。满足上述条件式时,第二透镜L2在前三片透镜中的屈折力得到合理配置,有利于入射光线在光学***100的前三片透镜平缓过渡,从而有利于减缓边缘视场光线的偏转角,降低第三透镜L3像方各透镜偏折光线的负担,进而有利于降低光学***100的敏感度,同时也有利于抑制前三片透镜的像差的产生,从而有利于提升成像质量;另外,合理配置第二透镜L2的负屈折力贡献量,有利于缩短***总长,实现小型化设计,同时使得第二透镜L2的面型不会过度弯曲,能够提高第二透镜L2的可加工性,降低第二透镜L2的成型难度。
在一些实施例中,光学***100满足条件式:1≤f45/f67≤9;其中,f45为第四透镜L4和第五透镜L5的组合焦距,f67为第六透镜L6和第七透镜L7的组合焦距。具体地,f45/f67可以为:1.224、1.556、1.842、2.111、2.124、2.653、3.451、4.300、4.414或8.67。满足上述条件式时,第四透镜L4与第五透镜L5的组合焦距以及第六透镜L6与第七透镜L7的组合焦距的比值能够得到合理配置,使得第四透镜L4 与第五透镜L5能够有效平衡物方及像方透镜产生的像差,有利于第四透镜L4与第五透镜L5以及第六透镜L6与第七透镜L7之间像差的相互平衡,有利于改善光学***100的场曲和畸变,提升光学***100的成像质量。当f45/f67>9时,第四透镜L4与第五透镜L5提供的总屈折力过小,不足以平衡前后透镜产生的像差,导致成像质量降低;当f45/f67<1时,第四透镜L4与第五透镜L5提供的负屈折力过强,容易导致光学***100的敏感性增加,不利于实现***小型化、大光圈特性。
在一些实施例中,光学***100满足条件式:1≤f89/f≤7.5;其中,f89为第八透镜L8与第九透镜L9的组合焦距,f为光学***100的有效焦距。具体地,f89/f可以为:1.311、1.355、1.377、1.421、1.455、1.497、1.502、1.521、1.566或7.271。满足上述条件式时,能够合理分配第八透镜L8和第九透镜L9的屈折力贡献量,有利于入射光线在第八透镜L8与第九透镜L9合理过渡至成像面,从而有利于减小光学***100中光线的偏转角,降低光学***100的敏感性,进而有利于提升光学***100的成像质量。当f89/f>7.5时,第八透镜L8和第九透镜L9提供的屈折力过小,不利于边缘视场光线的偏折,容易导致边缘视场出现严重杂散光现象,也会增大鬼影产生的风险,降低成像质量;当f89/f<1时,第八透镜L8和第九透镜L9提供的屈折力过强,不利于光线的平缓过渡,容易增大光学***100的敏感性,降低光学***100的成像质量。
在一些实施例中,光学***100满足条件式:0.55≤ACT/TTL≤0.65;其中,ACT为光学***100中各透镜于光轴110上的厚度之和。具体地,ACT/TTL可以为:0.596、0.598、0.601、0.603、0.608、0.614、0.617、0.619、0.621或0.624。满足上述条件式时,能够合理配置各镜片中心厚度总和与***光学总长的比值,有利于各相邻透镜之间具备足够的空气间隙,从而有利于降低光学***100的组装难度,提升组装稳定性,同时也有利于降低光学***100的敏感度,从而提升光学***100的成像稳定性和成像质量;另外,还有利于缩短***总长,实现小型化设计。
在一些实施例中,光学***100满足条件式:-18.3≤(SAG81-SAG72)/ET78≤0.7;其中,SAG81为第八透镜L8的物侧面S15于最大有效口径处的矢高,SAG72为第七透镜L7的像侧面S14于最大有效口径处的矢高,ET78为第七透镜L7的像侧面S14最大有效口径处至第八透镜L8的物侧面S15最大有效口径处于光轴110方向上的距离。具体地,(SAG81-SAG72)/ET78可以为:-18.201、-1.995、-1.521、-1.112、0.001、0.335、0.457、0.512、0.594或0.644。满足上述条件式时,能够合理配置第七透镜L7的像侧面S14和第八透镜S8的物侧面S15的矢高以及空气间隔,有利于光线在第七透镜L7与第八透镜L8有效偏折,从而有利于减小光学***100成像面上的主光线角度,进而能够有效地提高光学***100的相对亮度,提升成像清晰度。
在一些实施例中,光学***100满足条件式:1.3≤SD62/SD41≤1.6;其中,SD62为第六透镜L6的像侧面S12最大有效口径的一半,SD41为第四透镜L4的物侧面S7最大有效口径的一半。具体地,SD62/SD41可以为:1.393、1.401、1.425、1.453、1.460、1.477、1.489、1.501、1.510或1.513。满足上述条件式时,能够合理配置第六透镜L6像侧面S12的最大有效半口径与第四透镜L4物侧面S7最大有效半口径的比值,有利于减小前透镜组的轴上尺寸,从而有利于光学***100的小型化设计,同时有利于光学***100具有大像面特性,能够匹配像素更高的感光元件,提高***解像力。当SD62/SD41>1.6,第四透镜L4至第六透镜L6的有效口径段差过大,不利于边缘光线获得较小的偏转角,同时会降低光学***100的组装稳定性。
在一些实施例中,光学***100满足条件式:2.8≤(SD92-SD22)/|SAG92|≤3.8;其中,SD92为第九透镜L9的像侧面S18最大有效口径的一半,SD22为第二透镜L2的像侧面S4最大有效口径的一半,SAG92为第九透镜L9的像侧面S18于最大有效口径处的矢高。具体地,(SD92-SD22)/|SAG92|可以为:2.856、2.915、3.022、3.147、3.268、3.355、3.474、3.552、3.632或3.749。满足上述条件式时,能够合理配置第二透镜L2和第九透镜L9的最大有效半口径之差以及第九透镜L9像侧面S18矢高的比值,有利于将第二透镜L2至第九透镜L18的有效口径段差控制在合理范围内,从而有利于缩短***总长,同时有利于增大光学***100的光圈;另外,有利于合理约束第九透镜L9像侧面S18的矢高,从而有利于第九透镜L9矫正物方各透镜产生的像差,同时使得第九透镜L9的像侧面S18面型不会过度弯曲,提升第九透镜L9的可加工性。当(SD92-SD22)/|SAG92|<2.8时,第九透镜L9像侧面S18的矢高过大,第九透镜L9的像侧面S18面型过于弯曲,不利于第九透镜L9的成型加工;当(SD92-SD22)/|SAG92|>3.8时,第九透 镜L9像侧面S18的矢高过小,导致第九透镜L9对物方各透镜的像差矫正效果不足,无法保证良好的成像质量。
以上的有效焦距及组合焦距数值的参考波长均为555nm。
根据上述各实施例的描述,以下提出更为具体的实施例及附图予以详细说明。
第一实施例
请参见图1和图2,图1为第一实施例中的光学***100的结构示意图,光学***100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有负屈折力的第六透镜L6、具有负屈折力的第七透镜L7、具有正屈折力的第八透镜L8以及具有负屈折力的第九透镜L9。图2由左至右依次为第一实施例中光学***100的纵向球差、像散及畸变的曲线图,其中像散图和畸变图的参考波长为555nm,其他实施例相同。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凹面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凹面,于圆周处为凸面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凸面;
第五透镜L5的像侧面S10于近光轴110处为凸面,于圆周处为凹面;
第六透镜L6的物侧面S11于近光轴110处为凹面,于圆周处为凸面;
第六透镜L6的像侧面S12于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凹面;
第八透镜L8的物侧面S15于近光轴110处为凸面,于圆周处为凹面;
第八透镜L8的像侧面S16于近光轴110处为凹面,于圆周处为凹面;
第九透镜L9的物侧面S17于近光轴110处为凹面,于圆周处为凹面;
第九透镜L9的像侧面S18于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8以及第九透镜L9的物侧面和像侧面均为非球面。
需要注意的是,在本申请中,当描述透镜的一个表面于近光轴110处(该表面的中心区域)为凸面时,可理解为该透镜的该表面于光轴110附近的区域为凸面。当描述透镜的一个表面于圆周处为凹面时,可理解为该表面在靠近最大有效半径处的区域为凹面。举例而言,当该表面于近光轴110处为凸面,且于圆周处也为凸面时,该表面由中心(该表面与光轴110的交点)至边缘方向的形状可以为纯粹的凸面;或者是先由中心的凸面形状过渡到凹面形状,随后在靠近最大有效半径处时变为凸面。此处仅为说明光轴110处与圆周处的关系而做出的示例,表面的多种形状结构(凹凸关系)并未完全体现,但其他情况可根据以上示例推导得出。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8以及第九透镜L9的材质均为塑料。
进一步地,光学***100满足条件式:TTL/ImgH=1.390;其中,TTL为第一透镜L1的物侧面S1至光学***100的成像面于光轴110上的距离,ImgH为光学***100的最大视场角所对应的像高的一半。满足上述条件式时,能够兼顾高摄像性能及小型化设计的需求,同时有利于降低光学***100的敏感度与设计难度。
光学***100满足条件式:f/EPD=1.576;其中,f为光学***100的有效焦距,EPD为光学***100的入瞳直径。因而满足上述条件式时,光学***100能够实现大光圈特性,在弱光环境下具备良好的成像 质量,同时也有利于抑制光学***100边缘视场像差的产生。
光学***100满足条件式:f2/f123=-4.002;其中,f2为第二透镜L2的有效焦距,f123为第一透镜L1、第二透镜L2和第三透镜L3的组合焦距。满足上述条件式时,第二透镜L2在前三片透镜中的屈折力得到合理配置,有利于入射光线在光学***100的前三片透镜平缓过渡,从而有利于减缓边缘视场光线的偏转角,降低第三透镜L3像方各透镜偏折光线的负担,进而有利于降低光学***100的敏感度,同时也有利于抑制前三片透镜的像差的产生,从而有利于提升成像质量;另外,合理配置第二透镜L2的负屈折力贡献量,有利于缩短***总长,实现小型化设计,同时使得第二透镜L2的面型不会过度弯曲,能够提高第二透镜L2的可加工性,降低第二透镜L2的成型难度。
光学***100满足条件式:f45/f67=2.918;其中,f45为第四透镜L4和第五透镜L5的组合焦距,f67为第六透镜L6和第七透镜L7的组合焦距。满足上述条件式时,第四透镜L4与第五透镜L5的组合焦距以及第六透镜L6与第七透镜L7的组合焦距的比值能够得到合理配置,使得第四透镜L4与第五透镜L5能够有效平衡物方及像方透镜产生的像差,有利于第四透镜L4与第五透镜L5以及第六透镜L6与第七透镜L7之间像差的相互平衡,有利于改善光学***100的场曲和畸变,提升光学***100的成像质量。当f45/f67>9时,第四透镜L4与第五透镜L5提供的总屈折力过小,不足以平衡前后透镜产生的像差,导致成像质量降低;当f45/f67<1时,第四透镜L4与第五透镜L5提供的负屈折力过强,容易导致光学***100的敏感性增加,不利于实现***小型化、大光圈特性。
光学***100满足条件式:f89/f=1.676;其中,f89为第八透镜L8与第九透镜L9的组合焦距,f为光学***100的有效焦距。满足上述条件式时,能够合理分配第八透镜L8和第九透镜L9的屈折力贡献量,有利于入射光线在第八透镜L8与第九透镜L9合理过渡至成像面,从而有利于减小光学***100中光线的偏转角,降低光学***100的敏感性,进而有利于提升光学***100的成像质量。当f89/f>7.5时,第八透镜L8和第九透镜L9提供的屈折力过小,不利于边缘视场光线的偏折,容易导致边缘视场出现严重杂散光现象,也会增大鬼影产生的风险,降低成像质量;当f89/f<1时,第八透镜L8和第九透镜L9提供的屈折力过强,不利于光线的平缓过渡,容易增大光学***100的敏感性,降低光学***100的成像质量。
光学***100满足条件式:ACT/TTL=0.614;其中,ACT为光学***100中各透镜于光轴110上的厚度之和。满足上述条件式时,能够合理配置各镜片中心厚度总和与***光学总长的比值,有利于各相邻透镜之间具备足够的空气间隙,从而有利于降低光学***100的组装难度,提升组装稳定性,同时也有利于降低光学***100的敏感度,从而提升光学***100的成像稳定性和成像质量;另外,还有利于缩短***总长,实现小型化设计。
光学***100满足条件式:(SAG81-SAG72)/ET78=0.351;其中,SAG81为第八透镜L8的物侧面S15于最大有效口径处的矢高,SAG72为第七透镜L7的像侧面S14于最大有效口径处的矢高,ET78为第七透镜L7的像侧面S14最大有效口径处至第八透镜L8的物侧面S15最大有效口径处于光轴110方向上的距离。满足上述条件式时,能够合理配置第七透镜L7的像侧面S14和第八透镜S8的物侧面S15的矢高以及空气间隔,有利于光线在第七透镜L7与第八透镜L8有效偏折,从而有利于减小光学***100成像面上的主光线角度,进而能够有效地提高光学***100的相对亮度,提升成像清晰度。
光学***100满足条件式:SD62/SD41=1.393;其中,SD62为第六透镜L6的像侧面S12最大有效口径的一半,SD41为第四透镜L4的物侧面S7最大有效口径的一半。满足上述条件式时,能够合理配置第六透镜L6像侧面S12的最大有效半口径与第四透镜L4物侧面S7最大有效半口径的比值,有利于减小前透镜组的轴上尺寸,从而有利于光学***100的小型化设计,同时有利于光学***100具有大像面特性,能够匹配像素更高的感光元件,提高***解像力。当SD62/SD41>1.6,第四透镜L4至第六透镜L6的有效口径段差过大,不利于边缘光线获得较小的偏转角,同时会降低光学***100的组装稳定性。
光学***100满足条件式:(SD92-SD22)/|SAG92|=2.926;其中,SD92为第九透镜L9的像侧面S18最大有效口径的一半,SD22为第二透镜L2的像侧面S4最大有效口径的一半,SAG92为第九透镜L9的像侧面S18于最大有效口径处的矢高。满足上述条件式时,能够合理配置第二透镜L2和第九透镜L9的最大有效半口径之差以及第九透镜L9像侧面S18矢高的比值,有利于将第二透镜L2至第九透镜L18的有效口径段差控制在合理范围内,从而有利于缩短***总长,同时有利于增大光学***100的光圈;另外,有利于合理约束第九透镜L9像侧面S18的矢高,从而有利于第九透镜L9矫正物方各透镜产生的像差,同时使 得第九透镜L9的像侧面S18面型不会过度弯曲,提升第九透镜L9的可加工性。当(SD92-SD22)/|SAG92|<2.8时,第九透镜L9像侧面S18的矢高过大,第九透镜L9的像侧面S18面型过于弯曲,不利于第九透镜L9的成型加工;当(SD92-SD22)/|SAG92|>3.8时,第九透镜L9像侧面S18的矢高过小,导致第九透镜L9对物方各透镜的像差矫正效果不足,无法保证良好的成像质量。
另外,光学***100的各项参数由表1给出。其中,表1中的像面S21可理解为光学***100的成像面。由物面(图未示出)至像面S21的各元件依次按照表1从上至下的各元件的顺序排列。表1中的Y半径为相应面序号的物侧面或像侧面于光轴110处的曲率半径。面序号S1和面序号S2分别为第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。第一透镜L1的“厚度”参数列中的第一个数值为该透镜于光轴110上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一表面于光轴110上的距离。
需要注意的是,在该实施例及以下各实施例中,光学***100也可不设置红外截止滤光片L10,但此时第九透镜L9的像侧面S18至像面S21的距离保持不变。
在第一实施例中,光学***100的有效焦距f=6.060mm,光圈数FNO=1.576,最大视场角FOV=83.098deg,光学总长TTL=7.660mm。在第一实施例以及其他实施例中,光学***100均满足条件式:1.4≤FNO≤1.8;7.641mm≤TTL≤7.720mm;5.45mm≤ImgH≤5.51mm;其中,光圈数FNO的数值范围可知光学***100具有大光圈特性,在弱光环境下也能够具备良好的成像质量,光学总长TTL的数值范围可知光学***100能够满足小型化设计的需求,半像高ImgH的数值范围可知光学***100具备大像面特性,能够匹配高像素的感光元件,提升光学***100的分辨率。
且各透镜的焦距的参考波长为555nm,折射率和阿贝数的参考波长均为587.56nm(d线),其他实施例也相同。
表1
Figure PCTCN2021106442-appb-000001
Figure PCTCN2021106442-appb-000002
进一步地,光学***100各透镜像侧面或物侧面的非球面系数由表2给出。其中,面序号从S1-S18分别表示像侧面或物侧面S1-S18。而从上到下的K-A20分别表示非球面系数的类型,其中,K表示圆锥系数,A4表示四次非球面系数,A6表示六次非球面系数,A8表示八次非球面系数,以此类推。另外,非球面系数公式如下:
Figure PCTCN2021106442-appb-000003
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴110的距离,c为非球面顶点的曲率,k为圆锥系数,Ai为非球面面型公式中与第i项高次项相对应的系数。
表2
面序号 S1 S2 S3 S4 S5 S6
K 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
A4 -4.175E-04 -2.440E-02 -4.002E-02 -2.014E-02 -8.562E-03 2.203E-02
A6 2.989E-03 1.376E-02 1.799E-02 3.992E-03 -2.842E-03 -1.003E-01
A8 -4.339E-03 -3.045E-03 7.330E-04 1.280E-02 7.410E-04 1.593E-01
A10 4.143E-03 -1.701E-03 -7.035E-03 -1.912E-02 -4.133E-03 -1.790E-01
A12 -2.461E-03 1.837E-03 5.508E-03 1.478E-02 4.706E-03 1.329E-01
A14 9.169E-04 -8.079E-04 -2.374E-03 -6.876E-03 -2.720E-03 -6.368E-02
A16 -2.089E-04 1.942E-04 6.163E-04 1.906E-03 8.118E-04 1.896E-02
A18 2.666E-05 -2.447E-05 -8.810E-05 -2.818E-04 -9.612E-05 -3.189E-03
A20 -1.511E-06 1.238E-06 5.317E-06 1.737E-05 0.000E+00 2.310E-04
面序号 S7 S8 S9 S10 S11 S12
K 0.000E+00 1.000E+01 1.000E+01 2.800E+01 0.000E+00 1.245E+01
A4 1.634E-02 1.925E-02 1.457E-02 -2.658E-03 -5.221E-03 -1.026E-02
A6 -1.096E-01 -1.004E-01 -8.486E-02 -4.011E-02 -2.319E-02 -1.407E-04
A8 1.575E-01 1.411E-01 1.175E-01 4.442E-02 1.690E-02 -8.695E-03
A10 -1.593E-01 -1.312E-01 -1.008E-01 -2.707E-02 -4.282E-03 7.363E-03
A12 1.095E-01 8.077E-02 5.539E-02 9.946E-03 2.453E-04 -2.446E-03
A14 -4.964E-02 -3.279E-02 -2.020E-02 -2.293E-03 -7.729E-05 3.111E-04
A16 1.424E-02 8.434E-03 4.789E-03 3.381E-04 8.073E-05 1.407E-05
A18 -2.362E-03 -1.246E-03 -6.683E-04 -3.085E-05 -1.886E-05 -6.990E-06
A20 1.741E-04 8.087E-05 4.143E-05 1.411E-06 1.359E-06 4.628E-07
面序号 S13 S14 S15 S16 S17 S18
K 6.665E+00 -5.484E+00 -1.000E+00 0.000E+00 0.000E+00 -7.679E-01
A4 2.030E-03 -1.251E-01 -8.470E-02 7.474E-02 -5.533E-02 -7.356E-02
A6 1.670E-02 8.229E-02 4.079E-02 -4.959E-02 4.289E-03 1.742E-02
A8 -2.153E-02 -3.851E-02 -2.367E-02 1.620E-02 7.502E-04 -3.544E-03
A10 1.141E-02 1.174E-02 8.914E-03 -3.610E-03 -2.851E-06 5.465E-04
A12 -3.601E-03 -2.365E-03 -2.248E-03 5.422E-04 -3.589E-05 -5.843E-05
A14 7.196E-04 3.158E-04 3.685E-04 -5.149E-05 5.696E-06 4.095E-06
A16 -9.056E-05 -2.673E-05 -3.667E-05 2.842E-06 -3.962E-07 -1.784E-07
A18 6.590E-06 1.284E-06 1.992E-06 -7.828E-08 1.348E-08 4.372E-09
A20 -2.099E-07 -2.637E-08 -4.523E-08 7.125E-10 -1.834E-10 -4.594E-11
另外,图2包括光学***100的纵向球面像差图(Longitudinal Spherical Aberration),其表示不同波长的光线经由镜头后的汇聚焦点偏离。纵向球面像差图的纵坐标表示归一化的由光瞳中心至光瞳边缘的光瞳坐标(Normalized Pupil Coordinator),横坐标表示成像面到光线与光轴110交点的距离(单位为mm)。由纵向球面像差图可知,第一实施例中的各波长光线的汇聚焦点偏离程度趋于一致,成像画面中的弥 散斑或色晕得到有效抑制。图2还包括光学***100的场曲图(ASTIGMATIC FIELD CURVES),其中S曲线代表555nm下的弧矢场曲,T曲线代表555nm下的子午场曲。由图中可知,光学***100的场曲较小,各视场的场曲和像散均得到了良好的校正,视场中心和边缘均拥有清晰的成像。图2还包括光学***100的畸变图(DISTORTION),由图中可知,由主光束引起的图像变形较小,***的成像质量优良。
第二实施例
请参见图3和图4,图3为第二实施例中的光学***100的结构示意图,光学***100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有负屈折力的第六透镜L6、具有负屈折力的第七透镜L7、具有正屈折力的第八透镜L8以及具有负屈折力的第九透镜L9。图4由左至右依次为第二实施例中光学***100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凹面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凹面,于圆周处为凸面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的物侧面S9于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凹面;
第六透镜L6的物侧面S11于近光轴110处为凹面,于圆周处为凸面;
第六透镜L6的像侧面S12于近光轴110处为凸面,于圆周处为凹面;
第七透镜L7的物侧面S13于近光轴110处为凹面,于圆周处为凸面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凹面;
第八透镜L8的物侧面S15于近光轴110处为凸面,于圆周处为凹面;
第八透镜L8的像侧面S16于近光轴110处为凸面,于圆周处为凹面;
第九透镜L9的物侧面S17于近光轴110处为凸面,于圆周处为凹面;
第九透镜L9的像侧面S18于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8以及第九透镜L9的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8以及第九透镜L9的材质均为塑料。
另外,光学***100的各项参数由表3给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表3
Figure PCTCN2021106442-appb-000004
Figure PCTCN2021106442-appb-000005
进一步地,光学***100各透镜像侧面或物侧面的非球面系数由表4给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表4
面序号 S1 S2 S3 S4 S5 S6
K 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
A4 6.292E-05 -3.413E-02 -4.576E-02 -1.786E-02 -1.021E-02 1.064E-02
A6 2.220E-03 2.827E-02 2.829E-02 5.559E-03 -1.106E-03 -8.226E-02
A8 -2.935E-03 -1.399E-02 -5.863E-03 7.929E-03 -6.845E-04 1.397E-01
A10 2.641E-03 3.487E-03 -6.880E-03 -1.332E-02 -2.895E-03 -1.652E-01
A12 -1.450E-03 2.284E-04 7.918E-03 1.005E-02 3.851E-03 1.278E-01
A14 4.888E-04 -4.718E-04 -4.028E-03 -4.245E-03 -2.290E-03 -6.299E-02
A16 -9.767E-05 1.413E-04 1.150E-03 9.846E-04 6.775E-04 1.899E-02
A18 1.043E-05 -1.729E-05 -1.748E-04 -1.029E-04 -7.726E-05 -3.195E-03
A20 -4.966E-07 6.508E-07 1.098E-05 3.266E-06 0.000E+00 2.293E-04
面序号 S7 S8 S9 S10 S11 S12
K 0.000E+00 -1.000E+01 1.000E+01 8.000E+00 0.000E+00 3.986E+00
A4 1.591E-02 3.498E-02 3.195E-02 1.018E-02 1.647E-03 -1.353E-02
A6 -1.171E-01 -1.459E-01 -1.520E-01 -9.483E-02 -4.688E-02 6.698E-03
A8 1.836E-01 2.158E-01 2.229E-01 1.249E-01 4.787E-02 -1.256E-02
A10 -2.040E-01 -2.098E-01 -1.933E-01 -9.135E-02 -2.513E-02 9.034E-03
A12 1.514E-01 1.323E-01 1.040E-01 4.162E-02 7.779E-03 -3.450E-03
A14 -7.217E-02 -5.348E-02 -3.509E-02 -1.216E-02 -1.449E-03 7.416E-04
A16 2.123E-02 1.337E-02 7.186E-03 2.218E-03 1.641E-04 -8.410E-05
A18 -3.528E-03 -1.892E-03 -8.099E-04 -2.296E-04 -1.129E-05 4.100E-06
A20 2.559E-04 1.168E-04 3.836E-05 1.029E-05 4.030E-07 -3.078E-08
面序号 S13 S14 S15 S16 S17 S18
K 2.394E+00 -5.516E+00 -1.000E+00 0.000E+00 0.000E+00 -7.889E-01
A4 1.328E-03 -1.215E-01 -7.948E-02 7.919E-02 -5.922E-02 -8.133E-02
A6 1.871E-02 7.475E-02 3.591E-02 -5.372E-02 -1.076E-03 1.899E-02
A8 -2.302E-02 -3.510E-02 -2.088E-02 1.855E-02 4.103E-03 -3.679E-03
A10 1.231E-02 1.110E-02 7.948E-03 -4.352E-03 -8.154E-04 5.425E-04
A12 -3.965E-03 -2.338E-03 -2.019E-03 6.916E-04 7.036E-05 -5.656E-05
A14 8.073E-04 3.247E-04 3.305E-04 -7.119E-05 -2.497E-06 3.922E-06
A16 -1.025E-04 -2.827E-05 -3.255E-05 4.467E-06 -2.202E-08 -1.704E-07
A18 7.432E-06 1.381E-06 1.738E-06 -1.535E-07 4.081E-09 4.184E-09
A20 -2.337E-07 -2.848E-08 -3.860E-08 2.192E-09 -8.332E-11 -4.415E-11
根据上述所提供的各参数信息,可推得以下数据:
TTL/ImgH 1.402 ACT/TTL 0.624
f/EPD 1.582 (SAG81-SAG72)/ET78 0.644
f2/f123 -4.356 SD62/SD41 1.467
f45/f67 2.646 (SD92-SD22)/|SAG92| 3.043
f89/f 1.666    
另外,由图4中的像差图可知,光学***100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学***100拥有良好的成像品质。
第三实施例
请参见图5和图6,图5为第三实施例中的光学***100的结构示意图,光学***100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有负屈折力的第七透镜L7、具有正屈折力的第八透镜L8以及具有负屈折力的第九透镜L9。图6由左至右依次为第三实施例中光学***100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凹面,于圆周处为凸面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的物侧面S9于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凹面;
第六透镜L6的物侧面S11于近光轴110处为凹面,于圆周处为凹面;
第六透镜L6的像侧面S12于近光轴110处为凸面,于圆周处为凹面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凹面;
第八透镜L8的物侧面S15于近光轴110处为凸面,于圆周处为凹面;
第八透镜L8的像侧面S16于近光轴110处为凹面,于圆周处为凹面;
第九透镜L9的物侧面S17于近光轴110处为凹面,于圆周处为凹面;
第九透镜L9的像侧面S18于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8以及第九透镜L9的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8以及第九透镜L9的材质均为塑料。
另外,光学***100的各项参数由表5给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表5
Figure PCTCN2021106442-appb-000006
Figure PCTCN2021106442-appb-000007
进一步地,光学***100各透镜像侧面或物侧面的非球面系数由表6给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表6
面序号 S1 S2 S3 S4 S5 S6
K 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
A4 5.286E-04 -3.213E-02 -4.746E-02 -2.211E-02 -1.028E-02 2.275E-04
A6 1.357E-03 2.718E-02 2.974E-02 8.702E-03 -1.522E-03 -5.354E-02
A8 -2.068E-03 -1.455E-02 -5.561E-03 9.411E-03 3.510E-04 8.592E-02
A10 2.306E-03 4.673E-03 -9.655E-03 -2.027E-02 -4.576E-03 -9.856E-02
A12 -1.559E-03 -5.700E-04 1.190E-02 1.926E-02 5.446E-03 7.439E-02
A14 6.504E-04 -1.893E-04 -6.909E-03 -1.091E-02 -3.256E-03 -3.592E-02
A16 -1.648E-04 8.691E-05 2.311E-03 3.785E-03 1.004E-03 1.067E-02
A18 2.311E-05 -1.199E-05 -4.214E-04 -7.384E-04 -1.217E-04 -1.767E-03
A20 -1.440E-06 4.319E-07 3.252E-05 6.394E-05 0.000E+00 1.237E-04
面序号 S7 S8 S9 S10 S11 S12
K 0.000E+00 -9.891E+00 1.000E+01 1.780E+01 0.000E+00 -5.743E-01
A4 6.820E-03 3.567E-02 3.319E-02 3.341E-03 -8.769E-03 -1.447E-02
A6 -9.511E-02 -1.388E-01 -1.360E-01 -7.787E-02 -2.906E-02 1.564E-02
A8 1.379E-01 1.855E-01 1.805E-01 1.011E-01 2.954E-02 -2.310E-02
A10 -1.447E-01 -1.687E-01 -1.448E-01 -7.067E-02 -1.251E-02 1.491E-02
A12 1.045E-01 1.031E-01 7.260E-02 3.046E-02 2.239E-03 -5.355E-03
A14 -4.980E-02 -4.160E-02 -2.291E-02 -8.433E-03 7.131E-05 1.123E-03
A16 1.502E-02 1.064E-02 4.360E-03 1.469E-03 -9.073E-05 -1.305E-04
A18 -2.633E-03 -1.573E-03 -4.450E-04 -1.463E-04 1.286E-05 7.220E-06
A20 2.063E-04 1.037E-04 1.795E-05 6.329E-06 -5.992E-07 -1.187E-07
面序号 S13 S14 S15 S16 S17 S18
K 2.239E+01 -5.963E+00 -1.000E+00 0.000E+00 0.000E+00 -7.679E-01
A4 -5.744E-03 -1.271E-01 -8.076E-02 7.619E-02 -4.933E-02 -7.045E-02
A6 3.022E-02 8.343E-02 3.629E-02 -5.217E-02 -1.967E-03 1.489E-02
A8 -3.197E-02 -3.932E-02 -2.105E-02 1.753E-02 3.399E-03 -2.669E-03
A10 1.629E-02 1.213E-02 7.931E-03 -3.986E-03 -5.963E-04 3.800E-04
A12 -5.112E-03 -2.474E-03 -1.992E-03 6.154E-04 4.247E-05 -3.937E-05
A14 1.031E-03 3.331E-04 3.241E-04 -6.149E-05 -6.443E-07 2.744E-06
A16 -1.311E-04 -2.832E-05 -3.197E-05 3.724E-06 -8.591E-08 -1.203E-07
A18 9.586E-06 1.362E-06 1.721E-06 -1.221E-07 5.011E-09 2.985E-09
A20 -3.053E-07 -2.795E-08 -3.868E-08 1.633E-09 -8.436E-11 -3.182E-11
并且,根据上述所提供的各参数信息,可推得以下数据:
TTL/ImgH 1.390 ACT/TTL 0.606
f/EPD 1.700 (SAG81-SAG72)/ET78 0.306
f2/f123 -3.349 SD62/SD41 1.476
f45/f67 2.405 (SD92-SD22)/|SAG92| 2.991
f89/f 1.722    
另外,由图6中的像差图可知,光学***100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学***100拥有良好的成像品质。
第四实施例
请参见图7和图8,图7为第四实施例中的光学***100的结构示意图,光学***100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有负屈折力的第七透镜L7、具有正屈折力的第八透镜L8以及具有负屈折力的第九透镜L9。图8由左至右依次为第四实施例中光学***100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凹面,于圆周处为凸面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的物侧面S9于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凹面;
第六透镜L6的物侧面S11于近光轴110处为凹面,于圆周处为凹面;
第六透镜L6的像侧面S12于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凹面;
第八透镜L8的物侧面S15于近光轴110处为凸面,于圆周处为凸面;
第八透镜L8的像侧面S16于近光轴110处为凹面,于圆周处为凹面;
第九透镜L9的物侧面S17于近光轴110处为凹面,于圆周处为凹面;
第九透镜L9的像侧面S18于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8以及第九透镜L9的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8以及第九透镜L9的材质均为塑料。
另外,光学***100的各项参数由表7给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表7
Figure PCTCN2021106442-appb-000008
进一步地,光学***100各透镜像侧面或物侧面的非球面系数由表8给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表8
面序号 S1 S2 S3 S4 S5 S6
K 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
A4 7.472E-04 -4.063E-02 -4.616E-02 -1.203E-02 -1.507E-02 -1.414E-02
A6 3.642E-03 3.934E-02 3.570E-02 4.298E-04 -3.253E-04 -3.429E-02
A8 -6.759E-03 -2.356E-02 -1.821E-02 1.144E-02 -1.057E-02 5.613E-02
A10 8.536E-03 6.489E-03 2.841E-03 -2.102E-02 1.177E-02 -7.798E-02
A12 -6.781E-03 1.024E-03 3.553E-03 2.243E-02 -9.051E-03 6.983E-02
A14 3.401E-03 -1.057E-03 -2.630E-03 -1.512E-02 4.338E-03 -3.797E-02
A16 -1.046E-03 -2.188E-05 6.641E-04 6.409E-03 -1.214E-03 1.214E-02
A18 1.784E-04 1.456E-04 -9.023E-06 -1.570E-03 1.685E-04 -2.073E-03
A20 -1.305E-05 -2.768E-05 -1.405E-05 1.777E-04 0.000E+00 1.429E-04
面序号 S7 S8 S9 S10 S11 S12
K 0.000E+00 1.000E+01 -1.000E+01 2.489E+01 0.000E+00 1.047E+01
A4 -1.080E-02 3.287E-02 3.579E-02 6.927E-03 1.177E-03 -1.229E-02
A6 -5.445E-02 -1.398E-01 -1.592E-01 -9.822E-02 -5.782E-02 3.650E-03
A8 8.193E-02 1.981E-01 2.225E-01 1.315E-01 7.236E-02 -5.514E-03
A10 -1.057E-01 -1.897E-01 -1.837E-01 -9.301E-02 -4.629E-02 1.733E-03
A12 9.359E-02 1.190E-01 9.225E-02 3.993E-02 1.777E-02 2.997E-04
A14 -5.210E-02 -4.850E-02 -2.832E-02 -1.080E-02 -4.224E-03 -3.416E-04
A16 1.766E-02 1.242E-02 4.984E-03 1.807E-03 6.151E-04 9.556E-05
A18 -3.394E-03 -1.831E-03 -4.145E-04 -1.704E-04 -5.075E-05 -1.187E-05
A20 2.885E-04 1.205E-04 7.965E-06 6.870E-06 1.827E-06 5.580E-07
面序号 S13 S14 S15 S16 S17 S18
K 1.677E+01 -3.293E+00 -1.000E+00 0.000E+00 0.000E+00 -7.887E-01
A4 -1.159E-02 -1.421E-01 -7.722E-02 8.964E-02 -5.092E-02 -7.624E-02
A6 3.490E-02 9.899E-02 3.481E-02 -6.168E-02 -8.568E-03 1.457E-02
A8 -3.118E-02 -4.739E-02 -2.149E-02 2.045E-02 6.985E-03 -2.013E-03
A10 1.438E-02 1.505E-02 8.321E-03 -4.447E-03 -1.394E-03 2.079E-04
A12 -4.225E-03 -3.255E-03 -2.091E-03 6.628E-04 1.396E-04 -1.709E-05
A14 8.124E-04 4.789E-04 3.359E-04 -6.560E-05 -7.680E-06 1.070E-06
A16 -9.914E-05 -4.547E-05 -3.259E-05 4.031E-06 2.184E-07 -4.564E-08
A18 6.950E-06 2.482E-06 1.726E-06 -1.368E-07 -2.282E-09 1.140E-09
A20 -2.114E-07 -5.861E-08 -3.822E-08 1.936E-09 -9.555E-12 -1.237E-11
并且,根据上述所提供的各参数信息,可推得以下数据:
TTL/ImgH 1.364 ACT/TTL 0.600
f/EPD 1.800 (SAG81-SAG72)/ET78 -0.687
f2/f123 -5.900 SD62/SD41 1.510
f45/f67 1.245 (SD92-SD22)/|SAG92| 3.749
f89/f 1.617    
另外,由图8中的像差图可知,光学***100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学***100拥有良好的成像品质。
第五实施例
请参见图9和图10,图9为第五实施例中的光学***100的结构示意图,光学***100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有负屈折力的第七透镜L7、具有正屈折力的第八透镜L8以及具有负屈折力的第九透镜L9。图10由左至右依次为第五实施例中光学***100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凹面,于圆周处为凸面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凹面;
第六透镜L6的物侧面S11于近光轴110处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于近光轴110处为凹面,于圆周处为凹面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凹面;
第八透镜L8的物侧面S15于近光轴110处为凸面,于圆周处为凸面;
第八透镜L8的像侧面S16于近光轴110处为凹面,于圆周处为凹面;
第九透镜L9的物侧面S17于近光轴110处为凹面,于圆周处为凹面;
第九透镜L9的像侧面S18于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8以及第九透镜L9的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8以及第九透镜L9的材质均为塑料。
另外,光学***100的各项参数由表9给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表9
Figure PCTCN2021106442-appb-000009
进一步地,光学***100各透镜像侧面或物侧面的非球面系数由表10给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表10
面序号 S1 S2 S3 S4 S5 S6
K 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
A4 1.925E-04 -2.635E-02 -4.256E-02 -2.143E-02 -9.422E-03 -6.279E-03
A6 1.750E-03 1.763E-02 2.272E-02 7.326E-03 -1.960E-03 -2.715E-02
A8 -2.535E-03 -6.569E-03 -2.497E-03 9.950E-03 9.574E-04 4.524E-02
A10 2.544E-03 4.937E-04 -6.753E-03 -1.856E-02 -5.292E-03 -5.751E-02
A12 -1.559E-03 8.321E-04 6.828E-03 1.632E-02 6.062E-03 4.576E-02
A14 5.928E-04 -4.735E-04 -3.543E-03 -8.735E-03 -3.560E-03 -2.268E-02
A16 -1.367E-04 1.192E-04 1.102E-03 2.884E-03 1.067E-03 6.813E-03
A18 1.745E-05 -1.441E-05 -1.910E-04 -5.373E-04 -1.257E-04 -1.126E-03
A20 -9.875E-07 6.406E-07 1.423E-05 4.435E-05 0.000E+00 7.735E-05
面序号 S7 S8 S9 S10 S11 S12
K 0.000E+00 -1.000E+01 -1.000E+01 8.000E+00 0.000E+00 -6.569E+00
A4 -9.178E-03 1.391E-02 1.175E-02 -1.344E-02 -2.176E-02 -1.798E-02
A6 -4.640E-02 -8.486E-02 -7.357E-02 -1.917E-02 9.211E-03 1.071E-02
A8 7.001E-02 1.156E-01 8.901E-02 2.024E-02 -1.216E-02 -1.487E-02
A10 -7.844E-02 -1.060E-01 -6.582E-02 -1.092E-02 1.077E-02 9.482E-03
A12 5.813E-02 6.441E-02 3.034E-02 3.863E-03 -4.919E-03 -3.358E-03
A14 -2.776E-02 -2.560E-02 -8.676E-03 -9.874E-04 1.245E-03 6.974E-04
A16 8.316E-03 6.408E-03 1.410E-03 1.719E-04 -1.754E-04 -8.177E-05
A18 -1.446E-03 -9.244E-04 -1.010E-04 -1.692E-05 1.279E-05 4.833E-06
A20 1.126E-04 5.944E-05 5.973E-07 6.721E-07 -3.724E-07 -1.050E-07
面序号 S13 S14 S15 S16 S17 S18
K 2.394E+00 -4.478E+00 -1.000E+00 0.000E+00 0.000E+00 -7.575E-01
A4 -4.403E-03 -1.223E-01 -8.004E-02 6.916E-02 -5.595E-02 -7.169E-02
A6 1.853E-02 7.684E-02 3.617E-02 -4.422E-02 2.327E-03 1.582E-02
A8 -1.853E-02 -3.481E-02 -2.046E-02 1.377E-02 2.135E-03 -2.974E-03
A10 8.610E-03 1.039E-02 7.421E-03 -2.961E-03 -3.936E-04 4.321E-04
A12 -2.441E-03 -2.050E-03 -1.814E-03 4.393E-04 2.429E-05 -4.446E-05
A14 4.412E-04 2.665E-04 2.914E-04 -4.213E-05 2.108E-07 3.040E-06
A16 -5.036E-05 -2.189E-05 -2.855E-05 2.417E-06 -1.002E-07 -1.303E-07
A18 3.337E-06 1.021E-06 1.528E-06 -7.320E-08 4.712E-09 3.163E-09
A20 -9.739E-08 -2.044E-08 -3.415E-08 8.628E-10 -7.346E-11 -3.312E-11
并且,根据上述所提供的各参数信息,可推得以下数据:
TTL/ImgH 1.390 ACT/TTL 0.598
f/EPD 1.650 (SAG81-SAG72)/ET78 -1.140
f2/f123 -2.828 SD62/SD41 1.513
f45/f67 2.767 (SD92-SD22)/|SAG92| 2.861
f89/f 1.628    
另外,由图10中的像差图可知,光学***100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学***100拥有良好的成像品质。
第六实施例
请参见图11和图12,图11为第六实施例中的光学***100的结构示意图,光学***100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有负屈折力的第六透镜L6、具有正屈折力的第七透镜L7、具有正屈折力的第八透镜L8以及具有负屈折力的第九透镜L9。图12由左至右依次为第六实施例中光学***100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凹面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凹面,于圆周处为凸面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的物侧面S9于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的像侧面S10于近光轴110处为凸面,于圆周处为凹面;
第六透镜L6的物侧面S11于近光轴110处为凹面,于圆周处为凸面;
第六透镜L6的像侧面S12于近光轴110处为凸面,于圆周处为凹面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凹面;
第八透镜L8的物侧面S15于近光轴110处为凸面,于圆周处为凸面;
第八透镜L8的像侧面S16于近光轴110处为凹面,于圆周处为凹面;
第九透镜L9的物侧面S17于近光轴110处为凹面,于圆周处为凹面;
第九透镜L9的像侧面S18于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8以及第九透镜L9的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8以及第九透镜L9的材质均为塑料。
另外,光学***100的各项参数由表11给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表11
Figure PCTCN2021106442-appb-000010
Figure PCTCN2021106442-appb-000011
进一步地,光学***100各透镜像侧面或物侧面的非球面系数由表12给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表12
面序号 S1 S2 S3 S4 S5 S6
K 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
A4 -5.828E-04 -2.451E-02 -4.037E-02 -2.007E-02 -1.003E-02 1.825E-02
A6 3.991E-03 1.325E-02 1.992E-02 5.244E-03 -1.373E-03 -1.017E-01
A8 -6.205E-03 -1.329E-03 -4.643E-03 9.889E-03 -4.795E-04 1.669E-01
A10 6.284E-03 -4.293E-03 6.223E-04 -1.590E-02 -2.778E-03 -1.834E-01
A12 -3.959E-03 4.044E-03 -1.025E-03 1.301E-02 3.253E-03 1.305E-01
A14 1.565E-03 -1.922E-03 1.064E-03 -6.601E-03 -1.843E-03 -5.961E-02
A16 -3.781E-04 5.237E-04 -4.765E-04 2.090E-03 5.337E-04 1.694E-02
A18 5.108E-05 -7.726E-05 1.043E-04 -3.783E-04 -5.958E-05 -2.728E-03
A20 -3.013E-06 4.769E-06 -9.076E-06 3.129E-05 0.000E+00 1.901E-04
面序号 S7 S8 S9 S10 S11 S12
K 0.000E+00 1.000E+01 1.000E+01 2.800E+01 0.000E+00 1.343E+01
A4 1.852E-02 2.304E-02 9.639E-03 -4.083E-03 6.296E-03 6.606E-03
A6 -1.196E-01 -9.803E-02 -6.504E-02 -3.706E-02 -4.354E-02 -3.922E-02
A8 1.665E-01 1.227E-01 7.606E-02 3.544E-02 3.780E-02 2.564E-02
A10 -1.550E-01 -1.028E-01 -5.516E-02 -1.712E-02 -1.536E-02 -8.965E-03
A12 9.489E-02 5.782E-02 2.640E-02 4.763E-03 2.944E-03 1.809E-03
A14 -3.770E-02 -2.182E-02 -8.831E-03 -8.621E-04 -1.060E-04 -2.170E-04
A16 9.490E-03 5.331E-03 2.006E-03 1.207E-04 -4.996E-05 1.945E-05
A18 -1.411E-03 -7.665E-04 -2.741E-04 -1.301E-05 7.277E-06 -1.723E-06
A20 9.721E-05 4.961E-05 1.685E-05 7.228E-07 -2.871E-07 8.970E-08
面序号 S13 S14 S15 S16 S17 S18
K 2.394E+00 5.121E+00 -1.000E+00 0.000E+00 0.000E+00 -7.744E-01
A4 1.486E-02 -9.656E-02 -5.224E-02 7.786E-02 -5.513E-02 -7.400E-02
A6 -1.159E-02 6.501E-02 1.901E-02 -5.422E-02 5.496E-03 1.772E-02
A8 5.007E-07 -3.271E-02 -1.418E-02 1.818E-02 1.738E-04 -3.639E-03
A10 2.178E-03 1.115E-02 6.053E-03 -4.043E-03 1.182E-04 5.597E-04
A12 -1.045E-03 -2.519E-03 -1.578E-03 6.052E-04 -5.028E-05 -5.949E-05
A14 2.459E-04 3.683E-04 2.535E-04 -5.854E-05 6.718E-06 4.148E-06
A16 -3.310E-05 -3.320E-05 -2.408E-05 3.436E-06 -4.387E-07 -1.802E-07
A18 2.468E-06 1.667E-06 1.236E-06 -1.091E-07 1.441E-08 4.407E-09
A20 -7.882E-08 -3.553E-08 -2.637E-08 1.409E-09 -1.916E-10 -4.628E-11
并且,根据上述所提供的各参数信息,可推得以下数据:
TTL/ImgH 1.390 ACT/TTL 0.607
f/EPD 1.591 (SAG81-SAG72)/ET78 0.215
f2/f123 -4.248 SD62/SD41 1.482
f45/f67 1.224 (SD92-SD22)/|SAG92| 2.971
f89/f 7.271    
另外,由图12中的像差图可知,光学***100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学***100拥有良好的成像品质。
第七实施例
请参见图13和图14,图13为第七实施例中的光学***100的结构示意图,光学***100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透 镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有负屈折力的第七透镜L7、具有正屈折力的第八透镜L8以及具有负屈折力的第九透镜L9。图14由左至右依次为第七实施例中光学***100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凹面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的物侧面S9于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凹面;
第六透镜L6的物侧面S11于近光轴110处为凹面,于圆周处为凹面;
第六透镜L6的像侧面S12于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凹面;
第八透镜L8的物侧面S15于近光轴110处为凸面,于圆周处为凸面;
第八透镜L8的像侧面S16于近光轴110处为凹面,于圆周处为凹面;
第九透镜L9的物侧面S17于近光轴110处为凹面,于圆周处为凹面;
第九透镜L9的像侧面S18于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8以及第九透镜L9的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8以及第九透镜L9的材质均为塑料。
另外,光学***100的各项参数由表13给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表13
Figure PCTCN2021106442-appb-000012
Figure PCTCN2021106442-appb-000013
进一步地,光学***100各透镜像侧面或物侧面的非球面系数由表14给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表14
面序号 S1 S2 S3 S4 S5 S6
K 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
A4 4.506E-04 -2.977E-02 -4.598E-02 -2.178E-02 -9.227E-03 -7.505E-03
A6 1.253E-03 2.115E-02 2.756E-02 7.818E-03 9.060E-04 -5.655E-02
A8 -1.592E-03 -8.575E-03 -6.926E-03 1.178E-02 -3.362E-03 1.194E-01
A10 1.584E-03 1.491E-03 -2.158E-03 -2.220E-02 -1.160E-03 -1.515E-01
A12 -9.541E-04 1.961E-04 2.624E-03 1.972E-02 3.418E-03 1.180E-01
A14 3.579E-04 -1.018E-04 -9.922E-04 -1.063E-02 -2.474E-03 -5.749E-02
A16 -8.252E-05 -1.811E-05 1.798E-04 3.532E-03 8.146E-04 1.709E-02
A18 1.079E-05 1.269E-05 -1.100E-05 -6.621E-04 -1.013E-04 -2.828E-03
A20 -6.764E-07 -1.553E-06 -3.576E-07 5.457E-05 0.000E+00 1.985E-04
面序号 S7 S8 S9 S10 S11 S12
K 0.000E+00 1.000E+01 1.000E+01 8.000E+00 0.000E+00 1.343E+01
A4 -6.882E-03 1.578E-02 1.392E-02 -5.172E-03 -1.341E-02 -1.458E-02
A6 -8.538E-02 -9.407E-02 -8.202E-02 -3.383E-02 -2.071E-03 1.042E-02
A8 1.628E-01 1.407E-01 1.068E-01 4.104E-02 1.375E-03 -1.595E-02
A10 -1.939E-01 -1.389E-01 -8.844E-02 -2.953E-02 9.227E-04 9.658E-03
A12 1.464E-01 8.916E-02 4.623E-02 1.377E-02 -5.123E-04 -2.902E-03
A14 -7.065E-02 -3.713E-02 -1.520E-02 -4.164E-03 -2.839E-05 3.965E-04
A16 2.118E-02 9.701E-03 3.007E-03 7.800E-04 5.981E-05 -1.652E-06
A18 -3.615E-03 -1.455E-03 -3.204E-04 -8.151E-05 -1.237E-05 -5.116E-06
A20 2.696E-04 9.641E-05 1.373E-05 3.632E-06 7.952E-07 3.693E-07
面序号 S13 S14 S15 S16 S17 S18
K 2.394E+00 -4.448E+00 -1.000E+00 0.000E+00 0.000E+00 -7.637E-01
A4 -6.448E-03 -1.259E-01 -7.825E-02 7.036E-02 -5.516E-02 -7.060E-02
A6 2.804E-02 8.620E-02 3.754E-02 -4.421E-02 3.353E-03 1.549E-02
A8 -2.801E-02 -4.275E-02 -2.244E-02 1.313E-02 1.447E-03 -2.894E-03
A10 1.338E-02 1.395E-02 8.432E-03 -2.537E-03 -2.213E-04 4.128E-04
A12 -3.890E-03 -3.006E-03 -2.054E-03 3.165E-04 8.910E-07 -4.147E-05
A14 7.191E-04 4.257E-04 3.196E-04 -2.318E-05 2.101E-06 2.770E-06
A16 -8.368E-05 -3.790E-05 -3.008E-05 7.793E-07 -1.916E-07 -1.164E-07
A18 5.635E-06 1.910E-06 1.548E-06 1.782E-09 7.160E-09 2.784E-09
A20 -1.670E-07 -4.127E-08 -3.340E-08 -5.574E-10 -1.015E-10 -2.884E-11
并且,根据上述所提供的各参数信息,可推得以下数据:
TTL/ImgH 1.390 ACT/TTL 0.596
f/EPD 1.660 (SAG81-SAG72)/ET78 0.063
f2/f123 -2.563 SD62/SD41 1.417
f45/f67 8.670 (SD92-SD22)/|SAG92| 2.856
f89/f 1.751    
另外,由图14中的像差图可知,光学***100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学***100拥有良好的成像品质。
第八实施例
请参见图15和图16,图15为第八实施例中的光学***100的结构示意图,光学***100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有负屈折力的第六透镜L6、具有负屈折力的第七透镜L7、具有正屈折力的第八透镜L8以及具有负屈折力的第九透镜L9。图16由左至右依次为第八实施例中光学***100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凹面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凸面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面;
第六透镜L6的物侧面S11于近光轴110处为凹面,于圆周处为凹面;
第六透镜L6的像侧面S12于近光轴110处为凸面,于圆周处为凹面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凹面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凸面;
第八透镜L8的物侧面S15于近光轴110处为凸面,于圆周处为凹面;
第八透镜L8的像侧面S16于近光轴110处为凹面,于圆周处为凹面;
第九透镜L9的物侧面S17于近光轴110处为凹面,于圆周处为凸面;
第九透镜L9的像侧面S18于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8以及第九透镜L9的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8以及第九透镜L9的材质均为塑料。
另外,光学***100的各项参数由表15给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表15
Figure PCTCN2021106442-appb-000014
Figure PCTCN2021106442-appb-000015
进一步地,光学***100各透镜像侧面或物侧面的非球面系数由表16给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表16
面序号 S1 S2 S3 S4 S5 S6
K 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
A4 -8.105E-04 -2.571E-02 -4.251E-02 -2.013E-02 -7.900E-03 -4.425E-03
A6 3.301E-03 1.124E-02 1.776E-02 2.393E-03 2.228E-04 -3.099E-02
A8 -4.040E-03 5.674E-04 -4.449E-03 1.124E-02 -4.219E-03 4.339E-02
A10 3.199E-03 -4.598E-03 2.723E-03 -1.415E-02 8.641E-04 -5.411E-02
A12 -1.559E-03 3.475E-03 -3.005E-03 9.601E-03 1.257E-03 4.348E-02
A14 4.744E-04 -1.428E-03 1.861E-03 -4.025E-03 -1.157E-03 -2.121E-02
A16 -8.791E-05 3.437E-04 -6.186E-04 1.035E-03 3.778E-04 6.118E-03
A18 9.204E-06 -4.529E-05 1.072E-04 -1.495E-04 -4.296E-05 -9.624E-04
A20 -4.416E-07 2.527E-06 -7.598E-06 9.858E-06 0.000E+00 6.360E-05
面序号 S7 S8 S9 S10 S11 S12
K 0.000E+00 6.234E+00 1.000E+01 8.000E+00 0.000E+00 1.343E+01
A4 -1.138E-02 -5.580E-03 -2.135E-02 -3.310E-02 -2.388E-02 -3.165E-02
A6 -3.711E-02 -2.195E-02 -4.268E-03 2.215E-02 5.287E-02 5.835E-02
A8 4.968E-02 3.126E-02 1.563E-02 -2.726E-02 -6.993E-02 -6.238E-02
A10 -6.605E-02 -3.724E-02 -1.146E-02 2.193E-02 4.784E-02 3.530E-02
A12 5.738E-02 2.815E-02 3.488E-03 -1.043E-02 -1.935E-02 -1.219E-02
A14 -2.947E-02 -1.281E-02 -5.755E-05 3.042E-03 4.812E-03 2.625E-03
A16 8.843E-03 3.424E-03 -3.078E-04 -5.663E-04 -7.200E-04 -3.391E-04
A18 -1.453E-03 -4.990E-04 8.551E-05 6.407E-05 5.939E-05 2.389E-05
A20 1.017E-04 3.088E-05 -7.211E-06 -3.337E-06 -2.078E-06 -7.031E-07
面序号 S13 S14 S15 S16 S17 S18
K 3.847E+00 -4.218E+00 -1.000E+00 0.000E+00 0.000E+00 -7.652E-01
A4 -1.095E-02 -1.296E-01 -9.556E-02 6.272E-02 -6.930E-02 -7.859E-02
A6 3.834E-02 8.224E-02 5.153E-02 -3.737E-02 9.486E-03 1.948E-02
A8 -3.604E-02 -3.709E-02 -2.910E-02 1.198E-02 6.127E-04 -3.878E-03
A10 1.786E-02 1.158E-02 1.089E-02 -3.033E-03 -2.080E-04 5.675E-04
A12 -5.607E-03 -2.565E-03 -2.895E-03 5.610E-04 8.382E-06 -5.776E-05
A14 1.130E-03 3.945E-04 5.168E-04 -6.773E-05 1.284E-06 3.907E-06
A16 -1.418E-04 -3.918E-05 -5.636E-05 4.956E-06 -1.543E-07 -1.665E-07
A18 1.006E-05 2.217E-06 3.342E-06 -1.992E-07 6.395E-09 4.038E-09
A20 -3.068E-07 -5.373E-08 -8.226E-08 3.383E-09 -9.654E-11 -4.235E-11
并且,根据上述所提供的各参数信息,可推得以下数据:
TTL/ImgH 1.401 ACT/TTL 0.613
f/EPD 1.482 (SAG81-SAG72)/ET78 -18.201
f2/f123 -4.043 SD62/SD41 1.421
f45/f67 4.305 (SD92-SD22)/|SAG92| 2.964
f89/f 1.311    
另外,由图16中的像差图可知,光学***100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学***100拥有良好的成像品质。
请参见图17,在一些实施例中,光学***100可与感光元件210组装形成取像模组200。此时,感光元件210的感光面可视为光学***100的像面S21。取像模组200还可设置有红外截止滤光片L10,红外截止滤光片L10设置于第九透镜L9的像侧面S18与像面S21之间。具体地,感光元件210可以为电荷耦合元件(Charge Coupled Device,CCD)或互补金属氧化物半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)。在取像模组200中采用上述光学***100,能够兼顾高摄像性能及小型化设计的需求。
请参见图17和图18,在一些实施例中,取像模组200可应用于电子设备300中,电子设备包括壳体310,取像模组200设置于壳体310。具体地,电子设备300可以为但不限于便携电话机、视频电话、智能手机、电子书籍阅读器、行车记录仪等车载摄像设备或智能手表等可穿戴装置。当电子设备300为智能手机时,壳体310可以为电子设备300的中框。在电子设备300中采用上述取像模组200,能够兼顾高摄像性能及小型化设计的需求。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特 征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种光学***,其特征在于,沿光轴由物侧至像侧依次包括:
    具有正屈折力的第一透镜,所述第一透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
    具有负屈折力的第二透镜,所述第二透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
    具有屈折力的第三透镜;
    具有屈折力的第四透镜;
    具有屈折力的第五透镜;
    具有屈折力的第六透镜;
    具有屈折力的第七透镜,所述第七透镜的像侧面于近光轴处为凹面;
    具有正屈折力的第八透镜,所述第八透镜的物侧面于近光轴处为凸面;
    具有负屈折力的第九透镜,所述第九透镜的像侧面于近光轴处为凹面;
    且所述光学***满足以下条件式:
    1.35≤TTL/ImgH≤1.41;
    其中,TTL为所述第一透镜的物侧面至所述光学***的成像面于光轴上的距离,ImgH为所述光学***的最大视场角所对应的像高的一半。
  2. 根据权利要求1所述的光学***,其特征在于,满足以下条件式:
    1.4≤f/EPD≤1.8;
    其中,f为所述光学***的有效焦距,EPD为所述光学***的入瞳直径。
  3. 根据权利要求1所述的光学***,其特征在于,满足以下条件式:
    -6≤f2/f123≤-2.5;
    其中,f2为所述第二透镜的有效焦距,f123为所述第一透镜、所述第二透镜和所述第三透镜的组合焦距。
  4. 根据权利要求1所述的光学***,其特征在于,满足以下条件式:
    1≤f45/f67≤9;
    其中,f45为所述第四透镜和所述第五透镜的组合焦距,f67为所述第六透镜和所述第七透镜的组合焦距。
  5. 根据权利要求1所述的光学***,其特征在于,所述光学***满足以下条件式:
    1≤f89/f≤7.5;
    其中,f89为所述第八透镜与所述第九透镜的组合焦距,f为所述光学***的有效焦距。
  6. 根据权利要求1所述的光学***,其特征在于,满足以下条件式:
    0.55≤ACT/TTL≤0.65;
    其中,ACT为所述光学***中各透镜于光轴上的厚度之和。
  7. 根据权利要求1所述的光学***,其特征在于,满足以下条件式:
    -18.3≤(SAG81-SAG72)/ET78≤0.7;
    其中,SAG81为所述第八透镜的物侧面于最大有效口径处的矢高,SAG72为所述第七透镜的像侧面于最大有效口径处的矢高,ET78为所述第七透镜的像侧面最大有效口径处至所述第八透镜的物侧面最大有效口径处于光轴方向上的距离。
  8. 根据权利要求1所述的光学***,其特征在于,满足以下条件式:
    1.3≤SD62/SD41≤1.6;
    其中,SD62为所述第六透镜的像侧面最大有效口径的一半,SD41为所述第四透镜的物侧面最大有效口径的一半。
  9. 根据权利要求1所述的光学***,其特征在于,满足以下条件式:
    2.8≤(SD92-SD22)/|SAG92|≤3.8;
    其中,SD92为所述第九透镜的像侧面最大有效口径的一半,SD22为所述第二透镜的像侧面最大有效口径的一半,SAG92为所述第九透镜的像侧面于最大有效口径处的矢高。
  10. 根据权利要求1-9任一项所述的光学***,其特征在于,满足以下条件式:
    7.641mm≤TTL≤7.720mm。
  11. 根据权利要求1-9任一项所述的光学***,其特征在于,满足以下条件式:
    5.45mm≤ImgH≤5.51mm。
  12. 根据权利要求1-9任一项所述的光学***,其特征在于,所述第九透镜的物侧面与像侧面中的至少一者存在反曲点。
  13. 根据权利要求1-9任一项所述的光学***,其特征在于,还包括光阑,所述光阑设置于所述第一透镜的物侧。
  14. 根据权利要求1-9任一项所述的光学***,其特征在于,还包括红外截止滤光片,所述红外截止滤光片设置于所述第九透镜的像侧。
  15. 根据权利要求1-9任一项所述的光学***,其特征在于,所述光学***中各透镜的物侧面和像侧面均为非球面。
  16. 根据权利要求1-9任一项所述的光学***,其特征在于,所述光学***中各透镜的材质均为塑料。
  17. 一种取像模组,其特征在于,包括感光元件以及权利要求1-16任一项所述的光学***,所述感光元件设置于所述光学***的像侧。
  18. 根据权利要求17所述的取像模组,其特征在于,所述感光元件为电荷耦合元件或互补金属氧化物半导体器件。
  19. 一种电子设备,其特征在于,包括壳体以及权利要求18所述的取像模组,所述取像模组设置于所述壳体。
  20. 根据权利要求19所述的电子设备,其特征在于,所述电子设备为便携电话机、视频电话、智能手机、电子书籍阅读器、行车记录仪或智能手表。
PCT/CN2021/106442 2021-07-15 2021-07-15 光学***、取像模组及电子设备 WO2023283871A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/106442 WO2023283871A1 (zh) 2021-07-15 2021-07-15 光学***、取像模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/106442 WO2023283871A1 (zh) 2021-07-15 2021-07-15 光学***、取像模组及电子设备

Publications (1)

Publication Number Publication Date
WO2023283871A1 true WO2023283871A1 (zh) 2023-01-19

Family

ID=84918981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106442 WO2023283871A1 (zh) 2021-07-15 2021-07-15 光学***、取像模组及电子设备

Country Status (1)

Country Link
WO (1) WO2023283871A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050230599A1 (en) * 2004-04-14 2005-10-20 Kanjo Orino Illumination optical system, exposure apparatus, and device manufacturing method using the same
CN111766687A (zh) * 2020-09-03 2020-10-13 常州市瑞泰光电有限公司 摄像光学镜头
CN111812811A (zh) * 2020-09-03 2020-10-23 常州市瑞泰光电有限公司 摄像光学镜头
CN111812809A (zh) * 2020-09-03 2020-10-23 常州市瑞泰光电有限公司 摄像光学镜头
CN212515181U (zh) * 2020-06-28 2021-02-09 浙江舜宇光学有限公司 光学成像镜头
CN113552696A (zh) * 2021-07-15 2021-10-26 江西晶超光学有限公司 光学***、取像模组及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050230599A1 (en) * 2004-04-14 2005-10-20 Kanjo Orino Illumination optical system, exposure apparatus, and device manufacturing method using the same
CN212515181U (zh) * 2020-06-28 2021-02-09 浙江舜宇光学有限公司 光学成像镜头
CN111766687A (zh) * 2020-09-03 2020-10-13 常州市瑞泰光电有限公司 摄像光学镜头
CN111812811A (zh) * 2020-09-03 2020-10-23 常州市瑞泰光电有限公司 摄像光学镜头
CN111812809A (zh) * 2020-09-03 2020-10-23 常州市瑞泰光电有限公司 摄像光学镜头
CN113552696A (zh) * 2021-07-15 2021-10-26 江西晶超光学有限公司 光学***、取像模组及电子设备

Similar Documents

Publication Publication Date Title
CN113552696B (zh) 光学***、取像模组及电子设备
WO2021184165A1 (zh) 光学***、摄像模组及电子装置
CN113156618A (zh) 光学***、摄像模组及电子设备
CN113156619A (zh) 光学***、摄像模组及电子设备
CN114578512B (zh) 光学***、摄像模组及电子设备
CN113433656B (zh) 一种成像***、镜头模组及电子设备
CN113093367B (zh) 摄像透镜组
CN214151197U (zh) 光学***、摄像模组及电子设备
CN212111955U (zh) 光学***、镜头模组和电子设备
CN113156612A (zh) 光学***、取像模组及电子设备
WO2021087669A1 (zh) 光学***、取像装置及电子装置
CN218272885U (zh) 光学***、摄像模组及电子设备
CN114675407B (zh) 光学***、镜头模组及电子设备
CN114721126B (zh) 光学镜头、摄像模组及电子设备
CN114594577B (zh) 光学***、摄像模组及电子设备
CN114415343B (zh) 光学***、摄像模组及电子设备
WO2022160121A1 (zh) 光学成像镜头、取像装置及电子设备
CN114545594B (zh) 光学***、摄像模组及电子设备
CN214845997U (zh) 光学***、摄像模组及电子设备
WO2022120678A1 (zh) 光学***、取像模组及电子设备
CN115480365A (zh) 光学***、取像模组及电子设备
WO2023283871A1 (zh) 光学***、取像模组及电子设备
WO2021203277A1 (zh) 光学***、取像模组及电子设备
CN114637094A (zh) 光学镜头、摄像模组及电子设备
CN113253427A (zh) 光学***、摄像模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21949659

Country of ref document: EP

Kind code of ref document: A1