WO2023282056A1 - Exterior material for power storage device, method for manufacturing same, and power storage device - Google Patents

Exterior material for power storage device, method for manufacturing same, and power storage device Download PDF

Info

Publication number
WO2023282056A1
WO2023282056A1 PCT/JP2022/024798 JP2022024798W WO2023282056A1 WO 2023282056 A1 WO2023282056 A1 WO 2023282056A1 JP 2022024798 W JP2022024798 W JP 2022024798W WO 2023282056 A1 WO2023282056 A1 WO 2023282056A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat
exterior material
storage device
resistant
Prior art date
Application number
PCT/JP2022/024798
Other languages
French (fr)
Japanese (ja)
Inventor
圭太郎 川北
Original Assignee
昭和電工パッケージング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工パッケージング株式会社 filed Critical 昭和電工パッケージング株式会社
Priority to JP2023533518A priority Critical patent/JPWO2023282056A1/ja
Priority to CN202280047308.4A priority patent/CN117597819A/en
Publication of WO2023282056A1 publication Critical patent/WO2023282056A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an exterior material for an electricity storage device such as a lithium secondary battery (lithium ion battery, lithium polymer battery, etc.), a lithium ion capacitor, an electric double layer capacitor, a manufacturing method thereof, and an electricity storage device including an all-solid-state battery.
  • a lithium secondary battery lithium ion battery, lithium polymer battery, etc.
  • a lithium ion capacitor lithium ion capacitor
  • an electric double layer capacitor a manufacturing method thereof
  • an electricity storage device including an all-solid-state battery.
  • the exterior material consists of a heat-resistant resin layer (heat-resistant layer)/adhesive layer/metal foil layer (barrier layer)/adhesive layer/thermoplastic resin layer (thermal bonding layer) instead of the conventional metal can.
  • Laminates are used (Patent Documents 1 to 3).
  • power sources for electric vehicles, large power sources for power storage, capacitors, and the like are also increasingly being sheathed with the above-described laminated body (exterior material).
  • the laminate When forming the exterior material for an electric storage device, the laminate is formed into a three-dimensional shape such as a substantially rectangular parallelepiped shape by performing stretch forming or deep drawing forming on the laminate. By molding into such a three-dimensional shape, it is possible to secure a housing space for housing the electricity storage device main body.
  • a lubricant such as fatty acid amide is added to the film constituting the heat-sealing layer (heat-sealing layer film), and the lubricating agent is bled out to obtain the lubricity of the inner layer surface.
  • the lubricity of the surface of the outer layer is obtained by transferring the lubricant of the heat-sealable layer to the surface of the outer layer when aging the outer covering material in a wound state.
  • the total amount of the lubricant applied to the outer layer and the lubricant added to the inner layer may increase, so the amount of lubricant must be accurately controlled.
  • the amount of lubricant must be accurately controlled.
  • Preferred embodiments of the present invention have been made in view of the above and/or other problems in the related art. Preferred embodiments of the present invention can significantly improve existing methods and/or apparatus.
  • the present invention has been made in view of the above problems, and provides an exterior material for an electricity storage device that can improve moldability and sufficiently ensure adhesion to an adhesive such as a tape, a method for manufacturing the same, and an electricity storage device. intended to
  • the present invention has the following means.
  • An exterior material for an electricity storage device comprising An easy-to-slip layer containing an anionic surfactant is provided on the outer surface side of the heat-resistant layer, An exterior material for an electricity storage device, wherein the abundance of the slippery layer is set to 1.0 mg/m 2 to 10.0 mg/m 2 .
  • the heat-resistant layer is composed of a multilayer structure including a first layer made of polyamide resin and a second layer made of polyester resin provided on the outer surface side of the first layer. 4.
  • the exterior material for an electricity storage device according to any one of 3.
  • a method for manufacturing an exterior material for an electricity storage device comprising: The heat-resistant layer is characterized by comprising a step of forming an easy-to-slip layer with a coating amount of 1.0 mg/m 2 to 10.0 mg/m 2 by coating an anionic surfactant on the outer surface side of the heat-resistant layer.
  • a method for manufacturing an exterior material for an electric storage device comprising: The heat-resistant layer is characterized by comprising a step of forming an easy-to-slip layer with a coating amount of 1.0 mg/m 2 to 10.0 mg/m 2 by coating an anionic surfactant on the outer surface side of the heat-resistant layer.
  • the surface of the outer layer is provided with the slippery layer containing an anionic surfactant as the outermost layer, desired lubricity can be obtained, Moldability can be improved. Furthermore, since the slippery layer is formed in a specific amount, it is possible to suppress excessive lubricity (release property) more than necessary, and to ensure sufficient adhesion to adhesives such as adhesive tapes. Problems such as peeling of the adhesive tape can be reliably prevented. Furthermore, since the anionic surfactant of the present invention has excellent dispersibility compared to cationic or nonionic surfactants, it is possible to form a surfactant coating (easy-to-slip layer) on the entire surface of the outer layer without gaps. Also, sufficient adhesiveness can be obtained while ensuring good lubricity.
  • the coefficient of dynamic friction of the slippery layer surface is specified, so the above effect can be obtained more reliably.
  • the heat-sealable layer which is the inner layer, contains a lubricant
  • the lubricant is transferred to the easy-to-slip layer, thereby exhibiting the lubricating effect of the lubricant.
  • the lubricating effect of the surfactant in the easy-to-slip layer combine to reliably impart desired lubricity to the surface of the outermost layer.
  • the exterior material for an electricity storage device of the invention [4] since it is configured by a multilayer structure including an inner polyamide resin layer and an outer polyester resin layer, the surface of the outer polyester resin layer is easily slippery.
  • the anionic surfactant as a layer is easy to disperse, the easy-to-slip layer can be reliably formed on the entire surface of the outer layer, and the polyamide-based resin layer with excellent moldability is arranged on the inside for moldability. is also excellent.
  • the exterior material of the invention [1] has excellent moldability and adhesion, it is possible to provide a high-quality electricity storage device with high operational reliability.
  • FIG. 1 is a cross-sectional view showing an exterior material for an electric storage device, which is an embodiment of the present invention.
  • 2A and 2B are schematic diagrams for explaining the coating state of the surfactant in the exterior material for an electricity storage device of the embodiment, FIG. 2A being a cross-sectional view and
  • FIG. 3 is a cross-sectional view showing an electricity storage device manufactured using the exterior material of the embodiment.
  • FIG. 4 is a perspective view showing an exploded power storage device of the embodiment.
  • FIG. 1 is a cross-sectional view showing an exterior material for an electricity storage device, which is an embodiment of the present invention.
  • the exterior material 1 for an electric storage device includes a heat-resistant layer 2 made of a heat-resistant resin as an outer layer, a heat-fusible layer (sealant layer) 3 made of a heat-fusible resin as an inner layer, and A barrier layer 4 as a metal foil layer (intermediate layer) disposed between both layers 2 and 3 is included, and a lubricous layer 5 as an outermost layer is formed on the outer surface of the heat-resistant layer 2 .
  • metal foils such as aluminum (Al) foil, copper (Cu) foil, stainless steel (SUS) foil, nickel (Ni) foil, and titanium (Ti) foil can be used.
  • Al aluminum
  • Cu copper
  • SUS stainless steel
  • Ni nickel
  • Ti titanium
  • 1000 series or 8000 series Al foil can be preferably used.
  • the terms aluminum, copper, nickel, and titanium are used in the sense of including these alloys.
  • the thickness of the barrier layer 4 is preferably set to 20 ⁇ m to 100 ⁇ m, more preferably 30 ⁇ m to 80 ⁇ m.
  • the inner surface of the barrier layer 4 (the surface on the heat sealing layer 3 side) is subjected to a chemical conversion treatment.
  • a chemical conversion treatment it is possible to sufficiently prevent corrosion of the barrier layer surface due to contents (electrolyte solution of a battery, etc.).
  • the heat-resistant layer 2 is made of a heat-resistant resin such as biaxially oriented nylon film (ONy), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polyester resin such as polyethylene furanoate (PEF), Biaxially oriented polypropylene (OPP) or the like can be preferably used.
  • a heat-resistant resin such as biaxially oriented nylon film (ONy), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polyester resin such as polyethylene furanoate (PEF), Biaxially oriented polypropylene (OPP) or the like can be preferably used.
  • thermoplastic resin having a temperature of 10° C. or higher, more preferably a thermoplastic resin having a temperature of 20° C. or higher, with respect to the heat-sealing resin constituting the heat-sealing layer 3. .
  • the heat-resistant layer 2 can be formed, for example, by bonding a resin film constituting the heat-resistant layer 2 to one surface (outer surface) of the barrier layer (metal foil) 5 with an adhesive.
  • the heat-resistant layer 2 may be composed of a single layer, or may be composed of a multi-layer structure, for example, a structure in which two or more resin films are laminated.
  • the heat-resistant layer 2 is composed of a single layer, it is preferable to use a polyester resin film such as PET.
  • a polyester resin film such as PET.
  • the anionic surfactant is water-based, it has a lower water absorption rate, such as polyethylene terephthalate (PET) film, than films with high water absorption rate, such as biaxially oriented nylon (ONy) film.
  • PET polyethylene terephthalate
  • ONy biaxially oriented nylon
  • a film can exhibit its effect with a small amount. In other words, in the case of the ONy film, it is absorbed in the film, so there is a possibility that the coefficient of dynamic friction becomes high with the same coating amount as that of the PET film.
  • a composite film in which a polyester film and a polyamide film such as nylon are combined.
  • a structure in which a polyamide film is laminated on the outer surface of the barrier layer 4 and a polyester film is laminated on the upper surface (outer surface) of the polyamide film, that is, a structure in which the polyester is arranged outside the polyamide is adopted. is preferred.
  • the thickness of the heat-resistant layer 2 is preferably set to 10 ⁇ m to 50 ⁇ m regardless of whether it has a single-layer structure or a multi-layer structure.
  • Urethane-based adhesives, epoxy-based adhesives, and acrylic-based adhesives can be suitably used as adhesives for bonding the resin film for the heat-resistant layer 2 to the barrier layer 4 .
  • the thickness of this adhesive is preferably set to 1 ⁇ m to 5 ⁇ m.
  • heat-sealable resins such as unstretched polypropylene (CPP) and polyethylene
  • CPP unstretched polypropylene
  • the thermal fusion layer 3 can be formed, for example, by bonding a resin film constituting the thermal fusion layer 3 to the other surface (inner surface) of the barrier layer 4 with an adhesive.
  • the heat-sealing layer 3 may be composed of a single layer, or may be composed of a multi-layer structure.
  • the thickness of the heat sealing layer 3 is preferably set to 20 ⁇ m to 100 ⁇ m.
  • the resin constituting the heat sealing layer 3 contains 100 ppm to 2000 ppm of lubricant.
  • fatty acid amides such as saturated fatty acid amides and unsaturated fatty acid amides
  • fatty acid bisamides such as saturated fatty acid bisamides, unsaturated fatty acid bisamides and aromatic bisamides
  • saturated fatty acid amides include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, and hydroxystearic acid amide.
  • Examples of the unsaturated fatty acid amide include oleic acid amide and erucic acid amide.
  • saturated fatty acid bisamide examples include methylenebisstearic acid amide, ethylenebiscapric acid amide, ethylenebislauric acid amide, ethylenebisstearic acid amide, ethylenebishydroxystearic acid amide, ethylenebisbehenic acid amide, and hexamethylenebisstearic acid amide. , hexamethylenebisbehenamide, hexamethylenehydroxystearic acid amide, N,N'-distearyladipic acid amide, N,N'-distearylsebacic acid amide.
  • Examples of the unsaturated fatty acid bisamide include ethylenebisoleic acid amide, ethylenebiserucic acid amide, hexamethylenebisoleic acid amide, N,N'-dioleyladipic acid amide, and N,N'-dioleylsebacic acid amide. can do.
  • aromatic bisamide examples include m-xylylenebisstearic acid amide, m-xylylenebishydroxystearic acid amide, and N,N'-distearylisophthalic acid amide.
  • the thickness of the adhesive should be set to 1 ⁇ m to 5 ⁇ m, and in the case of heat lamination, the thickness of the thermoplastic resin used as the adhesive should be set to 5 ⁇ m to 10 ⁇ m.
  • the slippery layer (outermost layer) 5 is composed of an anionic surfactant.
  • anionic surfactants include carboxylates (soaps), sulfates, phosphates, palmitates, metal oleates, alkylnaphthalenesulfonates, butyl oleate sulfates, and octyl sulfates.
  • Cetyl sulfate, C 8-18 organic sulfate such as lauryl sulfate, stearate, octyl sulfonate, cetyl sulfonate, lauryl sulfonate, stearyl sulfonate, oleyl sulfonate, p -Sulfonates such as organic sulfonates having 8 to 30 carbon atoms such as toluenesulfonate, dodecylbenzenesulfonate, oleylbenzenesulfonate, naphthylsulfonate, and diisopropylnaphthylsulfonate.
  • a salt is a metal salt.
  • the trade name "Elecut XC301-A” manufactured by Takemoto Oil Co., Ltd. can be used.
  • a solution obtained by dissolving the above-described anionic surfactant in a solvent such as water or alcohol is applied to the outer surface of the heat-resistant layer 2. , obtained by drying to remove the solvent.
  • the anionic surfactant since the anionic surfactant has excellent dispersibility in a solvent such as water or alcohol, the anionic surfactant is evenly distributed throughout the slippery solution. For this reason, as shown in FIGS. 2(a) and 2(b), the easy-to-slip layer 5 as an anionic surfactant is formed on the entire surface of the heat-resistant layer 2 constituting the exterior material 1 without gaps (without uncoated portions). can be formed. For example, as shown in FIG. 2( a ), even if uneven portions are formed on the surface of the heat-resistant layer 2 , the slippery layer 5 is applied thickly on the concave portions and thinly on the convex portions. As a result, the slippery layer 5 can be applied over the entire surface of the heat-resistant layer 2 regardless of the surface conditions. In addition, in FIG. 2A, the uneven shape of the heat-resistant layer 2 is exaggerated for easy understanding of the invention.
  • unsaturated long-chain fatty acid salts such as anionic surfactants are dispersed appropriately, making it easy to form surface protrusions (unevennesses), and even a small amount of application can impart good easy activity. If the coating is excessive, the releasability becomes too strong, so sodium oleate is preferably used as an anionic surfactant in order to ensure a balance between releasability and easy activity.
  • the coating amount (dry component) of the slippery layer 5 after solvent removal it is preferable to set the coating amount (dry component) of the slippery layer 5 after solvent removal to 1.0 mg/m 2 to 10.0 mg/m 2 . That is, if the coating amount is too small, the slippery layer 5 cannot be formed on the entire outer surface of the heat-resistant layer 2 without gaps, making it difficult to reliably obtain the desired lubricity, resulting in deterioration of moldability. It is not preferable because it may cause Conversely, if the coating amount is too large, the releasability may be remarkably exhibited, and the adhesiveness to the adhesive tape may be lowered, which is not preferable.
  • the exterior material 1 of the present embodiment is heat-aged while being wound into a roll, with the heat-sealable layer 3 side facing inside and the easy-slip layer 5 (heat-resistant layer 2) side facing outside.
  • the lubricant contained in the heat-sealable layer 3 is deposited from the surface (inner surface side) of the heat-sealable layer 3 and transferred to the easy-slipping layer 5 (heat-resistant layer 2) as the outermost layer.
  • An appropriate lubricant is applied to the sliding layer 5 and the heat-resistant layer 2 . Therefore, the transferred lubricant and the lubricity of the slippery layer 5 itself are combined to provide the desired lubricity on the outer surface of the exterior material 1 .
  • the anionic surfactant as the slippery layer 5 only contains the transferred lubricant.
  • the solvent used may remain.
  • the slippery layer 5 does not contain fine particles such as an anti-blocking material (AB material).
  • the exterior material 1 for an electricity storage device of the present embodiment configured as described above is formed into a predetermined shape by thermoforming such as deep drawing and stretch molding as it is in a sheet form, or as required, and is used for electricity storage. It is used as an exterior case for the device.
  • FIGS. 3 and 4 are a sectional view and an exploded perspective view showing an electricity storage device 30 manufactured using the exterior material 1 of this embodiment.
  • this electric storage device 30 is a lithium ion secondary battery.
  • an exterior case 15 is composed of a tray member 14 obtained by molding the exterior material 1 and a cover member 10 made of the planar (sheet-like) exterior material 1 .
  • a substantially rectangular parallelepiped electricity storage device main body (electrochemical element or the like) 31 is accommodated in the accommodation recess of the tray member 14 obtained by molding the exterior material 1 of the present invention.
  • the lid member 10 (armor material 1) of the present invention is arranged with the heat sealing layer 3 side facing inward (lower side), and the outer peripheral edge of the heat sealing layer 3 of the lid member 10 and , and the heat-sealing layer 3 of the flange portion (sealing peripheral edge portion) 29 of the tray member 14 are heat-sealed and sealed to form the electric storage device 30 .
  • the inner surface of the accommodation recess of the tray member 14 is the heat-sealable layer 3, and the outer surface of the accommodation recess is on the slippery layer 5 (heat-resistant layer 2) side (see FIG. 4).
  • reference numeral "39" denotes a heat-sealed portion where the outer peripheral edge portion of the lid member 10 and the flange portion (sealing peripheral edge portion) 29 of the tray member 14 are joined (welded).
  • the tip of the tab lead connected to the electricity storage device body 31 is led out of the exterior case 15, but is not shown.
  • the power storage device main body 31 is not particularly limited, but includes, for example, a battery main body, a capacitor main body, a capacitor main body, and the like.
  • the exterior case 15 is composed of the tray member 14 obtained by molding the exterior material 1 and the planar lid member 10.
  • the exterior case 15 may be composed of a pair of planar (sheet-shaped) exterior materials 1, or a pair of tray members 14 may be overlapped in a facing state. It may be configured as follows.
  • the slippery layer 5 is formed on the outer surface to obtain sufficient lubricity, and the thermal adhesive layer 3 as the inner layer is sufficiently lubricated by the lubricant. Since the moldability can be obtained, the moldability can be reliably improved.
  • the easy-to-slip layer 5 is provided on the entire outer surface of the exterior material 1 without gaps, the desired lubricity can be reliably obtained, and the moldability can be more reliably improved.
  • the coefficient of dynamic friction of the outer surface of the slippery layer 5 is set to 0.05 to 0.3. Therefore, as described above, good lubricity can be obtained, and sufficient moldability can be reliably obtained.
  • coefficient of dynamic friction in this embodiment is measured according to JIS K7125 (1999).
  • the slippery layer 5 has a coating amount of 1.0 mg/m 2 to 10.0 mg/m 2 and is formed thinly and evenly over the entire outer surface. It is possible to suppress the occurrence of excessive releasability. Therefore, the adhesiveness of the adhesive tape to the adhesive can be sufficiently ensured on the outer surface (slippery layer 5) of the exterior material 1, and problems such as peeling of the adhesive tape can be reliably prevented. Furthermore, since the coefficient of dynamic friction of the slippery layer 5 is 0.05 or more, the adhesiveness to the adhesive tape can be ensured more reliably in this respect as well.
  • the easy-slipping layer solution is applied to the outer surface of the heat-resistant layer 2 to form the easy-slipping layer 5 , transfer from the heat-sealing layer 3 and elution from the heat-resistant layer 2 are performed. As compared with the case of forming an easy-slip layer or the like by quality and reliability can be further improved.
  • the heat-resistant layer 2 is composed of a two-layer structure of an inner polyamide resin layer (first layer) and an outer polyester resin layer (second layer), the outer polyester Since the resin layer is easily charged to the negative side, it can be assumed that the anionic surfactant is easily dispersed (difficult to aggregate) on the surface, and the anionic surfactant coating (smoothing layer 5) is formed. It is believed that the coating can be uniformly formed over the entire outer surface and the desired lubricity can be imparted more reliably.
  • Example 1> After applying a chemical conversion treatment liquid consisting of phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water, and alcohol to both sides of a 40 ⁇ m thick aluminum foil (A8021-O) as a barrier layer 4 , and dried at 180° C. to form a chemical conversion film.
  • the amount of chromium deposited on this chemical conversion film was 10 mg/m 2 per side.
  • a heat-resistant layer 2 having a two-layer structure was formed on one surface (outer surface) of the chemically treated aluminum foil (barrier layer 4). That is, on one surface (outer surface) of an aluminum foil (barrier layer 4), a two-component curable urethane adhesive (thickness: 3 ⁇ m) is applied as the first layer of the heat-resistant layer 2 to form a biaxial adhesive layer having a thickness of 15 ⁇ m.
  • An oriented 6 nylon (ONy) film was dry-laminated and laminated.
  • the biaxially stretched 6 nylon (ONy) film As the second layer of the heat-resistant layer 2, a 12 ⁇ m thick stretched polyethylene terephthalate (3 ⁇ m thick) is applied via a two-component curing type urethane adhesive (thickness: 3 ⁇ m). PET film was dry-laminated and bonded together. As a result, a base film in which the heat-resistant layer 2 was laminated on the upper surface (outer surface) of the barrier layer 4 was produced.
  • a solution obtained by adding sodium oleate (described as "anionic surfactant A” in Table 1) as an anionic surfactant to isopropyl alcohol (IPA) on the base film (solution for slippery layer) ) was applied to the surface of the film (heat-resistant layer 2 ) constituting the outer layer of the base film, and dried at 150° C. to form the slippery layer 5 on the heat-resistant layer 2 .
  • the coating amount of the slippery layer 5 after drying was 2.5 mg/m 2 as shown in Table 1.
  • a 40 ⁇ m thick unstretched polypropylene (CPP) film is attached to the other side of the aluminum foil (barrier layer 4) of the base film via a two-component curing type maleic acid-modified polypropylene adhesive (2 ⁇ m thick) ( inner surface), and sandwiched between a rubber nip roll and a lamination roll heated to 100° C. for dry lamination to obtain a laminate for an exterior material.
  • the laminate was wound around a roll shaft and then aged at 40° C. for 10 days to obtain a sample of exterior material 1 of Example 1.
  • the method for measuring the coating amount of the slippery layer 5 shown in Table 1 is as follows. Measure the weight using The weight at that time (the weight before wiping) is defined as "W0" mg.
  • Examples 2 to 4> In the same manner as in Example 1, except that the coating amount of the slippery layer 5 was set to “1 mg/m 2 ”, “6.5 mg/m 2 ”, and “10 mg/m 2 ” as shown in Table 1. 2-4 cladding 1 samples were obtained.
  • Example 5 Exterior material of Example 5 in the same manner as in Example 1 except that sodium sulfate ester (described as "anionic surfactant B” in Table 1) was used as an anionic surfactant as shown in Table 1. 1 sample was obtained.
  • anionic surfactant B sodium sulfate ester
  • Example 6 A sample of the exterior material 1 of Example 6 was prepared in the same manner as in Example 1 except that the heat-resistant layer 2 was composed of a single layer of a biaxially stretched nylon 6 (ONy) film having a thickness of 25 ⁇ m as shown in Table 1. got
  • Example 7 A sample of the exterior material 1 of Example 7 was obtained in the same manner as in Example 1, except that the heat-resistant layer 2 was composed of a single layer of a stretched polyethylene terephthalate (PET) film having a thickness of 12 ⁇ m as shown in Table 1. rice field.
  • PET polyethylene terephthalate
  • Example 8 As shown in Table 1, in the same manner as in Example 1, except that the anionic surfactant B for the slippery layer 5 was used and the coating amount of the slippery layer 5 was set to "1 mg/m 2 ". A sample of exterior material 1 of Example 8 was obtained.
  • Example 9 As shown in Table 1, sodium stearyl sulfonate (described as “anionic surfactant C” in Table 1) was used as an anionic surfactant, and the coating amount of the slippery layer 5 was "4.5 mg/m 2 ". A sample of the exterior material 1 of Example 9 was obtained in the same manner as in Example 1, except that it was set to .
  • Comparative Example 2 Exterior of Comparative Example 2 in the same manner as in Example 1 except that the outermost layer (corresponding to the slippery layer) was formed using a cationic surfactant instead of an anionic surfactant as shown in Table 2. A sample of Material 1 was obtained.
  • Comparative Example 3 Exterior of Comparative Example 3 in the same manner as in Example 1 except that the outermost layer (corresponding to the slippery layer) was formed using a nonionic surfactant instead of an anionic surfactant as shown in Table 2. A sample of Material 1 was obtained.
  • IPA isopropyl alcohol
  • Comparative Examples 5 and 6 Exterior materials of Comparative Examples 5 and 6 were prepared in the same manner as in Example 1, except that the coating amount of the easy slip layer 5 was set to "0.5 mg/m 2 " and "12 mg/m 2 " as shown in Table 2. 1 sample was obtained.
  • ⁇ Tape peelability test> A test piece having a width of 15 mm and a length of 150 mm was cut out from each of the exterior materials 1 of Examples and Comparative Examples.
  • An adhesive tape having an adhesive strength of 13 N/cm (trade name “tesa 70415”) was attached to the surface of each test piece along its length direction.
  • the adhesive tape had a width of 5 mm and a length of 80 mm or more.
  • a hand roll having a weight of 2 kgf was reciprocated 5 times on this adhesive tape, and then left to stand at room temperature for 1 hour.
  • ⁇ Moldability test> A test piece of 100 mm ⁇ 100 mm was cut out from each of the exterior materials 1 of Examples and Comparative Examples. For each test piece, a deep drawing test was performed using a deep drawing mold attached to a 25t press machine while changing the forming height (drawing depth) in increments of 0.5 mm.
  • the weighted green waste was placed on the outermost surface of the test piece and pulled with a length of 400 mm, a speed of 4 cm/s, and an angle parallel to the bottom surface.
  • static electricity removal sheet S SD2525 3100 manufactured by TRUSCO was used as the green waste.
  • the exterior materials 1 of Examples 1 to 9 related to the present invention were evaluated favorably in all aspects of tape adhesion, moldability, and generation of white powder.
  • Example 1 was superior to Examples 6 and 7 in formability. This is because the heat-resistant layer of Example 1 has a multilayer structure of PET film and ONy film, whereas the heat-resistant layer of Examples 6 and 7 has a single-layer structure of ONy film and PET film. This is because it is more flexible.
  • the exterior material for an electricity storage device of the present invention is used for batteries and capacitors used in mobile devices such as smartphones and tablets, hybrid vehicles, electric vehicles, wind power generation, solar power generation, and batteries and capacitors used for storing nighttime electricity. It can be suitably used when manufacturing an electric storage device such as.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

Provided is an exterior material for a power storage device, the exterior material exhibiting excellent moldability and adherence with an adhesive. The present invention pertains to an exterior material for a power storage device, the exterior material comprising: a barrier layer 4 made from a metal foil; a heat-resistant layer 2 made from a heat-resistant resin and provided on an outer surface side of the barrier layer 4; and a thermal fusion layer 3 made from a thermal fusion resin and provided on an inner surface side of the barrier layer 4. An easily-sliding layer 5 including an anionic surfactant is provided on an outer surface side of the heat-resistant layer 2, and the amount of the easily-sliding layer 5 that is present is set to 1.0 mg/m2 to 10.0 mg/m2, inclusive.

Description

蓄電デバイス用外装材およびその製造方法並びに蓄電デバイスExterior material for power storage device, method for manufacturing the same, and power storage device
 この発明は、リチウム2次電池(リチウムイオン電池、リチウムポリマー電池等)、リチウムイオンキャパシタ、電気2重層キャパシタ等の蓄電デバイス用外装材およびその製造方法、並びに全固体電池を含む蓄電デバイスに関する。 The present invention relates to an exterior material for an electricity storage device such as a lithium secondary battery (lithium ion battery, lithium polymer battery, etc.), a lithium ion capacitor, an electric double layer capacitor, a manufacturing method thereof, and an electricity storage device including an all-solid-state battery.
 近年、スマートフォン、タブレット端末等のモバイル電気機器の薄型化、軽量化に伴い、これらに搭載されるリチウムイオン二次電池、リチウムポリマー二次電池、リチウムイオンキャパシタ、電気2重層コンデンサ等の蓄電デバイスの外装材としては、従来の金属缶に代えて、耐熱性樹脂層(耐熱層)/接着剤層/金属箔層(バリア層)/接着剤層/熱可塑性樹脂層(熱融着層)からなる積層体が用いられている(特許文献1~3)。また、電気自動車等の電源、蓄電用途の大型電源、キャパシタ等も上記構成の積層体(外装材)で外装されることも増えてきている。蓄電デバイス用外装材を形成するに際しては、前記積層体に対して張り出し成形や深絞り成形が行われることによって、略直方体形状等の立体形状に成形される。このような立体形状に成形することにより、蓄電デバイス本体部を収容するための収容空間を確保することができる。 In recent years, along with the thinning and weight reduction of mobile electric devices such as smartphones and tablet terminals, the demand for power storage devices such as lithium-ion secondary batteries, lithium-polymer secondary batteries, lithium-ion capacitors, and electric double layer capacitors mounted on these devices has increased. The exterior material consists of a heat-resistant resin layer (heat-resistant layer)/adhesive layer/metal foil layer (barrier layer)/adhesive layer/thermoplastic resin layer (thermal bonding layer) instead of the conventional metal can. Laminates are used (Patent Documents 1 to 3). In addition, power sources for electric vehicles, large power sources for power storage, capacitors, and the like are also increasingly being sheathed with the above-described laminated body (exterior material). When forming the exterior material for an electric storage device, the laminate is formed into a three-dimensional shape such as a substantially rectangular parallelepiped shape by performing stretch forming or deep drawing forming on the laminate. By molding into such a three-dimensional shape, it is possible to secure a housing space for housing the electricity storage device main body.
 外装材を深く絞り成形するためには、外側層表面(耐熱層表面)と内側層表面(熱融着層表面)の摩擦を低くして、滑性を向上させるのが好ましい。 In order to deep draw the exterior material, it is preferable to reduce the friction between the outer layer surface (heat-resistant layer surface) and the inner layer surface (heat-sealable layer surface) to improve lubricity.
 例えば従来において、熱融着層を構成するフィルム(熱融着層フィルム)に、脂肪酸アミド等の滑剤を添加しておき、その滑剤をブリードアウトさせて内側層表面の滑性を得るようにしていた。さらに外側層表面の滑性は、外装材を巻き取った状態でエージング処理する際に、熱融着層の滑剤を外側層表面に転写させることによって得るようにしている。 For example, conventionally, a lubricant such as fatty acid amide is added to the film constituting the heat-sealing layer (heat-sealing layer film), and the lubricating agent is bled out to obtain the lubricity of the inner layer surface. rice field. Further, the lubricity of the surface of the outer layer is obtained by transferring the lubricant of the heat-sealable layer to the surface of the outer layer when aging the outer covering material in a wound state.
 一方、従来において、外包材の外側層表面に滑性を得るために、脂肪酸アミド等の滑剤や易滑樹脂を直接塗布する方法や、易滑樹脂層を積層する方法等も採用されている。 On the other hand, conventionally, in order to obtain lubricity on the surface of the outer layer of the outer packaging material, a method of directly applying a lubricant such as fatty acid amide or a slippery resin or a method of laminating a slippery resin layer has been adopted.
特許第4736188号Patent No. 4736188 特許第4940496号Patent No. 4940496 特開2020-91990号JP 2020-91990
 しかしながら、上記内側層(熱融着層)に脂肪酸アミド等の滑剤を添加する方法では、外側層への滑剤の転写量は、温度、圧力の影響を受けるため、外側層表面の全域において均一な滑性を得ることが困難であり、安定した良好な成形性を得ることが困難であるという課題があった。 However, in the method of adding a lubricant such as fatty acid amide to the inner layer (heat-sealable layer), the amount of lubricant transferred to the outer layer is affected by temperature and pressure. There is a problem that it is difficult to obtain lubricity and it is difficult to obtain stable and good moldability.
 また外側層表面に滑剤等を塗布する方法では、外側層に塗布された滑剤と、内側層に添加されている滑剤との総和量が多くなる場合があり、滑剤の量を正確にコントロールすることができず、良好な成形性を得ることが困難であるという課題があった。 In addition, in the method of applying a lubricant or the like to the surface of the outer layer, the total amount of the lubricant applied to the outer layer and the lubricant added to the inner layer may increase, so the amount of lubricant must be accurately controlled. However, there is a problem that it is difficult to obtain good moldability.
 また易滑樹脂層を積層する方法では、易滑樹脂層を構成するバインダー樹脂に耐熱性、耐溶剤性、濡れ性、印字性等種々の性能が求められるため、これらの全ての性能を満足する樹脂を選定することは、現状では難しいという状況であった。 In addition, in the method of laminating an easy-slipping resin layer, various performances such as heat resistance, solvent resistance, wettability, and printability are required for the binder resin constituting the easy-slipping resin layer, so all these performances are satisfied. Under the current circumstances, it was difficult to select a resin.
 一方、外装材に界面活性剤を用いて滑性を付与することも考えられる。ところが、界面活性剤は離型性を具備するものであるため、粘着性の点で課題が生じる。すなわち外装材で外装された蓄電デバイスは、他の電子回路等と一緒にケース内に収納されることが多く、このとき、蓄電デバイスが他の電子回路と接触しないように電池外装材の外面に保護テープや取付テープ等の粘着テープを貼り付けて固定することが行われている。このため単に界面活性剤を用いて滑性を付与しようとすると、外装材外面に対するテープの密着性が十分に得られない(粘着テープが剥がれやすい)という課題が発生する。 On the other hand, it is also conceivable to add lubricity to the exterior material using a surfactant. However, since surfactants have releasability, a problem arises in terms of adhesiveness. In other words, an electricity storage device that is covered with an exterior material is often housed in a case together with other electronic circuits. Adhesive tapes such as protective tapes and mounting tapes are applied for fixing. Therefore, when lubricity is imparted simply by using a surfactant, there arises a problem that the adhesiveness of the tape to the outer surface of the exterior material cannot be sufficiently obtained (the adhesive tape is easily peeled off).
 本発明の好ましい実施形態は、関連技術における上述した及び/又は他の問題点に鑑みてなされたものである。本発明の好ましい実施形態は、既存の方法及び/又は装置を著しく向上させることができるものである。 Preferred embodiments of the present invention have been made in view of the above and/or other problems in the related art. Preferred embodiments of the present invention can significantly improve existing methods and/or apparatus.
 この発明は、上記の課題に鑑みてなされたものであり、成形性を向上させつつ、テープ等の粘着剤に対する密着性も十分に確保できる蓄電デバイス用外装材およびその製造方法並びに蓄電デバイスを提供することを目的とする。 The present invention has been made in view of the above problems, and provides an exterior material for an electricity storage device that can improve moldability and sufficiently ensure adhesion to an adhesive such as a tape, a method for manufacturing the same, and an electricity storage device. intended to
 本発明のその他の目的及び利点は、以下の好ましい実施形態から明らかであろう。 Other objects and advantages of the present invention will be apparent from the following preferred embodiments.
 上記課題を解決するため、本発明は、以下の手段を備えるものである。 In order to solve the above problems, the present invention has the following means.
 [1]金属箔製のバリア層と、そのバリア層の外面側に設けられた耐熱樹脂製の耐熱層と、前記バリア層の内面側に設けられた熱融着樹脂製の熱融着層とを含む蓄電デバイス用外装材であって、
 前記耐熱層の外面側に、アニオン系界面活性剤を含む易滑層が設けられ、
 前記易滑層の存在量が1.0mg/m~10.0mg/mに設定されていることを特徴とする蓄電デバイス用外装材。
[1] A barrier layer made of metal foil, a heat-resistant layer made of heat-resistant resin provided on the outer surface side of the barrier layer, and a heat-sealable layer made of heat-sealable resin provided on the inner surface side of the barrier layer. An exterior material for an electricity storage device comprising
An easy-to-slip layer containing an anionic surfactant is provided on the outer surface side of the heat-resistant layer,
An exterior material for an electricity storage device, wherein the abundance of the slippery layer is set to 1.0 mg/m 2 to 10.0 mg/m 2 .
 [2]前記易滑層の外表面におけるJIS K7125(1999)による動摩擦係数が0.05~0.3に設定されている前項1に記載の蓄電デバイス用外装材。 [2] The exterior material for an electricity storage device according to the preceding item 1, wherein the coefficient of dynamic friction according to JIS K7125 (1999) on the outer surface of the slippery layer is set to 0.05 to 0.3.
 [3]熱融着層が、滑剤を含むポリプロピレン樹脂によって構成されている前項1または2に記載の蓄電デバイス用外装材。 [3] The exterior material for an electricity storage device according to the preceding item 1 or 2, wherein the heat-sealable layer is made of a polypropylene resin containing a lubricant.
 [4] 前記耐熱層は、ポリアミド系樹脂製の第1層と、その第1層の外面側に設けられたポリエステル系樹脂製の第2層とを含む多層構造によって構成されている前項1~3のいずれか1項に記載の蓄電デバイス用外装材。 [4] The heat-resistant layer is composed of a multilayer structure including a first layer made of polyamide resin and a second layer made of polyester resin provided on the outer surface side of the first layer. 4. The exterior material for an electricity storage device according to any one of 3.
 [5]金属箔製のバリア層と、そのバリア層の外面側に設けられた耐熱樹脂製の耐熱層と、前記バリア層の内面側に設けられた熱融着樹脂製の熱融着層とを含む蓄電デバイス用外装材の製造方法であって、
 前記耐熱層の外面側に、アニオン系界面活性剤を塗工することにより塗布量が1.0mg/m~10.0mg/mの易滑層を形成する工程を含むことを特徴とする蓄電デバイス用外装材の製造方法。
[5] A barrier layer made of metal foil, a heat-resistant layer made of heat-resistant resin provided on the outer surface side of the barrier layer, and a heat-sealable layer made of heat-sealable resin provided on the inner surface side of the barrier layer. A method for manufacturing an exterior material for an electricity storage device, comprising:
The heat-resistant layer is characterized by comprising a step of forming an easy-to-slip layer with a coating amount of 1.0 mg/m 2 to 10.0 mg/m 2 by coating an anionic surfactant on the outer surface side of the heat-resistant layer. A method for manufacturing an exterior material for an electric storage device.
 [6]蓄電デバイス本体部と、
 請求項1~4のいずれか1項に記載の外装材と、を備え、
 前記蓄電デバイス本体部が、前記外装材で外装されていることを特徴とする蓄電デバイス。
[6] an electricity storage device main body;
The exterior material according to any one of claims 1 to 4,
An electricity storage device, wherein the electricity storage device body is covered with the exterior material.
 発明[1]の蓄電デバイス用外装材によれば、外側層の表面に、最外層としてアニオン系界面活性剤を含む易滑層が設けられているため、所望の滑性を得ることができ、成形性を向上させることができる。さらに易滑層は特定の存在量で形成されているため、必要以上の過度な滑性(離型性)を抑制することができ、粘着テープ等の粘着剤に対する接着性も十分に確保でき、粘着テープの剥離等の不具合も確実に防止することができる。さらに本発明のアニオン系界面活性剤は、カチオン系やノニオン系に比べて分散性に優れているため、外側層表面全域に隙間なく界面活性剤の被膜(易滑層)を形成でき、この点においても、良好な滑性を確保しつつ、十分な粘着性を得ることができる。 According to the exterior material for an electricity storage device of the invention [1], since the surface of the outer layer is provided with the slippery layer containing an anionic surfactant as the outermost layer, desired lubricity can be obtained, Moldability can be improved. Furthermore, since the slippery layer is formed in a specific amount, it is possible to suppress excessive lubricity (release property) more than necessary, and to ensure sufficient adhesion to adhesives such as adhesive tapes. Problems such as peeling of the adhesive tape can be reliably prevented. Furthermore, since the anionic surfactant of the present invention has excellent dispersibility compared to cationic or nonionic surfactants, it is possible to form a surfactant coating (easy-to-slip layer) on the entire surface of the outer layer without gaps. Also, sufficient adhesiveness can be obtained while ensuring good lubricity.
 発明[2]の蓄電デバイス用外装材によれば、易滑層表面の動摩擦係数を特定しているため、上記の効果をより確実に得ることができる。 According to the electrical storage device exterior material of the invention [2], the coefficient of dynamic friction of the slippery layer surface is specified, so the above effect can be obtained more reliably.
 発明[3]の蓄電デバイス用外装材によれば、内側層である熱融着層に滑剤が含まれているため、その滑剤が易滑層に転写されることによって、その滑剤の滑性作用と、易滑層の界面活性剤による滑性作用とが相まって、最外層の表面に所望の滑性を確実に付与することができる。 According to the power storage device exterior material of the invention [3], since the heat-sealable layer, which is the inner layer, contains a lubricant, the lubricant is transferred to the easy-to-slip layer, thereby exhibiting the lubricating effect of the lubricant. and the lubricating effect of the surfactant in the easy-to-slip layer combine to reliably impart desired lubricity to the surface of the outermost layer.
 発明[4]の蓄電デバイス用外装材によれば、内側のポリアミド系樹脂層と、外側のポリエステル系樹脂層とを含む多層構造によって構成しているため、外側のポリエステル系樹脂層表面に易滑層としてのアニオン系界面活性剤が分散し易く、易滑層を外側層表面全域に確実に形成することができ、さらに内側に成形性に優れたポリアミド系樹脂層を配しているので成形性にも優れている。 According to the exterior material for an electricity storage device of the invention [4], since it is configured by a multilayer structure including an inner polyamide resin layer and an outer polyester resin layer, the surface of the outer polyester resin layer is easily slippery. The anionic surfactant as a layer is easy to disperse, the easy-to-slip layer can be reliably formed on the entire surface of the outer layer, and the polyamide-based resin layer with excellent moldability is arranged on the inside for moldability. is also excellent.
 発明[5]の蓄電デバイス用外装材の製造方法によれば、外表面にアニオン系界面活性剤を塗工して易滑層を形成しているため、易滑層の塗布量、ひいては膜厚を自在にコントロールすることができ、所望の滑性をより確実に付与することができる。 According to the method for producing an exterior material for an electricity storage device of the invention [5], since an anionic surfactant is applied to the outer surface to form an easy-slipping layer, the coating amount of the easy-slipping layer and thus the film thickness can be freely controlled, and the desired lubricity can be imparted more reliably.
 発明[6]によれば、成形性および密着性に優れた上記発明[1]の外装材を備えているため、動作信頼性の高い高品質の蓄電デバイスを提供することができる。 According to the invention [6], since the exterior material of the invention [1] has excellent moldability and adhesion, it is possible to provide a high-quality electricity storage device with high operational reliability.
図1はこの発明の実施形態である蓄電デバイス用外装材を示す断面図である。FIG. 1 is a cross-sectional view showing an exterior material for an electric storage device, which is an embodiment of the present invention. 図2は実施形態の蓄電デバイス用外装材における界面活性剤の塗工状態を説明するための模式図であって、図(a)は断面図、図(b)は平面図である。2A and 2B are schematic diagrams for explaining the coating state of the surfactant in the exterior material for an electricity storage device of the embodiment, FIG. 2A being a cross-sectional view and FIG. 図3は実施形態の外装材を用いて製作された蓄電デバイスを示す断面図である。FIG. 3 is a cross-sectional view showing an electricity storage device manufactured using the exterior material of the embodiment. 図4は実施形態の蓄電デバイスを分解して示す斜視図である。FIG. 4 is a perspective view showing an exploded power storage device of the embodiment.
 図1はこの発明の実施形態である蓄電デバイス用外装材を示す断面図である。同図に示すようにこの蓄電デバイス用外装材1は、外側層としての耐熱樹脂製の耐熱層2、内側層としての熱融着樹脂製の熱融着層(シーラント層)3と、これらの両層2,3間に配置された金属箔層(中間層)としてのバリア層4とを含み、耐熱層2の外面に最外層としての易滑層5が形成されている。 FIG. 1 is a cross-sectional view showing an exterior material for an electricity storage device, which is an embodiment of the present invention. As shown in the figure, the exterior material 1 for an electric storage device includes a heat-resistant layer 2 made of a heat-resistant resin as an outer layer, a heat-fusible layer (sealant layer) 3 made of a heat-fusible resin as an inner layer, and A barrier layer 4 as a metal foil layer (intermediate layer) disposed between both layers 2 and 3 is included, and a lubricous layer 5 as an outermost layer is formed on the outer surface of the heat-resistant layer 2 .
 バリア層4は、アルミニウム(Al)箔、銅(Cu)箔、ステンレス(SUS)箔、ニッケル(Ni)箔、チタン(Ti)箔からなる金属箔を用いることができ、特にJIS H4160で規定された1000系や8000系のAl箔を好適に用いることができる。なお本実施形態において、アルミニウム、銅、ニッケル、チタンという用語はこれらの合金も含む意味で用いられている。 As the barrier layer 4, metal foils such as aluminum (Al) foil, copper (Cu) foil, stainless steel (SUS) foil, nickel (Ni) foil, and titanium (Ti) foil can be used. Alternatively, 1000 series or 8000 series Al foil can be preferably used. In the present embodiment, the terms aluminum, copper, nickel, and titanium are used in the sense of including these alloys.
 バリア層4の厚みは、20μm~100μmに設定するのが良く、より好ましくは30μm~80μmに設定するのが良い。 The thickness of the barrier layer 4 is preferably set to 20 μm to 100 μm, more preferably 30 μm to 80 μm.
 またバリア層4は、少なくとも内側の面(熱融着層3側の面)に化成処理を施しておくのが好ましい。この化成処理を施すことで内容物(電池の電解液等)によるバリア層表面の腐食を十分に防止することができる。 In addition, it is preferable that at least the inner surface of the barrier layer 4 (the surface on the heat sealing layer 3 side) is subjected to a chemical conversion treatment. By applying this chemical conversion treatment, it is possible to sufficiently prevent corrosion of the barrier layer surface due to contents (electrolyte solution of a battery, etc.).
 耐熱層2は、耐熱性樹脂例えば、2軸延伸ナイロンフィルム(ONy)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、ポリエチレンフラノエート(PEF)といったポリエステル樹脂や、二軸延伸ポリプロピレン(OPP)等を好適に用いることができる。 The heat-resistant layer 2 is made of a heat-resistant resin such as biaxially oriented nylon film (ONy), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polyester resin such as polyethylene furanoate (PEF), Biaxially oriented polypropylene (OPP) or the like can be preferably used.
 またこの耐熱性樹脂としては、熱融着層3を構成する熱融着樹脂に対し10℃以上の熱可塑性樹脂を用いるのが良く、より好ましくは20℃以上の熱可塑性樹脂を用いるのが良い。 As this heat-resistant resin, it is preferable to use a thermoplastic resin having a temperature of 10° C. or higher, more preferably a thermoplastic resin having a temperature of 20° C. or higher, with respect to the heat-sealing resin constituting the heat-sealing layer 3. .
 耐熱層2は例えば、耐熱層2を構成する樹脂のフィルムをバリア層(金属箔)5の一面(外面)に接着剤を介して貼り合わせて形成することができる。耐熱層2は、単層によって構成しても良いし、複層構造例えば、2枚以上の樹脂フィルムを積層した構造によって構成しても良い。 The heat-resistant layer 2 can be formed, for example, by bonding a resin film constituting the heat-resistant layer 2 to one surface (outer surface) of the barrier layer (metal foil) 5 with an adhesive. The heat-resistant layer 2 may be composed of a single layer, or may be composed of a multi-layer structure, for example, a structure in which two or more resin films are laminated.
 耐熱層2を単層によって構成する場合には、PET等のポリエステル樹脂フィルムを用いるのが好ましい。さらに単層構造の場合、アニオン系界面活性剤は水系であるため、2軸延伸ナイロン(ONy)フィルム等のように吸水率が高いフィルムよりもポリエチレンテレフタレート(PET)フィルムのように吸水率が低いフィルムの方が少量で効果を発揮することができきる。つまりONyフィルムの場合はフィルム中に吸収されてしまうため、PETフィルムと同じ塗布量では動摩擦係数は高くなってしまうおそれがある。 When the heat-resistant layer 2 is composed of a single layer, it is preferable to use a polyester resin film such as PET. Furthermore, in the case of a single layer structure, since the anionic surfactant is water-based, it has a lower water absorption rate, such as polyethylene terephthalate (PET) film, than films with high water absorption rate, such as biaxially oriented nylon (ONy) film. A film can exhibit its effect with a small amount. In other words, in the case of the ONy film, it is absorbed in the film, so there is a possibility that the coefficient of dynamic friction becomes high with the same coating amount as that of the PET film.
 また2層構造の場合、ポリエステルフィルムとナイロン等のポリアミドフィルムとを組み合わせた複合フィルムによって構成するのが好ましい。さらに2層構造の場合、バリア層4の外面にポリアミドフィルムを積層し、そのポリアミドフィルムの上面(外面)にポリエステルフィルムを積層する構造、つまりポリエステルがポリアミドの外側に配置される構造を採用するのが好ましい。 Also, in the case of a two-layer structure, it is preferable to construct a composite film in which a polyester film and a polyamide film such as nylon are combined. Furthermore, in the case of a two-layer structure, a structure in which a polyamide film is laminated on the outer surface of the barrier layer 4 and a polyester film is laminated on the upper surface (outer surface) of the polyamide film, that is, a structure in which the polyester is arranged outside the polyamide is adopted. is preferred.
 耐熱層2の厚みは、単層構造であっても、多層構造であっても、10μm~50μmに設定するのが良い。 The thickness of the heat-resistant layer 2 is preferably set to 10 μm to 50 μm regardless of whether it has a single-layer structure or a multi-layer structure.
 また耐熱層2用の樹脂フィルムを、バリア層4に接着するための接着剤としては、ウレタン系接着剤、エポキシ系接着剤、アクリル系接着剤を好適に用いることができる。さらにこの接着剤の厚みは、1μm~5μmに設定するのが良い。 Urethane-based adhesives, epoxy-based adhesives, and acrylic-based adhesives can be suitably used as adhesives for bonding the resin film for the heat-resistant layer 2 to the barrier layer 4 . Furthermore, the thickness of this adhesive is preferably set to 1 μm to 5 μm.
 熱融着層3は例えば、無延伸ポリプロピレン(CPP)、ポリエチレン等の熱融着樹脂(熱可塑性樹脂)を好適に用いることができ、中でも特にCPPを用いるのが好ましい。 For the heat-sealable layer 3, for example, heat-sealable resins (thermoplastic resins) such as unstretched polypropylene (CPP) and polyethylene can be suitably used, and CPP is particularly preferably used.
 熱融着層3は例えば、熱融着層3を構成する樹脂のフィルムをバリア層4の他面(内面)に接着剤を介して貼り合わせて形成することができる。熱融着層3は、単層によって構成しても良いし、多層構造によって構成しても良い。熱融着層3の厚みは、20μm~100μmに設定するのが良い。 The thermal fusion layer 3 can be formed, for example, by bonding a resin film constituting the thermal fusion layer 3 to the other surface (inner surface) of the barrier layer 4 with an adhesive. The heat-sealing layer 3 may be composed of a single layer, or may be composed of a multi-layer structure. The thickness of the heat sealing layer 3 is preferably set to 20 μm to 100 μm.
 また本実施形態においては、熱融着層3を構成する樹脂には、滑剤が100ppm~2000ppm含有されている。 In addition, in the present embodiment, the resin constituting the heat sealing layer 3 contains 100 ppm to 2000 ppm of lubricant.
 滑剤としては、飽和脂肪酸アミド、不飽和脂肪酸アミド等の脂肪酸アミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、芳香族系ビスアミド等の脂肪酸ビスアミド(アマイド)を好適に用いることができる。 As the lubricant, fatty acid amides such as saturated fatty acid amides and unsaturated fatty acid amides, fatty acid bisamides such as saturated fatty acid bisamides, unsaturated fatty acid bisamides and aromatic bisamides can be preferably used.
 具体的に、飽和脂肪酸アミドとしては、ラウリン酸アミド、パルチミン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドを例示することができる。 Specific examples of saturated fatty acid amides include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, and hydroxystearic acid amide.
 上記不飽和脂肪酸アミドとしては、オレイン酸アミド、エルカ酸アミドを例示することができる。 Examples of the unsaturated fatty acid amide include oleic acid amide and erucic acid amide.
 上記飽和脂肪酸ビスアミドとしては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドを例示することができる。 Examples of the saturated fatty acid bisamide include methylenebisstearic acid amide, ethylenebiscapric acid amide, ethylenebislauric acid amide, ethylenebisstearic acid amide, ethylenebishydroxystearic acid amide, ethylenebisbehenic acid amide, and hexamethylenebisstearic acid amide. , hexamethylenebisbehenamide, hexamethylenehydroxystearic acid amide, N,N'-distearyladipic acid amide, N,N'-distearylsebacic acid amide.
 上記不飽和脂肪酸ビスアミドとしては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドを例示することができる。 Examples of the unsaturated fatty acid bisamide include ethylenebisoleic acid amide, ethylenebiserucic acid amide, hexamethylenebisoleic acid amide, N,N'-dioleyladipic acid amide, and N,N'-dioleylsebacic acid amide. can do.
 上記芳香族系ビスアミドとしては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドを例示することができる。 Examples of the aromatic bisamide include m-xylylenebisstearic acid amide, m-xylylenebishydroxystearic acid amide, and N,N'-distearylisophthalic acid amide.
 また熱融着層3用の樹脂フィルムを、バリア層4に接着するに際しては、オレフィン系接着剤、エポキシ系接着剤、特に酸変性したオレフィン系の接着剤によるドライラミネートや、オレフィン系、酸変性のオレフィン系熱可塑性樹脂によるヒートラミネートを用いることができる。 When the resin film for the heat-sealing layer 3 is adhered to the barrier layer 4, dry lamination using an olefin adhesive, an epoxy adhesive, particularly an acid-modified olefin adhesive, or an olefin-based or acid-modified A heat lamination with an olefinic thermoplastic resin can be used.
 ドライラミネートの場合、接着剤の厚みは1μm~5μmに設定するのが良く、ヒートラミネートの場合には、接着剤としての熱可塑性樹脂の厚みは5μm~10μmに設定するのが良い。 In the case of dry lamination, the thickness of the adhesive should be set to 1 μm to 5 μm, and in the case of heat lamination, the thickness of the thermoplastic resin used as the adhesive should be set to 5 μm to 10 μm.
 本実施形態において易滑層(最外層)5は、アニオン系界面活性剤によって構成されている。 In this embodiment, the slippery layer (outermost layer) 5 is composed of an anionic surfactant.
 アニオン系界面活性剤としては、カルボン酸塩(セッケン)、硫酸エステル塩、リン酸エステル塩、パルミチン酸塩、オレイン酸金属塩、アルキルナフタレンスルホン酸塩、オレイン酸ブチルエステルの硫酸化物、オクチル硫酸塩、セチル硫酸塩、ラウリル硫酸塩等の炭素数8~18の有機硫酸塩、ステアリン酸塩、オクチルスルホン酸塩、セチルスルホン酸塩、ラウリルスルホン酸塩、ステアリルスルホン酸塩、オレイルスルホン酸塩、p-トルエンスルホン酸塩、ドデシルベンゼンスルホン酸塩、オレイルベンゼンスルホン酸塩、ナフチルスルホン酸塩、ジイソプロピルナフチルスルホン酸塩等の炭素数8~30の有機スルホン酸塩等のスルホン酸塩を好適に用いることができる。なお塩とは金属塩である。 Examples of anionic surfactants include carboxylates (soaps), sulfates, phosphates, palmitates, metal oleates, alkylnaphthalenesulfonates, butyl oleate sulfates, and octyl sulfates. , Cetyl sulfate, C 8-18 organic sulfate such as lauryl sulfate, stearate, octyl sulfonate, cetyl sulfonate, lauryl sulfonate, stearyl sulfonate, oleyl sulfonate, p -Sulfonates such as organic sulfonates having 8 to 30 carbon atoms such as toluenesulfonate, dodecylbenzenesulfonate, oleylbenzenesulfonate, naphthylsulfonate, and diisopropylnaphthylsulfonate. can be done. In addition, a salt is a metal salt.
 本実施形態においてアニオン系界面活性剤の具体例としては、竹本油脂株式会社製の商品名「エレカットXC301-A」を用いることができる。 As a specific example of the anionic surfactant in the present embodiment, the trade name "Elecut XC301-A" manufactured by Takemoto Oil Co., Ltd. can be used.
 易滑層5を形成するに際しては、上記のアニオン系界面活性剤を水やアルコール等の溶媒で溶かした溶液(易滑層用溶液)を、耐熱層2の外面に塗工(塗布)した後、乾燥して溶媒を除去することによって得られるものである。 When forming the easy-slipping layer 5, a solution obtained by dissolving the above-described anionic surfactant in a solvent such as water or alcohol (solution for the easy-slipping layer) is applied to the outer surface of the heat-resistant layer 2. , obtained by drying to remove the solvent.
 ここでアニオン系界面活性剤は、水やアルコール等の溶媒内で分散性に優れているため、上記易滑用溶液内の全域に、アニオン系界面活性剤が偏りなく均等に配置される。このため図2(a)(b)に示すように、外装材1を構成する耐熱層2の表面全域に、アニオン系界面活性剤としての易滑層5を隙間なく(未塗工部なく)形成することができる。例えば図2(a)に示すように、耐熱層2の表面に凹凸部が形成されていても、凹部には易滑層5が厚い目に塗工され、凸部には薄い目に塗工されることにより、易滑層5を耐熱層2の表面状況にかかわらず表面全域に塗工することができる。なお図2(a)においては発明の理解を容易にするため、耐熱層2の凹凸形状を誇張して示している。 Here, since the anionic surfactant has excellent dispersibility in a solvent such as water or alcohol, the anionic surfactant is evenly distributed throughout the slippery solution. For this reason, as shown in FIGS. 2(a) and 2(b), the easy-to-slip layer 5 as an anionic surfactant is formed on the entire surface of the heat-resistant layer 2 constituting the exterior material 1 without gaps (without uncoated portions). can be formed. For example, as shown in FIG. 2( a ), even if uneven portions are formed on the surface of the heat-resistant layer 2 , the slippery layer 5 is applied thickly on the concave portions and thinly on the convex portions. As a result, the slippery layer 5 can be applied over the entire surface of the heat-resistant layer 2 regardless of the surface conditions. In addition, in FIG. 2A, the uneven shape of the heat-resistant layer 2 is exaggerated for easy understanding of the invention.
 またアニオン系界面活性剤等の不飽和長鎖脂肪酸塩は適度に分散し、表面突起(凹凸部)が形成され易くなり、少量の塗布でも良好な易活性を付与することができる。なお塗布が過剰になると、離型性が強くなり過ぎるため、離型性と易活性とのバランスを確保するために、アニオン系界面活性剤として、特にオレイン酸ナトリウムを用いるのが良い。 In addition, unsaturated long-chain fatty acid salts such as anionic surfactants are dispersed appropriately, making it easy to form surface protrusions (unevennesses), and even a small amount of application can impart good easy activity. If the coating is excessive, the releasability becomes too strong, so sodium oleate is preferably used as an anionic surfactant in order to ensure a balance between releasability and easy activity.
 本実施形態では易滑層5における溶媒除去後の塗布量(ドライ成分)を1.0mg/m~10.0mg/mに設定するのが好ましい。すなわちこの塗布量が少な過ぎる場合には、易滑層5を耐熱層2の外面全域に隙間なく形成することができず、所望の滑性を確実に得ることが困難になり、成形性の低下を来すおそれがあり、好ましくない。逆に塗布量が多過ぎる場合には、離型性が顕著に現出して粘着テープとの密着性が低下するおそれがあり、好ましくない。 In the present embodiment, it is preferable to set the coating amount (dry component) of the slippery layer 5 after solvent removal to 1.0 mg/m 2 to 10.0 mg/m 2 . That is, if the coating amount is too small, the slippery layer 5 cannot be formed on the entire outer surface of the heat-resistant layer 2 without gaps, making it difficult to reliably obtain the desired lubricity, resulting in deterioration of moldability. It is not preferable because it may cause Conversely, if the coating amount is too large, the releasability may be remarkably exhibited, and the adhesiveness to the adhesive tape may be lowered, which is not preferable.
 本実施形態の外装材1は、熱融着層3側を内側にし、易滑層5(耐熱層2)側を外側にしつつ、ロール状に巻き取られた状態で加熱エージング処理される。この際、熱融着層3に含有された滑剤が熱融着層3の表面(内面側)から析出して、最外層としての易滑層5(耐熱層2)側に転写されて、易滑層5や耐熱層2に適度な滑剤が付与される。従ってこの転写された滑剤と、易滑層5自身の滑性とが相まって、外装材1の外表面に所望の滑性を得ることができる。 The exterior material 1 of the present embodiment is heat-aged while being wound into a roll, with the heat-sealable layer 3 side facing inside and the easy-slip layer 5 (heat-resistant layer 2) side facing outside. At this time, the lubricant contained in the heat-sealable layer 3 is deposited from the surface (inner surface side) of the heat-sealable layer 3 and transferred to the easy-slipping layer 5 (heat-resistant layer 2) as the outermost layer. An appropriate lubricant is applied to the sliding layer 5 and the heat-resistant layer 2 . Therefore, the transferred lubricant and the lubricity of the slippery layer 5 itself are combined to provide the desired lubricity on the outer surface of the exterior material 1 .
 なお本実施形態においては、易滑層5としてのアニオン系界面活性剤には、転写された滑剤が含有されるだけのものであり、それ以外には例えば、易滑層用溶液の塗工時に用いた溶剤が残留する可能性はある。なお易滑層5には、アンチブロッキング材(AB材)のような微粒子等は含まれていない。 In the present embodiment, the anionic surfactant as the slippery layer 5 only contains the transferred lubricant. The solvent used may remain. The slippery layer 5 does not contain fine particles such as an anti-blocking material (AB material).
 以上のように構成された本実施形態の蓄電デバイス用外装材1は、シート状のままで、あるいは必要に応じて深絞り成形や張り出し成形等の熱成形によって所定の形状に成形して、蓄電デバイスの外装ケースとして用いるものである。 The exterior material 1 for an electricity storage device of the present embodiment configured as described above is formed into a predetermined shape by thermoforming such as deep drawing and stretch molding as it is in a sheet form, or as required, and is used for electricity storage. It is used as an exterior case for the device.
 例えば図3および図4は本実施形態の外装材1を用いて製造された蓄電デバイス30を示す断面図および分解斜視図である。両図に示すようにこの蓄電デバイス30は、リチウムイオン2次電池である。本実施形態では、外装材1を成形して得られたトレイ部材14と、平面状(シート状)の外装材1により構成された蓋部材10とにより外装ケース15が構成されている。しかして、本発明の外装材1を成形して得られたトレイ部材14の収容凹部内に、略直方体形状の蓄電デバイス本体部(電気化学素子等)31が収容され、該蓄電デバイス本体部31の上に、本発明の蓋部材10(外装材1)がその熱融着層3側を内方(下側)にして配置され、該蓋部材10の熱融着層3の外周縁部と、トレイ部材14のフランジ部(封止用周縁部)29の熱融着層3とがヒートシールによりシール接合されて封止されることによって、蓄電デバイス30が構成されている。なお、トレイ部材14の収容凹部の内側の表面は、熱融着層3になっており、収容凹部の外面が易滑層5(耐熱層2)側になっている(図4参照)。 For example, FIGS. 3 and 4 are a sectional view and an exploded perspective view showing an electricity storage device 30 manufactured using the exterior material 1 of this embodiment. As shown in both figures, this electric storage device 30 is a lithium ion secondary battery. In this embodiment, an exterior case 15 is composed of a tray member 14 obtained by molding the exterior material 1 and a cover member 10 made of the planar (sheet-like) exterior material 1 . Thus, a substantially rectangular parallelepiped electricity storage device main body (electrochemical element or the like) 31 is accommodated in the accommodation recess of the tray member 14 obtained by molding the exterior material 1 of the present invention. On top of this, the lid member 10 (armor material 1) of the present invention is arranged with the heat sealing layer 3 side facing inward (lower side), and the outer peripheral edge of the heat sealing layer 3 of the lid member 10 and , and the heat-sealing layer 3 of the flange portion (sealing peripheral edge portion) 29 of the tray member 14 are heat-sealed and sealed to form the electric storage device 30 . The inner surface of the accommodation recess of the tray member 14 is the heat-sealable layer 3, and the outer surface of the accommodation recess is on the slippery layer 5 (heat-resistant layer 2) side (see FIG. 4).
 図3において、符号の「39」は、蓋部材10の外周縁部と、トレイ部材14のフランジ部(封止用周縁部)29とが接合(溶着)されたヒートシール部である。なお、蓄電デバイス30において、蓄電デバイス本体部31に接続されたタブリードの先端部が、外装ケース15の外部に導出されているが、図示は省略している。 In FIG. 3, reference numeral "39" denotes a heat-sealed portion where the outer peripheral edge portion of the lid member 10 and the flange portion (sealing peripheral edge portion) 29 of the tray member 14 are joined (welded). In addition, in the electricity storage device 30, the tip of the tab lead connected to the electricity storage device body 31 is led out of the exterior case 15, but is not shown.
 蓄電デバイス本体部31としては、特に限定されるものではないが、例えば、電池本体部、キャパシタ本体部、コンデンサ本体部等が挙げられる。 The power storage device main body 31 is not particularly limited, but includes, for example, a battery main body, a capacitor main body, a capacitor main body, and the like.
 なお、上記実施形態では、外装ケース15が、外装材1を成形して得られたトレイ部材14と、平面状の蓋部材10とによって構成されているが、本発明においては特にこのような組み合わせに限定されるものではなく、例えば、外装ケース15が、一対の平面状(シート状)の外装材1からなる構成であっても良いし、あるいは、一対のトレイ部材14を対向状態で重ね合わせた構成であっても良い。 In the above-described embodiment, the exterior case 15 is composed of the tray member 14 obtained by molding the exterior material 1 and the planar lid member 10. However, in the present invention, such a combination is particularly applicable. For example, the exterior case 15 may be composed of a pair of planar (sheet-shaped) exterior materials 1, or a pair of tray members 14 may be overlapped in a facing state. It may be configured as follows.
 以上のように本実施形態の外装材1によれば、外表面に易滑層5が形成されて十分な滑性が得られるとともに、内側層としての熱融着層3は滑剤によって十分な滑性が得られるため、成形性を確実に向上させることができる。 As described above, according to the exterior material 1 of the present embodiment, the slippery layer 5 is formed on the outer surface to obtain sufficient lubricity, and the thermal adhesive layer 3 as the inner layer is sufficiently lubricated by the lubricant. Since the moldability can be obtained, the moldability can be reliably improved.
 特に易滑層5は外装材1の外表面全域に隙間なく設けられているため、所望の滑性を確実に得ることができ、成形性をより確実に向上させることができる。ここで本実施形態においては、易滑層5の外表面の動摩擦係数が0.05~0.3に設定されている。このため既述した通り良好な滑性を得ることができ、十分な成形性を確実に得ることができる。 In particular, since the easy-to-slip layer 5 is provided on the entire outer surface of the exterior material 1 without gaps, the desired lubricity can be reliably obtained, and the moldability can be more reliably improved. Here, in this embodiment, the coefficient of dynamic friction of the outer surface of the slippery layer 5 is set to 0.05 to 0.3. Therefore, as described above, good lubricity can be obtained, and sufficient moldability can be reliably obtained.
 なお本実施形態において動摩擦係数は、JIS K7125(1999)に準拠して測定したものである。 Note that the coefficient of dynamic friction in this embodiment is measured according to JIS K7125 (1999).
 また易滑層5は、その塗布量が1.0mg/m~10.0mg/mに設定されて、外表面全域に薄くむら無く形成されているため、必要以上に過度な滑性および過度な離型性が生じるのを抑制することができる。このため外装材1の外表面(易滑層5)において、粘着テープの粘着剤に対する接着性を十分に確保でき、粘着テープの剥離等の不具合を確実に防止することができる。さらに易滑層5の動摩擦係数が0.05以上であるため、この点においても、粘着テープに対する粘着性をより確実に確保することができる。 In addition, the slippery layer 5 has a coating amount of 1.0 mg/m 2 to 10.0 mg/m 2 and is formed thinly and evenly over the entire outer surface. It is possible to suppress the occurrence of excessive releasability. Therefore, the adhesiveness of the adhesive tape to the adhesive can be sufficiently ensured on the outer surface (slippery layer 5) of the exterior material 1, and problems such as peeling of the adhesive tape can be reliably prevented. Furthermore, since the coefficient of dynamic friction of the slippery layer 5 is 0.05 or more, the adhesiveness to the adhesive tape can be ensured more reliably in this respect as well.
 また本実施形態においては、耐熱層2の外面に易滑層用溶液を塗工して易滑層5を形成しているため、熱融着層3からの転写や、耐熱層2からの溶出によって易滑層等を形成する場合と比較して、易滑層5の塗布量、ひいては膜厚を自在にコントロールすることができて、所望の滑性を確実に付与できて、外装材1としての品質および信頼性を一段と向上させることができる。 Further, in the present embodiment, since the easy-slipping layer solution is applied to the outer surface of the heat-resistant layer 2 to form the easy-slipping layer 5 , transfer from the heat-sealing layer 3 and elution from the heat-resistant layer 2 are performed. As compared with the case of forming an easy-slip layer or the like by quality and reliability can be further improved.
 また本実施形態において、耐熱層2を、内側のポリアミド系樹脂層(第1層)と、外側のポリエステル系樹脂層(第2層)との2層構造によって構成する場合には、外側のポリエステル系樹脂層がマイナス側に帯電し易いため、その表面上においてアニオン系界面活性剤が分散し易くなる(凝集し難くなる)と推測でき、アニオン系界面活性剤による被膜(易滑層5)を外表面全域にわたって均一に形成でき、所望の滑性をより一層確実に付与できると考えられる。 In the present embodiment, when the heat-resistant layer 2 is composed of a two-layer structure of an inner polyamide resin layer (first layer) and an outer polyester resin layer (second layer), the outer polyester Since the resin layer is easily charged to the negative side, it can be assumed that the anionic surfactant is easily dispersed (difficult to aggregate) on the surface, and the anionic surfactant coating (smoothing layer 5) is formed. It is believed that the coating can be uniformly formed over the entire outer surface and the desired lubricity can be imparted more reliably.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <実施例1>
 バリア層4として厚さ40μmのアルミニウム箔(A8021-O)の両面に、リン酸、ポリアクリル酸(アクリル系樹脂)、クロム(III)塩化合物、水、アルコールからなる化成処理液を塗布した後、180℃で乾燥を行って、化成皮膜を形成した。この化成皮膜のクロム付着量は片面当たり10mg/mであった。
<Example 1>
After applying a chemical conversion treatment liquid consisting of phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water, and alcohol to both sides of a 40 μm thick aluminum foil (A8021-O) as a barrier layer 4 , and dried at 180° C. to form a chemical conversion film. The amount of chromium deposited on this chemical conversion film was 10 mg/m 2 per side.
 次に表1に示すように、前記化成処理済みアルミニウム箔(バリア層4)の一方の面(外面)に、2層構造で耐熱層2を形成した。すなわち、アルミニウム箔(バリア層4)の一方の面(外面)に、2液硬化型のウレタン系接着剤(厚さ3μm)を介して、耐熱層2の第1層として厚さ15μmの二軸延伸6ナイロン(ONy)フィルムをドライラミネートして貼り合わせた。さらに二軸延伸6ナイロン(ONy)フィルムの上面(外面)に、耐熱層2の第2層として、2液硬化型のウレタン系接着剤(厚さ3μm)を介して12μm厚の延伸ポリエチレンテレフタレート(PET)フィルムをドライラミネートして貼り合わせた。これによりバリア層4の上面(外面)に耐熱層2が積層された基材フィルムを作成した。 Next, as shown in Table 1, a heat-resistant layer 2 having a two-layer structure was formed on one surface (outer surface) of the chemically treated aluminum foil (barrier layer 4). That is, on one surface (outer surface) of an aluminum foil (barrier layer 4), a two-component curable urethane adhesive (thickness: 3 μm) is applied as the first layer of the heat-resistant layer 2 to form a biaxial adhesive layer having a thickness of 15 μm. An oriented 6 nylon (ONy) film was dry-laminated and laminated. Furthermore, on the upper surface (outer surface) of the biaxially stretched 6 nylon (ONy) film, as the second layer of the heat-resistant layer 2, a 12 μm thick stretched polyethylene terephthalate (3 μm thick) is applied via a two-component curing type urethane adhesive (thickness: 3 μm). PET) film was dry-laminated and bonded together. As a result, a base film in which the heat-resistant layer 2 was laminated on the upper surface (outer surface) of the barrier layer 4 was produced.
 次に、上記基材フィルム上にイソプロピルアルコール(IPA)に、アニオン系界面活性剤としてオレイン酸ナトリウム(表1において「アニオン系界面活性剤A」と記載)を加えた溶液(易滑層用溶液)を基材フィルムの外側層を構成するフィルム(耐熱層2)の表面に塗布した後、150℃で乾燥させて、耐熱層2上に易滑層5を形成した。乾燥後の易滑層5の塗布量は表1に示す通り2.5mg/mである。 Next, a solution obtained by adding sodium oleate (described as "anionic surfactant A" in Table 1) as an anionic surfactant to isopropyl alcohol (IPA) on the base film (solution for slippery layer) ) was applied to the surface of the film (heat-resistant layer 2 ) constituting the outer layer of the base film, and dried at 150° C. to form the slippery layer 5 on the heat-resistant layer 2 . The coating amount of the slippery layer 5 after drying was 2.5 mg/m 2 as shown in Table 1.
 次に40μm厚の無延伸ポリプロピレン(CPP)フィルムを2液硬化型のマレイン酸変性ポリプロピレン接着剤(厚さ2μm)を介して、前記基材フィルムのアルミニウム箔(バリア層4)の他方の面(内面)に重ね合わせて、ゴムニップロールと、100℃に加熱されたラミネートロールとの間に挟み込んで圧着することによりドライラミネートして外装材用積層体を得た。その積層体を、ロール軸に巻き取り、しかる後、40℃で10日間エージングして実施例1の外装材1の試料を得た。 Next, a 40 μm thick unstretched polypropylene (CPP) film is attached to the other side of the aluminum foil (barrier layer 4) of the base film via a two-component curing type maleic acid-modified polypropylene adhesive (2 μm thick) ( inner surface), and sandwiched between a rubber nip roll and a lamination roll heated to 100° C. for dry lamination to obtain a laminate for an exterior material. The laminate was wound around a roll shaft and then aged at 40° C. for 10 days to obtain a sample of exterior material 1 of Example 1.
 なお表1に示す易滑層5の塗布量の測定方法は、外装材1を10cm×10cmの大きさに切断した試験片を準備して、試験片に対して精密天秤(最小表示1μg)を用いて重量を測定する。そのときの重量(拭き取り前の重量)を「W0」mgとする。 In addition, the method for measuring the coating amount of the slippery layer 5 shown in Table 1 is as follows. Measure the weight using The weight at that time (the weight before wiping) is defined as "W0" mg.
 続いて、試験片の耐熱層表面をエタノールを浸したコットンで拭き取って、その試験片を十分に乾燥させた後、精密天秤で重量を測定する。そのときの重量(拭き取り後の重量)を「W1」mgとする。そして「(W1-WO)×100=塗布量」の関係式を用いて塗布量を求めた。 Then, wipe the surface of the heat-resistant layer of the test piece with ethanol-soaked cotton, dry the test piece sufficiently, and then measure the weight with a precision balance. The weight at that time (weight after wiping) is defined as "W1" mg. Then, the coating amount was obtained using the relational expression "(W1-WO)×100=coating amount".
 <実施例2~4>
 表1に示すように易滑層5の塗布量を「1mg/m」「6.5mg/m」「10mg/m」に設定した以外は、実施例1と同様にして、実施例2~4の外装材1の試料を得た。
<Examples 2 to 4>
In the same manner as in Example 1, except that the coating amount of the slippery layer 5 was set to “1 mg/m 2 ”, “6.5 mg/m 2 ”, and “10 mg/m 2 ” as shown in Table 1. 2-4 cladding 1 samples were obtained.
 <実施例5>
 表1に示すようにアニオン系界面活性剤として硫酸エステルナトリウム(表1において「アニオン系界面活性剤B」と記載)を用いた以外は、実施例1と同様にして、実施例5の外装材1の試料を得た。
<Example 5>
Exterior material of Example 5 in the same manner as in Example 1 except that sodium sulfate ester (described as "anionic surfactant B" in Table 1) was used as an anionic surfactant as shown in Table 1. 1 sample was obtained.
 <実施例6>
 表1に示すように耐熱層2を、厚さ25μmの二軸延伸6ナイロン(ONy)フィルムによる単層によって構成した以外は、実施例1と同様にして、実施例6の外装材1の試料を得た。
<Example 6>
A sample of the exterior material 1 of Example 6 was prepared in the same manner as in Example 1 except that the heat-resistant layer 2 was composed of a single layer of a biaxially stretched nylon 6 (ONy) film having a thickness of 25 μm as shown in Table 1. got
 <実施例7>
 表1に示すように耐熱層2を、厚さ12μmの延伸ポリエチレンテレフタレート(PET)フィルムによる単層によって構成した以外は、実施例1と同様にして、実施例7の外装材1の試料を得た。
<Example 7>
A sample of the exterior material 1 of Example 7 was obtained in the same manner as in Example 1, except that the heat-resistant layer 2 was composed of a single layer of a stretched polyethylene terephthalate (PET) film having a thickness of 12 μm as shown in Table 1. rice field.
 <実施例8>
 表1に示すように、易滑層5用のアニオン系界面活性剤Bを用い、易滑層5の塗布量を「1mg/m」に設定した以外は、実施例1と同様にして、実施例8の外装材1の試料を得た。
<Example 8>
As shown in Table 1, in the same manner as in Example 1, except that the anionic surfactant B for the slippery layer 5 was used and the coating amount of the slippery layer 5 was set to "1 mg/m 2 ". A sample of exterior material 1 of Example 8 was obtained.
 <実施例9>
 表1に示すようにアニオン系界面活性剤としてステアリルスルホン酸ナトリウム(表1において「アニオン系界面活性剤C」と記載)を用い、易滑層5の塗布量を「4.5mg/m」に設定した以外は、実施例1と同様にして、実施例9の外装材1の試料を得た。
<Example 9>
As shown in Table 1, sodium stearyl sulfonate (described as "anionic surfactant C" in Table 1) was used as an anionic surfactant, and the coating amount of the slippery layer 5 was "4.5 mg/m 2 ". A sample of the exterior material 1 of Example 9 was obtained in the same manner as in Example 1, except that it was set to .
 <比較例1> <Comparative example 1>
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、易滑層5を形成せずに、実施例1と同様にして、比較例1の外装材1の試料を得た。 As shown in Table 2, a sample of the exterior material 1 of Comparative Example 1 was obtained in the same manner as in Example 1 without forming the slippery layer 5 .
 <比較例2>
 表2に示すようにアニオン系界面活性剤に代えてカチオン系界面活性剤を用いて最外層(易滑層に相当)を形成した以外は、実施例1と同様にして、比較例2の外装材1の試料を得た。
<Comparative Example 2>
Exterior of Comparative Example 2 in the same manner as in Example 1 except that the outermost layer (corresponding to the slippery layer) was formed using a cationic surfactant instead of an anionic surfactant as shown in Table 2. A sample of Material 1 was obtained.
 <比較例3>
 表2に示すようにアニオン系界面活性剤に代えてノニオン系界面活性剤を用いて最外層(易滑層に相当)を形成した以外は、実施例1と同様にして、比較例3の外装材1の試料を得た。
<Comparative Example 3>
Exterior of Comparative Example 3 in the same manner as in Example 1 except that the outermost layer (corresponding to the slippery layer) was formed using a nonionic surfactant instead of an anionic surfactant as shown in Table 2. A sample of Material 1 was obtained.
 <比較例4>
 表2に示すようにアマイド系滑剤(脂肪酸アミド)を、イソプロピルアルコール(IPA)を溶媒に用いて塗布し、IPAを150℃で乾燥させることによって耐熱層2の外面に形成して、最外層(易滑層に相当)を形成した以外は、実施例1と同様にして、比較例4の外装材1の試料を得た。
<Comparative Example 4>
As shown in Table 2, an amide-based lubricant (fatty acid amide) is applied using isopropyl alcohol (IPA) as a solvent, and the IPA is dried at 150 ° C. to form it on the outer surface of the heat-resistant layer 2, and the outermost layer ( A sample of the exterior material 1 of Comparative Example 4 was obtained in the same manner as in Example 1, except that a slippery layer was formed.
 <比較例5,6>
 表2に示すように易滑層5の塗布量を「0.5mg/m」「12mg/m」に設定した以外は、実施例1と同様にして、比較例5,6の外装材1の試料を得た。
<Comparative Examples 5 and 6>
Exterior materials of Comparative Examples 5 and 6 were prepared in the same manner as in Example 1, except that the coating amount of the easy slip layer 5 was set to "0.5 mg/m 2 " and "12 mg/m 2 " as shown in Table 2. 1 sample was obtained.
 <動摩擦係数>
 実施例および比較例の各外装材において、その最外層の表面(比較例1は耐熱層の表面)の動摩擦係数を上記実施形態で説明したように、JIS K7125(1999)に準拠して測定した。その結果を表1,2に示す。
<Coefficient of dynamic friction>
In each of the exterior materials of Examples and Comparative Examples, the dynamic friction coefficient of the surface of the outermost layer (the surface of the heat-resistant layer in Comparative Example 1) was measured according to JIS K7125 (1999), as described in the above embodiment. . The results are shown in Tables 1 and 2.
 <テープ剥離性テスト>
 実施例および比較例の各外装材1から幅15mm×長さ150mmの試験片をそれぞれ切り出した。各試験片の表面にその長さ方向に沿って粘着力13N/cmの粘着テープ(商品名「tesa 70415」)を貼り付けた。粘着テープの幅は5mm、その長さは80mm以上であった。そして、この粘着テープ上に重さ2kgfのハンドロールを5往復走行させ、その後、常温で1時間静置した。
<Tape peelability test>
A test piece having a width of 15 mm and a length of 150 mm was cut out from each of the exterior materials 1 of Examples and Comparative Examples. An adhesive tape having an adhesive strength of 13 N/cm (trade name “tesa 70415”) was attached to the surface of each test piece along its length direction. The adhesive tape had a width of 5 mm and a length of 80 mm or more. A hand roll having a weight of 2 kgf was reciprocated 5 times on this adhesive tape, and then left to stand at room temperature for 1 hour.
 次いで、引張試験機として島津製作所製ストログラフ(AGS-5kNX)を用い、その一方のチャックで試験片の端部を挟着固定するとともに、他方のチャックで粘着テープの端部を掴んだ。そして、JIS K6854-3(1999)に準拠して300mm/minの剥離速度で180°剥離させた時の剥離強度を測定し、この測定値が安定したところの値を最外層の表面の粘着テープとの密着力(その単位:N/5mm)とした。 Then, using a strograph (AGS-5kNX) manufactured by Shimadzu Corporation as a tensile tester, one chuck clamped and fixed the end of the test piece, and the other chuck held the end of the adhesive tape. Then, according to JIS K6854-3 (1999), the peel strength was measured when peeled 180° at a peel speed of 300 mm / min, and the value at which this measured value stabilized was the adhesive tape on the surface of the outermost layer. and the adhesion force (the unit: N/5 mm).
 そして、耐熱性樹脂層の最外層の表面と粘着テープとの密着性についての評価基準として、粘着テープとの密着力が6N/5mm以上である場合を「◎(非常に高い)」、5N/5mm以上6N/5mm未満である場合を「○(高い)」、及び、5N/5mm未満である場合を「×(低い)」とした。その結果を表1,2に示す。 Then, as evaluation criteria for the adhesion between the surface of the outermost layer of the heat-resistant resin layer and the adhesive tape, when the adhesion to the adhesive tape is 6 N / 5 mm or more, "A (very high)", 5 N / A case of 5 mm or more and less than 6 N/5 mm was rated as "good (high)", and a case of less than 5 N/5 mm was rated as "x (low)". The results are shown in Tables 1 and 2.
 <成形性の試験>
 実施例および比較例の各外装材1から100mm×100mmの試験片をそれぞれ切り出した。各試験片に対し、25tのプレス機に取り付けた深絞り成形用金型を用いて、成形高さ(絞り深さ)を0.5mm単位で変化させて深絞り成形試験を行った。
<Moldability test>
A test piece of 100 mm×100 mm was cut out from each of the exterior materials 1 of Examples and Comparative Examples. For each test piece, a deep drawing test was performed using a deep drawing mold attached to a 25t press machine while changing the forming height (drawing depth) in increments of 0.5 mm.
 そして成形高さが8mm以上でも所定の成形性が得られた場合には「◎」と評価し、6mm以上、8mm未満の範囲で所定の成形性が得られなかった場合には「〇」と評価し、6mm未満で所定の成形性が得られなかった場合には「×」と評価した。その結果を表1,2に示す。 If the predetermined moldability was obtained even if the molding height was 8 mm or more, it was evaluated as "◎", and if the predetermined moldability was not obtained in the range of 6 mm or more and less than 8 mm, it was evaluated as "◯". When it was less than 6 mm and the predetermined moldability was not obtained, it was evaluated as "x". The results are shown in Tables 1 and 2.
 <外観試験(白粉試験>
 実施例および比較例の各外装材1からMD方向に600mmの包材(試験片)をそれぞれ切り出した。
<Appearance test (white powder test>
A packaging material (test piece) of 600 mm in the MD direction was cut out from each of the exterior materials 1 of Examples and Comparative Examples.
 その一方で、材質がステンレス(SUS)、重さが1.3kg、面積が55mm×50mmの錘に、キムワイプ(KIMWIPES)を巻いた後、グリーンウエス(黒)を巻き付けて、錘入りグリーンウエスを準備した。 On the other hand, after winding KIMWIPES around a weight made of stainless steel (SUS), weighing 1.3 kg, and having an area of 55 mm x 50 mm, a green cloth (black) is wrapped around it, and the weighted green cloth is attached. Got ready.
 そして、試験片の最外表面の上に、上記錘入りグリーンウエスを載せて、長さ400mm、速度4cm/s、角度を底面と水平にして引っ張った。なおグリーンウエスとしては、TRUSCO社製の静電気除去シートS SD2525 3100を使用した。 Then, the weighted green waste was placed on the outermost surface of the test piece and pulled with a length of 400 mm, a speed of 4 cm/s, and an angle parallel to the bottom surface. As the green waste, static electricity removal sheet S SD2525 3100 manufactured by TRUSCO was used.
 上記方法で試験片の最外層表面に接触させた後のクリーンウエスの表面(接触面)を目視で観察し、白粉が顕著に生じているものを「×」、白粉がある程度生じていて中程度のものを「〇」、白粉が認められないか又は白粉が殆どないものを「◎」と評価した。その結果を表1,2に示す。 Visually observe the surface (contact surface) of the clean waste after contact with the outermost layer surface of the test piece by the above method. Those with no white powder were evaluated as "◯", and those with almost no white powder were evaluated as "⊚". The results are shown in Tables 1 and 2.
 <総評>
 表1に示すように、本発明に関連した実施例1~9の外装材1は、テープ密着性、成形性、白粉発生状況の全てにおいて良好な評価が得られた。特に動摩擦係数が0.05~0.3の範囲に調整された実施例1~7の外装材1は、より一層優れた評価が得られた。
<General comments>
As shown in Table 1, the exterior materials 1 of Examples 1 to 9 related to the present invention were evaluated favorably in all aspects of tape adhesion, moldability, and generation of white powder. In particular, the exterior materials 1 of Examples 1 to 7, in which the coefficient of dynamic friction was adjusted to the range of 0.05 to 0.3, were evaluated even more excellently.
 さらに実施例1は実施例6,7よりも成形性が優れていた。これは、実施例1は、耐熱層がPETフィルムおよびONyフィルムの複層構造であるのに対し、実施例6,7はONyフィルムやPETフィルムの単層構造であるため、基材としての成形性が高くなるためである。 Furthermore, Example 1 was superior to Examples 6 and 7 in formability. This is because the heat-resistant layer of Example 1 has a multilayer structure of PET film and ONy film, whereas the heat-resistant layer of Examples 6 and 7 has a single-layer structure of ONy film and PET film. This is because it is more flexible.
 一方、表2に示すように、本発明の要旨を逸脱する比較例1~6の外装材においては、いずれかの評価が劣っていた。 On the other hand, as shown in Table 2, the exterior materials of Comparative Examples 1 to 6, which deviate from the gist of the present invention, were inferior in one of the evaluations.
 本願は、2021年7月9日付で出願された日本国特許出願の特願2021-114008号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。 This application claims the priority of Japanese Patent Application No. 2021-114008 filed on July 9, 2021, and the disclosure thereof constitutes a part of this application as it is. .
 ここに用いられた用語及び表現は、説明のために用いられたものであって限定的に解釈するために用いられたものではなく、ここに示され且つ述べられた特徴事項の如何なる均等物をも排除するものではなく、この発明のクレームされた範囲内における各種変形をも許容するものであると認識されなければならない。 The terms and expressions used herein are used as terms of description and not of limitation, as any equivalent of the features shown and described herein. are not to be excluded, and variations within the claimed scope of the invention are permissible.
 この発明の蓄電デバイス用外装材は、スマートフォン、タブレット等の携帯機器に使用される電池やコンデンサ、ハイブリッド自動車、電気自動車、風力発電、太陽光発電、夜間電気の蓄電用に使用される電池やコンデンサ等の蓄電デバイスを製造する際に好適に用いることができる。 The exterior material for an electricity storage device of the present invention is used for batteries and capacitors used in mobile devices such as smartphones and tablets, hybrid vehicles, electric vehicles, wind power generation, solar power generation, and batteries and capacitors used for storing nighttime electricity. It can be suitably used when manufacturing an electric storage device such as.
1:外装材
2:耐熱層
3:熱融着層
4:バリア層
5:易滑層
10:蓋部材(外装材)
14:トレイ部材(外装材)
15:外装ケース(外装材)
30:蓄電デバイス
31:デバイス本体部
1: Exterior material 2: Heat-resistant layer 3: Heat-sealing layer 4: Barrier layer 5: Slippery layer 10: Lid member (exterior material)
14: Tray member (exterior material)
15: Exterior case (exterior material)
30: Power storage device 31: Device main unit

Claims (6)

  1.  金属箔製のバリア層と、そのバリア層の外面側に設けられた耐熱樹脂製の耐熱層と、前記バリア層の内面側に設けられた熱融着樹脂製の熱融着層とを含む蓄電デバイス用外装材であって、
     前記耐熱層の外面側に、アニオン系界面活性剤を含む易滑層が設けられ、
     前記易滑層の存在量が1.0mg/m~10.0mg/mに設定されていることを特徴とする蓄電デバイス用外装材。
    Electricity storage including a metal foil barrier layer, a heat-resistant resin heat-resistant layer provided on the outer surface side of the barrier layer, and a heat-sealable resin heat-sealable layer provided on the inner surface side of the barrier layer. A device exterior material,
    An easy-to-slip layer containing an anionic surfactant is provided on the outer surface side of the heat-resistant layer,
    An exterior material for an electricity storage device, wherein the abundance of the slippery layer is set to 1.0 mg/m 2 to 10.0 mg/m 2 .
  2.  前記易滑層の外表面におけるJIS K7125(1999)による動摩擦係数が0.05~0.3に設定されている請求項1に記載の蓄電デバイス用外装材。 The exterior material for an electric storage device according to claim 1, wherein the dynamic friction coefficient according to JIS K7125 (1999) on the outer surface of the slippery layer is set to 0.05 to 0.3.
  3.  熱融着層が、滑剤を含むポリプロピレン樹脂によって構成されている請求項1または2に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to claim 1 or 2, wherein the heat-sealable layer is composed of a polypropylene resin containing a lubricant.
  4.  前記耐熱層は、ポリアミド系樹脂製の第1層と、その第1層の外面側に設けられたポリエステル系樹脂製の第2層とを含む多層構造によって構成されている請求項1~3のいずれか1項に記載の蓄電デバイス用外装材。 The heat-resistant layer is composed of a multilayer structure including a first layer made of polyamide resin and a second layer made of polyester resin provided on the outer surface side of the first layer. The exterior material for an electricity storage device according to any one of items 1 to 3.
  5.  金属箔製のバリア層と、そのバリア層の外面側に設けられた耐熱樹脂製の耐熱層と、前記バリア層の内面側に設けられた熱融着樹脂製の熱融着層とを含む蓄電デバイス用外装材の製造方法であって、
     前記耐熱層の外面側に、アニオン系界面活性剤を塗工することにより塗布量が1.0mg/m~10.0mg/mの易滑層を形成する工程を含むことを特徴とする蓄電デバイス用外装材の製造方法。
    Electricity storage including a metal foil barrier layer, a heat-resistant resin heat-resistant layer provided on the outer surface side of the barrier layer, and a heat-sealable resin heat-sealable layer provided on the inner surface side of the barrier layer. A method for manufacturing an exterior material for a device, comprising:
    The heat-resistant layer is characterized by comprising a step of forming an easy-to-slip layer with a coating amount of 1.0 mg/m 2 to 10.0 mg/m 2 by coating an anionic surfactant on the outer surface side of the heat-resistant layer. A method for manufacturing an exterior material for an electric storage device.
  6.  蓄電デバイス本体部と、
     請求項1~4のいずれか1項に記載の外装材と、を備え、
     前記蓄電デバイス本体部が、前記外装材で外装されていることを特徴とする蓄電デバイス。
    an electricity storage device main body;
    The exterior material according to any one of claims 1 to 4,
    An electricity storage device, wherein the electricity storage device body is covered with the exterior material.
PCT/JP2022/024798 2021-07-09 2022-06-22 Exterior material for power storage device, method for manufacturing same, and power storage device WO2023282056A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023533518A JPWO2023282056A1 (en) 2021-07-09 2022-06-22
CN202280047308.4A CN117597819A (en) 2021-07-09 2022-06-22 Outer packaging material for power storage device, method for producing same, and power storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-114008 2021-07-09
JP2021114008 2021-07-09

Publications (1)

Publication Number Publication Date
WO2023282056A1 true WO2023282056A1 (en) 2023-01-12

Family

ID=84800230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024798 WO2023282056A1 (en) 2021-07-09 2022-06-22 Exterior material for power storage device, method for manufacturing same, and power storage device

Country Status (3)

Country Link
JP (1) JPWO2023282056A1 (en)
CN (1) CN117597819A (en)
WO (1) WO2023282056A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002056823A (en) * 2000-08-10 2002-02-22 Dainippon Printing Co Ltd Laminated film for battery, and battery container using it
JP2013149397A (en) * 2012-01-17 2013-08-01 Showa Denko Packaging Co Ltd Exterior material for battery, method for molding the same, and lithium secondary battery
JP2020091990A (en) * 2018-12-05 2020-06-11 昭和電工パッケージング株式会社 Exterior material for power storage device and power storage device
JP2020098707A (en) * 2018-12-18 2020-06-25 昭和電工パッケージング株式会社 Exterior material for power storage device and power storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002056823A (en) * 2000-08-10 2002-02-22 Dainippon Printing Co Ltd Laminated film for battery, and battery container using it
JP2013149397A (en) * 2012-01-17 2013-08-01 Showa Denko Packaging Co Ltd Exterior material for battery, method for molding the same, and lithium secondary battery
JP2020091990A (en) * 2018-12-05 2020-06-11 昭和電工パッケージング株式会社 Exterior material for power storage device and power storage device
JP2020098707A (en) * 2018-12-18 2020-06-25 昭和電工パッケージング株式会社 Exterior material for power storage device and power storage device

Also Published As

Publication number Publication date
JPWO2023282056A1 (en) 2023-01-12
CN117597819A (en) 2024-02-23

Similar Documents

Publication Publication Date Title
JP6936093B2 (en) Exterior material for power storage device, exterior case for power storage device and power storage device
JP6935991B2 (en) Exterior materials for power storage devices and power storage devices
JP7394949B2 (en) Exterior material for power storage devices
KR102148040B1 (en) Packaging material for molding and molding case
JP2017220390A (en) Sealant film for exterior material of power storage device, exterior material for power storage device, and method for manufacturing the same
KR20150110324A (en) Exterior for electrochemical device and electrochemical device
TWI752039B (en) Sealing film for exterior material of electric storage device, exterior material for electric storage device, and manufacturing method thereof
JP2021190419A (en) Laminated body for power storage device outer packaging material
JP6738189B2 (en) Exterior material for power storage device and power storage device
JP7393569B2 (en) Manufacturing method of exterior case for power storage device
WO2023282056A1 (en) Exterior material for power storage device, method for manufacturing same, and power storage device
JP7142558B2 (en) Exterior material for power storage device and power storage device
JP7226979B2 (en) Exterior material for power storage device and power storage device
JP2023075914A (en) Exterior material for power storage device
JP7319484B1 (en) Exterior material for power storage device and power storage device
JP6767795B2 (en) Exterior materials for power storage devices and their manufacturing methods
JP7033411B2 (en) Packaging materials for molding, exterior cases for power storage devices and power storage devices
JP2020092082A (en) Exterior case for power storage device and method for manufacturing the same
JP6936088B2 (en) Packaging material for molding, exterior case for power storage device and power storage device
WO2018066196A1 (en) Method for producing packaging material
KR20230168965A (en) Packaging material for electrical storage device, Packaging case for electrical storage device and electrical storage device
JP2020011409A (en) Laminate material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837473

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533518

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280047308.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE