WO2023281735A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2023281735A1
WO2023281735A1 PCT/JP2021/025967 JP2021025967W WO2023281735A1 WO 2023281735 A1 WO2023281735 A1 WO 2023281735A1 JP 2021025967 W JP2021025967 W JP 2021025967W WO 2023281735 A1 WO2023281735 A1 WO 2023281735A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
air conditioning
period
storage device
conditioning system
Prior art date
Application number
PCT/JP2021/025967
Other languages
French (fr)
Japanese (ja)
Inventor
絵莉 倉田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/025967 priority Critical patent/WO2023281735A1/en
Priority to JP2023533016A priority patent/JPWO2023281735A1/ja
Publication of WO2023281735A1 publication Critical patent/WO2023281735A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the present disclosure relates to air conditioning systems.
  • Some conventional air conditioning systems have the function of storing various operating data for use in analyzing the cause of an abnormality when it occurs.
  • the operating data is data indicating the operating state, and includes data such as pressure and drive current for the compressor, for example.
  • Driving data is also called driving information.
  • Patent Document 1 operation information held by a control unit when an abnormality occurs is recorded in a memory.
  • a configuration is described in which operation information held by the control unit is stored in a memory in a state before the state occurs.
  • Patent Document 2 in preparation for the occurrence of an abnormality, operation information of an air conditioner is constantly stored in a memory at regular intervals, and new operation information is overwritten in a storage area storing the oldest operation information. Arrangements are described for storing information chronologically over time.
  • Patent Document 1 there are cases where the abnormal state cannot be reproduced based on the operational information at the time of the abnormal occurrence, so in that case, the situation is such that the operational information before the abnormal state cannot be obtained. could arise.
  • Patent Document 2 since long-term data including operation information in a non-abnormal state is always stored in the memory, a large amount of unnecessary data is accumulated for analysis of the cause of occurrence when an abnormality occurs. There is a problem that the capacity required for the memory becomes excessive.
  • the air conditioning system of the present disclosure solves the above problems, reliably acquires operating data that is a sign of an abnormal state in a state before the occurrence of an abnormal state, and suppresses the amount of acquired operating data. It aims to be able to
  • the air conditioning system of the present disclosure includes a sensor that detects data indicating the operating state of air conditioning operation, a control device that controls air conditioning operation, and a storage device.
  • the control device temporarily holds the data detected by the sensor, and when the data detected by the sensor satisfies the abnormality determination condition, the data detected by the sensor is stored before the reference period from the time when the data detected by the sensor satisfies the abnormality determination condition. The data temporarily held until the time is stored in the storage device.
  • the air conditioning system of the present disclosure it is possible to reliably acquire operational data that is a sign of an abnormal state before an abnormal state occurs, and to suppress the amount of operational data to be acquired.
  • FIG. 1 is a diagram showing configurations of a refrigerant circuit and a control circuit of an air-conditioning system 100 according to Embodiment 1.
  • FIG. 4 is a flowchart showing control for storing operating data of the air conditioning system 100 in the external storage device 7 according to Embodiment 1.
  • FIG. 4 is a timing chart showing the timing of storage control of operating data of the air conditioning system 100 according to Embodiment 1.
  • FIG. 4 is a diagram showing a specific example of storage control of operating data of the air-conditioning system 100 according to Embodiment 1.
  • FIG. 9 is a diagram showing a specific example of storage control of operating data of the air conditioning system 100 according to Embodiment 2; 7 is a flow chart showing control for storing operating data of the air conditioning system 100 in the external storage device 7 according to Embodiment 2.
  • FIG. 10 is a flow chart showing control for storing operating data of the air conditioning system 100 in the external storage device 7 according to Embodiment 3.
  • FIG. 11 is a block diagram showing the configuration of an air conditioning system 200 according to Embodiment 4; 10 is a flow chart showing analysis processing of operation data in the air conditioning system 200 according to Embodiment 4.
  • FIG. 1 is a diagram showing configurations of a refrigerant circuit and a control circuit of an air conditioning system 100 according to Embodiment 1. As shown in FIG. FIG. 1 shows states of the refrigerant circuit of the air conditioning system 100 during heating operation and during heating operation.
  • the air conditioning system 100 includes a refrigerant circuit including a first heat exchanger 1, a second heat exchanger 2, a compressor 3, a flow control device 4, and a flow switching device 5.
  • a refrigerant circuit is a refrigerant path used in the air conditioning system 100 .
  • the direction in which the refrigerant flows during cooling is indicated by a solid arrow, and the direction in which the refrigerant flows during heating is indicated by a dashed arrow.
  • the direction in which the refrigerant flows during cooling is indicated by a solid line arrow, and the direction in which the refrigerant flows during heating is indicated by a broken line arrow.
  • the channel switching device 5 the channel through which the refrigerant flows during cooling is indicated by a solid line, and the channel through which the refrigerant flows during heating is indicated by a broken line.
  • the first heat exchanger 1 is an air heat exchanger that exchanges heat between outdoor air and refrigerant.
  • the first heat exchanger 1 functions as a refrigerant condenser during cooling operation, and functions as a refrigerant evaporator during heating operation.
  • a blower fan for supplying air to the first heat exchanger 1 is provided near the first heat exchanger 1 .
  • the blower fan has a function of sucking outdoor air and discharging the air heat-exchanged with the refrigerant by the first heat exchanger 1 to the outdoor.
  • the second heat exchanger 2 is a water heat exchanger that exchanges heat between the water in the indoor unit (not shown) and the refrigerant.
  • the second heat exchanger 2 functions as a refrigerant evaporator during cooling operation, and functions as a refrigerant condenser during heating operation.
  • a compressor 3 that compresses the refrigerant is provided in the refrigerant path between the first heat exchanger 1 and the second heat exchanger 2 .
  • the compressor 3 is driven by, for example, an inverter-controlled motor.
  • a flow control device 4 is provided in the refrigerant path between the first heat exchanger 1 and the second heat exchanger 2 .
  • the flow rate adjusting device 4 has a function of decompressing and expanding the refrigerant, and is configured by, for example, an electronic expansion valve capable of adjusting the flow rate.
  • the flow rate adjusting device 4 can adjust the flow rate of the refrigerant in the refrigerant path both during the cooling operation and during the heating operation, and is used to decompress and expand the refrigerant.
  • a path on the discharge side of the compressor 3 in the refrigerant path is connected to either the first heat exchanger 1 or the second heat exchanger 2 via the flow path switching device 5 .
  • the channel switching device 5 switches the channel through which the refrigerant flows, and is composed of, for example, a four-way valve.
  • the flow path switching device 5 switches the refrigerant flow path so that the path on the discharge side of the compressor 3 is connected to the first heat exchanger 1, as indicated by the solid line.
  • the flow path switching device 5 switches the flow path of the refrigerant so that the path on the discharge side of the compressor 3 is connected to the second heat exchanger 2 as indicated by the dashed line.
  • the control device 10 includes a CPU (Central Processing Unit) 11, a memory 12 (ROM (Read Only Memory) and RAM (Random Access Memory)), and an input/output buffer (not shown) for inputting/outputting various signals. Consists of In the control device 10, various electronic components are mounted on the control board.
  • the control board includes, for example, a plurality of input ports used for inputting signals such as detection signals of various sensors, and for controlling various devices such as control signals for the flow rate adjusting device 4, the flow switching device 5, and the compressor 3. and a plurality of output ports for outputting the required signals.
  • the CPU 11 expands the program stored in the ROM into the RAM or the like and executes it.
  • the program stored in the ROM is a program in which processing procedures of the control device 10 are described.
  • the control device 10 controls each device in the air conditioning system 100 according to these programs. This control is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
  • the external storage device 7 is connected to the control device 10 .
  • the external storage device 7 is a storage device for storing and saving operating data, which is data indicating the operating state detected by various sensors, as will be described later.
  • memorizing and preserving is a term used to distinguish from temporary memory, and unlike temporary memory that is automatically erased over time, it is necessary to intentionally erase it. It is meant to be remembered for the time being until it occurs.
  • the external storage device 7 is composed of a nonvolatile storage device such as flash memory, hard disk drive, or solid state drive. Since the external storage device 7 is a non-volatile storage device, the stored operating data is not erased even when the air conditioning system 100 is powered off.
  • the air conditioning system 100 is provided with various sensors that detect operating data, which is data indicating the operating state.
  • the following sensors are provided.
  • a discharge pressure sensor 21 for detecting the discharge pressure P of the compressor 3 is provided on the discharge side of the compressor 3 .
  • the compressor 3 is provided with a current sensor 22 that detects the driving current I of the compressor 3 .
  • the compressor 3 is provided with a frequency sensor 23 that detects the frequency F of the compressor 3 .
  • the air conditioning system 100 is also provided with the following sensors as sensors for detecting data indicating the operating state.
  • a discharge temperature sensor for detecting the temperature of the refrigerant discharged from the compressor 3 (hereinafter referred to as discharge temperature) is provided on the discharge side of the compressor 3 .
  • the first heat exchanger 1 is provided with a heat exchanger temperature sensor that detects the temperature of the first heat exchanger 1 .
  • the heat exchanger temperature sensor detects the temperature of frost adhering to the first heat exchanger 1 .
  • An inlet temperature sensor that detects the temperature of the refrigerant is provided on the inlet side of the second heat exchanger 2 .
  • An outlet temperature sensor that detects the temperature of the refrigerant is provided on the outlet side of the second heat exchanger 2 .
  • a detection signal of the ejection pressure P detected by the ejection pressure sensor 21, a detection signal of the drive current I detected by the current sensor 22, and a detection signal of the frequency F detected by the frequency sensor 23 are shown as typical examples.
  • a detection signal from the sensor is input to the control device 10 .
  • the control device 10 gives a control signal to each of the compressor 3, the flow rate adjusting device 4, and the channel switching device 5.
  • the control device 10 controls the operating frequency of the compressor 3 based on the control signal.
  • the control device 10 controls the opening degree of the flow control device 4 based on the control signal.
  • the control device 10 controls switching of the flow path of the flow path switching device 5 based on the control signal.
  • the flow path in the flow path switching device 5 is controlled by the control device 10 to become the flow path indicated by the solid line in the figure.
  • the opening degree of the flow control device 4 is controlled by the control device 10 based on the degree of superheat.
  • the control device 10 opens the flow rate adjusting device 4 so that the suction superheat degree of the compressor 3 obtained from the temperatures detected by the inlet temperature sensor and the outlet temperature sensor of the first heat exchanger 1 becomes a target value. degree and controls the opening degree of the flow rate regulator 4 .
  • the high-temperature and high-pressure gas refrigerant compressed by the compressor 3 and discharged passes through the flow path switching device 5 and flows into the first heat exchanger 1 .
  • the high-temperature, high-pressure refrigerant that has flowed into the first heat exchanger 1 radiates heat to the outdoor air or the like, and is condensed to become a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the first heat exchanger 1 flows into the flow control device 4, where it is expanded and decompressed to become a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant that has flowed out of the flow regulating device 4 flows into the second heat exchanger 2 .
  • the gas-liquid two-phase refrigerant that has flowed into the second heat exchanger 2 exchanges heat with water and evaporates to become a low-temperature, low-pressure gas refrigerant.
  • the gas refrigerant that has flowed out of the second heat exchanger 2 is sucked into the compressor 3 via the flow switching device 5 and compressed again.
  • the flow path in the flow path switching device 5 is controlled by the control device 10 to become the flow path indicated by the dashed line.
  • the opening degree of the flow control device 4 is controlled by the control device 10 based on the degree of subcooling. Specifically, the controller 10 adjusts the degree of subcooling at the outlet of the second heat exchanger 2, which is obtained from the temperatures detected by the inlet temperature sensor and the outlet temperature sensor of the second heat exchanger 2, to a target value. , determines the opening of the flow control device 4 .
  • the high-temperature and high-pressure gas refrigerant compressed by the compressor 3 and discharged passes through the flow path switching device 5 and flows into the second heat exchanger 2 .
  • the high-temperature, high-pressure refrigerant that has flowed into the second heat exchanger 2 radiates heat to water, is condensed, and becomes high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the second heat exchanger 2 flows into the flow control device 4, where it is expanded and decompressed to become a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant that has flowed out of the flow control device 4 flows into the first heat exchanger 1 .
  • the gas-liquid two-phase refrigerant that has flowed into the first heat exchanger 1 exchanges heat with the outdoor air, evaporates, and becomes a low-temperature, low-pressure gas refrigerant.
  • the gas refrigerant that has flowed out of the first heat exchanger 1 is sucked into the compressor 3 via the flow switching device 5 and compressed again.
  • FIG. 2 is a flowchart showing control for storing operating data of the air conditioning system 100 in the external storage device 7 according to Embodiment 1.
  • FIG. 2 The control shown in FIG. 2 is executed by the CPU 11 of the control device 10 .
  • FIG. 2 as an example of storage control of the operating data of the air-conditioning system 100 according to Embodiment 1, a plurality of types of discharge pressure P detected by the discharge pressure sensor 21 and drive current I detected by the current sensor 22 are shown. An example of storage control of operating data when determining an abnormal state based on the operating data will be described.
  • the CPU 11 of the control device 10 executes the following processing in the storage control of the driving data.
  • step S1 a plurality of types of operating data detected by a plurality of types of sensors for detecting data indicating the operating state described above are sampled at a period C, and the sampled plurality of types of operating data are stored for a period A in the past from the present time. are temporarily stored in a memory 12 in chronological order up to the point of time going back to . As a result, the operating data is temporarily held in the memory 12 .
  • period C is set to a period such as a period of one minute.
  • control device 10 causes the memory 12 to temporarily retain operational data over a period A (for example, several tens of minutes) in time series during the operation of the air conditioning system 100 .
  • temporary storage means that the time-series operation data over the period A is stored in the memory 12 while being constantly updated in a first-in, first-out manner, so that the newly stored data will be stored after a certain period of time (after the period A has elapsed). means to be temporarily stored, such as to be erased. In this manner, in the control device 10, the operating data indicating the operating state of the air conditioning operation is temporarily stored and held in the memory 12 for a certain period of time, the period A, while being constantly updated.
  • step S2 it is determined whether any of the plurality of types of operation data detected by the plurality of types of sensors described above is equal to or greater than a threshold set as an abnormal value for each data. . Any of the operating data determined in step S2 does not include the concept of all operating data, but rather the concept of part of the operating data. If it is determined in step S2 that any of the operating data is not equal to or greater than the threshold value, the process returns. On the other hand, if it is determined in step S2 that any of the operating data exceeds the threshold, then in step S3 described later, the operating data exceeding the threshold has already been stored in the external storage device 7 in step S3. It is determined whether there is data saved by
  • step S4 If it is determined in step S3 that there is no data already stored and saved in the external storage device 7 corresponding to the operating data exceeding the threshold value, in step S4 all types of operating data are stored from the current time point.
  • the data up to the point in time going back by the reference period B is read out from the memory 12, stored in the external storage device 7 and saved, and the process proceeds to step S5.
  • both the discharge pressure P and the drive current I are set to the reference value from the present time.
  • the data up to the point in time going back by the period B is stored in the external storage device 7 and saved.
  • the reference period B is a certain period shorter than the period A, and is a predetermined period expected to enable the cause of the operating data exceeding the threshold to be specified based on the transition of the operating data. is the period As an example, the reference period B is set to a fixed period such as 15 minutes.
  • step S4 is not executed. Proceed to S5. As a result, it is possible to prevent redundant operation data from being saved. However, if there is enough capacity, the process of step S4 may be executed to store additional data. For example, in consideration of the possibility that the driving data may repeatedly exceed the threshold or fall below the threshold, data for several times in the past may be left.
  • step S5 based on multiple types of operating data detected by multiple types of sensors that detect data indicating the operating state, it is determined whether an abnormality determination condition for certifying that an abnormality has occurred in the air conditioning system 100 has been established. to decide.
  • An example of the abnormality determination condition in step S5 is that both the discharge pressure P and the drive current I in the operation data are equal to or greater than threshold values.
  • step S5 If it is determined in step S5 that the abnormality determination condition is not satisfied, return. On the other hand, if it is determined in step S5 that the abnormality determination condition is satisfied, in step S6, data of all types of operation data from the current time to the point in time preceding the reference period B is stored from the memory 12. Read out, store and save in the external storage device 7, and return. For example, when the discharge pressure P and the drive current I are used as the operating data, in step S6, data for both the discharge pressure P and the drive current I from the present time to the point in time preceding the reference period B is is stored in the external storage device 7 and saved.
  • FIG. 3 is a timing chart showing the timing of storage control of the operating data of the air conditioning system 100 according to Embodiment 1.
  • FIG. 3 is a timing chart showing the timing of storage control of the operating data of the air conditioning system 100 according to Embodiment 1.
  • the operating data indicating the operating state of the air conditioning operation is temporarily held in the memory 12 for a fixed period of time A, while being constantly updated. Then, when it is determined that any of the operating data is equal to or higher than the threshold value, for all types of operating data, the data from the current point to the point in time preceding the reference period B is read out from the memory 12 and stored in the external memory. It is stored and saved in the storage device 7 .
  • the period A during which the operating data is temporarily stored in the memory 12 is longer than the reference period B, for example.
  • the length of the period during which the operation data is temporarily stored in the memory 12 may be the same as the length of the reference period.
  • the length of the period during which the operation data is temporarily stored in the memory 12 may be equal to or longer than the length of the reference period.
  • the length of the period during which the driving data is temporarily stored in the memory 12 is at least the length of the reference period, and may be set longer than the reference period within a range that does not impose a storage capacity of the memory 12 .
  • the data from the present time to the point in time preceding the reference period B is read from the memory 12 and stored in the external storage device 7 for all types of operation data. stored and saved in
  • FIG. 4 is a diagram showing a specific example of storage control of the operating data of the air conditioning system 100 according to Embodiment 1.
  • the abnormality determination condition is established.
  • FIG. 4A1 and 4A2 show the relationship between the operating data when the operating data storage control according to Embodiment 1 is executed and the period of the operating data stored and saved in the external storage device 7. It is shown.
  • FIG. 4A1 shows the current value of the drive current I over time.
  • FIG. 4A2 shows the pressure value of the discharge pressure P over time.
  • FIG. 4(B1) and (B2) show, as a comparative example of the storage control of the driving data according to the first embodiment, only when the abnormality determination condition is met, the point in time which is a reference period B before the present point in time.
  • 1 shows an example of storage control of operation data in which the data up to and including the above are read out from the memory 12 and stored in the external storage device 7 to be saved.
  • FIG. 4B1 shows the current value of the drive current I over time.
  • FIG. 4B2 shows the pressure value of the discharge pressure P over time.
  • the operating data storage control according to the first embodiment when executed, as will be described below, the operating data that is a sign of an abnormal state is reliably acquired in the state before the abnormality determination condition is established. be able to.
  • the external storage device 7 stores and saves the data for both the discharge pressure P and the drive current I from the present time to the time point before the reference period B.
  • the abnormality determination condition is established when the driving current I is equal to or higher than the threshold value and the discharge pressure P is equal to or higher than the threshold value.
  • both the discharge pressure P and the drive current I are stored from the present time to the point of time preceding the reference period B in the past.
  • the data is stored and saved in the external storage device 7 .
  • the control device 10 temporarily holds the data detected by the sensor, and when the data detected by the sensor exceeds the threshold, it becomes the threshold.
  • the external storage device 7 which is a storage device, the data temporarily held during the period from the time when the reference period was reached to the time before the reference period, the operating data that becomes a sign of the abnormal state in the state before the abnormal state occurs. can be reliably obtained, and the amount of operation data to be obtained can be suppressed.
  • the external storage device 7 stores the data of both the discharge pressure P and the drive current I from the present time to the point of time preceding the reference period B in the past. saved as As a result, in the storage control of the operating data in the first embodiment, based on the data before the reference period from the time when any of the operating data becomes equal to or greater than the threshold value, the sign of an abnormal state is detected in the state before the abnormality determination condition is established. It is possible to reliably acquire the driving data that becomes In addition, in the first embodiment, since it is possible to reliably acquire the operating data that is a sign of an abnormal state, the accuracy of identifying the sign of an abnormal state is improved.
  • the operating data when the abnormality determination condition is satisfied since it is possible to reliably acquire the operating data that is a sign of an abnormal state, when the abnormality determination condition is satisfied, the operating data when the abnormality determination condition is satisfied and the operation data indicating the abnormal state are obtained.
  • the fundamental cause of the abnormal state By analyzing the operating state together with the predictive operating data, the fundamental cause of the abnormal state can be easily analyzed.
  • the first embodiment since it is possible to reliably acquire the operating data that is a sign of an abnormal state, when it is confirmed that a sign of an abnormal state has occurred, information on the occurrence of a sign of an abnormal state is provided as a service. By contacting maintenance personnel such as engineers by various communication methods such as e-mail, it is possible to analyze the operating state before the abnormality determination condition is established.
  • the first embodiment since it is possible to reliably acquire the operating data that is a sign of an abnormal state, various operation adjustment measures for improving the operating state can be performed before the abnormality determination condition is satisfied. In addition, parts can be replaced to improve operating conditions, and adverse effects on the user of the air conditioning system 100 can be suppressed.
  • Embodiment 2 in the storage control of the operation data of the air conditioning system 100, the reference period such as the reference period B described in Embodiment 1 is set as a level that has not reached the threshold level described above. An example of setting the period required to reach the threshold level from the reference value will be described.
  • FIG. 5 is a diagram showing a specific example of storage control of the operating data of the air conditioning system 100 according to the second embodiment.
  • the reference period D used when the driving current I reaches the threshold value after passing through the reference value among the operation data will be described.
  • the reference value is set, for example, to the maximum value to which each operating data can change in the normal operating state in which the air conditioning system 100 is in a normal operating state.
  • the operating data reaches the threshold level after exceeding the reference value level.
  • it is considered important to store the driving data when it reaches the level of such a reference value and use it for analysis.
  • the period required for reaching the threshold level from the reference value level may differ, even for the same type of driving data, depending on the driving situation and the abnormal situation. For example, as shown in FIG. 5, when the operating data exceeds a threshold value, the external storage device 7 stores the data up to a point in time preceding the threshold value by a relatively short constant reference period H. If the change speed of the operation data is relatively slow, the operation data may not be obtained when the operation data reaches the level of the reference value, as shown in area b.
  • the reference period that changes according to the change speed of the operating data D is used to store and save the operating data in the external storage device 7 .
  • the operation data in order to reliably store and save the operation data in the external storage device 7 when the operation data reaches the level of the reference value, the operation data reaches the level of the reference value.
  • the control device 10 determines the point in time. Then, when the operating data reaches the threshold level, the control device 10 sets a reference period D as a period from when the operating data reaches the threshold level to when it reaches the reference value level. Then, the control device 10 causes the external storage device 7 to store and save the data from the time when the level of the threshold is reached to the time before the reference period D.
  • the control device 10 can reliably store the data in the external storage device 7 .
  • FIG. 6 is a flow chart showing control for storing the operating data of the air conditioning system 100 in the external storage device 7 according to Embodiment 2.
  • FIG. The control shown in FIG. 6 is executed by the CPU 11 of the control device 10 .
  • FIG. 6 as an example of storage control of the operating data of the air-conditioning system 100 according to Embodiment 1, a plurality of types of discharge pressure P detected by the discharge pressure sensor 21 and drive current I detected by the current sensor 22 are shown. An example of storage control of operating data when determining an abnormal state based on the operating data will be described.
  • the CPU 11 of the control device 10 executes the following processing in the storage control of the driving data.
  • step S11 similar to step S1 in FIG. 2, the plurality of types of operation data detected by the plurality of types of sensors described above are sampled at period C, and the plurality of types of operation data are sampled for period A in the past from the present time. Temporarily stored in a memory 12 in chronological order up to the point in time going back.
  • step S12 it is determined whether or not any of the plurality of types of operation data detected by the plurality of types of sensors has reached the reference value as described with reference to FIG. do.
  • step S13 the elapsed time from the point in time when the reference value is reached in step S12 is started, and the process proceeds to step S14.
  • step S14 the process proceeds to step S14.
  • step S14 similarly to step S2 in FIG. 2, any one of the plurality of types of operation data detected by the plurality of types of sensors described above is equal to or greater than the threshold set as an abnormal value for each data. It is determined whether or not If it is determined in step S14 that any of the operating data does not exceed the threshold value, the process returns. On the other hand, if it is determined in step S14 that any of the operating data exceeds the threshold, in step S15, similar to step S3 in FIG. 7, it is determined whether or not there is data already stored and saved in step S16, which will be described later.
  • step S16 If it is determined in step S15 that there is no data already stored and saved in the external storage device 7 corresponding to the operating data exceeding the threshold value, in step S16 all types of operating data are stored from the present time.
  • the data in the reference period D going back to the time when the reference value determined in S12 was reached is read out from the memory 12, stored in the external storage device 7 and saved, and the process proceeds to step S17.
  • step S16 the data of the elapsed time from which time measurement was started in step S13 is confirmed, the confirmed elapsed time is set as the reference period D, the data in the reference period D is read from the memory 12, and the read data is read out. is stored in the external storage device 7 and saved.
  • step S15 is performed to prevent redundant operation data from being saved. Proceed to S17.
  • step S17 as in step S5 of FIG. 2, based on multiple types of operating data detected by multiple types of sensors, whether or not an abnormality determination condition has been established to recognize that an abnormal state has occurred in the air conditioning system 100. to judge whether
  • step S17 If it is determined in step S17 that the abnormality determination condition is not satisfied, the process returns. On the other hand, if it is determined in step S17 that the abnormality determination condition is established, in step S18, similar to step S6 in FIG. The data up to the point in time is read out from the memory 12, stored in the external storage device 7 and saved, and the process returns.
  • the control device 10 stores the operation data in the external storage device 7 using the reference period D that changes according to the change speed of the operation data, as described with reference to FIG. Remember and save.
  • the control device 10 stores the operation data in the external storage device 7 using the reference period D that changes according to the change speed of the operation data, as described with reference to FIG. Remember and save.
  • the second embodiment it is possible to reliably store and save the operating data in the external storage device 7 when the operating data reaches the level of the reference value.
  • Embodiment 3 in the storage control of the operation data of the air conditioning system 100, the change rate of the operation data within a predetermined unit period is used as a reference period such as the reference period B described in the first embodiment. An example of setting a period that changes according to is described.
  • the reference period which is the past period for which the data is stored when the threshold is reached, is changed according to the period from the level of the reference value to the level of the threshold for the driving data. I explained an example.
  • different reference periods are set depending on whether the change rate of the operating data is less than the change rate judgment value or is equal to or greater than the change rate judgment value. Change the reference time as follows.
  • change rate determination in which the rate of change of the operating data is set to exceed the standard rate of change during the period from the level of the reference value described in Embodiment 2 until the level of the threshold value is reached. If it is greater than or equal to the value, the driving data will reach the threshold level in a shorter period of time than the standard period of time. In that case, it is possible to acquire the operating data required for analyzing the abnormal state in a reference period shorter than the standard set reference period.
  • the period that changes according to the rate of change of the operating data is defined as the above-described reference period. Storage control of the operating data set as .
  • FIG. 7 is a flowchart showing control for storing the operating data of the air conditioning system 100 in the external storage device 7 according to Embodiment 3.
  • the control shown in FIG. 7 is executed by the CPU 11 of the control device 10 .
  • FIG. 7 as an example of storage control of the operating data of the air-conditioning system 100 according to Embodiment 1, a plurality of types of discharge pressure P detected by the discharge pressure sensor 21 and drive current I detected by the current sensor 22 are shown. An example of storage control of operating data when determining an abnormal state based on the operating data will be described.
  • the CPU 11 of the control device 10 executes the following processing in the storage control of the driving data.
  • step S21 similar to step S1 in FIG. 2, the plurality of types of operation data detected by the plurality of types of sensors described above are sampled at period C, and the plurality of types of operation data are sampled for period A from the current point in the past. Temporarily stored in a memory 12 in chronological order up to the point in time going back.
  • step S22 the rate of change of the operating data is calculated for each of the plurality of types of operating data based on the operating data within a predetermined unit period (for example, one minute).
  • step S23 it is determined whether or not the rate of change of any of the operating data whose rate of change has been calculated in step S22 is equal to or greater than the rate of change determination value. For example, in step S23, a change rate higher than the standard change rate of each driving data is set as the change rate determination value. As an example, if the standard rate of change is "R", the rate of change determination value is set to "2 ⁇ R".
  • step S23 If it is determined in step S23 that the change rate of any of the operating data is greater than or equal to the change rate judgment value, then in step S23, the sampling period of all the operating data is changed from the standard period C to a shorter period than the period C. Change to G and proceed to step S25. As an example, the period G is set to 1/2 period of the period C. If it is determined in step S23 that the change rate of any of the operating data is not equal to or greater than the change rate determination value, the sampling cycle is not changed from the standard cycle C, and the process proceeds to step S25.
  • step S25 similarly to step S2 in FIG. 2, any one of the plurality of types of operation data detected by the plurality of types of sensors described above is equal to or greater than the threshold set as an abnormal value for each data. It is determined whether or not If it is determined in step S25 that any of the operating data does not exceed the threshold value, the process returns. On the other hand, if it is determined in step S25 that any of the operating data is equal to or greater than the threshold, in step S26 similar to step S3 in FIG. 7, it is determined whether or not there is data already stored and saved in step S27.
  • step S27 If it is determined in step S26 that there is no data already stored and saved in the external storage device 7 corresponding to the operating data exceeding the threshold value, in step S27 all types of operating data are stored from the current time point. , the data in the reference period E according to the rate of change of the operating data exceeding the threshold is read out from the memory 12 and stored in the external storage device 7, and the process proceeds to step S28.
  • the reference period E is used as an example of the reference period E. If the rate of change corresponding to the operating data exceeding the threshold is less than the above-described rate of change determination value, the standard reference period E1 similar to the above-described reference period B is set, and the operating data exceeding the threshold is set. is equal to or greater than the above-described change rate determination value, the reference period E2 is set to 1/2 of the above-described reference period B. As a result, when the rate of change corresponding to the operating data exceeding the threshold value is less than the aforementioned rate of change determination value, the period is as short as 1/2 of the standard reference period E1 similar to the aforementioned reference period B. The operating data for the reference period E2 is stored and saved in the external storage device 7 .
  • step S26 determines whether there is data already stored and saved in the external storage device 7 corresponding to the operation data exceeding the threshold. If it is determined in step S26 that there is data already stored and saved in the external storage device 7 corresponding to the operation data exceeding the threshold, step Proceed to S28.
  • step S28 as in step S5 of FIG. 2, based on the plurality of types of operating data detected by the plurality of types of sensors described above, whether an abnormality determination condition for certifying that an abnormality has occurred in the air conditioning system 100 has been established. determine whether or not
  • step S28 If it is determined in step S28 that the abnormality determination condition is not satisfied, the process returns. On the other hand, if it is determined in step S28 that the abnormality determination condition is established, in step S29, similar to step S6 in FIG. The data up to the point in time is read out from the memory 12, stored in the external storage device 7 and saved, and the process returns.
  • the control device 10 stores and saves the operating data in the external storage device 7 using the reference period E that changes according to the change rate of the operating data. Furthermore, the operating data is sampled at a sampling period that varies according to the rate of change of the operating data. As a result, in the third embodiment, it is possible to store and save the operating data required for analyzing the abnormal state in the external storage device 7 during the reference period shorter than the standard set reference period. can. Also, the operation data can be sampled at an appropriate timing according to the length of the period of the operation data to be stored and saved in the external storage device 7 .
  • the control device 10 can change the storage time of the operation data and the sampling period of the operation data according to the change rate of the operation data. Therefore, the operating data necessary for analyzing the abnormal state of the air conditioning system 100 can be stored in the external storage device 7 at the required density.
  • Embodiment 4 As a fourth embodiment, a service device 30 as an analysis device can be connected to the control device 10 corresponding to each of the above-described embodiments, and when the service device 30 is connected to the control device 10, external storage An air conditioning system 200 that reads data stored in the device 7 and analyzes the operating state of the air conditioning operation based on the data stored in the external storage device 7 will be described.
  • FIG. 8 is a block diagram showing the configuration of an air conditioning system 200 according to Embodiment 4. As shown in FIG.
  • a service device 30 as an analysis device can be connected to the air conditioning system 100 as described above.
  • the service device 30 is a device capable of executing a program for analyzing the cause of occurrence of an abnormal state based on the operating data stored in the external storage device 7 .
  • the air conditioning system 200 is a system including a service device 30 in addition to the configuration of the air conditioning system 100 described above.
  • the service device 30 may be configured by a computer dedicated to the maintenance of the air conditioning system 200, which includes a processor that executes an analysis program for analyzing the abnormal state of the air conditioning system 200, and such an analysis program as one program. It may be configured by a general-purpose computer that is installed and executes the analysis program.
  • the service device 30 is connected to the control device 10 via a converter device at a communication line terminal block provided in the air conditioning system 200 .
  • the service device 30 reads the operating data stored in the external storage device 7 as described above by executing the analysis program while connected to the control device 10 .
  • the cause of the abnormal state is analyzed.
  • FIG. 9 is a flowchart showing analysis processing of operating data in the air conditioning system 200 according to Embodiment 4.
  • the refrigerant circuit including the first heat exchanger 1, the second heat exchanger 2, the compressor 3, the flow rate adjusting device 4, and the flow switching device 5 as shown in FIG. are provided, but these descriptions are omitted.
  • step S31 the operating data stored in the external storage device 7 is read.
  • step S32 the cause of the abnormal state is analyzed based on the operation data read out in step S31, and the process returns.
  • step S32 the following processing is executed as an example.
  • the detected discharge temperature is stored in the external storage device 7 as operating data before reaching a threshold value for determining the abnormal state of the discharge temperature.
  • the air conditioning system 200 was operated with an insufficient amount of refrigerant in the refrigerant circuit.
  • the cause of such an abnormal state is analyzed, it is necessary to perform control to increase the amount of refrigerant as coping control.
  • the following effects can be obtained. For example, when a maintenance worker such as a service person is dispatched to the site in response to an abnormal state in which an abnormality determination condition is satisfied, operation data within a reference period when the abnormality determination condition is satisfied, and The operating data within the reference period when the operating data reaches the threshold value before the abnormality determination condition is satisfied can be read out from the external storage device 7 to easily analyze the cause of the abnormal state. In particular, by comprehensively analyzing the operating data within the reference period when the abnormality determination condition is satisfied and the operating data within the reference period when the operation data reaches the threshold value before the abnormality determination condition is satisfied , it is possible to further investigate the cause of the occurrence of the abnormal state.
  • the operating data within the reference period when the operating data reaches the threshold value before the abnormality determination condition is satisfied is read from the external storage device 7. Accordingly, it is possible to confirm the current operating state of the air conditioning system 200 and to predict an abnormal state that may occur in the air conditioning system 200 in the future.
  • the operating data stored in the external storage device 7 can be It may be read from the system 200 via the centralized management controller to the service device 30 or other computers existing outside, and furthermore, the service device 30 or other computers existing externally via the centralized management controller and server may be read out.
  • the air conditioning system 200 may attach the operating data to an e-mail and read out the operating data to the outside.
  • the transmission of the operating data read from the external storage device 7 by e-mail may be performed at regular timing. Then, by selecting and using an appropriate reading method according to the operating status of the air conditioning system 200 from among various reading methods of the operation data in this manner, quick maintenance services for the air conditioning system 200 can be provided. It can be carried out.
  • the destination of the e-mail may be maintenance personnel such as service personnel, or the designer of the air conditioning system 200. .
  • the operating data within the reference period when the abnormality determination condition is satisfied, and the operating data within the reference period when the operation data reaches the threshold value before the abnormality determination condition is satisfied may be stored according to the data capacity of the external storage device 7 .
  • a plurality of pieces of operation data are detected as the operation data to be stored in the external storage device 7.
  • the sampling period of these pieces of operation data may be the same for all the pieces of operation data.
  • the period may be different depending on the characteristics of .
  • the sampling period may be set to be longer for operation data with a smaller width of data change.
  • Operation data within the reference period when the abnormality determination condition to be stored in the external storage device 7 is satisfied, and operation data within the reference period when the operation data reaches the threshold value before the abnormality determination condition is satisfied may be arbitrarily determined according to the characteristics of the main operating data subject to abnormality determination. For example, even if 10 kinds of operation data are sampled as operation data for abnormality determination, if the operation data related to the operation data of the main abnormality target can be narrowed down to 5 kinds, only such related operation data may be selected and stored in the external storage device 7.
  • Embodiment 3 an example in which the sampling period is changed has been described. However, if the storage capacity of the external storage device 7 is small, the sampling period may not be changed. In addition, when the operating data already stored in the external storage device 7 reduces the storage capacity of the external storage device 7, the controller controls the subsequent sampling cycle of the operating data to be longer than the specified cycle. 10 may be changed.
  • the reference period described in each of the above embodiments is basically determined at the design stage.
  • such a reference period is determined by providing a selection device such as a selection switch for selecting the reference period from a plurality of reference periods in the air conditioning systems 100 and 200, and allowing a person such as an administrator of the air conditioning systems 100 and 200 to select the air conditioning period.
  • the selection device may be operated according to the installation environment of the harmonization systems 100 and 200 to enable selection.
  • the sampling period described is basically determined at the design stage.
  • such a sampling period is determined by providing a selection device such as a selection switch for selecting the sampling period from a plurality of sampling periods in the air conditioning system 100, 200, and allowing a person such as an administrator of the air conditioning system 100, 200 to select the air conditioning system.
  • the selection device may be operated according to the installation environment of the harmonization systems 100 and 200 to enable selection.
  • the reference period which is the period during which the operating data described in each of the above embodiments is stored in the external storage device 7, may be set according to the characteristics of the operating data. For example, for driving data that has the characteristic of reaching the threshold slowly, the reference period is set longer than the standard reference period, and for driving data that has the characteristic of rapidly reaching the threshold, the reference period is set to the standard period. It may be set longer than the reference period.
  • the control device 10 and the external storage device 7 may be installed at a remote location away from the locations where the refrigerant circuits of the air conditioning systems 100 and 200 are arranged.
  • various devices of the refrigerant circuit to be controlled by the control device 10 may be connected to the control device 10 via a network such as the Internet.
  • the control device 10 is installed near the refrigerant circuit
  • the external storage device 7 may be installed at a remote location away from the location where the refrigerant circuit is arranged.
  • the temporarily stored operation data for period A data whose state does not change over time other than ON or OFF, such as switch input information, may be used.
  • the data may be stored only when the input changes, eg, when it switches from ON to OFF. In this way, the required storage capacity can be reduced by excluding data from being stored while the state is maintained without changing from ON or OFF.
  • Data such as threshold values for determining an abnormal state and a modified example of a sampling method for operation data will be described.
  • the type of abnormal state, data related to the abnormal state, and data related to determination of the abnormal state such as a threshold value corresponding to the abnormal state are stored in the control device 10 in association with each type of abnormal state. good too.
  • Data related to determination of such an abnormal state may be stored in the control device 10 in the form of a table for each type of abnormal state. Based on the data stored in this way, the control device 10 may determine whether or not the abnormality determination condition as described above is satisfied.
  • the data related to determination of an abnormal state stored in the control device 10 in this manner is derived from, for example, maintenance information including a history of responses to abnormalities that occurred in the past, information possessed by the designer, and the like.
  • the sampling method of the operation data as described above it may be stored in the control device 10 in association with the type of abnormal state, and the operation data may be sampled by a sampling method based on the stored data.
  • the operation data is stored in the control device 10 in association with the data related to the determination of the abnormal state described above, and the operation data is sampled by a sampling method based on the stored data. may be executed.
  • the operation history information and the like of one air conditioning system 100, 200 or a plurality of air conditioning systems 100, 200 are aggregated in the cloud, and based on the aggregated operation history information, a machine learning function using artificial intelligence The accuracy of parameters such as the threshold may be increased.
  • the degree to which the data values fluctuate differs depending on the type of operating data. For driving data that fluctuates greatly and may drop below the threshold immediately after exceeding the threshold for a moment, if the threshold is exceeded for a certain period of time (for example, if the threshold is exceeded for X seconds in a row) , the control device 10 may store the operation data.
  • Embodiments 1 to 4 data stored in the external storage device 7, that is, operation data that enables analysis of signs of an abnormal state are transmitted to maintenance personnel such as service personnel. , the driving state can be analyzed.
  • the maintenance personnel may be contacted at various timings. For example, maintenance personnel may be contacted on a regular basis (eg, every three months) and the data sent to the maintenance personnel's computer. Alternatively, each time preset data such as data that is a sign of an abnormal state is stored in the external storage device 7, the maintenance staff may be contacted and the data may be sent to the maintenance staff's computer. Alternatively, maintenance personnel may be contacted when controller 10 determines that anomalous operational data is present, and the data may be transmitted to the maintenance personnel's computer. In addition to the abnormal operation data, data that is a sign of an abnormal state may also be sent to the maintenance personnel's computer.
  • only the main data may be transmitted at the stage of contacting the maintenance personnel, and the maintenance personnel may be able to retrieve other past data from the external storage device 7 when the maintenance personnel arrive at the site.
  • the communication and data transmission to the maintenance personnel described above may be automatically executed by the control device 10 or the centralized control controller.
  • the control device 10 may store data in the external storage device 7 in response to requests from maintenance personnel who are remote from the air conditioning systems 100 and 200 .
  • the control device 10 may add, to the data to be stored in the external storage device 7, the type of operation data requested by the maintenance personnel.
  • the control device 10 may change the length of the data storage period in response to a request from maintenance personnel.
  • the air conditioning system 100 described above may be configured as one air conditioner.
  • the present disclosure relates to air conditioning systems 100 and 200.
  • the air conditioning systems 100 and 200 include sensors such as a discharge pressure sensor 21 and a current sensor 22 that detect data indicating the operating state of air conditioning operation, a control device 10 that controls the air conditioning operation, and an external storage device 7 that is a storage device. and
  • the control device 10 temporarily holds the data detected by the sensor (step S1 in FIG. 2, step S11 in FIG. 6, step S21 in FIG. 7), and when the data detected by the sensor satisfies the abnormality determination condition, Second, the data temporarily held during the period from the time when the data detected by the sensor satisfies the abnormality determination condition to the time before the reference period is stored in the external storage device 7 which is a storage device. (Steps S2 to S4 in FIG. 2, steps S14 to S16 in FIG. 6, steps S25 to S27 in FIG. 7).
  • control device 10 temporarily holds the data detected by the sensor, and when the data detected by the sensor exceeds the threshold, By storing the data temporarily held during the period in the external storage device 7, which is a storage device, the operational data that is a sign of the abnormal state can be reliably acquired in the state before the abnormal state occurs. Data volume of data can be suppressed.
  • control device 10 sets a predetermined fixed period as the reference period B (step S4 in FIG. 2).
  • control device 10 sets a predetermined fixed period as the reference period B, so that the setting of the reference period can be simplified.
  • the control device 10 sets the reference period D as the period required for the data detected by the sensor to reach the threshold level from the reference value set to a level that has not yet reached the threshold level ( Set the reference period D) (step S16 in FIG. 6)
  • the control device 10 sets, as the reference period D, the period required for the data detected by the sensor to reach the threshold level from the reference value set to a level that has not yet reached the threshold level. Therefore, the operating data at the point when the operating data reaches the level of the reference value can be reliably stored and saved in the external storage device 7 which is a storage device.
  • control device 10 sets, as the reference period E, a period that changes according to the change rate of the data detected by the sensor (step S27 in FIG. 7).
  • control device 10 sets a period that changes according to the change rate of the data detected by the sensor as the reference period E. Therefore, in the reference period E shorter than the standard set reference period, Operation data required for analyzing an abnormal state can be stored and saved in the external storage device 7 .
  • control device 10 samples the data detected by the sensor and temporarily holds it (step S21 in FIG. 7), and according to the change rate of the data detected by the sensor, the data detected by the sensor is changed (step S24 in FIG. 7).
  • control device 10 samples and temporarily holds the data detected by the sensor, and changes the sampling period of the data detected by the sensor according to the change rate of the data detected by the sensor. Therefore, the operation data can be sampled at an appropriate timing according to the length of the period of the operation data stored and saved in the external storage device 7 .
  • the external storage device 7, which is a storage device is a non-volatile storage device.
  • the external storage device 7, which is a storage device is a non-volatile storage device, even if the power supply of the air conditioning system 100, 200 is turned off, the data stored in the external storage device 7, which is a storage device, Operation data can be prevented from being erased.
  • the control device 10 determines that the operating state is abnormal based on the data detected by the sensor (step S28 in FIG. 7), and when the operating state is determined to be abnormal, the control device 10 determines the timing based on the determined time.
  • the data temporarily held during the period up to the period before the period B is stored in the external storage device 7, which is a storage device (step S29 in FIG. 7).
  • the control device 10 makes an abnormality determination regarding the operating state based on the data detected by the sensor, and when it is determined that the operating state is abnormal, from the determined time to the time before the reference period B Since the data temporarily held during the period is stored in the external storage device 7, which is a storage device, the operating state is determined by combining the operating data when the abnormality determination condition is satisfied and the operating data that is a sign of an abnormal state.
  • the analysis makes it easier to analyze the root cause of the abnormal state.
  • the air conditioning system 200 further includes a service device 30, which is an analysis device for analyzing data stored in the external storage device 7 as a storage device, in addition to the configuration of the air conditioning system 100, and the service device 30 , is connectable to the control device 10, and when it is connected to the control device 10, the data stored in the external storage device 7, which is a storage device, is read (step S31 in FIG. 9); Based on the data stored in 7, the operating state of the air conditioning operation is analyzed (step S32 in FIG. 9).
  • a service device 30 is an analysis device for analyzing data stored in the external storage device 7 as a storage device, in addition to the configuration of the air conditioning system 100, and the service device 30 , is connectable to the control device 10, and when it is connected to the control device 10, the data stored in the external storage device 7, which is a storage device, is read (step S31 in FIG. 9); Based on the data stored in 7, the operating state of the air conditioning operation is analyzed (step S32 in FIG. 9).
  • the service device 30 is connectable to the control device 10, and when connected to the control device 10, reads data stored in the external storage device 7, which is a storage device, Since the operating state of the air conditioning operation is analyzed based on the data stored in the external storage device 7, which is a storage device, the operating state of the air conditioning system 200 can be easily determined based on the data stored in the external storage device 7. can be analyzed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided is an air conditioning system comprising: sensors (21, 22) that detect data indicating the operating state of an air conditioning operation; a control device (10) that controls the air conditioning operation; and a storage device (7), wherein the control device (10) temporarily holds data that was detected by the sensors (21, 22), and when the data detected by the sensors (21, 22) is at or above the threshold value, stores in the storage device (7) the data that was temporarily held for a duration from period in which the data becomes at or above a threshold value to a period before a reference duration.

Description

空気調和システムair conditioning system
 本開示は、空気調和システムに関する。 The present disclosure relates to air conditioning systems.
 従来の空気調和システムにおいては、異常が発生した場合の発生原因の分析に用いるために各種の運転データを記憶する機能を有するものがある。運転データは、運転状態を示すデータであり、例えば圧縮機に関する圧力および駆動電流などのデータを含む。運転データは、運転情報とも呼ばれる。 Some conventional air conditioning systems have the function of storing various operating data for use in analyzing the cause of an abnormality when it occurs. The operating data is data indicating the operating state, and includes data such as pressure and drive current for the compressor, for example. Driving data is also called driving information.
 特許文献1では、異常発生時に制御部が有する運転情報をメモリに記録し、記録した運転情報に基づいて異常発生状態を再現するときに、室内ユニットに接続されたリモコンでの手動操作によって、異常状態が発生する前の状態で制御部が有する運転情報をメモリに記憶する構成が記載されている。 In Patent Document 1, operation information held by a control unit when an abnormality occurs is recorded in a memory. A configuration is described in which operation information held by the control unit is stored in a memory in a state before the state occurs.
 特許文献2では、異常発生時に備えて、空調機の運転情報を一定時間毎にメモリに常時記憶し、最も古い運転情報を記憶している記憶領域に新たな運転情報を上書きすることにより、運転情報を長時間にわたり時系列にしたがって記憶する構成が記載されている。 In Patent Document 2, in preparation for the occurrence of an abnormality, operation information of an air conditioner is constantly stored in a memory at regular intervals, and new operation information is overwritten in a storage area storing the oldest operation information. Arrangements are described for storing information chronologically over time.
特開2008-249310号公報Japanese Patent Application Laid-Open No. 2008-249310 国際公開第2008/004515号WO2008/004515
 しかし、特許文献1では、異常発生時の運転情報に基づいて異常発生状態を再現することができない場合も生じるので、その場合に、異常状態が発生する前の運転情報を取得することができない状況が生じ得るという問題があった。 However, in Patent Document 1, there are cases where the abnormal state cannot be reproduced based on the operational information at the time of the abnormal occurrence, so in that case, the situation is such that the operational information before the abnormal state cannot be obtained. could arise.
 特許文献2では、異常発生状態ではない状態の運転情報を含む長期間のデータがメモリに常時記憶されるので、異常が発生した場合の発生原因の分析に不要なデータが多数蓄積されるため、メモリに必要とされる容量が過大となるという問題があった。 In Patent Document 2, since long-term data including operation information in a non-abnormal state is always stored in the memory, a large amount of unnecessary data is accumulated for analysis of the cause of occurrence when an abnormality occurs. There is a problem that the capacity required for the memory becomes excessive.
 本開示の空気調和システムは、上記課題を解決するものであり、異常状態が発生する前の状態において異常状態の予兆となる運転データを確実に取得するとともに、取得する運転データのデータ量を抑制することができるようにすることを目的とする。 The air conditioning system of the present disclosure solves the above problems, reliably acquires operating data that is a sign of an abnormal state in a state before the occurrence of an abnormal state, and suppresses the amount of acquired operating data. It aims to be able to
 本開示の空気調和システムは、空調運転の運転状態を示すデータを検出するセンサと、空調運転を制御する制御装置と、記憶装置とを備える。制御装置は、センサにより検出されたデータを一時的に保持し、センサにより検出されたデータが異常判定条件を満たす場合に、センサにより検出されたデータが異常判定条件を満たす時期から基準期間前の時期までの期間において一時的に保持したデータを記憶装置に記憶させる。 The air conditioning system of the present disclosure includes a sensor that detects data indicating the operating state of air conditioning operation, a control device that controls air conditioning operation, and a storage device. The control device temporarily holds the data detected by the sensor, and when the data detected by the sensor satisfies the abnormality determination condition, the data detected by the sensor is stored before the reference period from the time when the data detected by the sensor satisfies the abnormality determination condition. The data temporarily held until the time is stored in the storage device.
 本開示の空気調和システムによれば、異常状態が発生する前の状態において異常状態の予兆となる運転データを確実に取得するとともに、取得する運転データのデータ量を抑制することができる。 According to the air conditioning system of the present disclosure, it is possible to reliably acquire operational data that is a sign of an abnormal state before an abnormal state occurs, and to suppress the amount of operational data to be acquired.
実施の形態1による空気調和システム100の冷媒回路および制御回路の構成を示す図である。1 is a diagram showing configurations of a refrigerant circuit and a control circuit of an air-conditioning system 100 according to Embodiment 1. FIG. 実施の形態1による空気調和システム100の運転データを外部記憶装置7に記憶する制御を示すフローチャートである。4 is a flowchart showing control for storing operating data of the air conditioning system 100 in the external storage device 7 according to Embodiment 1. FIG. 実施の形態1による空気調和システム100の運転データの記憶制御のタイミングを示すタイミングチャートである。4 is a timing chart showing the timing of storage control of operating data of the air conditioning system 100 according to Embodiment 1. FIG. 実施の形態1による空気調和システム100の運転データの記憶制御の具体例を示す図である。4 is a diagram showing a specific example of storage control of operating data of the air-conditioning system 100 according to Embodiment 1. FIG. 実施の形態2による空気調和システム100の運転データの記憶制御の具体例を示す図である。FIG. 9 is a diagram showing a specific example of storage control of operating data of the air conditioning system 100 according to Embodiment 2; 実施の形態2による空気調和システム100の運転データを外部記憶装置7に記憶する制御を示すフローチャートである。7 is a flow chart showing control for storing operating data of the air conditioning system 100 in the external storage device 7 according to Embodiment 2. FIG. 実施の形態3による空気調和システム100の運転データを外部記憶装置7に記憶する制御を示すフローチャートである。10 is a flow chart showing control for storing operating data of the air conditioning system 100 in the external storage device 7 according to Embodiment 3. FIG. 実施の形態4による空気調和システム200の構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of an air conditioning system 200 according to Embodiment 4; 実施の形態4による空気調和システム200での運転データの分析処理を示すフローチャートである。10 is a flow chart showing analysis processing of operation data in the air conditioning system 200 according to Embodiment 4. FIG.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. A plurality of embodiments will be described below, but appropriate combinations of the configurations described in the respective embodiments have been planned since the filing of the application. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.
 実施の形態1.
 [空気調和システム100の構成]
 図1は、実施の形態1による空気調和システム100の冷媒回路および制御回路の構成を示す図である。図1には、暖房運転時および暖房運転時における空気調和システム100の冷媒回路の状態が示される。
Embodiment 1.
[Configuration of air conditioning system 100]
FIG. 1 is a diagram showing configurations of a refrigerant circuit and a control circuit of an air conditioning system 100 according to Embodiment 1. As shown in FIG. FIG. 1 shows states of the refrigerant circuit of the air conditioning system 100 during heating operation and during heating operation.
 空気調和システム100は、第1熱交換器1、第2熱交換器2、圧縮機3、流量調整装置4、および、流路切替装置5を含む冷媒回路を備える。冷媒回路は、空気調和システム100で用いられる冷媒の経路である。 The air conditioning system 100 includes a refrigerant circuit including a first heat exchanger 1, a second heat exchanger 2, a compressor 3, a flow control device 4, and a flow switching device 5. A refrigerant circuit is a refrigerant path used in the air conditioning system 100 .
 冷房時に冷媒が流れる方向が実線の矢印で示され、暖房時に冷媒が流れる方向が破線の矢印で示されている。冷房時に冷媒が流れる方向が実線の矢印で示され、暖房時に冷媒が流れる方向が破線の矢印で示されている。流路切替装置5については、冷房時に冷媒が流れる流路が実線で示され、暖房時に冷媒が流れる流路が破線で示される。 The direction in which the refrigerant flows during cooling is indicated by a solid arrow, and the direction in which the refrigerant flows during heating is indicated by a dashed arrow. The direction in which the refrigerant flows during cooling is indicated by a solid line arrow, and the direction in which the refrigerant flows during heating is indicated by a broken line arrow. Regarding the channel switching device 5, the channel through which the refrigerant flows during cooling is indicated by a solid line, and the channel through which the refrigerant flows during heating is indicated by a broken line.
 第1熱交換器1は、室外の空気と冷媒との間で熱交換をする空気熱交換器である。第1熱交換器1は、冷房運転時に冷媒の凝縮器として機能し、暖房運転時に冷媒の蒸発器として機能する。図示を省略するが、第1熱交換器1の近傍には、第1熱交換器1に空気を供給する送風機ファンが設けられる。送風機ファンは、室外の空気を吸入し、第1熱交換器1によって冷媒との間で熱交換された空気を室外に排出する機能を有する。 The first heat exchanger 1 is an air heat exchanger that exchanges heat between outdoor air and refrigerant. The first heat exchanger 1 functions as a refrigerant condenser during cooling operation, and functions as a refrigerant evaporator during heating operation. Although not shown, a blower fan for supplying air to the first heat exchanger 1 is provided near the first heat exchanger 1 . The blower fan has a function of sucking outdoor air and discharging the air heat-exchanged with the refrigerant by the first heat exchanger 1 to the outdoor.
 第2熱交換器2は、図示を省略する室内機の水と冷媒との間で熱交換をする水熱交換器である。第2熱交換器2は、冷房運転時に冷媒の蒸発器として機能し、暖房運転時に冷媒の凝縮器として機能する。 The second heat exchanger 2 is a water heat exchanger that exchanges heat between the water in the indoor unit (not shown) and the refrigerant. The second heat exchanger 2 functions as a refrigerant evaporator during cooling operation, and functions as a refrigerant condenser during heating operation.
 第1熱交換器1と第2熱交換器2との間における冷媒経路においては、冷媒を圧縮する圧縮機3が設けられる。圧縮機3は、例えばインバータ制御がされるモータによって駆動される。 A compressor 3 that compresses the refrigerant is provided in the refrigerant path between the first heat exchanger 1 and the second heat exchanger 2 . The compressor 3 is driven by, for example, an inverter-controlled motor.
 第1熱交換器1と第2熱交換器2との間における冷媒経路においては、流量調整装置4が設けられる。流量調整装置4は、冷媒を減圧して膨張させる機能を有し、例えば流量が調整可能な電子膨張弁で構成される。流量調整装置4は、冷房運転時と暖房運転時との両方で冷媒経路における冷媒の流量を調整することが可能であり、冷媒を減圧して膨張させるために使用される。 A flow control device 4 is provided in the refrigerant path between the first heat exchanger 1 and the second heat exchanger 2 . The flow rate adjusting device 4 has a function of decompressing and expanding the refrigerant, and is configured by, for example, an electronic expansion valve capable of adjusting the flow rate. The flow rate adjusting device 4 can adjust the flow rate of the refrigerant in the refrigerant path both during the cooling operation and during the heating operation, and is used to decompress and expand the refrigerant.
 冷媒経路における圧縮機3の吐出側の経路は、流路切替装置5を経て、第1熱交換器1と第2熱交換器2とのいずれかに接続される。流路切替装置5は、冷媒が流れる流路を切り替えるものであり、例えば四方弁で構成される。 A path on the discharge side of the compressor 3 in the refrigerant path is connected to either the first heat exchanger 1 or the second heat exchanger 2 via the flow path switching device 5 . The channel switching device 5 switches the channel through which the refrigerant flows, and is composed of, for example, a four-way valve.
 冷房運転時において、流路切替装置5は、実線で示す経路のように、圧縮機3の吐出側の経路が第1熱交換器1と接続されるように冷媒の流路を切り替える。暖房運転時において、流路切替装置5は、破線で示す経路のように、圧縮機3の吐出側の経路が第2熱交換器2と接続されるように冷媒の流路を切り替える。 During cooling operation, the flow path switching device 5 switches the refrigerant flow path so that the path on the discharge side of the compressor 3 is connected to the first heat exchanger 1, as indicated by the solid line. During heating operation, the flow path switching device 5 switches the flow path of the refrigerant so that the path on the discharge side of the compressor 3 is connected to the second heat exchanger 2 as indicated by the dashed line.
 制御装置10は、CPU(Central Processing Unit)11、メモリ12(ROM(Read Only Memory)およびRAM(Random Access Memory))、および、各種信号を入出力するための入出力バッファ(図示せず)などを含んで構成される。制御装置10においては、各種の電子部品が制御基板上に取付けられている。制御基板は、例えば各種センサの検出信号等の信号の入力に用いる複数の入力ポートと、例えば流量調整装置4、流路切替装置5、および、圧縮機3の制御信号等の各種機器の制御に必要となる信号の出力に用いる複数の出力ポートとを備える。 The control device 10 includes a CPU (Central Processing Unit) 11, a memory 12 (ROM (Read Only Memory) and RAM (Random Access Memory)), and an input/output buffer (not shown) for inputting/outputting various signals. Consists of In the control device 10, various electronic components are mounted on the control board. The control board includes, for example, a plurality of input ports used for inputting signals such as detection signals of various sensors, and for controlling various devices such as control signals for the flow rate adjusting device 4, the flow switching device 5, and the compressor 3. and a plurality of output ports for outputting the required signals.
 CPU11は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置10の処理手順が記されたプログラムである。制御装置10は、これらのプログラムに従って、空気調和システム100における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The CPU 11 expands the program stored in the ROM into the RAM or the like and executes it. The program stored in the ROM is a program in which processing procedures of the control device 10 are described. The control device 10 controls each device in the air conditioning system 100 according to these programs. This control is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
 制御装置10には、外部記憶装置7が接続されている。外部記憶装置7は、後述するように各種センサにより検出される運転状態を示すデータである運転データを記憶して保存するための記憶装置である。ここで、記憶して保存するとは、一時記憶と区別するために用いる用語であり、時間が経てば自動的に消去されるような一時的な記憶とは異なり、意図的に消去をする必要が生じるまで当分の間記憶されるということを意味している。外部記憶装置7は、フラシュメモリ、ハードディスクドライブ、または、ソリッドステートドライブなどの不揮発性記憶装置より構成されている。外部記憶装置7は、不揮発性記憶装置より構成されているので、空気調和システム100の電源がオフ状態となっても、記憶された運転データは消去されない。 An external storage device 7 is connected to the control device 10 . The external storage device 7 is a storage device for storing and saving operating data, which is data indicating the operating state detected by various sensors, as will be described later. Here, memorizing and preserving is a term used to distinguish from temporary memory, and unlike temporary memory that is automatically erased over time, it is necessary to intentionally erase it. It is meant to be remembered for the time being until it occurs. The external storage device 7 is composed of a nonvolatile storage device such as flash memory, hard disk drive, or solid state drive. Since the external storage device 7 is a non-volatile storage device, the stored operating data is not erased even when the air conditioning system 100 is powered off.
 空気調和システム100には、運転状態を示すデータである運転データを検出する各種のセンサが設けられている。センサとしては、次のようなものが設けられている。例えば、圧縮機3の吐出側には、圧縮機3の吐出圧力Pを検出する吐出圧力センサ21が設けられている。圧縮機3には、圧縮機3の駆動電流Iを検出する電流センサ22が設けられている。圧縮機3には、圧縮機3の周波数Fを検出する周波数センサ23が設けられている。 The air conditioning system 100 is provided with various sensors that detect operating data, which is data indicating the operating state. The following sensors are provided. For example, a discharge pressure sensor 21 for detecting the discharge pressure P of the compressor 3 is provided on the discharge side of the compressor 3 . The compressor 3 is provided with a current sensor 22 that detects the driving current I of the compressor 3 . The compressor 3 is provided with a frequency sensor 23 that detects the frequency F of the compressor 3 .
 その他に、空気調和システム100には、運転状態を示すデータを検出するセンサとして、次のようなセンサも設けられている。圧縮機3の吐出側には、圧縮機3から吐出された冷媒の温度(以下、吐出温度と呼ぶ)を検出する吐出温度センサが設けられている。第1熱交換器1には、第1熱交換器1の温度を検出する熱交換器温度センサが設けられている。熱交換器温度センサは、第1熱交換器1に付着した霜の温度を検出するものである。第2熱交換器2の入口側には、冷媒の温度を検出する入口温度センサが設けられている。第2熱交換器2の出口側には、冷媒の温度を検出する出口温度センサが設けられている。吐出圧力センサ21より検出された吐出圧力Pの検出信号、電流センサ22により検出された駆動電流Iの検出信号、および、周波数センサ23により検出された周波数Fの検出信号を代表例として示す各種のセンサの検出信号が、制御装置10に入力される。 In addition, the air conditioning system 100 is also provided with the following sensors as sensors for detecting data indicating the operating state. A discharge temperature sensor for detecting the temperature of the refrigerant discharged from the compressor 3 (hereinafter referred to as discharge temperature) is provided on the discharge side of the compressor 3 . The first heat exchanger 1 is provided with a heat exchanger temperature sensor that detects the temperature of the first heat exchanger 1 . The heat exchanger temperature sensor detects the temperature of frost adhering to the first heat exchanger 1 . An inlet temperature sensor that detects the temperature of the refrigerant is provided on the inlet side of the second heat exchanger 2 . An outlet temperature sensor that detects the temperature of the refrigerant is provided on the outlet side of the second heat exchanger 2 . A detection signal of the ejection pressure P detected by the ejection pressure sensor 21, a detection signal of the drive current I detected by the current sensor 22, and a detection signal of the frequency F detected by the frequency sensor 23 are shown as typical examples. A detection signal from the sensor is input to the control device 10 .
 制御装置10は、圧縮機3、流量調整装置4、および、流路切替装置5のそれぞれに制御信号を与える。制御装置10は、制御信号に基づいて圧縮機3の運転周波数を制御する。制御装置10は、制御信号に基づいて流量調整装置4の開度を制御する。制御装置10は、制御信号に基づいて流路切替装置5の流路を切替える制御をする。 The control device 10 gives a control signal to each of the compressor 3, the flow rate adjusting device 4, and the channel switching device 5. The control device 10 controls the operating frequency of the compressor 3 based on the control signal. The control device 10 controls the opening degree of the flow control device 4 based on the control signal. The control device 10 controls switching of the flow path of the flow path switching device 5 based on the control signal.
 次に、空気調和システム100における冷房運転時の動作について説明する。冷房運転時には、制御装置10によって、流路切替装置5における流路が図中実線で示すような流路となるように制御される。流量調整装置4は、制御装置10によって過熱度に基づいて開度が制御される。例えば、制御装置10は、第1熱交換器1の入口温度センサおよび出口温度センサで検出される温度から求められる圧縮機3の吸入過熱度が目標値になるように、流量調整装置4の開度を決定し、流量調整装置4の開度を制御する。 Next, the operation of the air conditioning system 100 during cooling operation will be described. During the cooling operation, the flow path in the flow path switching device 5 is controlled by the control device 10 to become the flow path indicated by the solid line in the figure. The opening degree of the flow control device 4 is controlled by the control device 10 based on the degree of superheat. For example, the control device 10 opens the flow rate adjusting device 4 so that the suction superheat degree of the compressor 3 obtained from the temperatures detected by the inlet temperature sensor and the outlet temperature sensor of the first heat exchanger 1 becomes a target value. degree and controls the opening degree of the flow rate regulator 4 .
 圧縮機3によって圧縮されて吐出された高温高圧のガス冷媒は、流路切替装置5を通って第1熱交換器1へ流入する。第1熱交換器1に流入した高温高圧の冷媒は、室外空気等に対して放熱し、凝縮されて高圧の液冷媒となる。第1熱交換器1から流出した高圧の液冷媒は、流量調整装置4へ流入し、膨張および減圧されて、低温低圧の気液二相冷媒となる。流量調整装置4から流出した気液二相冷媒は、第2熱交換器2へ流入する。第2熱交換器2へ流入した気液二相冷媒は、水と熱交換して蒸発し、低温低圧のガス冷媒となる。第2熱交換器2から流出したガス冷媒は、流路切替装置5を経て圧縮機3へ吸入され、再び圧縮される。 The high-temperature and high-pressure gas refrigerant compressed by the compressor 3 and discharged passes through the flow path switching device 5 and flows into the first heat exchanger 1 . The high-temperature, high-pressure refrigerant that has flowed into the first heat exchanger 1 radiates heat to the outdoor air or the like, and is condensed to become a high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out of the first heat exchanger 1 flows into the flow control device 4, where it is expanded and decompressed to become a low-temperature, low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant that has flowed out of the flow regulating device 4 flows into the second heat exchanger 2 . The gas-liquid two-phase refrigerant that has flowed into the second heat exchanger 2 exchanges heat with water and evaporates to become a low-temperature, low-pressure gas refrigerant. The gas refrigerant that has flowed out of the second heat exchanger 2 is sucked into the compressor 3 via the flow switching device 5 and compressed again.
 次に、空気調和システム100における暖房運転時の動作について説明する。暖房運転時には、制御装置10によって、流路切替装置5における流路が破線に示すような流路となるように制御される。流量調整装置4は、制御装置10によって過冷却度に基づいて開度が制御される。具体的に、制御装置10は、第2熱交換器2の入口温度センサおよび出口温度センサで検出される温度から求められる第2熱交換器2の出口の過冷却度が目標値になるように、流量調整装置4の開度を決定する。 Next, the operation of the air conditioning system 100 during heating operation will be described. During the heating operation, the flow path in the flow path switching device 5 is controlled by the control device 10 to become the flow path indicated by the dashed line. The opening degree of the flow control device 4 is controlled by the control device 10 based on the degree of subcooling. Specifically, the controller 10 adjusts the degree of subcooling at the outlet of the second heat exchanger 2, which is obtained from the temperatures detected by the inlet temperature sensor and the outlet temperature sensor of the second heat exchanger 2, to a target value. , determines the opening of the flow control device 4 .
 圧縮機3によって圧縮されて吐出された高温高圧のガス冷媒は、流路切替装置5を通って第2熱交換器2へ流入する。第2熱交換器2に流入した高温高圧の冷媒は、水に対して放熱し、凝縮されて高圧の液冷媒となる。第2熱交換器2から流出した高圧の液冷媒は、流量調整装置4へ流入し、膨張および減圧されて、低温低圧の気液二相冷媒となる。流量調整装置4から流出した気液二相冷媒は、第1熱交換器1へ流入する。第1熱交換器1へ流入した気液二相冷媒は、室外空気と熱交換して蒸発し、低温低圧のガス冷媒となる。第1熱交換器1から流出したガス冷媒は、流路切替装置5を経て圧縮機3へ吸入され、再び圧縮される。 The high-temperature and high-pressure gas refrigerant compressed by the compressor 3 and discharged passes through the flow path switching device 5 and flows into the second heat exchanger 2 . The high-temperature, high-pressure refrigerant that has flowed into the second heat exchanger 2 radiates heat to water, is condensed, and becomes high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out of the second heat exchanger 2 flows into the flow control device 4, where it is expanded and decompressed to become a low-temperature, low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant that has flowed out of the flow control device 4 flows into the first heat exchanger 1 . The gas-liquid two-phase refrigerant that has flowed into the first heat exchanger 1 exchanges heat with the outdoor air, evaporates, and becomes a low-temperature, low-pressure gas refrigerant. The gas refrigerant that has flowed out of the first heat exchanger 1 is sucked into the compressor 3 via the flow switching device 5 and compressed again.
 [空気調和システム100の運転データの記憶制御の処理]
 次に、空気調和システム100の運転データを外部記憶装置7に記憶する制御について説明する。図2は、実施の形態1による空気調和システム100の運転データを外部記憶装置7に記憶する制御を示すフローチャートである。図2に示す制御は、制御装置10のCPU11が実行する。
[Processing of Storage Control of Operation Data of Air Conditioning System 100]
Next, control for storing the operating data of the air conditioning system 100 in the external storage device 7 will be described. FIG. 2 is a flowchart showing control for storing operating data of the air conditioning system 100 in the external storage device 7 according to Embodiment 1. FIG. The control shown in FIG. 2 is executed by the CPU 11 of the control device 10 .
 図2では、実施の形態1による空気調和システム100の運転データの記憶制御の一例として、吐出圧力センサ21より検出される吐出圧力Pと、電流センサ22により検出される駆動電流Iとの複数種類の運転データに基づいて異常状態を判定する場合における運転データの記憶制御例を説明する。制御装置10のCPU11は、運転データの記憶制御において、以下のような処理を実行する。 In FIG. 2, as an example of storage control of the operating data of the air-conditioning system 100 according to Embodiment 1, a plurality of types of discharge pressure P detected by the discharge pressure sensor 21 and drive current I detected by the current sensor 22 are shown. An example of storage control of operating data when determining an abnormal state based on the operating data will be described. The CPU 11 of the control device 10 executes the following processing in the storage control of the driving data.
 ステップS1においては、前述した運転状態を示すデータを検出する複数種類のセンサにより検出された複数種類の運転データを周期Cでサンプリングし、サンプリングした複数種類の運転データを、現時点から期間Aだけ過去に遡った時点まで時系列的にメモリ12に一時記憶させる。これにより、運転データは、メモリ12において一時的に保持される。一例として、周期Cは、1分間の周期などの周期に設定される。 In step S1, a plurality of types of operating data detected by a plurality of types of sensors for detecting data indicating the operating state described above are sampled at a period C, and the sampled plurality of types of operating data are stored for a period A in the past from the present time. are temporarily stored in a memory 12 in chronological order up to the point of time going back to . As a result, the operating data is temporarily held in the memory 12 . As an example, period C is set to a period such as a period of one minute.
 つまり、制御装置10では、空気調和システム100の運転中において、常時、期間A(例えば数十分)に亘る運転データを時系列的にメモリ12に一時的に保持させる。一時記憶という語は、メモリ12において、期間Aに亘る時系列的な運転データが先入れ先出し方式で常時更新されながら記憶されるので、新たに記憶されたデータが一定時間後(期間A経過後)には消去されるというように、一時的に記憶されるという意味である。このように、制御装置10では、空調運転の運転状態を示す運転データが、期間Aという一定期間分、常時更新されながらメモリ12に一時的に記憶されて保持される。 In other words, the control device 10 causes the memory 12 to temporarily retain operational data over a period A (for example, several tens of minutes) in time series during the operation of the air conditioning system 100 . The term "temporary storage" means that the time-series operation data over the period A is stored in the memory 12 while being constantly updated in a first-in, first-out manner, so that the newly stored data will be stored after a certain period of time (after the period A has elapsed). means to be temporarily stored, such as to be erased. In this manner, in the control device 10, the operating data indicating the operating state of the air conditioning operation is temporarily stored and held in the memory 12 for a certain period of time, the period A, while being constantly updated.
 ステップS2においては、前述した複数種類のセンサにより検出された複数種類の運転データのうち、何れかの運転データが、各データ別に異常値として設定された閾値以上となっているか否かを判断する。ステップS2で判断する何れかの運転データは、すべての運転データという概念は含まれず、一部の運転データという概念である。ステップS2で何れかの運転データが閾値以上となっていないと判断した場合は、リターンする。一方、ステップS2で何れかの運転データが閾値以上となっていると判断した場合は、後述するステップS3において、閾値以上となった運転データに対応して外部記憶装置7において既にステップS3により記憶して保存されたデータがあるか否かを判断する。 In step S2, it is determined whether any of the plurality of types of operation data detected by the plurality of types of sensors described above is equal to or greater than a threshold set as an abnormal value for each data. . Any of the operating data determined in step S2 does not include the concept of all operating data, but rather the concept of part of the operating data. If it is determined in step S2 that any of the operating data is not equal to or greater than the threshold value, the process returns. On the other hand, if it is determined in step S2 that any of the operating data exceeds the threshold, then in step S3 described later, the operating data exceeding the threshold has already been stored in the external storage device 7 in step S3. It is determined whether there is data saved by
 ステップS3で、閾値以上となった運転データに対応して外部記憶装置7において既に記憶して保存されたデータがないと判断された場合は、ステップS4において、全種類の運転データにつき、現時点から基準期間Bだけ過去に遡った時点までのデータを、メモリ12から読出し、外部記憶装置7に記憶して保存させ、ステップS5に進む。例えば、異常判定をするための運転データとして、吐出圧力Pおよび駆動電流Iを用いる場合において、吐出圧力Pのみ閾値以上となったときには、吐出圧力Pと駆動電流Iとの両方について、現時点から基準期間Bだけ過去に遡った時点までのデータを外部記憶装置7に記憶して保存させる。 If it is determined in step S3 that there is no data already stored and saved in the external storage device 7 corresponding to the operating data exceeding the threshold value, in step S4 all types of operating data are stored from the current time point. The data up to the point in time going back by the reference period B is read out from the memory 12, stored in the external storage device 7 and saved, and the process proceeds to step S5. For example, when the discharge pressure P and the drive current I are used as operation data for determining abnormality, when only the discharge pressure P exceeds the threshold value, both the discharge pressure P and the drive current I are set to the reference value from the present time. The data up to the point in time going back by the period B is stored in the external storage device 7 and saved.
 基準期間Bは、期間Aよりも短い一定期間であり、閾値以上となった運転データが当該閾値以上となった原因を運転データの推移に基づいて特定することが可能となると予想される予め定められた期間である。一例として、基準期間Bは、15分間などの固定的な期間に設定される。 The reference period B is a certain period shorter than the period A, and is a predetermined period expected to enable the cause of the operating data exceeding the threshold to be specified based on the transition of the operating data. is the period As an example, the reference period B is set to a fixed period such as 15 minutes.
 一方、ステップS3で、閾値以上となった運転データに対応して外部記憶装置7において既に記憶して保存されたデータがあると判断された場合は、ステップS4の処理を実行することなく、ステップS5に進む。これにより、重複した運転データの保存を防ぐことができる。ただし、容量に余裕があれば、ステップS4の処理を実行し、追加でデータを保存してもよい。例えば、運転データが閾値以上となったり閾値未満となったりすることを繰り返す可能性を考慮して、過去、何回分かのデータを残してもよい。 On the other hand, if it is determined in step S3 that there is data already stored and saved in the external storage device 7 corresponding to the operation data exceeding the threshold, step S4 is not executed. Proceed to S5. As a result, it is possible to prevent redundant operation data from being saved. However, if there is enough capacity, the process of step S4 may be executed to store additional data. For example, in consideration of the possibility that the driving data may repeatedly exceed the threshold or fall below the threshold, data for several times in the past may be left.
 ステップS5では、運転状態を示すデータを検出する複数種類のセンサにより検出された複数種類の運転データに基づいて、空気調和システム100に異常が生じたと認定する異常判定条件が成立したか否かを判断する。ステップS5の異常判定条件の一例としては、運転データにおける吐出圧力Pと、駆動電流Iとの両方が閾値以上となったことである。 In step S5, based on multiple types of operating data detected by multiple types of sensors that detect data indicating the operating state, it is determined whether an abnormality determination condition for certifying that an abnormality has occurred in the air conditioning system 100 has been established. to decide. An example of the abnormality determination condition in step S5 is that both the discharge pressure P and the drive current I in the operation data are equal to or greater than threshold values.
 ステップS5で異常判定条件が成立していないと判断された場合は、リターンする。一方、ステップS5で異常判定条件が成立していると判断された場合は、ステップS6において、全種類の運転データにつき、現時点から基準期間Bだけ過去に遡った時点までのデータを、メモリ12から読出し、外部記憶装置7に記憶して保存させ、リターンする。例えば、運転データとして、吐出圧力Pおよび駆動電流Iを用いる場合には、ステップS6において、吐出圧力Pと、駆動電流Iとの両方について、現時点から基準期間Bだけ過去に遡った時点までのデータを外部記憶装置7に記憶して保存させる。 If it is determined in step S5 that the abnormality determination condition is not satisfied, return. On the other hand, if it is determined in step S5 that the abnormality determination condition is satisfied, in step S6, data of all types of operation data from the current time to the point in time preceding the reference period B is stored from the memory 12. Read out, store and save in the external storage device 7, and return. For example, when the discharge pressure P and the drive current I are used as the operating data, in step S6, data for both the discharge pressure P and the drive current I from the present time to the point in time preceding the reference period B is is stored in the external storage device 7 and saved.
 [空気調和システム100の運転データの記憶制御のタイミング]
 次に、空気調和システム100の運転データの記憶制御のタイミングについて説明する。図3は、実施の形態1による空気調和システム100の運転データの記憶制御のタイミングを示すタイミングチャートである。
[Timing of storage control of operation data of air conditioning system 100]
Next, the timing of storage control of the operating data of the air conditioning system 100 will be described. FIG. 3 is a timing chart showing the timing of storage control of the operating data of the air conditioning system 100 according to Embodiment 1. FIG.
 図3においては、メモリ12に一時記憶される期間Aの運転データと、何れかの運転データが閾値以上となったときに外部記憶装置7に記憶して保存される基準期間Bの運転データとの関係が時間経過に応じて示されている。 In FIG. 3, the operating data of period A temporarily stored in the memory 12 and the operating data of the reference period B stored in the external storage device 7 when any of the operating data exceeds the threshold value. are shown according to the passage of time.
 図3に示すように、制御装置10では、空調運転の運転状態を示す運転データが、期間Aという一定期間分、常時更新されながらメモリ12に一時的に保持される。そして、何れかの運転データが閾値以上となっていると判断した場合は、全種類の運転データにつき、現時点から基準期間Bだけ過去に遡った時点までのデータが、メモリ12から読出され、外部記憶装置7に記憶して保存させられる。 As shown in FIG. 3, in the control device 10, the operating data indicating the operating state of the air conditioning operation is temporarily held in the memory 12 for a fixed period of time A, while being constantly updated. Then, when it is determined that any of the operating data is equal to or higher than the threshold value, for all types of operating data, the data from the current point to the point in time preceding the reference period B is read out from the memory 12 and stored in the external memory. It is stored and saved in the storage device 7 .
 図3に示すように、メモリ12に運転データが一時記憶される期間Aは、一例として、基準期間Bよりも長い期間である。なお、メモリ12に運転データが一時記憶される期間の長さと、基準期間の長さとは同じであってもよい。メモリ12に運転データが一時記憶される期間の長さは、基準期間の長さ以上であればよい。メモリ12に運転データが一時記憶される期間の長さは、少なくとも基準期間の長さであり、メモリ12の記憶容量を圧迫しない範囲内で、基準期間よりも長く設定されてよい。 As shown in FIG. 3, the period A during which the operating data is temporarily stored in the memory 12 is longer than the reference period B, for example. The length of the period during which the operation data is temporarily stored in the memory 12 may be the same as the length of the reference period. The length of the period during which the operation data is temporarily stored in the memory 12 may be equal to or longer than the length of the reference period. The length of the period during which the driving data is temporarily stored in the memory 12 is at least the length of the reference period, and may be set longer than the reference period within a range that does not impose a storage capacity of the memory 12 .
 また、異常判定条件が成立していると判断された場合も、全種類の運転データにつき、現時点から基準期間Bだけ過去に遡った時点までのデータが、メモリ12から読出され、外部記憶装置7に記憶して保存させられる。 Further, even when it is determined that the abnormality determination condition is satisfied, the data from the present time to the point in time preceding the reference period B is read from the memory 12 and stored in the external storage device 7 for all types of operation data. stored and saved in
 [空気調和システム100の運転データの記憶制御の具体例]
 次に、実施の形態1による空気調和システム100の運転データの記憶制御の具体例を説明する。図4は、実施の形態1による空気調和システム100の運転データの記憶制御の具体例を示す図である。図4の場合、例えば、運転データにおける吐出圧力Pと、駆動電流Iとの両方が閾値以上となった場合に、異常判定条件が成立する。
[Specific example of storage control of operation data of air conditioning system 100]
Next, a specific example of storage control of the operating data of the air conditioning system 100 according to Embodiment 1 will be described. FIG. 4 is a diagram showing a specific example of storage control of the operating data of the air conditioning system 100 according to Embodiment 1. In FIG. In the case of FIG. 4, for example, when both the discharge pressure P and the drive current I in the operating data are equal to or greater than the threshold values, the abnormality determination condition is established.
 図4(A1),(A2)には、実施の形態1による運転データの記憶制御が実行された場合の運転データと、外部記憶装置7に記憶して保存させられる運転データの期間との関係が示されている。図4(A1)には、駆動電流Iの電流値が時間経過に応じて示される。図4(A2)には、吐出圧力Pの圧力値が時間経過に応じて示される。 4A1 and 4A2 show the relationship between the operating data when the operating data storage control according to Embodiment 1 is executed and the period of the operating data stored and saved in the external storage device 7. It is shown. FIG. 4A1 shows the current value of the drive current I over time. FIG. 4A2 shows the pressure value of the discharge pressure P over time.
 また、図4(B1),(B2)には、実施の形態1による運転データの記憶制御の比較例として、異常判定条件が成立した場合にのみ、現時点から基準期間Bだけ過去に遡った時点までのデータが、メモリ12から読出されて外部記憶装置7に記憶して保存される運転データの記憶制御例が示されている。図4(B1)には、駆動電流Iの電流値が時間経過に応じて示される。図4(B2)には、吐出圧力Pの圧力値が時間経過に応じて示される。 4(B1) and (B2) show, as a comparative example of the storage control of the driving data according to the first embodiment, only when the abnormality determination condition is met, the point in time which is a reference period B before the present point in time. 1 shows an example of storage control of operation data in which the data up to and including the above are read out from the memory 12 and stored in the external storage device 7 to be saved. FIG. 4B1 shows the current value of the drive current I over time. FIG. 4B2 shows the pressure value of the discharge pressure P over time.
 図4(B1),(B2)に示すように、単に異常判定条件が成立した場合にのみ、現時点から基準期間Bだけ過去に遡った時点までのデータが、メモリ12から読出されて外部記憶装置7に記憶して保存される場合には、異常判定条件の成立時から基準期間Bだけ過去に遡った時点までのデータだけが、外部記憶装置7に記憶して保存される。その場合には、例えば、図4(B1)に示すように、現時点から基準期間Bだけ過去に遡った時点よりも前の時点で、何れかの運転データが閾値以上になっている場合も生じ得る。 As shown in FIGS. 4(B1) and 4(B2), only when the abnormality determination condition is met, the data from the present time to the time point before the reference period B is read out from the memory 12 and stored in the external storage device. 7, only the data from the time when the abnormality determination condition is established to the time when the reference period B goes back in the past is stored in the external storage device 7 and saved. In that case, for example, as shown in FIG. 4(B1), there may be a case where any of the driving data is equal to or greater than the threshold at a point in time prior to the point in time preceding the reference period B from the present point in time. obtain.
 したがって、単に異常判定条件が成立した場合にのみ、現時点から基準期間Bだけ過去に遡った時点までのデータを外部記憶装置7に記憶して保存する場合には、異常判定条件成立前の状態において異常状態の予兆となる運転データを取得する確実性が不十分であると考えられる。これに対し、実施の形態1による運転データの記憶制御が実行された場合には、以下に説明するように、異常判定条件成立前の状態において異常状態の予兆となる運転データを確実に取得することができる。 Therefore, only when the abnormality determination condition is satisfied, when the data from the present time to the point in time preceding the reference period B is stored in the external storage device 7, the state before the abnormality determination condition is satisfied. It is considered that the certainty of obtaining operational data that is a precursor to abnormal conditions is insufficient. On the other hand, when the operating data storage control according to the first embodiment is executed, as will be described below, the operating data that is a sign of an abnormal state is reliably acquired in the state before the abnormality determination condition is established. be able to.
 図4(A1),(A2)に示すように、実施の形態1の運転データの記憶制御においては、まず、異常判定をするための運転データとして、吐出圧力Pおよび駆動電流Iを用いる場合において、駆動電流Iのみが閾値以上となったときには、吐出圧力Pと駆動電流Iとの両方について、現時点から基準期間Bだけ過去に遡った時点までのデータを外部記憶装置7に記憶して保存させる。そして、実施の形態1の運転データの記憶制御においては、さらに、駆動電流Iが閾値以上であり、かつ、吐出圧力Pが閾値以上である状態となったことにより異常判定条件が成立する。実施の形態1の運転データの記憶制御においては、このように異常判定条件が成立したときも、吐出圧力Pと駆動電流Iとの両方について、現時点から基準期間Bだけ過去に遡った時点までのデータを外部記憶装置7に記憶して保存させる。 As shown in FIGS. 4A1 and 4A2, in the operation data storage control of the first embodiment, first, when the discharge pressure P and the drive current I are used as the operation data for abnormality determination, , when only the drive current I exceeds the threshold value, the external storage device 7 stores and saves the data for both the discharge pressure P and the drive current I from the present time to the time point before the reference period B. . Further, in the operation data storage control of the first embodiment, the abnormality determination condition is established when the driving current I is equal to or higher than the threshold value and the discharge pressure P is equal to or higher than the threshold value. In the storage control of the operating data according to the first embodiment, even when the abnormality determination condition is established as described above, both the discharge pressure P and the drive current I are stored from the present time to the point of time preceding the reference period B in the past. The data is stored and saved in the external storage device 7 .
 以上に説明した実施の形態1によれば、次のような効果を得ることができる。
 図2~図4などを用いて説明したように、制御装置10は、センサにより検出されたデータを一時的に保持し、センサにより検出されたデータが閾値以上となった場合に、閾値となった時期から基準期間前の時期までの期間において一時的に保持したデータを記憶装置である外部記憶装置7に記憶させることにより、異常状態が発生する前の状態において異常状態の予兆となる運転データを確実に取得するとともに、取得する運転データのデータ量を抑制することができる。
According to the first embodiment described above, the following effects can be obtained.
As described with reference to FIGS. 2 to 4 and the like, the control device 10 temporarily holds the data detected by the sensor, and when the data detected by the sensor exceeds the threshold, it becomes the threshold. By storing in the external storage device 7, which is a storage device, the data temporarily held during the period from the time when the reference period was reached to the time before the reference period, the operating data that becomes a sign of the abnormal state in the state before the abnormal state occurs. can be reliably obtained, and the amount of operation data to be obtained can be suppressed.
 実施の形態1の運転データの記憶制御においては、より具体的に、図4(A1),(A2)に示すように、異常判定をするための運転データとして、吐出圧力Pおよび駆動電流Iを用いる場合に、一方の運転データのみが閾値以上となったときには、吐出圧力Pと駆動電流Iとの両方について、現時点から基準期間Bだけ過去に遡った時点までのデータが外部記憶装置7に記憶して保存される。これにより、実施の形態1の運転データの記憶制御においては、何れかの運転データが閾値以上となった時点から基準期間前のデータに基づいて、異常判定条件成立前の状態において異常状態の予兆となる運転データを確実に取得することができる。そして、実施の形態1では、異常状態の予兆となる運転データを確実に取得することができることにより、異常状態の予兆を特定する精度が向上する。 In the storage control of the operating data in the first embodiment, more specifically, as shown in FIGS. In the case of use, when only one of the operating data exceeds the threshold value, the external storage device 7 stores the data of both the discharge pressure P and the drive current I from the present time to the point of time preceding the reference period B in the past. saved as As a result, in the storage control of the operating data in the first embodiment, based on the data before the reference period from the time when any of the operating data becomes equal to or greater than the threshold value, the sign of an abnormal state is detected in the state before the abnormality determination condition is established. It is possible to reliably acquire the driving data that becomes In addition, in the first embodiment, since it is possible to reliably acquire the operating data that is a sign of an abnormal state, the accuracy of identifying the sign of an abnormal state is improved.
 また、実施の形態1では、異常状態の予兆となる運転データを確実に取得することができることにより、異常判定条件が成立した場合に、異常判定条件が成立したときの運転データと、異常状態の予兆となる運転データとを合わせて運転状態を分析することにより、異常状態となった根本的な原因を分析しやすくなるようにすることができる。 In addition, in the first embodiment, since it is possible to reliably acquire the operating data that is a sign of an abnormal state, when the abnormality determination condition is satisfied, the operating data when the abnormality determination condition is satisfied and the operation data indicating the abnormal state are obtained. By analyzing the operating state together with the predictive operating data, the fundamental cause of the abnormal state can be easily analyzed.
 また、実施の形態1では、異常状態の予兆となる運転データを確実に取得することができることにより、異常状態の予兆が生じたことを確認した時点で、異常状態の予兆が生じた情報をサービスマンなどのメンテナンス要員に対して、電子メールなどの各種の連絡方式で連絡することにより、異常判定条件が成立する前の時期に運転状態を分析することができるようになる。 In addition, in the first embodiment, since it is possible to reliably acquire the operating data that is a sign of an abnormal state, when it is confirmed that a sign of an abnormal state has occurred, information on the occurrence of a sign of an abnormal state is provided as a service. By contacting maintenance personnel such as engineers by various communication methods such as e-mail, it is possible to analyze the operating state before the abnormality determination condition is established.
 また、異常判定条件が成立した後に、異常状態となった原因を分析する場合は、空気調和システムの使用者への悪影響を抑制するために、可能な限り早期に運転状態を復旧させることが望まれる。これに対し、実施の形態1では、異常状態の予兆となる運転データを確実に取得することができることにより、異常状態の予兆が生じたことを確認した時点で、サービスマンなどのメンテナンス要員が異常状態となる原因を早期に分析することが可能となる場合は、データの分析に加え、現地調査などのその他の種類の調査を行う時間的な余裕が生じるので、異常状態となる真の原因を突止めることを容易化することができる。 In addition, when analyzing the cause of an abnormal state after the abnormality determination condition is satisfied, it is desirable to restore the operating state as soon as possible in order to suppress adverse effects on the user of the air conditioning system. be In contrast, in the first embodiment, since it is possible to reliably acquire the operation data that is a sign of an abnormal state, when it is confirmed that the sign of an abnormal state has occurred, maintenance personnel such as service personnel If it becomes possible to analyze the causes of abnormal conditions at an early stage, there will be time to analyze data and conduct other types of investigations, such as field surveys, so that the true causes of abnormal conditions can be determined. Locating can be facilitated.
 また、実施の形態1では、異常状態の予兆となる運転データを確実に取得することができることにより、異常判定条件が成立するよりも前に、運転状態を改善するための各種の運転調整処置、および、運転状態を改善するための部品交換をすることができ、空気調和システム100の使用者への悪影響を抑制することができる。 Further, in the first embodiment, since it is possible to reliably acquire the operating data that is a sign of an abnormal state, various operation adjustment measures for improving the operating state can be performed before the abnormality determination condition is satisfied. In addition, parts can be replaced to improve operating conditions, and adverse effects on the user of the air conditioning system 100 can be suppressed.
 実施の形態2.
 実施の形態2としては、空気調和システム100の運転データの記憶制御において、実施の形態1において説明した基準期間Bのような基準期間として、前述の閾値のレベルに未到達のレベルとして設定された基準値から当該閾値のレベルに到達するまでに要した期間を設定する例を説明する。
Embodiment 2.
As Embodiment 2, in the storage control of the operation data of the air conditioning system 100, the reference period such as the reference period B described in Embodiment 1 is set as a level that has not reached the threshold level described above. An example of setting the period required to reach the threshold level from the reference value will be described.
 [実施の形態2による空気調和システム100の運転データの記憶制御の具体例]
 次に、実施の形態2による空気調和システム100の運転データの記憶制御の具体例を説明する。図5は、実施の形態2による空気調和システム100の運転データの記憶制御の具体例を示す図である。図5においては、第2実施形態による基準期間の設定の一例として、運転データのうち、駆動電流Iが基準値を経て閾値に到達した場合に用いる基準期間Dを説明する。
[Specific example of storage control of operation data of air-conditioning system 100 according to Embodiment 2]
Next, a specific example of storage control of the operating data of the air conditioning system 100 according to Embodiment 2 will be described. FIG. 5 is a diagram showing a specific example of storage control of the operating data of the air conditioning system 100 according to the second embodiment. In FIG. 5, as an example of the setting of the reference period according to the second embodiment, the reference period D used when the driving current I reaches the threshold value after passing through the reference value among the operation data will be described.
 図5を参照して、基準値は、例えば、空気調和システム100が正常な運転状態である通常運転状態において各運転データが変化し得る最大値に設定される。異常状態が発生する場合には、運転データがこのような基準値のレベル以上となった後に閾値のレベルにまで到達する。運転状態の異常原因を正確に分析するためには、運転データがこのような基準値のレベルに到達した時点で運転データを記憶し、分析に用いることが重要であると考えらえる。 Referring to FIG. 5, the reference value is set, for example, to the maximum value to which each operating data can change in the normal operating state in which the air conditioning system 100 is in a normal operating state. When an abnormal condition occurs, the operating data reaches the threshold level after exceeding the reference value level. In order to accurately analyze the cause of an abnormality in the driving state, it is considered important to store the driving data when it reaches the level of such a reference value and use it for analysis.
 運転データが閾値に到達する場合においては、運転の状況および異常の状況により、同じ種類の運転データであっても、基準値のレベルから閾値のレベルに到達するまでに要する期間が異なり得る。例えば、図5に示すように、運転データが閾値以上となったときに、閾値となった時点から比較的短い一定の基準期間Hだけ過去に遡った時点までのデータを外部記憶装置7に記憶して保存する場合には、運転データの変化速度が比較的に遅ければ、領域bに示すように運転データが基準値のレベルに達した時点の運転データが得られない場合が生じ得る。 When the driving data reaches the threshold, the period required for reaching the threshold level from the reference value level may differ, even for the same type of driving data, depending on the driving situation and the abnormal situation. For example, as shown in FIG. 5, when the operating data exceeds a threshold value, the external storage device 7 stores the data up to a point in time preceding the threshold value by a relatively short constant reference period H. If the change speed of the operation data is relatively slow, the operation data may not be obtained when the operation data reaches the level of the reference value, as shown in area b.
 そこで、実施の形態2では、運転データが基準値のレベルに達した時点の運転データを確実に外部記憶装置7に記憶して保存するために、運転データの変化速度に応じて変化する基準期間Dを用いて、運転データを外部記憶装置7に記憶して保存する。 Therefore, in the second embodiment, in order to reliably store and save the operating data at the time when the operating data reaches the level of the reference value in the external storage device 7, the reference period that changes according to the change speed of the operating data D is used to store and save the operating data in the external storage device 7 .
 具体的に、実施の形態2では、運転データが基準値のレベルに達した時点の運転データを確実に外部記憶装置7に記憶して保存するために、運転データが基準値のレベルとなった時点を制御装置10が判定しておく。そして、制御装置10は、運転データが閾値のレベルに到達した時点において、運転データが閾値のレベルに到達した時点から基準値のレベルとなった時点までの期間を基準期間Dと設定する。そして、制御装置10が、閾値のレベルとなった時点から基準期間Dだけ過去に遡った時点までのデータを外部記憶装置7に記憶して保存させる。このような基準期間Dを用いて運転データを外部記憶装置7に記憶して保存させる場合には、図5の領域aに示すような運転データが基準値のレベルとなった時点の運転データを、制御装置10が確実に外部記憶装置7に記憶させることができる。 Specifically, in the second embodiment, in order to reliably store and save the operation data in the external storage device 7 when the operation data reaches the level of the reference value, the operation data reaches the level of the reference value. The control device 10 determines the point in time. Then, when the operating data reaches the threshold level, the control device 10 sets a reference period D as a period from when the operating data reaches the threshold level to when it reaches the reference value level. Then, the control device 10 causes the external storage device 7 to store and save the data from the time when the level of the threshold is reached to the time before the reference period D. When the operating data is stored in the external storage device 7 using such a reference period D, the operating data at the time when the operating data reaches the level of the reference value as shown in area a in FIG. , the control device 10 can reliably store the data in the external storage device 7 .
 [実施の形態2による空気調和システム100の運転データの記憶制御の処理]
 次に、前述のような基準期間Dを用いる実施の形態2による空気調和システム100の運転データの記憶制御の処理を説明する。
[Processing of Storage Control of Operation Data of Air-Conditioning System 100 According to Embodiment 2]
Next, the storage control process of the operating data of the air conditioning system 100 according to Embodiment 2 using the reference period D as described above will be described.
 図6は、実施の形態2による空気調和システム100の運転データを外部記憶装置7に記憶する制御を示すフローチャートである。図6に示す制御は、制御装置10のCPU11が実行する。 FIG. 6 is a flow chart showing control for storing the operating data of the air conditioning system 100 in the external storage device 7 according to Embodiment 2. FIG. The control shown in FIG. 6 is executed by the CPU 11 of the control device 10 .
 図6では、実施の形態1による空気調和システム100の運転データの記憶制御の一例として、吐出圧力センサ21より検出される吐出圧力Pと、電流センサ22により検出される駆動電流Iとの複数種類の運転データに基づいて異常状態を判定する場合における運転データの記憶制御例を説明する。制御装置10のCPU11は、運転データの記憶制御において、以下のような処理を実行する。 In FIG. 6, as an example of storage control of the operating data of the air-conditioning system 100 according to Embodiment 1, a plurality of types of discharge pressure P detected by the discharge pressure sensor 21 and drive current I detected by the current sensor 22 are shown. An example of storage control of operating data when determining an abnormal state based on the operating data will be described. The CPU 11 of the control device 10 executes the following processing in the storage control of the driving data.
 ステップS11においては、図2のステップS1と同様に、前述した複数種類のセンサにより検出された複数種類の運転データについて、周期Cでサンプリングした複数種類の運転データを、現時点から期間Aだけ過去に遡った時点まで時系列的にメモリ12に一時記憶させる。 In step S11, similar to step S1 in FIG. 2, the plurality of types of operation data detected by the plurality of types of sensors described above are sampled at period C, and the plurality of types of operation data are sampled for period A in the past from the present time. Temporarily stored in a memory 12 in chronological order up to the point in time going back.
 ステップS12においては、前述した複数種類のセンサにより検出された複数種類の運転データのうち、何れかの運転データが、図5で説明したような基準値に到達した時点であるか否かを判断する。 In step S12, it is determined whether or not any of the plurality of types of operation data detected by the plurality of types of sensors has reached the reference value as described with reference to FIG. do.
 ステップS12で基準値に到達した時点であると判断した場合は、ステップS13において、ステップS12で基準値に到達した時点からの経過時間の計時を開始し、ステップS14に進む。一方、ステップS12で基準値に到達した時点ではないと判断した場合は、ステップS14に進む。 If it is determined in step S12 that the reference value has been reached, in step S13, the elapsed time from the point in time when the reference value is reached in step S12 is started, and the process proceeds to step S14. On the other hand, if it is determined in step S12 that the reference value has not been reached, the process proceeds to step S14.
 ステップS14においては、図2のステップS2と同様に、前述した複数種類のセンサにより検出された複数種類の運転データのうち、何れかの運転データが、各データ別に異常値として設定された閾値以上となっているか否かを判断する。ステップS14で何れかの運転データが閾値以上となっていないと判断した場合は、リターンする。一方、ステップS14で何れかの運転データが閾値以上となっていると判断した場合は、ステップS15において、図2のステップS3と同様に、閾値以上となった運転データに対応して外部記憶装置7において既に後述のステップS16により記憶して保存されたデータがあるか否かを判断する。 In step S14, similarly to step S2 in FIG. 2, any one of the plurality of types of operation data detected by the plurality of types of sensors described above is equal to or greater than the threshold set as an abnormal value for each data. It is determined whether or not If it is determined in step S14 that any of the operating data does not exceed the threshold value, the process returns. On the other hand, if it is determined in step S14 that any of the operating data exceeds the threshold, in step S15, similar to step S3 in FIG. 7, it is determined whether or not there is data already stored and saved in step S16, which will be described later.
 ステップS15で、閾値以上となった運転データに対応して外部記憶装置7において既に記憶して保存されたデータがないと判断された場合は、ステップS16において、全種類の運転データにつき、現時点からS12で判断された基準値に到達した時点まで過去に遡った基準期間Dにおけるデータを、メモリ12から読出し、外部記憶装置7に記憶して保存させ、ステップS17に進む。 If it is determined in step S15 that there is no data already stored and saved in the external storage device 7 corresponding to the operating data exceeding the threshold value, in step S16 all types of operating data are stored from the present time. The data in the reference period D going back to the time when the reference value determined in S12 was reached is read out from the memory 12, stored in the external storage device 7 and saved, and the process proceeds to step S17.
 具体的に、ステップS16では、ステップS13で計時を開始した経過時間のデータを確認し、確認した当該経過時間を基準期間Dとして設定して基準期間Dにおけるデータをメモリ12から読出し、読出したデータを外部記憶装置7に記憶して保存させる。 Specifically, in step S16, the data of the elapsed time from which time measurement was started in step S13 is confirmed, the confirmed elapsed time is set as the reference period D, the data in the reference period D is read from the memory 12, and the read data is read out. is stored in the external storage device 7 and saved.
 一方、ステップS15で、閾値以上となった運転データに対応して外部記憶装置7において既に記憶して保存されたデータがあると判断された場合は、重複した運転データの保存を防ぐために、ステップS17に進む。 On the other hand, if it is determined in step S15 that there is data already stored and saved in the external storage device 7 corresponding to the operation data exceeding the threshold, step S15 is performed to prevent redundant operation data from being saved. Proceed to S17.
 ステップS17では、図2のステップS5と同様に、複数種類のセンサにより検出された複数種類の運転データに基づいて、空気調和システム100に異常状態が生じたと認定する異常判定条件が成立したか否かを判断する。 In step S17, as in step S5 of FIG. 2, based on multiple types of operating data detected by multiple types of sensors, whether or not an abnormality determination condition has been established to recognize that an abnormal state has occurred in the air conditioning system 100. to judge whether
 ステップS17で異常判定条件が成立していないと判断された場合は、リターンする。一方、ステップS17で異常判定条件が成立していると判断された場合は、ステップS18において、図2のステップS6と同様に、全種類の運転データにつき、現時点から基準期間Bだけ過去に遡った時点までのデータを、メモリ12から読出し、外部記憶装置7に記憶して保存させ、リターンする。 If it is determined in step S17 that the abnormality determination condition is not satisfied, the process returns. On the other hand, if it is determined in step S17 that the abnormality determination condition is established, in step S18, similar to step S6 in FIG. The data up to the point in time is read out from the memory 12, stored in the external storage device 7 and saved, and the process returns.
 以上に説明した処理が実行されることにより、制御装置10は、図5で説明したように、運転データの変化速度に応じて変化する基準期間Dを用いて、運転データを外部記憶装置7に記憶して保存する。これにより、実施の形態2では、運転データが基準値のレベルに達した時点の運転データを確実に外部記憶装置7に記憶して保存することができる。 By executing the processing described above, the control device 10 stores the operation data in the external storage device 7 using the reference period D that changes according to the change speed of the operation data, as described with reference to FIG. Remember and save. As a result, in the second embodiment, it is possible to reliably store and save the operating data in the external storage device 7 when the operating data reaches the level of the reference value.
 実施の形態3.
 実施の形態3としては、空気調和システム100の運転データの記憶制御において、実施の形態1において説明した基準期間Bのような基準期間として、予め定められた単位期間内での運転データの変化率に応じて変化する期間を設定する例を説明する。
Embodiment 3.
As a third embodiment, in the storage control of the operation data of the air conditioning system 100, the change rate of the operation data within a predetermined unit period is used as a reference period such as the reference period B described in the first embodiment. An example of setting a period that changes according to is described.
 [実施の形態3による空気調和システム100の運転データの記憶制御の具体例]
 次に、実施の形態3による空気調和システム100の運転データの記憶制御の具体例を説明する。前述した実施の形態2では、運転データについて、基準値のレベルから閾値のレベルに到達するまでの期間に応じて、閾値に到達したときにデータを記憶する過去の期間である基準期間を変化させる例を説明した。実施の形態3では、基準期間を変化させるその他の例として、運転データの変化率が、変化率判定値未満である場合と、変化率判定値以上である場合とで、設定する基準期間が異なるように基準時間を変化させる。
[Specific example of storage control of operation data of air conditioning system 100 according to Embodiment 3]
Next, a specific example of storage control of the operating data of the air conditioning system 100 according to Embodiment 3 will be described. In the above-described second embodiment, the reference period, which is the past period for which the data is stored when the threshold is reached, is changed according to the period from the level of the reference value to the level of the threshold for the driving data. I explained an example. In the third embodiment, as another example of changing the reference period, different reference periods are set depending on whether the change rate of the operating data is less than the change rate judgment value or is equal to or greater than the change rate judgment value. Change the reference time as follows.
 例えば、運転データが実施の形態2で説明した基準値のレベルから閾値のレベルに到達するまでの期間において、運転データの変化率が標準的な変化率を超える変化率に設定された変化率判定値以上である場合には、標準的な期間よりも短い期間で、運転データが閾値のレベルに到達する。その場合には、標準的に設定された基準期間よりも短い基準期間において、異常状態を分析するために必要とされる運転データを取得することができる。 For example, change rate determination in which the rate of change of the operating data is set to exceed the standard rate of change during the period from the level of the reference value described in Embodiment 2 until the level of the threshold value is reached. If it is greater than or equal to the value, the driving data will reach the threshold level in a shorter period of time than the standard period of time. In that case, it is possible to acquire the operating data required for analyzing the abnormal state in a reference period shorter than the standard set reference period.
 実施の形態3では、運転データの変化率に基づいて、異常状態を分析するために最低限必要な運転データを取得するために、運転データの変化率に応じて変化する期間を前述の基準期間として設定する運転データの記憶制御を説明する。 In the third embodiment, in order to acquire the minimum required operating data for analyzing an abnormal state based on the rate of change of the operating data, the period that changes according to the rate of change of the operating data is defined as the above-described reference period. Storage control of the operating data set as .
 [実施の形態3による空気調和システム100の運転データの記憶制御の処理]
 次に、前述のような運転データの変化率に応じて変化する基準期間を用いた実施の形態3による空気調和システム100の運転データの記憶制御の処理を説明する。
[Processing of Storage Control of Operation Data of Air-Conditioning System 100 According to Embodiment 3]
Next, the storage control processing of the operating data of the air conditioning system 100 according to Embodiment 3 using the reference period that changes according to the rate of change of the operating data as described above will be described.
 図7は、実施の形態3による空気調和システム100の運転データを外部記憶装置7に記憶する制御を示すフローチャートである。図7に示す制御は、制御装置10のCPU11が実行する。 FIG. 7 is a flowchart showing control for storing the operating data of the air conditioning system 100 in the external storage device 7 according to Embodiment 3. The control shown in FIG. 7 is executed by the CPU 11 of the control device 10 .
 図7では、実施の形態1による空気調和システム100の運転データの記憶制御の一例として、吐出圧力センサ21より検出される吐出圧力Pと、電流センサ22により検出される駆動電流Iとの複数種類の運転データに基づいて異常状態を判定する場合における運転データの記憶制御例を説明する。制御装置10のCPU11は、運転データの記憶制御において、以下のような処理を実行する。 In FIG. 7, as an example of storage control of the operating data of the air-conditioning system 100 according to Embodiment 1, a plurality of types of discharge pressure P detected by the discharge pressure sensor 21 and drive current I detected by the current sensor 22 are shown. An example of storage control of operating data when determining an abnormal state based on the operating data will be described. The CPU 11 of the control device 10 executes the following processing in the storage control of the driving data.
 ステップS21においては、図2のステップS1と同様に、前述した複数種類のセンサにより検出された複数種類の運転データについて、周期Cでサンプリングした複数種類の運転データを、現時点から期間Aだけ過去に遡った時点まで時系列的にメモリ12に一時記憶させる。 In step S21, similar to step S1 in FIG. 2, the plurality of types of operation data detected by the plurality of types of sensors described above are sampled at period C, and the plurality of types of operation data are sampled for period A from the current point in the past. Temporarily stored in a memory 12 in chronological order up to the point in time going back.
 ステップS22においては、複数種類の運転データのそれぞれについて、予め定められた単位期間内(例えば1分間など)での運転データに基づいて、運転データの変化率を演算する。 In step S22, the rate of change of the operating data is calculated for each of the plurality of types of operating data based on the operating data within a predetermined unit period (for example, one minute).
 ステップS23においては、ステップS22で変化率が演算された運転データのうち、何れかの運転データの変化率が変化率判定値以上であるか否かを判断する。例えば、ステップS23では、変化率判定値として、各運転データの標準的な変化率よりも高い変化率が設定されている。一例として、標準的な変化率を“R”とした場合に、変化率判定値は“2×R”に設定されている。 In step S23, it is determined whether or not the rate of change of any of the operating data whose rate of change has been calculated in step S22 is equal to or greater than the rate of change determination value. For example, in step S23, a change rate higher than the standard change rate of each driving data is set as the change rate determination value. As an example, if the standard rate of change is "R", the rate of change determination value is set to "2×R".
 ステップS23で何れかの運転データの変化率が変化率判定値以上であると判断した場合は、ステップS23において、全ての運転データのサンプリング周期を標準的な周期Cから、周期Cよりも短い周期Gに変更し、ステップS25に進む。一例として、周期Gは、周期Cの1/2周期に設定されている。ステップS23で何れかの運転データの変化率が変化率判定値以上ではないと判断した場合は、サンプリング周期を標準的な周期Cから変更せずに、ステップS25に進む。 If it is determined in step S23 that the change rate of any of the operating data is greater than or equal to the change rate judgment value, then in step S23, the sampling period of all the operating data is changed from the standard period C to a shorter period than the period C. Change to G and proceed to step S25. As an example, the period G is set to 1/2 period of the period C. If it is determined in step S23 that the change rate of any of the operating data is not equal to or greater than the change rate determination value, the sampling cycle is not changed from the standard cycle C, and the process proceeds to step S25.
 ステップS25においては、図2のステップS2と同様に、前述した複数種類のセンサにより検出された複数種類の運転データのうち、何れかの運転データが、各データ別に異常値として設定された閾値以上となっているか否かを判断する。ステップS25で何れかの運転データが閾値以上となっていないと判断した場合は、リターンする。一方、ステップS25で何れかの運転データが閾値以上となっていると判断した場合は、ステップS26において、図2のステップS3と同様に、閾値以上となった運転データに対応して外部記憶装置7において既にステップS27により記憶して保存されたデータがあるか否かを判断する。 In step S25, similarly to step S2 in FIG. 2, any one of the plurality of types of operation data detected by the plurality of types of sensors described above is equal to or greater than the threshold set as an abnormal value for each data. It is determined whether or not If it is determined in step S25 that any of the operating data does not exceed the threshold value, the process returns. On the other hand, if it is determined in step S25 that any of the operating data is equal to or greater than the threshold, in step S26 similar to step S3 in FIG. 7, it is determined whether or not there is data already stored and saved in step S27.
 ステップS26で、閾値以上となった運転データに対応して外部記憶装置7において既に記憶して保存されたデータがないと判断された場合は、ステップS27において、全種類の運転データにつき、現時点から、閾値以上となった運転データの変化率に応じた基準期間Eにおけるデータを、メモリ12から読出し、外部記憶装置7に記憶して保存させ、ステップS28に進む。 If it is determined in step S26 that there is no data already stored and saved in the external storage device 7 corresponding to the operating data exceeding the threshold value, in step S27 all types of operating data are stored from the current time point. , the data in the reference period E according to the rate of change of the operating data exceeding the threshold is read out from the memory 12 and stored in the external storage device 7, and the process proceeds to step S28.
 基準期間Eの一例は、次のようなものが用いられる。閾値以上となった運転データに対応する変化率が前述の変化率判定値未満である場合は、前述の基準期間Bと同様の標準的な基準期間E1に設定され、閾値以上となった運転データに対応する変化率が前述の変化率判定値以上である場合は、前述の基準期間Bの1/2の基準期間E2に設定される。これにより、閾値以上となった運転データに対応する変化率が前述の変化率判定値未満である場合は、前述の基準期間Bと同様の標準的な基準期間E1の1/2の期間という短い基準期間E2の運転データが外部記憶装置7に記憶され保存される。 The following is used as an example of the reference period E. If the rate of change corresponding to the operating data exceeding the threshold is less than the above-described rate of change determination value, the standard reference period E1 similar to the above-described reference period B is set, and the operating data exceeding the threshold is set. is equal to or greater than the above-described change rate determination value, the reference period E2 is set to 1/2 of the above-described reference period B. As a result, when the rate of change corresponding to the operating data exceeding the threshold value is less than the aforementioned rate of change determination value, the period is as short as 1/2 of the standard reference period E1 similar to the aforementioned reference period B. The operating data for the reference period E2 is stored and saved in the external storage device 7 .
 一方、ステップS26で、閾値以上となった運転データに対応して外部記憶装置7において既に記憶して保存されたデータがあると判断された場合は、重複した運転データの保存を防ぐために、ステップS28に進む。 On the other hand, if it is determined in step S26 that there is data already stored and saved in the external storage device 7 corresponding to the operation data exceeding the threshold, step Proceed to S28.
 ステップS28では、図2のステップS5と同様に、前述した複数種類のセンサにより検出された複数種類の運転データに基づいて、空気調和システム100に異常が生じたと認定する異常判定条件が成立したか否かを判断する。 In step S28, as in step S5 of FIG. 2, based on the plurality of types of operating data detected by the plurality of types of sensors described above, whether an abnormality determination condition for certifying that an abnormality has occurred in the air conditioning system 100 has been established. determine whether or not
 ステップS28で異常判定条件が成立していないと判断された場合は、リターンする。一方、ステップS28で異常判定条件が成立していると判断された場合は、ステップS29において、図2のステップS6と同様に、全種類の運転データにつき、現時点から基準期間Bだけ過去に遡った時点までのデータを、メモリ12から読出し、外部記憶装置7に記憶して保存させ、リターンする。 If it is determined in step S28 that the abnormality determination condition is not satisfied, the process returns. On the other hand, if it is determined in step S28 that the abnormality determination condition is established, in step S29, similar to step S6 in FIG. The data up to the point in time is read out from the memory 12, stored in the external storage device 7 and saved, and the process returns.
 以上に説明した処理が実行されることにより、制御装置10は、運転データの変化率に応じて変化する基準期間Eを用いて、運転データを外部記憶装置7に記憶して保存する。さらに、運転データの変化率に応じて変化するサンプリング周期で運転データをサンプリングする。これにより、実施の形態3では、標準的に設定された基準期間よりも短い基準期間において、異常状態を分析するために必要とされる運転データを外部記憶装置7に記憶して保存させることができる。また、外部記憶装置7に記憶して保存する運転データの期間の長さに応じた適切なタイミングで運転データのサンプリングをすることができる。 By executing the processing described above, the control device 10 stores and saves the operating data in the external storage device 7 using the reference period E that changes according to the change rate of the operating data. Furthermore, the operating data is sampled at a sampling period that varies according to the rate of change of the operating data. As a result, in the third embodiment, it is possible to store and save the operating data required for analyzing the abnormal state in the external storage device 7 during the reference period shorter than the standard set reference period. can. Also, the operation data can be sampled at an appropriate timing according to the length of the period of the operation data to be stored and saved in the external storage device 7 .
 また、実施の形態3によれば、以上に説明した処理が実行されることにより、制御装置10は、運転データの変化率に応じて運転データの記憶時間および運転データのサンプリング周期を変化させることで、空気調和システム100の異常状態を分析するために必要な運手データを必要な密度で外部記憶装置7に記憶して保存することができる。 Further, according to the third embodiment, by executing the processing described above, the control device 10 can change the storage time of the operation data and the sampling period of the operation data according to the change rate of the operation data. Therefore, the operating data necessary for analyzing the abnormal state of the air conditioning system 100 can be stored in the external storage device 7 at the required density.
 また、実施の形態3によれば、以上に説明した処理が実行されることにより、空気調和システム100の異常状態を分析するために不要となる運転データを可能な限り排除し、異常状態を分析するために必要となる運転データを外部記憶装置7に記憶して保存することにより、外部記憶装置7に必要とされる記憶容量の増加を抑制することができる。 Further, according to the third embodiment, by executing the processing described above, operation data that is unnecessary for analyzing the abnormal state of the air conditioning system 100 is eliminated as much as possible, and the abnormal state is analyzed. By storing and saving the operation data required for the operation in the external storage device 7, an increase in the storage capacity required for the external storage device 7 can be suppressed.
 実施の形態4.
 実施の形態4としては、分析装置としてのサービス装置30を、前述した各実施の形態に対応する制御装置10に接続可能であり、サービス装置30が制御装置10に接続された場合に、外部記憶装置7に記憶されたデータを読出し、外部記憶装置7に記憶されたデータに基づいて、空調運転の運転状態を分析する空気調和システム200を説明する。
Embodiment 4.
As a fourth embodiment, a service device 30 as an analysis device can be connected to the control device 10 corresponding to each of the above-described embodiments, and when the service device 30 is connected to the control device 10, external storage An air conditioning system 200 that reads data stored in the device 7 and analyzes the operating state of the air conditioning operation based on the data stored in the external storage device 7 will be described.
 [空気調和システム200の構成]
 図8は、実施の形態4による空気調和システム200の構成を示すブロック図である。
[Configuration of air conditioning system 200]
FIG. 8 is a block diagram showing the configuration of an air conditioning system 200 according to Embodiment 4. As shown in FIG.
 図8を参照して、前述のような空気調和システム100には、分析装置としてのサービス装置30を接続可能である。サービス装置30は、外部記憶装置7に記憶された運転データに基づいて、異常状態の発生原因を分析するプログラムを実行することが可能な装置である。空気調和システム200は、前述した空気調和システム100の構成に加えて、サービス装置30を備えたシステムである。 With reference to FIG. 8, a service device 30 as an analysis device can be connected to the air conditioning system 100 as described above. The service device 30 is a device capable of executing a program for analyzing the cause of occurrence of an abnormal state based on the operating data stored in the external storage device 7 . The air conditioning system 200 is a system including a service device 30 in addition to the configuration of the air conditioning system 100 described above.
 サービス装置30は、空気調和システム200の異常状態を分析する分析プログラムを実行するプロセッサを備えた空気調和システム200のメンテナス専用のコンピュータにより構成されてもよく、このような分析プログラムを1つのプラグラムとしてインストールして当該分析プログラムを実行する汎用のコンピュータにより構成されてもよい。 The service device 30 may be configured by a computer dedicated to the maintenance of the air conditioning system 200, which includes a processor that executes an analysis program for analyzing the abnormal state of the air conditioning system 200, and such an analysis program as one program. It may be configured by a general-purpose computer that is installed and executes the analysis program.
 サービス装置30は、空気調和システム200に設けられた通信線用端子台において、コンバータ装置を介して制御装置10と接続される。サービス装置30は、制御装置10と接続された状態で分析プログラムを実行することにより、前述のように外部記憶装置7に記憶された運転データを読み出す。そして、外部記憶装置7から読み出した運転データを分析対象データとして分析プログラムを実行することにより、異常状態の原因の分析を実行する。 The service device 30 is connected to the control device 10 via a converter device at a communication line terminal block provided in the air conditioning system 200 . The service device 30 reads the operating data stored in the external storage device 7 as described above by executing the analysis program while connected to the control device 10 . By executing an analysis program using the operation data read from the external storage device 7 as data to be analyzed, the cause of the abnormal state is analyzed.
 [実施の形態4による空気調和システム200での運転データの分析処理]
 次に、実施の形態4による空気調和システム200での運転データの分析処理について説明する。図9は、実施の形態4による空気調和システム200での運転データの分析処理を示すフローチャートである。図9の空気調和システム200では、図1に示したような第1熱交換器1、第2熱交換器2、圧縮機3、流量調整装置4、および、流路切替装置5を含む冷媒回路を備えるが、これらの記載が省略されている。
[Analysis processing of operation data in air conditioning system 200 according to Embodiment 4]
Next, analysis processing of operation data in the air conditioning system 200 according to Embodiment 4 will be described. FIG. 9 is a flowchart showing analysis processing of operating data in the air conditioning system 200 according to Embodiment 4. FIG. In the air conditioning system 200 of FIG. 9, the refrigerant circuit including the first heat exchanger 1, the second heat exchanger 2, the compressor 3, the flow rate adjusting device 4, and the flow switching device 5 as shown in FIG. are provided, but these descriptions are omitted.
 サービス装置30のプロセッサは、以下のような処理を実行する。ステップS31においては、外部記憶装置7に記憶された運転データを読み出す。ステップS32においては、ステップS31で読み出した運転データに基づき、異常状態の原因の分析を実行し、リターンする。 The processor of the service device 30 executes the following processes. In step S31, the operating data stored in the external storage device 7 is read. In step S32, the cause of the abnormal state is analyzed based on the operation data read out in step S31, and the process returns.
 ステップS32では、一例として、次のような処理を実行する。例えば、圧縮機3の吐出温度の異常が検出された場合に、検出された吐出温度が吐出温度の異常状態を判断するための閾値に到達する前の運転データとして外部記憶装置7に記憶された運転データのうち、検出された吐出温度と液管温度とがともに標準的な温度よりも高い傾向にある場合に、冷媒回路において冷媒量が不足した状態で空気調和システム200が運転されたことが、異常状態の原因であると分析する処理を実行する。そのような異常状態の原因が分析された場合には、対処制御として、冷媒量を増加させる制御を実行する必要がある。 In step S32, the following processing is executed as an example. For example, when an abnormality in the discharge temperature of the compressor 3 is detected, the detected discharge temperature is stored in the external storage device 7 as operating data before reaching a threshold value for determining the abnormal state of the discharge temperature. When both the discharge temperature and the liquid pipe temperature detected in the operating data tend to be higher than the standard temperature, it means that the air conditioning system 200 was operated with an insufficient amount of refrigerant in the refrigerant circuit. , perform processing to analyze that it is the cause of the abnormal state. When the cause of such an abnormal state is analyzed, it is necessary to perform control to increase the amount of refrigerant as coping control.
 以上に説明した空気調和システム200では、次のような効果を得ることができる。例えば、異常判定条件が成立した異常状態が発生したことに応じて、サービスマンなどのメンテナンス要因が現地に派遣された際に、異常判定条件が成立したときの基準期間内の運転データ、および、異常判定条件が成立する前に運転データが閾値に到達したときの基準期間内の運転データを外部記憶装置7から読み出して、異常状態の原因を容易に分析することができる。特に、異常判定条件が成立したときの基準期間内の運転データと、異常判定条件が成立する前に運転データが閾値に到達したときの基準期間内の運転データとを複合的に分析することにより、より一層、異常状態の発生原因を究明することができる。 With the air conditioning system 200 described above, the following effects can be obtained. For example, when a maintenance worker such as a service person is dispatched to the site in response to an abnormal state in which an abnormality determination condition is satisfied, operation data within a reference period when the abnormality determination condition is satisfied, and The operating data within the reference period when the operating data reaches the threshold value before the abnormality determination condition is satisfied can be read out from the external storage device 7 to easily analyze the cause of the abnormal state. In particular, by comprehensively analyzing the operating data within the reference period when the abnormality determination condition is satisfied and the operating data within the reference period when the operation data reaches the threshold value before the abnormality determination condition is satisfied , it is possible to further investigate the cause of the occurrence of the abnormal state.
 さらに、空気調和システム200の予め定められた定期点検を実行する際に、異常判定条件が成立する前に運転データが閾値に到達したときの基準期間内の運転データを外部記憶装置7から読み出すことにより、空気調和システム200の現在の運転状態を確認できるとともに、空気調和システム200において将来的に生じ得る異常状態の予測をすることができる。 Furthermore, when executing a predetermined periodic inspection of the air conditioning system 200, the operating data within the reference period when the operating data reaches the threshold value before the abnormality determination condition is satisfied is read from the external storage device 7. Accordingly, it is possible to confirm the current operating state of the air conditioning system 200 and to predict an abnormal state that may occur in the air conditioning system 200 in the future.
 なお、複数台の空気調和システム200を集中管理コントローラで集中的に管理しており、集中管理コントローラがサーバーに接続されている場合には、外部記憶装置7に記憶された運転データを、空気調和システム200から集中管理コントローラを経由して、外部に存在するサービス装置30またはその他のコンピュータに読み出してもよく、さらに、集中管理コントローラおよびサーバーを経由して外部に存在するサービス装置30またはその他のコンピュータに読み出してもよい。 In addition, when a plurality of air conditioning systems 200 are centrally managed by a centralized control controller and the centralized control controller is connected to a server, the operating data stored in the external storage device 7 can be It may be read from the system 200 via the centralized management controller to the service device 30 or other computers existing outside, and furthermore, the service device 30 or other computers existing externally via the centralized management controller and server may be read out.
 また、集中管理コントローラおよびサーバーを経由して運転データを外部に読み出す場合には、例えば、異常判定条件が成立したタイミング、および、異常判定条件が成立する前に運転データが閾値に到達したときのタイミングで、空気調和システム200が運転データを電子メールに添付して運転データを外部に読み出すことができるようにしてもよい。 When the operating data is read out via the central control controller and the server, for example, the timing at which the abnormality determination condition is satisfied and the timing at which the operation data reaches the threshold value before the abnormality determination condition is satisfied. At the timing, the air conditioning system 200 may attach the operating data to an e-mail and read out the operating data to the outside.
 また、外部記憶装置7から読み出した運転データを電子メールで送信することは、定期的なタイミングで実行されるようにしてもよい。そして、このように運転データの各種の読み出し方法のうち、空気調和システム200の運転状況に応じて適切な読み出し方法を選択して用いるようにすれば、空気調和システム200のメンテナンスについて迅速なサービスを行うことができる。 Further, the transmission of the operating data read from the external storage device 7 by e-mail may be performed at regular timing. Then, by selecting and using an appropriate reading method according to the operating status of the air conditioning system 200 from among various reading methods of the operation data in this manner, quick maintenance services for the air conditioning system 200 can be provided. It can be carried out.
 前述のように外部記憶装置7から読み出した運転データを電子メールで送信する場合のメールの宛先は、サービスマンなどのメンテナンス要員であってもよく、空気調和システム200の設計者であってもよい。 When the operation data read out from the external storage device 7 is sent by e-mail as described above, the destination of the e-mail may be maintenance personnel such as service personnel, or the designer of the air conditioning system 200. .
 [変形例]
 (1)外部記憶装置7においては、異常判定条件が成立したときの基準期間内の運転データ、および、異常判定条件が成立する前に運転データが閾値に到達したときの基準期間内の運転データを、外部記憶装置7のデータ容量に応じて複数記憶してもよい。
[Modification]
(1) In the external storage device 7, the operating data within the reference period when the abnormality determination condition is satisfied, and the operating data within the reference period when the operation data reaches the threshold value before the abnormality determination condition is satisfied may be stored according to the data capacity of the external storage device 7 .
 (2)外部記憶装置7に記憶させる運転データとして、複数の運転データが検出されるが、これらの複数の運転データのサンプリング周期は、すべての運転データについて同じ周期であってもよく、運転データの特性により異なる周期となるようにしてもよい。例えば、データが変化する幅が小さい運転データである程、サンプリング周期が長くなるように設定してもよい。 (2) A plurality of pieces of operation data are detected as the operation data to be stored in the external storage device 7. The sampling period of these pieces of operation data may be the same for all the pieces of operation data. The period may be different depending on the characteristics of . For example, the sampling period may be set to be longer for operation data with a smaller width of data change.
 (3)外部記憶装置7に記憶させる異常判定条件が成立したときの基準期間内の運転データ、および、異常判定条件が成立する前に運転データが閾値に到達したときの基準期間内の運転データの種類は、主たる異常判定対象の運転データの特性に応じて任意に決めてもよい。例えば、異常判定用の運転データとして10種類の運転データをサンプリングしている場合でも、主たる異常対象の運転データに関連する運転データが5種類に絞れるのであれば、そのように関連する運転データのみを選択して、外部記憶装置7に記憶させるようにしてもよい。 (3) Operation data within the reference period when the abnormality determination condition to be stored in the external storage device 7 is satisfied, and operation data within the reference period when the operation data reaches the threshold value before the abnormality determination condition is satisfied may be arbitrarily determined according to the characteristics of the main operating data subject to abnormality determination. For example, even if 10 kinds of operation data are sampled as operation data for abnormality determination, if the operation data related to the operation data of the main abnormality target can be narrowed down to 5 kinds, only such related operation data may be selected and stored in the external storage device 7.
 (4)実施の形態3では、サンプリング周期を変化させる例を説明したが、外部記憶装置7の記憶容量の余裕が少ない場合には、サンプリング周期を変化させないようにしてもよい。また、外部記憶装置7において既に記憶された運転データにより、外部記憶装置7の記憶容量の余裕が少なくなった場合には、その後の運転データのサンプリング周期を規定周期よりも長くなるように制御装置10が変更するようにしてもよい。 (4) In Embodiment 3, an example in which the sampling period is changed has been described. However, if the storage capacity of the external storage device 7 is small, the sampling period may not be changed. In addition, when the operating data already stored in the external storage device 7 reduces the storage capacity of the external storage device 7, the controller controls the subsequent sampling cycle of the operating data to be longer than the specified cycle. 10 may be changed.
 (5)前述の各実施の形態で説明した基準期間は、基本的に設計段階で決められる。なお、このような基準期間は、空気調和システム100,200に基準期間を複数の基準期間から選択する選択スイッチなどの選択装置を設け、空気調和システム100,200の管理者などの人が、空気調和システム100,200の設置環境に応じて選択装置を操作して選択可能となるようにしてもよい。 (5) The reference period described in each of the above embodiments is basically determined at the design stage. In addition, such a reference period is determined by providing a selection device such as a selection switch for selecting the reference period from a plurality of reference periods in the air conditioning systems 100 and 200, and allowing a person such as an administrator of the air conditioning systems 100 and 200 to select the air conditioning period. The selection device may be operated according to the installation environment of the harmonization systems 100 and 200 to enable selection.
 (6)前述の各実施の形態では、説明したサンプリング周期は、基本的に設計段階で決められる。なお、このようなサンプリング周期は、空気調和システム100,200にサンプリング周期を複数のサンプリング周期から選択する選択スイッチなどの選択装置を設け、空気調和システム100,200の管理者などの人が、空気調和システム100,200の設置環境に応じて選択装置を操作して選択可能となるようにしてもよい。 (6) In each of the above-described embodiments, the sampling period described is basically determined at the design stage. In addition, such a sampling period is determined by providing a selection device such as a selection switch for selecting the sampling period from a plurality of sampling periods in the air conditioning system 100, 200, and allowing a person such as an administrator of the air conditioning system 100, 200 to select the air conditioning system. The selection device may be operated according to the installation environment of the harmonization systems 100 and 200 to enable selection.
 (7)前述の各実施の形態で説明した運転データを外部記憶装置7に記憶する期間である基準期間は、運転データの特性に応じて設定すればよい。例えば、ゆっくりと閾値に到達する特性がある運転データについては、基準期間を標準的な基準期間よりも長く設定し、急速に閾値に到達する特性がある運転データについては、基準期間を標準的な基準期間よりも長く設定してもよい。 (7) The reference period, which is the period during which the operating data described in each of the above embodiments is stored in the external storage device 7, may be set according to the characteristics of the operating data. For example, for driving data that has the characteristic of reaching the threshold slowly, the reference period is set longer than the standard reference period, and for driving data that has the characteristic of rapidly reaching the threshold, the reference period is set to the standard period. It may be set longer than the reference period.
 (8)空気調和システム100,200の冷媒回路が配置された場所から離れた遠隔地に、制御装置10と外部記憶装置7とを設置してもよい。この場合、インターネットなどのネットワークを介して、制御装置10の制御対象となる冷媒回路の各種機器と制御装置10とを接続してもよい。制御装置10を冷媒回路の付近に設置する一方、外部記憶装置7を冷媒回路が配置された場所から離れた遠隔地に設置してもよい。 (8) The control device 10 and the external storage device 7 may be installed at a remote location away from the locations where the refrigerant circuits of the air conditioning systems 100 and 200 are arranged. In this case, various devices of the refrigerant circuit to be controlled by the control device 10 may be connected to the control device 10 via a network such as the Internet. While the control device 10 is installed near the refrigerant circuit, the external storage device 7 may be installed at a remote location away from the location where the refrigerant circuit is arranged.
 (9)一時記憶される期間Aの運転データとして、スイッチ入力情報等のように時間の経過によって状態がONまたはOFF以外に変化しないデータを採用してもよい。このようにトリガが明確なデータについては、入力の変化時、たとえば、ONからOFFへの切り替え時にのみデータを記憶してもよい。このように、ONまたはOFFから変化せず、その状態が維持される間のデータを記憶の対象から除外することにより、必要とされる記憶容量を削減することができる。 (9) As the temporarily stored operation data for period A, data whose state does not change over time other than ON or OFF, such as switch input information, may be used. For data with such a clear trigger, the data may be stored only when the input changes, eg, when it switches from ON to OFF. In this way, the required storage capacity can be reduced by excluding data from being stored while the state is maintained without changing from ON or OFF.
 (10)異常状態を判定する閾値などのデータ、および運転データのサンプリング方法に関する変形例を説明する。異常状態の種類、その異常状態に関係するデータ、および、その異常状態に対応する閾値などの異常状態の判定に関連するデータは、異常状態の種類ごとに関係付けて制御装置10に格納してもよい。このような異常状態の判定に関連するデータは、異常状態の種類ごとにテーブル形式で制御装置10に格納すればよい。制御装置10は、このように格納したデータに基づいて、前述のような異常判定条件が成立したか否かを判断すればよい。このように制御装置10に格納する異常状態の判定に関連するデータは、たとえば、過去に発生した異常に対する対応履歴を含むメンテナンス情報や設計者が有する情報などから導かれる。前述したような運転データのサンプリング方法については、異常状態の種類と関係付けて制御装置10に格納し、格納したデータに基づいたサンプリング方法で運転データのサンプリングを実行してもよい。一例として、前述したような運転データのサンプリング方法については、前述した異常状態の判定に関連するデータと関係付けて制御装置10に格納し、格納したデータに基づいたサンプリング方法で運転データのサンプリングを実行してもよい。 (10) Data such as threshold values for determining an abnormal state and a modified example of a sampling method for operation data will be described. The type of abnormal state, data related to the abnormal state, and data related to determination of the abnormal state such as a threshold value corresponding to the abnormal state are stored in the control device 10 in association with each type of abnormal state. good too. Data related to determination of such an abnormal state may be stored in the control device 10 in the form of a table for each type of abnormal state. Based on the data stored in this way, the control device 10 may determine whether or not the abnormality determination condition as described above is satisfied. The data related to determination of an abnormal state stored in the control device 10 in this manner is derived from, for example, maintenance information including a history of responses to abnormalities that occurred in the past, information possessed by the designer, and the like. As for the sampling method of the operation data as described above, it may be stored in the control device 10 in association with the type of abnormal state, and the operation data may be sampled by a sampling method based on the stored data. As an example of the method of sampling operation data as described above, the operation data is stored in the control device 10 in association with the data related to the determination of the abnormal state described above, and the operation data is sampled by a sampling method based on the stored data. may be executed.
 また、1つの空気調和システム100,200または複数の空気調和システム100,200の運転履歴情報等をクラウドに集約しておき、集約した運転履歴情報に基づき、人工知能を使った機械学習の機能によって上記閾値等のパラメータの精度を上げるようにしてもよい。 In addition, the operation history information and the like of one air conditioning system 100, 200 or a plurality of air conditioning systems 100, 200 are aggregated in the cloud, and based on the aggregated operation history information, a machine learning function using artificial intelligence The accuracy of parameters such as the threshold may be increased.
 運転データの種類によって、データの値が変動する度合いは異なる。データの値が変動する度合いが激しく、閾値を一瞬超えた直後に閾値を下回る可能性がある運転データについては、閾値を超えることが一定期間継続した場合(例えばX秒連続で閾値を超える場合)、制御装置10は、その運転データを記憶するようにしてもよい。 The degree to which the data values fluctuate differs depending on the type of operating data. For driving data that fluctuates greatly and may drop below the threshold immediately after exceeding the threshold for a moment, if the threshold is exceeded for a certain period of time (for example, if the threshold is exceeded for X seconds in a row) , the control device 10 may store the operation data.
 (11)実施の形態1~4においては、サービスマンなどのメンテナンス要員に対して、外部記憶装置7に保存されたデータ、すなわち、異常状態の予兆を分析可能となる運転データを送信することにより、運転状態を分析させることができる。メンテナンス要員へは様々なタイミングで連絡することが考えられる。たとえば、定期的(たとえば、3ヶ月毎)にメンテナンス要員に連絡し、データをメンテナンス要員のコンピュータに送信してもよい。あるいは、異常状態の予兆となるデータ等、予め設定しておいたデータが外部記憶装置7に記憶される毎にメンテナンス要員に連絡し、データをメンテナンス要員のコンピュータに送信してもよい。あるいは、制御装置10が異常な運転データが存在すると判定したときにメンテナンス要員に連絡し、データをメンテナンス要員のコンピュータに送信してもよい。また、異常な運転データに加えて異常状態の予兆となるデータをメンテナンス要員のコンピュータに送信してもよい。 (11) In Embodiments 1 to 4, data stored in the external storage device 7, that is, operation data that enables analysis of signs of an abnormal state are transmitted to maintenance personnel such as service personnel. , the driving state can be analyzed. The maintenance personnel may be contacted at various timings. For example, maintenance personnel may be contacted on a regular basis (eg, every three months) and the data sent to the maintenance personnel's computer. Alternatively, each time preset data such as data that is a sign of an abnormal state is stored in the external storage device 7, the maintenance staff may be contacted and the data may be sent to the maintenance staff's computer. Alternatively, maintenance personnel may be contacted when controller 10 determines that anomalous operational data is present, and the data may be transmitted to the maintenance personnel's computer. In addition to the abnormal operation data, data that is a sign of an abnormal state may also be sent to the maintenance personnel's computer.
 また、メンテナンス要員に連絡した段階では主要なデータのみを送信し、メンテナンス要員が現地に到着した際に、メンテナンス要員が過去の他のデータを外部記憶装置7から取り出せるようにしてもよい。 In addition, only the main data may be transmitted at the stage of contacting the maintenance personnel, and the maintenance personnel may be able to retrieve other past data from the external storage device 7 when the maintenance personnel arrive at the site.
 上記のメンテナンス要員への連絡およびデータの送信は、制御装置10または集中管理コントローラにより自動的に実行されるようにしてもよい。 The communication and data transmission to the maintenance personnel described above may be automatically executed by the control device 10 or the centralized control controller.
 制御装置10は、空気調和システム100,200から離れた場所に居るメンテナンス要員からの要求に応じたデータを外部記憶装置7に記憶させるようにしてもよい。たとえば、制御装置10は、メンテナンス要員からの要求に応じた種類の運転データを外部記憶装置7における記憶対象のデータに追加してもよい。また、制御装置10は、メンテナンス要員からの要求に応じて、データを記憶する期間の長さを変更してもよい。 The control device 10 may store data in the external storage device 7 in response to requests from maintenance personnel who are remote from the air conditioning systems 100 and 200 . For example, the control device 10 may add, to the data to be stored in the external storage device 7, the type of operation data requested by the maintenance personnel. In addition, the control device 10 may change the length of the data storage period in response to a request from maintenance personnel.
 (12)前述した空気調和システム100は、1台の空気調和装置として構成されてもよい。 (12) The air conditioning system 100 described above may be configured as one air conditioner.
 [実施の形態のまとめ]
 以上説明した実施の形態について、再び図面を参照して説明する。
[Summary of Embodiment]
The embodiments described above will be described with reference to the drawings again.
 本開示は、空気調和システム100,200に関する。空気調和システム100,200は、空調運転の運転状態を示すデータを検出する吐出圧力センサ21および電流センサ22などのセンサと、空調運転を制御する制御装置10と、記憶装置である外部記憶装置7とを備える。制御装置10は、センサにより検出されたデータを一時的に保持し(図2のステップS1、図6のステップS11、図7のステップS21)、センサにより検出されたデータが異常判定条件を満たす場合に、センサにより検出されたデータが異常判定条件を満たす時期から基準期間前の時期までの期間において一時的に保持したデータを記憶装置である外部記憶装置7に記憶させる。(図2のステップS2~S4、図6のステップS14~S16、図7のステップS25~S27)。 The present disclosure relates to air conditioning systems 100 and 200. The air conditioning systems 100 and 200 include sensors such as a discharge pressure sensor 21 and a current sensor 22 that detect data indicating the operating state of air conditioning operation, a control device 10 that controls the air conditioning operation, and an external storage device 7 that is a storage device. and The control device 10 temporarily holds the data detected by the sensor (step S1 in FIG. 2, step S11 in FIG. 6, step S21 in FIG. 7), and when the data detected by the sensor satisfies the abnormality determination condition, Second, the data temporarily held during the period from the time when the data detected by the sensor satisfies the abnormality determination condition to the time before the reference period is stored in the external storage device 7 which is a storage device. (Steps S2 to S4 in FIG. 2, steps S14 to S16 in FIG. 6, steps S25 to S27 in FIG. 7).
 このように、制御装置10は、センサにより検出されたデータを一時的に保持し、センサにより検出されたデータが閾値以上となった場合に、閾値となった時期から基準期間前の時期までの期間において一時的に保持したデータを記憶装置である外部記憶装置7に記憶させることにより、異常状態が発生する前の状態において異常状態の予兆となる運転データを確実に取得するとともに、取得する運転データのデータ量を抑制することができる。 In this way, the control device 10 temporarily holds the data detected by the sensor, and when the data detected by the sensor exceeds the threshold, By storing the data temporarily held during the period in the external storage device 7, which is a storage device, the operational data that is a sign of the abnormal state can be reliably acquired in the state before the abnormal state occurs. Data volume of data can be suppressed.
 好ましくは、制御装置10は、基準期間Bとして、予め定められた固定期間を設定する(図2のステップS4)。 Preferably, the control device 10 sets a predetermined fixed period as the reference period B (step S4 in FIG. 2).
 このように、制御装置10が、基準期間Bとして、予め定められた固定期間を設定するので、基準期間の設定を簡素化することができる。 In this way, the control device 10 sets a predetermined fixed period as the reference period B, so that the setting of the reference period can be simplified.
 好ましくは、制御装置10は、基準期間Dとして、センサにより検出されたデータが閾値のレベルに未到達のレベルに設定された基準値から閾値のレベルに到達するまでに要した期間(図5の基準期間D)を設定する(図6のステップS16)
 このように、制御装置10が、基準期間Dとして、センサにより検出されたデータが閾値のレベルに未到達のレベルに設定された基準値から閾値のレベルに到達するまでに要した期間を設定するので、運転データが基準値のレベルに達した時点の運転データを記憶装置である外部記憶装置7に確実に記憶して保存することができる。
Preferably, the control device 10 sets the reference period D as the period required for the data detected by the sensor to reach the threshold level from the reference value set to a level that has not yet reached the threshold level ( Set the reference period D) (step S16 in FIG. 6)
In this way, the control device 10 sets, as the reference period D, the period required for the data detected by the sensor to reach the threshold level from the reference value set to a level that has not yet reached the threshold level. Therefore, the operating data at the point when the operating data reaches the level of the reference value can be reliably stored and saved in the external storage device 7 which is a storage device.
 好ましくは、制御装置10は、基準期間Eとして、センサにより検出されたデータの変化率に応じて変化する期間を設定する(図7のステップS27)。 Preferably, the control device 10 sets, as the reference period E, a period that changes according to the change rate of the data detected by the sensor (step S27 in FIG. 7).
 このように、制御装置10が、基準期間Eとして、センサにより検出されたデータの変化率に応じて変化する期間を設定するので、標準的に設定された基準期間よりも短い基準期間Eにおいて、異常状態を分析するために必要とされる運転データを外部記憶装置7に記憶して保存させることができる。 In this way, the control device 10 sets a period that changes according to the change rate of the data detected by the sensor as the reference period E. Therefore, in the reference period E shorter than the standard set reference period, Operation data required for analyzing an abnormal state can be stored and saved in the external storage device 7 .
 好ましくは、制御装置10は、センサにより検出されたデータをサンプリングして一時的に保持し(図7のステップS21)、センサにより検出されたデータの変化率に応じて、センサにより検出されたデータのサンプリング周期を変化させる(図7のステップS24)。 Preferably, the control device 10 samples the data detected by the sensor and temporarily holds it (step S21 in FIG. 7), and according to the change rate of the data detected by the sensor, the data detected by the sensor is changed (step S24 in FIG. 7).
 このように、制御装置10が、センサにより検出されたデータをサンプリングして一時的に保持し、センサにより検出されたデータの変化率に応じて、センサにより検出されたデータのサンプリング周期を変化させるので、外部記憶装置7に記憶して保存する運転データの期間の長さに応じた適切なタイミングで運転データのサンプリングをすることができる。 In this way, the control device 10 samples and temporarily holds the data detected by the sensor, and changes the sampling period of the data detected by the sensor according to the change rate of the data detected by the sensor. Therefore, the operation data can be sampled at an appropriate timing according to the length of the period of the operation data stored and saved in the external storage device 7 .
 好ましくは、記憶装置である外部記憶装置7は、不揮発性の記憶装置である。
 このように、記憶装置である外部記憶装置7が不揮発性の記憶装置であるので、空気調和システム100,200の電源がオフ状態となっても、記憶装置である外部記憶装置7に記憶された運転データが消去されないようにすることができる。
Preferably, the external storage device 7, which is a storage device, is a non-volatile storage device.
Thus, since the external storage device 7, which is a storage device, is a non-volatile storage device, even if the power supply of the air conditioning system 100, 200 is turned off, the data stored in the external storage device 7, which is a storage device, Operation data can be prevented from being erased.
 好ましくは、制御装置10は、センサにより検出されたデータに基づいて運転状態について異常判定をし(図7のステップS28)、運転状態が異常であると判定した場合に、その判定した時期から基準期間B前の時期までの期間において一時的に保持したデータを記憶装置である外部記憶装置7に記憶させる(図7のステップS29)。 Preferably, the control device 10 determines that the operating state is abnormal based on the data detected by the sensor (step S28 in FIG. 7), and when the operating state is determined to be abnormal, the control device 10 determines the timing based on the determined time. The data temporarily held during the period up to the period before the period B is stored in the external storage device 7, which is a storage device (step S29 in FIG. 7).
 このように、制御装置10が、センサにより検出されたデータに基づいて運転状態について異常判定をし、運転状態が異常であると判定した場合に、その判定した時期から基準期間B前の時期までの期間において一時的に保持したデータを記憶装置である外部記憶装置7に記憶させるので、異常判定条件が成立したときの運転データと、異常状態の予兆となる運転データとを合わせて運転状態を分析することにより、異常状態となった根本的な原因を分析しやすくなるようにすることができる。 In this way, the control device 10 makes an abnormality determination regarding the operating state based on the data detected by the sensor, and when it is determined that the operating state is abnormal, from the determined time to the time before the reference period B Since the data temporarily held during the period is stored in the external storage device 7, which is a storage device, the operating state is determined by combining the operating data when the abnormality determination condition is satisfied and the operating data that is a sign of an abnormal state. The analysis makes it easier to analyze the root cause of the abnormal state.
 好ましくは、空気調和システム200は、空気調和システム100の構成に加えて、記憶装置としての外部記憶装置7に記憶されたデータを分析する分析装置であるサービス装置30をさらに備え、サービス装置30は、制御装置10に接続可能であり、制御装置10に接続された場合に、記憶装置である外部記憶装置7に記憶されたデータを読出し(図9のステップS31)、記憶装置である外部記憶装置7に記憶されたデータに基づいて、空調運転の運転状態を分析する(図9のステップS32)。 Preferably, the air conditioning system 200 further includes a service device 30, which is an analysis device for analyzing data stored in the external storage device 7 as a storage device, in addition to the configuration of the air conditioning system 100, and the service device 30 , is connectable to the control device 10, and when it is connected to the control device 10, the data stored in the external storage device 7, which is a storage device, is read (step S31 in FIG. 9); Based on the data stored in 7, the operating state of the air conditioning operation is analyzed (step S32 in FIG. 9).
 このように、空気調和システム200において、サービス装置30が、制御装置10に接続可能であり、制御装置10に接続された場合に、記憶装置である外部記憶装置7に記憶されたデータを読出し、記憶装置である外部記憶装置7に記憶されたデータに基づいて、空調運転の運転状態を分析するので、外部記憶装置7に記憶されたデータに基づいて、空気調和システム200の運転状態を容易に分析することができる。 Thus, in the air conditioning system 200, the service device 30 is connectable to the control device 10, and when connected to the control device 10, reads data stored in the external storage device 7, which is a storage device, Since the operating state of the air conditioning operation is analyzed based on the data stored in the external storage device 7, which is a storage device, the operating state of the air conditioning system 200 can be easily determined based on the data stored in the external storage device 7. can be analyzed.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of claims rather than the above-described description of the embodiments, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
 100,200 空気調和システム、21 吐出圧力センサ、22 電流センサ、10 制御装置、7 外部記憶装置。 100, 200 air conditioning system, 21 discharge pressure sensor, 22 current sensor, 10 control device, 7 external storage device.

Claims (8)

  1.  空調運転の運転状態を示すデータを検出するセンサと、
     空調運転を制御する制御装置と、
     記憶装置とを備え、
     前記制御装置は、
      前記センサにより検出されたデータを一時的に保持し、
      前記センサにより検出されたデータが異常判定条件を満たす場合に、前記センサにより検出されたデータが前記異常判定条件を満たす時期から基準期間前の時期までの期間において一時的に保持したデータを前記記憶装置に記憶させる、空気調和システム。
    A sensor that detects data indicating the operating state of air conditioning operation;
    a control device for controlling air conditioning operation;
    a storage device;
    The control device is
    temporarily holding the data detected by the sensor;
    When the data detected by the sensor satisfies the abnormality determination condition, the data temporarily held during the period from the time when the data detected by the sensor satisfies the abnormality determination condition to the time before the reference period is stored. An air conditioning system stored in the device.
  2.  前記制御装置は、前記基準期間として、予め定められた固定期間を設定する、請求項1に記載の空気調和システム。 The air conditioning system according to claim 1, wherein the control device sets a predetermined fixed period as the reference period.
  3.  前記制御装置は、前記基準期間として、前記センサにより検出されたデータが前記異常判定条件を満たすレベルに未到達のレベルに設定された基準値から前記異常判定条件を満たすレベルに到達するまでに要した期間を設定する、請求項1に記載の空気調和システム。 In the control device, as the reference period, the data detected by the sensor is required to reach a level satisfying the abnormality determination condition from a reference value set to a level that has not yet reached a level satisfying the abnormality determination condition. 2. The air conditioning system according to claim 1, wherein a period of time is set.
  4.  前記制御装置は、前記基準期間として、前記センサにより検出されたデータの変化率に応じて変化する期間を設定する、請求項1に記載の空気調和システム。 The air conditioning system according to claim 1, wherein said control device sets, as said reference period, a period that changes according to a rate of change of data detected by said sensor.
  5.  前記制御装置は、
      前記センサにより検出されたデータをサンプリングして一時的に保持し、
      前記センサにより検出されたデータの変化率に応じて、前記センサにより検出されたデータのサンプリング周期を変化させる、請求項4に記載の空気調和システム。
    The control device is
    sampling and temporarily holding the data detected by the sensor;
    5. The air conditioning system according to claim 4, wherein the sampling period of the data detected by said sensor is changed according to the change rate of the data detected by said sensor.
  6.  前記記憶装置は、不揮発性の記憶装置である、請求項1~5のいずれか1項に記載の空気調和システム。 The air conditioning system according to any one of claims 1 to 5, wherein the storage device is a non-volatile storage device.
  7.  前記制御装置は、
     前記センサにより検出されたデータに基づいて前記運転状態について異常判定をし、
     前記運転状態が異常であると判定した場合に、その判定した時期から前記基準期間前の時期までの期間において一時的に保持したデータを前記記憶装置に記憶させる、請求項1~6のいずれか1項に記載の空気調和システム。
    The control device is
    making an abnormality determination for the operating state based on the data detected by the sensor;
    7. The storage device according to any one of claims 1 to 6, wherein when the operating state is determined to be abnormal, the data temporarily held during the period from the time when the determination is made to the time before the reference period is stored in the storage device. 2. The air conditioning system according to item 1.
  8.  前記記憶装置に記憶されたデータを分析する分析装置をさらに備え、
     前記分析装置は、
      前記制御装置に接続可能であり、
      前記制御装置に接続された場合に、前記記憶装置に記憶されたデータを読出し、
      前記記憶装置に記憶されたデータに基づいて、前記空調運転の運転状態を分析する、請求項1~7のいずれか1項に記載の空気調和システム。
    further comprising an analysis device that analyzes the data stored in the storage device;
    The analysis device is
    connectable to the control device;
    reading data stored in the storage device when connected to the control device;
    The air conditioning system according to any one of claims 1 to 7, wherein the operating state of said air conditioning operation is analyzed based on the data stored in said storage device.
PCT/JP2021/025967 2021-07-09 2021-07-09 Air conditioning system WO2023281735A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/025967 WO2023281735A1 (en) 2021-07-09 2021-07-09 Air conditioning system
JP2023533016A JPWO2023281735A1 (en) 2021-07-09 2021-07-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/025967 WO2023281735A1 (en) 2021-07-09 2021-07-09 Air conditioning system

Publications (1)

Publication Number Publication Date
WO2023281735A1 true WO2023281735A1 (en) 2023-01-12

Family

ID=84800608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025967 WO2023281735A1 (en) 2021-07-09 2021-07-09 Air conditioning system

Country Status (2)

Country Link
JP (1) JPWO2023281735A1 (en)
WO (1) WO2023281735A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232604A (en) * 2006-03-23 2008-10-02 Daikin Ind Ltd Refrigeration apparatus and analyzer of refrigeration apparatus
JP2008249234A (en) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp Failure diagnosing device of refrigerating cycle device, and refrigerating cycle device loading the same
JP2012107800A (en) * 2010-11-17 2012-06-07 Daikin Industries Ltd Device for collecting operation data

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232604A (en) * 2006-03-23 2008-10-02 Daikin Ind Ltd Refrigeration apparatus and analyzer of refrigeration apparatus
JP2008249234A (en) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp Failure diagnosing device of refrigerating cycle device, and refrigerating cycle device loading the same
JP2012107800A (en) * 2010-11-17 2012-06-07 Daikin Industries Ltd Device for collecting operation data

Also Published As

Publication number Publication date
JPWO2023281735A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
US7716936B2 (en) Method and apparatus for affecting defrost operations for a refrigeration system
JP6201872B2 (en) Air conditioner
JPWO2008035418A1 (en) Refrigeration and air conditioning system having refrigerant leakage detection function, refrigeration and air conditioning apparatus, and refrigerant leakage detection method
EP2426433A2 (en) Performance evaluation device for centrifugal chiller
CN101326415B (en) Remote diagnosis and estimation of refrigerant system
CN110107983B (en) Air conditioning unit and four-way valve reversing state detection method, device and system thereof
EP3929507B1 (en) Performance degradation diagnosis system for refrigeration cycle device
WO2023005323A1 (en) Fault monitoring method for air conditioning unit
EP3553426A1 (en) Data processing method for refrigerant leakage detection
CN113654182A (en) Method for detecting refrigerant leakage, computer readable storage medium and air conditioner
CN104344621A (en) Oil returning control method and oil returning control device for refrigerating system
CN1908535A (en) Pipe inspection method and pipe-inspection operation method of multi-air conditioner
CN111609665B (en) Defrosting control method and device
CN111089393A (en) Intelligent defrosting method and device for air cooler and controller
EP1643193A2 (en) Method of determining the configuration of an air conditioning system
KR100630831B1 (en) Method for temporary running when room temperature sensor of air conditioner is broken
WO2023281735A1 (en) Air conditioning system
EP3879197A1 (en) Air-conditioning control device, refrigerant circuit control device, inspection method, and program
JP2011012839A (en) Method and device of evaluating performance of heat source system and air-conditioning system
JP3191719B2 (en) Oil return operation control device for refrigeration equipment
AU2018423601B2 (en) Failure diagnosis system
JP6926046B2 (en) Abnormality judgment device, refrigerating device equipped with this abnormality judgment device, and abnormality judgment method of compressor
KR101048494B1 (en) Air Conditioning System with Data Storage Function and Its Operation Method
CN115183401B (en) Air conditioner and defrosting control method thereof
CN112074692B (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023533016

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE