WO2023281658A1 - Harmonic suppression device, and air conditioning system having same - Google Patents

Harmonic suppression device, and air conditioning system having same Download PDF

Info

Publication number
WO2023281658A1
WO2023281658A1 PCT/JP2021/025610 JP2021025610W WO2023281658A1 WO 2023281658 A1 WO2023281658 A1 WO 2023281658A1 JP 2021025610 W JP2021025610 W JP 2021025610W WO 2023281658 A1 WO2023281658 A1 WO 2023281658A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
value
power supply
correction amount
calculation means
Prior art date
Application number
PCT/JP2021/025610
Other languages
French (fr)
Japanese (ja)
Inventor
啓佑 石倉
暁範 橋本
晃弘 津村
真作 楠部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023532948A priority Critical patent/JPWO2023281658A1/ja
Priority to PCT/JP2021/025610 priority patent/WO2023281658A1/en
Publication of WO2023281658A1 publication Critical patent/WO2023281658A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a harmonic suppression device that suppresses harmonics and an air conditioning system having the same.
  • a conventional harmonic suppression device has a main circuit with a switching element and a capacitor.
  • the main circuit is connected to the system power supply via a reactor and a filter. Further, the main circuit is controlled by the control device based on the detection values of various detection units including the load current detection unit, the compensation current detection unit, the system power supply detection unit, and the voltage detection unit.
  • the load current detector is a detector that detects a load current containing harmonics generated from a harmonic generation load.
  • the harmonic suppression device needs to maintain a potential difference necessary for compensation between the DC side capacitor and the system power supply. Therefore, the harmonic suppression device suppresses the harmonic current generated from the harmonic generation load and adjusts the DC voltage of the capacitor.
  • a harmonic suppression device that adjusts the DC voltage so that the potential difference between the power supply voltage of the system power supply and the DC voltage of the capacitor is constant (see, for example, Patent Document 1).
  • the harmonic suppression device disclosed in Patent Document 1 detects the AC voltage of the system power supply, and adjusts the DC voltage command value of the control device based on the detected voltage so that a constant potential difference is generated. As a result, even when the power supply voltage of the system power supply fluctuates, the DC voltage of the capacitor is adjusted according to the voltage change, and the potential difference is kept constant.
  • the harmonic compensation rate is constant regardless of fluctuations in the power supply voltage of the system power supply.
  • the harmonic suppression device disclosed in Patent Literature 1 attempts to keep the potential difference between the power supply voltage of the system power supply and the DC voltage constant in accordance with fluctuations in the power supply voltage of the system power supply. If the switching element operates more than necessary to keep the potential difference between the power supply voltage of the system power supply and the DC voltage constant, the switching loss increases and the power efficiency decreases.
  • the present disclosure has been made to solve the above problems, and provides a harmonic suppression device that suppresses harmonics with high power efficiency in response to fluctuations in the power supply of the system, and an air conditioning system having the same. is.
  • a harmonic suppression device is a harmonic suppression device that is connected in parallel with a harmonic generation load connected to a system power supply and suppresses harmonics generated by the harmonic generation load, wherein the system power supply and a pair of switching elements that operate in accordance with a control signal based on a voltage command value are connected, and the system power supply is connected between the pair of switching elements.
  • a switching circuit connected via wiring, a capacitor connected in parallel to the switching circuit, a DC voltage detection unit for detecting a DC voltage of the capacitor, and outputting the control signal to the switching circuit, and a control device for controlling the operation of each switching element of the pair of switching elements, wherein the control device generates the control signal based on a DC voltage command value for adjusting the DC voltage.
  • generating means; and correction amount calculation means for calculating the correction amount as a correction amount for the DC voltage command value based on the voltage command value on which the control signal is based, for each cycle of the AC voltage of the system power supply.
  • An air conditioning system includes an air conditioning apparatus having a refrigerant circuit in which a compressor, a heat exchanger, and an expansion valve are connected via refrigerant pipes, and an AC voltage output from the system power supply is converted to a DC voltage. and the harmonic suppression device for suppressing the harmonic current generated by the harmonic generation load.
  • the correction amount for correcting the voltage command value of the switching circuit is calculated for each cycle of the system power supply, the DC voltage of the capacitor is corrected according to the fluctuation of the system power supply. Therefore, the potential difference between the power supply voltage of the system power supply and the DC voltage is suppressed from becoming larger than necessary, and harmonics can be suppressed with high power efficiency.
  • FIG. 1 is a block diagram showing a configuration example of an air conditioning system having a harmonic suppression device according to Embodiment 1;
  • FIG. 2 is a block diagram showing one configuration example of the air conditioner shown in FIG. 1.
  • FIG. 2 is a circuit diagram showing a configuration example of a switching circuit shown in FIG. 1;
  • FIG. 2 is a functional block diagram showing one configuration example of a control device shown in FIG. 1;
  • FIG. FIG. 5 is a functional block diagram showing a configuration example of a correction amount computing means shown in FIG. 4;
  • 2 is a hardware configuration diagram showing one configuration example of a control device shown in FIG. 1;
  • FIG. 2 is a hardware configuration diagram showing another configuration example of the control device shown in FIG. 1;
  • FIG. 2 is a diagram schematically showing an installation example of harmonic suppression devices according to Embodiments 1 and 2;
  • FIG. 10 is a diagram schematically showing another installation example of the harmonic suppression devices according to Embodiments 1 and 2;
  • FIG. 10 is a diagram schematically showing another installation example of the harmonic suppression devices according to Embodiments 1 and 2;
  • FIG. 1 is a block diagram showing a configuration example of an air conditioning system having a harmonic suppression device according to Embodiment 1.
  • FIG. 1 is a block diagram showing a configuration example of an air conditioning system having a harmonic suppression device according to Embodiment 1.
  • the air conditioning system 1 has a harmonic generating load 3, a harmonic suppressing device 4, and an air conditioning device 50.
  • the air conditioning system 1 is connected to a grid power supply 2 .
  • the system power supply 2 is, for example, a three-phase AC power supply.
  • a system power supply 2 supplies power to a harmonic generation load 3 via R-phase, S-phase and T-phase power lines.
  • the harmonic suppression device 4 suppresses the harmonic components of the current generated from the harmonic generation load 3 and flowing into the system power supply 2 .
  • the current of the harmonic component is referred to as harmonic current.
  • the system power supply 2 is a three-phase AC power supply is demonstrated, it may be a single-phase AC power supply.
  • the harmonic generation load 3 is a power conversion device that converts AC power output from the system power supply 2 into DC power and supplies power to the air conditioner 50 .
  • the harmonic generation load 3 has a rectifier 6, a DC reactor 7, a capacitor 8, an inverter (not shown), and the like.
  • the rectifier 6 rectifies the AC power supplied from the system power supply 2 into DC power.
  • a capacitor 8 is connected in parallel with an air conditioner 50 via a DC reactor 7 to the output side of the rectifier 6 .
  • Capacitor 8 smoothes the DC voltage input from rectifier 6 via DC reactor 7 .
  • FIG. 2 is a block diagram showing one configuration example of the air conditioner shown in FIG.
  • the air conditioner 50 has an outdoor unit 51 and an indoor unit 52 .
  • the outdoor unit 51 has a compressor 9 , an inverter circuit 55 connected to the motor 9 a of the compressor 9 , a heat source side heat exchanger 10 , a fan 53 , an expansion valve 12 and a controller 54 .
  • the indoor unit 52 has a load side heat exchanger 11 .
  • Compressor 9 , heat source side heat exchanger 10 , expansion valve 12 , and load side heat exchanger 11 are connected by refrigerant pipe 13 to form refrigerant circuit 5 in which refrigerant circulates.
  • Control device 54 is connected to inverter circuit 55 , expansion valve 12 and fan 53 via signal lines (not shown) and controls inverter circuit 55 , expansion valve 12 and fan 53 .
  • the refrigerant circuit 5 may be provided with a four-way valve, an accumulator, or the like.
  • the compressor 9 sucks in low-pressure gas refrigerant, compresses the sucked gas refrigerant, converts it into high-pressure gas refrigerant, and discharges it.
  • the compressor 9 is a compressor operated by an inverter circuit 55 .
  • Each of the heat source side heat exchanger 10 and the load side heat exchanger 11 has heat transfer tubes and fins.
  • the air conditioner 50 has a configuration in which a four-way valve (not shown) is provided in the refrigerant circuit 5, one of the heat source side heat exchanger 10 and the load side heat exchanger 11 functions as an evaporator, and the other functions as an evaporator. acts as a condenser.
  • the expansion valve 12 is connected by a refrigerant pipe 13 between the heat source side heat exchanger 10 and the load side heat exchanger 11, as shown in FIG.
  • the expansion valve 12 reduces the pressure of the inflowing liquid refrigerant by a throttling action so that the refrigerant liquefied in the condenser evaporates easily in the evaporator.
  • the expansion valve 12 adjusts the opening degree so as to maintain an appropriate amount of refrigerant according to the load of the evaporator.
  • the configuration example shown in FIG. 2 shows the case where the circuit connected to the harmonic generation load 3 functioning as a power conversion device is the inverter circuit 55, but the circuit to which power is supplied from the harmonic generation load 3 is shown. is not limited to the inverter circuit 55 .
  • the installation location of the control device 54 is not limited to the outdoor unit 51 and may be the indoor unit 52 . Further, the indoor unit 52 may be provided with a fan (not shown) that supplies the air in the air-conditioned space to the load-side heat exchanger 11 .
  • the harmonic suppression device 4 suppresses the harmonic current that the harmonic generation load 3 causes to flow to the system power supply 2 .
  • the harmonic suppression device 4 is connected in parallel with the harmonic generating load 3 with respect to the system power supply 2 .
  • the harmonic suppression device 4 includes a ripple filter 14, a switching circuit 15, a reactor 16, a capacitor 17, a control device 18, a load current detector 19, a compensation current detector 20, and a system power detector 21. , and a DC voltage detection unit 22 .
  • Load current detector 19 , compensation current detector 20 , system power detector 21 and DC voltage detector 22 are connected to controller 18 .
  • Ripple filter 14 suppresses the ripple component of the compensating current ia output from the harmonic suppression device 4 .
  • Ripple filter 14 has three reactors 23 and three capacitors 24 .
  • Reactor 23 and capacitor 24 are provided corresponding to each of the R-phase, S-phase and T-phase of system power supply 2 .
  • the reactor 23 is connected to wiring connected to each of the R-phase, S-phase, and T-phase power lines of the system power supply 2 .
  • One of the three capacitors 24 has one terminal connected to the R-phase power line of the system power supply 2 via wiring, and the other terminal connected to the connection point 25 .
  • Another capacitor 24 has one terminal connected to the S-phase power line of the system power supply 2 via wiring, and the other terminal connected to the connection point 25 .
  • the remaining one capacitor 24 has one terminal connected to the T-phase power line of the system power supply 2 via wiring, and the other terminal connected to the connection point 25 .
  • a reactor 16 is provided between the switching circuit 15 and the ripple filter 14 in the wiring connected to each of the R-phase, S-phase, and T-phase power lines of the system power supply 2 .
  • one reactor 16 connects the R-phase ripple filter 14 of the system power supply 2 and the switching circuit 15 .
  • Another reactor 16 connects the S-phase ripple filter 14 of the system power supply 2 and the switching circuit 15 .
  • the remaining one reactor 16 connects the T-phase ripple filter 14 of the system power supply 2 and the switching circuit 15 .
  • a capacitor 17 is connected in parallel with the switching circuit 15 . Capacitor 17 serves as a power source for outputting compensation current ia.
  • FIG. 3 is a circuit diagram showing one configuration example of the switching circuit shown in FIG.
  • the switching circuit 15 has three elements 60a-60c.
  • Element 60 a is provided corresponding to the R phase of system power supply 2 .
  • Element 60 b is provided corresponding to the S phase of system power supply 2 .
  • the element 60 c is provided corresponding to the T phase of the system power supply 2 .
  • Each of the three elements 60a-60c has a pair of switching elements 61 and a diode 62 connected in anti-parallel to each switching element 61.
  • FIG. 1 is a circuit diagram showing one configuration example of the switching circuit shown in FIG.
  • the switching circuit 15 has three elements 60a-60c.
  • Element 60 a is provided corresponding to the R phase of system power supply 2 .
  • Element 60 b is provided corresponding to the S phase of system power supply 2 .
  • the element 60 c is provided corresponding to the T phase of the system power supply 2 .
  • the R-phase power line of the system power supply 2 is connected between a pair of switching elements 61 via wiring.
  • the S-phase power line of the system power supply 2 is connected between the pair of switching elements 61 via wiring.
  • the T-phase power line of the system power supply 2 is connected between the pair of switching elements 61 via wiring.
  • Each switching element 61 of the switching circuit 15 turns on and off according to the control signal vcs input from the control device 18 .
  • each switching element 61 shown in FIG. 3 is formed is not limited to silicon, and may be a wide bandgap semiconductor.
  • Wide bandgap semiconductors are, for example, GaN (gallium nitride), SiC (silicon carbide), or diamond.
  • a wide bandgap semiconductor has a high withstand voltage and a high allowable current density. Therefore, the switching element 61 can be miniaturized while maintaining properties equivalent to those of the switching element formed of silicon in terms of withstand voltage and allowable current density. As a result, the semiconductor module incorporating the switching element 61 can also be miniaturized.
  • the wide bandgap semiconductor has good heat resistance. Therefore, the heat sink for the switching element 61 made of a wide bandgap semiconductor can be miniaturized.
  • the on-resistance which is the resistance value when the switching element 61 is turned on, is smaller than when the base semiconductor is silicon, resulting in conduction loss. becomes smaller, and the switching loss also becomes smaller.
  • the load current detection unit 19 detects the load current if input from the system power supply 2 to the harmonic generation load 3 .
  • the load current detector 19 detects, for example, the load current ifk flowing through the R-phase and the T-phase.
  • the load current detection unit 19 transmits load current information, which is information on the detected load current ifk, to the control device 18 .
  • the load current detector 19 is, for example, a current sensor.
  • the S-phase power line of the system power supply 2 is not provided with a load current detection unit for detecting the load current. It is calculated by the controller 18 based on the load current flowing in the power line of the phase.
  • a load current detector 19 that detects a load current flowing through the S-phase power line of the system power supply 2 may be provided.
  • the compensation current detector 20 detects the compensation current ia output from the switching circuit 15 to the system power supply 2 .
  • the compensation current detector 20 transmits information on the detected compensation current ia to the control device 18 .
  • the compensation current detector 20 is, for example, a current sensor.
  • the system power supply detection unit 21 detects a zero crossing point at which the power supply voltage of the system power supply 2 switches from the negative voltage side to the positive voltage side.
  • the reason for detecting the zero-cross point is to detect the phase of the power supply voltage so that the harmonic suppression device 4 can output the compensation current ia that cancels the harmonic current in synchronization with the power supply voltage of the system power supply 2 .
  • the system power supply detector 21 may detect not only the phase of the power supply voltage of the system power supply 2 but also the voltage value.
  • the system power detection unit 21 is provided between the R-phase power line and the S-phase power line.
  • the system power detection unit 21 detects a power supply voltage Vrs, which is the voltage between two phases of the R-phase and S-phase power lines.
  • the system power supply detection unit 21 transmits system power supply information including information on the detected voltage value and phase of the power supply voltage Vrs to the control device 18 .
  • a system power supply detection unit that detects the power supply voltage between the S-phase and T-phase power lines and a system power supply detection unit that detects the power supply voltage between the T-phase and R-phase power lines are provided. Not provided.
  • the voltage value and phase of the power supply voltage Vst between the S-phase and T-phase power lines and the voltage value and phase of the power supply voltage Vtr between the T-phase and R-phase power lines are the power supply voltage Vrs detected by the system power supply detection unit 21. is calculated by the control device 18 based on the system power supply information.
  • the system power supply detector 21 may be provided between the S-phase and T-phase power lines, and the system power supply detector 21 may be provided between the T-phase and R-phase power lines.
  • the DC voltage detection unit 22 detects the actual DC voltage vdc of the capacitor 17 in order to adjust the DC voltage vdc of the capacitor 17 so as to obtain the compensation ability to suppress the harmonic current.
  • the DC voltage detection unit 22 transmits information on the detected DC voltage vdc to the control device 18 .
  • FIG. 4 is a functional block diagram showing one configuration example of the control device shown in FIG.
  • the control device 18 includes compensation output calculation means 27, error amount calculation means 28, control amount calculation means 29, control signal generation means 30, phase detection means 31, address determination means 32, reference voltage calculation means 33, and voltage command value adjustment means. 34 and correction amount calculation means 35 .
  • the voltage command value adjustment means 34 adjusts the DC voltage vdc detected by the DC voltage detection section 22, the voltage command reference value vdc* which is the reference value of the DC voltage command value, and the correction amount output from the correction amount calculation means 35. ⁇ vdc is input.
  • the voltage command value adjusting means 34 calculates a DC voltage command value vdcb based on the DC voltage vdc and the voltage command reference value vdc*, and corrects the calculated DC voltage command value vdcb with a correction amount ⁇ vdc.
  • the voltage command value adjusting means 34 outputs the corrected DC voltage command value vdca to the compensation output calculating means 27 .
  • the compensation output calculation means 27 receives the load current ifk from the load current detection section 19 and receives the DC voltage command value vdca from the voltage command value adjustment means 34 . Compensation output calculation means 27 calculates compensation current command value Ia* based on DC voltage command value vdca and load current ifk.
  • the error amount calculation means 28 receives the compensation current command value Ia* from the compensation output calculation means 27 and the compensation current ia from the compensation current detection section 20 .
  • the error amount calculator 28 calculates an error amount ⁇ Ia, which is the difference between the compensation current command value Ia* and the compensation current ia.
  • the error amount calculation means 28 outputs the calculated error amount ⁇ Ia to the control amount calculation means 29 .
  • the phase detection means 31 detects the voltage value and phase of the power supply voltage Vst and the value of the power supply voltage Vtr based on the system power supply information of the power supply voltage Vrs. Calculate the voltage value and phase.
  • the phase detection means 31 detects the phase ⁇ of each phase in one cycle of the AC voltage of the system power supply 2 , and provides the detected phase ⁇ of each phase to the correction amount calculation means 35 , the address determination means 32 and the reference voltage calculation means 33 . Output.
  • the address determination means 32 determines an address based on the phase ⁇ input from the phase detection means 31, and generates address information including information on the determined address.
  • the address determination means 32 outputs the address information to the control amount calculation means 29 .
  • the control frequency of the switching circuit 15 is 15 kHz and the AC frequency of the system power supply 2 is 60 Hz.
  • a time interval of the control frequency corresponds to a control cycle.
  • the reference voltage calculation means 33 calculates the reference voltage vk based on the information on the power supply voltage Vrs and the phase ⁇ .
  • the reference voltage calculator 33 outputs the calculated reference voltage vk to the control signal generator 30 .
  • the control amount calculator 29 calculates the control amount Ic based on the error amount ⁇ Ia and the address information.
  • the control signal generation means 30 receives the DC voltage vdc from the DC voltage detection section 22 , the reference voltage vk from the reference voltage calculation means 33 , and the control amount Ic from the control amount calculation means 29 .
  • the control signal generator 30 generates a voltage command value vcs* based on the DC voltage vdc, the reference voltage vk, and the control amount Ic.
  • the control amount Ic is a value calculated based on the DC voltage command value vdca, the load current ifk and the compensation current ia.
  • the control signal generating means 30 generates the control signal vcs based on the voltage command value vcs*.
  • the control signal generator 30 outputs the generated voltage command value vcs* to the correction amount calculator 35 and outputs the generated control signal vcs to the switching circuit 15 .
  • the control signal vcs generated by the control signal generating means 30 will be described.
  • the control signal vcs is generated based on two types of waveforms: a signal waveform that becomes the voltage command value vcs*, and a carrier wave.
  • a carrier wave is, for example, a triangular wave.
  • a control signal vcs for one element 60a out of three elements 60a to 60c will be described as an example.
  • the control signal vcs compares the levels of both the signal waveform and the triangular wave, and turns on one switching element 61 of the pair of switching elements 61 and turns off the other switching element 61 when the signal wave > the triangular wave.
  • control signal vcs turns off one switching element 61 of the pair of switching elements 61 and turns on the other switching element 61 .
  • the control signal vcs is generated based on the voltage command value vcs*.
  • the correction amount calculation means 35 calculates a correction amount ⁇ vdc for correcting the DC voltage command value vdcb based on the voltage command value vcs* and the phase ⁇ .
  • the correction amount computing means 35 outputs the calculated correction amount ⁇ vdc to the voltage command value adjusting means 34 .
  • FIG. 5 is a functional block diagram showing one configuration example of the correction amount calculation means shown in FIG. As shown in FIG. 5 , the correction amount calculation means 35 has limit value comparison means 36 , count value calculation means 37 and correction amount calculation means 38 .
  • the limit value comparison means 36 stores a preset upper limit value Mmx and a lower limit value Mmn.
  • the limit value comparison means 36 compares the instantaneous value Mv of the voltage command value vcs*, which is the basis of the control signal vcs, to the upper limit value Mmx and the lower limit value Mmn for each control cycle during one cycle of the AC voltage of the system power supply 2. Compare with A limit value comparison means 36 counts the cases where the instantaneous value Mv is larger than the upper limit value Mmx or smaller than the lower limit value Mmn.
  • the limit value comparison means 36 counts the number of cases where the instantaneous value Mv of the voltage command value vcs* is out of the command range, which is the range of the upper limit value Mmx or more and the lower limit value Mmn or less.
  • the limit value comparison means 36 determines that the instantaneous value Mv of the voltage command value vcs* for each phase during one cycle of the AC voltage of the system power supply 2 is Counts cases outside the command range.
  • One cycle of the AC voltage of the system power supply 2 is, for example, the time between the cross points of the phase ⁇ of the R phase when the R phase is used as a reference.
  • the count value calculation means 37 uses the count values integrated by the limit value comparison means 36 during one cycle of the AC voltage of the system power supply 2 to calculate the average value Cav of the count values of all phases.
  • the average value of the count values of all phases is called the count average value.
  • the count value calculation means 37 does not need to calculate the average value.
  • the count average value Cav is the average value of the number of times the instantaneous value Mv of the voltage command value vcs* is out of the designated range for the R phase, S phase, and T phase.
  • the control frequency of the switching circuit 15 is 15 kHz
  • one count value corresponds to approximately 0.67 ⁇ 10 ⁇ 4 [seconds]. That is, the count average value Cav is converted into the time during which the instantaneous value Mv of the voltage command value vcs* of any one of the R-phase, S-phase and T-phase is out of the specified range in one cycle of the AC voltage of the system power supply. be.
  • the count value calculation means 37 determines whether or not the power supply voltage of the system power supply 2 is unbalanced as follows.
  • the count value calculation means 37 compares the count values of the three phases of the R phase, the S phase and the T phase, and calculates the maximum difference between the maximum value and the minimum value among the count values of these three phases. Then, the count value calculating means 37 determines whether or not the calculated maximum difference is equal to or greater than the imbalance determination threshold thb1, which is a predetermined threshold.
  • the count value calculation means 37 determines that the system power supply 2 is not unbalanced when the maximum difference is less than the imbalance determination threshold thb1.
  • the count value calculation means 37 determines that the system power supply 2 is unbalanced when the maximum difference is equal to or greater than the imbalance determination threshold thb1.
  • the imbalance determination threshold thb1 is not limited to a predetermined fixed value.
  • the count value calculation means 37 may change the imbalance determination threshold thb1 in accordance with the magnitude of the load current ifk.
  • a count difference which is the difference between a predetermined count target value and the count value output from the count value calculation means 37 , is input to the correction amount calculation means 38 . If the count difference is within a predetermined range, the correction amount calculator 38 reduces the correction amount ⁇ vdc so that the DC voltage command value becomes low. Further, when the count difference is larger than the predetermined range, the correction amount calculator 38 reduces the correction amount ⁇ vdc so that the DC voltage command value becomes low. As a result, the DC voltage vdc across capacitor 17 is reduced. On the other hand, when the count difference is smaller than the predetermined range, the correction amount calculator 38 increases the correction amount ⁇ vdc so that the DC voltage command value becomes higher. As a result, the DC voltage vdc of the capacitor 17 increases.
  • the correction amount calculation means 38 adjusts the DC voltage so that the maximum difference calculated by the count value calculation means 37 falls within a predetermined range.
  • a correction amount ⁇ vdc for adjusting vdc is calculated.
  • the DC voltage vdc for suppressing harmonics is obtained in the phase where the count value is the maximum value. can make up for the lack of compensatory capacity.
  • the maximum difference of the count values is used as the determination value for calculating the correction amount ⁇ vdc has been described. good too.
  • the harmonic suppression device 4 of Embodiment 1 can control the DC voltage vdc without insufficient harmonic suppression performance even when the system power supply 2 is unbalanced.
  • the count value is compared with the count target value here, the reference value to be compared is not limited to the count target value.
  • the count value calculation means 37 may have a calculator for calculating the difference between the count target value and the count value. Furthermore, the count value calculation means 37 may determine whether or not the count difference is within a predetermined range, and notify the correction amount calculation means 38 of the determination result.
  • FIG. 6 is a hardware configuration diagram showing one configuration example of the control device shown in FIG.
  • the controller 18 shown in FIG. 1 is configured with a processing circuit 80 as shown in FIG. Compensation output calculation means 27, error amount calculation means 28, control amount calculation means 29, control signal generation means 30, phase detection means 31, address determination means 32, reference voltage calculation means 33, and voltage command value adjustment means shown in FIG. 34 and correction amount calculation means 35 are implemented by a processing circuit 80 .
  • the processing circuit 80 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate). Array), or a combination thereof. Compensation output calculation means 27, error amount calculation means 28, control amount calculation means 29, control signal generation means 30, phase detection means 31, address determination means 32, reference voltage calculation means 33, voltage command value adjustment means 34, and correction amount calculation Each function of each means of the means 35 may be realized by the processing circuit 80 .
  • address determination means 32, reference voltage calculation means 33, voltage command value adjustment means 34, and correction The function of each means of the quantity calculation means 35 may be implemented by one processing circuit 80 .
  • FIG. 7 is a hardware configuration diagram showing another configuration example of the control device shown in FIG.
  • the control device 18 shown in FIG. 4 is composed of a processor 81 such as a CPU (Central Processing Unit) and a memory 82, as shown in FIG. Compensation output calculation means 27, error amount calculation means 28, control amount calculation means 29, control signal generation means 30, phase detection means 31, address determination means 32, reference voltage calculation means 33, voltage command value adjustment means 34, and correction amount calculation
  • processor 81 and memory 82 are communicatively coupled to each other via bus 83 .
  • the functions of the voltage command value adjusting means 34 and the correction amount calculating means 35 are realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in memory 82 .
  • the processor 81 implements the functions of each means by reading and executing the programs stored in the memory 82 .
  • a memory 82 stores the threshold Ith.
  • non-volatile semiconductor memories such as ROM (Read Only Memory), flash memory, EPROM (Erasable and Programmable ROM) and EEPROM (Electrically Erasable and Programmable ROM) are used.
  • ROM Read Only Memory
  • EPROM Erasable and Programmable ROM
  • EEPROM Electrical Erasable and Programmable ROM
  • a volatile semiconductor memory of RAM Random Access Memory
  • removable recording media such as magnetic disks, flexible disks, optical disks, CDs (Compact Discs), MDs (Mini Discs) and DVDs (Digital Versatile Discs) may be used.
  • FIG. 8 is a flowchart showing an example of the operation procedure of the correction amount computing means shown in FIG. 5 in the harmonic suppression device according to Embodiment 1.
  • FIG. 8 is a flowchart showing an example of the operation procedure of the correction amount computing means shown in FIG. 5 in the harmonic suppression device according to Embodiment 1.
  • Step S1 The limit value comparison means 36 determines whether or not the power supply voltage of the system power supply 2 is at the timing of switching the cycle. When the power supply voltage of the system power supply 2 is switched to the next cycle, the limit value comparison means 36 proceeds to the process of step S6. On the other hand, when the power supply voltage of the system power supply 2 does not switch to the next cycle, the limit value comparison means 36 proceeds to the process of step S2.
  • Step S2 The limit value comparison means 36 determines whether or not there is a phase in which the instantaneous value Mv of the voltage command value vcs* is greater than the upper limit value Mmx among the three phases of the R-phase, S-phase and T-phase. If there is a phase in which the instantaneous value Mv of the voltage command value vcs* is greater than the upper limit value Mmx among the three phases, the limit value comparison means 36 proceeds to the processing of step S3. On the other hand, if there is no phase in which the instantaneous value Mv of the voltage command value vcs* is greater than the upper limit value Mmx among the three phases, the limit value comparison means 36 proceeds to the processing of step S4.
  • Step S3 The limit value comparison means 36 increments by one the count value of the phase, among the R phase, S phase and T phase, for which the instantaneous value Mv of the voltage command value vcs* is greater than the upper limit value Mmx.
  • the limit value comparison means 36 ends the process after performing the process of increasing the count value of the target phase by one.
  • Step S4 The limit value comparison means 36 determines whether or not there is a phase among the three phases of the R phase, the S phase and the T phase for which the instantaneous value Mv of the voltage command value vcs* is smaller than the lower limit value Mmn. If there is a phase in which the instantaneous value Mv of the voltage command value vcs* is smaller than the lower limit value Mmn among the three phases, the limit value comparison means 36 proceeds to the processing of step S5. On the other hand, limit value comparison means 36 terminates the process if none of the three phases have instantaneous value Mv of voltage command value vcs* smaller than upper limit value Mmx.
  • Step S5 Limit value comparison means 36 increments by one the count value of the phase, among R phase, S phase and T phase, for which instantaneous value Mv of voltage command value vcs* is smaller than lower limit value Mmn.
  • the limit value comparison means 36 ends the process after performing the process of increasing the count value of the target phase by one.
  • Step S6 The limit value comparison means 36 transmits the count values of all phases of the R phase, S phase and T phase to the count value calculation means 37 . After that, the limit value comparing means 36 resets the count values of all phases. After resetting the count values of all the phases, the limit value comparison means 36 terminates the process.
  • control device 18 in the first embodiment calculates the count value based on the instantaneous value Mv of the voltage command value vcs* for each of the R phase, S phase and T phase.
  • FIG. 9 is a flow chart showing an example of the operation procedure of the harmonic suppression device according to Embodiment 1.
  • FIG. 9 shows an operation procedure for the controller 18 to correct the DC voltage command value.
  • Step S10 The limit value comparison means 36 determines whether or not the power supply voltage of the system power supply 2 is at the timing of switching the period. When the power supply voltage of the system power supply 2 is switched to the next cycle, the limit value comparison means 36 proceeds to the process of step S11. On the other hand, if the power supply voltage of the system power supply 2 does not switch to the next cycle, the limit value comparison means 36 terminates the process.
  • the count value calculation means 37 uses the count values acquired from the limit value comparison means 36 for each of the R-phase, S-phase and T-phase to calculate a count average value Cav, which is an average value thereof.
  • Step S12 The count value calculation means 37 determines whether or not the count average value Cav calculated in step S11 is within a predetermined time range.
  • the time range is set in advance, and is a range of the second threshold Cth2 or more and the first threshold Cth1 or less.
  • the correction amount calculation means 38 proceeds to the processing of step S13.
  • the count value calculation means 37 proceeds to the process of step S14.
  • Step S13 A correction amount calculator 38 calculates a correction amount ⁇ vdc that reduces the DC voltage command value by a preset value. After the correction amount calculator 38 calculates the correction amount ⁇ vdc, the control device 18 proceeds to the process of step S17.
  • the value for adjusting the DC voltage command value is a preset value is described, but the value for adjusting the DC voltage command value is the count average value Cav or the magnitude of the load current ifk. may be determined corresponding to
  • Step S14 The count value calculation means 37 determines whether or not the count average value Cav calculated in step S11 is greater than the first threshold value Cth1. As a result of determination, when the count average value Cav is larger than the first threshold value Cth1, the correction amount calculation means 38 proceeds to the process of step S15. On the other hand, when the count average value Cav is not larger than the first threshold value Cth1, the count average value Cav becomes less than the second threshold value Cth2, and the correction amount calculation means 38 proceeds to the processing of step S16.
  • a correction amount calculator 38 calculates a correction amount ⁇ vdc for increasing the DC voltage command value by a preset value. After the correction amount calculator 38 calculates the correction amount ⁇ vdc, the control device 18 proceeds to the process of step S17.
  • a value for adjusting the DC voltage command value is not limited to a preset value, and may be determined according to the magnitude of the count average value Cav or the load current ifk.
  • Step S16 A correction amount calculator 38 calculates a correction amount ⁇ vdc that reduces the DC voltage command value by a preset value. After the correction amount calculator 38 calculates the correction amount ⁇ vdc, the control device 18 proceeds to the process of step S17.
  • a value for adjusting the DC voltage command value is not limited to a preset value, and may be determined according to the magnitude of the count average value Cav or the load current ifk.
  • the voltage command value adjusting means 34 corrects the magnitude of the DC voltage command value using the correction amount ⁇ vdc. Specifically, the voltage command value adjusting means 34 calculates the DC voltage command value vbca by adding the correction amount ⁇ vdc to the DC voltage command value vbcb. After outputting the calculated DC voltage command value vbca to the compensation output calculating means 27, the voltage command value adjusting means 34 terminates the process.
  • the amount of change in the correction amount ⁇ vdc may differ between the case of step S13 and the cases of steps S15 and S16. At this time, it is desirable that the change in the correction amount ⁇ vdc in the voltage command value adjusting means 34 is sufficiently slower than the response of the voltage command value adjusting means 34 .
  • control device 18 calculates the average value Cav of the count values of each phase, and based on the relationship between the average count value Cav and the predetermined time range, determines the correction amount ⁇ vdc of the DC voltage command value. calculate.
  • the limit value comparison means 36 determines whether or not the instantaneous value Mv of the voltage command value vcs* is within the command range for each control cycle during one cycle of the system power supply 2 .
  • Limit value comparison means 36 compares the time during which the instantaneous value Mv of the voltage command value vcs* is greater than the command range, the time during which the instantaneous value Mv of the voltage command value vcs* is less than the command range, and the time during which the instantaneous value Mv of the voltage command value vcs* is less than the command range. Information on the time during which the instantaneous value Mv is within the command range is transmitted to the count value calculation means 37 .
  • the limit value comparison means 36 determines whether or not the time T during which the instantaneous value Mv of the voltage command value vcs* is greater than the command range is greater than the first threshold value Cth1. As a result of determination, when the time T is greater than the first threshold value Cth1, the correction amount calculation means 38 calculates a correction amount ⁇ vdc for increasing the DC voltage vdc of the capacitor 17 .
  • the correction amount for lowering the DC voltage vdc is ⁇ vdc is calculated.
  • the height of the DC voltage vdc is controlled.
  • the amount of change in the correction amount ⁇ vdc may differ depending on whether the time T at which the instantaneous value Mv of the voltage command value vcs* becomes a value larger than the specified range is within the time range and outside the time range.
  • the harmonic compensation capability may be insufficient.
  • the correction amount ⁇ vdc is adjusted so as to increase the DC voltage vdc, the loss of the switching element 61 constituting the switching circuit 15 increases and the DC voltage vdc may become unstable. Therefore, it is necessary to adjust the correction amount ⁇ vdc so that the DC voltage vdc falls within an appropriate range.
  • control device 18 determines whether or not the instantaneous value Mv of the voltage command value vcs* generated by the control signal generating means 30 is within the specified range, to calculate the correction amount ⁇ vdc, and perform correction to increase or decrease the DC voltage command value. Thereby, the DC voltage vdc of the capacitor 17 is controlled.
  • FIG. 10 is a flow chart showing an example of the operating procedure of the harmonic suppression device according to Embodiment 1 when the system power supply shown in FIG. 1 is unbalanced.
  • the count value calculation means 37 compares the count values of the three phases of the R phase, the S phase and the T phase, and among the count values of these three phases, the maximum value and the minimum value A maximum difference is calculated (step S41).
  • the count value calculation means 37 determines whether or not the calculated maximum difference is equal to or greater than the imbalance determination threshold thb1 (step S42). As a result of the determination in step S42, when the maximum difference is less than the imbalance determination threshold thb1, the count value calculation means 37 determines that the system power supply 2 is in balance, and proceeds to the process of step S11 shown in FIG.
  • step S42 determines whether the maximum difference is equal to or greater than the imbalance determination threshold thb1
  • the correction amount calculation means 38 adjusts the DC voltage vdc so that the maximum difference falls within a predetermined range. is calculated (step S43).
  • the correction amount calculation means 38 transmits the calculated correction amount ⁇ vdc to the voltage command value adjustment means 34 . After that, the control device 18 proceeds to the processing of step S17 shown in FIG.
  • the harmonic suppressing device 4 of the first embodiment can adjust the DC voltage vdc of the capacitor 17 according to the balanced or unbalanced fluctuation of the system power supply 2 .
  • the control device 18 acquires the information of the system power supply 2 from the system power supply detection unit 21 and generates the voltage command value vcs* based on the reference voltage vk.
  • the portion 21 may not be provided.
  • the control device 18 preliminarily sets the DC voltage vdc of the capacitor 17 equal to the maximum value of the line voltage of the system power supply 2 and during a stable period , the DC voltage vdc may be detected in advance.
  • the control device 18 can calculate the reference voltage vk by replacing the DC voltage vdc detected in advance with the maximum value of the line voltage.
  • the power supply voltage of the system power supply 2 is not used for other purposes, there is no need to acquire the information on the power supply voltage of the system power supply 2 .
  • the board on which the hardware components of the control device 18 are mounted can be made smaller, and the harmonic suppression device 4 can be made less expensive.
  • control device 18 is based on the information on the voltage command value vcs* output to the switching circuit 15 instead of the information on the power supply voltage of the system power supply 2, and the correction amount ⁇ vdc of the DC voltage command value. change. Therefore, switching loss can be reduced at light load.
  • the harmonic suppressing device 4 of Embodiment 1 is connected in parallel with the harmonic generating load 3 connected to the system power supply 2, and suppresses harmonics generated by the harmonic generating load 3.
  • Harmonic suppression device 4 includes system power supply detector 21 , switching circuit 15 , capacitor 17 connected in parallel to switching circuit 15 , DC voltage detector 22 , and controller 18 .
  • the system power detection unit 21 detects the phase ⁇ of the AC voltage of the system power supply 2 .
  • the switching circuit 15 has a configuration in which a pair of switching elements 61 that operate according to a control signal vcs based on the voltage command value vcs* are connected, and the system power supply 2 is connected between the pair of switching elements 61 via wiring.
  • the control device 18 controls the operation of each switching element of the pair of switching elements 61 by outputting the control signal vcs to the switching circuit 15 .
  • the control device 18 has control signal generation means 30 and correction amount calculation means 35 .
  • the control signal generating means 30 generates the control signal vcs based on the DC voltage command value for adjusting the DC voltage.
  • the correction amount calculation means 35 calculates a correction amount for the DC voltage command value based on the voltage command value vcs* that is the basis of the control signal vcs output from the control signal generation means 30 for each cycle of the AC voltage of the system power supply 2. to calculate the correction amount ⁇ vdc.
  • the correction amount ⁇ vdc for correcting the voltage command value vcs* of the switching circuit 15 is calculated for each period of the system power supply 2, the DC voltage of the capacitor 17 is calculated according to the fluctuation of the system power supply 2. vdc is corrected. Therefore, the potential difference between the power supply voltage of system power supply 2 and DC voltage vdc is suppressed from becoming larger than necessary. As a result, switching loss is suppressed, and harmonics can be suppressed with high power efficiency.
  • Embodiment 2 corrects the DC voltage command value for adjusting the DC voltage vdc of the capacitor 17 using the effective value of the voltage command value vcs* other than the reference voltage vk.
  • Embodiment 2 the same reference numerals as those of the configuration described in Embodiment 1 are used, and detailed description thereof is omitted.
  • FIG. 11 is a functional block diagram showing one configuration example of the correction amount calculating means of the harmonic suppression device according to the second embodiment.
  • the correction amount calculation means 35 a has an effective value calculation means 39 , a voltage utilization factor calculation means 40 and a correction amount calculation means 38 .
  • information on the DC voltage vdc is input from the DC voltage detector 22 to the correction amount calculator 35a.
  • the effective value calculation means 39 calculates the effective value vef of the voltage command value vcs* other than the reference voltage vk in one cycle of the system power supply 2 . For example, when the system power supply 2 has three phases of R phase, S phase and T phase, the effective value calculation means 39 calculates the effective value vef of each phase. Specifically, the effective value calculation means 39 integrates the voltage command value vcs* of the target phase input in the control cycle in one cycle of the system power supply 2, and divides the integrated value by one cycle of the system power supply 2. By doing so, the effective value vef is calculated.
  • the voltage utilization factor calculation means 40 calculates the voltage utilization factor Rvd for the DC voltage vdc of the capacitor 17 based on the effective value vef for each phase. Further, the voltage utilization factor calculation means 40 determines whether or not the system power supply 2 is unbalanced as follows.
  • the voltage utilization factor calculation means 40 calculates an unbalance rate NBr from the effective value vef of the voltage command value vcs* other than the reference voltage vk, and the calculated unbalance rate NBr is a predetermined unbalance determination threshold thb2. It is determined whether or not the above is satisfied.
  • the unbalance rate NBr is, for example, the standard deviation of the three-phase effective values vef of the R-phase, S-phase and T-phase.
  • the voltage utilization factor calculation means 40 determines that the system power supply 2 is not unbalanced.
  • the voltage utilization factor calculation means 40 determines that the system power supply 2 is unbalanced.
  • the imbalance determination threshold thb2 is not limited to a predetermined fixed value. The voltage utilization factor calculation means 40 may change the imbalance determination threshold thb2 according to the magnitude of the load current ifk.
  • a utilization difference which is the difference between a predetermined voltage utilization rate target value and the voltage utilization rate Rvd output from the voltage utilization rate calculation means 40 , is input to the correction amount calculation means 38 . If the utilization difference is within a predetermined range, the correction amount calculator 38 reduces the correction amount ⁇ vdc so that the DC voltage command value becomes low. Further, when the utilization difference is larger than the predetermined range, the correction amount calculation means 38 reduces the correction amount ⁇ vdc so that the DC voltage command value becomes low. As a result, the DC voltage vdc across capacitor 17 is reduced. On the other hand, when the utilization difference is smaller than the predetermined range, the correction amount calculator 38 increases the correction amount ⁇ vdc so that the DC voltage command value becomes higher.
  • the DC voltage vdc of the capacitor 17 increases.
  • the amount of change in the correction amount ⁇ vdc for lowering the DC voltage vdc may differ depending on whether the utilization difference is within a predetermined range or not. At this time, the change in the correction amount ⁇ vdc is made sufficiently slower than the response of the voltage command value adjusting means 34 .
  • the correction amount calculation means 38 determines that the effective value vef of the phase with the maximum effective value vef among the three-phase effective values vef is A correction amount ⁇ vdc for adjusting the DC voltage vdc so that it falls within a predetermined range is calculated.
  • the effective value vef of the maximum value is used as the determination value for calculating the correction amount ⁇ vdc has been described.
  • the harmonic suppression device 4 of Embodiment 2 can control the DC voltage vdc without insufficient harmonic suppression performance even when the system power supply 2 is unbalanced.
  • the voltage utilization rate Rvd is compared with the voltage utilization rate target value here, the reference value to be compared is not limited to the voltage utilization rate target value.
  • the voltage utilization factor calculation means 40 may have a calculator for calculating the difference between the voltage utilization factor target value and the voltage utilization factor Rvd. Furthermore, the voltage utilization rate calculation means 40 may determine whether or not the utilization rate difference is within a predetermined range, and notify the correction amount calculation means 38 of the determination result.
  • FIG. 12 is a flow chart showing an example of the operating procedure of the harmonic suppression device according to the second embodiment.
  • Step S20 The effective value calculation means 39 determines whether or not the power supply voltage of the system power supply 2 is at the switching timing of the period. When the power supply voltage of the system power supply 2 is switched to the next cycle, the effective value calculation means 39 proceeds to the process of step S21. On the other hand, when the power supply voltage of the system power supply 2 is not at the timing of switching to the next cycle, the limit value comparison means 36 proceeds to the process of step S29.
  • Step S21 The effective value calculating means 39 calculates the effective value vef other than the reference voltage vk based on the integrated value of the voltage command value vcs* with each phase of the three phases as the target phase. After the effective value calculation means 39 calculates the effective value vef of each phase, the control device 18 proceeds to the processing of step S22.
  • Step S22 Voltage utilization factor calculation means 40 calculates voltage utilization factor Rvd based on the result calculated in step S21 and DC voltage vdc of capacitor 17 . After the calculation, the voltage utilization factor calculator 40 proceeds to step S23.
  • Step S23 The effective value calculation means 39 resets the integral amount of the voltage command value vcs*. Also, the control device 18 resets the cycle of the power supply voltage of the system power supply 2 . As a result, the period of the monitoring target shifts to the next period. After the integral amount of voltage command value vcs* and the period of the power supply voltage of system power supply 2 are reset, control device 18 proceeds to the process of step S24.
  • Step S24 The voltage utilization rate calculation means 40 determines whether or not the voltage utilization rate Rvd calculated in step S22 is within a predetermined utilization range.
  • the utilization range is set in advance, and is a range from the fourth threshold Rth2 to the third threshold RCth3. As a result of the determination, if the voltage utilization rate Rvd is within the utilization range, the correction amount calculation means 38 proceeds to the process of step S25. When the voltage utilization rate Rvd is out of the utilization range, the voltage utilization rate calculator 40 proceeds to the process of step S26.
  • Step S25 A correction amount calculator 38 calculates a correction amount ⁇ vdc for reducing the DC voltage command value. After the correction amount calculation means 38 calculates the correction amount ⁇ vdc, the control device 18 proceeds to the process of step S30.
  • Step S26 The voltage utilization factor calculation means 40 determines whether or not the voltage utilization factor Rvd calculated in step S22 is greater than the third threshold value Rth3. As a result of the determination, if the voltage utilization rate Rvd is greater than the third threshold value Rth3, the correction amount calculation means 38 proceeds to the process of step S27. On the other hand, when the voltage utilization rate Rvd is not greater than the third threshold value Rth3, the voltage utilization rate Rvd becomes less than the fourth threshold value Rth4, and the correction amount calculation means 38 proceeds to the process of step S28.
  • Step S27 A correction amount calculator 38 calculates a correction amount ⁇ vdc for increasing the DC voltage command value. After the correction amount calculation means 38 calculates the correction amount ⁇ vdc, the control device 18 proceeds to the process of step S30.
  • Step S28 A correction amount calculator 38 calculates a correction amount ⁇ vdc for reducing the DC voltage command value. After the correction amount calculation means 38 calculates the correction amount ⁇ vdc, the control device 18 proceeds to the process of step S30.
  • Step S29 The effective value calculation means 39 integrates the voltage command value vcs* with each phase of the three phases as the target phase. After calculating the integral value of the three-phase voltage command values vcs*, the effective value calculating means 39 terminates the process.
  • Step S30 The voltage command value adjusting means 34 corrects the magnitude of the DC voltage command value using the correction amount ⁇ vdc. Specifically, the voltage command value adjusting means 34 calculates the DC voltage command value vbca by adding the correction amount ⁇ vdc to the DC voltage command value vbcb. After outputting the calculated DC voltage command value vbca to the compensation output calculating means 27, the voltage command value adjusting means 34 terminates the process.
  • the control device 18 obtains the effective value vef of the voltage command value vcs* other than the reference voltage vk, and calculates the voltage utilization rate Rvd of the voltage command value vcs* with respect to the DC voltage. Then, when the voltage utilization rate Rvd is smaller than the target value, the control device 18 calculates a correction amount ⁇ vdc for lowering the DC voltage command value, and when the voltage utilization rate Rvd is larger than the target value, the DC voltage command A correction amount ⁇ vdc for increasing the value is calculated. This corrects the DC voltage command value.
  • control device 18 calculates the correction amount ⁇ vdc based on the voltage utilization factor Rvd.
  • the correction amount ⁇ vdc may be calculated based on the effective value vef. The operation of the control device 18 in this case will be described.
  • the effective value calculation means 39 calculates the effective value vef of the voltage command value vcs* other than the reference voltage vk for each control cycle during the cycle of the system power supply 2 .
  • the voltage utilization factor calculation means 40 determines whether or not the effective value vef of the voltage command value vcs* is greater than a preset threshold. When the effective value vef of the voltage command value is larger than the threshold, the correction amount calculator 38 calculates the correction amount ⁇ vdc so that the DC voltage vdc becomes higher. On the other hand, when the effective value vef of the voltage command value vcs* is equal to or less than the threshold, the correction amount calculator 38 calculates the correction amount ⁇ vdc so that the DC voltage vdc becomes lower.
  • the change in the correction amount ⁇ vdc is made sufficiently slower than the response of the voltage command value adjusting means 34 .
  • the correction amount ⁇ vdc is, for example, a value proportional to the difference between the effective value vef and the threshold.
  • the control device 18 calculates the effective value vef of the voltage command value vcs* other than the reference voltage vk generated by the control signal generating means 30, and determines whether the effective value vef is equal to or greater than a predetermined threshold. judge. Then, when the effective value vef is equal to or greater than the threshold, the control device 18 calculates a correction amount ⁇ vdc corresponding to the difference between the effective value vef and the threshold, and uses the correction amount ⁇ vdc to increase or decrease the DC voltage command value. to correct.
  • the voltage utilization factor calculation means 40 determines whether or not the system power supply 2 is unbalanced. be done. Specifically, the voltage utilization factor calculation means 40 calculates the unbalance rate NBr from the effective value vef of the three-phase voltage command value vcs*, and determines whether the calculated unbalance rate NBr is equal to or greater than the unbalance determination threshold thb2. judge. When the voltage utilization factor calculation means 40 determines that the system power supply 2 is unbalanced, the correction amount calculation means 38 predetermines the maximum effective value vef among the three phase effective values vef.
  • a correction amount ⁇ vdc for adjusting the DC voltage vdc so that it falls within the specified range is calculated. Therefore, in the second embodiment as well, a DC voltage for suppressing harmonics can be obtained in a phase in which the output voltage is insufficient. Therefore, even when the system power supply 2 is unbalanced, it is possible to compensate for the lack of compensation capability corresponding to the difference in the magnitude of the load current flowing in each phase of the system power supply 2 .
  • the DC voltage vdc can be adjusted according to fluctuations in the power supply voltage of the system power supply 2 .
  • the threshold value which is the criterion for determining the necessity of correction, changes appropriately according to the frequency of the system power supply. is determined, the change in the threshold, which is the criterion for determining whether or not correction is necessary, can be small.
  • FIG. 13 is a diagram schematically showing an installation example of the harmonic suppression devices according to the first and second embodiments.
  • 14 and 15 are diagrams schematically showing another installation example of the harmonic suppression devices according to Embodiments 1 and 2.
  • FIG. 13 is a diagram schematically showing an installation example of the harmonic suppression devices according to the first and second embodiments.
  • 14 and 15 are diagrams schematically showing another installation example of the harmonic suppression devices according to Embodiments 1 and 2.
  • the air conditioning system 1 has the harmonic suppression device 4, but the installation position of the harmonic suppression device 4 is not limited.
  • FIG. 13 shows the case where the harmonic suppression device 4 is built in the housing of the outdoor unit 51 of the air conditioner 50, it may be built into the housing of the indoor unit 52.
  • FIG. When the harmonic suppression device 4 is built in the air conditioner 50, it is not necessary to secure a separate space for installing the harmonic suppression device 4 in addition to the space in which the air conditioner 50 is installed.
  • the harmonic suppression device 4 may be externally attached to the main body of the air conditioner 50 .
  • FIG. 14 shows a case where the harmonic suppression device 4 is externally attached to the main body of the outdoor unit 51 .
  • the harmonic suppression device 4 may be installed separately from the air conditioner 50 .
  • FIG. 15 shows the case where the harmonic suppressing device 4 is installed separately from the outdoor unit 51 .
  • harmonic suppression device and the air conditioning system are not limited to the first and second embodiments described above, and can be variously modified without departing from the gist of the present disclosure.
  • present disclosure includes all possible combinations of the configurations shown in the first and second embodiments described above.
  • each program according to the control flow of the present disclosure is a process that is performed in chronological order according to the described order, but even if it is not necessarily processed in chronological order, it can be executed in parallel or individually. may contain.
  • each function executed by the harmonic suppression device 4 according to the present disclosure and the control device 54 of the air conditioning system 1 may be realized by either hardware or software.
  • Each function in each block diagram may be implemented by hardware such as a circuit device, or may be implemented by software executed on an arithmetic unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

A harmonic suppression device (4) of the present invention comprises: a system power supply detection unit (21) that detects the phase of the AC voltage of a system power supply (2); a switching circuit (15) in which a pair of switching elements that operate according to a control signal based on a voltage command value are connected; a capacitor (17) connected in parallel to the switching circuit (15); a DC voltage detection unit (22) that detects the DC voltage of the capacitor (17); and a control device (18). The control device (18) has a control signal generating means (30) for generating a control signal based on a DC voltage command value for adjusting the DC voltage, and a correction amount calculating means (35) for calculating, as a correction amount for the DC voltage command value, a correction amount on the basis of the voltage command value on which the control signal is based for each cycle of the AC voltage of the system power supply (2).

Description

高調波抑制装置およびそれを有する空気調和システムHarmonic suppression device and air conditioning system having the same
 本開示は、高調波を抑制する高調波抑制装置およびそれを有する空気調和システムに関する。 The present disclosure relates to a harmonic suppression device that suppresses harmonics and an air conditioning system having the same.
 従来の高調波抑制装置は、スイッチング素子およびコンデンサを備えた主回路を有する。主回路は、リアクトルおよびフィルタを介して系統電源に接続される。また、主回路は、負荷電流検出部、補償電流検出部、系統電源検出部および電圧検出部の各種検出部の検出値を基に制御装置によって制御される。例えば、負荷電流検出部は、高調波発生負荷から発生する高調波を含む負荷電流を検出する検出部である。高調波抑制装置は、系統電源へ流れる高調波成分を抑制する電流を出力するために、直流側のコンデンサに系統電源との間で補償に必要な電位差を保持させる必要がある。そのため、高調波抑制装置は、高調波発生負荷から発生する高調波電流の抑制およびコンデンサの直流電圧の調整を行う。 A conventional harmonic suppression device has a main circuit with a switching element and a capacitor. The main circuit is connected to the system power supply via a reactor and a filter. Further, the main circuit is controlled by the control device based on the detection values of various detection units including the load current detection unit, the compensation current detection unit, the system power supply detection unit, and the voltage detection unit. For example, the load current detector is a detector that detects a load current containing harmonics generated from a harmonic generation load. In order to output a current that suppresses harmonic components flowing to the system power supply, the harmonic suppression device needs to maintain a potential difference necessary for compensation between the DC side capacitor and the system power supply. Therefore, the harmonic suppression device suppresses the harmonic current generated from the harmonic generation load and adjusts the DC voltage of the capacitor.
 系統電源の電源電圧とコンデンサの直流電圧との電位差が一定になるように直流電圧を調整する高調波抑制装置が知られている(例えば、特許文献1参照)。特許文献1に開示された高調波抑制装置は、系統電源の交流電圧を検出し、検出した電圧に基づいて制御装置の直流電圧指令値を一定の電位差が発生するように調整する。これにより、系統電源の電源電圧が変動した場合にも、電圧の変化に応じてコンデンサの直流電圧が調整され、電位差が一定に保たれる。高調波の補償率は、系統電源の電源電圧の変動にかかわらず、一定になる。 A harmonic suppression device is known that adjusts the DC voltage so that the potential difference between the power supply voltage of the system power supply and the DC voltage of the capacitor is constant (see, for example, Patent Document 1). The harmonic suppression device disclosed in Patent Document 1 detects the AC voltage of the system power supply, and adjusts the DC voltage command value of the control device based on the detected voltage so that a constant potential difference is generated. As a result, even when the power supply voltage of the system power supply fluctuates, the DC voltage of the capacitor is adjusted according to the voltage change, and the potential difference is kept constant. The harmonic compensation rate is constant regardless of fluctuations in the power supply voltage of the system power supply.
特開2012-50177号公報JP 2012-50177 A
 高調波発生負荷から発生する高調波は電源インピーダンスによって異なるため、系統電源の電源電圧と直流電圧との必要な電位差も電源インピーダンスによって異なる。特許文献1に開示された高調波抑制装置は、系統電源の電源電圧の変動に応じて、系統電源の電源電圧と直流電圧との電位差を一定に保とうとする。スイッチング素子が系統電源の電源電圧と直流電圧との電位差を一定に保とうとして必要以上に動作すると、スイッチング損失が増え、電力効率が低下してしまう。  Since the harmonics generated from the harmonic generation load differ depending on the power supply impedance, the required potential difference between the power supply voltage and the DC voltage of the system power supply also differs depending on the power supply impedance. The harmonic suppression device disclosed in Patent Literature 1 attempts to keep the potential difference between the power supply voltage of the system power supply and the DC voltage constant in accordance with fluctuations in the power supply voltage of the system power supply. If the switching element operates more than necessary to keep the potential difference between the power supply voltage of the system power supply and the DC voltage constant, the switching loss increases and the power efficiency decreases.
 本開示は、上記のような課題を解決するためになされたもので、系統電源の変動に応じて、電力効率よく高調波を抑制する高調波抑制装置およびそれを有する空気調和システムを提供するものである。 The present disclosure has been made to solve the above problems, and provides a harmonic suppression device that suppresses harmonics with high power efficiency in response to fluctuations in the power supply of the system, and an air conditioning system having the same. is.
 本開示に係る高調波抑制装置は、系統電源に接続された高調波発生負荷と並列に接続され、前記高調波発生負荷が発生する高調波を抑制する高調波抑制装置であって、前記系統電源の交流電圧の位相を検出する系統電源検出部と、電圧指令値に基づく制御信号にしたがって動作する一対のスイッチング素子が接続される構成を有し、前記一対のスイッチング素子の間に前記系統電源が配線を介して接続されるスイッチング回路と、前記スイッチング回路に並列に接続されたコンデンサと、前記コンデンサの直流電圧を検出する直流電圧検出部と、前記制御信号を前記スイッチング回路に出力することで、前記一対のスイッチング素子の各スイッチング素子の動作を制御する制御装置と、を有し、前記制御装置は、前記直流電圧を調整するための直流電圧指令値を基に前記制御信号を生成する制御信号生成手段と、前記直流電圧指令値に対する補正量として、前記系統電源の交流電圧の周期ごとに、前記制御信号の基になる前記電圧指令値に基づいて前記補正量を算出する補正量演算手段と、を有するものである。 A harmonic suppression device according to the present disclosure is a harmonic suppression device that is connected in parallel with a harmonic generation load connected to a system power supply and suppresses harmonics generated by the harmonic generation load, wherein the system power supply and a pair of switching elements that operate in accordance with a control signal based on a voltage command value are connected, and the system power supply is connected between the pair of switching elements. A switching circuit connected via wiring, a capacitor connected in parallel to the switching circuit, a DC voltage detection unit for detecting a DC voltage of the capacitor, and outputting the control signal to the switching circuit, and a control device for controlling the operation of each switching element of the pair of switching elements, wherein the control device generates the control signal based on a DC voltage command value for adjusting the DC voltage. generating means; and correction amount calculation means for calculating the correction amount as a correction amount for the DC voltage command value based on the voltage command value on which the control signal is based, for each cycle of the AC voltage of the system power supply. ,
 本開示に係る空気調和システムは、圧縮機、熱交換器および膨張弁が冷媒配管を介して接続された冷媒回路を有する空気調和装置と、前記系統電源から出力される交流電圧を直流電圧に変換して前記空気調和装置に電力を供給する高調波発生負荷と、前記高調波発生負荷が発生する高調波電流を抑制する上記の高調波抑制装置と、を有するものである。 An air conditioning system according to the present disclosure includes an air conditioning apparatus having a refrigerant circuit in which a compressor, a heat exchanger, and an expansion valve are connected via refrigerant pipes, and an AC voltage output from the system power supply is converted to a DC voltage. and the harmonic suppression device for suppressing the harmonic current generated by the harmonic generation load.
 本開示によれば、系統電源の周期ごとにスイッチング回路の電圧指令値を補正する補正量が算出されるため、系統電源の変動に応じてコンデンサの直流電圧が補正される。そのため、系統電源の電源電圧と直流電圧との間の電位差が必要以上に大きくなることが抑制され、電力効率よく高調波を抑制できる。 According to the present disclosure, since the correction amount for correcting the voltage command value of the switching circuit is calculated for each cycle of the system power supply, the DC voltage of the capacitor is corrected according to the fluctuation of the system power supply. Therefore, the potential difference between the power supply voltage of the system power supply and the DC voltage is suppressed from becoming larger than necessary, and harmonics can be suppressed with high power efficiency.
実施の形態1に係る高調波抑制装置を有する空気調和システムの一構成例を示すブロック図である。1 is a block diagram showing a configuration example of an air conditioning system having a harmonic suppression device according to Embodiment 1; FIG. 図1に示した空気調和装置の一構成例を示すブロック図である。2 is a block diagram showing one configuration example of the air conditioner shown in FIG. 1. FIG. 図1に示したスイッチング回路の一構成例を示す回路図である。2 is a circuit diagram showing a configuration example of a switching circuit shown in FIG. 1; FIG. 図1に示した制御装置の一構成例を示す機能ブロック図である。2 is a functional block diagram showing one configuration example of a control device shown in FIG. 1; FIG. 図4に示した補正量演算手段の一構成例を示す機能ブロック図である。FIG. 5 is a functional block diagram showing a configuration example of a correction amount computing means shown in FIG. 4; 図1に示した制御装置の一構成例を示すハードウェア構成図である。2 is a hardware configuration diagram showing one configuration example of a control device shown in FIG. 1; FIG. 図1に示した制御装置の別の構成例を示すハードウェア構成図である。2 is a hardware configuration diagram showing another configuration example of the control device shown in FIG. 1; FIG. 実施の形態1に係る高調波抑制装置において、図5に示した補正量演算手段の動作手順の一例を示すフローチャートである。6 is a flowchart showing an example of the operation procedure of correction amount computing means shown in FIG. 5 in the harmonic suppression device according to Embodiment 1; 実施の形態1に係る高調波抑制装置の動作手順の一例を示すフローチャートである。4 is a flow chart showing an example of the operating procedure of the harmonic suppression device according to Embodiment 1; 図1に示した系統電源が不平衡である場合において、実施の形態1に係る高調波抑制装置の動作手順の一例を示すフローチャートである。FIG. 2 is a flowchart showing an example of an operation procedure of the harmonic suppression device according to Embodiment 1 when the system power supply shown in FIG. 1 is unbalanced; FIG. 実施の形態2に係る高調波抑制装置の補正量算出手段の一構成例を示す機能ブロック図である。FIG. 9 is a functional block diagram showing one configuration example of correction amount calculation means of the harmonic suppression device according to Embodiment 2; 実施の形態2に係る高調波抑制装置の動作手順の一例を示すフローチャートである。9 is a flow chart showing an example of the operation procedure of the harmonic suppression device according to Embodiment 2; 実施の形態1および2に係る高調波抑制装置の設置例を模式的に示す図である。FIG. 2 is a diagram schematically showing an installation example of harmonic suppression devices according to Embodiments 1 and 2; 実施の形態1および2に係る高調波抑制装置の別の設置例を模式的に示す図である。FIG. 10 is a diagram schematically showing another installation example of the harmonic suppression devices according to Embodiments 1 and 2; 実施の形態1および2に係る高調波抑制装置の別の設置例を模式的に示す図である。FIG. 10 is a diagram schematically showing another installation example of the harmonic suppression devices according to Embodiments 1 and 2;
 本開示に係る高調波抑制装置および空気調和システムについて、図面を参照して説明する。なお、各図面は、各構成部材の相対的な寸法関係または形状等が実際のものとは異なる場合がある。 A harmonic suppression device and an air conditioning system according to the present disclosure will be described with reference to the drawings. In each drawing, the relative dimensional relationship, shape, etc. of each component may differ from the actual one.
実施の形態1.
 本実施の形態1の高調波抑制装置の構成を説明する。図1は、実施の形態1に係る高調波抑制装置を有する空気調和システムの一構成例を示すブロック図である。
Embodiment 1.
The configuration of the harmonic suppression device of the first embodiment will be described. FIG. 1 is a block diagram showing a configuration example of an air conditioning system having a harmonic suppression device according to Embodiment 1. FIG.
 図1に示すように、空気調和システム1は、高調波発生負荷3と、高調波抑制装置4と、空気調和装置50とを有する。空気調和システム1は、系統電源2に接続されている。系統電源2は、例えば、三相交流電源である。系統電源2は、R相、S相およびT相の電力線を介して、高調波発生負荷3に電力を供給する。高調波抑制装置4は、高調波発生負荷3から発生して系統電源2に流れる電流の高調波成分を抑制する。以下では、高調波成分の電流を高調波電流と称する。また、系統電源2が三相交流電源の場合で説明するが、単相交流電源であってもよい。 As shown in FIG. 1, the air conditioning system 1 has a harmonic generating load 3, a harmonic suppressing device 4, and an air conditioning device 50. The air conditioning system 1 is connected to a grid power supply 2 . The system power supply 2 is, for example, a three-phase AC power supply. A system power supply 2 supplies power to a harmonic generation load 3 via R-phase, S-phase and T-phase power lines. The harmonic suppression device 4 suppresses the harmonic components of the current generated from the harmonic generation load 3 and flowing into the system power supply 2 . Below, the current of the harmonic component is referred to as harmonic current. Moreover, although the case where the system power supply 2 is a three-phase AC power supply is demonstrated, it may be a single-phase AC power supply.
(高調波発生負荷3の構成)
 図1を参照して、高調波発生負荷3の構成を説明する。高調波発生負荷3は、系統電源2から出力される交流電力を直流電力に変換して空気調和装置50に電力を供給する電力変換装置である。高調波発生負荷3は、整流器6、直流リアクトル7、コンデンサ8および逆変換器(図示せず)等を有する。整流器6は、系統電源2から供給される交流電力を直流電力に整流する。整流器6の出力側には、直流リアクトル7を介して、コンデンサ8が空気調和装置50と並列に接続されている。コンデンサ8は、整流器6から直流リアクトル7を介して入力される直流電圧を平滑化する。
(Configuration of harmonic generation load 3)
The configuration of the harmonic generation load 3 will be described with reference to FIG. The harmonic generation load 3 is a power conversion device that converts AC power output from the system power supply 2 into DC power and supplies power to the air conditioner 50 . The harmonic generation load 3 has a rectifier 6, a DC reactor 7, a capacitor 8, an inverter (not shown), and the like. The rectifier 6 rectifies the AC power supplied from the system power supply 2 into DC power. A capacitor 8 is connected in parallel with an air conditioner 50 via a DC reactor 7 to the output side of the rectifier 6 . Capacitor 8 smoothes the DC voltage input from rectifier 6 via DC reactor 7 .
(空気調和装置50の構成)
 次に、空気調和装置50の構成を説明する。図2は、図1に示した空気調和装置の一構成例を示すブロック図である。図2に示すように、空気調和装置50は、室外機51および室内機52を有する。室外機51は、圧縮機9と、圧縮機9のモータ9aに接続されたインバータ回路55と、熱源側熱交換器10と、ファン53と、膨張弁12と、制御装置54とを有する。室内機52は、負荷側熱交換器11を有する。圧縮機9、熱源側熱交換器10、膨張弁12および負荷側熱交換器11が冷媒配管13で接続され、冷媒が循環する冷媒回路5が構成される。制御装置54は、インバータ回路55、膨張弁12およびファン53と信号線(図示せず)を介して接続され、インバータ回路55、膨張弁12およびファン53を制御する。なお、図2に示していないが、冷媒回路5に四方弁またはアキュムレータなどが設けられていてもよい。
(Configuration of air conditioner 50)
Next, the configuration of the air conditioner 50 will be described. FIG. 2 is a block diagram showing one configuration example of the air conditioner shown in FIG. As shown in FIG. 2 , the air conditioner 50 has an outdoor unit 51 and an indoor unit 52 . The outdoor unit 51 has a compressor 9 , an inverter circuit 55 connected to the motor 9 a of the compressor 9 , a heat source side heat exchanger 10 , a fan 53 , an expansion valve 12 and a controller 54 . The indoor unit 52 has a load side heat exchanger 11 . Compressor 9 , heat source side heat exchanger 10 , expansion valve 12 , and load side heat exchanger 11 are connected by refrigerant pipe 13 to form refrigerant circuit 5 in which refrigerant circulates. Control device 54 is connected to inverter circuit 55 , expansion valve 12 and fan 53 via signal lines (not shown) and controls inverter circuit 55 , expansion valve 12 and fan 53 . Although not shown in FIG. 2, the refrigerant circuit 5 may be provided with a four-way valve, an accumulator, or the like.
 圧縮機9は、低圧のガス冷媒を吸入し、吸引したガス冷媒を圧縮して高圧のガス冷媒にして吐出する。図2に示す構成例では、圧縮機9は、インバータ回路55によって運転する圧縮機である。 The compressor 9 sucks in low-pressure gas refrigerant, compresses the sucked gas refrigerant, converts it into high-pressure gas refrigerant, and discharges it. In the configuration example shown in FIG. 2 , the compressor 9 is a compressor operated by an inverter circuit 55 .
 熱源側熱交換器10および負荷側熱交換器11の各熱交換器は、伝熱管およびフィンを有する。空気調和装置50が冷媒回路5に四方弁(図示せず)が設けられている構成の場合、熱源側熱交換器10および負荷側熱交換器11のうち、一方が蒸発器として機能し、他方が凝縮器として機能する。 Each of the heat source side heat exchanger 10 and the load side heat exchanger 11 has heat transfer tubes and fins. When the air conditioner 50 has a configuration in which a four-way valve (not shown) is provided in the refrigerant circuit 5, one of the heat source side heat exchanger 10 and the load side heat exchanger 11 functions as an evaporator, and the other functions as an evaporator. acts as a condenser.
 膨張弁12は、図2に示すように、熱源側熱交換器10と負荷側熱交換器11との間に、冷媒配管13によって接続されている。膨張弁12は、凝縮器で液化された冷媒が蒸発器で蒸発しやすいように、流入する液冷媒を絞り作用によって減圧させる。また、膨張弁12は、蒸発器の負荷に応じて適切な冷媒量を維持するように開度を調整する。 The expansion valve 12 is connected by a refrigerant pipe 13 between the heat source side heat exchanger 10 and the load side heat exchanger 11, as shown in FIG. The expansion valve 12 reduces the pressure of the inflowing liquid refrigerant by a throttling action so that the refrigerant liquefied in the condenser evaporates easily in the evaporator. Moreover, the expansion valve 12 adjusts the opening degree so as to maintain an appropriate amount of refrigerant according to the load of the evaporator.
 なお、図2に示す構成例は、電力変換装置として機能する高調波発生負荷3に接続される回路がインバータ回路55の場合を示しているが、高調波発生負荷3から電力が供給される回路はインバータ回路55に限らない。制御装置54の設置場所は、室外機51に限らず、室内機52であってもよい。また、空調対象空間の空気を負荷側熱交換器11に供給するファン(図示せず)が室内機52に設けられていてもよい。 Note that the configuration example shown in FIG. 2 shows the case where the circuit connected to the harmonic generation load 3 functioning as a power conversion device is the inverter circuit 55, but the circuit to which power is supplied from the harmonic generation load 3 is shown. is not limited to the inverter circuit 55 . The installation location of the control device 54 is not limited to the outdoor unit 51 and may be the indoor unit 52 . Further, the indoor unit 52 may be provided with a fan (not shown) that supplies the air in the air-conditioned space to the load-side heat exchanger 11 .
(高調波抑制装置4の構成)
 次に、図1に示した高調波抑制装置4の構成を説明する。高調波抑制装置4は、高調波発生負荷3が系統電源2に流す高調波電流を抑制する。図1に示すように、高調波抑制装置4は、系統電源2に対して高調波発生負荷3と並列に接続されている。
(Configuration of harmonic suppression device 4)
Next, the configuration of the harmonic suppression device 4 shown in FIG. 1 will be described. The harmonic suppression device 4 suppresses the harmonic current that the harmonic generation load 3 causes to flow to the system power supply 2 . As shown in FIG. 1 , the harmonic suppression device 4 is connected in parallel with the harmonic generating load 3 with respect to the system power supply 2 .
 高調波抑制装置4は、リプルフィルタ14と、スイッチング回路15と、リアクトル16と、コンデンサ17と、制御装置18と、負荷電流検出部19と、補償電流検出部20と、系統電源検出部21と、直流電圧検出部22とを有する。負荷電流検出部19、補償電流検出部20、系統電源検出部21および直流電圧検出部22は、制御装置18と接続されている。 The harmonic suppression device 4 includes a ripple filter 14, a switching circuit 15, a reactor 16, a capacitor 17, a control device 18, a load current detector 19, a compensation current detector 20, and a system power detector 21. , and a DC voltage detection unit 22 . Load current detector 19 , compensation current detector 20 , system power detector 21 and DC voltage detector 22 are connected to controller 18 .
 リプルフィルタ14は、高調波抑制装置4から出力される補償電流iaのリプル成分を抑制する。リプルフィルタ14は、3つのリアクトル23と、3つのコンデンサ24とを有する。リアクトル23およびコンデンサ24は、系統電源2のR相、S相およびT相の各相に対応して設けられている。具体的には、系統電源2のR相、S相およびT相の各電力線に接続される配線にリアクトル23が接続されている。3つのコンデンサ24のうち、1つのコンデンサ24は、一方の端子が系統電源2のR相の電力線に配線を介して接続され、他方の端子は接続点25に接続されている。別の1つのコンデンサ24は、一方の端子が系統電源2のS相の電力線に配線を介して接続され、他方の端子は接続点25に接続されている。残りの1つのコンデンサ24は、一方の端子が系統電源2のT相の電力線に配線を介して接続され、他方の端子は接続点25に接続されている。 The ripple filter 14 suppresses the ripple component of the compensating current ia output from the harmonic suppression device 4 . Ripple filter 14 has three reactors 23 and three capacitors 24 . Reactor 23 and capacitor 24 are provided corresponding to each of the R-phase, S-phase and T-phase of system power supply 2 . Specifically, the reactor 23 is connected to wiring connected to each of the R-phase, S-phase, and T-phase power lines of the system power supply 2 . One of the three capacitors 24 has one terminal connected to the R-phase power line of the system power supply 2 via wiring, and the other terminal connected to the connection point 25 . Another capacitor 24 has one terminal connected to the S-phase power line of the system power supply 2 via wiring, and the other terminal connected to the connection point 25 . The remaining one capacitor 24 has one terminal connected to the T-phase power line of the system power supply 2 via wiring, and the other terminal connected to the connection point 25 .
 系統電源2のR相、S相およびT相の各電力線に接続される配線において、スイッチング回路15とリプルフィルタ14との間にリアクトル16が設けられている。3つのリアクトル16のうち、1つのリアクトル16は、系統電源2のR相のリプルフィルタ14とスイッチング回路15とを接続する。別の1つのリアクトル16は、系統電源2のS相のリプルフィルタ14とスイッチング回路15とを接続する。残りの1つのリアクトル16は、系統電源2のT相のリプルフィルタ14とスイッチング回路15とを接続する。コンデンサ17は、スイッチング回路15に並列に接続されている。コンデンサ17は、補償電流iaを出力するための電力源の役目を果たす。 A reactor 16 is provided between the switching circuit 15 and the ripple filter 14 in the wiring connected to each of the R-phase, S-phase, and T-phase power lines of the system power supply 2 . Of the three reactors 16 , one reactor 16 connects the R-phase ripple filter 14 of the system power supply 2 and the switching circuit 15 . Another reactor 16 connects the S-phase ripple filter 14 of the system power supply 2 and the switching circuit 15 . The remaining one reactor 16 connects the T-phase ripple filter 14 of the system power supply 2 and the switching circuit 15 . A capacitor 17 is connected in parallel with the switching circuit 15 . Capacitor 17 serves as a power source for outputting compensation current ia.
 スイッチング回路15の構成について説明する。図3は、図1に示したスイッチング回路の一構成例を示す回路図である。スイッチング回路15は、3つの素子60a~60cを有する。素子60aは、系統電源2のR相に対応して設けられている。素子60bは、系統電源2のS相に対応して設けられている。素子60cは、系統電源2のT相に対応して設けられている。3つの素子60a~60cの各素子は、一対のスイッチング素子61と、各スイッチング素子61に逆並列に接続されたダイオード62とを有する。 The configuration of the switching circuit 15 will be explained. FIG. 3 is a circuit diagram showing one configuration example of the switching circuit shown in FIG. The switching circuit 15 has three elements 60a-60c. Element 60 a is provided corresponding to the R phase of system power supply 2 . Element 60 b is provided corresponding to the S phase of system power supply 2 . The element 60 c is provided corresponding to the T phase of the system power supply 2 . Each of the three elements 60a-60c has a pair of switching elements 61 and a diode 62 connected in anti-parallel to each switching element 61. FIG.
 素子60aにおいて、一対のスイッチング素子61の間に系統電源2のR相の電力線が配線を介して接続される。素子60bにおいて、一対のスイッチング素子61の間に系統電源2のS相の電力線が配線を介して接続される。素子60cにおいて、一対のスイッチング素子61の間に系統電源2のT相の電力線が配線を介して接続される。スイッチング回路15の各スイッチング素子61は、制御装置18から入力される制御信号vcsにしたがって、オン動作およびオフ動作する。 In the element 60a, the R-phase power line of the system power supply 2 is connected between a pair of switching elements 61 via wiring. In the element 60b, the S-phase power line of the system power supply 2 is connected between the pair of switching elements 61 via wiring. In the element 60c, the T-phase power line of the system power supply 2 is connected between the pair of switching elements 61 via wiring. Each switching element 61 of the switching circuit 15 turns on and off according to the control signal vcs input from the control device 18 .
 なお、図3に示す各スイッチング素子61が形成される半導体は、シリコンに限らず、ワイドバンドギャップ半導体であってもよい。ワイドバンドギャップ半導体は、例えば、GaN(窒化ガリウム)、SiC(炭化珪素)、またはダイヤモンドである。 The semiconductor in which each switching element 61 shown in FIG. 3 is formed is not limited to silicon, and may be a wide bandgap semiconductor. Wide bandgap semiconductors are, for example, GaN (gallium nitride), SiC (silicon carbide), or diamond.
 スイッチング素子61がワイドバンドギャップ半導体によって形成される場合の効果について説明する。ワイドバンドギャップ半導体は、耐電圧が高く、許容電流密度も高い。そのため、耐電圧および許容電流密度について、シリコンに形成されるスイッチング素子と同等の性質を確保しながら、スイッチング素子61を小型化できる。その結果、スイッチング素子61を組み込んだ半導体モジュールも小型化できる。また、ワイドバンドギャップ半導体は、耐熱性もよい。そのため、ワイドバンドギャップ半導体で形成されるスイッチング素子61に対するヒートシンクを小型化できる。さらに、スイッチング素子61のベースとなる半導体にワイドバンドギャップ半導体を適用した場合、スイッチング素子61のオン動作時の抵抗値であるオン抵抗がベースとなる半導体がシリコンの場合よりも小さいので、導通損失が小さくなり、また、スイッチング損失も小さくなる。 A description will be given of the effects of the switching element 61 formed of a wide bandgap semiconductor. A wide bandgap semiconductor has a high withstand voltage and a high allowable current density. Therefore, the switching element 61 can be miniaturized while maintaining properties equivalent to those of the switching element formed of silicon in terms of withstand voltage and allowable current density. As a result, the semiconductor module incorporating the switching element 61 can also be miniaturized. Moreover, the wide bandgap semiconductor has good heat resistance. Therefore, the heat sink for the switching element 61 made of a wide bandgap semiconductor can be miniaturized. Furthermore, when a wide bandgap semiconductor is used as the base semiconductor of the switching element 61, the on-resistance, which is the resistance value when the switching element 61 is turned on, is smaller than when the base semiconductor is silicon, resulting in conduction loss. becomes smaller, and the switching loss also becomes smaller.
 次に、図1に示した負荷電流検出部19、系統電源検出部21、補償電流検出部20および直流電圧検出部22について説明する。 Next, the load current detector 19, the system power detector 21, the compensation current detector 20, and the DC voltage detector 22 shown in FIG. 1 will be described.
 負荷電流検出部19は、系統電源2から高調波発生負荷3に入力される負荷電流ifを検出する。負荷電流検出部19は、例えば、R相およびT相を流れる負荷電流ifkを検出する。負荷電流検出部19は、検出した負荷電流ifkの情報である負荷電流情報を制御装置18に送信する。負荷電流検出部19は、例えば、電流センサである。 The load current detection unit 19 detects the load current if input from the system power supply 2 to the harmonic generation load 3 . The load current detector 19 detects, for example, the load current ifk flowing through the R-phase and the T-phase. The load current detection unit 19 transmits load current information, which is information on the detected load current ifk, to the control device 18 . The load current detector 19 is, for example, a current sensor.
 なお、図1に示す構成例においては、系統電源2のS相の電力線に負荷電流を検出する負荷電流検出部が設けられていないが、S相の電力線を流れる負荷電流は、R相およびT相の電力線に流れる負荷電流に基づいて制御装置18によって算出される。系統電源2のS相の電力線に流れる負荷電流を検出する負荷電流検出部19が設けられていてもよい。 In the configuration example shown in FIG. 1, the S-phase power line of the system power supply 2 is not provided with a load current detection unit for detecting the load current. It is calculated by the controller 18 based on the load current flowing in the power line of the phase. A load current detector 19 that detects a load current flowing through the S-phase power line of the system power supply 2 may be provided.
 補償電流検出部20は、スイッチング回路15から系統電源2に出力される補償電流iaを検出する。補償電流検出部20は、検出した補償電流iaの情報を制御装置18に送信する。補償電流検出部20は、例えば、電流センサである。 The compensation current detector 20 detects the compensation current ia output from the switching circuit 15 to the system power supply 2 . The compensation current detector 20 transmits information on the detected compensation current ia to the control device 18 . The compensation current detector 20 is, for example, a current sensor.
 系統電源検出部21は、系統電源2の電源電圧が負電圧側から正電圧側に切り替わる点であるゼロクロス点を検出する。ゼロクロス点を検出する理由は、高調波抑制装置4が高調波電流を打ち消す補償電流iaを系統電源2の電源電圧に同期して出力できるように電源電圧の位相を検出するためである。系統電源検出部21は、系統電源2の電源電圧の位相だけでなく、電圧値も検出してもよい。 The system power supply detection unit 21 detects a zero crossing point at which the power supply voltage of the system power supply 2 switches from the negative voltage side to the positive voltage side. The reason for detecting the zero-cross point is to detect the phase of the power supply voltage so that the harmonic suppression device 4 can output the compensation current ia that cancels the harmonic current in synchronization with the power supply voltage of the system power supply 2 . The system power supply detector 21 may detect not only the phase of the power supply voltage of the system power supply 2 but also the voltage value.
 図1に示す構成例においては、系統電源検出部21は、R相の電力線およびS相の電力線の間に設けられている。系統電源検出部21は、R相およびS相の2相の電力線間の電圧である電源電圧Vrsを検出する。系統電源検出部21は、検出した電源電圧Vrsの電圧値および位相の情報を含む系統電源情報を制御装置18に送信する。 In the configuration example shown in FIG. 1, the system power detection unit 21 is provided between the R-phase power line and the S-phase power line. The system power detection unit 21 detects a power supply voltage Vrs, which is the voltage between two phases of the R-phase and S-phase power lines. The system power supply detection unit 21 transmits system power supply information including information on the detected voltage value and phase of the power supply voltage Vrs to the control device 18 .
 なお、図1に示す構成例では、S相およびT相の電力線間の電源電圧を検出する系統電源検出部と、T相およびR相の電力線間の電源電圧を検出する系統電源検出部とが設けられていない。S相およびT相の電力線間の電源電圧Vstの電圧値および位相と、T相およびR相の電力線間の電源電圧Vtrの電圧値および位相は、系統電源検出部21によって検出される電源電圧Vrsの系統電源情報に基づいて制御装置18によって算出される。S相およびT相の電力線間に系統電源検出部21が設けられていてもよく、T相およびR相の電力線間に系統電源検出部21が設けられていてもよい。 Note that in the configuration example shown in FIG. 1, a system power supply detection unit that detects the power supply voltage between the S-phase and T-phase power lines and a system power supply detection unit that detects the power supply voltage between the T-phase and R-phase power lines are provided. Not provided. The voltage value and phase of the power supply voltage Vst between the S-phase and T-phase power lines and the voltage value and phase of the power supply voltage Vtr between the T-phase and R-phase power lines are the power supply voltage Vrs detected by the system power supply detection unit 21. is calculated by the control device 18 based on the system power supply information. The system power supply detector 21 may be provided between the S-phase and T-phase power lines, and the system power supply detector 21 may be provided between the T-phase and R-phase power lines.
 直流電圧検出部22は、高調波電流を抑制する補償能力が得られるようにコンデンサ17の直流電圧vdcを調整するために、実際のコンデンサ17の直流電圧vdcを検出する。直流電圧検出部22は、検出した直流電圧vdcの情報を制御装置18に送信する。 The DC voltage detection unit 22 detects the actual DC voltage vdc of the capacitor 17 in order to adjust the DC voltage vdc of the capacitor 17 so as to obtain the compensation ability to suppress the harmonic current. The DC voltage detection unit 22 transmits information on the detected DC voltage vdc to the control device 18 .
 次に、図1に示した制御装置18の構成を説明する。図4は、図1に示した制御装置の一構成例を示す機能ブロック図である。制御装置18は、補償出力算出手段27、誤差量算出手段28、制御量算出手段29、制御信号生成手段30、位相検出手段31、アドレス決定手段32、基準電圧算出手段33、電圧指令値調整手段34および補正量演算手段35を有する。 Next, the configuration of the control device 18 shown in FIG. 1 will be described. FIG. 4 is a functional block diagram showing one configuration example of the control device shown in FIG. The control device 18 includes compensation output calculation means 27, error amount calculation means 28, control amount calculation means 29, control signal generation means 30, phase detection means 31, address determination means 32, reference voltage calculation means 33, and voltage command value adjustment means. 34 and correction amount calculation means 35 .
 電圧指令値調整手段34は、直流電圧検出部22で検出された直流電圧vdcと、直流電圧指令値の基準値である電圧指令基準値vdc*と、補正量演算手段35から出力される補正量Δvdcとが入力される。電圧指令値調整手段34は、直流電圧vdcと電圧指令基準値vdc*とを基に直流電圧指令値vdcbを算出し、算出した直流電圧指令値vdcbを補正量Δvdcで補正する。電圧指令値調整手段34は、補正後の直流電圧指令値vdcaを補償出力算出手段27に出力する。 The voltage command value adjustment means 34 adjusts the DC voltage vdc detected by the DC voltage detection section 22, the voltage command reference value vdc* which is the reference value of the DC voltage command value, and the correction amount output from the correction amount calculation means 35. Δvdc is input. The voltage command value adjusting means 34 calculates a DC voltage command value vdcb based on the DC voltage vdc and the voltage command reference value vdc*, and corrects the calculated DC voltage command value vdcb with a correction amount Δvdc. The voltage command value adjusting means 34 outputs the corrected DC voltage command value vdca to the compensation output calculating means 27 .
 補償出力算出手段27には、負荷電流検出部19から負荷電流ifkが入力され、電圧指令値調整手段34から直流電圧指令値vdcaが入力される。補償出力算出手段27は、直流電圧指令値vdcaおよび負荷電流ifkを基に補償電流指令値Ia*を算出する。 The compensation output calculation means 27 receives the load current ifk from the load current detection section 19 and receives the DC voltage command value vdca from the voltage command value adjustment means 34 . Compensation output calculation means 27 calculates compensation current command value Ia* based on DC voltage command value vdca and load current ifk.
 誤差量算出手段28には、補償出力算出手段27から補償電流指令値Ia*が入力され、補償電流検出部20から補償電流iaが入力される。誤差量算出手段28は、補償電流指令値Ia*と補償電流iaとの差である誤差量ΔIaを算出する。誤差量算出手段28は、算出した誤差量ΔIaを制御量算出手段29に出力する。 The error amount calculation means 28 receives the compensation current command value Ia* from the compensation output calculation means 27 and the compensation current ia from the compensation current detection section 20 . The error amount calculator 28 calculates an error amount ΔIa, which is the difference between the compensation current command value Ia* and the compensation current ia. The error amount calculation means 28 outputs the calculated error amount ΔIa to the control amount calculation means 29 .
 位相検出手段31は、系統電源検出部21から電源電圧Vrsの系統電源情報が入力されると、電源電圧Vrsの系統電源情報に基づいて、電源電圧Vstの電圧値および位相と、電源電圧Vtrの電圧値および位相とを算出する。位相検出手段31は、系統電源2の交流電圧の1周期における各相の位相θを検出し、検出した各相の位相θを補正量演算手段35、アドレス決定手段32および基準電圧算出手段33に出力する。 When the system power supply information of the power supply voltage Vrs is input from the system power supply detection unit 21, the phase detection means 31 detects the voltage value and phase of the power supply voltage Vst and the value of the power supply voltage Vtr based on the system power supply information of the power supply voltage Vrs. Calculate the voltage value and phase. The phase detection means 31 detects the phase θ of each phase in one cycle of the AC voltage of the system power supply 2 , and provides the detected phase θ of each phase to the correction amount calculation means 35 , the address determination means 32 and the reference voltage calculation means 33 . Output.
 アドレス決定手段32は、位相検出手段31から入力される位相θを基にアドレスを決定し、決定したアドレスの情報を含むアドレス情報を生成する。アドレス決定手段32は、アドレス情報を制御量算出手段29に出力する。 The address determination means 32 determines an address based on the phase θ input from the phase detection means 31, and generates address information including information on the determined address. The address determination means 32 outputs the address information to the control amount calculation means 29 .
 ここで、アドレスの具体例を説明する。例えば、スイッチング回路15の制御周波数が15kHzであり、系統電源2の交流周波数が60Hzの場合を考える。制御周波数の時間間隔が制御周期に相当する。この場合、電源電圧Vrsの1周期の間に、制御装置18はスイッチング回路15に対して、250回(=15000/60)の制御を行う。250回の各制御にアドレスが付与される。アドレス総数をNとすると、N=250となる。電源電圧Vrsの1周期について位相が250個のアドレスに等分され、各アドレスは電源電圧Vrsの位相角に対応する。この例の場合、隣り合うアドレス間の位相角は、1.44deg(=360deg/250)となる。 Here, a specific example of the address will be explained. For example, consider a case where the control frequency of the switching circuit 15 is 15 kHz and the AC frequency of the system power supply 2 is 60 Hz. A time interval of the control frequency corresponds to a control cycle. In this case, the control device 18 controls the switching circuit 15 250 times (=15000/60) during one cycle of the power supply voltage Vrs. An address is assigned to each of the 250 controls. If the total number of addresses is N, then N=250. One period of the power supply voltage Vrs is equally divided into 250 addresses, and each address corresponds to the phase angle of the power supply voltage Vrs. In this example, the phase angle between adjacent addresses is 1.44deg (=360deg/250).
 基準電圧算出手段33は、電源電圧Vrsの情報および位相θを基に基準電圧vkを算出する。基準電圧算出手段33は、算出した基準電圧vkを制御信号生成手段30に出力する。制御量算出手段29は、誤差量ΔIaおよびアドレス情報に基づいて制御量Icを算出する。 The reference voltage calculation means 33 calculates the reference voltage vk based on the information on the power supply voltage Vrs and the phase θ. The reference voltage calculator 33 outputs the calculated reference voltage vk to the control signal generator 30 . The control amount calculator 29 calculates the control amount Ic based on the error amount ΔIa and the address information.
 制御信号生成手段30には、直流電圧検出部22から直流電圧vdcが入力され、基準電圧算出手段33から基準電圧vkが入力され、制御量算出手段29から制御量Icが入力される。制御信号生成手段30は、直流電圧vdcと、基準電圧vkと、制御量Icとを基に電圧指令値vcs*を生成する。制御量Icは、直流電圧指令値vdca、負荷電流ifkおよび補償電流iaを基に算出される値である。制御信号生成手段30は、電圧指令値vcs*に基づいて制御信号vcsを生成する。制御信号生成手段30は、生成した電圧指令値vcs*を補正量演算手段35に出力し、生成した制御信号vcsをスイッチング回路15に出力する。 The control signal generation means 30 receives the DC voltage vdc from the DC voltage detection section 22 , the reference voltage vk from the reference voltage calculation means 33 , and the control amount Ic from the control amount calculation means 29 . The control signal generator 30 generates a voltage command value vcs* based on the DC voltage vdc, the reference voltage vk, and the control amount Ic. The control amount Ic is a value calculated based on the DC voltage command value vdca, the load current ifk and the compensation current ia. The control signal generating means 30 generates the control signal vcs based on the voltage command value vcs*. The control signal generator 30 outputs the generated voltage command value vcs* to the correction amount calculator 35 and outputs the generated control signal vcs to the switching circuit 15 .
 制御信号生成手段30が生成する制御信号vcsについて説明する。制御信号vcsは、電圧指令値vcs*となる信号波形と、搬送波との2種類の波形を基に生成される。搬送波は、例えば、三角波である。3つの素子60a~60cのうち、1つの素子60aに対する制御信号vcsの場合を例として説明する。制御信号vcsは、信号波形および三角波の両波形のレベルを比較して、信号波>三角波のとき、一対のスイッチング素子61のうち、一方のスイッチング素子61をオンさせ、他方のスイッチング素子61をオフにする。一方、信号波<三角波のとき、制御信号vcsは、一対のスイッチング素子61のうち、一方のスイッチング素子61をオフにし、他方のスイッチング素子61をオンにする。このように、制御信号vcsは電圧指令値vcs*を基に生成される。 The control signal vcs generated by the control signal generating means 30 will be described. The control signal vcs is generated based on two types of waveforms: a signal waveform that becomes the voltage command value vcs*, and a carrier wave. A carrier wave is, for example, a triangular wave. A control signal vcs for one element 60a out of three elements 60a to 60c will be described as an example. The control signal vcs compares the levels of both the signal waveform and the triangular wave, and turns on one switching element 61 of the pair of switching elements 61 and turns off the other switching element 61 when the signal wave > the triangular wave. to On the other hand, when signal wave<triangular wave, the control signal vcs turns off one switching element 61 of the pair of switching elements 61 and turns on the other switching element 61 . Thus, the control signal vcs is generated based on the voltage command value vcs*.
 補正量演算手段35は、電圧指令値vcs*と位相θとを基に、直流電圧指令値vdcbを補正する補正量Δvdcを算出する。補正量演算手段35は、算出した補正量Δvdcを電圧指令値調整手段34に出力する。 The correction amount calculation means 35 calculates a correction amount Δvdc for correcting the DC voltage command value vdcb based on the voltage command value vcs* and the phase θ. The correction amount computing means 35 outputs the calculated correction amount Δvdc to the voltage command value adjusting means 34 .
 図5は、図4に示した補正量演算手段の一構成例を示す機能ブロック図である。図5に示すように、補正量演算手段35は、リミット値比較手段36と、カウント値算出手段37と、補正量算出手段38とを有する。 FIG. 5 is a functional block diagram showing one configuration example of the correction amount calculation means shown in FIG. As shown in FIG. 5 , the correction amount calculation means 35 has limit value comparison means 36 , count value calculation means 37 and correction amount calculation means 38 .
 リミット値比較手段36は、予め設定された上限値Mmxおよび下限値Mmnを記憶している。リミット値比較手段36は、系統電源2の交流電圧の1周期の間、制御周期ごとに制御信号vcsの基になる電圧指令値vcs*の瞬時値Mvを、上限値Mmxおよび下限値Mmnのそれぞれと比較する。リミット値比較手段36は、瞬時値Mvが上限値Mmxより大きい場合および下限値Mmnより小さい場合のいずれかの場合をカウントする。つまり、リミット値比較手段36は、電圧指令値vcs*の瞬時値Mvが、上限値Mmx以上および下限値Mmn以下の範囲である指令範囲から外れる場合をカウントする。系統電源2がR相、S相およびT相の三相の場合、リミット値比較手段36は、系統電源2の交流電圧の1周期の間、相毎に電圧指令値vcs*の瞬時値Mvが指令範囲から外れる場合をカウントする。系統電源2の交流電圧の1周期は、例えば、R相を基準にすると、R相の位相θのクロスポイント間の時間である。 The limit value comparison means 36 stores a preset upper limit value Mmx and a lower limit value Mmn. The limit value comparison means 36 compares the instantaneous value Mv of the voltage command value vcs*, which is the basis of the control signal vcs, to the upper limit value Mmx and the lower limit value Mmn for each control cycle during one cycle of the AC voltage of the system power supply 2. Compare with A limit value comparison means 36 counts the cases where the instantaneous value Mv is larger than the upper limit value Mmx or smaller than the lower limit value Mmn. In other words, the limit value comparison means 36 counts the number of cases where the instantaneous value Mv of the voltage command value vcs* is out of the command range, which is the range of the upper limit value Mmx or more and the lower limit value Mmn or less. When the system power supply 2 has three phases of R phase, S phase and T phase, the limit value comparison means 36 determines that the instantaneous value Mv of the voltage command value vcs* for each phase during one cycle of the AC voltage of the system power supply 2 is Counts cases outside the command range. One cycle of the AC voltage of the system power supply 2 is, for example, the time between the cross points of the phase θ of the R phase when the R phase is used as a reference.
 カウント値算出手段37は、系統電源2の交流電圧の1周期の間にリミット値比較手段36によって積算されたカウント値を用いて、全相のカウント値の平均値Cavを算出する。全相のカウント値の平均値をカウント平均値と称する。系統電源2が単相の場合、カウント値算出手段37は、平均値を算出しなくてよい。 The count value calculation means 37 uses the count values integrated by the limit value comparison means 36 during one cycle of the AC voltage of the system power supply 2 to calculate the average value Cav of the count values of all phases. The average value of the count values of all phases is called the count average value. When the system power supply 2 is single-phase, the count value calculation means 37 does not need to calculate the average value.
 ここで、カウント平均値Cavは、R相、S相およびT相について、電圧指令値vcs*の瞬時値Mvが指定範囲から外れた制御回数の平均値である。例えば、スイッチング回路15の制御周波数が15kHzである場合、1つのカウント値は、約0.67×10-4[秒]の時間に相当する。つまり、カウント平均値Cavは、系統電源の交流電圧の1周期において、R相、S相およびT相のいずれかの相の電圧指令値vcs*の瞬時値Mvが指定範囲から外れる時間に換算される。 Here, the count average value Cav is the average value of the number of times the instantaneous value Mv of the voltage command value vcs* is out of the designated range for the R phase, S phase, and T phase. For example, when the control frequency of the switching circuit 15 is 15 kHz, one count value corresponds to approximately 0.67×10 −4 [seconds]. That is, the count average value Cav is converted into the time during which the instantaneous value Mv of the voltage command value vcs* of any one of the R-phase, S-phase and T-phase is out of the specified range in one cycle of the AC voltage of the system power supply. be.
 また、カウント値算出手段37は、系統電源2の電源電圧が不平衡か否かを、次のようにして判定する。カウント値算出手段37は、R相、S相およびT相の三相のカウント値を比較し、これら三相のカウント値のうち、最大値と最小値との差である最大差を算出する。そして、カウント値算出手段37は、算出した最大差が予め決められた閾値である不平衡判定閾値thb1以上か否かを判定する。カウント値算出手段37は、最大差が不平衡判定閾値thb1未満である場合、系統電源2に不平衡が発生していないと判定する。一方、カウント値算出手段37は、最大差が不平衡判定閾値thb1以上である場合、系統電源2に不平衡が発生していると判定する。なお、不平衡判定閾値thb1は、予め決められた固定値に限らない。カウント値算出手段37が負荷電流ifkの大きさに対応して不平衡判定閾値thb1を変更してもよい。 Also, the count value calculation means 37 determines whether or not the power supply voltage of the system power supply 2 is unbalanced as follows. The count value calculation means 37 compares the count values of the three phases of the R phase, the S phase and the T phase, and calculates the maximum difference between the maximum value and the minimum value among the count values of these three phases. Then, the count value calculating means 37 determines whether or not the calculated maximum difference is equal to or greater than the imbalance determination threshold thb1, which is a predetermined threshold. The count value calculation means 37 determines that the system power supply 2 is not unbalanced when the maximum difference is less than the imbalance determination threshold thb1. On the other hand, the count value calculation means 37 determines that the system power supply 2 is unbalanced when the maximum difference is equal to or greater than the imbalance determination threshold thb1. Note that the imbalance determination threshold thb1 is not limited to a predetermined fixed value. The count value calculation means 37 may change the imbalance determination threshold thb1 in accordance with the magnitude of the load current ifk.
 補正量算出手段38には、予め決められたカウント目標値とカウント値算出手段37から出力されるカウント値との差であるカウント差が入力される。補正量算出手段38は、カウント差が予め決められた範囲内である場合、直流電圧指令値が低くなるように補正量Δvdcを小さくする。また、補正量算出手段38は、カウント差が予め決められた範囲よりも大きい場合、直流電圧指令値が低くなるように補正量Δvdcを小さくする。これにより、コンデンサ17の直流電圧vdcが小さくなる。一方、補正量算出手段38は、カウント差が予め決められた範囲よりも小さい場合、直流電圧指令値が高くなるように補正量Δvdcを大きくする。これにより、コンデンサ17の直流電圧vdcが大きくなる。 A count difference, which is the difference between a predetermined count target value and the count value output from the count value calculation means 37 , is input to the correction amount calculation means 38 . If the count difference is within a predetermined range, the correction amount calculator 38 reduces the correction amount Δvdc so that the DC voltage command value becomes low. Further, when the count difference is larger than the predetermined range, the correction amount calculator 38 reduces the correction amount Δvdc so that the DC voltage command value becomes low. As a result, the DC voltage vdc across capacitor 17 is reduced. On the other hand, when the count difference is smaller than the predetermined range, the correction amount calculator 38 increases the correction amount Δvdc so that the DC voltage command value becomes higher. As a result, the DC voltage vdc of the capacitor 17 increases.
 また、補正量算出手段38は、カウント値算出手段37によって系統電源2が不平衡と判定された場合、カウント値算出手段37によって算出された最大差が予め決められた範囲に入るように直流電圧vdcを調整する補正量Δvdcを算出する。これにより、カウント値が最大値となる相において、高調波を抑制するための直流電圧vdcが得られるため、不平衡時でも系統電源2の相ごとに流れる負荷電流の大きさが異なる場合に対して不足する補償能力を補うことができる。ここでは、カウント値の最大差を補正量Δvdcの算出の判定値とする場合で説明したが、スイッチング損失の大きさまたは高調波抑制装置4の運転継続か否かを考慮した判定値を用いてもよい。 Further, when the count value calculation means 37 determines that the system power supply 2 is unbalanced, the correction amount calculation means 38 adjusts the DC voltage so that the maximum difference calculated by the count value calculation means 37 falls within a predetermined range. A correction amount Δvdc for adjusting vdc is calculated. As a result, the DC voltage vdc for suppressing harmonics is obtained in the phase where the count value is the maximum value. can make up for the lack of compensatory capacity. Here, the case where the maximum difference of the count values is used as the determination value for calculating the correction amount Δvdc has been described. good too.
 このようにして、本実施の形態1の高調波抑制装置4は、系統電源2が不平衡の場合でも、高調波抑制性能が不足することなく、直流電圧vdcを制御できる。なお、ここでは、カウント値がカウント目標値と比較されているが、比較対象となる基準値はカウント目標値に限らない。また、カウント値算出手段37がカウント目標値とカウント値との差を算出する演算器を有していてもよい。さらに、カウント値算出手段37が、カウント差が予め決められた範囲内であるか否かを判定し、判定結果を補正量算出手段38に通知してもよい。 In this manner, the harmonic suppression device 4 of Embodiment 1 can control the DC voltage vdc without insufficient harmonic suppression performance even when the system power supply 2 is unbalanced. Although the count value is compared with the count target value here, the reference value to be compared is not limited to the count target value. Moreover, the count value calculation means 37 may have a calculator for calculating the difference between the count target value and the count value. Furthermore, the count value calculation means 37 may determine whether or not the count difference is within a predetermined range, and notify the correction amount calculation means 38 of the determination result.
 ここで、図1に示した制御装置18のハードウェア構成の一例を説明する。図6は、図1に示した制御装置の一構成例を示すハードウェア構成図である。制御装置18の各種機能が専用のハードウェアで実行される場合、図1に示した制御装置18は、図6に示すように、処理回路80で構成される。図4に示した補償出力算出手段27、誤差量算出手段28、制御量算出手段29、制御信号生成手段30、位相検出手段31、アドレス決定手段32、基準電圧算出手段33、電圧指令値調整手段34および補正量演算手段35の各機能は、処理回路80により実現される。 Here, an example of the hardware configuration of the control device 18 shown in FIG. 1 will be described. FIG. 6 is a hardware configuration diagram showing one configuration example of the control device shown in FIG. When various functions of the controller 18 are performed by dedicated hardware, the controller 18 shown in FIG. 1 is configured with a processing circuit 80 as shown in FIG. Compensation output calculation means 27, error amount calculation means 28, control amount calculation means 29, control signal generation means 30, phase detection means 31, address determination means 32, reference voltage calculation means 33, and voltage command value adjustment means shown in FIG. 34 and correction amount calculation means 35 are implemented by a processing circuit 80 .
 各機能がハードウェアで実行される場合、処理回路80は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、または、これらを組み合わせたものに該当する。補償出力算出手段27、誤差量算出手段28、制御量算出手段29、制御信号生成手段30、位相検出手段31、アドレス決定手段32、基準電圧算出手段33、電圧指令値調整手段34および補正量演算手段35の各手段の機能のそれぞれを処理回路80で実現してもよい。また、補償出力算出手段27、誤差量算出手段28、制御量算出手段29、制御信号生成手段30、位相検出手段31、アドレス決定手段32、基準電圧算出手段33、電圧指令値調整手段34および補正量演算手段35の各手段の機能を1つの処理回路80で実現してもよい。 When each function is performed by hardware, the processing circuit 80 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate). Array), or a combination thereof. Compensation output calculation means 27, error amount calculation means 28, control amount calculation means 29, control signal generation means 30, phase detection means 31, address determination means 32, reference voltage calculation means 33, voltage command value adjustment means 34, and correction amount calculation Each function of each means of the means 35 may be realized by the processing circuit 80 . Compensation output calculation means 27, error amount calculation means 28, control amount calculation means 29, control signal generation means 30, phase detection means 31, address determination means 32, reference voltage calculation means 33, voltage command value adjustment means 34, and correction The function of each means of the quantity calculation means 35 may be implemented by one processing circuit 80 .
 また、図4に示した制御装置18の別のハードウェア構成の一例を説明する。図7は、図1に示した制御装置の別の構成例を示すハードウェア構成図である。制御装置18の各種機能がソフトウェアで実行される場合、図4に示した制御装置18は、図7に示すように、CPU(Central Processing Unit)等のプロセッサ81、およびメモリ82で構成される。補償出力算出手段27、誤差量算出手段28、制御量算出手段29、制御信号生成手段30、位相検出手段31、アドレス決定手段32、基準電圧算出手段33、電圧指令値調整手段34および補正量演算手段35の各機能は、プロセッサ81およびメモリ82により実現される。図7は、プロセッサ81およびメモリ82がバス83を介して互いに通信接続されることを示す。 An example of another hardware configuration of the control device 18 shown in FIG. 4 will also be described. FIG. 7 is a hardware configuration diagram showing another configuration example of the control device shown in FIG. When various functions of the control device 18 are executed by software, the control device 18 shown in FIG. 4 is composed of a processor 81 such as a CPU (Central Processing Unit) and a memory 82, as shown in FIG. Compensation output calculation means 27, error amount calculation means 28, control amount calculation means 29, control signal generation means 30, phase detection means 31, address determination means 32, reference voltage calculation means 33, voltage command value adjustment means 34, and correction amount calculation Each function of means 35 is implemented by processor 81 and memory 82 . FIG. 7 shows that processor 81 and memory 82 are communicatively coupled to each other via bus 83 .
 各機能がソフトウェアで実行される場合、補償出力算出手段27、誤差量算出手段28、制御量算出手段29、制御信号生成手段30、位相検出手段31、アドレス決定手段32、基準電圧算出手段33、電圧指令値調整手段34および補正量演算手段35の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアは、プログラムとして記述され、メモリ82に格納される。プロセッサ81は、メモリ82に記憶されたプログラムを読み出して実行することにより、各手段の機能を実現する。メモリ82が閾値Ithを記憶している。 When each function is executed by software, compensation output calculation means 27, error amount calculation means 28, control amount calculation means 29, control signal generation means 30, phase detection means 31, address determination means 32, reference voltage calculation means 33, The functions of the voltage command value adjusting means 34 and the correction amount calculating means 35 are realized by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in memory 82 . The processor 81 implements the functions of each means by reading and executing the programs stored in the memory 82 . A memory 82 stores the threshold Ith.
 メモリ82として、例えば、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable and Programmable ROM)およびEEPROM(Electrically Erasable and Programmable ROM)等の不揮発性の半導体メモリが用いられる。また、メモリ82として、RAM(Random Access Memory)の揮発性の半導体メモリが用いられてもよい。さらに、メモリ82として、磁気ディスク、フレキシブルディスク、光ディスク、CD(Compact Disc)、MD(Mini Disc)およびDVD(Digital Versatile Disc)等の着脱可能な記録媒体が用いられてもよい。 As the memory 82, for example, non-volatile semiconductor memories such as ROM (Read Only Memory), flash memory, EPROM (Erasable and Programmable ROM) and EEPROM (Electrically Erasable and Programmable ROM) are used. As the memory 82, a volatile semiconductor memory of RAM (Random Access Memory) may be used. Furthermore, as the memory 82, removable recording media such as magnetic disks, flexible disks, optical disks, CDs (Compact Discs), MDs (Mini Discs) and DVDs (Digital Versatile Discs) may be used.
 次に、本実施の形態1の高調波抑制装置4の動作を説明する。はじめに、図5に示した補正量演算手段35の動作を説明する。図8は、実施の形態1に係る高調波抑制装置において、図5に示した補正量演算手段の動作手順の一例を示すフローチャートである。 Next, the operation of the harmonic suppression device 4 of Embodiment 1 will be described. First, the operation of the correction amount computing means 35 shown in FIG. 5 will be described. 8 is a flowchart showing an example of the operation procedure of the correction amount computing means shown in FIG. 5 in the harmonic suppression device according to Embodiment 1. FIG.
 (ステップS1)
 リミット値比較手段36は、系統電源2の電源電圧が周期の切り替わりのタイミングか否かを判定する。リミット値比較手段36は、系統電源2の電源電圧が次の1周期に切り替わるタイミングである場合、ステップS6の処理に進む。一方、リミット値比較手段36は、系統電源2の電源電圧が次の1周期に切り替わるタイミングでない場合、ステップS2の処理に進む。
(Step S1)
The limit value comparison means 36 determines whether or not the power supply voltage of the system power supply 2 is at the timing of switching the cycle. When the power supply voltage of the system power supply 2 is switched to the next cycle, the limit value comparison means 36 proceeds to the process of step S6. On the other hand, when the power supply voltage of the system power supply 2 does not switch to the next cycle, the limit value comparison means 36 proceeds to the process of step S2.
 (ステップS2)
 リミット値比較手段36は、R相、S相およびT相の三相のうち、電圧指令値vcs*の瞬時値Mvが上限値Mmxより大きい値になる相があるか否かを判定する。リミット値比較手段36は、三相のうち、電圧指令値vcs*の瞬時値Mvが上限値Mmxより大きい値になる相がある場合、ステップS3の処理に進む。一方、リミット値比較手段36は、三相のうち、電圧指令値vcs*の瞬時値Mvが上限値Mmxより大きい値になる相がない場合、ステップS4の処理に進む。
(Step S2)
The limit value comparison means 36 determines whether or not there is a phase in which the instantaneous value Mv of the voltage command value vcs* is greater than the upper limit value Mmx among the three phases of the R-phase, S-phase and T-phase. If there is a phase in which the instantaneous value Mv of the voltage command value vcs* is greater than the upper limit value Mmx among the three phases, the limit value comparison means 36 proceeds to the processing of step S3. On the other hand, if there is no phase in which the instantaneous value Mv of the voltage command value vcs* is greater than the upper limit value Mmx among the three phases, the limit value comparison means 36 proceeds to the processing of step S4.
 (ステップS3)
 リミット値比較手段36は、R相、S相およびT相のうち、電圧指令値vcs*の瞬時値Mvが上限値Mmxより大きい値になる相のカウント値を1つ増やす。リミット値比較手段36は、対象相のカウント値を1つ増やす処理を行った後、処理を終了する。
(Step S3)
The limit value comparison means 36 increments by one the count value of the phase, among the R phase, S phase and T phase, for which the instantaneous value Mv of the voltage command value vcs* is greater than the upper limit value Mmx. The limit value comparison means 36 ends the process after performing the process of increasing the count value of the target phase by one.
 (ステップS4)
 リミット値比較手段36は、R相、S相およびT相の三相のうち、電圧指令値vcs*の瞬時値Mvが下限値Mmnより小さい値になる相があるか否かを判定する。リミット値比較手段36は、三相のうち、電圧指令値vcs*の瞬時値Mvが下限値Mmnより小さい値になる相がある場合、ステップS5の処理に進む。一方、リミット値比較手段36は、三相のうち、電圧指令値vcs*の瞬時値Mvが上限値Mmxより小さい値になる相がない場合、処理を終了する。
(Step S4)
The limit value comparison means 36 determines whether or not there is a phase among the three phases of the R phase, the S phase and the T phase for which the instantaneous value Mv of the voltage command value vcs* is smaller than the lower limit value Mmn. If there is a phase in which the instantaneous value Mv of the voltage command value vcs* is smaller than the lower limit value Mmn among the three phases, the limit value comparison means 36 proceeds to the processing of step S5. On the other hand, limit value comparison means 36 terminates the process if none of the three phases have instantaneous value Mv of voltage command value vcs* smaller than upper limit value Mmx.
 (ステップS5)
 リミット値比較手段36は、R相、S相およびT相のうち、電圧指令値vcs*の瞬時値Mvが下限値Mmnより小さい値になる相のカウント値を1つ増やす。リミット値比較手段36は、対象相のカウント値を1つ増やす処理を行った後、処理を終了する。
(Step S5)
Limit value comparison means 36 increments by one the count value of the phase, among R phase, S phase and T phase, for which instantaneous value Mv of voltage command value vcs* is smaller than lower limit value Mmn. The limit value comparison means 36 ends the process after performing the process of increasing the count value of the target phase by one.
 (ステップS6)
 リミット値比較手段36は、R相、S相およびT相の全ての相のカウント値をカウント値算出手段37に送信する。その後、リミット値比較手段36は、全ての相のカウント値をリセットする。リミット値比較手段36は、全ての相のカウント値をリセットした後、処理を終了する。
(Step S6)
The limit value comparison means 36 transmits the count values of all phases of the R phase, S phase and T phase to the count value calculation means 37 . After that, the limit value comparing means 36 resets the count values of all phases. After resetting the count values of all the phases, the limit value comparison means 36 terminates the process.
 このようにして、本実施の形態1における制御装置18は、R相、S相およびT相の相毎に電圧指令値vcs*の瞬時値Mvに基づいてカウント値を算出する。 Thus, the control device 18 in the first embodiment calculates the count value based on the instantaneous value Mv of the voltage command value vcs* for each of the R phase, S phase and T phase.
 次に、図4に示した制御装置18の動作を説明する。図9は、実施の形態1に係る高調波抑制装置の動作手順の一例を示すフローチャートである。図9は、制御装置18が直流電圧指令値を補正する動作手順を示す。 Next, the operation of the control device 18 shown in FIG. 4 will be described. 9 is a flow chart showing an example of the operation procedure of the harmonic suppression device according to Embodiment 1. FIG. FIG. 9 shows an operation procedure for the controller 18 to correct the DC voltage command value.
 (ステップS10)
 リミット値比較手段36は、系統電源2の電源電圧が周期の切り替わりのタイミングか否かを判定する。リミット値比較手段36は、系統電源2の電源電圧が次の1周期に切り替わるタイミングである場合、ステップS11の処理に進む。一方、リミット値比較手段36は、系統電源2の電源電圧が次の1周期に切り替わるタイミングでない場合、処理を終了する。
(Step S10)
The limit value comparison means 36 determines whether or not the power supply voltage of the system power supply 2 is at the timing of switching the period. When the power supply voltage of the system power supply 2 is switched to the next cycle, the limit value comparison means 36 proceeds to the process of step S11. On the other hand, if the power supply voltage of the system power supply 2 does not switch to the next cycle, the limit value comparison means 36 terminates the process.
 (ステップS11)
 カウント値算出手段37は、R相、S相およびT相の各相についてリミット値比較手段36から取得したカウント値を用いて、これらの平均値であるカウント平均値Cavを算出する。
(Step S11)
The count value calculation means 37 uses the count values acquired from the limit value comparison means 36 for each of the R-phase, S-phase and T-phase to calculate a count average value Cav, which is an average value thereof.
 (ステップS12)
 カウント値算出手段37は、ステップS11で算出したカウント平均値Cavが予め決められた範囲である時間範囲内であるか否かを判定する。時間範囲は、予め設定されており、第2閾値Cth2以上、第1閾値Cth1以下の範囲である。判定の結果、カウント平均値Cavが時間範囲内である場合、補正量算出手段38はステップS13の処理に進む。カウント平均値Cavが時間範囲外である場合、カウント値算出手段37は、ステップS14の処理に進む。
(Step S12)
The count value calculation means 37 determines whether or not the count average value Cav calculated in step S11 is within a predetermined time range. The time range is set in advance, and is a range of the second threshold Cth2 or more and the first threshold Cth1 or less. As a result of determination, when the count average value Cav is within the time range, the correction amount calculation means 38 proceeds to the processing of step S13. When the count average value Cav is outside the time range, the count value calculation means 37 proceeds to the process of step S14.
 (ステップS13)
 補正量算出手段38は、予め設定された値だけ直流電圧指令値を小さくする補正量Δvdcを算出する。補正量算出手段38が補正量Δvdcを算出した後、制御装置18はステップS17の処理に進む。ここでは、一例として、直流電圧指令値を調整する値を予め設定された値の場合で説明しているが、直流電圧指令値を調整する値は、カウント平均値Cavまたは負荷電流ifkの大きさに対応して決定してもよい。
(Step S13)
A correction amount calculator 38 calculates a correction amount Δvdc that reduces the DC voltage command value by a preset value. After the correction amount calculator 38 calculates the correction amount Δvdc, the control device 18 proceeds to the process of step S17. Here, as an example, a case where the value for adjusting the DC voltage command value is a preset value is described, but the value for adjusting the DC voltage command value is the count average value Cav or the magnitude of the load current ifk. may be determined corresponding to
 (ステップS14)
 カウント値算出手段37は、ステップS11で算出したカウント平均値Cavが第1閾値Cth1よりも大きいか否かを判定する。判定の結果、カウント平均値Cavが第1閾値Cth1より大きい場合、補正量算出手段38はステップS15の処理に進む。一方、カウント平均値Cavが第1閾値Cth1より大きくない場合、カウント平均値Cavは第2閾値Cth2未満となり、補正量算出手段38は、ステップS16の処理に進む。
(Step S14)
The count value calculation means 37 determines whether or not the count average value Cav calculated in step S11 is greater than the first threshold value Cth1. As a result of determination, when the count average value Cav is larger than the first threshold value Cth1, the correction amount calculation means 38 proceeds to the process of step S15. On the other hand, when the count average value Cav is not larger than the first threshold value Cth1, the count average value Cav becomes less than the second threshold value Cth2, and the correction amount calculation means 38 proceeds to the processing of step S16.
 (ステップS15)
 補正量算出手段38は、予め設定された値だけ直流電圧指令値を大きくする補正量Δvdcを算出する。補正量算出手段38が補正量Δvdcを算出した後、制御装置18はステップS17の処理に進む。直流電圧指令値を調整する値は、予め設定された値に限らず、カウント平均値Cavまたは負荷電流ifkの大きさに対応して決定してもよい。
(Step S15)
A correction amount calculator 38 calculates a correction amount Δvdc for increasing the DC voltage command value by a preset value. After the correction amount calculator 38 calculates the correction amount Δvdc, the control device 18 proceeds to the process of step S17. A value for adjusting the DC voltage command value is not limited to a preset value, and may be determined according to the magnitude of the count average value Cav or the load current ifk.
 (ステップS16)
 補正量算出手段38は、予め設定された値だけ直流電圧指令値を小さくする補正量Δvdcを算出する。補正量算出手段38が補正量Δvdcを算出した後、制御装置18はステップS17の処理に進む。直流電圧指令値を調整する値は、予め設定された値に限らず、カウント平均値Cavまたは負荷電流ifkの大きさに対応して決定してもよい。
(Step S16)
A correction amount calculator 38 calculates a correction amount Δvdc that reduces the DC voltage command value by a preset value. After the correction amount calculator 38 calculates the correction amount Δvdc, the control device 18 proceeds to the process of step S17. A value for adjusting the DC voltage command value is not limited to a preset value, and may be determined according to the magnitude of the count average value Cav or the load current ifk.
 (ステップS17)
 電圧指令値調整手段34は、補正量Δvdcを用いて直流電圧指令値の大きさを補正する。具体的には、電圧指令値調整手段34は、直流電圧指令値vbcbに補正量Δvdcを加えて直流電圧指令値vbcaを算出する。電圧指令値調整手段34は、算出した直流電圧指令値vbcaを補償出力算出手段27に出力した後、処理を終了する。
(Step S17)
The voltage command value adjusting means 34 corrects the magnitude of the DC voltage command value using the correction amount Δvdc. Specifically, the voltage command value adjusting means 34 calculates the DC voltage command value vbca by adding the correction amount Δvdc to the DC voltage command value vbcb. After outputting the calculated DC voltage command value vbca to the compensation output calculating means 27, the voltage command value adjusting means 34 terminates the process.
 なお、ステップS13の場合と、ステップS15およびステップS16の場合とにおいて、補正量Δvdcの変化量が異なるようにしてもよい。このとき、電圧指令値調整手段34における補正量Δvdcの変化は、電圧指令値調整手段34の応答よりも十分遅くなるようにすることが望ましい。 Note that the amount of change in the correction amount Δvdc may differ between the case of step S13 and the cases of steps S15 and S16. At this time, it is desirable that the change in the correction amount Δvdc in the voltage command value adjusting means 34 is sufficiently slower than the response of the voltage command value adjusting means 34 .
 このようにして、制御装置18は、各相のカウント値の平均値Cavを算出し、カウント平均値Cavと予め決められた時間範囲との関係に基づいて、直流電圧指令値の補正量Δvdcを算出する。 In this way, the control device 18 calculates the average value Cav of the count values of each phase, and based on the relationship between the average count value Cav and the predetermined time range, determines the correction amount Δvdc of the DC voltage command value. calculate.
 なお、図8を参照して、制御装置18が電圧指令値vcs*の瞬時値Mvが指令範囲より大きくなる場合と指令範囲より小さくなる場合とを区別せずにカウントする場合を説明したが、これらの場合を区別してカウントしてもよい。瞬時値Mvが指令範囲より大きくなる場合と指令範囲より小さくなる場合とを区別してカウントする場合の制御装置18の動作を説明する。 It should be noted that the case where the controller 18 counts without distinguishing between the case where the instantaneous value Mv of the voltage command value vcs* becomes larger than the command range and the case where the instantaneous value Mv becomes smaller than the command range has been described with reference to FIG. These cases may be counted separately. The operation of the control device 18 will be described in the case of distinguishing between when the instantaneous value Mv becomes larger than the command range and when it becomes smaller than the command range.
 ここでは、電圧指令値vcs*の瞬時値Mvが上限値Mmxより大きくなる場合および電圧指令値vcs*の瞬時値Mvが下限値Mnxより小さくなる場合のそれぞれのカウント値を時間に換算した場合で説明する。また、説明を簡単にするために、系統電源2が単相の場合で説明するが、三相など複数の相であってもよい。 Here, when the instantaneous value Mv of the voltage command value vcs* becomes larger than the upper limit value Mmx and when the instantaneous value Mv of the voltage command value vcs* becomes smaller than the lower limit value Mnx, each count value is converted into time. explain. In order to simplify the explanation, the case where the system power supply 2 has a single phase will be explained, but it may have a plurality of phases such as three phases.
 リミット値比較手段36は、系統電源2の1周期の間、制御周期ごとに電圧指令値vcs*の瞬時値Mvが指令範囲か否かを判定する。リミット値比較手段36は、電圧指令値vcs*の瞬時値Mvが指令範囲より大きい値の時間、電圧指令値vcs*の瞬時値Mvが指令範囲より小さい値の時間、および電圧指令値vcs*の瞬時値Mvが指令範囲内である時間の情報をカウント値算出手段37に送信する。 The limit value comparison means 36 determines whether or not the instantaneous value Mv of the voltage command value vcs* is within the command range for each control cycle during one cycle of the system power supply 2 . Limit value comparison means 36 compares the time during which the instantaneous value Mv of the voltage command value vcs* is greater than the command range, the time during which the instantaneous value Mv of the voltage command value vcs* is less than the command range, and the time during which the instantaneous value Mv of the voltage command value vcs* is less than the command range. Information on the time during which the instantaneous value Mv is within the command range is transmitted to the count value calculation means 37 .
 リミット値比較手段36は、電圧指令値vcs*の瞬時値Mvが指令範囲より大きい値になる時間Tが第1閾値Cth1より大きいか否かを判定する。判定の結果、時間Tが第1閾値Cth1より大きい場合、補正量算出手段38は、コンデンサ17の直流電圧vdcを高くする補正量Δvdcを算出する。 The limit value comparison means 36 determines whether or not the time T during which the instantaneous value Mv of the voltage command value vcs* is greater than the command range is greater than the first threshold value Cth1. As a result of determination, when the time T is greater than the first threshold value Cth1, the correction amount calculation means 38 calculates a correction amount Δvdc for increasing the DC voltage vdc of the capacitor 17 .
 一方、リミット値比較手段36の判定の結果、時間Tが第2閾値Cth2以上第1閾値Cth1以下である場合、または時間Tが第2閾値Cth2未満である場合、直流電圧vdcを低くする補正量Δvdcを算出する。このようにして、直流電圧vdcの高さが制御される。 On the other hand, when the time T is equal to or greater than the second threshold value Cth2 and equal to or less than the first threshold value Cth1 or is less than the second threshold value Cth2 as a result of the determination by the limit value comparison means 36, the correction amount for lowering the DC voltage vdc is Δvdc is calculated. Thus, the height of the DC voltage vdc is controlled.
 なお、電圧指令値vcs*の瞬時値Mvが指定範囲より大きい値になる時間Tが時間範囲内の場合と時間範囲外の場合とで、補正量Δvdcの変化量が異なるようにしてもよい。 The amount of change in the correction amount Δvdc may differ depending on whether the time T at which the instantaneous value Mv of the voltage command value vcs* becomes a value larger than the specified range is within the time range and outside the time range.
 また、直流電圧vdcが低くなるように補正量Δvdcを調整すると、高調波補償能力が不足する場合がある。一方、直流電圧vdcが高くなるように補正量Δvdcを調整すると、スイッチング回路15を構成するスイッチング素子61の損失が増えるとともに、直流電圧vdcが不安定になる場合がある。そのため、補正量Δvdcの調整は、直流電圧vdcが適切な範囲に入るようにする必要がある。 Also, if the correction amount Δvdc is adjusted so that the DC voltage vdc is lowered, the harmonic compensation capability may be insufficient. On the other hand, if the correction amount Δvdc is adjusted so as to increase the DC voltage vdc, the loss of the switching element 61 constituting the switching circuit 15 increases and the DC voltage vdc may become unstable. Therefore, it is necessary to adjust the correction amount Δvdc so that the DC voltage vdc falls within an appropriate range.
 このようにして、制御装置18は、制御信号生成手段30で生成された電圧指令値vcs*の瞬時値Mvが指定範囲内か否かを判定し、指定範囲内および指定範囲外の時間に応じて補正量Δvdcを算出し、直流電圧指令値を増加または減少させる補正を行う。これにより、コンデンサ17の直流電圧vdcが制御される。 In this way, the control device 18 determines whether or not the instantaneous value Mv of the voltage command value vcs* generated by the control signal generating means 30 is within the specified range, to calculate the correction amount Δvdc, and perform correction to increase or decrease the DC voltage command value. Thereby, the DC voltage vdc of the capacitor 17 is controlled.
 ここまで、系統電源2が平衡である場合を説明したが、系統電源2が不平衡である場合について、制御装置18の動作を、図9および図10を参照して説明する。図10は、図1に示した系統電源が不平衡である場合において、実施の形態1に係る高調波抑制装置の動作手順の一例を示すフローチャートである。 Up to this point, the case where the system power supply 2 is balanced has been described, but the operation of the control device 18 when the system power supply 2 is unbalanced will be described with reference to FIGS. 9 and 10. FIG. FIG. 10 is a flow chart showing an example of the operating procedure of the harmonic suppression device according to Embodiment 1 when the system power supply shown in FIG. 1 is unbalanced.
 図9に示すステップS10の判定処理の後、カウント値算出手段37は、R相、S相およびT相の三相のカウント値を比較し、これら三相のカウント値のうち、最大値と最小値との差である最大差を算出する(ステップS41)。カウント値算出手段37は、算出した最大差が不平衡判定閾値thb1以上か否かを判定する(ステップS42)。ステップS42の判定の結果、最大差が不平衡判定閾値thb1未満である場合、カウント値算出手段37は、系統電源2が平衡であると判定し、図9に示すステップS11の処理に進む。 After the determination process of step S10 shown in FIG. 9, the count value calculation means 37 compares the count values of the three phases of the R phase, the S phase and the T phase, and among the count values of these three phases, the maximum value and the minimum value A maximum difference is calculated (step S41). The count value calculation means 37 determines whether or not the calculated maximum difference is equal to or greater than the imbalance determination threshold thb1 (step S42). As a result of the determination in step S42, when the maximum difference is less than the imbalance determination threshold thb1, the count value calculation means 37 determines that the system power supply 2 is in balance, and proceeds to the process of step S11 shown in FIG.
 一方、ステップS42の判定の結果、最大差が不平衡判定閾値thb1以上である場合、補正量算出手段38は、最大差が予め決められた範囲に入るように直流電圧vdcを調整する補正量Δvdcを算出する(ステップS43)。補正量算出手段38は、算出した補正量Δvdcを電圧指令値調整手段34に送信する。その後、制御装置18は図9に示したステップS17の処理に進む。 On the other hand, if the result of determination in step S42 is that the maximum difference is equal to or greater than the imbalance determination threshold thb1, the correction amount calculation means 38 adjusts the DC voltage vdc so that the maximum difference falls within a predetermined range. is calculated (step S43). The correction amount calculation means 38 transmits the calculated correction amount Δvdc to the voltage command value adjustment means 34 . After that, the control device 18 proceeds to the processing of step S17 shown in FIG.
 このようにして、カウント値が最大値となる相において、高調波を抑制するための直流電圧vdcが得られるため、不平衡時でも系統電源2の相ごとに流れる負荷電流の大きさが異なる場合に対して不足する補償能力を補うことができる。 In this way, the DC voltage vdc for suppressing harmonics is obtained in the phase where the count value is the maximum value. can make up for the lack of compensating ability for
 系統電源2の電源電圧の不平衡が著しい場合、または電源インピーダンスなどの影響により、系統電源2の電源電圧に歪みが重畳する場合がある。このような場合でも、本実施の形態1の高調波抑制装置4は、系統電源2の平衡または不平衡の変動に対応して、コンデンサ17の直流電圧vdcを調整することができる。 When the unbalance of the power supply voltage of the system power supply 2 is significant, or due to the influence of power supply impedance, etc., distortion may be superimposed on the power supply voltage of the system power supply 2 . Even in such a case, the harmonic suppressing device 4 of the first embodiment can adjust the DC voltage vdc of the capacitor 17 according to the balanced or unbalanced fluctuation of the system power supply 2 .
 なお、本実施の形態1では、制御装置18が、系統電源検出部21から系統電源2の情報を取得し、基準電圧vkを基に電圧指令値vcs*を生成しているが、系統電源検出部21が設けられていなくてもよい。例えば、高調波抑制装置4が高調波抑制動作を開始する前に、制御装置18が、予めコンデンサ17の直流電圧vdcが系統電源2の線間電圧の最大値と等しく、安定している期間に、直流電圧vdcを予め検出しておけばよい。高調波抑制装置4が高調波抑制動作を開始した後、制御装置18は、予め検出した直流電圧vdcを線間電圧の最大値に置き換えることで、基準電圧vkを演算することができる。そのため、系統電源2の電源電圧を他の目的で使用しない場合、系統電源2の電源電圧の情報を取得する必要がなくなる。この場合、系統電源検出部21を削減することで、制御装置18のハードウェア部品が搭載される基板を小さくすることができ、高調波抑制装置4を安価にすることができる。 In the first embodiment, the control device 18 acquires the information of the system power supply 2 from the system power supply detection unit 21 and generates the voltage command value vcs* based on the reference voltage vk. The portion 21 may not be provided. For example, before the harmonic suppression device 4 starts the harmonic suppression operation, the control device 18 preliminarily sets the DC voltage vdc of the capacitor 17 equal to the maximum value of the line voltage of the system power supply 2 and during a stable period , the DC voltage vdc may be detected in advance. After the harmonic suppression device 4 starts the harmonic suppression operation, the control device 18 can calculate the reference voltage vk by replacing the DC voltage vdc detected in advance with the maximum value of the line voltage. Therefore, when the power supply voltage of the system power supply 2 is not used for other purposes, there is no need to acquire the information on the power supply voltage of the system power supply 2 . In this case, by eliminating the system power detection unit 21, the board on which the hardware components of the control device 18 are mounted can be made smaller, and the harmonic suppression device 4 can be made less expensive.
 また、本実施の形態1において、制御装置18は、系統電源2の電源電圧の情報ではなく、スイッチング回路15に出力される電圧指令値vcs*の情報を基に直流電圧指令値の補正量Δvdcを変化させる。そのため、軽負荷時にスイッチング損失を下げることができる。 Further, in the first embodiment, the control device 18 is based on the information on the voltage command value vcs* output to the switching circuit 15 instead of the information on the power supply voltage of the system power supply 2, and the correction amount Δvdc of the DC voltage command value. change. Therefore, switching loss can be reduced at light load.
 本実施の形態1の高調波抑制装置4は、系統電源2に接続された高調波発生負荷3と並列に接続され、高調波発生負荷3が発生する高調波を抑制するものである。高調波抑制装置4は、系統電源検出部21と、スイッチング回路15と、スイッチング回路15に並列に接続されたコンデンサ17と、直流電圧検出部22と、制御装置18とを有する。系統電源検出部21は、系統電源2の交流電圧の位相θを検出する。スイッチング回路15は、電圧指令値vcs*に基づく制御信号vcsにしたがって動作する一対のスイッチング素子61が接続される構成を有し、一対のスイッチング素子61の間に系統電源2が配線を介して接続される構成である。直流電圧検出部22は、コンデンサ17の直流電圧vdcを検出する。制御装置18は、制御信号vcsをスイッチング回路15に出力することで、一対のスイッチング素子61の各スイッチング素子の動作を制御する。制御装置18は、制御信号生成手段30と、補正量演算手段35とを有する。制御信号生成手段30は、直流電圧を調整するための直流電圧指令値を基に制御信号vcsを生成する。補正量演算手段35は、直流電圧指令値に対する補正量として、系統電源2の交流電圧の周期ごとに、制御信号生成手段30から出力される制御信号vcsの基になる電圧指令値vcs*に基づいて補正量Δvdcを算出する。 The harmonic suppressing device 4 of Embodiment 1 is connected in parallel with the harmonic generating load 3 connected to the system power supply 2, and suppresses harmonics generated by the harmonic generating load 3. Harmonic suppression device 4 includes system power supply detector 21 , switching circuit 15 , capacitor 17 connected in parallel to switching circuit 15 , DC voltage detector 22 , and controller 18 . The system power detection unit 21 detects the phase θ of the AC voltage of the system power supply 2 . The switching circuit 15 has a configuration in which a pair of switching elements 61 that operate according to a control signal vcs based on the voltage command value vcs* are connected, and the system power supply 2 is connected between the pair of switching elements 61 via wiring. It is a configuration that is DC voltage detection unit 22 detects DC voltage vdc of capacitor 17 . The control device 18 controls the operation of each switching element of the pair of switching elements 61 by outputting the control signal vcs to the switching circuit 15 . The control device 18 has control signal generation means 30 and correction amount calculation means 35 . The control signal generating means 30 generates the control signal vcs based on the DC voltage command value for adjusting the DC voltage. The correction amount calculation means 35 calculates a correction amount for the DC voltage command value based on the voltage command value vcs* that is the basis of the control signal vcs output from the control signal generation means 30 for each cycle of the AC voltage of the system power supply 2. to calculate the correction amount Δvdc.
 本実施の形態1によれば、系統電源2の周期ごとにスイッチング回路15の電圧指令値vcs*を補正する補正量Δvdcが算出されるため、系統電源2の変動に応じてコンデンサ17の直流電圧vdcが補正される。そのため、系統電源2の電源電圧と直流電圧vdcとの間の電位差が必要以上に大きくなることが抑制される。その結果、スイッチング損失が抑制され、電力効率よく高調波を抑制できる。 According to the first embodiment, since the correction amount Δvdc for correcting the voltage command value vcs* of the switching circuit 15 is calculated for each period of the system power supply 2, the DC voltage of the capacitor 17 is calculated according to the fluctuation of the system power supply 2. vdc is corrected. Therefore, the potential difference between the power supply voltage of system power supply 2 and DC voltage vdc is suppressed from becoming larger than necessary. As a result, switching loss is suppressed, and harmonics can be suppressed with high power efficiency.
実施の形態2.
 本実施の形態2は、基準電圧vk以外の電圧指令値vcs*の実効値を用いて、コンデンサ17の直流電圧vdcを調整するための直流電圧指令値を補正するものである。本実施の形態2においては、実施の形態1で説明した構成と同一の符号を付し、その詳細な説明を省略する。
Embodiment 2.
The second embodiment corrects the DC voltage command value for adjusting the DC voltage vdc of the capacitor 17 using the effective value of the voltage command value vcs* other than the reference voltage vk. In Embodiment 2, the same reference numerals as those of the configuration described in Embodiment 1 are used, and detailed description thereof is omitted.
 本実施の形態2の高調波抑制装置4の構成を、図1、図2および図11を参照して説明する。図11は、実施の形態2に係る高調波抑制装置の補正量算出手段の一構成例を示す機能ブロック図である。補正量演算手段35aは、実効値算出手段39と、電圧利用率算出手段40と、補正量算出手段38とを有する。本実施の形態2においては、図4に示す構成例において、直流電圧検出部22から直流電圧vdcの情報が補正量演算手段35aに入力される。 The configuration of the harmonic suppression device 4 of the second embodiment will be described with reference to FIGS. 1, 2 and 11. FIG. FIG. 11 is a functional block diagram showing one configuration example of the correction amount calculating means of the harmonic suppression device according to the second embodiment. The correction amount calculation means 35 a has an effective value calculation means 39 , a voltage utilization factor calculation means 40 and a correction amount calculation means 38 . In the second embodiment, in the configuration example shown in FIG. 4, information on the DC voltage vdc is input from the DC voltage detector 22 to the correction amount calculator 35a.
 実効値算出手段39は、系統電源2の1周期において、基準電圧vk以外の電圧指令値vcs*の実効値vefを算出する。例えば、系統電源2がR相、S相およびT相の三相である場合、実効値算出手段39は、各相の実効値vefを算出する。具体的には、実効値算出手段39は、系統電源2の1周期において、制御周期で入力される対象相の電圧指令値vcs*を積分し、積分した値を系統電源2の1周期で除算することで実効値vefを算出する。 The effective value calculation means 39 calculates the effective value vef of the voltage command value vcs* other than the reference voltage vk in one cycle of the system power supply 2 . For example, when the system power supply 2 has three phases of R phase, S phase and T phase, the effective value calculation means 39 calculates the effective value vef of each phase. Specifically, the effective value calculation means 39 integrates the voltage command value vcs* of the target phase input in the control cycle in one cycle of the system power supply 2, and divides the integrated value by one cycle of the system power supply 2. By doing so, the effective value vef is calculated.
 電圧利用率算出手段40は、相毎に実効値vefを基にコンデンサ17の直流電圧vdcに対する電圧利用率Rvdを算出する。また、電圧利用率算出手段40は、系統電源2が不平衡か否かを、次のようにして判定する。電圧利用率算出手段40は、基準電圧vk以外の電圧指令値vcs*の実効値vefから不平衡率NBrを算出し、算出した不平衡率NBrが予め決められた閾値である不平衡判定閾値thb2以上か否かを判定する。不平衡率NBrは、例えば、R相、S相およびT相の三相の実効値vefの標準偏差である。電圧利用率算出手段40は、実効値vefが不平衡判定閾値thb2未満である場合、系統電源2に不平衡が発生していないと判定する。一方、電圧利用率算出手段40は、実効値vefが不平衡判定閾値thb2以上である場合、系統電源2に不平衡が発生していると判定する。なお、不平衡判定閾値thb2は、予め決められた固定値に限らない。電圧利用率算出手段40が負荷電流ifkの大きさに対応して不平衡判定閾値thb2を変更してもよい。 The voltage utilization factor calculation means 40 calculates the voltage utilization factor Rvd for the DC voltage vdc of the capacitor 17 based on the effective value vef for each phase. Further, the voltage utilization factor calculation means 40 determines whether or not the system power supply 2 is unbalanced as follows. The voltage utilization factor calculation means 40 calculates an unbalance rate NBr from the effective value vef of the voltage command value vcs* other than the reference voltage vk, and the calculated unbalance rate NBr is a predetermined unbalance determination threshold thb2. It is determined whether or not the above is satisfied. The unbalance rate NBr is, for example, the standard deviation of the three-phase effective values vef of the R-phase, S-phase and T-phase. When the effective value vef is less than the imbalance determination threshold thb2, the voltage utilization factor calculation means 40 determines that the system power supply 2 is not unbalanced. On the other hand, when the effective value vef is equal to or greater than the imbalance determination threshold thb2, the voltage utilization factor calculation means 40 determines that the system power supply 2 is unbalanced. Note that the imbalance determination threshold thb2 is not limited to a predetermined fixed value. The voltage utilization factor calculation means 40 may change the imbalance determination threshold thb2 according to the magnitude of the load current ifk.
 補正量算出手段38には、予め決められた電圧利用率目標値と電圧利用率算出手段40から出力される電圧利用率Rvdとの差である利用率差が入力される。補正量算出手段38は、利用率差が予め決められた範囲内である場合、直流電圧指令値が低くなるように補正量Δvdcを小さくする。また、補正量算出手段38は、利用率差が予め決められた範囲よりも大きい場合、直流電圧指令値が低くなるように補正量Δvdcを小さくする。これにより、コンデンサ17の直流電圧vdcが小さくなる。一方、補正量算出手段38は、利用率差が予め決められた範囲よりも小さい場合、直流電圧指令値が高くなるように補正量Δvdcを大きくする。これにより、コンデンサ17の直流電圧vdcが大きくなる。なお、利用率差が予め決められた範囲内である場合と範囲外の場合とにおいて、直流電圧vdcを低くするための補正量Δvdcの変化の大きさが異なるようにしてもよい。このとき、補正量Δvdcの変化は電圧指令値調整手段34の応答よりも十分遅くなるようにする。 A utilization difference, which is the difference between a predetermined voltage utilization rate target value and the voltage utilization rate Rvd output from the voltage utilization rate calculation means 40 , is input to the correction amount calculation means 38 . If the utilization difference is within a predetermined range, the correction amount calculator 38 reduces the correction amount Δvdc so that the DC voltage command value becomes low. Further, when the utilization difference is larger than the predetermined range, the correction amount calculation means 38 reduces the correction amount Δvdc so that the DC voltage command value becomes low. As a result, the DC voltage vdc across capacitor 17 is reduced. On the other hand, when the utilization difference is smaller than the predetermined range, the correction amount calculator 38 increases the correction amount Δvdc so that the DC voltage command value becomes higher. As a result, the DC voltage vdc of the capacitor 17 increases. Note that the amount of change in the correction amount Δvdc for lowering the DC voltage vdc may differ depending on whether the utilization difference is within a predetermined range or not. At this time, the change in the correction amount Δvdc is made sufficiently slower than the response of the voltage command value adjusting means 34 .
 また、補正量算出手段38は、電圧利用率算出手段40によって系統電源2が不平衡と判定された場合、三相の実効値vefのうち、最大値の実効値vefの相の実効値vefが予め決められた範囲に入るように直流電圧vdcを調整する補正量Δvdcを算出する。ここでは、最大値の実効値vefを補正量Δvdcの算出の判定値とする場合で説明したが、スイッチング損失の大きさまたは高調波抑制装置4の運転継続か否かを考慮した判定値を用いてもよい。 Further, when the voltage utilization factor calculation means 40 determines that the system power supply 2 is unbalanced, the correction amount calculation means 38 determines that the effective value vef of the phase with the maximum effective value vef among the three-phase effective values vef is A correction amount Δvdc for adjusting the DC voltage vdc so that it falls within a predetermined range is calculated. Here, the case where the effective value vef of the maximum value is used as the determination value for calculating the correction amount Δvdc has been described. may
 このようにして、本実施の形態2の高調波抑制装置4は、系統電源2が不平衡の場合でも、高調波抑制性能が不足することなく、直流電圧vdcを制御できる。なお、ここでは、電圧利用率Rvdが電圧利用率目標値と比較されているが、比較対象となる基準値は電圧利用率目標値に限らない。また、電圧利用率算出手段40が電圧利用率目標値と電圧利用率Rvdとの差を算出する演算器を有していてもよい。さらに、電圧利用率算出手段40が、利用率差が予め決められた範囲内であるか否かを判定し、判定結果を補正量算出手段38に通知してもよい。 In this manner, the harmonic suppression device 4 of Embodiment 2 can control the DC voltage vdc without insufficient harmonic suppression performance even when the system power supply 2 is unbalanced. Although the voltage utilization rate Rvd is compared with the voltage utilization rate target value here, the reference value to be compared is not limited to the voltage utilization rate target value. Further, the voltage utilization factor calculation means 40 may have a calculator for calculating the difference between the voltage utilization factor target value and the voltage utilization factor Rvd. Furthermore, the voltage utilization rate calculation means 40 may determine whether or not the utilization rate difference is within a predetermined range, and notify the correction amount calculation means 38 of the determination result.
 次に、本実施の形態2の高調波抑制装置4の動作を説明する。図12は、実施の形態2に係る高調波抑制装置の動作手順の一例を示すフローチャートである。 Next, the operation of the harmonic suppression device 4 of Embodiment 2 will be described. FIG. 12 is a flow chart showing an example of the operating procedure of the harmonic suppression device according to the second embodiment.
 (ステップS20)
 実効値算出手段39は、系統電源2の電源電圧が周期の切り替わりのタイミングか否かを判定する。実効値算出手段39は、系統電源2の電源電圧が次の1周期に切り替わるタイミングである場合、ステップS21の処理に進む。一方、リミット値比較手段36は、系統電源2の電源電圧が次の1周期に切り替わるタイミングでない場合、ステップS29の処理に進む。
(Step S20)
The effective value calculation means 39 determines whether or not the power supply voltage of the system power supply 2 is at the switching timing of the period. When the power supply voltage of the system power supply 2 is switched to the next cycle, the effective value calculation means 39 proceeds to the process of step S21. On the other hand, when the power supply voltage of the system power supply 2 is not at the timing of switching to the next cycle, the limit value comparison means 36 proceeds to the process of step S29.
 (ステップS21)
 実効値算出手段39は、三相の各相を対象相として、電圧指令値vcs*の積分値を基に基準電圧vk以外の実効値vefを算出する。実効値算出手段39が各相の実効値vefを算出した後、制御装置18はステップS22の処理に進む。
(Step S21)
The effective value calculating means 39 calculates the effective value vef other than the reference voltage vk based on the integrated value of the voltage command value vcs* with each phase of the three phases as the target phase. After the effective value calculation means 39 calculates the effective value vef of each phase, the control device 18 proceeds to the processing of step S22.
 (ステップS22)
 電圧利用率算出手段40は、ステップS21で算出した結果とコンデンサ17の直流電圧vdcとに基づいて電圧利用率Rvdを算出する。電圧利用率算出手段40は、算出後、ステップS23へ進む。
(Step S22)
Voltage utilization factor calculation means 40 calculates voltage utilization factor Rvd based on the result calculated in step S21 and DC voltage vdc of capacitor 17 . After the calculation, the voltage utilization factor calculator 40 proceeds to step S23.
 (ステップS23)
 実効値算出手段39は、電圧指令値vcs*の積分量をリセットする。また、制御装置18は系統電源2の電源電圧の周期をリセットする。これにより、監視対象の周期が次の周期にシフトする。電圧指令値vcs*の積分量および系統電源2の電源電圧の周期がリセットされた後、制御装置18はステップS24の処理に進む。
(Step S23)
The effective value calculation means 39 resets the integral amount of the voltage command value vcs*. Also, the control device 18 resets the cycle of the power supply voltage of the system power supply 2 . As a result, the period of the monitoring target shifts to the next period. After the integral amount of voltage command value vcs* and the period of the power supply voltage of system power supply 2 are reset, control device 18 proceeds to the process of step S24.
 (ステップS24)
 電圧利用率算出手段40は、ステップS22で算出した電圧利用率Rvdが予め決められた利用範囲内であるか否かを判定する。利用範囲は、予め設定されており、第4閾値Rth2以上、第3閾値RCth3以下の範囲である。判定の結果、電圧利用率Rvdが利用範囲内である場合、補正量算出手段38はステップS25の処理に進む。電圧利用率Rvdが利用範囲外である場合、電圧利用率算出手段40は、ステップS26の処理に進む。
(Step S24)
The voltage utilization rate calculation means 40 determines whether or not the voltage utilization rate Rvd calculated in step S22 is within a predetermined utilization range. The utilization range is set in advance, and is a range from the fourth threshold Rth2 to the third threshold RCth3. As a result of the determination, if the voltage utilization rate Rvd is within the utilization range, the correction amount calculation means 38 proceeds to the process of step S25. When the voltage utilization rate Rvd is out of the utilization range, the voltage utilization rate calculator 40 proceeds to the process of step S26.
 (ステップS25)
 補正量算出手段38は、直流電圧指令値を小さくする補正量Δvdcを算出する。補正量算出手段38が補正量Δvdcを算出した後、制御装置18はステップS30の処理に進む。
(Step S25)
A correction amount calculator 38 calculates a correction amount Δvdc for reducing the DC voltage command value. After the correction amount calculation means 38 calculates the correction amount Δvdc, the control device 18 proceeds to the process of step S30.
 (ステップS26)
 電圧利用率算出手段40は、ステップS22で算出した電圧利用率Rvdが第3閾値Rth3よりも大きいか否かを判定する。判定の結果、電圧利用率Rvdが第3閾値Rth3よりも大きい場合、補正量算出手段38はステップS27の処理に進む。一方、電圧利用率Rvdが第3閾値Rth3よりも大きくない場合、電圧利用率Rvdは第4閾値Rth4未満となり、補正量算出手段38は、ステップS28の処理に進む。
(Step S26)
The voltage utilization factor calculation means 40 determines whether or not the voltage utilization factor Rvd calculated in step S22 is greater than the third threshold value Rth3. As a result of the determination, if the voltage utilization rate Rvd is greater than the third threshold value Rth3, the correction amount calculation means 38 proceeds to the process of step S27. On the other hand, when the voltage utilization rate Rvd is not greater than the third threshold value Rth3, the voltage utilization rate Rvd becomes less than the fourth threshold value Rth4, and the correction amount calculation means 38 proceeds to the process of step S28.
 (ステップS27)
 補正量算出手段38は、直流電圧指令値を大きくする補正量Δvdcを算出する。補正量算出手段38が補正量Δvdcを算出した後、制御装置18はステップS30の処理に進む。
(Step S27)
A correction amount calculator 38 calculates a correction amount Δvdc for increasing the DC voltage command value. After the correction amount calculation means 38 calculates the correction amount Δvdc, the control device 18 proceeds to the process of step S30.
 (ステップS28)
 補正量算出手段38は、直流電圧指令値を小さくする補正量Δvdcを算出する。補正量算出手段38が補正量Δvdcを算出した後、制御装置18はステップS30の処理に進む。
(Step S28)
A correction amount calculator 38 calculates a correction amount Δvdc for reducing the DC voltage command value. After the correction amount calculation means 38 calculates the correction amount Δvdc, the control device 18 proceeds to the process of step S30.
 (ステップS29)
 実効値算出手段39は、三相の各相を対象相として電圧指令値vcs*を積分する。実効値算出手段39は、三相の電圧指令値vcs*の積分値を算出した後、処理を終了する。
(Step S29)
The effective value calculation means 39 integrates the voltage command value vcs* with each phase of the three phases as the target phase. After calculating the integral value of the three-phase voltage command values vcs*, the effective value calculating means 39 terminates the process.
 (ステップS30)
 電圧指令値調整手段34は、補正量Δvdcを用いて直流電圧指令値の大きさを補正する。具体的には、電圧指令値調整手段34は、直流電圧指令値vbcbに補正量Δvdcを加えて直流電圧指令値vbcaを算出する。電圧指令値調整手段34は、算出した直流電圧指令値vbcaを補償出力算出手段27に出力した後、処理を終了する。
(Step S30)
The voltage command value adjusting means 34 corrects the magnitude of the DC voltage command value using the correction amount Δvdc. Specifically, the voltage command value adjusting means 34 calculates the DC voltage command value vbca by adding the correction amount Δvdc to the DC voltage command value vbcb. After outputting the calculated DC voltage command value vbca to the compensation output calculating means 27, the voltage command value adjusting means 34 terminates the process.
 このようにして、制御装置18は、基準電圧vk以外の電圧指令値vcs*の実効値vefを求め、電圧指令値vcs*の直流電圧に対する電圧利用率Rvdを算出する。そして、制御装置18は、電圧利用率Rvdが目標値に対して小さい場合、直流電圧指令値を低くする補正量Δvdcを算出し、電圧利用率Rvdが目標値に対して大きい場合、直流電圧指令値を高くする補正量Δvdcを算出する。これにより、直流電圧指令値が補正される。 In this way, the control device 18 obtains the effective value vef of the voltage command value vcs* other than the reference voltage vk, and calculates the voltage utilization rate Rvd of the voltage command value vcs* with respect to the DC voltage. Then, when the voltage utilization rate Rvd is smaller than the target value, the control device 18 calculates a correction amount Δvdc for lowering the DC voltage command value, and when the voltage utilization rate Rvd is larger than the target value, the DC voltage command A correction amount Δvdc for increasing the value is calculated. This corrects the DC voltage command value.
 なお、図12を参照して、制御装置18が電圧利用率Rvdに基づいて補正量Δvdcを算出する場合を説明したが、実効値vefに基づいて補正量Δvdcを算出してもよい。この場合の制御装置18の動作を説明する。 Although the case where the control device 18 calculates the correction amount Δvdc based on the voltage utilization factor Rvd has been described with reference to FIG. 12, the correction amount Δvdc may be calculated based on the effective value vef. The operation of the control device 18 in this case will be described.
 実効値算出手段39が、系統電源2の周期の間、制御周期ごとに基準電圧vk以外の電圧指令値vcs*の実効値vefを算出する。電圧利用率算出手段40は、電圧指令値vcs*の実効値vefが予め設定された閾値より大きいか否かを判定する。電圧指令値の実効値vefが閾値より大きい場合、補正量算出手段38は、直流電圧vdcが高くなるように補正量Δvdcを算出する。一方、電圧指令値vcs*の実効値vefが閾値以下である場合、補正量算出手段38は、直流電圧vdcが低くなるように補正量Δvdcを算出する。この場合、補正量Δvdcの変化は、電圧指令値調整手段34の応答よりも十分遅くなるようにする。また、補正量Δvdcは、例えば、実効値vefと閾値との差に比例する値である。 The effective value calculation means 39 calculates the effective value vef of the voltage command value vcs* other than the reference voltage vk for each control cycle during the cycle of the system power supply 2 . The voltage utilization factor calculation means 40 determines whether or not the effective value vef of the voltage command value vcs* is greater than a preset threshold. When the effective value vef of the voltage command value is larger than the threshold, the correction amount calculator 38 calculates the correction amount Δvdc so that the DC voltage vdc becomes higher. On the other hand, when the effective value vef of the voltage command value vcs* is equal to or less than the threshold, the correction amount calculator 38 calculates the correction amount Δvdc so that the DC voltage vdc becomes lower. In this case, the change in the correction amount Δvdc is made sufficiently slower than the response of the voltage command value adjusting means 34 . Also, the correction amount Δvdc is, for example, a value proportional to the difference between the effective value vef and the threshold.
 このようにして、制御装置18は、制御信号生成手段30で生成された基準電圧vk以外の電圧指令値vcs*の実効値vefを算出し、実効値vefが予め決められた閾値以上か否かを判定する。そして、制御装置18は、実効値vefが閾値以上である場合、実効値vefと閾値との差に対応する補正量Δvdcを算出し、補正量Δvdcを用いて直流電圧指令値を増加または減少させて補正する。 In this manner, the control device 18 calculates the effective value vef of the voltage command value vcs* other than the reference voltage vk generated by the control signal generating means 30, and determines whether the effective value vef is equal to or greater than a predetermined threshold. judge. Then, when the effective value vef is equal to or greater than the threshold, the control device 18 calculates a correction amount Δvdc corresponding to the difference between the effective value vef and the threshold, and uses the correction amount Δvdc to increase or decrease the DC voltage command value. to correct.
 また、系統電源2が不平衡となる場合の詳細な動作を省略するが、本実施の形態2においては、電圧利用率算出手段40によって系統電源2に不平衡が発生しているか否かが判定される。具体的には、電圧利用率算出手段40は、三相の電圧指令値vcs*の実効値vefから不平衡率NBrを算出し、算出した不平衡率NBrが不平衡判定閾値thb2以上か否かを判定する。電圧利用率算出手段40によって系統電源2が不平衡と判定された場合、補正量算出手段38は、三相の実効値vefのうち、最大値の実効値vefの相の実効値vefが予め決められた範囲に入るように直流電圧vdcを調整する補正量Δvdcを算出する。そのため、本実施の形態2においても、出力電圧が不足する相において高調波を抑制するための直流電圧が得られる。そのため、系統電源2が不平衡時でも系統電源2の相ごとに流れる負荷電流の大きさが異なることに対応して、不足する補償能力を補うことができる。 Further, although the detailed operation when the system power supply 2 becomes unbalanced is omitted, in the second embodiment, the voltage utilization factor calculation means 40 determines whether or not the system power supply 2 is unbalanced. be done. Specifically, the voltage utilization factor calculation means 40 calculates the unbalance rate NBr from the effective value vef of the three-phase voltage command value vcs*, and determines whether the calculated unbalance rate NBr is equal to or greater than the unbalance determination threshold thb2. judge. When the voltage utilization factor calculation means 40 determines that the system power supply 2 is unbalanced, the correction amount calculation means 38 predetermines the maximum effective value vef among the three phase effective values vef. A correction amount Δvdc for adjusting the DC voltage vdc so that it falls within the specified range is calculated. Therefore, in the second embodiment as well, a DC voltage for suppressing harmonics can be obtained in a phase in which the output voltage is insufficient. Therefore, even when the system power supply 2 is unbalanced, it is possible to compensate for the lack of compensation capability corresponding to the difference in the magnitude of the load current flowing in each phase of the system power supply 2 .
 本実施の形態2によれば、実施の形態1と同様に、系統電源2の電源電圧の変動に応じて直流電圧vdcを調整することができる。また、実施の形態1は系統電源の周波数に応じて補正要否の判定基準となる閾値が適切に変化することになるが、本実施の形態2は、電圧利用率をパラメータとして補正の要否が判定されるので、補正要否の判定基準となる閾値の変化が小さくてすむ。 According to the second embodiment, as in the first embodiment, the DC voltage vdc can be adjusted according to fluctuations in the power supply voltage of the system power supply 2 . In addition, in the first embodiment, the threshold value, which is the criterion for determining the necessity of correction, changes appropriately according to the frequency of the system power supply. is determined, the change in the threshold, which is the criterion for determining whether or not correction is necessary, can be small.
 次に、上述の実施の形態1および2で説明した高調波抑制装置4の設置例を説明する。図13は、実施の形態1および2に係る高調波抑制装置の設置例を模式的に示す図である。図14および図15は、実施の形態1および2に係る高調波抑制装置の別の設置例を模式的に示す図である。 Next, an installation example of the harmonic suppression device 4 described in the first and second embodiments will be described. FIG. 13 is a diagram schematically showing an installation example of the harmonic suppression devices according to the first and second embodiments. 14 and 15 are diagrams schematically showing another installation example of the harmonic suppression devices according to Embodiments 1 and 2. FIG.
 図1に示したように、空気調和システム1が高調波抑制装置4を有しているが、高調波抑制装置4の設置位置は限定されない。例えば、図13は、高調波抑制装置4が空気調和装置50の室外機51の筐体に内蔵される場合を示すが、室内機52の筐体に内蔵されてもよい。高調波抑制装置4が空気調和装置50に内蔵される場合、空気調和装置50が設置されるスペースの他に、高調波抑制装置4を設置するためのスペースを別途確保する必要がない。 As shown in FIG. 1, the air conditioning system 1 has the harmonic suppression device 4, but the installation position of the harmonic suppression device 4 is not limited. For example, although FIG. 13 shows the case where the harmonic suppression device 4 is built in the housing of the outdoor unit 51 of the air conditioner 50, it may be built into the housing of the indoor unit 52. FIG. When the harmonic suppression device 4 is built in the air conditioner 50, it is not necessary to secure a separate space for installing the harmonic suppression device 4 in addition to the space in which the air conditioner 50 is installed.
 また、高調波抑制装置4が空気調和装置50の本体に外付けされてもよい。図14は、高調波抑制装置4が室外機51の本体に外付けされている場合を示す。さらに、高調波抑制装置4は、空気調和装置50に対して別体として設置されていてもよい。図15は、高調波抑制装置4が室外機51に対して別体で設置されている場合を示す。 Also, the harmonic suppression device 4 may be externally attached to the main body of the air conditioner 50 . FIG. 14 shows a case where the harmonic suppression device 4 is externally attached to the main body of the outdoor unit 51 . Furthermore, the harmonic suppression device 4 may be installed separately from the air conditioner 50 . FIG. 15 shows the case where the harmonic suppressing device 4 is installed separately from the outdoor unit 51 .
 なお、本開示に係る高調波抑制装置および空気調和システムは、上述の実施の形態1および2に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することができる。また、本開示は、上述の実施の形態1および2に示す構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含むものである。 It should be noted that the harmonic suppression device and the air conditioning system according to the present disclosure are not limited to the first and second embodiments described above, and can be variously modified without departing from the gist of the present disclosure. In addition, the present disclosure includes all possible combinations of the configurations shown in the first and second embodiments described above.
 また、本開示の制御フローに係る各プログラムは、記載された順序に沿って時系列に行われる処理であるが、必ずしも時系列に処理されなくても、並列的または個別に実効される処理を含んでもよい。 In addition, each program according to the control flow of the present disclosure is a process that is performed in chronological order according to the described order, but even if it is not necessarily processed in chronological order, it can be executed in parallel or individually. may contain.
 また、本開示に係る高調波抑制装置4および空気調和システム1の制御装置54が実行する各機能をハードウェアとソフトウェアのどちらで実現してもよい。各ブロック図における各機能は、回路デバイス等のハードウェアで実現してもよく、あるいは、演算装置上で実効されるソフトウェアで実現してもよい。 Also, each function executed by the harmonic suppression device 4 according to the present disclosure and the control device 54 of the air conditioning system 1 may be realized by either hardware or software. Each function in each block diagram may be implemented by hardware such as a circuit device, or may be implemented by software executed on an arithmetic unit.
 1 空気調和システム、2 系統電源、3 高調波発生負荷、4 高調波抑制装置、5 冷媒回路、6 整流器、7 直流リアクトル、8 コンデンサ、9 圧縮機、9a モータ、10 熱源側熱交換器、11 負荷側熱交換器、12 膨張弁、13 冷媒配管、14 リプルフィルタ、15 スイッチング回路、16 リアクトル、17 コンデンサ、18 制御装置、19 負荷電流検出部、20 補償電流検出部、21 系統電源検出部、22 直流電圧検出部、23 リアクトル、24 コンデンサ、25 接続点、27 補償出力算出手段、28 誤差量算出手段、29 制御量算出手段、30 制御信号生成手段、31 位相検出手段、32 アドレス決定手段、33 基準電圧算出手段、34 電圧指令値調整手段、35、35a 補正量演算手段、36 リミット値比較手段、37 カウント値算出手段、38 補正量算出手段、39 実効値算出手段、40 電圧利用率算出手段、50 空気調和装置、51 室外機、52 室内機、53 ファン、54 制御装置、55 インバータ回路、60a~60c 素子、61 スイッチング素子、62 ダイオード、80 処理回路、81 プロセッサ、82 メモリ、83 バス。 1 Air conditioning system, 2 System power supply, 3 Harmonic generation load, 4 Harmonic suppressor, 5 Refrigerant circuit, 6 Rectifier, 7 DC reactor, 8 Condenser, 9 Compressor, 9a Motor, 10 Heat source side heat exchanger, 11 load-side heat exchanger, 12 expansion valve, 13 refrigerant pipe, 14 ripple filter, 15 switching circuit, 16 reactor, 17 capacitor, 18 control device, 19 load current detector, 20 compensation current detector, 21 system power detector, 22 DC voltage detection unit, 23 reactor, 24 capacitor, 25 connection point, 27 compensation output calculation means, 28 error amount calculation means, 29 control amount calculation means, 30 control signal generation means, 31 phase detection means, 32 address determination means, 33 Reference voltage calculation means, 34 Voltage command value adjustment means, 35, 35a Correction amount calculation means, 36 Limit value comparison means, 37 Count value calculation means, 38 Correction amount calculation means, 39 Effective value calculation means, 40 Voltage utilization rate calculation means, 50 air conditioner, 51 outdoor unit, 52 indoor unit, 53 fan, 54 control device, 55 inverter circuit, 60a to 60c elements, 61 switching element, 62 diode, 80 processing circuit, 81 processor, 82 memory, 83 bus .

Claims (10)

  1.  系統電源に接続された高調波発生負荷と並列に接続され、前記高調波発生負荷が発生する高調波を抑制する高調波抑制装置であって、
     前記系統電源の交流電圧の位相を検出する系統電源検出部と、
     電圧指令値に基づく制御信号にしたがって動作する一対のスイッチング素子が接続される構成を有し、前記一対のスイッチング素子の間に前記系統電源が配線を介して接続されるスイッチング回路と、
     前記スイッチング回路に並列に接続されたコンデンサと、
     前記コンデンサの直流電圧を検出する直流電圧検出部と、
     前記制御信号を前記スイッチング回路に出力することで、前記一対のスイッチング素子の各スイッチング素子の動作を制御する制御装置と、を有し、
     前記制御装置は、
     前記直流電圧を調整するための直流電圧指令値を基に前記制御信号を生成する制御信号生成手段と、
     前記直流電圧指令値に対する補正量として、前記系統電源の交流電圧の周期ごとに、前記制御信号の基になる前記電圧指令値に基づいて前記補正量を算出する補正量演算手段を有する、
     高調波抑制装置。
    A harmonic suppression device connected in parallel with a harmonic generation load connected to a system power supply and suppressing harmonics generated by the harmonic generation load,
    a system power supply detection unit that detects the phase of the AC voltage of the system power supply;
    a switching circuit having a configuration in which a pair of switching elements that operate according to a control signal based on a voltage command value are connected, and in which the system power supply is connected via wiring between the pair of switching elements;
    a capacitor connected in parallel with the switching circuit;
    a DC voltage detection unit that detects the DC voltage of the capacitor;
    a control device that controls the operation of each switching element of the pair of switching elements by outputting the control signal to the switching circuit;
    The control device is
    a control signal generating means for generating the control signal based on a DC voltage command value for adjusting the DC voltage;
    correction amount calculation means for calculating the correction amount as a correction amount for the DC voltage command value based on the voltage command value on which the control signal is based, for each cycle of the AC voltage of the system power supply;
    Harmonic suppressor.
  2.  前記補正量演算手段は、
     前記系統電源の交流電圧の周期ごとに、前記電圧指令値の瞬時値が予め決められた上限値より大きい値になる時間が予め決められた閾値より大きいか否かを判定するカウント値算出手段と、
     前記電圧指令値の瞬時値が前記上限値より大きい値になる時間が前記閾値より大きい場合、前記直流電圧を高くする前記補正量を算出し、前記電圧指令値の瞬時値が前記上限値より大きい値になる時間が前記閾値以下である場合、前記直流電圧を低くする前記補正量を算出する補正量算出手段と、を有する、
     請求項1に記載の高調波抑制装置。
    The correction amount calculation means is
    count value calculation means for determining whether or not the time at which the instantaneous value of the voltage command value is greater than a predetermined upper limit value is greater than a predetermined threshold value for each cycle of the AC voltage of the system power supply; ,
    If the time for which the instantaneous value of the voltage command value becomes greater than the upper limit value is longer than the threshold value, the correction amount for increasing the DC voltage is calculated, and the instantaneous value of the voltage command value is greater than the upper limit value. correction amount calculation means for calculating the correction amount for lowering the DC voltage when the time to reach the value is equal to or less than the threshold value,
    A harmonic suppression device according to claim 1.
  3.  前記スイッチング回路は、前記系統電源の複数の相に対応して、複数の前記一対のスイッチング素子を有し、
     前記補正量演算手段は、
     前記系統電源の交流電圧の周期ごとに、前記複数の相ごとの前記電圧指令値の瞬時値が予め決められた範囲である指令範囲から外れる時間のうち、最大値と最小値との差である最大差を算出し、算出した最大差が予め決められた不平衡判定閾値以上か否かを判定するカウント値算出手段と、
     前記最大差が前記不平衡判定閾値以上である場合、前記最大差が予め決められた範囲になるように前記直流電圧を調整する前記補正量を算出する補正量算出手段と、を有する、
     請求項1または2に記載の高調波抑制装置。
    The switching circuit has a plurality of pairs of switching elements corresponding to a plurality of phases of the system power supply,
    The correction amount calculation means is
    It is the difference between the maximum value and the minimum value of the time during which the instantaneous value of the voltage command value for each of the plurality of phases deviates from a command range that is a predetermined range for each cycle of the AC voltage of the system power supply. count value calculation means for calculating a maximum difference and determining whether or not the calculated maximum difference is equal to or greater than a predetermined imbalance determination threshold;
    correction amount calculation means for calculating the correction amount for adjusting the DC voltage so that the maximum difference is within a predetermined range when the maximum difference is equal to or greater than the imbalance determination threshold;
    A harmonic suppression device according to claim 1 or 2.
  4.  前記補正量演算手段は、
     前記系統電源の交流電圧の周期ごとに、前記電圧指令値の実効値が予め決められた閾値より大きいか否かを判定する電圧利用率算出手段と、
     前記実効値が前記閾値より大きい場合、前記直流電圧を高くする前記補正量を算出し、前記実効値が前記閾値以下である場合、前記直流電圧を低くする前記補正量を算出する補正量算出手段と、を有する、
     請求項1に記載の高調波抑制装置。
    The correction amount calculation means is
    voltage utilization factor calculation means for determining whether or not the effective value of the voltage command value is greater than a predetermined threshold for each cycle of the AC voltage of the system power supply;
    Correction amount calculation means for calculating the correction amount for increasing the DC voltage when the effective value is greater than the threshold, and calculating the correction amount for decreasing the DC voltage when the effective value is less than or equal to the threshold. and having
    A harmonic suppression device according to claim 1.
  5.  前記補正量演算手段は、
     前記系統電源の交流電圧の周期ごとに、前記電圧指令値の実効値を算出する実効値算出手段と、
     前記実効値算出手段によって算出された前記実効値と前記直流電圧とに基づいて電圧利用率を算出し、算出した電圧利用率が予め決められた閾値より大きいか否かを判定する電圧利用率算出手段と、
     前記電圧利用率が前記閾値より大きい場合、前記直流電圧を高くする前記補正量を算出し、前記電圧利用率が前記閾値以下である場合、前記直流電圧を低くする前記補正量を算出する補正量算出手段と、を有する、
     請求項1に記載の高調波抑制装置。
    The correction amount calculation means is
    Effective value calculation means for calculating an effective value of the voltage command value for each cycle of the AC voltage of the system power supply;
    calculating a voltage utilization factor based on the effective value calculated by the effective value calculating means and the DC voltage, and determining whether or not the calculated voltage utilization factor is greater than a predetermined threshold voltage utilization factor calculation; means and
    A correction amount for calculating the correction amount for increasing the DC voltage when the voltage utilization rate is greater than the threshold, and calculating the correction amount for decreasing the DC voltage when the voltage utilization rate is equal to or less than the threshold. a calculating means;
    A harmonic suppression device according to claim 1.
  6.  前記スイッチング回路は、前記系統電源の複数の相に対応して、複数の前記一対のスイッチング素子を有し、
     前記補正量演算手段は、
     前記系統電源の交流電圧の周期ごとに、前記複数の相ごとの前記電圧指令値の実効値から不平衡率を算出し、算出した最大差が予め決められた不平衡判定閾値以上か否かを判定する電圧利用率算出手段と、
     前記不平衡率が前記不平衡判定閾値以上である場合、前記複数の相の実効値のうち、最大値の実効値が予め決められた範囲に入るように前記直流電圧を変化させる前記補正量を算出する補正量算出手段と、を有する、
     請求項1、4および5のいずれか1項に記載の高調波抑制装置。
    The switching circuit has a plurality of pairs of switching elements corresponding to a plurality of phases of the system power supply,
    The correction amount calculation means is
    For each cycle of the AC voltage of the system power supply, an unbalance rate is calculated from the effective values of the voltage command values for each of the plurality of phases, and whether or not the calculated maximum difference is equal to or greater than a predetermined unbalance determination threshold is determined. a voltage utilization factor calculation means for determining;
    When the unbalance rate is equal to or greater than the unbalance determination threshold, the correction amount for changing the DC voltage is set so that the maximum effective value among the effective values of the plurality of phases falls within a predetermined range. and a correction amount calculation means for calculating,
    A harmonic suppression device according to any one of claims 1, 4 and 5.
  7.  前記一対のスイッチング素子は、ワイドバンドギャップ半導体に形成されている、
     請求項1~6のいずれか1項に記載の高調波抑制装置。
    The pair of switching elements are formed of a wide bandgap semiconductor,
    A harmonic suppression device according to any one of claims 1 to 6.
  8.  前記ワイドバンドギャップ半導体は、窒化ガリウム、炭化珪素、またはダイヤモンドである、
     請求項7に記載の高調波抑制装置。
    The wide bandgap semiconductor is gallium nitride, silicon carbide, or diamond,
    A harmonic suppression device according to claim 7.
  9.  圧縮機、熱交換器および膨張弁が冷媒配管を介して接続された冷媒回路を有する空気調和装置と、
     前記系統電源から出力される交流電圧を直流電圧に変換して前記空気調和装置に電力を供給する高調波発生負荷と、
     前記高調波発生負荷が発生する高調波電流を抑制する、請求項1~8のいずれか1項に記載の高調波抑制装置と、
     を有する空気調和システム。
    an air conditioner having a refrigerant circuit in which a compressor, a heat exchanger and an expansion valve are connected via refrigerant piping;
    a harmonic generation load that converts an AC voltage output from the system power supply to a DC voltage and supplies power to the air conditioner;
    The harmonic suppression device according to any one of claims 1 to 8, which suppresses a harmonic current generated by the harmonic generation load;
    Air conditioning system with.
  10.  前記高調波抑制装置は、前記空気調和装置の本体に内蔵されている、
     請求項9に記載の空気調和システム。
    The harmonic suppression device is built into the main body of the air conditioner,
    The air conditioning system according to claim 9.
PCT/JP2021/025610 2021-07-07 2021-07-07 Harmonic suppression device, and air conditioning system having same WO2023281658A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023532948A JPWO2023281658A1 (en) 2021-07-07 2021-07-07
PCT/JP2021/025610 WO2023281658A1 (en) 2021-07-07 2021-07-07 Harmonic suppression device, and air conditioning system having same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/025610 WO2023281658A1 (en) 2021-07-07 2021-07-07 Harmonic suppression device, and air conditioning system having same

Publications (1)

Publication Number Publication Date
WO2023281658A1 true WO2023281658A1 (en) 2023-01-12

Family

ID=84800499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025610 WO2023281658A1 (en) 2021-07-07 2021-07-07 Harmonic suppression device, and air conditioning system having same

Country Status (2)

Country Link
JP (1) JPWO2023281658A1 (en)
WO (1) WO2023281658A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015195678A (en) * 2014-03-31 2015-11-05 株式会社安川電機 Power conversion device, power generation system, control device and power conversion method
JP2016163406A (en) * 2015-02-27 2016-09-05 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Active filter, motor drive device employing the same, and refrigeration device
JP2019054569A (en) * 2017-09-13 2019-04-04 株式会社明電舎 Three-level power converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015195678A (en) * 2014-03-31 2015-11-05 株式会社安川電機 Power conversion device, power generation system, control device and power conversion method
JP2016163406A (en) * 2015-02-27 2016-09-05 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Active filter, motor drive device employing the same, and refrigeration device
JP2019054569A (en) * 2017-09-13 2019-04-04 株式会社明電舎 Three-level power converter

Also Published As

Publication number Publication date
JPWO2023281658A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
US10651651B2 (en) Device with built-in active filter
US9577534B2 (en) Power converter and air conditioner
EP2779406B1 (en) Power converter and air conditioner having the same
KR101395890B1 (en) Motor controller of air conditioner and method of the motor controller
KR20090039832A (en) Motor control device
US11788752B2 (en) Power source quality management system and air conditioning apparatus
KR102422899B1 (en) Power converting apparatus and air conditioner including the same
WO2023281658A1 (en) Harmonic suppression device, and air conditioning system having same
KR20170004487A (en) Power converting apparatus and air conditioner including the same
KR101416932B1 (en) Motor controller of air conditioner
JP7471442B2 (en) Power conversion devices, motor drives, and refrigeration cycle application devices
JP7055237B2 (en) Power converter and air conditioner using it
JP6935015B2 (en) Harmonic current compensator and air conditioning system
JP3649453B2 (en) Air conditioner control device
JP7285969B2 (en) Motor controller and air conditioner
WO2022049720A1 (en) Power conversion device and air conditioner
WO2021240642A1 (en) Harmonic suppression device and air conditioning system
JP7378651B2 (en) Power conversion equipment, motor drive equipment, and refrigeration cycle application equipment
US20230412065A1 (en) Power conversion device and air conditioner
JP7349067B2 (en) air conditioner
WO2023105792A1 (en) Power conversion device, motor drive device, and refrigeration cycle application device
KR20100036780A (en) Motor controller
JP2005292948A (en) Energy saving device and electricity distribution line system
KR20230066623A (en) Power converters, motor drives and refrigeration cycle applications
JP2020103040A (en) Power supply quality management system and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023532948

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE