WO2023280160A1 - 一种通道切换方法及装置 - Google Patents

一种通道切换方法及装置 Download PDF

Info

Publication number
WO2023280160A1
WO2023280160A1 PCT/CN2022/103922 CN2022103922W WO2023280160A1 WO 2023280160 A1 WO2023280160 A1 WO 2023280160A1 CN 2022103922 W CN2022103922 W CN 2022103922W WO 2023280160 A1 WO2023280160 A1 WO 2023280160A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
receiving end
sending end
data
sending
Prior art date
Application number
PCT/CN2022/103922
Other languages
English (en)
French (fr)
Inventor
周蓉
邱泽令
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023280160A1 publication Critical patent/WO2023280160A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the solution relates to the technical field of communications, and in particular to a channel switching method and device.
  • the embodiment of the present application provides a channel switching method and device.
  • the sending end transmits data to the receiving end through the first channel; when the quality parameter of the first channel is lower than the first threshold, the sending end sends the data to the receiving end.
  • the breakpoint position, the breakpoint position is used to determine the first data, the first data is the data that the sender has not sent when the quality parameter of the first channel is lower than the first threshold; the sender maintains the first channel, and
  • the receiving end negotiates to establish a second channel; the sending end sends the first data to the receiving end through the second channel, and the first data is used by the receiving end to splicing the first data and the second data based on the breakpoint position, and the second data is the receiving end Data received through the first channel prior to the breakpoint location.
  • the sending end and the receiving end do not switch channels immediately when the channel is abnormal, but there is a preparation time between determining the breakpoint position and switching to ensure that the channel after switching is optimally available, and there will be no post-switching It is still not easy to use, but the data at the receiving end is directly spliced and received from the negotiated breakpoint position, no comparison calculation is required, and the splicing time can be reduced, thereby ensuring smooth switching and no user perception.
  • the embodiment of the present application provides a channel switching method, the method is applied to the sending end, and the method includes:
  • the sending end transmits data to the receiving end through the first channel
  • the sending end sends a breakpoint position to the receiving end, the breakpoint position is used to determine first data, and the first data is the Data not sent by the sending end when the quality parameter of the first channel is lower than a first threshold;
  • the sending end negotiates with the receiving end to establish a second channel while maintaining the first channel
  • the sending end sends the first data to the receiving end through the second channel, and the first data is used by the receiving end to compare the first data with the second data based on the breakpoint position Splicing, the second data is the data received by the receiving end through the first channel and located before the breakpoint.
  • the first threshold is set, and the sending end can negotiate breakpoint information with the receiving end in time when the first channel is abnormal. Therefore, when the sending end and the receiving end switch channels, the receiving end can promptly start from the breakpoint.
  • the splicing of data improves the speed of splicing data at the receiving end, so that the user has a higher sense of experience in the process of switching channels.
  • the sending end and the receiving end can simultaneously detect the quality of the first channel to improve the success rate.
  • the sending end may negotiate with the receiving end to update the breakpoint position and negotiate to determine the second channel every preset time, and then switch the first channel to the second channel. It can be understood that since the network quality is constantly changing, the second channel determined within one to two seconds before the handover is more likely to be available and optimal.
  • the quality parameter of the first channel is any parameter in signal strength, channel throughput, channel rate, heartbeat packet or the signal strength, the channel throughput , the channel rate, and the weighted sum of at least two parameters in the heartbeat packet.
  • the method for detecting channel quality at the sending end and the receiving end can be realized through the quality parameter of the first channel, and the quality parameter of the first channel can be any one of signal strength, channel throughput rate, channel rate, and heartbeat packet parameter or the weighted sum of at least two parameters in the signal strength, the channel throughput rate, the channel rate, and the heartbeat packet.
  • the sending end can select different quality parameters according to application scenarios, or perform various processing methods such as classification and weighted summation of the quality parameters, so that the channel quality can be reasonably evaluated according to different application scenarios. For example, in the process of data transmission, the evaluation of channel quality focuses on the speed of the channel, and the sending end can increase the weight of the channel rate; another example, in the process of screen projection, the evaluation of channel quality focuses on the stability of the business , the sender can increase the weight of the channel throughput.
  • the sending end negotiates with the receiving end to establish a second channel while maintaining the first channel, including:
  • the sending end acquires channels available to the receiving end;
  • the sending end determines a channel that is available to both the sending end and the receiving end as an available channel
  • the sending end determines the second channel from the available channels
  • the sending end sends the second channel to the receiving end
  • the sending end After receiving the reply message from the receiving end, the sending end establishes a second channel connection with the receiving end.
  • the second channel is established while the first channel is continuously transmitted. Therefore, when the sending end and the receiving end can switch from the first channel to the second channel, the data will not appear for a long time. stop transmission.
  • the search for the second channel is often started after the first channel becomes abnormal, but the embodiment of the present application has established the second channel in advance to ensure smooth switching between the first channel and the second channel.
  • the sending end determines the second channel from the available channels, including:
  • the sending end obtains the quality parameter of each channel in the available channels
  • the sending end determines the channel with the highest quality parameter among the available channels as the second channel.
  • the sending end and/or the receiving end may select the channel with the highest channel quality among the available channels as the second channel.
  • the sending end, the receiving end, and the node communicate through the same network, and the sending end determines the second channel from the available channels, including :
  • the sending end obtains the channel type used when the node transmits data of the same type as the first data within the target time;
  • the sending end determines a channel belonging to the channel type among the available channels as the second channel.
  • the sending end determines the second channel from the available channels, including:
  • the sending end obtains the quality parameter of each channel in the available channels
  • the sending end determines an available channel whose quality parameter is higher than that of the first channel as the second channel.
  • sending the first data to the receiving end by the sending end through the second channel includes:
  • the sending end sends the first data to the receiving end through the second channel, and the preset condition includes that the quality parameter of the first channel is lower than a second threshold , at least one condition in which the quality parameter of the first channel is lower than the quality parameter of the available channel and the quality parameter of the available channel is higher than a third threshold.
  • the sending end includes at least two chips
  • the available channel includes a channel between any one of the two chips and the receiving end.
  • the sending end sends the breakpoint location to the receiving end, including:
  • the sending end broadcasts the breakpoint location to the receiving end.
  • the sending end sends the breakpoint location to the receiving end, including:
  • the sending end sends the breakpoint position to the receiving end through a control channel.
  • the sending end when the channel quality of the first channel is not good, sends the first breakpoint information to the receiving end through other channels, which can avoid failure to send the first breakpoint information.
  • the embodiment of the present application provides a channel switching method, the method is applied to the receiving end, and the method includes:
  • the receiving end receives data from the sending end through the first channel
  • the receiving end negotiates a breakpoint position with the sending end, and the breakpoint position is used to determine first data, and the first data is sent by the sending end through the first channel and is located at the breakpoint position subsequent data;
  • the receiving end negotiates with the sending end to establish a second channel while maintaining the first channel
  • the receiving end receives the first data from the sending end through the second channel
  • the receiving end splices the first data and second data based on the breakpoint position, and the second data is the data received by the receiving end through the first channel before the breakpoint position .
  • the breakpoint position is the breakpoint position received by the receiving end from the sending end, and the first data is the Data not sent when the quality parameter of the channel is lower than the first threshold; or, the breakpoint position is determined by the receiving end when the quality parameter of the first channel is lower than the fourth threshold, the first The data is data not received by the receiving end when the quality parameter of the first channel is lower than the fourth threshold.
  • the receiving end negotiates with the sending end to establish a second channel while maintaining the first channel, including:
  • the receiving end acquires channels available to the sending end
  • the receiving end determines a channel that is available to both the receiving end and the sending end as an available channel
  • the receiving end determines the second channel from the available channels
  • the receiving end sends the second channel to the sending end
  • the receiving end After receiving the reply message from the sending end, the receiving end establishes a second channel connection with the sending end.
  • the sending end and the receiving end detect the first channel at the same time, which can improve the detection effect of the detection result and help improve the success rate of channel switching.
  • the receiving end determining the second channel from the available channels includes:
  • the receiving end obtains a quality parameter of each channel in the available channels
  • the receiving end determines the channel with the highest quality parameter among the available channels as the second channel.
  • the receiving end, the receiving end and the node communicate through the same network, and the receiving end determines the second channel from the available channels, including :
  • the receiving end obtains the channel type used by the node when transmitting data of the same type as the first data within the target time;
  • the receiving end determines a channel belonging to the channel type among the available channels as the second channel.
  • the receiving end determining the second channel from the available channels includes:
  • the receiving end obtains a quality parameter of each channel in the available channels
  • the receiving end determines an available channel whose quality parameter is higher than that of the first channel as the second channel.
  • the receiving end includes at least two chips
  • the available channel includes a channel between any one of the two chips and the sending end.
  • the receiving end and the sending end negotiate a breakpoint position, including:
  • the receiving end broadcasts the breakpoint location to the sending end.
  • the receiving end and the sending end negotiate a breakpoint position, including:
  • the receiving end sends the breakpoint position to the sending end through a control path.
  • the second channel is determined by the sending end, and the receiving end negotiates with the sending end to establish a second channel while maintaining the first channel.
  • Two channels including:
  • the receiving end When receiving the second channel from the sending end, the receiving end establishes a connection of the second channel with the sending end.
  • an electronic device in a third aspect, includes: one or more processors, memory, and a display screen; the memory is coupled to the one or more processors, and the memory is used for Store computer program code, the computer program code includes computer instructions, and the one or more processors are used to invoke the computer instructions so that the electronic device executes the first aspect and any possible implementation manner in the first aspect described method.
  • an electronic device in a fourth aspect, includes: one or more processors, a memory, and a display screen; the memory is coupled to the one or more processors, and the memory is used for Store computer program code, the computer program code includes computer instructions, and the one or more processors are used to invoke the computer instructions so that the electronic device executes the second aspect and any possible implementation manner in the second aspect described method.
  • the embodiment of the present application provides a chip, the chip is applied to an electronic device, and the chip includes one or more processors, and the processor is used to invoke computer instructions so that the electronic device executes the electronic device according to the first aspect and the second aspect.
  • the processor is used to invoke computer instructions so that the electronic device executes the electronic device according to the first aspect and the second aspect.
  • the embodiment of the present application provides a chip, the chip is applied to an electronic device, and the chip includes one or more processors, and the processor is used to invoke computer instructions so that the electronic device executes the electronic device according to the second aspect and the second aspect.
  • the processor is used to invoke computer instructions so that the electronic device executes the electronic device according to the second aspect and the second aspect.
  • the embodiment of the present application provides a computer program product containing instructions, and when the above computer program product is run on the electronic device, the above electronic device is made to execute any possible implementation method according to the first aspect and the first aspect described method.
  • the embodiment of the present application provides a computer program product containing instructions, when the above-mentioned computer program product is run on the electronic device, the above-mentioned electronic device is made to execute any possible implementation method according to the second aspect and the second aspect described method.
  • the embodiment of the present application provides a computer-readable storage medium, including instructions, which, when the above-mentioned instructions are run on the electronic device, cause the above-mentioned electronic device to execute any possible implementation method according to the first aspect and the first aspect. described method.
  • the embodiment of the present application provides a computer-readable storage medium, including instructions, which, when the above-mentioned instructions are run on the electronic device, cause the above-mentioned electronic device to execute any possible implementation of the second aspect and the second aspect. described method.
  • FIG. 1A is a schematic diagram of a channel switching network architecture provided by an embodiment of the present application.
  • FIG. 1B is a schematic diagram of another channel switching network architecture provided by the embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an electronic device 100 provided in an embodiment of the present application.
  • FIG. 3 is a software structural block diagram of an electronic device 100 provided in an embodiment of the present application.
  • FIG. 4 is a flowchart of a channel switching method provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a breakpoint information provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a scoring method for available channels provided by an embodiment of the present application.
  • FIG. 1A is a schematic diagram of a channel switching network architecture provided by an embodiment of the present application.
  • the network architecture includes a sending end 10 and a receiving end 20 , and the sending end 10 and the receiving end 20 can communicate through multiple channels. in:
  • the sending end 10 transmits data to the receiving end 20 through the first channel; when the quality parameter of the first channel is lower than the first threshold, the sending end 10 sends the breakpoint position to the receiving end 20, and the breakpoint position is used to determine the second One data
  • the first data is the data not sent by the sending end 10 when the quality parameter of the first channel is lower than the first threshold, correspondingly, the receiving end 20 receives the breakpoint information from the sending end 10; the sending end 10 keeps the In the case of one channel, negotiate with the receiving end 20 to establish a second channel; the sending end 10 sends the first data to the receiving end 20 through the second channel; the receiving end 20 splices the first data and the second data based on the breakpoint position, The second data is the data received by the receiving end 20 through the first channel and located before the breakpoint.
  • FIG. 1B is a schematic diagram of another channel switching network architecture provided by an embodiment of the present application.
  • the network architecture includes a sending end 10 , a receiving end 20 and a node 30 , wherein the sending end 10 , receiving end 20 and node 30 are in the same network environment or communicate through the same network.
  • the sending end 10 and the receiving end 20 can obtain from the node 30 the channel type used by the node 30 to transmit data of the same type as the first data within the target time, and then determine the transmission For the channel of the first data, please refer to the relevant content below for specific content.
  • the above-mentioned sending end 10, receiving end 20, and node 30 may be electronic devices, which include but are not limited to smart phones, tablet computers, personal digital assistants (personal digital assistant, PDA), wearable electronic devices with wireless communication functions (such as smart watches, smart glasses), augmented reality (augmented reality, AR) equipment, virtual reality (virtual reality, VR) equipment, etc.
  • Exemplary embodiments of electronic devices include, but are not limited to Portable electronic devices with Linux or other operating systems.
  • the aforementioned electronic equipment may also be other portable electronic equipment, such as a laptop computer (Laptop). It should also be understood that, in some other embodiments, the above-mentioned electronic device may not be a portable electronic device, but a desktop computer or the like.
  • the communication connection between the sending end 10 and the receiving end 20 may be a wired connection or a wireless connection.
  • the wireless connection may be a high-fidelity wireless communication (wireless fidelity, Wi-Fi) connection, a Bluetooth connection, an infrared connection, an NFC connection, a ZigBee connection, or a short-distance connection.
  • the channel refers to the logical channel through which information can be transmitted, based on communication media and relay equipment, and the media can be universal serial bus (universal serial bus, USB) interface lines, cables and optical fibers in wired form, or wireless Electromagnetic wave channel.
  • the channel is not limited to the channel of the wireless application layer transmission protocol.
  • L2CAP Logical Link Control and Adaptation Protocol
  • LMP Link Manager Protocol
  • Channel establishment includes channel negotiation and selection, not only switching on the channel, but also switching between wireless and wired, and wireless application layer protocols.
  • channel switching network architectures in FIG. 1A and FIG. 1B are only exemplary implementations of the embodiments of the present application, and the channel switching network architectures in the embodiments of the present application include but are not limited to the above channel switching network architectures.
  • FIG. 2 is a schematic structural diagram of an electronic device 100 provided in an embodiment of the present application.
  • electronic device 100 may have more or fewer components than shown in the figures, may combine two or more components, or may have a different configuration of components.
  • the various components shown in the figures may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • the electronic device 100 may include: a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (universal serial bus, USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2.
  • Mobile communication module 150 wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194 and A subscriber identification module (subscriber identification module, SIM) card interface 195 and the like.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, an ambient light sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example: the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU) Wait. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • neural network processor neural-network processing unit
  • the controller may be the nerve center and command center of the electronic device 100 .
  • the controller can generate an operation control signal according to the instruction opcode and timing signal, and complete the control of fetching and executing the instruction.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is a cache memory.
  • the memory may hold instructions or data that the processor 110 has just used or recycled. If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated access is avoided, and the waiting time of the processor 110 is reduced, thereby improving the efficiency of the system.
  • processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transmitter (universal asynchronous receiver/transmitter, UART) interface, mobile industry processor interface (mobile industry processor interface, MIPI), general-purpose input and output (general-purpose input/output, GPIO) interface, subscriber identity module (subscriber identity module, SIM) interface, and /or Universal Serial Bus interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input and output
  • subscriber identity module subscriber identity module
  • SIM subscriber identity module
  • Universal Serial Bus interface etc.
  • the I2C interface is a bidirectional synchronous serial bus, including a serial data line (serial data line, SDA) and a serial clock line (derail clock line, SCL).
  • processor 110 may include multiple sets of I2C buses.
  • the processor 110 can be respectively coupled to the touch sensor 180K, the charger, the flashlight, the camera 193 and the like through different I2C bus interfaces.
  • the processor 110 may be coupled to the touch sensor 180K through the I2C interface, so that the processor 110 and the touch sensor 180K communicate through the I2C bus interface to realize the touch function of the electronic device 100 .
  • the I2S interface can be used for audio communication.
  • processor 110 may include multiple sets of I2S buses.
  • the processor 110 may be coupled to the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170 .
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the I2S interface, so as to realize the function of answering calls through the Bluetooth headset.
  • the PCM interface can also be used for audio communication, sampling, quantizing and encoding the analog signal.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 can also transmit audio signals to the wireless communication module 160 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • a UART interface is generally used to connect the processor 110 and the wireless communication module 160 .
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to realize the Bluetooth function.
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the UART interface, so as to realize the function of playing music through the Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193 .
  • MIPI interface includes camera serial interface (camera serial interface, CSI), display serial interface (display serial interface, DSI), etc.
  • the processor 110 communicates with the camera 193 through the CSI interface to realize the shooting function of the electronic device 100 .
  • the processor 110 communicates with the display screen 194 through the DSI interface to realize the display function of the electronic device 100 .
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 193 , the display screen 194 , the wireless communication module 160 , the audio module 170 , the sensor module 180 and so on.
  • the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the SIM interface can be used to communicate with the SIM card interface 195 to realize the function of transmitting data to the SIM card or reading data in the SIM card.
  • the USB interface 130 is an interface conforming to the USB standard specification, specifically, it can be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 130 can be used to connect a charger to charge the electronic device 100 , and can also be used to transmit data between the electronic device 100 and peripheral devices. It can also be used to connect headphones and play audio through them. This interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules shown in the embodiment of the present application is only a schematic illustration, and does not constitute a structural limitation of the electronic device 100 .
  • the electronic device 100 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the charging management module 140 is configured to receive a charging input from a charger.
  • the charger may be a wireless charger or a wired charger.
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives the input from the battery 142 and/or the charging management module 140 to provide power for the processor 110 , the internal memory 121 , the external memory, the display screen 194 , the camera 193 , and the wireless communication module 160 .
  • the wireless communication function of the electronic device 100 can be realized by the antenna 1 , the antenna 2 , the mobile communication module 150 , the wireless communication module 160 , a modem processor, a baseband processor, and the like.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover single or multiple communication frequency bands. Different antennas can also be multiplexed to improve the utilization of the antennas.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 can provide wireless communication solutions including 2G/3G/4G/5G applied on the electronic device 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (low noise amplifier, LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, filter and amplify the received electromagnetic waves, and send them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signals modulated by the modem processor, and convert them into electromagnetic waves through the antenna 1 for radiation.
  • at least part of the functional modules of the mobile communication module 150 may be set in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be set in the same device.
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used for modulating the low-frequency baseband signal to be transmitted into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator sends the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low-frequency baseband signal is passed to the application processor after being processed by the baseband processor.
  • the application processor outputs sound signals through audio equipment (not limited to speaker 170A, receiver 170B, etc.), or displays images or videos through display screen 194 .
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent of the processor 110, and be set in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (Wireless Fidelity, Wi-Fi) network), bluetooth (bluetooth, BT), global navigation satellite, etc. applied on the electronic device 100.
  • System global navigation satellite system, GNSS
  • frequency modulation frequency modulation, FM
  • near field communication technology near field communication, NFC
  • infrared technology infrared, IR
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency-modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , frequency-modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the antenna 1 of the electronic device 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access, CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR techniques, etc.
  • the GNSS may include a global positioning system (global positioning system, GPS), a global navigation satellite system (global navigation satellite system, GLONASS), a Beidou navigation satellite system (beidou navigation satellite system, BDS), a quasi-zenith satellite system (quasi -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • Beidou navigation satellite system beidou navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the electronic device 100 realizes the display function through the GPU, the display screen 194 , and the application processor.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos and the like.
  • the display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light emitting diode, AMOLED), flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light emitting diodes (quantum dot light emitting diodes, QLED), etc.
  • the electronic device 100 may include 1 or N display screens 194 , where N is a positive integer greater than 1.
  • the electronic device 100 can realize the shooting function through the ISP, the camera 193 , the video codec, the GPU, the display screen 194 and the application processor.
  • the ISP is used for processing the data fed back by the camera 193 .
  • the light is transmitted to the photosensitive element of the camera through the lens, and the light signal is converted into an electrical signal, and the photosensitive element of the camera transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and skin color.
  • ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be located in the camera 193 .
  • Camera 193 is used to capture still images or video.
  • the object generates an optical image through the lens and projects it to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the light signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other image signals.
  • the electronic device 100 may include 1 or N cameras 193 , where N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the electronic device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point.
  • Video codecs are used to compress or decompress digital video.
  • the electronic device 100 may support one or more video codecs.
  • the electronic device 100 can play or record videos in various encoding formats, for example: moving picture experts group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4 and so on.
  • MPEG moving picture experts group
  • the NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • Applications such as intelligent cognition of the electronic device 100 can be realized through the NPU, such as image recognition, face recognition, speech recognition, text understanding, and the like.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, so as to expand the storage capacity of the electronic device 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to implement a data storage function. Such as saving music, video and other files in the external memory card.
  • the internal memory 121 may be used to store computer-executable program codes including instructions.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by executing instructions stored in the internal memory 121 .
  • the internal memory 121 may include an area for storing programs and an area for storing data. Wherein, the stored program area can store an operating system, at least one application required by a function (such as a face recognition function, a fingerprint recognition function, a mobile payment function, etc.) and the like.
  • the data storage area can store data created during use of the electronic device 100 (such as face information template data, fingerprint information template, etc.) and the like.
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (universal flash storage, UFS) and the like.
  • the electronic device 100 can implement audio functions through the audio module 170 , the speaker 170A, the receiver 170B, the microphone 170C, the earphone interface 170D, and the application processor. Such as music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signal.
  • the audio module 170 may also be used to encode and decode audio signals.
  • the audio module 170 may be set in the processor 110 , or some functional modules of the audio module 170 may be set in the processor 110 .
  • Speaker 170A also referred to as a "horn" is used to convert audio electrical signals into sound signals.
  • Electronic device 100 can listen to music through speaker 170A, or listen to hands-free calls.
  • Receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the receiver 170B can be placed close to the human ear to receive the voice.
  • the microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals. When making a phone call or sending a voice message, the user can put his mouth close to the microphone 170C to make a sound, and input the sound signal to the microphone 170C.
  • the electronic device 100 may be provided with at least one microphone 170C. In some other embodiments, the electronic device 100 may be provided with two microphones 170C, which may also implement a noise reduction function in addition to collecting sound signals. In some other embodiments, the electronic device 100 can also be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and realize directional recording functions, etc.
  • the earphone interface 170D is used for connecting wired earphones.
  • the earphone interface 170D may be a USB interface 130, or a 3.5mm open mobile terminal platform (open mobile terminal platform, OMTP) standard interface, or a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the pressure sensor 180A is used to sense the pressure signal and convert the pressure signal into an electrical signal.
  • pressure sensor 180A may be disposed on display screen 194 .
  • pressure sensors 180A such as resistive pressure sensors, inductive pressure sensors, and capacitive pressure sensors.
  • a capacitive pressure sensor may be comprised of at least two parallel plates with conductive material.
  • the electronic device 100 determines the intensity of pressure according to the change in capacitance.
  • the electronic device 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the electronic device 100 may also calculate the touched position according to the detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch position but with different touch operation intensities may correspond to different operation instructions. For example: when a touch operation with a touch operation intensity less than the first pressure threshold acts on the short message application icon, an instruction to view short messages is executed. When a touch operation whose intensity is greater than or equal to the first pressure threshold acts on the icon of the short message application, the instruction of creating a new short message is executed.
  • the gyro sensor 180B can be used to determine the motion posture of the electronic device 100 .
  • the angular velocity of the electronic device 100 around three axes may be determined by the gyro sensor 180B.
  • the gyro sensor 180B can be used for image stabilization. Exemplarily, when the shutter is pressed, the gyro sensor 180B detects the shaking angle of the electronic device 100, calculates the distance that the lens module needs to compensate according to the angle, and allows the lens to counteract the shaking of the electronic device 100 through reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
  • the air pressure sensor 180C is used to measure air pressure.
  • the electronic device 100 calculates the altitude based on the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the electronic device 100 may use the magnetic sensor 180D to detect the opening and closing of the flip leather case.
  • the electronic device 100 when the electronic device 100 is a clamshell machine, the electronic device 100 can detect opening and closing of the clamshell according to the magnetic sensor 180D.
  • features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the acceleration of the electronic device 100 in various directions (generally three axes). When the electronic device 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of electronic devices, and can be used in applications such as horizontal and vertical screen switching, pedometers, etc.
  • the distance sensor 180F is used to measure the distance.
  • the electronic device 100 may measure the distance by infrared or laser. In some embodiments, when shooting a scene, the electronic device 100 may use the distance sensor 180F for distance measurement to achieve fast focusing.
  • Proximity light sensor 180G may include, for example, light emitting diodes (LEDs) and light detectors, such as photodiodes.
  • the light emitting diodes may be infrared light emitting diodes.
  • the electronic device 100 emits infrared light through the light emitting diode.
  • Electronic device 100 uses photodiodes to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it may be determined that there is an object near the electronic device 100 . When insufficient reflected light is detected, the electronic device 100 may determine that there is no object near the electronic device 100 .
  • the electronic device 100 can use the proximity light sensor 180G to detect that the user is holding the electronic device 100 close to the ear to make a call, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in leather case mode, automatic unlock and lock screen in pocket mode.
  • the ambient light sensor 180L is used for sensing ambient light brightness.
  • the electronic device 100 can adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the electronic device 100 is in the pocket, so as to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the electronic device 100 can use the collected fingerprint characteristics to implement fingerprint unlocking, access to application locks, take pictures with fingerprints, answer incoming calls with fingerprints, and the like.
  • the temperature sensor 180J is used to detect temperature.
  • the electronic device 100 uses the temperature detected by the temperature sensor 180J to implement a temperature treatment strategy. For example, when the temperature reported by the temperature sensor 180J exceeds the threshold, the electronic device 100 may reduce the performance of the processor located near the temperature sensor 180J, so as to reduce power consumption and implement thermal protection.
  • the electronic device 100 when the temperature is lower than another threshold, the electronic device 100 heats the battery 142 to prevent the electronic device 100 from being shut down abnormally due to the low temperature.
  • the electronic device 100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 180K also known as "touch panel”.
  • the touch sensor 180K can be disposed on the display screen 194, and the touch sensor 180K and the display screen 194 form a touch screen, also called a “touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to the touch operation can be provided through the display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the electronic device 100 , which is different from the position of the display screen 194 .
  • the keys 190 include a power key, a volume key and the like.
  • the key 190 may be a mechanical key. It can also be a touch button.
  • the electronic device 100 can receive key input and generate key signal input related to user settings and function control of the electronic device 100 .
  • the motor 191 can generate a vibrating reminder.
  • the motor 191 can be used for incoming call vibration prompts, and can also be used for touch vibration feedback.
  • touch operations applied to different applications may correspond to different vibration feedback effects.
  • the motor 191 may also correspond to different vibration feedback effects for touch operations acting on different areas of the display screen 194 .
  • Different application scenarios for example: time reminder, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 192 can be an indicator light, and can be used to indicate charging status, power change, and can also be used to indicate messages, missed calls, notifications, and the like.
  • the SIM card interface 195 is used for connecting a SIM card.
  • the SIM card can be connected and separated from the electronic device 100 by inserting it into the SIM card interface 195 or pulling it out from the SIM card interface 195 .
  • the electronic device 100 may support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card etc. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the multiple cards may be the same or different.
  • the SIM card interface 195 is also compatible with different types of SIM cards.
  • the SIM card interface 195 is also compatible with external memory cards.
  • the electronic device 100 interacts with the network through the SIM card to implement functions such as calling and data communication.
  • both the sending end 10 and the receiving end 20 may be the electronic device 100, and the electronic device 100 may execute the channel switching method through the processor 110.
  • FIG. 3 is a software structural block diagram of an electronic device 100 provided in an embodiment of the present application.
  • the layered architecture divides the software into several layers, and each layer has a clear role and division of labor. Layers communicate through software interfaces.
  • the system is divided into four layers, which are application program layer, application program framework layer, runtime (Runtime) and system library, and kernel layer from top to bottom.
  • the application layer can consist of a series of application packages.
  • the application package may include application programs (also called applications) such as camera, gallery, calendar, call, map, navigation, WLAN, Bluetooth, music, video, and short message.
  • application programs also called applications
  • the application framework layer provides an application programming interface (application programming interface, API) and a programming framework for applications in the application layer.
  • the application framework layer includes some predefined functions.
  • the application framework layer can include window manager, content provider, view system, phone manager, resource manager, notification manager, etc.
  • a window manager is used to manage window programs.
  • the window manager can get the size of the display screen, determine whether there is a status bar, lock the screen, capture the screen, etc.
  • Content providers are used to store and retrieve data and make it accessible to applications.
  • Said data may include video, images, audio, calls made and received, browsing history and bookmarks, phonebook, etc.
  • the view system includes visual controls, such as controls for displaying text, controls for displaying pictures, and so on.
  • the view system can be used to build applications.
  • a display interface can consist of one or more views.
  • a display interface including a text message notification icon may include a view for displaying text and a view for displaying pictures.
  • the phone manager is used to provide communication functions of the electronic device 100 . For example, the management of call status (including connected, hung up, etc.).
  • the resource manager provides various resources for the application, such as localized strings, icons, pictures, layout files, video files, and so on.
  • the notification manager enables the application to display notification information in the status bar, which can be used to convey notification-type messages, and can automatically disappear after a short stay without user interaction.
  • the notification manager is used to notify the download completion, message reminder, etc.
  • the notification manager can also be a notification that appears on the top status bar of the system in the form of a chart or scroll bar text, such as a notification of an application running in the background, or a notification that appears on the screen in the form of a dialog interface. For example, prompting text information in the status bar, issuing a prompt sound, vibrating the electronic device, and flashing the indicator light, etc.
  • Runtime includes the core library and virtual machine. Runtime is responsible for the scheduling and management of the system.
  • the core library includes two parts: one part is the function function that the programming language (for example, jave language) needs to call, and the other part is the core library of the system.
  • one part is the function function that the programming language (for example, jave language) needs to call
  • the other part is the core library of the system.
  • the application layer and the application framework layer run in virtual machines.
  • the virtual machine executes programming files (for example, jave files) of the application program layer and the application program framework layer as binary files.
  • the virtual machine is used to perform functions such as object life cycle management, stack management, thread management, security and exception management, and garbage collection.
  • a system library can include multiple function modules. For example: surface manager (surface manager), media library (Media Libraries), 3D graphics processing library (eg: OpenGL ES), 2D graphics engine (eg: SGL), etc.
  • the surface manager is used to manage the display subsystem, and provides fusion of two-dimensional (2-Dimensional, 2D) and three-dimensional (3-Dimensional, 3D) layers for multiple applications.
  • the media library supports playback and recording of various commonly used audio and video formats, as well as still image files, etc.
  • the media library can support a variety of audio and video encoding formats, such as: MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, etc.
  • the 3D graphics processing library is used to implement 3D graphics drawing, image rendering, compositing, and layer processing, etc.
  • 2D graphics engine is a drawing engine for 2D drawing.
  • the kernel layer is the layer between hardware and software.
  • the kernel layer includes at least a display driver, a camera driver, an audio driver, a sensor driver, and a virtual card driver.
  • the workflow of the software and hardware of the electronic device 100 will be exemplarily described below in conjunction with capturing and photographing scenes.
  • a corresponding hardware interrupt is sent to the kernel layer.
  • the kernel layer processes touch operations into original input events (including touch coordinates, time stamps of touch operations, and other information). Raw input events are stored at the kernel level.
  • the application framework layer obtains the original input event from the kernel layer, and identifies the control corresponding to the input event. Take the touch operation as a touch click operation, and the control corresponding to the click operation is the control of the camera application icon as an example.
  • the camera application calls the interface of the application framework layer to start the camera application, and then starts the camera driver by calling the kernel layer.
  • Camera 193 captures still images or video.
  • FIG. 4 is a flowchart of a channel switching method provided in the embodiment of the present application. As shown in FIG. 4, the channel switching method includes some or all of the following steps:
  • the sending end transmits data to the receiving end through the first channel.
  • the data transmitted from the sending end to the receiving end may be a message, display data, or control instructions.
  • the sending end can be a mobile phone
  • the receiving end can be a large-screen device
  • the first channel can be a Bluetooth channel.
  • the mobile phone can send display data to the large-screen device based on the Bluetooth connection.
  • the large-screen device renders and displays the display data after receiving the display data sent by the mobile phone.
  • the sending end when the sending end establishes the connection of the first channel with the receiving end, it also establishes the connection of the control channel.
  • the sending end and/or the receiving end detect the channel quality of the first channel.
  • the sending end and/or the receiving end may detect the quality parameter of the first channel in real time or at an interval of a target time, and then determine the channel quality of the first channel according to the quality parameter of the first channel.
  • the quality parameter of the first channel may be Signal Strength (Received Signal Strength Indication, RSSI), channel throughput rate, channel rate, heartbeat packet, etc.
  • the sending end may classify the parameters of the first channel, and then multiply the parameters of different categories by different weights, and finally obtain the channel parameters of the first channel through summation.
  • the sender divides the channel delay and channel rate into the first group, and divides the signal strength, heartbeat packet and channel throughput into the second group; the sender obtains the channel delay, channel rate, and signal strength of the first channel respectively.
  • heartbeat packet and channel throughput rate and then sum the channel delay and channel rate to get the value of the first group, and sum the signal strength, heartbeat packet and channel throughput rate to get the value of the second group;
  • the product of the value of one group multiplied by the weight of the first group plus the product of the value of the second group multiplied by the weight of the second group obtains the channel quality of the first channel.
  • the sending end may also use a quality parameter as a channel quality standard of the first channel.
  • the sending end uses the rate of the first channel as the channel quality of the first channel.
  • the sending end and/or the receiving end may also detect the channel quality of the first channel in other ways, which is not limited here.
  • the sending end sends first breakpoint information to the receiving end.
  • the sending end may determine the first breakpoint information when the quality parameter of the first channel is lower than the first threshold, and then send the first breakpoint information to the receiving end.
  • the sending end can send the first breakpoint information to the receiving end through the first channel; the sending end can also broadcast the first breakpoint information to the receiving end; the sending end can also send the first breakpoint information to the receiving end through the control channel point information
  • the control channel may refer to a channel for transmitting control messages.
  • the control channel can be a Bluetooth Low Energy (ble) channel established between the sending end and the receiving end.
  • ble Bluetooth Low Energy
  • the mobile phone and the large-screen device establish a ble control channel.
  • the first channel of the mobile phone and large-screen device transmission device is the routing AP channel.
  • the mobile phone can send the first breakpoint information to the receiving end through the ble control channel. It can be understood that when the channel quality of the first channel is poor, the sending end sends the first breakpoint information to the receiving end through other channels, so as to avoid failure to send the first breakpoint information.
  • the first breakpoint information can be sent through broadcast and connection, and under the same speed, it can be sent on the connection first.
  • the first breakpoint information may include a breakpoint location, a sender ID, a session ID, progress information, a receiver ID, and the like.
  • the data packet is filled in according to a variable form (Type Length Value, TLV), and the first breakpoint information may include a field name (Type).
  • TLV Type Length Value
  • the first breakpoint information may also include other data, which is not limited here.
  • the first breakpoint information may include a field name, a sender identifier, a session identifier, progress information, and a receiver identifier.
  • the field name includes the meaning of the field, which is used to indicate the breakpoint position;
  • the sender identifier can be the Media Access Control Address (Media Access Control Address, MAC) address of the sender, and the receiver identifier can be the MAC address of the receiver;
  • the session identifier It is used to indicate the session after the breakpoint.
  • the session ID can be used to indicate the current session transmitted by the first channel;
  • the progress information in this section can include the percentage of the transmission and the specific details of the current transmission. content.
  • the sending end may determine that The channel quality of the first channel is lower than the first indicator.
  • the sending end may also determine whether to send the first breakpoint information to the receiving end according to the progress information. For example, when the file transmission reaches 90%, the sending end may not send the first breakpoint information to the receiving end.
  • the first threshold is set, and the sending end can negotiate breakpoint information with the receiving end in time when the first channel is abnormal. Therefore, when the sending end and the receiving end switch channels, the receiving end can promptly start from the breakpoint.
  • the splicing of data improves the speed of splicing data at the receiving end, so that the user has a higher sense of experience in the process of switching channels.
  • the receiving end sends second breakpoint information to the sending end when the channel quality of the first channel is lower than the first index.
  • step S103 please refer to the relevant content of step S103, which will not be repeated here.
  • the sending end negotiates target breakpoint information with the receiving end.
  • the sending end sends the first breakpoint information to the receiving end, and the receiving end does not send the second breakpoint information to the sending end, then the receiving end sends an acknowledgment to the sending end after receiving the first breakpoint information information, both ends determine that the first breakpoint information sent by the sender is the target breakpoint information.
  • the receiving end sends the second breakpoint information to the sending end, and the sending end does not send the first breakpoint information to the receiving end, then the sending end sends The receiving end replies with confirmation information, and the two ends determine that the second breakpoint information sent by the receiving end is the target breakpoint information.
  • the receiving end sends the second breakpoint information to the sending end, and the sending end sends the first breakpoint information to the receiving end, then the receiving end sends a reply to the sending end after receiving the first breakpoint information
  • both ends determine that the first breakpoint information sent by the sender is the target breakpoint information. It can be understood that the sending end and the receiving end detect the first channel at the same time, which can improve the detection effect of the detection result and help to improve the success rate of channel switching.
  • the sending end and the receiving end can update the target breakpoint information again after a preset time. For example, two seconds after the sending end and the receiving end have negotiated and determined the target breakpoint information, but the sending end and the receiving end still use the first channel to transmit data, the sending end and the receiving end may renegotiate the target breakpoint information.
  • the sending end determines the first available channel.
  • the sending end can obtain the available channels of the receiving end, and determine the channels available to both the sending end and the receiving end as available channels, and then, the sending end determines the first channel from the available channels An available channel.
  • the sending end may obtain the quality parameter of each channel in the available channels, and determine the channel with the highest quality parameter among the available channels as the first available channel.
  • FIG. 6 is a schematic diagram of a scoring method for available channels provided by an embodiment of the present application.
  • the available channels include ble, classic Bluetooth (Basic Rate, BR), limited application protocol (coap) and point-to-point transmission protocol (Point to point, p2p).
  • Delay as group A, signal strength, heartbeat packet and throughput as group B, and score each group according to the collected data, for example, 2 points for no interference, 1 point for interference, and multiple reoccurrences at the bottom layer with severe interference Pass 0 points.
  • the sender can combine the actual business scenario, in the scenario where the control command class requires higher speed, you can increase the weight of Group A; in the scenario where large files require higher quality, you can increase the weight of Group B.
  • the ranking results of the available channels are coap, p2p, BR, and ble.
  • the sending end may determine coap as the first available channel.
  • the sending end may obtain the channel type used by the node when transmitting data of the same type as the first data within the target time, and then determine the channel belonging to the channel type among the available channels as the first available channel.
  • the type of data may include instruction (token), text (text), video stream (stream), large file (file) and so on.
  • the sending end is a mobile phone
  • the receiving end is a TV
  • the mobile phone is transmitting video streams to the computer.
  • the sending end and the receiving end maintain a communication connection with the computer, refrigerator, etc., and the sending end can obtain information on the computer, refrigerator, etc.
  • the channel used when the video stream was sent last time, and this channel is determined as the first available channel.
  • each node in the network will summarize the speed and quality of each transmission type on different channels, learn and share, recommend channels and unrecommended channels, optimize the comprehensive sorting strategy, and achieve the optimal choice. Furthermore, when the two devices transmit again, the channel used for the previous transmission can be preferentially used.
  • the sending end may obtain a quality parameter of each channel in the available channels, and then determine an available channel whose quality parameter is higher than that of the first channel as the first available channel.
  • channels available to both the sending end include Bluetooth and point-to-point transmission channels, and the sending end determines Bluetooth as the first available channel when determining that the rate of Bluetooth is higher than that of the point-to-point transmission channel.
  • the sending end and/or the receiving end include at least two chips, and the available channels include any one of the two chips and the channel of the opposite end.
  • the sender is a device that supports multiple wifi chips, when the wifi transmission fails, the sender can detect the wifi channel quality of the second chip; for another example, if the sender is a device that supports multiple bluetooth chips, when the bluetooth transmission fails, the sender can detect the channel quality of the second chip. Two-chip Bluetooth channel quality.
  • the sending end may sort the time-consuming time for establishing connections of the available channels, so as to select the channel with the least time-consuming as the first available channel. It should be understood that only the channel switching time is shorter than the application layer reestablishment connection time, and the application layer link establishment time is shorter than the establishment time after chip switching is requested. Among them, it takes different time to establish connections for different channels of the same application-side transport protocol. For example, ble establishes a link faster than BR.
  • the receiving end determines the second available channel.
  • step S106 For the specific process, reference may be made to the relevant content of step S106, which will not be repeated here.
  • the sending end and receiving end can perform inter-channel detection supported by the same transmission service type. For example, the sending end or receiving end suddenly turns on a hotspot or modifies the channel abnormality caused by 2G/5G wifi selection, and needs to search for available channels again .
  • the sending end and the receiving end can detect between the application layer transport protocols supported by the transmission service type, such as ble, BR, USB, coap, p2p, etc. for text transmission, and search for available channels.
  • the transmission service type such as ble, BR, USB, coap, p2p, etc.
  • the sending end negotiates the second channel with the receiving end.
  • the sending end sends the first available channel to the receiving end, and the receiving end does not send the second available channel to the sending end, then the receiving end returns an acknowledgment message to the sending end after receiving the first available channel, and the two The end determines that the first available channel sent by the sending end is the target available channel.
  • the receiving end sends the second available channel to the sending end, and the sending end does not send the first available channel to the receiving end, then the sending end replies to the receiving end after receiving the second available channel sent by the receiving end. Confirmation information, both ends determine that the second available channel sent by the receiving end is the target available channel.
  • the receiving end sends the second available channel to the sending end, and the sending end sends the first available channel to the receiving end, then the receiving end returns an acknowledgment message to the sending end after receiving the first available channel, Both ends determine that the first available channel sent by the sending end is the target available channel.
  • the sending end establishes a second channel with the receiving end.
  • the connection of the second channel is established.
  • the sending end and the receiving end negotiate to determine the target breakpoint information when the channel quality of the first channel is lower than the first index, and then negotiate to establish the second channel.
  • the second channel is established only when the first channel is abnormal, and the backup channel is not established before the transmission starts, so as to avoid the problem of wasting resources by idle running and affecting the transmission of the first channel.
  • the sending end sends the first data to the receiving end through the second channel, where the first data is data after the target breakpoint position.
  • the sending end and the receiving end switch to the second channel, and the sending end sends the first data to the receiving end through the second channel.
  • the second channel of the receiving end channel receives data from the sending end. first data.
  • the preset condition includes at least one condition that the quality parameter of the first channel is lower than the second threshold, the quality parameter of the first channel is lower than the quality parameter of the available channel, and the quality parameter of the available channel is higher than the third threshold.
  • the second threshold and the third threshold are preset values, which are not specifically limited.
  • the breakpoint position determined through negotiation between the sending end and the receiving end is determined by the sending end when the quality parameter of the first channel is lower than the first threshold, then the sending end may, when the quality parameter of the first channel is lower than the second threshold, The data not sent by the sending end when the quality parameter of the first channel is lower than the first threshold is sent to the receiving end.
  • the sending end negotiates with the receiving end to determine the second channel, it detects the channel quality of the first channel and the second channel in real time, and switches to the second channel when the quality parameter of the first channel is lower than that of the second channel .
  • the sending end and the receiving end may disconnect the connection of the first channel.
  • the receiving end splices the second data received by the first channel with the first data received by the second channel, where the second data is data before the breakpoint position.
  • the receiving end splices the first data with the data before the breakpoint received by the first channel.
  • the output success rate can be improved. Experimental data shows that the transmission success rate can be increased by 30%, especially when the network status changes frequently, especially during the peak access time period.
  • the sending end and the receiving end may disconnect the connection of the first channel. It can be understood that disconnecting unnecessary channels between the sending end and the receiving end is beneficial to the performance of the device.
  • all or part of the functions may be implemented by software, hardware, or a combination of software and hardware.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored on a computer readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)), etc.
  • a magnetic medium for example, a floppy disk, a hard disk, or a magnetic tape
  • an optical medium for example, DVD
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • the processes can be completed by computer programs to instruct related hardware.
  • the programs can be stored in computer-readable storage media.
  • When the programs are executed may include the processes of the foregoing method embodiments.
  • the aforementioned storage medium includes: ROM or random access memory RAM, magnetic disk or optical disk, and other various media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通道切换方法,发送端通过第一通道向接收端传输数据;发送端在第一通道的质量参数低于第一阈值时,向接收端发送断点位置,断点位置用于确定第一数据,第一数据为发送端在第一通道的质量参数低于第一阈值时未发送的数据;发送端在保持第一通道的情况下,与接收端协商建立第二通道;发送端通过第二通道向接收端发送第一数据,第一数据用于接收端基于断点位置将第一数据与第二数据进行拼接,第二数据为接收端通过第一通道接收的位于断点位置之前的数据。以及一种通道切换装置。

Description

一种通道切换方法及装置
本申请要求于2021年07月07日提交中国国家知识产权局、申请号为202110769317.1、申请名称为“一种通道切换方法及装置”中的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本方案涉及通信技术领域,尤其涉及一种通道切换方法及装置。
背景技术
随着通信技术的迅猛发展,人们对通信质量的要求也随来越高。但是,当前很多通信连接容易出现不稳定的情况。例如,用户在视频时可能遇到网络不稳定所导致的卡壳、模糊、快进以及弹出“本端网络不佳”或“对端网络不佳”的提示等情况,用户不得不选择退出重新建立连接来试图改善;又例如,在投屏过程中,由于通道质量不佳出现界面停滞或黑屏等情况,用户不得不重新投屏找到上次播放的位置;又例如,在用户下载或分享传输大文件时也时常遇到由于网络质量不佳导致的传输失败。
目前,电子设备可以通过切换到另一个通道以解决当前通道质量不佳的问题。但是,由于在切换过程中需要长时间的寻找通道和重新建立连接,往往会出现传输卡顿甚至失败等情况,用户体验感差。如何解决在传输过程中平滑切换通道是目前亟需解决的问题。
发明内容
本申请实施例提供了一种通道切换方法及装置,该方法中,发送端通过第一通道向接收端传输数据;发送端在第一通道的质量参数低于第一阈值时,向接收端发送断点位置,断点位置用于确定第一数据,第一数据为发送端在第一通道的质量参数低于第一阈值时未发送的数据;发送端在保持第一通道的情况下,与接收端协商建立第二通道;发送端通过第二通道向接收端发送第一数据,第一数据用于接收端基于断点位置将第一数据与第二数据进行拼接,第二数据为接收端通过第一通道接收的位于断点位置之前的数据。实施本技术方案,可可以平滑切换通道,提高用户体验。
上述的通道切换方法中,发送端和接收端在通道异常时不是立刻切换通道,而是在确定断点位置和切换之间有准备时间保证切换后的通道是可用最优,不会出现切换后仍不好用,而接收端数据是从协商确定的断点位置直接拼接接收,不需要比较计算,可以减少拼接时间,从而保证切换是平滑,用户无感知的。
第一方面,本申请实施例提供了一种通道切换方法,所述方法应用于发送端,所述方法包括:
所述发送端通过第一通道向接收端传输数据;
所述发送端在所述第一通道的质量参数低于第一阈值时,向所述接收端发送断点位置,所述断点位置用于确定第一数据,所述第一数据为所述发送端在所述第一通道的质量参数低于第一阈值时未发送的数据;
所述发送端在保持所述第一通道的情况下,与所述接收端协商建立第二通道;
所述发送端通过所述第二通道向所述接收端发送所述第一数据,所述第一数据用于所述接收端基于所述断点位置将所述第一数据与第二数据进行拼接,所述第二数据为所述接收端通过所述第一通道接收的位于所述断点位置之前的数据。
本申请实施例中设置了第一阈值,发送端可以在第一通道出现异常时及时与接收端协商断点信息,因此可以在发送端和接收端切换通道时,接收端可以及时从断点位置对数据进行拼接,提高了接收端拼接数据的速度,从而在切换通道的过程中,用户的体验感较高。
在一些实施例中,发送端和接收端可以同时检测第一通道的质量,提高成功率。
结合第一方面,在一种可能的实现方式中,发送端可以在每隔预设时间与接收端协商更新断点位置并协商确定第二通道,进而将第一通道切换至第二通道。可以理解的,由于网络质量是不断变化的,临切换前一到两秒内确定的第二通道更可能保证可用和最优。
结合第一方面,在一种可能的实现方式中,所述第一通道的质量参数为信号强度、通道吞吐率、通道速率、心跳包中任一个参数或所述信号强度、所述通道吞吐率、所述通道速率、所述心跳包中至少两个参数的加权之和。
本申请实施例中,发送端和接收端检测通道质量的方法可以通过第一通道的质量参数来实现,第一通道的质量参数可以为信号强度、通道吞吐率、通道速率、心跳包中任一个参数或所述信号强度、所述通道吞吐率、所述通道速率、所述心跳包中至少两个参数的加权之和。
在一些实施例中,发送端可以根据应用场景选取不同的质量参数,或者,对质量参数进行分类、加权求和等多种处理方法,从而可以根据不同的应用场景对通道质量进行合理评估。例如,在数据传输过程中,对通道质量的评估侧重于通道的速度,则发送端可以加大通道速率的权重;又例如,在投屏过程中,对通道质量的评估侧重于业务的稳定性,则发送端可以加大通道吞吐率的权重。
结合第一方面,在一种可能的实现方式中,所述发送端在保持所述第一通道的情况下,与所述接收端协商建立第二通道,包括:
所述发送端获取所述接收端可用的通道;
所述发送端将所述发送端和所述接收端均可用的通道确定为可用通道;
所述发送端从所述可用通道中确定所述第二通道;
所述发送端将所述第二通道发送至所述接收端;
所述发送端在接收到来自所述接收端的回复消息后,与所述接收端建立第二通道的连接。
本申请实施例,在保持第一通道持续传输的过程中,建立了第二通道,因而,在发送端和接收端可以从第一通道切换到第二通道的过程中,数据不会出现长时间的停止传输。现有技术中,往往在第一通道出现异常后开始查找第二通道,而本申请实施例已经提前建立了第二通道,已经保证第一通道与第二通道的平滑切换。
结合第一方面,在一种可能的实现方式中,所述发送端从所述可用通道中确定所述第二通道,包括:
所述发送端获取所述可用通道中每一个通道的质量参数;
所述发送端将所述可用通道中质量参数最高的通道确定为所述第二通道。
可以理解的,发送端和/或接收端可以选取可用通道中通道质量最高的通道作为第二通道。
结合第一方面,在一种可能的实现方式中,所述发送端、所述接收端和节点通过同一个网络进行通信,所述发送端从所述可用通道中确定所述第二通道,包括:
所述发送端获取所述节点在目标时间内传输与所述第一数据同类型的数据时使用的通道类型;
所述发送端将所述可用通道中属于所述通道类型的通道确定为所述第二通道。
结合第一方面,在一种可能的实现方式中,所述发送端从所述可用通道中确定所述第二通道,包括:
所述发送端获取所述可用通道中每一个通道的质量参数;
所述发送端将质量参数高于所述第一通道的质量参数的可用通道确定为所述第二通道。
结合第一方面,在一种可能的实现方式中,所述发送端通过所述第二通道向所述接收端发送所述第一数据,包括:
在满足预设条件的情况下,所述发送端通过所述第二通道向所述接收端发送所述第一数据,所述预设条件包括所述第一通道的质量参数低于第二阈值、所述第一通道的质量参数低于所述可用通道的质量参数以及所述可用通道的质量参数高于第三阈值中的至少一个条件。
结合第一方面,在一种可能的实现方式中,所述发送端包括至少两个芯片,所述可用通道包括所述两个芯片内任一个芯片与所述接收端的通道。
结合第一方面,在一种可能的实现方式中,所述发送端在所述第一通道的质量参数低于第一阈值时,向所述接收端发送断点位置,包括:
所述发送端将所述断点位置广播至所述接收端。
结合第一方面,在一种可能的实现方式中,所述发送端在所述第一通道的质量参数低于第一阈值时,向所述接收端发送断点位置,包括:
所述发送端通过控制通道向所述接收端发送所述断点位置。
本申请实施例中,发送端在第一通道的通道质量不佳时,通过其他通道向接收端发送第一断点信息,可以避免第一断点信息发送失败。
第二方面,本申请实施例提供了一种通道切换方法,所述方法应用于接收端,所述方法包括:
所述接收端通过第一通道接收来自发送端的数据;
所述接收端与所述发送端协商断点位置,所述断点位置用于确定第一数据,所述第一数据为所述发送端通过所述第一通道发送的位于所述断点位置之后的数据;
所述接收端在保持所述第一通道的情况下,与所述发送端协商建立第二通道;
所述接收端通过所述第二通道接收来自所述发送端的所述第一数据;
所述接收端基于所述断点位置将所述第一数据与第二数据进行拼接,所述第二数据为所述接收端通过所述第一通道接收的位于所述断点位置之前的数据。
结合第二方面,在一种可能的实现方式中,所述断点位置为所述接收端接收的来自所述发送端的断点位置,所述第一数据为所述发送端在所述第一通道的质量参数低于第一阈值时未发送的数据;或,所述断点位置为所述接收端在所述第一通道的质量参数低于第四阈值时向确定的,所述第一数据为所述接收端在所述第一通道的质量参数低于所述第四阈值时未接收的数据。
结合第二方面,在一种可能的实现方式中,所述接收端在保持所述第一通道的情况下,与所述发送端协商建立第二通道,包括:
所述接收端获取所述发送端可用的通道;
所述接收端将所述接收端和所述发送端均可用的通道确定为可用通道;
所述接收端从所述可用通道中确定所述第二通道;
所述接收端将所述第二通道发送至所述发送端;
所述接收端在接收到来自所述发送端的回复消息后,与所述发送端建立第二通道的连接。
本申请实施例中,发送端和接收端同时对第一通道进行检测,可以提高检测结果的检测效果,有利于提升通道切换的成功率。
结合第二方面,在一种可能的实现方式中,所述接收端从所述可用通道中确定所述第二通道,包括:
所述接收端获取所述可用通道中每一个通道的质量参数;
所述接收端将所述可用通道中质量参数最高的通道确定为所述第二通道。
结合第二方面,在一种可能的实现方式中,所述接收端、所述接收端和节点通过同一个网络进行通信,所述接收端从所述可用通道中确定所述第二通道,包括:
所述接收端获取所述节点在目标时间内传输与所述第一数据同类型的数据时使用的通道类型;
所述接收端将所述可用通道中属于所述通道类型的通道确定为所述第二通道。
结合第二方面,在一种可能的实现方式中,所述接收端从所述可用通道中确定所述第二通道,包括:
所述接收端获取所述可用通道中每一个通道的质量参数;
所述接收端将质量参数高于所述第一通道的质量参数的可用通道确定为所述第二通道。
结合第二方面,在一种可能的实现方式中,所述接收端包括至少两个芯片,所述可用通道包括所述两个芯片内任一个芯片与所述发送端的通道。
结合第二方面,在一种可能的实现方式中,所述接收端与所述发送端协商断点位置,包括:
所述接收端将所述断点位置广播至所述发送端。
结合第二方面,在一种可能的实现方式中,所述接收端与所述发送端协商断点位置,包括:
所述接收端通过控制通路将所述断点位置发送至所述发送端。
结合第二方面,在一种可能的实现方式中,所述第二通道是所述发送端确定的,所述接收端在保持所述第一通道的情况下,与所述发送端协商建立第二通道,包括:
所述接收端在接收来自所述发送端的所述第二通道时,与所述发送端建立所述第二通道的连接。
第三方面,一种电子设备,其特征在于,所述电子设备包括:一个或多个处理器、存储器和显示屏;所述存储器与所述一个或多个处理器耦合,所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,所述一个或多个处理器用于调用所述计算机指令以使得所述电子设备执行如第一方面以及第一方面中任一可能的实现方式描述的方法。
第四方面,一种电子设备,其特征在于,所述电子设备包括:一个或多个处理器、存储器和显示屏;所述存储器与所述一个或多个处理器耦合,所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,所述一个或多个处理器用于调用所述计算机指令以使得所述电子设备执行如第二方面以及第二方面中任一可能的实现方式描述的方法。
第五方面,本申请实施例提供了一种芯片,该芯片应用于电子设备,该芯片包括一个或多个处理器,该处理器用于调用计算机指令以使得该电子设备执行如第一方面以及第一方面中任一可能的实现方式描述的方法。
第六方面,本申请实施例提供了一种芯片,该芯片应用于电子设备,该芯片包括一个或多个处理器,该处理器用于调用计算机指令以使得该电子设备执行如第二方面以及第二方面中任一可能的实现方式描述的方法。
第七方面,本申请实施例提供一种包含指令的计算机程序产品,当上述计算机程序产品在电子设备上运行时,使得上述电子设备执行如第一方面以及第一方面中任一可能的实现方式描述的方法。
第八方面,本申请实施例提供一种包含指令的计算机程序产品,当上述计算机程序产品在电子设备上运行时,使得上述电子设备执行如第二方面以及第二方面中任一可能的实现方式描述的方法。
第九方面,本申请实施例提供一种计算机可读存储介质,包括指令,当上述指令在电子设备上运行时,使得上述电子设备执行如第一方面以及第一方面中任一可能的实现方式描述的方法。
第十方面,本申请实施例提供一种计算机可读存储介质,包括指令,当上述指令在电子设备上运行时,使得上述电子设备执行如第二方面以及第二方面中任一可能的实现方式描述的方法。
可以理解地,上述第三方面和第四方面提供的电子设备、第五方面和第六方面提供的芯片、第七方面和第八方面提供的计算机程序产品、第九方面和第十方面提供的计算机存储介质均用于执行本申请实施例所提供的方法。
附图说明
下面对本申请实施例用到的附图进行介绍。
图1A为本申请实施例提供的一种通道切换网络架构示意图;
图1B为本申请实施例提供的另一种通道切换网络架构示意图;
图2为本申请实施例提供的一种电子设备100的结构示意图;
图3为本申请实施例提供的一种电子设备100的软件结构框图;
图4为本申请实施例提供的一种通道切换方法的流程图;
图5为本申请实施例提供的一种断点信息的示意图;
图6为本申请实施例提供的一种对可用通道的打分方法示意图。
具体实施方式
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请实施例的限制。如在本申请实施例的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请实施例中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。
为了更好地理解本申请实施例提供的一种通道切换方法和装置,下面先对本申请实施例使用的网络架构进行描述。
请参见图1A,图1A为本申请实施例提供的一种通道切换网络架构示意图。如图1A所示,该网络架构包括发送端10和接收端20,发送端10和接收端20可通过多个通道进行通信。其中:
具体的,发送端10通过第一通道向接收端20传输数据;发送端10在第一通道的质量参数低于第一阈值时,向接收端20发送断点位置,断点位置用于确定第一数据,第一数据为发送端10在第一通道的质量参数低于第一阈值时未发送的数据,相应的,接收端20接收来自发送端10的断点信息;发送端10在保持第一通道的情况下,与接收端20协商建立第二通道;发送端10通过第二通道向接收端20发送第一数据;接收端20基于断点位置将第一数据与第二数据进行拼接,第二数据为接收端20通过第一通道接收的位于断点位置之前的数据。
请参见图1B,图1B为本申请实施例提供的另一种通道切换网络架构示意图。如图1B所示,该网络架构包括发送端10、接收端20和节点30,其中,发送端10、接收端20和节点30处于同一个网络环境下或通过同一个网络进行通信。具体的,发送端10和接收端20在传输第一数据时,可以从节点30中获取节点30在目标时间内传输与所述第一数据同类型的数据时使用的通道类型,进而,确定传输第一数据的通道,具体内容可参见下文的相关内容。
上述发送端10、接收端20和节点30可以为电子设备,该电子设备包括但不限于智能手机、平板电脑、个人数字助理(personal digital assistant,PDA)、具备无线通讯功能的可穿戴电子设备(如智能手表、智能眼镜)、增强现实(augmented reality,AR)设备、虚拟现实(virtual reality,VR)设备等。电子设备的示例性实施例包括但不限于搭载
Figure PCTCN2022103922-appb-000001
Figure PCTCN2022103922-appb-000002
Linux或者其它操作***的便携式电子设备。上述电 子设备也可为其它便携式电子设备,诸如膝上型计算机(Laptop)等。还应当理解的是,在其他一些实施例中,上述电子设备也可以不是便携式电子设备,而是台式计算机等等。
发送端10和接收端20之间的通信连接可以是有线连接、无线连接。其中无线连接可以是高保真无线通信(wireless fidelity,Wi-Fi)连接、蓝牙连接、红外线连接、NFC连接、ZigBee连接等近距离连接。其中,通道指信息可以传输的逻辑通道,以通讯介质和中继设备为基础,介质可以是有线形式的通用串行总线(universal serial bus,USB)接口线、电缆和光纤,也可以是无线的电磁波通道。通道是不限于无线应用层传输协议的通道,可以是有线的,可以是协议栈其他层级的,例如,如蓝牙协议栈的逻辑链路控制和适配协议(Logical Link Control and Adaptation Protocol,L2CAP)层和链路管理协议(Link Manager Protocol,LMP)等。通道建立包括信道协商选定,不仅是信道上切换,还可以是无线与有线,无线的各应用层协议间切换。
可以理解的是,图1A和图1B中的通道切换网络架构只是本申请实施例的示例性的实施方式,本申请实施例中的通道切换网络架构包括但不仅限于以上通道切换网络架构。
图2为本申请实施例提供的一种电子设备100的结构示意图。
下面以电子设备100为例对实施例进行具体说明。应该理解的是,电子设备100可以具有比图中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
电子设备100可以包括:处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本申请实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是电子设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了***的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现电子设备100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等***器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现电子设备100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现电子设备100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接 口,I2S接口,UART接口,MIPI接口等。
SIM接口可以被用于与SIM卡接口195通信,实现传送数据到SIM卡或读取SIM卡中数据的功能。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备100充电,也可以用于电子设备100与***设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星***(global navigation satellite system,GNSS),调频(frequency  modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯***(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位***(global positioning system,GPS),全球导航卫星***(global navigation satellite system,GLONASS),北斗卫星导航***(beidou navigation satellite system,BDS),准天顶卫星***(quasi-zenith satellite system,QZSS)和/或星基增强***(satellite based augmentation systems,SBAS)。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行电子设备100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作***,至少一个功能所需的应用(比如人脸识别功能,指纹识别功能、移动支付功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如人脸信息模板数据,指纹信息模板等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置至少一个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是 3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备100根据压力传感器180A检测所述触摸操作强度。电子设备100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测电子设备100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,电子设备100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。电子设备100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当电子设备100是翻盖机时,电子设备100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备100附近有物体。当检测到不充分的反射光时,电子设备100可以确定电子设备100附近没有物体。电子设备100可以利用接近光传感器180G检测用户手持电子设备100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。电子设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,电子设备100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,电子设备100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备100对电池142加热,以避免低温导致电子设备100异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过***SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时***多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。电子设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。
本实施例中,发送端10和接收端20均可以为电子设备100,电子设备100可以通过处理器110执行所述通道切换方法。
图3为本申请实施例提供的一种电子设备100的软件结构框图。
分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将***分为四层,从上至下分别为应用程序层,应用程序框架层,运行时(Runtime)和***库,以及内核层。
应用程序层可以包括一系列应用程序包。
如图3所示,应用程序包可以包括相机,图库,日历,通话,地图,导航,WLAN,蓝牙,音乐,视频,短信息等应用程序(也可以称为应用)。
应用程序框架层为应用程序层的应用程序提供应用编程接口(application programming interface,API)和编程框架。应用程序框架层包括一些预先定义的函数。
如图3所示,应用程序框架层可以包括窗口管理器,内容提供器,视图***,电话管理器,资源管理器,通知管理器等。
窗口管理器用于管理窗口程序。窗口管理器可以获取显示屏大小,判断是否有状态栏,锁定屏幕,截取屏幕等。
内容提供器用来存放和获取数据,并使这些数据可以被应用程序访问。所述数据可以包括视频,图像,音频,拨打和接听的电话,浏览历史和书签,电话簿等。
视图***包括可视控件,例如显示文字的控件,显示图片的控件等。视图***可用于构建应用程序。显示界面可以由一个或多个视图组成的。例如,包括短信通知图标的显示界面,可以包括显示文字的视图以及显示图片的视图。
电话管理器用于提供电子设备100的通信功能。例如通话状态的管理(包括接通,挂断等)。
资源管理器为应用程序提供各种资源,比如本地化字符串,图标,图片,布局文件,视频文件等等。
通知管理器使应用程序可以在状态栏中显示通知信息,可以用于传达告知类型的消息,可以短暂停留后自动消失,无需用户交互。比如通知管理器被用于告知下载完成,消息提醒等。通知管理器还可以是以图表或者滚动条文本形式出现在***顶部状态栏的通知,例如后台运行的应用程序的通知,还可以是以对话界面形式出现在屏幕上的通知。例如在状态栏提示文本信息,发出提示音,电子设备振动,指示灯闪烁等。
运行时(Runtime)包括核心库和虚拟机。Runtime负责***的调度和管理。
核心库包含两部分:一部分是编程语言(例如,jave语言)需要调用的功能函数,另一部分是***的核心库。
应用程序层和应用程序框架层运行在虚拟机中。虚拟机将应用程序层和应用程序框架层的编程文件(例如,jave文件)执行为二进制文件。虚拟机用于执行对象生命周期的管理,堆栈管理,线程管理,安全和异常的管理,以及垃圾回收等功能。
***库可以包括多个功能模块。例如:表面管理器(surface manager),媒体库(Media Libraries),三维图形处理库(例如:OpenGL ES),二维图形引擎(例如:SGL)等。
表面管理器用于对显示子***进行管理,并且为多个应用程序提供了二维(2-Dimensional,2D)和三维(3-Dimensional,3D)图层的融合。
媒体库支持多种常用的音频,视频格式回放和录制,以及静态图像文件等。媒体库可以支持多种音视频编码格式,例如:MPEG4,H.264,MP3,AAC,AMR,JPG,PNG等。
三维图形处理库用于实现3D图形绘图,图像渲染,合成,和图层处理等。
2D图形引擎是2D绘图的绘图引擎。
内核层是硬件和软件之间的层。内核层至少包含显示驱动,摄像头驱动,音频驱动,传感器驱动,虚拟卡驱动。
下面结合捕获拍照场景,示例性说明电子设备100软件以及硬件的工作流程。
当触摸传感器180K接收到触摸操作,相应的硬件中断被发给内核层。内核层将触摸操作加工成原始输入事件(包括触摸坐标,触摸操作的时间戳等信息)。原始输入事件被存储在内核层。应用程序框架层从内核层获取原始输入事件,识别该输入事件所对应的控件。以该触摸操作是触摸单击操作,该单击操作所对应的控件为相机应用图标的控件为例,相机应用调用应用框架层的接口,启动相机应用,进而通过调用内核层启动摄像头驱动,通过摄像头193捕获静态图像或视频。
基于上述***架构,具体介绍本申请实施例提供的通道切换方法。
该方法可以由上述图1A或图1B所示的***来实现,发送端和接收端可以为上述图2和图3所示的电子设备100。请参见图4,图4为本申请实施例提供的一种通道切换方法的流程图,如图4所示,该通道切换方法包括如下部分或全部步骤:
S101、发送端通过第一通道向接收端传输数据。
其中,发送端向接收端传输的数据可以是报文,也可以是显示数据,还可以是控制指令等。
例如,发送端可以为手机,接收端可以为大屏设备,第一通道可以为蓝牙通道。具体的,手机可以基于蓝牙连接向大屏设备发送显示数据,相应的,大屏设备在接收到手机发送的显示数据后,渲染显示该显示数据。
在一些实施例中,发送端在与接收端建立第一通道的连接时,还建立了控制通道的连接。
S102、发送端和/或接收端检测第一通道的通道质量。
具体的,发送端和/或接收端可以实时或间隔目标时间检测第一通道的质量参数,进而,根据第一通道的质量参数确定第一通道的通道质量。其中,第一通道的质量参数可以为信号强度(Received Signal Strength Indication,RSSI)、通道吞吐率、通道速率、心跳包等。
在一种实现中,以发送端为例,发送端可以将第一通道的参数进行分类,进而,对不同类别的参数乘以不同的权值,最后求和得到第一通道的通道参数。例如,发送端将通道时延和通道速率分为第一组,将信号强度、心跳包和通道吞吐率分为第二组;发送端分别获得第一通道的通道时延、通道速率、信号强度、心跳包和通道吞吐率,再将通道时延和通道速率进行求和,得到第一组的值,将信号强度、心跳包和通道吞吐率进行求和,得到第二组的值;将第一组的值乘以第一组的权值的积加上第二组的值乘以第二组的权值的积,得到第一通道的通道质量。
在另一种实现中,以发送端为例,发送端也可以将一个质量参数作为第一通道的通道质量的标准。例如,发送端以第一通道的速率作为第一通道的通道质量。
需要说明的是,发送端和/或接收端还可以通过其他方式对第一通道的通道质量进行检测,此处不做限定。
S103、发送端在第一通道的通道质量低于第一指标时,向接收端发送第一断点信息。
在一些实施例中,发送端可以在第一通道的质量参数低于第一阈值时,确定第一断点信息,进而,将第一断点信息发送至接收端。
具体的,发送端可以通过第一通道将第一断点信息发送至接收端;发送端也可以将第一断点信息广播至接收端;发送端还可以通过控制通道向接收端发送第一断点信息,该控制通道是可以是指传递控制报文的通道。例如,该控制通道可以是发送端和接收端建立的低功耗蓝牙(Bluetooth Low Energy,ble)通道,具体的,手机向大屏设备投屏的过程中,手机和大屏设备建立了ble控制通道,手机和大屏设备传输设备的第一通道是路由AP通道,在第一通道的通道质量低于第一指标时,手机可以通过ble控制通道向接收端发送第一断点信息。可以理解的,发送端在第一通道的通道质量不佳时,通过其他通道向接收端发送第一断点信息,可以避免第一断点信息发送失败。
可选地,第一断点信息可以通过广播和连接方式发送,同速度下,可以优先连接上发送。
其中,该第一断点信息可以包括断点位置、发送端标识、会话标识、进度信息以及接收端标识等。例如,数据包按照可变形式(Type Length Value,TLV)进行填写,第一断点信息可以包括字段名称(Type)。需要说明的是,第一断点信息还可以包括其它数据,此处不做限定。
请参见图5,图5为本申请实施例提供的一种断点信息的示意图。如图5所示,该第一断点信息可以包括字段名称、发送端标识、会话标识、进度信息以及接收端标识。其中,字段名称包括字段含义,用于指示断点位置;发送端标识可以为发送端的媒体存取控制位址(Media Access Control Address,MAC)地址,接收端标识可以为接收端的MAC地址;会话标识用于指示断点后的会话,例如当前发送端和接收端进行多个会话,则会话标识可以用于指示当前第一通道传输的会话;本段进度信息可以包括传输的百分比和当前传输的具体内容。
在一些实施例中,发送端和接收端之间的第一通道为有线类通信,则发送端可以在驱动检测到通用串行总线链路不稳定或出现不稳定次数达到预设次数时,确定第一通道的通道质量低于第一指标。
可选地,发送端还可以根据进度信息确定是否向接收端发送第一断点信息。例如,在文件传输进行达到百分之九十的情况下,发送端可以不向接收端发送第一断点信息。
本申请实施例中设置了第一阈值,发送端可以在第一通道出现异常时及时与接收端协商断点信息,因此可以在发送端和接收端切换通道时,接收端可以及时从断点位置对数据进行拼接,提高了接收端拼接数据的速度,从而在切换通道的过程中,用户的体验感较高。
S104、接收端在第一通道的通道质量低于第一指标时,向发送端发送第二断点信息。
具体过程可以参见步骤S103的相关内容,此处不再赘述。
S105、发送端与接收端协商目标断点信息。
在一些实施例中,发送端发送第一断点信息给接收端,接收端未发送第二断点信息给发送端,则接收端在接收到第一断点信息后,并向发送端回复确认信息,两端确定以发送端发送的第一断点信息为目标断点信息。
在另一些实施例中,接收端发送第二断点信息给发送端,发送端未发送第一断点信息给接收端,则发送端在接收到接收端发送的第二断点信息后,向接收端回复确认信息,两端确定以接收端发送的第二断点信息为目标断点信息。
在又一些实施例中,接收端发送第二断点信息给发送端,且发送端发送第一断点信息给接收端,则接收端在接收到第一断点信息后,并向发送端回复确认信息,两端确定以发送端发送的第一断点信息为目标断点信息。可以理解的,发送端和接收端同时对第一通道进行检测,可以提高检测结果的检测效果,有利于提升通道切换的成功率。
在一些实施例中,发送端和接收端可以在预设时间后再次更新目标断点信息。例如,发送端和接收端在协商确定目标断点信息两秒后,发送端和接收端仍用第一通道传输数据,则发送端和接收端可以重新协商目标断点信息。
S106、发送端确定第一可用通道。
具体的,发送端可以在与接收端协商确定目标断点信息后,获取接收端可用的通道,将发送端和接收端均可用的通道确定为可用通道,进而,发送端从可用通道中确定第一可用通道。
在一种实现中,发送端可以获取可用通道中每一个通道的质量参数,将可用通道中质量参数最高的通道确定为第一可用通道。
请参见图6,图6为本申请实施例提供的一种对可用通道的打分方法示意图。如图6所示,可用通道包括ble、经典蓝牙(Basic Rate,BR)、受限应用协议(coap)和点对点传输协议(Point to point,p2p),发送端可以基于速率和稳定性将速率和时延作为A组,将信号强度、心跳包和吞吐量作为B组,根据采集的数据对各组进行打分,例如,无干扰2分,有干扰可用1分,干扰严重底层发生了多次重传0分。其中,发送端可以结合实际业务场景,在控制命令类对速度要求更高的场景中,可以增加A组权值;在大文件对质量要求更高的场景中,可以增加B组权值。如图6所示,根据加权后的结果,可用通道的排序结果为coap、p2p、BR、ble。例如,发送端可以将coap确定为第一可用通道。
在另一种实现中,发送端可以获取节点在目标时间内传输与第一数据同类型的数据时使用的通道类型,进而,将可用通道中属于通道类型的通道确定为第一可用通道。其中,数据的类型可以包括指令(token)、文本(text)、视频流(stream)和大文件(file)等。例如,在家庭网络环境中,发送端为手机,接收端为电视,手机正向电脑传输视频流,发送端和接收端与电脑、冰箱等保持通信连接,则发送端可以获取电脑、冰箱等在上一次发送视频流时采用的通道,将该通道确定为第一可用通道。
优选的,组网内各节点会汇总各传输类型在不同通道上的速度和质量,进行学习和分享,推荐的通道和不推荐的通道,优化综合排序策略,达到最优选择。进而,在两个设备再次发生传输时可以优先用上次进行传输的通道。
在又一种实现中,发送端可以获取可用通道中每一个通道的质量参数,再将质量参数高于第一通道的质量参数的可用通道确定为第一可用通道。例如,发送端均可用的通道包括蓝牙和点对点传输通道,发送端在确定蓝牙的速率高于点对点传输通道时,将蓝牙确定为第一可用通道。
在一些实施例中,发送端和/或接收端包括至少两个芯片,则可用通道包括两个芯片内任一个芯片与对端的通道。例如,发送端为支持多wifi芯片的设备,在wifi传输失败时,发送端可以检测第二芯片wifi通道质量;又例如,发送端为支持多蓝牙芯片的设备,在蓝牙传输失败时,检测第二芯片蓝牙通道质量。
在另一些实施例中,发送端可以对可用通道建立连接的耗时进行排序,从而选择耗时少的通道作为第一可用通道。应理解,仅信道的切换用时小于应用层重新建立连接的用时,应用层建链的用时小于请求芯片切换后建立的用时。其中,同为应用侧传输协议的不同通道建立连接的耗时也不同,例如ble建链比BR快。
S107、接收端确定第二可用通道。
具体过程可以参考步骤S106的相关内容,此处不再赘述。
可选地,发送端和接收端可以进行同传输业务类型所支持的信道间检测,例如,发送端或接收端突然开启热点或修改了2G/5G wifi选择导致的通道异常,需要重新查找可用通道。
可选地,发送端和接收端可以同传输业务类型所支持的应用层传输协议间的检测,如文本传输用ble、BR、USB、coap、p2p等都可以,查找可用通道,
S108、发送端与接收端协商第二通道。
在一些实施例中,发送端发送第一可用通道给接收端,接收端未发送第二可用通道给发送端,则接收端在接收到第一可用通道后,并向发送端回复确认信息,两端确定以发送端发送的第一可用通道为目标可用通道。
在另一些实施例中,接收端发送第二可用通道给发送端,发送端未发送第一可用通道给接收端,则发送端在接收到接收端发送的第二可用通道后,向接收端回复确认信息,两端确定以接收端发送的第二可用通道为目标可用通道。
在又一些实施例中,接收端发送第二可用通道给发送端,且发送端发送第一可用通道给接收端,则接收端在接收到第一可用通道后,并向发送端回复确认信息,两端确定以发送端发送的第一可用通道为目标可用通道。
S109、发送端与接收端建立第二通道。
具体的,在发送端和接收端协商确定第二通道后,建立第二通道的连接。
在一些实施例中,发送端和接收端在第一通道的通道质量低于第一指标时协商确定目标断点信息,进而协商建立第二通道。应理解,本申请实施例是在第一通道出现异常时才建立第二通道,并不是传输开始前就建立备用通道,避免了空跑浪费资源和影响第一通道的传输的问题。
S110、发送端通过第二通道向接收端发送第一数据,第一数据为位于目标断点位置之后的数据。
具体的,在满足预设条件的情况下,发送端和接收端切换到第二通道,发送端通过第二通道向接收端发送第一数据,相应的,接收端通道第二通道接收来自发送端的第一数据。其中,预设条件包括第一通道的质量参数低于第二阈值、第一通道的质量参数低于可用通道的质量参数以及可用通道的质量参数高于第三阈值中的至少一个条件。其中,第二阈值和第三阈值为预设值,具体不做限定。
例如,发送端与接收端协商确定的断点位置为发送端在第一通道的质量参数低于第一阈值时确定的,则发送端可以在第一通道的质量参数低于第二阈值时,向接收端发送发送端在第一通道的质量参数低于第一阈值时未发送的数据。
又例如,发送端与接收端协商确定第二通道后,实时检测第一通道和第二通道的通道 质量,在第一通道的质量参数低于第二通道的质量参数时,切换至第二通道。
在一些实施例中,发送端和接收端切换到第二通道后,发送端和接收端可以断开第一通道的连接。
S111、接收端将第一通道接收的第二数据与第二通道接收到的第一数据进行拼接,第二数据为断点位置之前的数据。
具体的,接收端通过第二通道接收第一数据后,将该第一数据与第一通道接收的断点位置之前的数据进行拼接。需要说明的是,通过本申请实施例,可以提升输出成功率,实验数据表明可以提升传输的成功率30%,对网络状况变化频繁,峰值访问时间段时尤为明显。
在一些实施例中,接收端将第一通道接收的第二数据与第二通道接收到的第一数据进行拼接时,发送端和接收端可以断开第一通道的连接。可以理解的,断开发送端和接收端之间不必要的通道有利于设备的性能。
在上述实施例中,全部或部分功能可以通过软件、硬件、或者软件加硬件的组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (23)

  1. 一种通道切换方法,其特征在于,所述方法应用于发送端,所述方法包括:
    所述发送端通过第一通道向接收端传输数据;
    所述发送端在所述第一通道的质量参数低于第一阈值时,向所述接收端发送断点位置,所述断点位置用于确定第一数据,所述第一数据为所述发送端在所述第一通道的质量参数低于第一阈值时未发送的数据;
    所述发送端在保持所述第一通道的情况下,与所述接收端协商建立第二通道;
    所述发送端通过所述第二通道向所述接收端发送所述第一数据,所述第一数据用于所述接收端基于所述断点位置将所述第一数据与第二数据进行拼接,所述第二数据为所述接收端通过所述第一通道接收的位于所述断点位置之前的数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一通道的质量参数为信号强度、通道吞吐率、通道速率、心跳包中任一个参数或所述信号强度、所述通道吞吐率、所述通道速率、所述心跳包中至少两个参数的加权之和。
  3. 根据权利要求1或2所述的方法,其特征在于,所述发送端在保持所述第一通道的情况下,与所述接收端协商建立第二通道,包括:
    所述发送端获取所述接收端可用的通道;
    所述发送端将所述发送端和所述接收端均可用的通道确定为可用通道;
    所述发送端从所述可用通道中确定所述第二通道;
    所述发送端将所述第二通道发送至所述接收端;
    所述发送端在接收到来自所述接收端的回复消息后,与所述接收端建立第二通道的连接。
  4. 根据权利要求3所述的方法,其特征在于,所述发送端从所述可用通道中确定所述第二通道,包括:
    所述发送端获取所述可用通道中每一个通道的质量参数;
    所述发送端将所述可用通道中质量参数最高的通道确定为所述第二通道。
  5. 根据权利要求3所述的方法,其特征在于,所述发送端、所述接收端和节点通过同一个网络进行通信,所述发送端从所述可用通道中确定所述第二通道,包括:
    所述发送端获取所述节点在目标时间内传输与所述第一数据同类型的数据时使用的通道类型;
    所述发送端将所述可用通道中属于所述通道类型的通道确定为所述第二通道。
  6. 根据权利要求3所述的方法,其特征在于,所述发送端从所述可用通道中确定所述第二通道,包括:
    所述发送端获取所述可用通道中每一个通道的质量参数;
    所述发送端将质量参数高于所述第一通道的质量参数的可用通道确定为所述第二通道。
  7. 根据权利要求3-6任一项所述的方法,其特征在于,所述发送端通过所述第二通道向所述接收端发送所述第一数据,包括:
    在满足预设条件的情况下,所述发送端通过所述第二通道向所述接收端发送所述第一数据,所述预设条件包括所述第一通道的质量参数低于第二阈值、所述第一通道的质量参数低于所述可用通道的质量参数以及所述可用通道的质量参数高于第三阈值中的至少一个条件。
  8. 根据权利要求3-7任一项所述的方法,其特征在于,所述发送端包括至少两个芯片,所述可用通道包括所述两个芯片内任一个芯片与所述接收端的通道。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述发送端在所述第一通道的质量参数低于第一阈值时,向所述接收端发送断点位置,包括:
    所述发送端将所述断点位置广播至所述接收端。
  10. 根据权利要求1-8任一项所述的方法,其特征在于,所述发送端在所述第一通道的质量参数低于第一阈值时,向所述接收端发送断点位置,包括:
    所述发送端通过控制通道向所述接收端发送所述断点位置。
  11. 一种通道切换方法,其特征在于,所述方法应用于接收端,所述方法包括:
    所述接收端通过第一通道接收来自发送端的数据;
    所述接收端与所述发送端协商断点位置,所述断点位置用于确定第一数据,所述第一数据为所述发送端通过所述第一通道发送的位于所述断点位置之后的数据;
    所述接收端在保持所述第一通道的情况下,与所述发送端协商建立第二通道;
    所述接收端通过所述第二通道接收来自所述发送端的所述第一数据;
    所述接收端基于所述断点位置将所述第一数据与第二数据进行拼接,所述第二数据为所述接收端通过所述第一通道接收的位于所述断点位置之前的数据。
  12. 根据权利要求11所述的方法,其特征在于,所述断点位置为所述接收端接收的来自所述发送端的断点位置,所述第一数据为所述发送端在所述第一通道的质量参数低于第一阈值时未发送的数据;或,所述断点位置为所述接收端在所述第一通道的质量参数低于第四阈值时向确定的,所述第一数据为所述接收端在所述第一通道的质量参数低于所述第四阈值时未接收的数据。
  13. 根据权利要求11或12所述的方法,其特征在于,所述接收端在保持所述第一通道的情况下,与所述发送端协商建立第二通道,包括:
    所述接收端获取所述发送端可用的通道;
    所述接收端将所述接收端和所述发送端均可用的通道确定为可用通道;
    所述接收端从所述可用通道中确定所述第二通道;
    所述接收端将所述第二通道发送至所述发送端;
    所述接收端在接收到来自所述发送端的回复消息后,与所述发送端建立第二通道的连接。
  14. 根据权利要求13所述的方法,其特征在于,所述接收端从所述可用通道中确定所述第二通道,包括:
    所述接收端获取所述可用通道中每一个通道的质量参数;
    所述接收端将所述可用通道中质量参数最高的通道确定为所述第二通道。
  15. 根据权利要求13所述的方法,其特征在于,所述接收端、所述接收端和节点通过同一个网络进行通信,所述接收端从所述可用通道中确定所述第二通道,包括:
    所述接收端获取所述节点在目标时间内传输与所述第一数据同类型的数据时使用的通道类型;
    所述接收端将所述可用通道中属于所述通道类型的通道确定为所述第二通道。
  16. 根据权利要求13所述的方法,其特征在于,所述接收端从所述可用通道中确定所述第二通道,包括:
    所述接收端获取所述可用通道中每一个通道的质量参数;
    所述接收端将质量参数高于所述第一通道的质量参数的可用通道确定为所述第二通道。
  17. 根据权利要求13-16任一项所述的方法,其特征在于,所述接收端包括至少两个芯片,所述可用通道包括所述两个芯片内任一个芯片与所述发送端的通道。
  18. 根据权利要求11-17任一项所述的方法,其特征在于,所述接收端与所述发送端协商断点位置,包括:
    所述接收端将所述断点位置广播至所述发送端。
  19. 根据权利要求11-17任一项所述的方法,其特征在于,所述接收端与所述发送端协商断点位置,包括:
    所述接收端通过控制通路将所述断点位置发送至所述发送端。
  20. 根据权利要求11-19任一项所述的方法,其特征在于,所述第二通道是所述发送端确定的,所述接收端在保持所述第一通道的情况下,与所述发送端协商建立第二通道,包括:
    所述接收端在接收来自所述发送端的所述第二通道时,与所述发送端建立所述第二通道的连接。
  21. 一种电子设备,其特征在于,所述电子设备包括:一个或多个处理器、存储器和显示屏;
    所述存储器与所述一个或多个处理器耦合,所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,所述一个或多个处理器用于调用所述计算机指令以使得所述电子设备执行如权利要求1至20中任一项所述的方法。
  22. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在电子设备上运行时,使得所述电子设备执行如权利要求1至20中任一项所述的方法。
  23. 一种计算机可读存储介质,包括指令,其特征在于,当所述指令在电子设备上运行时,使得所述电子设备执行如权利要求1至20中任一项所述的方法。
PCT/CN2022/103922 2021-07-07 2022-07-05 一种通道切换方法及装置 WO2023280160A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110769317.1A CN115604773A (zh) 2021-07-07 2021-07-07 一种通道切换方法及装置
CN202110769317.1 2021-07-07

Publications (1)

Publication Number Publication Date
WO2023280160A1 true WO2023280160A1 (zh) 2023-01-12

Family

ID=84801279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103922 WO2023280160A1 (zh) 2021-07-07 2022-07-05 一种通道切换方法及装置

Country Status (2)

Country Link
CN (1) CN115604773A (zh)
WO (1) WO2023280160A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101626554A (zh) * 2009-08-13 2010-01-13 中兴通讯股份有限公司 一种多模移动终端及其下载资源的方法
US20120140651A1 (en) * 2010-12-01 2012-06-07 Deutsche Telekom Ag System support for accessing and switching among multiple wireless interfaces on mobile devices
CN202663551U (zh) * 2012-07-06 2013-01-09 上海中铁通信信号国际工程有限公司 无缝切换嵌入式模块
WO2015165024A1 (zh) * 2014-04-29 2015-11-05 华为终端有限公司 一种数据传输的方法和终端
CN106576279A (zh) * 2014-07-30 2017-04-19 华为技术有限公司 多通信制式传输方法及装置
CN109922205A (zh) * 2018-11-29 2019-06-21 努比亚技术有限公司 投屏实现方法、移动终端及计算机可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101626554A (zh) * 2009-08-13 2010-01-13 中兴通讯股份有限公司 一种多模移动终端及其下载资源的方法
US20120140651A1 (en) * 2010-12-01 2012-06-07 Deutsche Telekom Ag System support for accessing and switching among multiple wireless interfaces on mobile devices
CN202663551U (zh) * 2012-07-06 2013-01-09 上海中铁通信信号国际工程有限公司 无缝切换嵌入式模块
WO2015165024A1 (zh) * 2014-04-29 2015-11-05 华为终端有限公司 一种数据传输的方法和终端
CN106576279A (zh) * 2014-07-30 2017-04-19 华为技术有限公司 多通信制式传输方法及装置
CN109922205A (zh) * 2018-11-29 2019-06-21 努比亚技术有限公司 投屏实现方法、移动终端及计算机可读存储介质

Also Published As

Publication number Publication date
CN115604773A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
WO2022257977A1 (zh) 电子设备的投屏方法和电子设备
US11683850B2 (en) Bluetooth reconnection method and related apparatus
US11736224B2 (en) Data transmission method and electronic device
WO2021175300A1 (zh) 数据传输方法、装置、电子设备和可读存储介质
EP4084486B1 (en) Cross-device content projection method, and electronic device
US20230189366A1 (en) Bluetooth Communication Method, Terminal Device, and Computer-Readable Storage Medium
CN111316604B (zh) 一种数据传输方法及电子设备
EP4174633A1 (en) Display interaction system, display method, and device
US20220294896A1 (en) Call method and apparatus
US20230125956A1 (en) Wireless Communication System and Method
WO2022262492A1 (zh) 数据下载方法、装置和终端设备
WO2020134868A1 (zh) 一种连接建立方法及终端设备
EP4135470A1 (en) Wireless connection providing system, method, and electronic apparatus
WO2023280160A1 (zh) 一种通道切换方法及装置
WO2024093614A1 (zh) 设备输入方法、***、电子设备及存储介质
WO2024104128A1 (zh) 一种数据显示方法、***和电子设备
WO2024001773A1 (zh) 一种数据迁移方法、电子设备和组网***
WO2020029213A1 (zh) 通话发生srvcc切换时,接通和挂断电话的方法
CN117692693A (zh) 多屏显示方法以及相关设备
CN116938950A (zh) 一种数据传输的方法、电子设备和存储介质
CN118057880A (zh) 一种数据传输方法、装置及***
CN117850989A (zh) 一种服务调用方法、***和电子设备
CN115048193A (zh) 一种多设备分布式调度方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22836909

Country of ref document: EP

Kind code of ref document: A1