WO2023279766A1 - 光伏组件 - Google Patents

光伏组件 Download PDF

Info

Publication number
WO2023279766A1
WO2023279766A1 PCT/CN2022/081538 CN2022081538W WO2023279766A1 WO 2023279766 A1 WO2023279766 A1 WO 2023279766A1 CN 2022081538 W CN2022081538 W CN 2022081538W WO 2023279766 A1 WO2023279766 A1 WO 2023279766A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset direction
adhesive
battery
shaping
size
Prior art date
Application number
PCT/CN2022/081538
Other languages
English (en)
French (fr)
Inventor
高贝贝
崔艳峰
杨高平
黄强
Original Assignee
东方日升(常州)新能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东方日升(常州)新能源有限公司 filed Critical 东方日升(常州)新能源有限公司
Publication of WO2023279766A1 publication Critical patent/WO2023279766A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present application relates to the technical field of photovoltaic cells, in particular, to a photovoltaic module.
  • heterojunction cells use low-temperature slurry and low-temperature curing processes, cells cannot withstand high temperatures of 200°C.
  • photovoltaic modules such as heterojunction cells use multi-busbars and low-temperature ribbons to achieve low-temperature welding; in other current processes, heterojunction Photovoltaic modules such as junction cells adopt shingled technology.
  • the unit consumption of low-temperature silver paste for cells is relatively high.
  • the unit consumption of low-temperature silver paste for heterojunction cells is about 200mg/piece.
  • the cost of photovoltaic silver paste accounts for 10-11%; in the new generation of heterojunction cells, the cost of photovoltaic silver paste even reaches 24%.
  • the importance of silver paste is gradually increasing, and it is one of the core auxiliary materials of photovoltaic cells. Therefore, the high unit consumption of low-temperature silver paste in this process leads to high cost.
  • the battery sheet In the process of using shingling technology, the battery sheet is cut into 5 or 6 pieces and the positive and negative electrodes are connected between the sheets.
  • the battery sheet is designed with busbar pads, resulting in high cost.
  • the purpose of this application is to provide a photovoltaic module, which adopts a busbar-free design, ensures the reliability of the conductive strip connection, and can effectively reduce the unit consumption of low-temperature silver paste.
  • An embodiment of the present application provides a photovoltaic module, including a battery string, an encapsulation film on the surface of the battery string, and an encapsulation glass on the surface of the encapsulation film.
  • the battery string includes battery slices, conductive tape and adhesive.
  • the surface of the battery sheet is distributed with a plurality of fine grids at intervals along the first predetermined direction; the surface of the battery sheet includes a second area and a first area located on both sides of the first area , the first area is an area on the surface of the battery sheet that is close to both ends in a first predetermined direction.
  • the conductive strip connects two adjacent cells in series.
  • the conductive strip has multiple conductive strip bodies and multiple shaping parts extending along the first predetermined direction and distributed alternately.
  • the shaping part corresponds to the first area
  • the conductive strip body corresponds to the second area.
  • the size of the shaping part is larger than the size of the conductive belt body
  • the second preset direction is parallel to the surface of the battery sheet and perpendicular to the first preset direction.
  • the adhesive glue is connected between the first area and the shaping part.
  • the size of the adhesive is 1.8-2.0 mm.
  • the distance between the adhesive glue and the end of the battery sheet is 4.2-6.6 mm.
  • the distance between two adjacent fine grids is 1.9-2mm; the number of the thin grids on the side of the adhesive glue close to the end of the cell is 3-4 .
  • the bonding glue is located between two adjacent thin grids.
  • the plurality of shaping parts are a first shaping part located at both ends of the conductive strip body and a second shaping part located in the middle of the conductive strip body, and the two ends of the second shaping part in the first preset direction are respectively connected to the adjacent The first regions of the two battery slices correspond.
  • the size of the first shaping part is 6-7 mm, and the size of the second shaping part is 12-14 mm.
  • the size of the conductive strip body is 0.1-0.3 mm
  • the size of the shaping part is 0.5-0.6 mm
  • the size of the adhesive is 0.7-0.8 mm.
  • two adjacent battery pieces are respectively connected in series through 9 to 20 conductive strips distributed at intervals in the second predetermined direction.
  • the adhesive is made of transparent adhesive.
  • FIG. 1 is a partial cross-sectional view of a photovoltaic module provided in Embodiment 1 of the present application;
  • FIG. 2 is a schematic structural diagram of the battery string provided in Embodiment 1 of the present application.
  • Fig. 3 is a partial enlarged view in Fig. 2;
  • FIG. 4 is a schematic structural diagram of the conductive band in the battery string provided in Example 1 of the present application.
  • Fig. 5 is a partial cross-sectional view of the battery string provided in Embodiment 1 of the present application.
  • FIG. 6 is a schematic diagram of a partial structure of the battery string provided in Embodiment 1 of the present application.
  • Icons 10-photovoltaic module; 100-battery string; 110-cell; 111-fine grid; 112-first area; 113-second area; 120-conductive belt; 121-conductive belt body; 1221-first shaping part; 1222-second shaping part; 130-adhesive; 200-packaging film; 300-packaging glass; a-first preset direction; b-second preset direction; c-first Three preset directions.
  • orientation or positional relationship indicated by the terms “upper”, “lower”, “head”, “tail” etc. is based on the orientation or positional relationship shown in the drawings, or is the The usual orientation or positional relationship of the application product when used is only for the convenience of describing the application and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, therefore It should not be construed as a limitation of the application.
  • the present embodiment provides a photovoltaic module 10 , including the battery string 100 provided in the present application, the encapsulation film 200 on the surface of the battery string 100 and the encapsulation glass 300 on the surface of the encapsulation film 200 .
  • the materials of the packaging film 200 and the packaging glass 300 can be selected according to standards known in the art.
  • the material of the encapsulation film 200 is, for example but not limited to, ethylene-vinyl acetate copolymer (EVA for short), polyolefin elastomer (POE for short) or polyvinyl alcohol Butyraldehyde (polyvinyl butyral, referred to as PVB), such as EVA.
  • EVA ethylene-vinyl acetate copolymer
  • POE polyolefin elastomer
  • PVB polyvinyl alcohol Butyraldehyde
  • the battery string 100 includes battery slices 110 , conductive strips 120 and adhesive glue 130 .
  • the length direction of the battery string 100 is a first preset direction a
  • the width direction of the battery string 100 is a second preset direction b
  • the thickness direction of the battery string 100 is a third preset direction c.
  • Both the first preset direction a and the second preset direction b are parallel to the surface of the battery sheet 110, and the second preset direction b is perpendicular to the first preset direction a; the third preset direction c is parallel to the surface of the battery sheet 110 vertical.
  • the surface of the battery sheet 110 refers to the front surface of the battery sheet 110 and the back surface of the battery sheet 110 .
  • the cell 110 in this embodiment is a heterojunction cell 110 , and each cell 110 is a cell half.
  • the type and specification of the battery can be adjusted as required.
  • only a plurality of fine grids 111 are provided on the surface of the battery sheet 110 , without main grids and welding pads.
  • the plurality of fine grids 111 are distributed at intervals along the first predetermined direction a on the surface of the battery sheet 110 .
  • the surface of the battery sheet 110 includes a second region 113 and first regions 112 located on two sides of the second region 113 .
  • the first area 112 is the area on the surface of the battery sheet 110 that is close to both ends in the first preset direction a, that is to say, the two first areas 112 in each battery sheet 110 are spaced apart in the first preset direction a , and close to the first and last ends of the battery sheet 110 in the first predetermined direction a.
  • each conductive strip 120 is connected in series with two adjacent battery slices 110 .
  • each conductive strip 120 has a plurality of conductive strip bodies 121 and a plurality of shaping portions 122 extending along the first predetermined direction a and distributed alternately.
  • the size of the shaping portion 122 is larger than the size of the conductive strip body 121 .
  • the conductive strip body 121 is in electrical contact with the fine grid 111 in the second area 113 ; the shaping portion 122 corresponds to the first area 112 , and the adhesive glue 130 is connected between the first area 112 and the shaping portion 122 .
  • the battery sheet 110 adopts a busbar-less design, which can effectively reduce the unit consumption of low-temperature silver paste.
  • the use of the adhesive glue 130 is convenient to meet the low-temperature connection requirements and outdoor weather resistance requirements of the battery sheet 110; and, the plastic part 122 with a larger width in the second predetermined direction b is used for bonding with the adhesive glue 130 , can provide a reliable bonding force between the conductive tape 120 and the battery sheet 110 , so that the battery string 100 can achieve the comparable reliability of the existing components with the main grid having solder pads.
  • an appropriate number of conductive strips 120 may be arranged side by side between two adjacent battery sheets 110 as required.
  • two adjacent battery slices 110 are respectively connected in series through 9 to 20 conductive strips 120 distributed in the second preset direction b, and the conductive strips 120 between the two adjacent battery slices 110 are connected in series.
  • the number is, for example, 9 or 16, so that the conductive strips 120 have a suitable density, which can better meet the requirements of high current collection efficiency and small shielding area; and, it has a good match with the existing production line.
  • the size of the shaping part 122 in the third preset direction c is smaller than the size of the conductive strip body 121 in the third preset direction c, so that the shaping part 122 has a width larger than
  • the conductive strip body 121 has a thickness smaller than the flat structure of the conductive strip body 121 .
  • the above arrangement facilitates the formation of a flat structure through mechanical extrusion and other means, and obtains the integrally formed conductive strip 120 .
  • the conductive strip 120 of the present application is obtained by flattening the two ends and the middle of the strip, the unflattened area is the conductive strip body 121 , and the flattened area is the shaping part 122 .
  • the conductive strip 120 of the present application can be obtained by processing a conventional strip, for example, a strip with a circular cross section, the diameter of which is usually 0.1-0.3 mm, and the width of the flattened part is usually 0.5-0.6 mm.
  • a conventional strip for example, a strip with a circular cross section, the diameter of which is usually 0.1-0.3 mm, and the width of the flattened part is usually 0.5-0.6 mm.
  • the size of the conductive strip body 121 is 0.1-0.3 mm
  • the size of the shaping part 122 is 0.5-0.6 mm.
  • the plurality of shaping parts 122 are divided into The first shaping part 1221 at both ends of the conductive strip body 121 and the second shaping part 1222 located in the middle of the conductive strip body 121.
  • both the first shaping portion 1221 and the second shaping portion 1222 are connected to the corresponding first area 112 through an adhesive 130 .
  • the two adjacent ends of the two battery sheets 110 correspond to the same shaping portion 122 , which makes the arrangement of the conductive strip 120 easier.
  • the shaping part 122 is set as a flat structure with a small thickness, it is also beneficial to reduce the inter-chip pitch.
  • the type of adhesive 130 is not limited, and it can be selected based on considerations of low temperature connection requirements, electrical conductivity, shielding effect, cost, etc., which is exemplarily low temperature ( ⁇ 160° C.) curable adhesive 130 , for example, epoxy or silicone adhesive 130 , and for example, conductive adhesive ECA.
  • the adhesive glue 130 is made of transparent adhesive glue 130 .
  • the transparent adhesive 130 has a high light transmittance, which can effectively reduce the influence of covering the battery sheet 110 and is beneficial to maintain the working efficiency of the battery sheet 110 .
  • the adhesive 130 is optionally provided in a form not in contact with the fine grids 111 .
  • the adhesive 130 is located between two adjacent thin grids 111 .
  • the adhesive glue 130 is arranged between two adjacent fine grids 111 without contacting the fine grids 111. Good electrical contact can be made between them.
  • the adhesive glue 130 is not limited to be arranged between the two fine grids 111.
  • the adhesive glue 130 is disposed between three or more thin grids 111 .
  • the adhesive in order to ensure that the adhesive provides a good and reliable bonding force between the first region 112 and the shaping part 122 , the adhesive needs to have an appropriate length and width.
  • the size of the adhesive 130 is 0.7-0.8 mm, for example, 0.7 mm or 0.8 mm.
  • the width specification is easily realized by the existing process of dispensing and flattening; and the width of the adhesive 130 is well matched to the width of the shaping part 122, ensuring that the adhesive 130 can be fully bonded to the shaping part 122, And it is possible to effectively control the shading of the surface of the battery sheet 110 .
  • the surface of the battery sheet 110 needs to have an appropriate density of fine grids 111 .
  • the size of the adhesive glue 130 in the first preset direction a needs to match the distance between the fine grids 111 .
  • the size of the adhesive 130 is 1.8-2.0 mm, for example, 1.9 mm.
  • the length of the adhesive glue 130 in the second predetermined direction b is appropriate, and the adhesive glue 130 can be better distributed between two adjacent fine grids 111, and the adhesive glue 130 can be reliably Bonding of the ground to the battery sheet 110 and the shaping part 122 .
  • the distance from the adhesive glue 130 to the end of the battery sheet 110 is 4.2-6.6 mm, further 4.3-6.5 mm , and further 4.4 ⁇ 6.4mm.
  • the distance between two adjacent fine grids 111 is 1.9-2 mm; the distance between the fine grids 111 located at the edge of the cell 110 and the edge of the cell 110 is 0.4-0.6 mm.
  • the number of fine grids 111 on the side of the adhesive glue 130 close to the end of the battery sheet 110 is 3-4.
  • the thin grid 111 located at the outermost edge of the battery sheet 110 is the first thin grid 111; toward the middle of the battery sheet 110, there are the second thin grid 111, the third thin grid 111 and The fourth fine grid 111, and so on.
  • the distance between two adjacent thin grids 111 is 1.95 mm, and the distance between the edges of the battery slices 110 is 0.5 mm.
  • the number of fine grids 111 on the side of the adhesive glue 130 close to the end of the battery sheet 110 is three, and the adhesive glue 130 is located between the third thin grid 111 and the fourth thin grid 111. between grids 111.
  • the bonding glue 130 has an appropriate distance from the end of the battery sheet 110. On the one hand, it can effectively avoid the excessive distance between the bonding glue 130 and the end of the battery sheet 110, thereby effectively controlling the contact between the conductive tape 120 and the battery sheet. 110 ; on the other hand, it can effectively prevent the distance between the adhesive 130 and the end of the cell 110 from being too small, thereby effectively avoiding glue overflow.
  • the first shaping part 122 corresponds to the first region 112 and to effectively control the shielding area of the battery sheet 110 by the conductive strip 120, adaptively, in the first preset direction a, the first shaping part
  • the size of 1221 is 6-7 mm, such as 6 mm, 6.5 mm or 7 mm
  • the size of the second shaping part 1222 is 12-14 mm, such as 12 mm, 13 mm or 14 mm.
  • the adhesive 130 is conductive adhesive ECA.
  • the side of the adhesive glue 130 away from the edge of the battery sheet 110 exceeds the fourth thin grid 111, and the adhesive glue 130 is located between the third thin grid 111 and the fifth thin grid. between grids 111.
  • An embodiment of the present application provides a photovoltaic module, including a battery string, an encapsulation film on the surface of the battery string, and an encapsulation glass on the surface of the encapsulation film.
  • the battery string includes battery slices, conductive tape and adhesive.
  • the conductive strip connects two adjacent cells in series.
  • the conductive strip has multiple conductive strip bodies and multiple shaping parts extending along the first predetermined direction and distributed alternately.
  • the shaping part corresponds to the first area
  • the conductive strip body corresponds to the second area.
  • the size of the shaping part is larger than the size of the conductive belt body
  • the second preset direction is parallel to the surface of the battery sheet and perpendicular to the first preset direction.
  • the adhesive glue is connected between the first area and the shaping part.
  • the fine grid in the second area of the surface of the battery sheet is in direct electrical contact with the body of the conductive strip, and the first area of the surface of the battery sheet is connected to the shaping part through adhesive glue, realizing the design of the battery sheet without a main grid , can effectively reduce the unit consumption of low-temperature silver paste.
  • the use of the adhesive is convenient to meet the low-temperature connection requirements of the battery sheet and the outdoor weather resistance requirements; and, using the plastic part with a larger width in the second preset direction to bond with the adhesive can be used on the conductive tape Reliable bonding force is provided between the battery sheet and the battery sheet, so that the battery string can achieve the reliability comparable to the existing components of the main grid with solder pads.
  • the size of the adhesive is 1.8-2.0 mm.
  • the length of the adhesive in the second predetermined direction is appropriate, so that the adhesive can reliably bond the battery sheet and the shaping part.
  • the distance between the adhesive glue and the end of the battery sheet is 4.2-6.6 mm.
  • the distance between two adjacent fine grids is 1.9-2mm; the number of the thin grids on the side of the adhesive glue close to the end of the cell is 3-4 .
  • the bonding glue is located between two adjacent thin grids.
  • the adhesive is arranged between two adjacent fine grids, and when adhesives with different conductive properties are used, electrical contact between the shaping part and the fine grids can be better; When using conductive glue, it can also effectively avoid blocking the fine grid due to the poor light transmission of the conductive glue.
  • the plurality of shaping parts are a first shaping part located at both ends of the conductive strip body and a second shaping part located in the middle of the conductive strip body, and the two ends of the second shaping part in the first preset direction are respectively connected to the adjacent The first regions of the two battery slices correspond.
  • the two adjacent ends of the two battery sheets correspond to the same shaping part, and the arrangement of the conductive tape is simpler; and the second shaping part extends from the front edge of one battery sheet to the other On the back edge of the battery sheet, when the shaping part is set as a flat structure with a small thickness, it is also beneficial to reduce the spacing between the sheets.
  • the size of the first shaping part is 6-7 mm, and the size of the second shaping part is 12-14 mm.
  • the size of the conductive strip body is 0.1-0.3 mm
  • the size of the shaping part is 0.5-0.6 mm
  • the size of the adhesive is 0.7-0.8 mm.
  • the shaping part and the conductive strip have appropriate dimensions, which is convenient for processing, ensures better connection with the surface of the battery sheet through adhesive glue, and can effectively control the shielding of the surface of the battery sheet.
  • two adjacent battery pieces are respectively connected in series through 9 to 20 conductive strips distributed at intervals in the second preset direction.
  • the conductive strip has an appropriate density, which can better meet the requirements of high current collection efficiency and small shielding area.
  • the adhesive is made of transparent adhesive.
  • the transparent adhesive has a relatively high light transmittance, which can effectively reduce the influence of blocking the cells, and is conducive to maintaining the working efficiency of the cells.
  • the photovoltaic module of this application adopts a busbar-free design, which ensures the reliability of the conductive strip connection and can effectively reduce the unit consumption of low-temperature silver paste.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请提供一种光伏组件,属于光伏电池技术领域。光伏组件的电池串包括沿第一预设方向分布的多个电池片、串联相邻两个电池片的导电带及粘接胶。电池片的表面沿第一预设方向间隔分布多根细栅;电池片的表面包括第二区域及沿第一预设方向间隔分布并位于第二区域两侧的第一区域。导电带具有沿第一预设方向延伸并相间分布的多个导电带本体及多个整形部,整形部与第一区域对应,导电带本体与第二区域内的细栅电性接触;在第二预设方向上,整形部尺寸大于导电带本体尺寸,第二预设方向与电池片的表面平行且与第一预设方向垂直。粘接胶连接于第一区域与整形部之间。光伏组件采用无主栅设计,保证导电带连接的可靠性,并且能有效降低低温银浆单耗。

Description

光伏组件
相关申请的交叉引用
本申请要求于2021年7月8日提交中国专利局的申请号为202121553058.0、名称为“光伏组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光伏电池技术领域,具体而言,涉及一种光伏组件。
背景技术
由于异质结电池采用低温浆料及低温固化工艺,电池片不能承受200℃的高温。为了较好地实现电池片与焊带的焊接,在目前的一些工艺中,异质结电池等的光伏组件采用多主栅配合低温焊带实现低温焊接;在目前的另一些工艺中,异质结电池等光伏组件采用叠瓦技术。
在多主栅配合低温焊带实现低温焊接的工艺中,其电池片低温银浆单耗均较高,如异质结电池片的低温银浆单耗约为200mg/片。以单晶电池和多晶电池光伏电池来看,光伏银浆的成本占比在10~11%;而在新一代异质结电池中,光伏银浆成本占比甚至达到了24%,可见光伏银浆的重要性逐步提升是光伏电池的核心辅料之一。因此,该工艺中低温银浆单耗高导致成本较高。
在采用叠瓦技术的工艺中,将电池片切割为5片或6片并将片与片之间正负极连接,其电池片中设计有主栅线焊盘,导致成本较高。
发明内容
本申请的目的在于提供一种光伏组件,采用无主栅设计,保证导电带连接的可靠性,并且能有效降低低温银浆单耗。
本申请实施例提供一种光伏组件,包括电池串、位于电池串表面的封装胶膜以及位于封装胶膜表面的封装玻璃。电池串包括电池片、导电带及粘接胶。
电池片为多个并沿第一预设方向分布,电池片的表面沿第一预设方向间隔分布多根细栅;电池片的表面包括第二区域及位于第一区域两侧的第一区域,第一区域为电池片的表面中靠近第一预设方向上两端的区域。
导电带串联相邻两个电池片,导电带具有沿第一预设方向延伸并相间分布的多个导电带本体及多个整形部,整形部与第一区域对应,导电带本体与第二区域内的细栅相连;在 第二预设方向上,整形部的尺寸大于导电带本体的尺寸,第二预设方向与电池片的表面平行且与第一预设方向垂直。
粘接胶连接于第一区域与整形部之间。
可选的,在第一预设方向上,粘接胶的尺寸为1.8~2.0mm。
可选的,在第一预设方向上,粘接胶到电池片的端部的距离为4.2~6.6mm。
可选的,在第一预设方向上,相邻的两根细栅之间的距离为1.9~2mm;粘接胶靠近电池片的端部的一侧的细栅的数量为3~4根。
可选的,粘接胶位于相邻的两根细栅之间。
可选的,多个整形部分为位于导电带本体两端的第一整形部和位于导电带本体中部的第二整形部,第二整形部的第一预设方向上的两端分别与相邻的两个电池片的第一区域对应。
可选的,在第一预设方向上,第一整形部的尺寸为6~7mm,第二整形部的尺寸为12~14mm。
可选的,在第二预设方向上,导电带本体的尺寸为0.1~0.3mm,整形部的尺寸为0.5~0.6mm,粘接胶的尺寸为0.7~0.8mm。
可选的,相邻两个电池片通过在第二预设方向上间隔分布的9~20根导电带分别进行串联。
可选的,粘接胶的材质为透明粘接胶。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例1提供的光伏组件的局部剖视图;
图2为本申请实施例1提供的电池串的结构示意图;
图3为图2中的局部放大图;
图4为本申请实施例1提供的电池串中导电带的结构示意图;
图5为本申请实施例1提供的电池串的局部剖视图;
图6为本申请实施例1提供的电池串的局部结构示意图。
图标:10-光伏组件;100-电池串;110-电池片;111-细栅;112-第一区域;113-第二区域;120-导电带;121-导电带本体;122-整形部;1221-第一整形部;1222-第二整形部;130- 粘接胶;200-封装胶膜;300-封装玻璃;a-第一预设方向;b-第二预设方向;c-第三预设方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要说明的是,术语“上”、“下”、“首”、“尾”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,“垂直”和“平行”等术语并不表示要求部件之间绝对垂直或平行,而是可以稍微倾斜。
另外,在本申请的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
请参阅图1,本实施例提供一种光伏组件10,包括本申请提供的电池串100、位于电池串100的表面的封装胶膜200以及位于封装胶膜200的表面的封装玻璃300。
可以理解的是,在本申请中,封装胶膜200和封装玻璃300的材质可以根据本领域公知的标准进行选择。
可选地,封装胶膜200的材质为例如但不限于为乙烯-醋酸乙烯酯共聚物(ethylene-vinyl acetate copolymer,简称EVA)、聚烯烃弹性体(Polyolefin elastomer,简称POE)或聚乙烯醇缩丁醛(polyvinyl butyral,简称PVB),例如为EVA。
请参阅图2~6,在本申请中,电池串100包括电池片110、导电带120及粘接胶130。
电池串100的长度方向为第一预设方向a,电池串100的宽度方向为第二预设方向b,电池串100的厚度方向为第三预设方向c。第一预设方向a与第二预设方向b均与电池片110的表面平行,且第二预设方向b与第一预设方向a垂直;第三预设方向c与电池片110 的表面垂直。需要说明的是,在本申请中,电池片110的表面是指电池片110的正面和电池片110的背面。
请参阅图2~3,电池片110为多个,该多个电池片110沿第一预设方向a分布。作为一种示例,本实施例中的电池片110为异质结电池片110,且每个电池片110为电池半片。当然,在其他实施例中,电池电的种类和规格大小可以根据需要进行调整。
在本实施例中,电池片110的表面仅设置多个细栅111,未设置主栅及焊盘。该多根细栅111在电池片110的表面沿第一预设方向a间隔分布。
电池片110的表面包括第二区域113及位于第二区域113两侧的第一区域112。第一区域112为电池片110的表面中靠近第一预设方向a上两端的区域,即是说,每个电池片110中的两个第一区域112在第一预设方向a上间隔分布,且靠近电池片110在第一预设方向a上的首尾两端。
请参阅图4~5,每根导电带120串联相邻两个电池片110。其中,每根导电带120具有沿第一预设方向a延伸并相间分布的多个导电带本体121及多个整形部122。在第二预设方向b上,整形部122的尺寸大于导电带本体121的尺寸。
导电带本体121与第二区域113内的细栅111电性接触;整形部122与第一区域112对应,粘接胶130连接于第一区域112与整形部122之间。
本申请中,电池片110采用无主栅设计,能够有效降低低温银浆单耗。其中,粘接胶130的使用方便满足电池片110的低温连接要求和户外耐候性要求;并且,利用在第二预设方向b上的宽度较大的整形部122与粘接胶130进行粘接,能够在导电带120和电池片110之间提供可靠的粘接作用力,使得电池串100能够达到具有焊盘的主栅的现有的组件相当的可靠性。
可以理解的是,在本申请中,相邻两个电池片110之间可以根据需要并排设置合适数量的导电带120。作为一种示例,相邻两个电池片110通过在第二预设方向b上间隔分布的9~20根导电带120分别进行串联,该相邻两个电池片110之间的导电带120的数量例如为9根或者16根,使得导电带120具有合适的密度,能够较好地兼顾高电流收集效率及小遮挡面积的需求;并且,与现有的产线的匹配性好。
为了方便导电带120的加工,在本实施例中,整形部122在第三预设方向c上的尺寸小于导电带本体121在第三预设方向c上的尺寸,使得整形部122呈宽度大于导电带本体121而厚度小于导电带本体121的扁平结构。
上述设置方式,方便通过机械外力挤压等方式形成扁平结构,并得到一体成型的导电带120。
作为一种示例,本申请的导电带120由带材在两端和中部做压扁处理得到,其未压扁 的区域为导电带本体121,压扁的区域为整形部122。
本申请的导电带120可以采用常规的带材加工得到,其例如为截面为圆形的带材,其直径通常为0.1~0.3mm,压扁后的部位的宽度通常为0.5~0.6mm。为了方便加工获得导电带120,在一些可选的实施方案中,在第二预设方向b上,导电带本体121的尺寸为0.1~0.3mm,整形部122的尺寸为0.5~0.6mm。
考虑到导电带120在串联相邻两个电池片110时,会从一个电池片110的正面边缘延伸到另一个电池片110的背面边缘,在本实施例中,多个整形部122分为位于导电带本体121两端的第一整形部1221和位于导电带本体121中部的第二整形部1222,第二整形部1222的第一预设方向a上的两端分别与相邻的两个电池片110的第一区域112对应,第一整形部1221和第二整形部1222均与对应的第一区域112通过粘接胶130连接。
上述的设置方式,两个电池片110中相邻的两个端部均与同一个整形部122对应,使得导电带120的设置更简单。将该整形部122设置为厚度较小的扁平结构时,还有利于缩小片间距。
可以理解的是,在本申请中,粘接胶130的种类不受限制,其可以基于低温连接要求、导电性、遮挡作用和成本等方面的考虑作出不同的选择,其示例性地为低温(<160℃)固化型粘接胶130,例如选择环氧类或者有机硅类的粘接胶130,又例如选择导电胶ECA。
作为一种示例,在本实施例中,粘接胶130的材质为透明粘接胶130。该透明粘接胶130有较高的透光率,能有效降低遮挡电池片110的影响,有利于保持电池片110的工作效率。
考虑到不同的粘接胶130具有不同的导电性能,一些成本较低的粘接胶130,例如本实施例使用的透明粘接胶130,还存在不导电的现象。为了保证第一区域112的细栅111与整形部122之间能够较好地进行电性接触,可选地将粘接胶130设置为不与细栅111接触的形式。
请参阅图6,在本实施例中,粘接胶130位于相邻的两根细栅111之间。
上述设置方式,将粘接胶130设置于相邻的两个细栅111之间而不会与细栅111接触,在使用不同导电性能的粘接胶130时,整形部122和细栅111之间均能较好地进行电性接触。
需要说明的是,在本申请中,粘接胶130也不限于设置于两根细栅111之间,例如在使用导电胶ECA作为粘接胶时,为了提高粘接可靠性,也可以将粘接胶130设置于三根或者更多细栅111之间。
可以理解的是,为了保证粘接胶较好地为第一区域112和整形部122之间提供可靠的粘接力,粘接胶需要有合适的长度和宽度。
关于粘接胶130的宽度,作为一种示例,在第二预设方向b上,粘接胶130的尺寸为0.7~0.8mm,例如为0.7mm或者0.8mm。该宽度规格通过现有的点胶后压扁的工艺容易实现;且粘接胶130的宽度与整形部122的宽度匹配性好,保证粘接胶130能够充分地与整形部122进行粘接,并且能够有效地控制对电池片110的表面的遮挡。
考虑到为了保证电池串100的电性能,电池片110的表面需要有合适的细栅111密度。而在将粘接胶130设置于两根细栅111之间的实施方式中,粘接胶130在第一预设方向a上的尺寸需要与细栅111之间的距离匹配。
关于粘接胶130的长度,作为一种示例,在第一预设方向a上,粘接胶130的尺寸为1.8~2.0mm,例如为1.9mm。
上述技术方案中,粘接胶130在第二预设方向b上的长度适当,能够较好地将粘接胶130分布在相邻两根细栅111之间,并且使得粘接胶130能够可靠地对电池片110和整形部122的粘接。
发明人研究发现,当粘接胶130与电池片110的端部距离过小时,可能会出现溢胶现象;当粘接胶130与电池片110的端部距离过大时,整形部122为了能够与粘接胶130对应需要有较大的长度,会导致整形部122长度过大,进而会导致导电带120对电池片110的表面的遮挡面积过大。
为了有效避免上述问题,在本申请中,可选地,在第一预设方向a上,粘接胶130到电池片110的端部的距离为4.2~6.6mm,进一步地为4.3~6.5mm,更进一步地为4.4~6.4mm。
作为一种示例,相邻两根细栅111之间的间距为1.9~2mm;位于电池片110最边缘的细栅111与电池片110的边缘之间的间隔为0.4~0.6mm。粘接胶130靠近电池片110的端部的一侧的细栅111的数量为3~4根。
在第一预设方向a上,位于电池片110最边缘的细栅111为第一根细栅111;往电池片110的中部,依次为第二根细栅111、第三根细栅111和第四根细栅111,以此类推。
在本实施例中,在第一预设方向a上,相邻两根细栅111之间的间距为1.95mm,电池片110的边缘之间的间隔为0.5mm。在第一预设方向a上,粘接胶130靠近电池片110的端部的一侧的细栅111的数量为3根,且粘接胶130位于第三根细栅111和第四根细栅111之间。
上述设置方式,粘接胶130与电池片110的端部有合适的距离,一方面,有效避免粘接胶130与电池片110的端部距离过大,从而能有效控制导电带120对电池片110的表面的遮挡面积;另一方面,有效避免粘接胶130与电池片110的端部距离过小,从而能有效避免出现溢胶现象。为了保证整形部122较好地与第一区域112对应,并且为了有效地控制导电带120对电池片110的表面的遮挡面积,适应性地,在第一预设方向a上,第一整 形部1221的尺寸为6~7mm,例如为6mm、6.5mm或者7mm;第二整形部1222的尺寸为12~14mm,例如为12mm、13mm或者14mm。
可选的,粘接胶130为导电胶ECA。
可选的,在第一预设方向a上,粘接胶130远离电池片110边缘的一侧超出第四根细栅111,该粘接胶130位于第三根细栅111和第五根细栅111之间。
本申请实施例提供一种光伏组件,包括电池串、位于电池串表面的封装胶膜以及位于封装胶膜表面的封装玻璃。电池串包括电池片、导电带及粘接胶。电池片为多个并沿第一预设方向分布,电池片的表面沿第一预设方向间隔分布多根细栅;电池片的表面包括第二区域及位于第一区域两侧的第一区域,第一区域为电池片的表面中靠近第一预设方向上两端的区域。导电带串联相邻两个电池片,导电带具有沿第一预设方向延伸并相间分布的多个导电带本体及多个整形部,整形部与第一区域对应,导电带本体与第二区域内的细栅相连;在第二预设方向上,整形部的尺寸大于导电带本体的尺寸,第二预设方向与电池片的表面平行且与第一预设方向垂直。粘接胶连接于第一区域与整形部之间。
上述技术方案中,电池片的表面的第二区域的细栅与导电带本体直接电性接触,电池片的表面的第一区域通过粘接胶与整形部相连,实现了电池片无主栅设计,能够有效降低低温银浆单耗。其中,粘接胶的使用方便满足电池片的低温连接要求和户外耐候性要求;并且,利用在第二预设方向上的宽度较大的整形部与粘接胶进行粘接,能够在导电带和电池片之间提供可靠的粘接作用力,使得电池串能够达到具有焊盘的主栅的现有组件相当的可靠性。
可选的,在第一预设方向上,粘接胶的尺寸为1.8~2.0mm。
上述技术方案中,粘接胶在第二预设方向上的长度适当,使得粘接胶能够可靠地对电池片和整形部进行粘接。
可选的,在第一预设方向上,粘接胶到电池片的端部的距离为4.2~6.6mm。
可选的,在第一预设方向上,相邻的两根细栅之间的距离为1.9~2mm;粘接胶靠近电池片的端部的一侧的细栅的数量为3~4根。
上述技术方案中,粘接胶与电池片的端部有合适的距离,一方面,有效避免粘接胶与电池片的端部距离过大而导致整形部长度过大,从而能够有效地控制导电带对电池片的表面的遮挡面积;另一方面,有效避免粘接胶与电池片的端部距离过小而出现溢胶现象。
可选的,粘接胶位于相邻的两根细栅之间。
上述技术方案中,将粘接胶设置于相邻的两个细栅之间,在使用不同导电性能的粘接胶时,整形部和细栅之间均能较好地进行电性接触;在使用导电胶时,也能够有效避免因导电胶的透光性不好对细栅的遮挡。
可选的,多个整形部分为位于导电带本体两端的第一整形部和位于导电带本体中部的第二整形部,第二整形部的第一预设方向上的两端分别与相邻的两个电池片的第一区域对应。
上述技术方案中,两个电池片中相邻的两个端部均与同一个整形部对应,导电带的设置更简单;并且,该第二整形部从一个电池片的正面边缘延伸到另一个电池片的背面边缘,将该整形部设置为厚度较小的扁平结构时,还有利于缩小片间距。
可选的,在第一预设方向上,第一整形部的尺寸为6~7mm,第二整形部的尺寸为12~14mm。
可选的,在第二预设方向上,导电带本体的尺寸为0.1~0.3mm,整形部的尺寸为0.5~0.6mm,粘接胶的尺寸为0.7~0.8mm。
上述技术方案中,整形部与导电带具有合适的尺寸,便于加工,保证较好地通过粘接胶与电池片的表面连接,还能够有效地控制对电池片的表面的遮挡。
可选的,相邻两个电池片通过在第二预设方向上间隔分布的9~20根导电带分别进行串联。
上述技术方案中,导电带具有合适的密度,能够较好地兼顾高电流收集效率及小遮挡面积的需求。
可选的,粘接胶的材质为透明粘接胶。
上述技术方案中,透明粘接胶有较高的透光率,能有效降低遮挡电池片的影响,有利于保持电池片的工作效率。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请适用于光伏电池领域,本申请的光伏组件采用无主栅设计,保证导电带连接的可靠性,并且能有效降低低温银浆单耗。

Claims (10)

  1. 一种光伏组件,包括电池串、位于所述电池串表面的封装胶膜以及位于所述封装胶膜表面的封装玻璃,其中,所述电池串包括:
    沿第一预设方向分布的多个电池片,所述电池片的表面沿所述第一预设方向间隔分布多根细栅;所述电池片的表面包括第二区域及位于所述第二区域两侧的第一区域,所述第一区域为所述电池片的表面中靠近所述第一预设方向上两端的区域;
    串联相邻的两个所述电池片的导电带,所述导电带具有沿所述第一预设方向延伸并相间分布的多个导电带本体及多个整形部,所述整形部与所述第一区域对应,所述导电带本体与所述第二区域内的所述细栅电性接触;在第二预设方向上,所述整形部的尺寸大于所述导电带本体的尺寸,所述第二预设方向与所述电池片的表面平行且与所述第一预设方向垂直;以及
    粘接胶,连接于所述第一区域与所述整形部之间。
  2. 根据权利要求1所述的光伏组件,其中,在所述第一预设方向上,所述粘接胶的尺寸为1.8~2.0mm。
  3. 根据权利要求1或2所述的光伏组件,其中,在所述第一预设方向上,所述粘接胶到所述电池片的端部的距离为4.2~6.6mm。
  4. 根据权利要求1至3中任一项所述的光伏组件,其中,在所述第一预设方向上,相邻的两根所述细栅之间的距离为1.9~2mm;所述粘接胶靠近所述电池片的端部的一侧的所述细栅的数量为3~4根。
  5. 根据权利要求1至4中任一项所述的光伏组件,其中,所述粘接胶位于相邻的两根所述细栅之间。
  6. 根据权利要求1至5任一项所述的光伏组件,其中,所述多个整形部分为位于所述导电带本体两端的第一整形部和位于所述导电带本体中部的第二整形部,所述第二整形部的所述第一预设方向上的两端分别与相邻的两个所述电池片的所述第一区域对应,所述第一整形部和所述第二整形部均通过所述粘接胶与对应的所述第一区域连接。
  7. 根据权利要求6所述的光伏组件,其中,在所述第一预设方向上,所述第一整形部的尺寸为6~7mm,所述第二整形部的尺寸为12~14mm。
  8. 根据权利要求1至7中任一项所述的光伏组件,其中,在所述第二预设方向上,所述整形部的尺寸为0.5~0.6mm,所述粘接胶的尺寸为0.7~0.8mm。
  9. 根据权利要求1至8中任一项所述的光伏组件,其中,相邻两个所述电池 片通过在所述第二预设方向上间隔分布的9~20根所述导电带分别进行串联。
  10. 根据权利要求1至9中任一项所述的光伏组件,其中,所述粘接胶的材质为透明粘接胶。
PCT/CN2022/081538 2021-07-08 2022-03-17 光伏组件 WO2023279766A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202121553058.0 2021-07-08
CN202121553058.0U CN214848646U (zh) 2021-07-08 2021-07-08 光伏组件

Publications (1)

Publication Number Publication Date
WO2023279766A1 true WO2023279766A1 (zh) 2023-01-12

Family

ID=78813507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081538 WO2023279766A1 (zh) 2021-07-08 2022-03-17 光伏组件

Country Status (2)

Country Link
CN (1) CN214848646U (zh)
WO (1) WO2023279766A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214848646U (zh) * 2021-07-08 2021-11-23 东方日升(常州)新能源有限公司 光伏组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229663A (ja) * 2013-05-20 2014-12-08 三菱電機株式会社 太陽電池モジュール
CN211455701U (zh) * 2019-08-16 2020-09-08 福建金石能源有限公司 一种光伏焊带及其无主栅太阳能模组
CN212659550U (zh) * 2020-08-10 2021-03-05 苏州阿特斯阳光电力科技有限公司 光伏组件
CN112951937A (zh) * 2021-04-06 2021-06-11 天合光能股份有限公司 太阳能电池串及其制备方法
CN113066885A (zh) * 2021-03-18 2021-07-02 苏州沃特维自动化***有限公司 一种串联光伏电池组件及其封装方法
CN214848646U (zh) * 2021-07-08 2021-11-23 东方日升(常州)新能源有限公司 光伏组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229663A (ja) * 2013-05-20 2014-12-08 三菱電機株式会社 太陽電池モジュール
CN211455701U (zh) * 2019-08-16 2020-09-08 福建金石能源有限公司 一种光伏焊带及其无主栅太阳能模组
CN212659550U (zh) * 2020-08-10 2021-03-05 苏州阿特斯阳光电力科技有限公司 光伏组件
CN113066885A (zh) * 2021-03-18 2021-07-02 苏州沃特维自动化***有限公司 一种串联光伏电池组件及其封装方法
CN112951937A (zh) * 2021-04-06 2021-06-11 天合光能股份有限公司 太阳能电池串及其制备方法
CN214848646U (zh) * 2021-07-08 2021-11-23 东方日升(常州)新能源有限公司 光伏组件

Also Published As

Publication number Publication date
CN214848646U (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
EP3001464B1 (en) Solar cell module
JP4153785B2 (ja) 太陽電池モジュール
JPWO2015152020A1 (ja) 太陽電池モジュールおよびその製造方法
EP2600419A1 (en) Solar cell module
CN204857754U (zh) 一种太阳能电池组件
AU2023200988B2 (en) Photovoltaic cell and photovoltaic module
WO2023279766A1 (zh) 光伏组件
CN113851550A (zh) 一种太阳能电池串及其制备方法和应用
JP2010016246A (ja) 太陽電池モジュール及びその製造方法
US20240204123A1 (en) Heterojunction cell and processing method therefor, and battery assembly
US20240105871A1 (en) Photovoltaic module and method for preparing the photovoltaic module
WO2024140364A1 (zh) 太阳电池小片、太阳电池片、太阳电池串以及叠瓦组件
CN111739969B (zh) 一种光伏模组及其串联方法
CN210224044U (zh) 一种太阳能电池片以及太阳能电池组件
WO2020103358A1 (zh) 一种太阳能电池片及太阳能电池组件
CN208433423U (zh) 一次切割的钙钛矿太阳能电池组件
CN112447864A (zh) 条形太阳电池片、太阳电池和光伏组件及其制造方法
WO2023273648A1 (zh) 一种光伏组件
CN215418199U (zh) 一种太阳能电池串以及包含太阳能电池串的光伏组件
JP2011044751A (ja) 太陽電池モジュール
CN102142477B (zh) 一种反光晶体硅太阳电池组件
CN217983362U (zh) 光伏组件
CN221262387U (zh) 由极性相反的电池片构成的光伏组件
WO2014124567A1 (zh) 太阳能模块
WO2022000913A1 (zh) 叠瓦组件的导电互联件、叠瓦组件及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22836526

Country of ref document: EP

Kind code of ref document: A1