WO2023279761A1 - 电池状态检测装置和车辆设备 - Google Patents

电池状态检测装置和车辆设备 Download PDF

Info

Publication number
WO2023279761A1
WO2023279761A1 PCT/CN2022/080982 CN2022080982W WO2023279761A1 WO 2023279761 A1 WO2023279761 A1 WO 2023279761A1 CN 2022080982 W CN2022080982 W CN 2022080982W WO 2023279761 A1 WO2023279761 A1 WO 2023279761A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
battery
electrically coupled
controller
state detection
Prior art date
Application number
PCT/CN2022/080982
Other languages
English (en)
French (fr)
Inventor
张臣
姚梦
王萌
李晓辉
杨博智
Original Assignee
广州汽车集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州汽车集团股份有限公司 filed Critical 广州汽车集团股份有限公司
Priority to CN202280001624.8A priority Critical patent/CN116848419A/zh
Publication of WO2023279761A1 publication Critical patent/WO2023279761A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/386Arrangements for measuring battery or accumulator variables using test-loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4264Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing with capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00711Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • the present application relates to the field of battery technology, in particular to the field of battery impedance detection of vehicle equipment.
  • Embodiments of the present application provide a battery state detection device and vehicle equipment.
  • the embodiments of the present application can monitor and detect the state of the battery, which can ensure good battery performance and prolong battery life, and improve vehicle safety.
  • a battery state detection device for detecting the state of a battery
  • the battery state detection device includes a controller, a load unit, and a switch unit.
  • the load unit is electrically coupled to the battery and configured to receive power from the battery.
  • the switch unit is electrically coupled between the battery and the load unit, and is used for receiving a control signal of the controller.
  • the controller controls the switch unit to disconnect or conduct the connection between the battery and the load unit at a predetermined frequency.
  • the controller switches the load unit to generate a ripple voltage on the battery, measures the ripple voltage of each cell, and determines whether the battery is abnormal based on the ripple voltage of each cell.
  • the controller switches the load unit to generate a ripple voltage on the battery, and measures the ripple voltage of each cell, so that it can be determined whether the battery is abnormal according to the ripple voltage of each cell, This can monitor and detect the state of the battery, thereby ensuring good battery performance and extending battery life to ensure vehicle safety.
  • the switch unit includes a first switch, the anode of the battery is electrically coupled to the first end of the first switch, and the second end of the first switch is electrically coupled to the load
  • the first end of the unit, the third end of the first switch is electrically coupled to the controller, and the second end of the load unit is electrically coupled to the negative pole of the battery.
  • the switch unit includes a first switch
  • the load unit includes a first resistor and a thermistor
  • the negative pole of the battery is grounded
  • the positive pole of the battery is electrically coupled to the first switch the first end of the first switch
  • the second end of the first switch is electrically coupled to the first end of the first resistor
  • the second end of the first resistor is grounded through the thermistor
  • the first switch of the The third terminal is electrically coupled to the controller.
  • the switch unit includes a first switch and a second switch, the first end of the first switch is electrically coupled to the controller, and the second end of the first switch is electrically coupled to the The positive pole of the battery and the first end of the first capacitor, the third end of the first switch is electrically coupled to the second end of the second switch, the first end of the second switch is electrically coupled to the A controller, the third terminal of the second switch is electrically coupled to the negative pole of the battery and the second terminal of the first capacitor.
  • the switch unit further includes a third switch and a fourth switch, the first end of the third switch is electrically coupled to the controller, and the second end of the third switch is electrically coupled to To the positive pole of the battery, the third end of the third switch is electrically coupled to the second end of the fourth switch, the first end of the fourth switch is electrically coupled to the controller, and the fourth The third end of the switch is electrically coupled to the negative pole of the battery.
  • the switch unit further includes a fifth switch and a sixth switch, the first end of the fifth switch is electrically coupled to the controller, and the second end of the fifth switch is electrically coupled to To the positive pole of the battery, the third end of the fifth switch is electrically coupled to the second end of the sixth switch, the first end of the sixth switch is electrically coupled to the controller, and the sixth The third end of the switch is electrically coupled to the negative pole of the battery.
  • the load unit includes a first inductor, and a first node between the third terminal of the first switch and the second terminal of the second switch is electrically coupled to the load unit. the first inductor.
  • the load unit further includes a second inductor, and a second node between the third end of the third switch and the second end of the fourth switch is electrically coupled to the load unit of the second inductance.
  • the load unit further includes a third inductor, and a third node between the third end of the fifth switch and the second end of the sixth switch is electrically coupled to the load unit of the third inductance.
  • an embodiment of the present application provides a vehicle device, including a battery and the battery state detection device as described above, and the battery state detection device is electrically connected to the battery.
  • the battery state detection device and vehicle equipment use the controller to switch the load unit to generate ripple voltage on the battery, and measure the ripple voltage of each battery cell, so that the ripple voltage of each battery cell can be The wave voltage determines whether the battery is abnormal, so that the state of the battery can be monitored and detected, thereby ensuring good battery performance and extending battery life, ensuring the safety of the vehicle.
  • FIG. 1 is a block diagram of a battery state detection device according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a battery state detection device according to an embodiment of the present application.
  • FIG. 3 is a schematic circuit diagram of a battery charging circuit according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a battery state detection device according to another embodiment of the present application.
  • FIG. 5 is a schematic diagram of a switching mode of a battery under test according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of terminal voltages of two series-connected cells with resistive load on/off control in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a battery state detection device according to another embodiment of the present application.
  • FIG. 8 is a schematic diagram of a battery state detection device according to another embodiment of the present application.
  • FIG. 9 is a schematic diagram of a battery state detection device according to another embodiment of the present application.
  • Fig. 10 is a schematic diagram of time trajectories of the sampled signal and the original signal at different frequencies according to the embodiment of the present application.
  • FIG. 11 is a schematic diagram of correlation research on data of different frequencies according to an embodiment of the present application.
  • 12a-12e are schematic diagrams of the influence of noise on angle calculation in the embodiment of the present application.
  • Coupled is defined as connected directly or indirectly through intermediate components and is not necessarily limited to physical connections. Connections can be object persistent or releasable.
  • comprising means “including but not limited to”; it specifically denotes open inclusion or membership in said combination, group, series, etc.
  • a battery is an electrochemical system, and an equivalent circuit of the electrochemical system can be established, which can be connected by elements such as resistors, capacitors, and inductors.
  • Electrochemical impedance spectroscopy can be used as a direct indicator to characterize the state of the battery.
  • EIS can measure the composition of the equivalent circuit and the size of each component, and then use the electrochemical significance of these components to analyze the structure of the electrochemical system and the nature of the electrode process.
  • a large number of experiments can be used to establish battery state of charge (state of charge, SOC), state of health (state of health, SOH) and state of safety (state of safety, SOS) models, and can be based on different The SOC, SOH and SOS conditions infer the current state of health of the battery and predict battery safety issues.
  • SOC state of charge
  • SOH state of health
  • SOS state of safety
  • the internal resistance of batteries in vehicles is very low, the voltage ripple of the battery is very low, and the current is very small, making signal measurement very difficult.
  • FIG. 1 is a schematic diagram of a vehicle device 100 provided by an embodiment of the present application.
  • the vehicle device 100 may include a battery state detection device 10 and a battery 20 .
  • the battery 20 may supply power to the vehicle device 100 .
  • the battery 20 may include a plurality of cells (not shown). It can be understood that the vehicle device 100 may be an electric vehicle or a hybrid vehicle.
  • the battery state detection device 10 may include a controller 101 , a switch unit 102 and a load unit 103 .
  • the battery state detection device 10 can be electrically coupled to the battery 20 .
  • the controller 101 may be electrically coupled to the switch unit 102 , and the switch unit 102 is electrically coupled between the load unit 103 and the battery 20 .
  • the switch unit 102 can disconnect or connect the connection between the load unit 103 and the battery 20 according to the control signal of the controller 101 .
  • the battery 20 is used to supply power to the load unit 103 .
  • the controller 101 is used to turn on or off the switch unit 102 at a predetermined frequency. Based on this design, a ripple voltage can be generated on the battery by switching the load unit 103 .
  • the controller 101 can measure the ripple voltage of each cell and determine whether the battery is in an abnormal state.
  • FIG. 2 shows a circuit diagram of an embodiment of the device for detecting battery status (battery status detection device 10 ) of the present application.
  • the switch unit 102 may include a switch S1, the positive electrode of the battery 20 is electrically coupled to the first end of the switch S1, the second end of the switch S1 is electrically coupled to the first end of the load unit 103, and the second end of the switch S1
  • the three terminals are electrically coupled to the controller 101 .
  • the second terminal of the load unit 103 is electrically coupled to the negative terminal of the battery 20 .
  • the load unit 103 may include a resistor, a capacitor or an inductor.
  • the controller 101 may open or close the switch S1 at a predetermined frequency.
  • the predetermined frequency may be in the range of 0-1000 Hz.
  • Embodiments of the present application may use the disclosed equivalent circuit to model the relationship between terminal voltage and current.
  • the circuit may include a resistor R1 , a resistor R2 , a capacitor C1 and a voltage source V1 .
  • the first end of the resistor R1 is electrically coupled to the positive pole of the voltage source V1
  • the second end of the resistor R1 is electrically coupled to the first end of the resistor R2 and the first end of the capacitor C1
  • the second end of the resistor R2 and the second terminal of the capacitor C1 is electrically coupled to the first terminal of the output terminal Vout.
  • the negative electrode of the voltage source V1 is electrically coupled to the second terminal of the output terminal Vout.
  • a large current change was applied on the DC bus side.
  • a current variation of over 20A is equivalent to 7kW in a 350V battery system.
  • the vehicle itself may bring high-frequency load changes to the battery.
  • FIG. 4 shows a schematic diagram of another embodiment of the battery state detection device 10 of the present application.
  • the switch unit 102 may include a switch S2, and the load unit 103 may include a resistor R3 and a thermistor R4.
  • the thermistor R4 may be a positive temperature coefficient (positive temperature coefficient, PTC) resistor.
  • the negative pole of the battery 20 is grounded, the positive pole of the battery 20 is electrically coupled to the first terminal of the switch S2, and the second terminal of the switch S2 is electrically coupled to the first terminal of the resistor R3.
  • the second end of the resistor R3 is grounded through the thermistor R4.
  • the state of the switch S2 can be controlled by the controller 101 .
  • the third end of the switch S2 is electrically coupled to the controller 101, and the controller 101 can output a control signal to the switch S2 to turn on or off the switch S2.
  • PTC may refer to a material that increases in resistance when temperature increases.
  • a PTC heater can provide a heat source in an EV or PHEV by using electricity while maintaining the safety of heating. Electricity can be provided by DC high voltage from the battery.
  • PTCs can be used to heat coolant or air.
  • PTCs can be controlled by switching devices such as insulated gate bipolar transistors (IGBTs) or metal-oxide-semiconductor field-effect transistors (MOSFETs) or physical contactors to regulate the output power and temperature.
  • IGBTs insulated gate bipolar transistors
  • MOSFETs metal-oxide-semiconductor field-effect transistors
  • FIG. 5 is a schematic diagram of a switching mode.
  • Embodiments of the present application can control the switching frequency and duty cycle of the switches to enable impedance measurements.
  • the switching frequency may be 200Hz and the duty cycle may be 50%.
  • Figure 6 shows the terminal voltage of two series-connected cells controlled by a switch with a resistive load.
  • V1 is the voltage of cell 1
  • V2 is the voltage of cell 2. If there is a difference between Cell 1 and Cell 2, the voltage performance between Cell 1 and Cell 2 is different.
  • FIG. 7 shows a schematic diagram of another embodiment of the battery state detecting device 10 of the present application.
  • the battery 20 may be a direct current (DC) power supply
  • the switch unit 102 may be an inverter
  • the load unit 103 may be a motor.
  • the load unit 103 may include an inductor L1, an inductor L2, and an inductor L3.
  • the load unit 103 can provide electric and hybrid electric vehicles with torque to propel the vehicle.
  • the power supply for the motor may be a high voltage direct current voltage.
  • An inverter can convert DC power to AC power by applying a specific switching sequence.
  • the inductance in the motor can provide impedance to the DC power supply, which can be used to control the current, while creating a high-frequency short circuit.
  • the switch unit 102 may include a switch Q1 , a switch Q2 , a switch Q3 , a switch Q4 , a switch Q5 and a switch Q6 .
  • the first end of the switch Q1 is electrically coupled to the controller 101
  • the second end of the switch Q1 is electrically coupled to the positive electrode of the battery 20 and the first end of the capacitor C2
  • the third end of the switch Q1 is electrically coupled to the switch The second terminal of Q2.
  • a node P1 between the third terminal of the switch Q1 and the second terminal of the switch Q2 is electrically coupled to the inductor L1 of the load unit 103 .
  • the first terminal of the switch Q2 is electrically coupled to the controller 101
  • the third terminal of the switch Q2 is electrically coupled to the negative terminal of the battery 20 and the second terminal of the capacitor C2 .
  • the first end of the switch Q3 is electrically coupled to the controller 101
  • the second end of the switch Q3 is electrically coupled to the positive pole of the battery 20
  • the third end of the switch Q3 is electrically coupled to the second end of the switch Q4 .
  • a node P2 between the third terminal of the switch Q3 and the second terminal of the switch Q4 is electrically coupled to the inductor L2 of the load unit 103 .
  • the first terminal of the switch Q4 is electrically coupled to the controller 101
  • the third terminal of the switch Q4 is electrically coupled to the negative terminal of the battery 20 .
  • the first end of the switch Q5 is electrically coupled to the controller 101
  • the second end of the switch Q5 is electrically coupled to the positive pole of the battery 20
  • the third end of the switch Q5 is electrically coupled to the second end of the switch Q6 .
  • a node P3 between the third terminal of the switch Q5 and the second terminal of the switch Q6 is electrically coupled to the inductor L3 of the load unit 103 .
  • the first terminal of the switch Q6 is electrically coupled to the controller 101
  • the third terminal of the switch Q6 is electrically coupled to the negative terminal of the battery 20 .
  • the controller 101 can control the working states of the switches Q1-Q6.
  • the controller 101 may output control signals to the switches Q1-Q6.
  • Switch Q1 and switch Q2 form branch a
  • switch Q3 and switch Q4 form branch b
  • switch Q5 and switch Q6 form branch c.
  • DC loads can be converted to energy in inductors L1-L3. Part of the energy stored in the inductors L1 - L3 is converted into iron losses in the motor 300 due to high frequency conditions. Part of the energy stored in the inductors L1 - L3 is returned to the filter DC capacitor in the load unit 103 . In this way, the battery state detection device 10 can generate a varying load on the DC side.
  • FIG. 8 shows a schematic diagram of another embodiment of a battery state detection device 10 of the present application.
  • the difference between the battery state detection device 10 shown in FIG. 8 and the battery state detection device 10 shown in FIG. 7 is that:
  • the battery state detection device 10 may further include a switch Q7, a switch Q8 and a resistor R5.
  • the first end of the switch Q7 is electrically coupled to the positive pole of the battery 20
  • the second end of the switch Q7 is electrically coupled to the first end of the capacitor C2
  • the third end of the switch Q7 is electrically coupled to the controller 101 .
  • the first terminal of the switch Q8 is electrically coupled to the first terminal of the switch Q7
  • the second terminal of the switch Q8 is electrically coupled to the first terminal of the capacitor C2 through the resistor R5.
  • resistor R5 can be used as a pre-charging resistor for the battery high-voltage system. Precharge circuits in high voltage systems can be used to connect high voltage to its load to avoid current surges.
  • embodiments of the present application can use one voltage source to charge another voltage source, and control of the charging current can be turned on/off at a preferred frequency by the control system.
  • FIG. 9 shows a schematic diagram of another embodiment of a battery state detecting device 10 of the present application.
  • the battery state detection device 10 may include a high voltage battery 501 , a converter 502 , a converter 503 , a DC power source 504 , an inverter 505 and a motor 506 .
  • the converter 502 and the converter 503 are DC-DC converters.
  • the high voltage battery 501 is electrically coupled to a converter 502 , the converter 502 is electrically coupled to a converter 503 , and the converter 503 is electrically coupled to a DC power source 504 .
  • the inverter 505 is electrically coupled to the converter 502 , and the motor 506 is electrically coupled to the inverter 505 .
  • the battery in an electric vehicle is charged by an on-board or external charger, and the charger generates a pulsed charging current to charge the battery.
  • the battery management system sends a normal current request to the charger, and the charger can provide current according to the request. After half a cycle, the BMS sends 0 or very low current to the charger, and the charger adjusts the current to the target value according to the new requirement. After half a cycle, the BMS sends the normal required current to the charger, and repeats the above process in a specific cycle (such as 1s).
  • the BMS can measure the voltage of each battery cell.
  • the present application provides a sampling method, and the sampling rate should not be an integer multiple of the period of the target signal.
  • the ripple frequency should be controlled at 190Hz and avoid 200Hz.
  • Table 1 below shows an example of the adjusted frequency compared to the original target frequency.
  • Figure 10 shows the time traces of the sampled signal and the original signal at different frequencies. By simulating the correlation study between these sampled data and low frequencies, the effectiveness of the sampling method for phase shift estimation can be shown.
  • Figure 11 shows the correlation study under different frequency data, all the curves are superimposed on each other.
  • the correlation coefficient of the sampled data converges to its ideal curve cos(phi), where phi is the phase shift angle.
  • the sampling method mentioned in this application can find the peak value and valley value of the sampled data, which can be used for impedance magnitude calculation.
  • Figure 12a shows the differently sampled signals
  • Figure 12b shows the magnitude of the fast Fourier transform (FFT) for high-frequency samples
  • Figure 12c shows the FFT for low-frequency samples
  • Figure 12d shows the high-frequency The FFT angle of sampling
  • Fig. 12e shows the FFT angle of low frequency sampling.
  • the application finds the frequency with the largest absolute weighted angle.
  • the present application also finds the original angle corresponding to the target frequency.
  • the present application also found angular differences between the two target cells.
  • the indicators for measuring the state of the battery 13 are as follows, and are not limited to the impedance magnitude and impedance phase difference of the battery. In one embodiment, the following formula (1) is used to calculate the DC resistance of the battery.
  • R is the resistance value of the battery
  • ⁇ V is the voltage change value before and after the load is turned on/off
  • ⁇ I is the current change value before and after the load is turned on/off.
  • the method of the present application can also calculate the impedance at the target frequency, and the impedance at the target frequency satisfies the following formula (2).
  • V Am (f trg ) is the FFT amplitude f trg of each cell voltage at the test frequency (known and given)
  • I Am (f trg ) is the test frequency (known and given ) amplitude f trg of the battery current.
  • the phase difference between cells can be calculated by the following formula (3).
  • R i, j is the correlation coefficient of the linear relationship between the voltage V i and the voltage V j .
  • V i is the voltage of battery i
  • V j is the voltage of battery j
  • the present application can also calculate the phase difference between the two batteries through the following formula (4).
  • ⁇ shift arccos(R i, j ) (4)
  • the phase shift can be calculated by FFT, and the angle at each frequency can indicate the phase of that component.
  • the phase difference between two cells can indicate a phase shift.
  • the angle result of the FFT can sometimes be too noisy, and the data processing only compares the phase angle at the frequency of interest.
  • the battery voltage phase difference can be calculated locally through the BMS or the cloud.
  • the BMS can measure the cell voltage phase of the battery 13 through the same board, calculate the average phase shift by removing 1-2 outliers, and compare the average voltage phase in this small group with other groups in the battery 13.
  • possible inconsistencies in time synchronization on different boards can be compensated for, and outliers found in the comparison can indicate abnormal states of the cells.
  • the calculated voltage phase and abnormal battery characteristics can be uploaded to the cloud, and big data will help analyze such data in the fleet and can be cross-checked with any abnormalities found by the BMS in the vehicle equipment.
  • the measured voltage of each cell can be uploaded from the vehicle's T-box to the cloud.
  • big data analysis in cloud computing can be used to evaluate the battery voltage phase of the whole fleet, and then some batteries with different behavior can be found. Outliers may have a higher risk because during thermal runaway the phase shift may change due to temperature changes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例公开一种电池状态检测装置和车辆设备,包括控制器、负载单元和开关单元。负载单元耦合于电池,开关单元耦合于电池和负载单元之间。控制器可以控制开关单元以预定义的频率断开或连接电池和负载单元。控制器可以切换负载单元,在电池上产生纹波电压,并测量每个电芯的纹波电压,根据每个电芯的纹波电压确定电池的异常状态。本申请的实施例可以监控和检测电池的状态,可以确保良好的电池性能和延长电池寿命,提升车辆的安全性。

Description

电池状态检测装置和车辆设备 技术领域
本申请涉及电池技术领域,尤其涉及一种车辆设备的电池阻抗检测领域。
背景技术
随着能源危机和环境问题的加剧,单动力汽车和混合动力汽车不断得到推广,电池可以作为这些汽车设备的能源。为了确保良好的电池性能和延长电池寿命,有必要连续测试电池的交流(Alternating Current,AC)阻抗。
发明内容
本申请的实施例提供一种电池状态检测装置和车辆设备,本申请的实施例可以监控和检测电池的状态,可以确保良好的电池性能和延长电池寿命,提升车辆的安全性。
第一方面,本申请的实施例提供一种电池状态检测装置,用于检测电池的状态,所述电池状态检测装置包括控制器、负载单元和开关单元。所述负载单元电耦合于所述电池,并用于从所述电池接收电力。所述开关单元电耦合于所述电池与所述负载单元之间,并用于接收所述控制器的控制信号。所述控制器控制所述开关单元以预定频率断开或导通所述电池和所述负载单元之间的连接。所述控制器切换所述负载单元以在所述电池上产生纹波电压,测量每个电芯的纹波电压,并根据每个电芯的纹波电压确定所述电池是否异常。
采用本申请的实施例,通过控制器切换负载单元以在电池上产生纹波电压,并测量每个电芯的纹波电压,由此可以根据每个电芯的纹波电压确定电池是否异常,这样可以监控和检测电池的状态,进而确保良好的电池性能和延长电池寿命,保证车辆的安全。
在一种可能的设计中,所述开关单元包括第一开关,所述电池的正极电耦合于所述第一开关的第一端,所述第一开关的第二端电耦合于所述负载单元的第一端,所述第一开关的第三端电耦合于所述控制器,所述负载单元的第二端电耦合于所述电池的负极。
在一种可能的设计中,所述开关单元包括第一开关,所述负载单元包括第一电阻和热敏电阻,所述电池的负极接地,所述电池的正极电耦合于所述第一开关的第一端,所述第一开关的第二端电耦合于所述第一电阻的第一端,所述第一电阻的第二端通过所述热敏电阻接地,所述第一开关的第三端电耦合于所述控制器。
在一种可能的设计中,所述开关单元包括第一开关和第二开关,所述第一开关的第一端电耦合于所述控制器,所述第一开关的第二端电耦合于所述电池 的正极和第一电容的第一端,所述第一开关的第三端电耦合于所述第二开关的第二端,所述第二开关的第一端电耦合于所述控制器,所述第二开关的第三端电耦合于所述电池的负极和所述第一电容的第二端。
在一种可能的设计中,所述开关单元还包括第三开关和第四开关,所述第三开关的第一端电耦合于所述控制器,所述第三开关的第二端电耦合于所述电池的正极,所述第三开关的第三端电耦合于所述第四开关的第二端,所述第四开关的第一端电耦合于所述控制器,所述第四开关的第三端电耦合于所述电池的负极。
在一种可能的设计中,所述开关单元还包括第五开关和第六开关,所述第五开关的第一端电耦合于所述控制器,所述第五开关的第二端电耦合于所述电池的正极,所述第五开关的第三端电耦合于所述第六开关的第二端,所述第六开关的第一端电耦合于所述控制器,所述第六开关的第三端电耦合于所述电池的负极。
在一种可能的设计中,所述负载单元包括第一电感,所述第一开关的第三端和所述第二开关的第二端之间的第一节点电耦合于所述负载单元的所述第一电感。
在一种可能的设计中,所述负载单元还包括第二电感,所述第三开关的第三端和所述第四开关的第二端之间的第二节点电耦合于所述负载单元的所述第二电感。
在一种可能的设计中,所述负载单元还包括第三电感,所述第五开关的第三端和所述第六开关的第二端之间的第三节点电耦合于所述负载单元的所述第三电感。
第二方面,本申请的实施例提供一种车辆设备,包括电池和如上述所述的电池状态检测装置,所述电池状态检测装置电连接于所述电池。
本申请实施例提供的电池状态检测装置和车辆设备,通过控制器切换负载单元以在电池上产生纹波电压,并测量每个电芯的纹波电压,由此可以根据每个电芯的纹波电压确定电池是否异常,这样可以监控和检测电池的状态,进而确保良好的电池性能和延长电池寿命,保证车辆的安全。
附图说明
图1是本申请实施例的一种电池状态检测装置的方框图。
图2是本申请实施例的电池状态检测装置的示意图。
图3是本申请实施例的一种电池充电电路的电路示意图。
图4是本申请的另一实施例的电池状态检测装置的结构示意图。
图5本申请实施例的被测电池的开关模式示意图。
图6为本申请的实施例中具有电阻负载开/关控制的两个串联电芯的端电压示意图。
图7是本申请的另一实施例的电池状态检测装置的示意图。
图8是本申请的另一实施例的电池状态检测装置的示意图。
图9是本申请的另一实施例的电池状态检测装置的示意图。
图10是本申请实施例的采样信号和原始信号在不同频率下的时间轨迹示意图。
图11是本申请实施例对不同频率数据进行相关性研究的示意图。
图12a-12e是本申请实施例中噪声对角度计算影响的示意图。
具体实施方式
应当理解,在适当的情况下,在不同的附图中重复了附图标记,以指示对应的或类似的元件。此外,阐述了许多具体细节,以提供对本文所述实施例的透彻理解。然而,本领域的普通技术人员应当理解,可以在没有这些具体细节的情况下实践本文描述的实施例。在其他情况下,未详细描述方法、过程和组件,以免掩盖所描述的相关特征。图式不一定按比例绘制,某些部分的比例可能会被夸大,以便更好地说明细节和特征。该描述不应被视为限制本文所述实施例的范围。
现在将给出适用于本申请的几个定义。
术语“耦合”定义为直接或间接通过中间组件连接,不一定限于物理连接。连接可以是对象永久连接或可释放连接。术语“包括”指“包括但不限于”;它具体表示在所述组合、组、系列等中的开放式包含或成员资格。
电池是一个电化学***,可以建立电化学***的等效电路,该等效电路可以由电阻、电容和电感等元件连接。
电化学阻抗谱(electrochemical impedance spectroscopy,EIS)可以被用作表征电池状态的直接指示器。EIS可以测量等效电路的组成和每个组件的大小,然后利用这些组件的电化学意义来分析电化学***的结构和电极过程的性质。
在某些用途中,可以使用大量实验来建立电池的荷电状态(state of charge,SOC)、健康状态(state of health,SOH)和安全状态(state of safety,SOS)模型,并且可以根据不同的SOC、SOH和SOS条件推断当前电池的健康状态,并预测电池安全问题。
车辆中的电池内阻非常低,电池的电压纹波非常低,电流很小,使得信号测量非常困难。
图1所示为本申请的一个实施例提供的车辆设备100的示意图。
在本实施例中,车辆设备100可以包括电池状态检测装置10和电池20。电池20可以为车辆设备100供电。电池20可以包括多个电芯(未示出)。可以理解,车辆设备100可以为电动汽车或混合动力汽车。
在本实施例中,电池状态检测装置10可以包括控制器101、开关单元102和负载单元103。
电池状态检测装置10可以电耦合于电池20。控制器101可以电耦合于开关单元102,并且开关单元102电耦合在负载单元103和电池20之间。开关单元102可以根据控制器101的控制信号断开或者导通负载单元103与电池20的连接。
电池20用于向负载单元103供电。控制器101用于以预定频率打开或关闭开关单元102。基于这种设计,可以通过切换负载单元103以在电池上产生纹波电压。控制器101可以测量每个电芯的纹波电压,并确定电池是否处于异常状态。
图2示出了本申请用于检测电池状态的装置(电池状态检测装置10)的一个实施例的电路图。
在本实施例中,开关单元102可以包括开关S1,电池20的正极电耦合于开关S1的第一端,开关S1的第二端电耦合于负载单元103的第一端,开关S 1的第三端电耦合于控制器101。负载单元103的第二端电耦合于电池20的负极。在一个实施例中,负载单元103可以包括电阻、电容或电感。
可以理解,控制器101可以以预定频率打开或关闭开关S1。在一个实施例中,预定频率可以在0-1000Hz的范围内。
电池在充电和放电过程中会经历复杂的化学反应。本申请的实施例可以使用所公开的等效电路来建模端子电压和电流的关系。
如图3所示,该电路可以包括电阻R1、电阻R2、电容C1和电压源V1。
在本实施例中,电阻R1的第一端电耦合于电压源V1的正极,电阻R1的第二端电耦合于电阻R2的第一端和电容C1的第一端,电阻R2的第二端和电容C1的第二端电耦合于输出端Vout的第一端。电压源V1的负极电耦合于输出端Vout的第二端。
当一个电芯受到严重的内部反应时,将从终端电压观察到电压差变化。当***中的电流发生变化时,可以测量每个电池端的电压。
为了找出电芯的行为差异,在直流母线侧施加了较大的电流变化。例如,电流变化超过20A,相当于350V电池***中的7kW。在一些可能的应用场景中,车辆本身可能会给电池带来高频负载变化。
图4示出了本申请的电池状态检测装置10的另一个实施例的示意图。
开关单元102可以包括开关S2,负载单元103可以包括电阻R3和热敏电阻R4。在该实施例中,热敏电阻R4可以是正温度系数(positive temperature coefficient,PTC)电阻。
在本实施例中,电池20的负极接地,电池20的正极与开关S2的第一端电耦合,开关S2的第二端电耦合于电阻R3的第一端。电阻R3的第二端通过热敏电阻R4接地。
在一个实施例中,开关S2的状态可以由控制器101控制。例如,开关S2的第三端电耦合于控制器101,并且控制器101可以向开关S2输出控制信号,以导通或断开开关S2。
在本实施例中,PTC可以是指一种温度升高时电阻增加的材料。例如,PTC加热器可以通过使用电力在EV或PHEV中提供热源,同时保持加热的安全性。电力可以由蓄电池的直流高压来提供。PTC可以用于加热冷却液或空气。PTC可以由开关设备控制,例如绝缘栅双极晶体管(insulated gate bipolar transistor, IGBT)或金属氧化物半导体场效应晶体管(metal-oxide-semiconductor field-effect transistor,MOSFET)或物理接触器,以调节输出功率和温度。
图5为开关模式的示意图。本申请的实施例可以控制开关的开关频率和占空比,以实现阻抗测量。例如,开关频率可以是200Hz,占空比可以是50%。
图6示出了带有电阻负载的开关控制的两个串联电芯的端电压。
可以理解,V1是电芯1的电压,V2是电芯2的电压。如果电芯1和电芯2之间存在差异,则电芯1和电芯2之间的电压性能不同。
图7示出了本申请电池状态检测装置10的另一个实施例的示意图。
在一个实施例中,电池20可以是直流(direct current,DC)电源,开关单元102可以是逆变器,负载单元103可以是电机。负载单元103可以包括电感L1、电感L2和电感L3。
负载单元103可以为电动和混合动力电动汽车提供驱动车辆的扭矩。电机的电源可以为高压直流电压。逆变器可以通过应用特定的开关顺序将直流电源转换为交流电源。
电机中的电感可以为直流电源提供阻抗,直流电源可以用于控制电流,同时可以产生高频短路。
在该实施例中,开关单元102可以包括开关Q1、开关Q2、开关Q3、开关Q4、开关Q5和开关Q6。
在一个实施例中,开关Q1的第一端电耦合于控制器101,开关Q1的第二端电耦合于电池20的正极和电容C2的第一端,开关Q1的第三端电耦合于开关Q2的第二端。开关Q1的第三端和开关Q2的第二端之间的节点P1电耦合于负载单元103的电感L1。
在一个实施例中,开关Q2的第一端电耦合于控制器101,开关Q2的第三端电耦合于电池20的负极和电容C2的第二端。
在一个实施例中,开关Q3的第一端电耦合于控制器101,开关Q3的第二端电耦合于电池20的正极,开关Q3的第三端电耦合于开关Q4的第二端。开关Q3的第三端和开关Q4的第二端之间的节点P2电耦合于负载单元103的电感L2。
在一个实施例中,开关Q4的第一端电耦合于控制器101,开关Q4的第三端电耦合于电池20的负极。
在一个实施例中,开关Q5的第一端电耦合于控制器101,开关Q5的第二端电耦合于电池20的正极,开关Q5的第三端电耦合于开关Q6的第二端。开关Q5的第三端和开关Q6的第二端之间的节点P3电耦合于负载单元103的电感L3。
在一个实施例中,开关Q6的第一端电耦合于控制器101,开关Q6的第三端电耦合于电池20的负极。
如图7所示,控制器101可以控制开关Q1-Q6的工作状态。例如,控制器101可以向开关Q1-Q6输出控制信号。
开关Q1和开关Q2形成支路a,开关Q3和开关Q4形成支路b,开关Q5和开关Q6形成支路c。
在一个实施例中,直流负载可以在电感L1-L3中转换为能量。由于高频状态,电感L1-L3中存储的部分能量转换为电机300中的铁损耗。存储在电感L1-L3中的部分能量被返回到负载单元103中的滤波DC电容。通过这种方式,电池状态检测装置10可以在DC侧产生变化负载。
图8示出了本申请电池状态检测装置10的另一个实施例的示意图。
图8所示的电池状态检测装置10和图7所示的电池状态检测装置10之间的区别在于:
在本实施例中,电池状态检测装置10还可以包括开关Q7、开关Q8和电阻R5。
在该实施例中,开关Q7的第一端电耦合于电池20的正极,开关Q7的第二端电耦合于电容C2的第一端,开关Q7的第三端电耦合于控制器101。开关Q8的第一端电耦合于开关Q7的第一端,开关Q8的第二端通过电阻R5电耦合于电容C2的第一端。
需要注意的是,电阻R5可以作为蓄电池高压***的预充电电阻。高压***中的预充电电路可以用于将高压连接至其负载,以避免出现电流浪涌。
在一些电动汽车中,***中可能有多个高压电源(其中一个是高压电池)。因此,本申请的实施例可以使用一个电压源对另一个电压源充电,并且可以通过控制***以优选频率打开/关闭充电电流的控制。
图9示出了本申请电池状态检测装置10的另一个实施例的示意图。
电池状态检测装置10可包括高压电池501、转换器502、转换器503、直流电源504、逆变器505和电机506。
在本实施例中,转换器502和转换器503是直流-直流转换器。
高压电池501电耦合于转换器502,转换器502电耦合于转换器503,转换器503电耦合于直流电源504。逆变器505电耦合于转换器502,电机506电耦合于逆变器505。
在某些应用场景中,电动汽车中的电池通过车载或外部充电器充电,充电器产生脉冲充电电流给电池充电。
例如,电池管理***(battery management system,BMS)向充电器发送正常电流请求,充电器可以根据该请求提供电流。在半个周期后,BMS向充电器发送0或非常低的电流,充电器按照新的要求将电流调节到目标值。在半个周期后,BMS将正常所需电流发送至充电器,并在特定周期(如1s)内重复上述过程。
在本实施例中,如果车辆设备中所有BMS的采样时间一致,且采样频率足够快,足以测量电池电压变化,则BMS可以测量每个电芯的电压。
在一个实施例中,本申请提供了一种采样方法,采样率不应是目标信号周期的整数倍。
例如,如果采样时间为10ms,目标频率为200Hz,则纹波频率应该控制在190Hz,避免在200Hz。下表1显示了调整后的频率与原始目标频率的对比示例。
表1:阻抗偏移测试的调整频率和目标频率
目标信号的频率 目标信号周期 目标周期 目标频率
50 0.02 0.23 43.478
100 0.01 0.0091 109.89011
200 0.005 0.0049 204.0816
300 0.00033333 0.0035 285.7143
500 0.002 0.0019 526.3158
1000 0.001 0.0011 909.0909
图10示出了采样信号和原始信号在不同频率下的时间轨迹,通过模拟这些采样数据与低频的相关性研究,可以显示采样方法对相移估计的有效性。
图11示出了不同频率数据下的相关性研究,所有曲线相互重叠。对于不同频率的信号,采样数据的相关系数收敛到其理想曲cos(phi),其中phi是相移角。本申请提到的采样方法可以找到采样数据的峰值和谷值,可用于阻抗幅值计算。
值得一提的是,噪声对角度计算的影响很大。图12a示出了不同采样的信号,图12b示出了高频采样的快速傅里叶变换(fast Fourier transform,FFT)幅度,图12c示出了低频采样的FFT,图12d示出了高频采样的FFT角度,图12e示出了低频采样的FFT角度。
在本实施例中,FFT的相位角可以通过乘以该频率的功率密度(幅度的平方)来加权。例如,在10Hz的频率下,幅值为0.02,角度为-50度。加权角度为-50×(0.02^2)=-0.02度,非常小,不在最终拾取范围内。本申请发现具有最大绝对加权角的频率。本申请还发现与目标频率对应的原始角度。本申请还发现了两个目标细胞之间的角度差异。
测量电池13状态的指标如下,不限于电池的阻抗幅值和阻抗相位差。在一个实施例中,以下公式(1)用于计算电池直流电阻大小。
R=ΔV/ΔI   (1)
在上述公式(1)中,R为电池的电阻值,ΔV为负载打开/关闭前后的电压变化值,ΔI为负载打开/关闭前后的电流变化值。
可以理解,本申请的方法还可以计算目标频率下的阻抗,且目标频率下的阻抗满足以下公式(2)。
Figure PCTCN2022080982-appb-000001
在上述公式(2)中,V Am(f trg)为测试频率(已知和给定)下每个单元电压的FFT振幅f trg,I Am(f trg)为测试频率(已知和给定)下电池电流的振幅f trg
本申请的实施例可以通过以下公式(3)计算小区之间的相位差。
Figure PCTCN2022080982-appb-000002
在上述公式(3)中,R i,j为电压V i和电压V j之间线性关系的相关系数。V i为电池i的电压,V j为电池j的电压,
Figure PCTCN2022080982-appb-000003
是电池(i或j)的平均电压。
本申请还可以通过以下公式(4)计算两个电池之间的相位差。
θ shift=arccos(R i,j)     (4)
在另一个实施例中,可以通过FFT计算相移,并且每个频率的角度可以指示该分量的相位。两个单元的相位差可以指示相移。
FFT的角度结果有时可能太过嘈杂,并且数据处理仅比较目标频率的相位角。
在本实施例中,电池电压相位差可通过BMS或云本地计算。例如,BMS可以通过同一块电路板测量电池13的单元电压相位,通过去除1-2个异常值计算平均相移,并将这个小组中的平均电压相位与电池13中的其他组进行比较。因此,可以补偿不同电路板上可能出现的时间同步不一致,并且在比较中发现的异常值可以指示电芯的异常状态。
计算出的电压相位和异常电池特征可以上传到云端,大数据将有助于分析车队中的此类数据,并可以与BMS在车辆设备中发现的任何异常进行交叉检查。
例如,每个电芯的测量电压可以从车辆的T形盒上传到云端。需要注意的是,云计算中的大数据分析可以用于评估整个车队的电池电压相位,进而可以发现一些具有不同行为的电池。异常值可能具有较高的风险,因为在热失控期间,由于温度变化,相移可能会发生变化。
本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本申请,而并非用作为对本申请的限定,只要在本申请的实质精神范围之内,对以上实施方式所作的适当改变和变化都落在本申请要求保护的范围之内。

Claims (10)

  1. 一种电池状态检测装置,用于检测电池的状态,其特征在于,所述电池状态检测装置包括:
    控制器;
    负载单元,所述负载单元电耦合于所述电池,并用于从所述电池接收电力;
    开关单元,所述开关单元电耦合于所述电池与所述负载单元之间,并用于接收所述控制器的控制信号;
    其中,所述控制器控制所述开关单元以预定频率断开或导通所述电池和所述负载单元之间的连接;
    所述控制器切换所述负载单元以在所述电池上产生纹波电压,测量每个电芯的纹波电压,并根据每个电芯的纹波电压确定所述电池是否异常。
  2. 如权利要求1所述的电池状态检测装置,其特征在于,
    所述开关单元包括第一开关,所述电池的正极电耦合于所述第一开关的第一端,所述第一开关的第二端电耦合于所述负载单元的第一端,所述第一开关的第三端电耦合于所述控制器,所述负载单元的第二端电耦合于所述电池的负极。
  3. 如权利要求1所述的电池状态检测装置,其特征在于,
    所述开关单元包括第一开关,所述负载单元包括第一电阻和热敏电阻,所述电池的负极接地,所述电池的正极电耦合于所述第一开关的第一端,所述第一开关的第二端电耦合于所述第一电阻的第一端,所述第一电阻的第二端通过所述热敏电阻接地,所述第一开关的第三端电耦合于所述控制器。
  4. 如权利要求1所述的电池状态检测装置,其特征在于,
    所述开关单元包括第一开关和第二开关,所述第一开关的第一端电耦合于所述控制器,所述第一开关的第二端电耦合于所述电池的正极和第一电容的第一端,所述第一开关的第三端电耦合于所述第二开关的第二端,所述第二开关的第一端电耦合于所述控制器,所述第二开关的第三端电耦合于所述电池的负极和所述第一电容的第二端。
  5. 如权利要求4所述的电池状态检测装置,其特征在于,
    所述开关单元还包括第三开关和第四开关,所述第三开关的第一端电耦合于所述控制器,所述第三开关的第二端电耦合于所述电池的正极,所述第三开关的第三端电耦合于所述第四开关的第二端,所述第四开关的第一端电耦合于所述控制器,所述第四开关的第三端电耦合于所述电池的负极。
  6. 如权利要求5所述的电池状态检测装置,其特征在于,
    所述开关单元还包括第五开关和第六开关,所述第五开关的第一端电耦合于所述控制器,所述第五开关的第二端电耦合于所述电池的正极,所述第五开关的第三端电耦合于所述第六开关的第二端,所述第六开关的第一端电耦合于所述控制器,所述第六开关的第三端电耦合于所述电池的负极。
  7. 如权利要求4所述的电池状态检测装置,其特征在于,
    所述负载单元包括第一电感,所述第一开关的第三端和所述第二开关的第二端之间的第一节点电耦合于所述负载单元的所述第一电感。
  8. 如权利要求5所述的电池状态检测装置,其特征在于,
    所述负载单元还包括第二电感,所述第三开关的第三端和所述第四开关的第二端之间的第二节点电耦合于所述负载单元的所述第二电感。
  9. 如权利要求6所述的电池状态检测装置,其特征在于,
    所述负载单元还包括第三电感,所述第五开关的第三端和所述第六开关的第二端之间的第三节点电耦合于所述负载单元的所述第三电感。
  10. 一种车辆设备,其特征在于,包括电池和如权利要求1-9任意一项所述的电池状态检测装置,所述电池状态检测装置电连接于所述电池。
PCT/CN2022/080982 2021-07-08 2022-03-15 电池状态检测装置和车辆设备 WO2023279761A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280001624.8A CN116848419A (zh) 2021-07-08 2022-03-15 电池状态检测装置和车辆设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/370,159 2021-07-08
US17/370,159 US11609274B2 (en) 2021-07-08 2021-07-08 Battery state detection device and vehicle device

Publications (1)

Publication Number Publication Date
WO2023279761A1 true WO2023279761A1 (zh) 2023-01-12

Family

ID=84801206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080982 WO2023279761A1 (zh) 2021-07-08 2022-03-15 电池状态检测装置和车辆设备

Country Status (3)

Country Link
US (1) US11609274B2 (zh)
CN (1) CN116848419A (zh)
WO (1) WO2023279761A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11996724B1 (en) * 2022-12-13 2024-05-28 Prince Mohammad Bin Fahd University System and methods for battery recharging

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020085397A1 (en) * 2000-11-27 2002-07-04 Masaki Suzui Power converting apparatus, control method therefor, and power generation system
CN102269798A (zh) * 2010-06-07 2011-12-07 四川德源电气有限公司 一种检测故障电池的方法及装置
CN105452882A (zh) * 2013-08-23 2016-03-30 日立汽车***株式会社 电池监视装置
CN109738822A (zh) * 2018-12-20 2019-05-10 北京汉能光伏投资有限公司 移动电源的故障检测方法及移动能联网***
CN212587580U (zh) * 2020-05-29 2021-02-23 比亚迪股份有限公司 电池能量处理装置和车辆

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6927988B2 (en) * 2002-05-28 2005-08-09 Ballard Power Systems Corporation Method and apparatus for measuring fault diagnostics on insulated gate bipolar transistor converter circuits
US20050287402A1 (en) * 2004-06-23 2005-12-29 Maly Douglas K AC impedance monitoring of fuel cell stack
WO2019021492A1 (ja) * 2017-07-28 2019-01-31 株式会社村田製作所 直流電圧供給回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020085397A1 (en) * 2000-11-27 2002-07-04 Masaki Suzui Power converting apparatus, control method therefor, and power generation system
CN102269798A (zh) * 2010-06-07 2011-12-07 四川德源电气有限公司 一种检测故障电池的方法及装置
CN105452882A (zh) * 2013-08-23 2016-03-30 日立汽车***株式会社 电池监视装置
CN109738822A (zh) * 2018-12-20 2019-05-10 北京汉能光伏投资有限公司 移动电源的故障检测方法及移动能联网***
CN212587580U (zh) * 2020-05-29 2021-02-23 比亚迪股份有限公司 电池能量处理装置和车辆

Also Published As

Publication number Publication date
US20230015814A1 (en) 2023-01-19
US11609274B2 (en) 2023-03-21
CN116848419A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
US10137792B2 (en) Vehicle control based on lithium plating detection in electrified vehicle battery
JP6905985B2 (ja) 高電圧バッテリの特性を測定するための装置
Kim et al. Analytical study on low-frequency ripple effect of battery charging
CN111029667A (zh) 电池加热***、电动汽车和车载***
US11802916B2 (en) Apparatus and method for characterizing and managing stacked energy storage cells
EP3563465A1 (en) Hybrid battery charger/tester
US10207596B2 (en) Adaptive identification of the wiring resistance in a traction battery
Xia et al. Method for online battery AC impedance spectrum measurement using dc-dc power converter duty-cycle control
CN102472796A (zh) 二次电池温度推定装置和方法
CN108698522A (zh) 电动车辆电池监测***
He et al. Multi-time scale variable-order equivalent circuit model for virtual battery considering initial polarization condition of lithium-ion battery
CN113311239B (zh) 一种电动汽车绝缘电阻检测电路及方法
WO2023279761A1 (zh) 电池状态检测装置和车辆设备
Dai et al. A novel dual-inductor based charge equalizer for traction battery cells of electric vehicles
Koch et al. Impedance spectroscopy for battery monitoring with switched mode amplifiers
CN106526323B (zh) 一种基于方波自动补偿策略的绝缘电阻检测方法
Moore et al. Online condition monitoring of lithium-ion batteries using impedance spectroscopy
Benshatti et al. Design and control of AC current injector for battery EIS measurement
Huang et al. The effect of pulsed current on the lifetime of lithium-ion batteries
WO2023279762A1 (zh) 电池状态检测方法、车辆设备和计算机可读存储介质
Xia et al. High frequency online battery impedance measurement method using voltage and current ripples generated by DC-DC converter
Wu et al. State of charge estimation for Li-Ion battery based on an improved Peukert's equation with temperature correction factor
Assadi et al. In-situ ev battery electrochemical impedance spectroscopy with pack-level current perturbation from a 400v-to-12v triple-active-bridge
US20230090001A1 (en) Battery diagnostic system
CN111257767B (zh) 电池集成检测***及方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001624.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22836521

Country of ref document: EP

Kind code of ref document: A1