WO2023279643A1 - 转子、转子冷却结构、电机及压缩机 - Google Patents

转子、转子冷却结构、电机及压缩机 Download PDF

Info

Publication number
WO2023279643A1
WO2023279643A1 PCT/CN2021/135258 CN2021135258W WO2023279643A1 WO 2023279643 A1 WO2023279643 A1 WO 2023279643A1 CN 2021135258 W CN2021135258 W CN 2021135258W WO 2023279643 A1 WO2023279643 A1 WO 2023279643A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
hole
cooling structure
thrust plate
structure according
Prior art date
Application number
PCT/CN2021/135258
Other languages
English (en)
French (fr)
Inventor
韩聪
常云雪
俞国新
李靖
朱万朋
Original Assignee
青岛海尔智能技术研发有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔智能技术研发有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔智能技术研发有限公司
Publication of WO2023279643A1 publication Critical patent/WO2023279643A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present application relates to the technical field of compressors, for example, to a rotor, a rotor cooling structure, a motor and a compressor.
  • the compressor includes a motor and a pneumatic part.
  • the motor transmits high-speed rotational motion to the actuator of the pneumatic part, so that the pneumatic part converts the inhaled low-pressure gas into high-pressure gas for output.
  • the motor used in the magnetic levitation compressor is a magnetic levitation motor. Since the stator and mover of the magnetic levitation motor operate in a non-contact and oil-free manner, the magnetic levitation compressor has the advantages of high efficiency and energy saving, and further speed increase is the development trend of the magnetic levitation motor.
  • the rotor rub against the gas in the cavity during high-speed rotation to generate a lot of heat.
  • the following Two ways 1. Strengthen the gas fluid velocity in the gap between the rotor and the stator. However, the gap between the stator and the rotor is very small, even if the gas flow rate is increased, it is difficult to meet the high heat dissipation requirements. 2. Spray the liquid refrigerant (a substance with a very low boiling point, which is easy to absorb heat and become a gas, and easy to release heat and become a liquid) into the gap between the stator and the rotor. In this way, the refrigerant will be heated and expanded, evaporated and boiled in the narrow gap, and these changes will affect the stability of the motor operation.
  • the liquid refrigerant a substance with a very low boiling point, which is easy to absorb heat and become a gas, and easy to release heat and become a liquid
  • the present application proposes a rotor and a rotor cooling structure, which have a good heat dissipation effect and can ensure the stability of the rotor during high-speed operation.
  • the present application also proposes a motor, by providing the above-mentioned rotor cooling structure, good heat dissipation effect can be ensured even during high-speed operation, and the rotation is stable.
  • the present application also proposes a compressor, which has a good heat dissipation effect and stable operation by arranging the above-mentioned motor.
  • An embodiment provides a rotor cooling structure, including: a housing, a refrigerant is disposed at the bottom of the housing; and a rotor, the lower end of the rotor is disposed in the refrigerant, and the rotor includes a first through hole and a The second via hole, the first via hole is provided in the rotor along the axial direction of the rotor and passes through the lower end surface of the rotor, the second via hole is provided in the rotor along the radial direction of the rotor The upper part of the rotor passes through the peripheral surface of the rotor, and the second through hole communicates with the first through hole.
  • An embodiment provides a motor, including a stator and the rotor cooling structure, the rotor is rotatably disposed in the housing, the stator is sleeved outside the rotor and located under the second through hole .
  • An embodiment provides a compressor, including the motor described above.
  • An embodiment provides a rotor, including: a first via hole and a second via hole, the first via hole is provided in the rotor along the axial direction of the rotor and passes through the lower end surface of the rotor, so The second through hole is provided on the upper part of the rotor along the radial direction of the rotor and penetrates the peripheral surface of the rotor, and the second through hole communicates with the first through hole.
  • Fig. 1 is a longitudinal sectional view of a motor provided in Embodiment 1 of the present application;
  • Fig. 2 is a transverse sectional view of the thrust plate provided in Embodiment 1 of the present application;
  • Fig. 3 is a longitudinal sectional view of the thrust plate and the rotor provided in Embodiment 2 of the present application;
  • FIG. 4 is a top view of FIG. 3 .
  • 3-rotor 31-rotating shaft; 311-first through hole; 312-upper division; 313-lower division; 32-thrust plate; 321-second through hole; 3211-first hole section; Two-hole section; 322-upper half plate; 323-lower half plate;
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • connection can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • a first feature being “on” or “under” a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • "Below”, “under” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • This embodiment provides a rotor cooling structure, a motor and a compressor, wherein the compressor includes a motor and an aerodynamic part, the aerodynamic part includes an impeller, a volute, a supercharger and guide vanes, and the motor can drive the impeller to rotate at a high speed so that the driven The low-pressure gas sucked into the volute is compressed into high-pressure gas for output.
  • the motor includes a stator 2, a rotor 3 and a rotor cooling structure, and the rotor cooling structure is especially suitable for a non-contact and oil-free magnetic levitation motor between the stator 2 and the rotor 3.
  • the rotor cooling structure includes a housing 1, a first through hole 311 and a second through hole 321 are provided on the rotor 3, a refrigerant is provided at the bottom of the housing 1, and the rotor 3 is rotatable and the lower end is placed in the refrigerant, the first through hole 311 is vertically arranged in the rotor 3 along the axial direction of the rotor 3 and penetrates the lower end surface of the rotor 3, and the second through hole 321 is along the rotor 3
  • the radial direction of 3 is set on the upper part of rotor 3 and penetrates the peripheral surface of rotor 3, the second through hole 321 communicates with the first through hole 311, the stator 2 is sleeved outside the rotor 3 and fixed in the housing 1, and the stator 2 is located below the second via hole 321.
  • the second via hole 321 extends in the radial direction of the rotor 3, and the radial extension mode of the second via hole 321 may extend from the center position of the rotor 3 to the circumference of the rotor 3 along any trajectory. noodle.
  • the rotor 3 includes a rotating shaft 31 and a thrust disc 32.
  • the thrust disc 32 is connected to the upper part of the rotating shaft 31 to be located on the upper side of the stator 2.
  • the diameter of the thrust disc 32 is larger than the diameter of the rotating shaft 31.
  • the gas in the second through hole 321 arranged in the radial direction generates a negative pressure under the action of centrifugal force, so that the refrigerant at the bottom of the housing 1 can be sucked in from the first through hole 311 , and thrown out from the peripheral surface of the thrust plate 32 through the second through hole 321, the flow process of the refrigerant in the first through hole 311 and the second through hole 321 can fully cool the rotor 3 to meet the higher cooling requirements.
  • the refrigerant does not pass through the narrow gap between the stator 2 and the rotor 3, but cools down inside the rotor 3, thereby ensuring the stability of the rotor 3 during high-speed rotation.
  • the motor of this embodiment can not only meet the higher cooling requirements during high-speed operation, but also ensure the stability of the operation process by providing the above-mentioned rotor cooling structure, thereby meeting the speed-up requirements of the motor.
  • the compressor of this embodiment has a good cooling effect and stable operation by providing the above-mentioned motor.
  • the motor includes two axial bearings 5 and two radial bearings 4, wherein the two axial bearings 5 are respectively sleeved on the rotating shaft 31, and are respectively located on the upper and lower sides of the stator 2, and the two radial bearings 4 are sleeved on the rotor 3 and located on the upper and lower sides of the thrust plate 32, the radial bearing 4 and the axial bearing 5 can respectively provide radial support and axial support for the rotor 3, so that the rotor 3 can rotate stably in the housing 1.
  • the diameter of the thrust plate 32 is larger than that of the rotating shaft 31. On the one hand, it plays the role of cooperating with the axial bearing 5.
  • the diameter of the thrust plate 32 is not smaller than that of the stator 2 , so as to further ensure that the refrigerant discharged from the second through hole 321 will not flow between the stator 2 and the rotor 3 .
  • the first through hole 311 is set in the rotating shaft 31 and extends to the thrust plate 32
  • the second through hole 321 is set in the thrust plate 32
  • the thrust plate 32 and the rotating shaft 31 are integrally formed, so that the first The first via hole 311 and the second via hole 321 can be directly connected, and there is no gap at the connection position, thereby ensuring that the liquid passage composed of the first via hole 311 and the second via hole 321 has good sealing performance.
  • the axis of the first through hole 311 is in line with the rotation axis of the rotor 3, so when the refrigerant passes through the first through hole 311, it can be ensured that the center of gravity of the rotor 3 coincides with the rotation axis , thereby ensuring the rotation balance of the rotor 3 and improving the stability of the motor operation.
  • At least two second through holes 321 are provided on the thrust plate 32, and at least two second through holes 321 are evenly distributed along the circumferential direction of the thrust plate 32, so that During the flow of the refrigerant in the thrust plate 32 , the center of gravity of the entire thrust plate 32 remains coincident with the rotation axis of the rotor 3 , thereby further ensuring the stability of the motor rotation process.
  • the thrust plate 32 is provided with two second through holes 321 .
  • the thrust plate 32 may also be provided with three or four through holes, which is not limited here.
  • the extension path of the second via hole 321 is a zigzag line.
  • the zigzag line path can buffer and slow down the process of the refrigerant discharging from the second via hole 321 , thereby reducing the flow rate of the refrigerant.
  • the linear velocity when discharged from the second through hole 321 can reduce the reverse impact force of the refrigerant thrown out by the thrust plate 32 on the thrust plate 32 and the impact force of other structures such as the housing 1, and further improve the motor operation process. stability.
  • the second via hole 321 includes a first hole segment 3211 and a second hole segment 3212 intersecting.
  • the first hole segment 3211 and the second hole segment 3212 are linear hole segments.
  • a hole segment 3211 overlaps with a radius portion of the thrust plate 32, and the two ends communicate with the first through hole 311 and the second hole segment 3212 respectively, and the second hole segment 3212 extends to the peripheral surface of the thrust plate 32.
  • the flow path of the refrigerant is to flow out from the first through hole 311 and then enter the first hole section 3211 , and then exit the rotor 3 through the second hole section 3212 .
  • the first hole when processing the second through hole 321, the first hole is first drilled along the radial direction on the peripheral surface of the thrust plate 32, and the first hole passes through the center of the thrust plate 32, so as to be able to communicate with the thrust plate 32.
  • the first through hole 311 communicates, and then, drill the second hole segment 3212 along the non-radius direction at other positions on the peripheral surface of the thrust plate 32, so that the second hole segment 3212 intersects and communicates with the first hole.
  • screw Or the pin blocks the first hole near the end of the thrust plate 32 peripheral surface, and now the unblocked first hole (i.e.
  • the first hole section 3211) and the second hole section 3212 together form a broken line
  • the second via hole 321 in this solution, the processing difficulty of the second via hole 321 is low, and the forming is convenient. It should be noted that in the actual implementation process, the suction force of the entire liquid passage and the linear velocity of the refrigerant discharged from the second through hole 321 can be adjusted and optimized by changing the inclination angle of the second hole section 3212 to meet different requirements. Due to application requirements, the specific angle of the second hole section 3212 is not limited here.
  • the housing 1 includes a body portion 11 and an accommodating groove portion 12, the accommodating groove portion 12 is recessed at the lower end of the body portion 11, the stator 2, the radial bearing 4 and the axial bearing 5 They are respectively arranged in the body part 11, the lower end of the rotating shaft 31 extends into the receiving groove part 12, and the refrigerant is located in the receiving groove part 12, so as to ensure that the lower end of the first via hole 311 can always be submerged by the refrigerant.
  • the cross-sectional area of the receiving groove portion 12 is smaller than that of the main body portion 11 , which is further beneficial to ensure that the lower end of the first via hole 311 is immersed in the refrigerant.
  • the housing 1 may not be segmented but a cylindrical body with a constant cross-sectional area, which can be set according to actual needs.
  • the casing 1 is provided with a liquid inlet 111 for introducing refrigerant into the casing 1 , and the liquid inlet 111 is arranged on the main body 11 and opposite to the stator 2 , Then the liquid refrigerant will contact the stator 2 after entering the casing 1 , cool the stator 2 first, and then fall to the bottom of the casing 1 (ie, the receiving groove 12 ) to be sucked by the first through hole 311 .
  • the liquid inlet 111 may also be provided at the receiving groove 12 , which is not specifically limited here.
  • the upper end of the main body 11 is provided with an exhaust port 113 , and after the refrigerant is discharged from the second through hole 321 , a part of the refrigerant that has not been vaporized gathers into the accommodation groove 12 along the inner wall of the housing 1 Inside, there is still a part that is gasified due to temperature rise, and the gasified refrigerant can be discharged from the exhaust port 113, so as to ensure the stability of the air pressure in the casing 1, and then ensure the normal operation of the motor.
  • a collection structure is provided outside the casing 1, which can collect the vaporized refrigerant discharged from the exhaust port 113, cool down and liquefy the collected gaseous refrigerant, and then pass it through the liquid inlet 111. into the housing 1, so as to realize the recycling of the refrigerant.
  • the specific form of the collection structure can refer to related technologies, and will not be repeated here.
  • the body part 11 of the casing 1 is provided with a liquid overflow port 112, and the height of the liquid overflow port 112 is lower than the lowest point of the stator 2.
  • the liquid level of the liquid refrigerant in the casing 1 rises, the liquid state
  • the refrigerant will be discharged from the overflow port 112 to prevent the refrigerant from entering the gap between the stator 2 and the rotor 3 .
  • the refrigerant discharged from the overflow port 112 may also be connected to a collection structure for collection, so that the refrigerant can be recycled.
  • This embodiment also provides a liquid cooling structure, a motor, and a compressor.
  • the motor includes a stator 2, a rotor 3, a rotor cooling structure, a radial bearing 4, and an axial bearing 5.
  • the inventive concept of this embodiment and the housing 1 The arrangement structures of the stator 2, the radial bearing 4 and the axial bearing 5 are all the same as those in the first embodiment, and will not be repeated here. The difference lies in the arrangement of the rotor 3 and the second through hole 321, specifically:
  • the extension path of the second through hole 321 is an arc, and the arrangement of the arc makes the flow of the refrigerant in the second through hole 321 smoother, and can further reduce the refrigerant discharge thrust
  • the linear velocity of the disk 32 reduces the reverse impact force of the refrigerant on the thrust disk 32 and the impact force on other structures such as the housing 1, so that the running process of the motor is more stable.
  • the second via hole 321 is a semicircular hole.
  • the radian of the second via hole 321 is not specifically limited, and can be appropriately selected as required. In one embodiment, as shown in FIG.
  • the tangential direction of the end of the second through hole 321 close to the peripheral surface of the thrust plate 32 is in the A direction (that is, the discharge direction of the refrigerant).
  • the second through hole 321 The direction of the linear velocity at the outlet is the B direction, the angle between the A direction and the B direction is ⁇ , and ⁇ is an obtuse angle, so that the linear velocity of the refrigerant discharged from the second via hole 321 is further reduced.
  • suction force of the entire liquid passage and the linear velocity of the refrigerant discharged from the second through hole 321 can be adjusted and optimized by changing the tangential direction at the outlet of the second through hole 321, which can be adjusted according to actual needs. Do limited.
  • the arc-shaped second via hole 321 in order to realize the arc-shaped second via hole 321, as shown in FIG. 32 includes an upper half disc 322 and a lower half disc 323, wherein the upper subdivision 312 of the rotating shaft 31 is integrally formed with the upper half disc 322 of the thrust disc 32, and the lower subdivision 313 of the rotating shaft 31 and the lower half disc of the thrust disc 32 323 is integrally formed, and the lower surface of the upper half plate 322 offers a plurality of semicircular half grooves, and the upper surface of the lower half plate 323 also offers a corresponding number of semicircular half grooves, when the upper half plate 322 and the lower half plate After the discs 323 are buckled and fixedly connected, a complete rotor 3 is formed.
  • the half slots on the upper half disc 322 and the half slots on the lower half disc 323 are buckled correspondingly to form a plurality of second through holes 321 .
  • the upper half plate 322 and the lower half plate 323 can be fixedly connected or welded by fasteners.
  • the upper half plate 322 and the lower half plate 323 The specific connection method is not limited.
  • the rotor 3 includes a first through hole 311 and a second through hole 321, the first through hole 311 is along the axial direction It is arranged in the rotor 3 and penetrates the lower end surface of the rotor 3, and the second via hole 321 is arranged on the upper part of the rotor 3 along the radial direction of the rotor 3 and penetrates the peripheral surface of the rotor 3.
  • the second via hole 321 communicates with the first via hole 311 .
  • the rotor 3 includes a rotating shaft 31 and a thrust plate 32, the thrust plate 32 is arranged on the upper part of the rotating shaft 31, and the diameter of the thrust plate 32 is larger than the diameter of the rotating shaft 31, the first pass
  • the hole 311 is disposed in the rotating shaft 31 and extends to the thrust plate 32
  • the second through hole 321 is disposed in the thrust plate 32 .
  • the rotor 3 is provided with at least two second through holes 321 , and the at least two second through holes 321 are evenly distributed along the circumferential direction of the rotor 3 .
  • the extension path of the second via hole 321 is an arc; or the extension path of the second via hole 321 is a broken line.
  • the axis of the first through hole 311 is collinear with the rotation axis of the rotor 3 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种转子、转子冷却结构、电机及压缩机,所述电机包括定子;转子,包括第一过孔及第二过孔,所述第二过孔与所述第一过孔连通,所述第一过孔沿所述转子的轴向设于所述转子中并贯通所述转子的下端面,所述第二过孔沿所述转子的径向设于所述转子上部并贯通所述转子的周面;及转子冷却结构,包括壳体,所述壳体的底部设有冷媒,转子的下端设于所述冷媒中;其中,所述转子可转动地支撑于所述壳体内,所述定子套设于所述转子外并位于所述第二过孔下方。

Description

转子、转子冷却结构、电机及压缩机
本申请要求申请日为2021年7月8日、申请号为202110771858.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及压缩机技术领域,例如涉及一种转子、转子冷却结构、电机及压缩机。
背景技术
压缩机包括电机和气动部分,电机将高速的转动运动传动给气动部分的执行部件,使气动部分将吸入的低压气体转化为高压气体输出。磁悬浮压缩机使用的电机为磁悬浮电机,由于磁悬浮电机的定子和动子为无接触、无油的运行方式,从而使磁悬浮压缩机具有高效、节能的优势,且进一步提速是磁悬浮电机的发展趋势。
但是,随着磁悬浮电机转速的提高,转子(及止推盘等运动部件)在高速转动过程中与腔体内的气体摩擦,产生极大的热量,相关技术中,为了提高散热效果,通过采用以下两种方式:一、加强转子和定子之间间隙内的气体流体速度。但是定子和转子之间的间隙很小,即使加强气体流通速度,也难以满足较高的散热需求。二、将液态的冷媒(沸点很低,容易吸热变成气体,又容易放热变成液体的物质)直接喷淋到定子和转子之间的间隙中。这种方式冷媒会在狭窄的间隙内受热膨胀、蒸发沸腾,这些变化都会影响到电机运行的稳定性。
发明内容
本申请提出了一种转子及转子冷却结构,散热效果好,且能保证转子在高速运转时的稳定性。
本申请还提出一种电机,通过设置上述的转子冷却结构,在高速运转时也能保证良好的散热效果,且转动稳定。
本申请又提出一种压缩机,通过设置上述的电机,散热效果好,工作稳定。
一实施例提供了一种转子冷却结构,包括:壳体,所述壳体的底部设有冷媒;及转子,所述转子的下端设于所述冷媒中,所述转子包括第一过孔及第二 过孔,所述第一过孔沿所述转子的轴向设于所述转子中并贯通所述转子的下端面,所述第二过孔沿所述转子的径向设于所述转子上部并贯通所述转子的周面,所述第二过孔与所述第一过孔连通。
一实施例提供了一种电机,包括定子和所述的转子冷却结构,所述转子可转动地设置于所述壳体内,所述定子套设所述转子外并位于所述第二过孔下方。
一实施例提供了一种压缩机,包括所述的电机。
一实施例提供了一种转子,包括:第一过孔及第二过孔,所述第一过孔沿所述转子的轴向设于所述转子中并贯通所述转子的下端面,所述第二过孔沿所述转子的径向设于所述转子上部并贯通所述转子的周面,所述第二过孔与所述第一过孔连通。
附图说明
图1是本申请实施例一提供的电机的纵向剖视图;
图2是本申请实施例一提供的止推盘的横向剖视图;
图3是本申请实施例二提供的止推盘和转子的纵向剖视图;
图4是图3的俯视图。
图中:
1-壳体;11-本体部;111-入液口;112-溢液口;113-排气口;12-容纳槽部;
2-定子;
3-转子;31-转轴;311-第一过孔;312-上分部;313-下分部;32-止推盘;321-第二过孔;3211-第一孔段;3212-第二孔段;322-上半盘;323-下半盘;
4-径向轴承;
5-轴向轴承。
具体实施方式
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含 义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本实施例的描述中,术语“上”、“下”、“右”、等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
本实施例提供了一种转子冷却结构、电机和压缩机,其中压缩机包括电机和气动部分,气动部分包括叶轮、蜗壳、增压器和导叶,电机能驱动叶轮高速旋转,以使被吸入蜗壳内的低压气体被压缩为高压气体输出。电机包括定子2、转子3和转子冷却结构,且转子冷却结构尤其适用于定子2和转子3之间无接触、无油的磁悬浮式电机。在一实施例中,如图1所示,转子冷却结构包括壳体1、转子3上设有第一过孔311和第二过孔321,壳体1的底部设有冷媒,转子3可转动地设置在壳体1内,且下端置于冷媒中,第一过孔311沿所述转子3的轴向竖向设于转子3中并贯通转子3的下端面,第二过孔321沿转子3的径向设于转子3上部并贯通转子3的周面,第二过孔321与所述第一过孔311连通,定子2套设于转子3外并固定在壳体1内,且定子2位于第二过孔321的下方。需要说明的是,本实施例中,第二过孔321沿转子3的径向延伸,第二过孔321的径向延伸方式可以为以任何轨迹从转子3的中心位置延伸至转子3的圆周面。
本实施例中,转子3包括转轴31和止推盘32,止推盘32连接于转轴31的上部,以位于定子2的上侧,止推盘32的直径大于转轴31的直径,本实施例的转子冷却结构,在转子3工作过程中,沿径向设置的第二过孔321内的气体在离心力的作用下产生负压,从而能够将壳体1底部的冷媒从第一过孔311吸入,并经第二过孔321从止推盘32的周面上甩出,冷媒在第一过孔311和第二过孔321的流动过程能够充分对转子3进行降温,以满足较高的冷却需求,同时冷媒不经过定子2和 转子3之间的狭小间隙,而是在转子3的内部进行降温,从而能够保证转子3在高速转动过程中的稳定性。本实施例的电机,通过设置上述的转子冷却结构,不仅能够满足在高度运转过程中较高的冷却需求,还能够保证运转过程的稳定性,进而满足电机的提速需求。本实施例的压缩机,通过设置上述的电机,冷却降温效果好,且运行稳定。
电机包括两个轴向轴承5和两个径向轴承4,其中两个轴向轴承5分别套设于转轴31上,且分别位于定子2的上下两侧,两个径向轴承4套设转子3上且分别位于止推盘32的上下两侧,径向轴承4和轴向轴承5能够分别对转子3提供径向支撑和轴向支撑,使转子3能够稳定地在壳体1内转动。止推盘32的直径大于转轴31,一方面起到与轴向轴承5配合的作用,另一方面,还能减少从第二过孔321甩出的冷媒飞溅到定子2和转子3之间的缝隙的情况发生。在一实施例中,止推盘32的直径不小于定子2的直径,从而进一步保证从第二过孔321内排出的冷媒不会流动至定子2和转子3之间。在一实施例中,第一过孔311设置于转轴31内并延伸至止推盘32,第二过孔321设置在止推盘32内,止推盘32和转轴31一体成型,从而使第一过孔311和第二过孔321能够直接连通,连接位置不产生缝隙,从而保证由第一过孔311和第二过孔321组成的过液通道具有良好的密封性。
在一实施例中,如图1所示,第一过孔311的轴线与转子3的转动轴线共线,故当冷媒经过第一过孔311时,能够保证转子3的重心与转动轴向重合,进而保证转子3的转动平衡,提高电机运行的平稳性。
在一实施例中,如图1和图2所示,止推盘32上设置有至少两个第二过孔321,至少两个第二过孔321沿止推盘32的周向均布,从而使冷媒在止推盘32流动过程中整个止推盘32的重心保持与转子3的转动轴线重合的状态,从而进一步保证电机转动过程的稳定性。本实施例中,止推盘32上设置有两个第二过孔321,其他实施例中,止推盘32上也可以设置三个或者四个过孔,在此不做限定。
本实施例中,如图2所示,第二过孔321的延伸路径为折线,相对于直线路径而言,折线路径能够对冷媒排出第二过孔321的过程进行缓冲降速,进而降低冷媒从第二过孔321排出时的线速度,从而能够降低被止推盘32甩出的冷媒对止推盘32的反向冲击力和壳体1等其他结构的冲击力,进一步提高电机运行过程的稳定性。在一实施例中,如图2所示,第二过孔321包括相交设置的第一孔段3211和第二孔段3212,第一孔段3211和第二孔段3212为直线孔段,第一孔段3211与止推盘32的一条半径部分重合,且两端分别与第一过孔311和第二孔段3212连通, 第二孔段3212延伸至止推盘32的周面,此时冷媒的流动路径为从第一过孔311流出后线进入第一孔段3211,再经第二孔段3212排出转子3。
在一实施例中,在加工第二过孔321时,先在止推盘32的周面沿半径的方向钻第一孔,并使第一孔经过止推盘32的圆心,以便于能够与第一过孔311连通,接着,在止推盘32的周面上的其他位置沿非半径方向钻第二孔段3212,使第二孔段3212与第一孔相交连通,此时,采用螺钉或者销钉将第一孔靠近止推盘32周面的一端封堵住,此时未被封堵的第一孔(即第一孔段3211)和第二孔段3212共同组成了呈折线形的第二过孔321,此种方案第二过孔321的加工难度低、成型方便。需要说明的是,实际实施过程,可以通过改变第二孔段3212的倾斜角度对整个过液通道的抽吸力和从第二过孔321排出的冷媒的线速度进行调节优化,以满足不同的使用要求,故第二孔段3212的具体角度在此不做限定。
在一实施例中,如图1所示,壳体1包括本体部11和容纳槽部12,容纳槽部12凹设于本体部11的下端,定子2、径向轴承4及轴向轴承5分别设置在本体部11内,转轴31的下端伸入容纳槽部12内,冷媒位于容纳槽部12内,保证第一过孔311的下端始终能够被冷媒浸没。本实施例中,容纳槽部12的横截面积小于本体部11的横截面积,进一步有利于保证第一过孔311下端处于浸没在冷媒中的状态。其他实施例中,壳体1也可以不分段而是一个横截面积恒定的筒体,根据实际需要设置即可。
在一实施例中,如图1所示,壳体1上设置有向壳体1内通入冷媒的入液口111,入液口111设置在本体部11上并与定子2相对的设置,则液态的冷媒进入到壳体1内后会先与定子2接触,先对定子2进行冷却再落至壳体1的底部(即容纳槽部12内)以被第一过孔311吸入。其他实施例中,入液口111也可以是设置在容纳槽部12处,在此不做具体限定。
在一实施例中,本体部11的上端设置有排气口113,冷媒在从第二过孔321中排出后,有一部分未被气化的部分沿壳体1的内壁汇集到容纳槽部12内,还有一部分因温度升高而气化,气化的冷媒能够从排气口113出排出,从而保证壳体1内的气压稳定,进而保证电机正常运转。需要说明的是,壳体1外部设置有收集结构,收集结构能够将从排气口113处排出的气化的冷媒进行收集,并将收集的气态冷媒降温液化后再从入液口111处通入壳体1,从而实现冷媒的循环利用,收集结构的具体形式可以参照相关技术,在此不再赘述。
在一实施例中,壳体1的本体部11上设置有溢液口112,溢液口112的高度低 于定子2的最低点,当壳体1内液态冷媒的液位升高时,液态的冷媒会从溢液口112排出,避免冷媒进入到定子2和转子3的间隙中。从溢液口112排出的冷媒也可以连通到收集结构中进行收集,以使冷媒被循环利用。
实施例二
本实施例也提供了一种液态冷却结构、电机及压缩机,电机包括定子2、转子3、转子冷却结构、径向轴承4及轴向轴承5,本实施例的发明构思以及壳体1、定子2、径向轴承4及轴向轴承5的设置结构均与实施例一相同,在此不再赘述,不同之处在于转子3及第二过孔321的设置方式,具体地:
如图3和图4所示,第二过孔321的延伸路径为弧线,弧线的设置方式使冷媒在第二过孔321中的流动更加顺滑,也能进一步减小冷媒排出止推盘32时的线速度,降低冷媒对止推盘32的反向冲力和对壳体1等其他结构的冲击力,使电机的运行过程更为稳平稳。本实施例中,第二过孔321为半圆孔,其他实施例中,第二过孔321的弧度不做具体限定,根据需要适当选取即可。在一实施例中,如图4所示,第二过孔321靠近止推盘32周面一端切向为A向(即冷媒的排出方向),转子3转动过程中,在第二过孔321出口处的线速度方向为B向,A向和B向之间的夹角为α,且α为钝角,从而使从第二过孔321排出的冷媒的线速度进一步降低,需要说明的是,可以通过改变第二过孔321出口处的切向方向对整个过液通道的抽吸力和从第二过孔321排出的冷媒的线速度进行调整优化,根据实际需要调整即可,在此不做限定。
在一实施例中,为了实现在加工圆弧形的第二过孔321,如图3所示,转子3为分体结构,其中转轴31包括上分部312和下分部313,止推盘32包括上半盘322和下半盘323,其中,转轴31的上分部312与止推盘32的上半盘322一体成型,转轴31的下分部313和止推盘32的下半盘323一体成型,上半盘322的下表面开设多个个半圆形的半槽,下半盘323的上表面也开设对应数量的半圆形的半槽,当将上半盘322和下半盘323扣合并固定连接后,形成完整的转子3,此时上半盘322上的半槽与下半盘323上的半槽对应扣合为多个第二过孔321。在一实施例中,上半盘322和下半盘323之间可以通过紧固件固定连接或者焊接连接,在保证第二过孔321密封性的前提下,上半盘322和下半盘323的具体连接方式不做限定。
实施例三
本实施例提供了一种转子3,如图1-图4所示,该转子3包括第一过孔311及第二过孔321,所述第一过孔311沿所述转子3的轴向设于所述转子3中并贯通所 述转子3的下端面,所述第二过孔321沿所述转子3的径向设于所述转子3上部并贯通所述转子3的周面,所述第二过孔321与所述第一过孔311连通。
所述转子3包括转轴31和止推盘32,所述止推盘32设置于所述转轴31的上部,且所述止推盘32的直径大于所述转轴31的直径,所述第一过孔311设置于所述转轴31内并延伸至所述止推盘32,所述第二过孔321设置在所述止推盘32内。
所述转子3上设置有至少两个所述第二过孔321,至少两个所述第二过孔321沿所述转子3的周向均布。
所述第二过孔321的延伸路径为弧线;或所述第二过孔321的延伸路径为折线。
所述第一过孔311的轴线与所述转子3的转动轴线共线。

Claims (15)

  1. 一种转子冷却结构,包括:
    壳体(1),所述壳体(1)的底部设有冷媒;及
    转子(3),所述转子(3)的下端设于所述冷媒中,所述转子(3)包括第一过孔(311)及第二过孔(321),所述第一过孔(311)沿所述转子(3)的轴向设于所述转子(3)中并贯通所述转子(3)的下端面,所述第二过孔(321)沿所述转子(3)的径向设于所述转子(3)上部并贯通所述转子(3)的周面,所述第二过孔(321)与所述第一过孔(311)连通。
  2. 如权利要求1所述的转子冷却结构,其中,所述转子(3)包括转轴(31)和止推盘(32),所述止推盘(32)设置于所述转轴(31)的上部,且所述止推盘(32)的直径大于所述转轴(31)的直径,所述第一过孔(311)设置于所述转轴(31)内并延伸至所述止推盘(32),所述第二过孔(321)设置在所述止推盘(32)内。
  3. 如权利要求1所述的转子冷却结构,其中,所述转子(3)上设置有至少两个所述第二过孔(321),至少两个所述第二过孔(321)沿所述转子(3)的周向均布。
  4. 如权利要求1所述的转子冷却结构,其中,所述第二过孔(321)的延伸路径为弧线;或所述第二过孔(321)的延伸路径为折线。
  5. 如权利要求1所述的转子冷却结构,其中,所述第一过孔(311)的轴线与所述转子(3)的转动轴线共线。
  6. 如权利要求1-5任一项所述的转子冷却结构,其中,所述壳体(1)包括本体部(11)和容纳槽部(12),所述容纳槽部(12)凹设于所述本体部(11)的下端,所述转子(3)的下端伸入所述容纳槽部(12)内。
  7. 如权利要求1-5任一项所述的转子冷却结构,其中,所述壳体(1)上设置有向所述壳体(1)内通入所述冷媒的入液口(111),所述入液口(111)被配置为与定子(2)相对设置。
  8. 如权利要求1-5任一项所述的转子冷却结构,其中,所述壳体(1)上设置有溢液口(112),所述溢液口(112)的位于所述定子(2)靠近壳体(1)底部的一侧。
  9. 一种电机,包括定子(2)和权利要求1-8任一项所述的转子冷却结构,所述转子(3)可转动地设置于所述壳体(1)内,所述定子(2)套设所述转子(3)外并位于所述第二过孔(321)下方。
  10. 一种压缩机,包括权利要求9所述的电机。
  11. 一种转子,包括:第一过孔(311)及第二过孔(321),所述第一过孔(311)沿所述转子(3)的轴向设于所述转子(3)中并贯通所述转子(3)的下端面,所述第二过孔(321)沿所述转子(3)的径向设于所述转子(3)上部并贯通所述转子(3)的周面,所述第二过孔(321)与所述第一过孔(311)连通。
  12. 如权利要求1所述的转子冷却结构,其中,所述转子(3)包括转轴(31)和止推盘(32),所述止推盘(32)设置于所述转轴(31)的上部,且所述止推盘(32)的直径大于所述转轴(31)的直径,所述第一过孔(311)设置于所述转轴(31)内并延伸至所述止推盘(32),所述第二过孔(321)设置在所述止推盘(32)内。
  13. 如权利要求1所述的转子冷却结构,其中,所述转子(3)上设置有至少两个所述第二过孔(321),至少两个所述第二过孔(321)沿所述转子(3)的周向均布。
  14. 如权利要求1所述的转子冷却结构,其中,所述第二过孔(321)的延伸路径为弧线;或所述第二过孔(321)的延伸路径为折线。
  15. 如权利要求1所述的转子冷却结构,其中,所述第一过孔(311)的轴线与所述转子(3)的转动轴线共线。
PCT/CN2021/135258 2021-07-08 2021-12-03 转子、转子冷却结构、电机及压缩机 WO2023279643A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110771858.8A CN115603491A (zh) 2021-07-08 2021-07-08 一种立式转子冷却结构、电机及压缩机
CN202110771858.8 2021-07-08

Publications (1)

Publication Number Publication Date
WO2023279643A1 true WO2023279643A1 (zh) 2023-01-12

Family

ID=84801267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135258 WO2023279643A1 (zh) 2021-07-08 2021-12-03 转子、转子冷却结构、电机及压缩机

Country Status (2)

Country Link
CN (1) CN115603491A (zh)
WO (1) WO2023279643A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660492A1 (de) * 1993-12-23 1995-06-28 ABB VERKEHRSTECHNIK Gesellschaft m.b.h. Kühlsystem für einen Motor
CN1623039A (zh) * 2002-01-25 2005-06-01 森德奈公司 通过液体冷却的电驱动转子动力***
CN104158349A (zh) * 2014-07-29 2014-11-19 江苏大学 一种湿式电机多功能推力盘及湿式电机
CN109256902A (zh) * 2018-10-29 2019-01-22 西安交通大学 一种定转子一体化循环冷却的高速永磁电机及其冷却方法
CN110198092A (zh) * 2019-06-19 2019-09-03 清华大学 电机转子中空轴内导热油冷却装置及飞轮储能电机
CN110875660A (zh) * 2018-08-30 2020-03-10 通用电气公司 具有转子冷却剂和润滑分配***的电机,以及冷却和润滑电机的***和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660492A1 (de) * 1993-12-23 1995-06-28 ABB VERKEHRSTECHNIK Gesellschaft m.b.h. Kühlsystem für einen Motor
CN1623039A (zh) * 2002-01-25 2005-06-01 森德奈公司 通过液体冷却的电驱动转子动力***
CN104158349A (zh) * 2014-07-29 2014-11-19 江苏大学 一种湿式电机多功能推力盘及湿式电机
CN110875660A (zh) * 2018-08-30 2020-03-10 通用电气公司 具有转子冷却剂和润滑分配***的电机,以及冷却和润滑电机的***和方法
CN109256902A (zh) * 2018-10-29 2019-01-22 西安交通大学 一种定转子一体化循环冷却的高速永磁电机及其冷却方法
CN110198092A (zh) * 2019-06-19 2019-09-03 清华大学 电机转子中空轴内导热油冷却装置及飞轮储能电机

Also Published As

Publication number Publication date
CN115603491A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
JP3085531B2 (ja) ターボ圧縮機のモータ冷却構造
CN106663973A (zh) 直驱型涡轮鼓风机冷却结构
CN101198792B (zh) 液环式压缩机
TWI782097B (zh) 用於離心壓縮機之擴散器系統及用於用來壓縮流體的可變容量離心壓縮機之系統
CN112211831A (zh) 空气悬浮高速离心压缩机
CN112228361A (zh) 一种空气悬浮离心鼓风机
WO2023279643A1 (zh) 转子、转子冷却结构、电机及压缩机
KR20180118455A (ko) 터보 압축기
US9638211B2 (en) Scroll tongue part and rotary machine including the same
CN108223403A (zh) 一种新型磁悬浮压缩机
WO2024051099A1 (zh) 悬浮离心压缩机及空调***
CN215860876U (zh) 一种以叶轮为推力盘的磁悬浮轴流风机
US20040033153A1 (en) Fluid transport system and method therefor
JP2015537156A (ja) リング及びカウルを含む遠心式ガス圧縮機又はポンプ
JP5915147B2 (ja) 遠心圧縮機のインペラ
CN208966639U (zh) 一种离心式压缩机
CN115370594A (zh) 自吸冷却式气浮直驱离心鼓风机及工作方法
JP3849491B2 (ja) 超薄型ポンプ
CN113586451B (zh) 涡旋压缩机用主轴及具有其的涡旋压缩机
JPH0311193A (ja) 真空ポンプ
CN219067999U (zh) 一种用于离心压缩机的转子***及永磁同步电机
JPS6220400B2 (zh)
CN218934768U (zh) 一种用于储能热管理的小冷量气浮离心压缩机
CN220857731U (zh) 高速电机和空压机
JPH0278793A (ja) 多段渦流型真空ポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE