WO2023276593A1 - Control device and control method - Google Patents

Control device and control method Download PDF

Info

Publication number
WO2023276593A1
WO2023276593A1 PCT/JP2022/023091 JP2022023091W WO2023276593A1 WO 2023276593 A1 WO2023276593 A1 WO 2023276593A1 JP 2022023091 W JP2022023091 W JP 2022023091W WO 2023276593 A1 WO2023276593 A1 WO 2023276593A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
motor
target stop
stop position
rotor
Prior art date
Application number
PCT/JP2022/023091
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 坂本
康之 ▲高▼森
Original Assignee
マブチモーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マブチモーター株式会社 filed Critical マブチモーター株式会社
Publication of WO2023276593A1 publication Critical patent/WO2023276593A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/24Arrangements for stopping

Definitions

  • a control device for controlling a three-phase brushless motor after performing control to rotate the rotor of the motor to a target stop position, any one of the U phase, V phase, and W phase of the motor
  • a control device that holds the rotational position of the rotor so that it does not move by one-phase energization in which only one phase is energized (see Patent Document 1).
  • one-phase energization means an energization brake.
  • the present disclosure has been made in consideration of such circumstances, and an object thereof is to provide a control device and a control method capable of reducing power consumption for holding the rotational position of the motor.
  • One aspect of the present disclosure includes a control unit that controls a three-phase brushless motor, and the control unit performs drive control to rotate the rotor to a target stop position, which is a target for stopping the rotor of the motor. After that, holding control is performed, and when the rotational position of the rotor has not deviated from the target stop position, the holding control does not supply current to the motor, and when the rotational position has deviated from the target stop position. and a control device for maintaining the rotational position at the target stop position by applying a current to the motor according to the magnitude of the load that caused the deviation between the rotational position and the target stop position.
  • a configuration is used in which the control unit repeatedly performs the holding control every time a predetermined period elapses after the driving control is performed.
  • correspondence information in which load value information indicating the magnitude of the load and current value information indicating the magnitude of current flowing to the motor are associated is provided.
  • a configuration may be used in which a storage unit is further provided, and the control unit performs the holding control based on the correspondence information.
  • control unit controls the motor by PWM control, and the current value information indicates the magnitude of the current to be supplied to the motor by a duty ratio.
  • configurations may be used.
  • a configuration is used in which the load value information indicates the magnitude of the load according to the magnitude of the deviation between the rotational position and the target stop position.
  • control unit identifies the rotational position based on an output signal from a detection unit that detects the rotational position. good.
  • a configuration may be used in which the detection unit has a Hall sensor.
  • control method for controlling a three-phase brushless motor, wherein the control method includes drive control for rotating the rotor to a target stop position, which is a target for stopping the rotor of the motor. is performed, holding control is performed, and the holding control does not apply current to the motor when the rotational position of the rotor is not deviated from the target stop position, and the rotational position is shifted from the target stop position.
  • a control method comprising, if there is a deviation, applying a current to the motor according to the magnitude of the load that caused the deviation between the rotational position and the target stop position to maintain the rotational position at the target stop position. is.
  • FIG. 4 is a diagram showing an example of the flow of processing in which the control device 10 performs drive control and protection control;
  • FIG. It is a figure which shows an example of correspondence information.
  • FIG. 4 is a diagram showing an example of current consumption when the control device 10 maintains the rotational position of the rotor by holding control and when the control device 10 maintains the rotational position of the rotor by one-phase energization;
  • FIG. 1 is a diagram showing an example of the configuration of a control system 1 according to an embodiment.
  • the control system 1 includes a motor M, a control device 10, and an information processing device 20. That is, the control system 1 is a system that causes the control device 10 to control the motor M according to the control signal from the information processing device 20 . Note that the control system 1 may be configured without at least one of the information processing device 20 and the motor M. FIG. Further, the control system 1 may be configured to include at least the control device 10 among the motor M, the control device 10, and the information processing device 20, as well as other devices, other members, and the like.
  • the motor M is a three-phase brushless motor.
  • the motor M is used, for example, to open and close a grille shutter of an automobile, rotate a valve that adjusts the flow rate of fluid, and the like. Note that the applications of the motor M are not limited to these.
  • the motor M is a motor used for opening and closing the grille shutter will be described.
  • the rotor of the motor M will be simply referred to as a rotor.
  • the rotational position of the rotor will be simply referred to as the rotational position for convenience of explanation.
  • the rotational position is detected by the detection unit MS1.
  • the detection unit MS1 may be provided in the motor M, or may be provided in a device other than the motor M. In the following, as an example, a case where the motor M is provided with the detection unit MS1 will be described. In this case, the detection unit MS1 has, for example, a Hall sensor, as shown in FIG. It should be noted that the detection unit MS1 may be configured to have other sensors capable of detecting the rotational position, such as MR (Magneto Resistive) elements, encoders, etc., other members, etc., instead of the Hall sensors.
  • MR Magnetic Magnetic Resistive
  • the detection unit MS1 When the detection unit MS1 has Hall sensors, the detection unit MS1 has, for example, three Hall sensors, a Hall sensor SU, a Hall sensor SV, and a Hall sensor SW, as shown in FIG. Note that the detection unit MS1 may be configured to have two of these three Hall sensors, or may be configured to have one or more Hall sensors in addition to these three Hall sensors. .
  • the Hall sensor SU, the Hall sensor SV, and the Hall sensor SW are provided, for example, equidistantly apart from each other (that is, 120° apart) around the rotation axis of the rotor.
  • the Hall sensors SU, Hall sensors SV, and Hall sensors SW in the motor M are provided at non-equal intervals around the rotation axis instead of being arranged at equal intervals around the rotation axis. It may be a configuration.
  • each of the three Hall sensors, Hall sensor SU, Hall sensor SV, and Hall sensor SW sends a pulse signal that periodically repeats rising and falling according to changes in rotational position to controller 10. Output. Therefore, in the pulse signals output from each of these three Hall sensors, the pulse trains are out of phase with each other by (2 ⁇ /3).
  • Each of these three Hall sensors outputs an interrupt signal to the control device 10 together with the pulse signal that is being output when detecting the rise of the pulse in the pulse signal that is being output.
  • the control device 10 acquires the pulse signals that are continuously output from these three Hall sensors, and detects the change in the rotational position at the timing when the detection unit MS1 detects that the rotational position has changed. re-identify. Thereby, the control device 10 can always keep the state of specifying the latest rotational position.
  • each of these three Hall sensors corresponds to 90 pulses for one rotation of the rotor (that is, the case where one rotation of the rotor is represented by 90 pulses) will be described.
  • each of these three Hall sensors outputs a pulse signal containing 30 pulses for each 120° rotation of the rotor and a pulse signal containing 90 pulses for each rotation of the rotor.
  • the combination of the signal levels of the pulse signals output from each of the three Hall sensors, Hall sensor SU, Hall sensor SV, and Hall sensor SW depends on the rotation of the rotor (that is, change in rotational position). cyclically repeats the states labeled by 1 to 6 of .
  • the signal level of the pulse signal output from the Hall sensor SU is U level
  • the signal level of the pulse signal output from the Hall sensor SV is V level
  • the pulse signal output from the Hall sensor SW is The signal level of is referred to as W level.
  • this state will be referred to as a signal level state.
  • the signal level states change from 1 to 6 to 1, 2, 3, 4, 5, 6, 1, 2, . It changes periodically in order.
  • the signal level states change from 1 to 6 to 1, 6, 5, 4, 3, 2, 1, 6, . changes periodically in the order of
  • One of the two rotation directions in which the rotor can rotate is the forward rotation direction, and the other is the reverse rotation direction.
  • the forward rotation direction may be either of the two rotation directions.
  • the control device 10 acquires a control signal from the information processing device 20 and controls the rotation of the motor M based on the acquired control signal. More specifically, the control device 10 performs two types of control: drive control for rotating the rotor to a target stop position, which is a target for stopping the rotor, and holding control for holding the rotational position after the drive control is performed. conduct. Note that the control device 10 may be configured to perform other controls in addition to these two controls. Further, the control device 10 may be configured to perform holding control without performing drive control. In this case, drive control is performed by a device different from the control device 10 .
  • a position near the target stop position is, for example, a position included within a predetermined range including the target stop position as the center position, but is not limited to this.
  • the predetermined range is represented by, for example, the amount of movement of the rotational position from the target stop position, that is, the number of pulses, but may be represented by other values.
  • stopping the rotor means that the rotation speed of the rotor has become zero.
  • the fact that the rotational speed of the rotor is 0 means that the rotational position does not change within a certain period.
  • the period is, for example, a period in which a predetermined cycle described later elapses, but is not limited to this.
  • control device 10 performs drive control and holding control while specifying the rotational position.
  • Control device 10 identifies the rotational position based on the three pulse signals obtained from detector MS1. For example, the control device 10 identifies the direction of rotation of the rotor by identifying signal level states at two different timings, a certain timing and a later timing, based on these three pulse signals. be able to. Further, when the control device 10 specifies that the rotation direction of the rotor is the forward rotation direction, each time the value indicating the signal level state (in this example, the states labeled with 1 to 6 above) changes. Then, the value of the movement amount counter, which indicates the amount of movement of the rotational position from the reference position, is incremented by one.
  • the value of the movement amount counter is 0 when the movement amount of the rotational position from the reference position is 0.
  • the control device 10 specifies that the direction of rotation is the reverse direction, each time the value indicating the signal level state (in this example, the states labeled by 1 to 6 above) changes, the movement Decrease the value of the quantity counter by one. In this way, the control device 10 identifies the rotational position as the value of the movement amount counter that indicates the amount of movement of the rotational position from the reference position.
  • the opening degree of the grille shutter and the value of the movement amount counter can be associated one-to-one.
  • the control device 10 receives an instruction to set the opening degree of the grille shutter to a desired opening degree from the information processing device 20, the control device 10 converts the desired opening degree into the value of the movement amount counter indicating the target stop position. can do.
  • the current rotational position will be referred to as the current position.
  • the value of the movement amount counter indicating the target stop position is referred to as the target stop position counter value.
  • the control device 10 performs, for example, the following control as drive control.
  • the control device 10 When receiving the target stop position information indicating the target stop position from the information processing device 20, the control device 10 performs drive control based on the received target stop position information.
  • the target stop position information is, for example, information indicating the degree of opening desired by the user among the degree of opening of the grille shutter.
  • control device 10 receives, as target stop position information, information indicating the degree of opening desired by the user out of the degree of opening of the grille shutter from information processing device 20, control device 10 sets the degree of opening indicated by the received target stop position information as a target. Convert to stop position counter value.
  • the control device 10 calculates the difference between the target stop position counter value and the movement amount counter value indicating the specified current position as the rotation amount for rotating the rotor.
  • the control device 10 outputs to the motor M a PWM signal for rotating the rotor by the calculated amount of rotation, and rotates the rotor to the target stop position.
  • the control device 10 identifies the current position and the rotation speed of the rotor each time a predetermined period elapses, and rotates the rotor to the target stop position while performing feedback control.
  • the control device 10 rotates the rotor to the target stop position, for example, by performing the above control as drive control.
  • the drive control is performed, for example, until the rotational speed of the rotor becomes 0, but may be terminated when the rotational speed of the rotor becomes equal to or less than a predetermined rotational speed.
  • the control device 10 holds the rotational position by holding control.
  • the control device 10 performs the following control as holding control.
  • the control device 10 determines whether or not the current position is deviated from the target stop position. When the current position is not deviated from the target stop position, the control device 10 does not apply current to the motor M, and when the current position is deviated from the target stop position, the current position and the target stop position are deviated. A current corresponding to the magnitude of the load is supplied to the motor M to hold the current position.
  • the load that causes the deviation between the current position and the target stop position means, for example, the load applied by the force that rotates the grille shutter when the running wind hits the grille shutter.
  • the control device 10 performs the above control as holding control.
  • control device 10 can reduce the power consumption for holding the rotational position.
  • control device 10 repeats the holding control every time a predetermined period elapses after the drive control is performed. As a result, the control device 10 can continue to hold the current position within the aforementioned predetermined range without causing hunting. Further details of retention control are provided below.
  • the control device 10 receives control signals from the information processing device 20, for example, through communication via a LIN (Local Interconnect Network).
  • the motor M is a motor that opens and closes the grille shutter.
  • each of the motor M, the control device 10, and the information processing device 20 is mounted on a vehicle in which the motor M is mounted.
  • the information processing device 20 is a higher order device than the control device 10 among the devices mounted on the automobile, and is, for example, an ECU (Electronic Control Unit) of the automobile equipped with the motor M and the control device 10. be.
  • the control device 10 may be configured to receive the control signal from the information processing device 20 by communication via another communication network such as CAN (Controller Area Network) instead of LIN.
  • CAN Controller Area Network
  • the control device 10 includes, for example, a processor (not shown), a storage unit H1, and a detection unit H2 as hardware.
  • the processor included in the control device 10 controls the control device 10 as a whole.
  • the processor is a CPU (Central Processing Unit).
  • the processor may be another processor such as an FPGA (Field Programmable Gate Array).
  • the processor executes various programs stored in the storage unit H1.
  • the communication section S1 When the control device 10 receives a control signal from the information processing device 20, the communication section S1 outputs the received control signal to the instruction extraction section S2.
  • the instruction extraction unit S2 determines whether or not the control signal acquired from the communication unit S1 includes an instruction to rotate the motor M.
  • the control signal includes, for example, target stop position information as the instruction.
  • the command extraction unit S2 determines that the control signal includes the command.
  • the instruction extractor S2 extracts the target stop position information from the control signal.
  • the target stop position information is, for example, information indicating the degree of opening of the grille shutter.
  • Information indicating the degree of opening of the grille shutter is an example of information indicating the position of the object moved by the motor M.
  • the target stop position information may be information indicating another position of the object moved by the motor M, information indicating the rotational position, or target stop position counter value information indicating the target stop position counter value. or any other value indicating the target stop position.
  • the instruction extraction unit S2 converts the extracted target stop position information into a target stop position counter value.
  • the command extracting unit S2 performs this conversion based on, for example, information that associates the opening degree of the grille shutter with the target stop position counter value. In this case, the information is stored in advance in the storage unit H1, for example.
  • the instruction extraction unit S2 outputs target stop position counter value information indicating the converted target stop position counter value to the control unit S5, and stores the target stop position counter value information in the storage unit H1.
  • the AD converter S3 converts the analog signal into a digital signal.
  • the AD converter S3 receives various analog signals and converts the input analog signals into digital signals.
  • FIG. 1 shows an analog signal indicating the power supply voltage DV1, an analog signal indicating the substrate temperature DV2, and an analog signal indicating the motor current DV3 as examples of the analog signals input to the AD converter S3.
  • another analog signal may be input to the AD converter S3.
  • the AD conversion section S3 outputs the converted digital signal to each of the instruction extraction section S2, the control section S5, and the error information output section S7. Note that in this specification, the sensors for detecting the power supply voltage DV1, the substrate temperature DV2, and the motor current DV3 are not related to the holding control of the control device 10 described in this specification, so descriptions thereof will be omitted.
  • the calculation unit S4 identifies the signal level of the pulse signal that continues to be output from each of the three Hall sensors.
  • the calculator S4 identifies the current signal level state based on the identified three signal levels.
  • the calculator S4 compares the signal level state specified last time with the signal level state specified this time, specifies the rotation direction of the rotor, and changes the value of the movement amount counter by 1 according to the specified rotation direction. Thereby, the calculator S4 identifies the value of the movement amount counter as the current position. Further, the calculation unit S4 calculates the rotation speed of the rotor based on the difference between the time at which the signal level state was specified last time and the time at which the signal level state was specified this time.
  • the calculation unit S4 causes the storage unit H1 to store movement amount counter value information indicating the value of the movement amount counter after the value is changed, and rotation speed information indicating the calculated rotation speed. Then, the calculator S4 outputs to the controller S5 a signal indicating that the movement amount counter value information and the rotational speed information have been stored in the memory H1.
  • the control unit S5 reads the movement amount counter value information and the rotation speed information stored in the storage unit H1 from the storage unit H1 every time it acquires the signal from the calculation unit S4, thereby obtaining the value of the movement amount counter indicating the current position. and the current rotational speed of the rotor. Further, when the target stop position counter value information is acquired from the instruction extraction unit S2, the calculation unit S4 calculates the value of the movement amount counter indicating the currently specified current position and the target stop position indicated by the target stop position counter value information. The difference from the counter value is calculated as the amount of rotation. The control section S5 outputs rotation amount information indicating the calculated rotation amount to the PWM conversion section S6.
  • the control unit S5 After the drive control is performed, the control unit S5 performs holding control. The controller S5 determines whether or not the current position is shifted from the target stop position based on the value of the movement amount counter that indicates the current position that is periodically specified and the target stop position counter value. When the movement amount counter value and the target stop position counter value match, the control unit S5 determines that the current position does not deviate from the target stop position. On the other hand, when the movement amount counter value and the target stop position counter value do not match, the controller S5 determines that the current position is deviated from the target stop position. When the control unit S5 determines that the current position is not deviated from the target stop position, the control unit S5 controls the PWM conversion unit S6 so as not to flow the current to the motor M.
  • control unit S5 can reduce the power consumption for holding the current position.
  • the control section S5 identifies the magnitude of the load that has caused the deviation between the current position and the target stop position. A method for specifying the magnitude of the load will be described later.
  • the control unit S5 controls the PWM conversion unit S6 so that a current corresponding to the magnitude of the specified load is supplied to the motor M.
  • the current is the current that flows through the motor M when the motor M generates a torque that is the same (or nearly the same) as the load.
  • the control unit S5 can prevent the current position from moving to another rotational position due to the load, and can hold the current position. Also in this case, the control unit S5 uses power lower than the power required to rotate the rotor in an attempt to reduce the deviation between the current position and the target stop position to zero. Power consumption can be reduced.
  • the control unit S5 performs such control as holding control to hold the current position.
  • the control unit S5 repeats the holding control every time a predetermined period elapses.
  • the predetermined period is, for example, 10 milliseconds, but may be shorter or longer than 10 milliseconds.
  • the PWM converter S6 In drive control, the PWM converter S6 generates PWM signals to be output to each of the three phases of the motor M based on the rotation amount information acquired from the controller S5, and outputs the generated PWM signals to the motor M. As a result, the PWM converter S6 rotates the rotor to the target stop position. Further, the PWM conversion section S6 generates a PWM signal based on the duty ratio set by the control section S5 and outputs the generated PWM signal to the motor M in the holding control. In the example shown in FIG. 1, the current limiting signal CC is input to the PWM conversion section S6. The current limit signal CC is a signal for limiting the signal level of the PWM signal output from the PWM converter S6 so that it falls within a predetermined range.
  • the entity that outputs the current limiting signal CC may be the control device 10 itself, the motor M, the information processing device 20, or another device. Further, further detailed description of the processing performed by the PWM converter S6 based on the current limiting signal CC will be omitted in this specification.
  • the error information output section S7 determines whether an error has occurred in driving the motor M based on the signal output from the detection section H2. When the error information output unit S7 determines that an error has occurred in driving the motor M, it transmits a signal indicating the error to the information processing device 20 via the communication unit S1.
  • the storage unit H1 includes, for example, EEPROM (Electrically Erasable Programmable Read-Only Memory), RAM (Random Access Memory), SSD (Solid State Drive), and the like. Note that the storage unit H1 may be an external storage device connected by a digital input/output port such as USB (Universal Serial Bus) instead of being built in the control device 10 .
  • the storage unit H1 stores various information, various programs, and the like processed by the control device 10 .
  • the detection unit H2 includes an overcurrent detection unit 191 and a temperature protection unit 192.
  • the overcurrent detection unit 191 is a circuit that detects overcurrent flowing through the motor M. When the overcurrent detection unit 191 detects that an overcurrent has flowed through the motor M, the overcurrent detection unit 191 outputs a signal to the error information output unit S7 to cause the error information output unit S7 to output error information.
  • the temperature protection unit 192 is a circuit that detects when the temperature of the motor M exceeds a predetermined temperature threshold. When the temperature protection unit 192 detects that the temperature of the motor M has exceeded a predetermined temperature threshold, the temperature protection unit 192 outputs a signal to the error information output unit S7 to cause the error information output unit S7 to output error information.
  • FIG. 2 is a diagram showing an example of the flow of processing in which the control device 10 performs drive control and protection control.
  • the case where the rotor is not rotating and the current position is specified by the control unit S5 at the timing before the processing of step S110 shown in FIG. 2 is performed will be described.
  • the movement counter value information indicating the value of the movement amount counter indicating the current position is stored in the storage unit H1 at the timing.
  • the communication unit S1 waits until it receives a control signal from the information processing device 20 (step S110).
  • step S110-YES When the communication unit S1 determines that the control signal has been received from the information processing device 20 (step S110-YES), the instruction extraction unit S2 acquires the control signal received by the communication unit S1 from the communication unit S1. Then, the instruction extraction unit S2 determines whether or not the control signal acquired from the communication unit S1 includes an instruction to rotate the motor M (step S120). In FIG. 2, the process of step S120 is indicated by "Is there an instruction?"
  • step S120—NO the communication unit S1 proceeds to step S110 to perform information processing. It waits again until it receives a control signal from the device 20 .
  • the instruction extraction unit S2 determines that the control signal acquired from the communication unit S1 includes an instruction to rotate the motor M (step S120-YES)
  • the instruction extraction unit S2 determines that the instruction is included in the control signal. Extract the target stop position information.
  • the instruction extraction unit S2 then converts the extracted target stop position information into a target stop position counter value (step S130).
  • step S140 the instruction extraction unit S2 outputs target stop position counter value information indicating the target stop position counter value after conversion in step S140 to the control unit S5, and stores the target stop position counter value information in the storage unit H1.
  • step S140 the process of step S140 is indicated by "storage of target stop position counter value information".
  • control unit S5 reads from the storage unit H1 the movement amount counter value information stored in advance in the storage unit H1 (that is, the movement amount counter value information indicating the value of the movement amount counter indicating the current position). Then, the control unit S5 calculates the difference between the movement amount counter value indicated by the read movement amount counter value information and the target stop position counter value indicated by the target stop position counter value information acquired from the instruction extraction unit S2 in step S140. , is calculated as the amount of rotation. The control section S5 outputs rotation amount information indicating the calculated rotation amount to the PWM conversion section S6.
  • step S150 the process of step S150 is indicated by "rotation".
  • steps S110 to S150 described above is the process for the control device 10 to perform drive control.
  • the control unit S5 determines whether or not to end the control of the motor M (step S160).
  • the control unit S5 determines to end the control of the motor M when the communication unit S1 receives a control signal instructing to end the control of the motor M from the information processing device 20 . Further, the control unit S5 determines not to end the control of the motor M, for example, when the communication unit S1 has not received the control signal.
  • step S170 determines whether or not a predetermined period has elapsed.
  • the timing in step S170 is started repeatedly every time a predetermined period elapses, starting from the timing at which the process of step S150 is performed, for example. That is, the determination in step S170 is a determination as to whether or not a predetermined period has elapsed from the initial timing or the timing at which the timing of the previous predetermined period ended.
  • step S170-NO When the control unit S5 determines that the predetermined period has not elapsed (step S170-NO), it transitions to step S160 and determines again whether or not to end the control of the motor M.
  • step S170-YES determines whether the current position is deviated from the target stop position in the direction opposite to the rotating direction of the rotor. Determine (step S180). That is, in this case, the controller S5 determines whether or not the current position is before the target stop position.
  • the current position is indicated by CP.
  • the target stop position is indicated by TP.
  • the process of step S180 is indicated by "TP>CP?".
  • the control unit S5 for example, compares the value of the movement amount counter identified last time with the value of the movement amount counter identified this time, and identifies the rotation direction of the rotor.
  • the control unit S5 determines that the current position does not deviate from the target stop position in the specified second direction.
  • the first direction is the rotation direction in which the value of the movement amount counter decreases
  • the control unit S5 It is determined that the current position deviates from the target stop position in two directions.
  • the control unit S5 determines that the current position does not deviate from the target stop position in the specified second direction.
  • the fact that the current position deviates from the target stop position in the specified second direction means that a load that rotates the grille shutter and, in turn, the rotor in the second direction is applied by an external factor such as running wind.
  • step S190 the controller S5 causes the motor M to generate a load in the opposite direction to cancel the load that caused the deviation.
  • the method of setting the rotation direction of the rotor to the first direction or the second direction may be a known method or a method to be developed in the future. Therefore, a detailed description of the method for setting the rotation direction of the rotor to the first direction or the second direction will be omitted.
  • control unit S5 calculates the difference between the value of the movement amount counter indicating the current position and the value of the target stop position counter as the amount of rotation (step S200).
  • the current value information is information indicating the magnitude of the current to be supplied to the motor M by, for example, the duty ratio in PWM control. Therefore, the controller S5 can specify the amount of rotation calculated in step S200, that is, the magnitude of the current corresponding to the number of pulses of the pulse signal as the duty ratio. The control unit S5 sets the specified duty ratio as the duty ratio of the PWM signal output by the PWM conversion unit S6.
  • FIG. 3 is a diagram showing an example of correspondence information.
  • the horizontal axis of the graph shown in FIG. 3 indicates the magnitude of deviation between the rotational position and the target stop position.
  • this magnitude is indicated by "movement distance".
  • the deviation between the rotational position and the target stop position can be represented by the difference between the value of the movement amount counter indicating the rotational position and the target stop position counter value. This difference can then be converted into the number of pulses based on the correspondence between the angle of rotation of the rotor and the number of pulses. Therefore, in FIG. 3, the magnitude of the shift is indicated by the number of pulses.
  • the vertical axis of the graph indicates the pulse width of the PWM signal, that is, the duty ratio.
  • the nine points plotted on the graph correspond to the rotation when the magnitude of the load applied to the rotor and the magnitude of the torque of the motor M are balanced while changing the load applied to the rotor in nine steps in a preliminary experiment. It is a plot of the position and the duty ratio of the PWM signal supplied to the motor M.
  • FIG. For example, when the rotor is rotated from the reference position by a weight having a certain weight and the motor M is caused to generate a certain torque, the rotor rotates from the reference position to a rotation position where the weight and the torque are balanced. Then, the rotation of the rotor stops at the rotational position where the weight and the torque are balanced.
  • the difference between the rotational position of the stopped rotor and the reference position can be associated one-to-one with the magnitude of the load that causes the rotor to rotate against the torque. That is, it can be said that the horizontal axis of the graph indicates the magnitude of the load applied to the rotor.
  • the duty ratio of the PWM signal supplied to the motor M has a one-to-one correspondence with the magnitude of the current flowing through the motor M in that case.
  • the corresponding information includes load value information indicating the magnitude of the load applied to the rotor, and torque applied to the motor M in the case of generating torque having the same magnitude as the magnitude of the load applied to the rotor.
  • This information is associated with current value information indicating the magnitude of the current.
  • a line connecting these nine points with a straight line in turn is a polygonal line on the graph.
  • the load includes a load that rotates the rotor in the normal direction and a load that rotates the rotor in the reverse direction.
  • the duty ratio corresponding to a load of a certain magnitude is the duty ratio corresponding to a load of that magnitude that causes the rotor to rotate in the forward rotation direction, and the duty ratio that corresponds to the load of that magnitude to rotate the rotor in the reverse rotation direction.
  • the average value of the duty ratio corresponding to the load is used.
  • the correspondence information may handle these two types of loads separately, or may handle these two types of loads in other ways.
  • the controller S5 converts the rotation amount calculated at step S200 into the number of pulses. Then, based on the converted number of pulses and the correspondence information read from the storage unit H1, the control unit S5 sets the duty ratio corresponding to the magnitude of the load corresponding to the number of pulses to the current flowing through the motor M. is determined as the size of As can be seen from the graph shown in FIG. 3, if the current position is deviated from the target stop position based on the correspondence information, the control unit S5 determines the load that caused the deviation between the current position and the target stop position. The greater the magnitude, the greater the duty ratio, that is, the greater the current that flows to the motor M.
  • the controller S5 quadratically increases the magnitude of the duty ratio as the magnitude of the load increases. Further, when the magnitude of the load is zero, that is, when there is no deviation, the control section S5 sets the duty ratio to 0 and sets the current flowing to the motor M to zero.
  • the graph showing the correspondence information may be configured to increase along a curve represented by a higher-order function than a quadratic function, an exponential function, or the like, as the magnitude of the deviation increases.
  • step S230 determines whether or not the target stop position is before the current position.
  • the process of step S230 is indicated by "TP ⁇ CP?".
  • the control unit S5 determines that if the target stop position counter value is smaller than the value of the movement amount counter, , it is determined that the current position deviates from the target stop position in the specified first direction. Also, for example, in this case, if the value of the movement amount counter is equal to or greater than the target stop position counter value, the control unit S5 determines that the current position does not deviate from the target stop position in the specified first direction.
  • the control unit S5 determines that the current position deviates from the target stop position in one direction. Further, for example, in this case, if the value of the movement amount counter is less than the value of the target stop position counter, the control unit S5 determines that the current position does not deviate from the target stop position in the specified first direction. .
  • the fact that the current position deviates from the target stop position in the specified first direction means that a load that rotates the grille shutter and, in turn, the rotor in the first direction is applied by an external factor such as running wind.
  • step S230-YES When the controller S5 determines that the current position is deviated in the first direction from the target stop position (step S230-YES), it sets the rotation direction of the rotor to the second direction (step S240). That is, in step S240, the controller S5 causes the motor M to generate a load in the opposite direction to cancel the load that caused the deviation.
  • control unit S5 calculates the difference between the value of the movement amount counter indicating the current position and the value of the target stop position counter as the amount of rotation (step S250).
  • step S250 the control unit S5 transitions to step S210 and determines the duty ratio based on the rotation amount calculated in step S250 instead of the rotation amount calculated in step S200.
  • step S260 when the controller S5 determines that the current position is not shifted in the first direction from the target stop position (step S230-NO), it sets the duty ratio of the PWM signal generated by the PWM converter S6 to 0. , no current is applied to the motor M (step S260). In FIG. 2, the process of step S260 is indicated by "current supply stop". After the processing of step S260 is performed, the control unit S5 proceeds to step S160 and determines again whether or not to end the control of the motor M. Note that the control unit S5 may perform the process of step S260 based on the correspondence information, or may perform the process without using the correspondence information.
  • step S160 to step S260 described above is the processing in which the control device 10 performs holding control.
  • the control device 10 performs holding control after performing drive control for rotating the rotor to the target stop position. Specifically, as the holding control, the control device 10 does not apply current to the motor M when the rotational position is not deviated from the target stop position, and when the rotational position is deviated from the target stop position, the rotational position is A current corresponding to the magnitude of the load that caused the deviation from the target stop position is applied to the motor M, and control is performed to hold the rotational position. Thereby, the control device 10 can reduce the power consumption for holding the rotational position.
  • FIG. 4 is a diagram showing an example of current consumption when the control device 10 holds the rotational position by holding control and when the control device 10 holds the rotational position by one-phase energization.
  • the load included in the top record of the table shown in FIG. 4 is 14.7 mNm.
  • the amount of current consumed while the rotational position is held is 0.29A.
  • the magnitude of current consumption while holding the rotational position is the same as in the case of one-phase energization, ie, 0.5. 29A.
  • the load included in the second record from the top of the table shown in FIG. 4 is 9.8 mNm.
  • the magnitude of current consumption while the rotational position is held remains 0.29A.
  • the magnitude of current consumption while holding the rotational position is 0.00, which is smaller than in the case of one-phase energization. 16A.
  • the load included in the third record from the top of the table shown in FIG. 4 is 4.9 mNm.
  • the magnitude of current consumption while the rotational position is held remains 0.29A.
  • this load is applied to the rotor and the rotational position is held by holding control, the magnitude of current consumption while holding the rotational position is 0, which is even smaller than in the case of one-phase energization. .06A.
  • the load included in the fourth record from the top of the table shown in FIG. 4 is 0 mNm.
  • the rotor is unloaded. Even when no load is applied to the rotor, when the rotational position is held by the one-phase energization, the current consumption while holding the rotational position remains unchanged at 0.29A.
  • the amount of current consumed while the rotational position is held is 0.02A. This 0.02 A is the current that flows through the Hall sensor to keep the Hall sensor driven, and the current that flows through the motor M is zero. That is, the control device 10 does not apply current to the motor M in this case.
  • the control device 10 can reduce power consumption for holding the rotational position.
  • the control device 10 uses The information may be changed to the second correspondence information.
  • the second correspondence information is represented by, for example, a line graph in which the line in the graph of the correspondence information shown in FIG. 3 is moved in the positive direction of the Y-axis while the minimum and maximum values are fixed. It is the correspondence information that As a result, the control device 10 can make it easier for the current position to approach the target stop position in the holding control. As a result, the control device 10 can keep the current position closer to the target stop position.
  • the predetermined number of times is, for example, three times, but it may be less than three times or more than three times.
  • the PWM conversion unit may be increased by a predetermined rate.
  • the predetermined percentage is, for example, 10%, but it may be less than 10% or greater than 10%.
  • control device 10 in the example described above controls the three-phase brushless motor (motor M in the example described above).
  • a control unit S5 is provided, and after performing drive control for rotating the rotor to a target stop position, which is a target for stopping the rotor of the motor, the control unit performs holding control.
  • the control unit performs holding control.
  • the control device can reduce the power consumption for holding the rotational position of the motor.
  • control unit repeats the holding control every time a predetermined period (10 milliseconds in the example described above) elapses after the drive control is performed. good too.
  • the storage unit in the example described above, , a storage unit H1
  • the control unit performs holding control based on the correspondence information.
  • control device a configuration may be used in which the control unit controls the motor by PWM control, and the current value information indicates the magnitude of the current to be supplied to the motor according to the duty ratio.
  • control unit uses a configuration that identifies the rotational position of the rotor based on the output signal from the detection unit that detects the rotational position of the rotor (the detection unit MS1 in the example described above). may be
  • the detection unit has a Hall sensor (in the example described above, Hall sensor SU, Hall sensor SV, and Hall sensor SW).
  • a program for realizing functions of arbitrary components in the above-described devices is recorded in a computer-readable recording medium, and the program is stored in a computer system. You can also load and execute it.
  • the term "computer system” as used herein includes hardware such as an OS (Operating System) and peripheral devices.
  • "computer-readable recording medium” refers to portable media such as flexible disks, magneto-optical disks, ROM, CD (Compact Disk)-ROM, and storage devices such as hard disks built into computer systems. .
  • “computer-readable recording medium” means a volatile memory (RAM) inside a computer system that acts as a server or client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. , includes those that hold the program for a certain period of time.
  • RAM volatile memory
  • the rotational position detected by the Hall sensor Based on the movement amount of , the load applied to the rotor by an external factor is estimated, and a load of the same magnitude as the load is generated by the motor M in a direction to offset this load.
  • the applied load may be directly measured or estimated based on other indexes than the amount of movement of the rotational position.
  • control device 10
  • information processing device 191 overcurrent detector 192 temperature protection unit CC current limit signal DV1 power supply voltage DV2 substrate temperature DV3 motor current H1...storage unit, H2...detection unit, M...motor, MS1...detection unit, S1...communication unit, S2...instruction extraction unit, S3...AD conversion unit, S4...calculation unit, S5...control unit, S6...PWM conversion part, S7... error information output part, SU, SV, SW... hall sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

A control device (10) comprises a control unit (S5) that controls a three-phase brushless motor (M). The control unit (S5) performs drive control to rotate a rotor to a target stopping position (TP) which is a target for stopping the rotor of the motor (M), and then performs hold control. In the hold control, a current is not flowed to the motor (M) if the rotation position (CP) of the rotor has not deviated from the target stopping position (TP), but if the rotation position (CP) has deviated from the target stopping position (TP), a current corresponding to the size of the load caused by the deviation between the rotation position (CP) and the target stopping position (TP) is flowed to the motor (M), so as to hold the rotation position at the target stopping position (TP).

Description

制御装置、及び制御方法Control device and control method
 本開示は、制御装置、及び制御方法に関する。
 本願は、2021年06月29日に、日本に出願された特願2021-107785号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to control devices and control methods.
This application claims priority based on Japanese Patent Application No. 2021-107785 filed in Japan on June 29, 2021, the content of which is incorporated herein.
 モータのロータを停止させる目標となる目標停止位置にロータを停止させる技術についての研究、開発が行われている。 Research and development are being conducted on technology for stopping the rotor at the target stop position, which is the target for stopping the rotor of the motor.
 これに関し、三相ブラシレスのモータを制御する制御装置であって、当該モータのロータを目標停止位置まで回転させる制御を行った後、当該モータのU相、V相、W相のうちのいずれか一相のみへ通電を行う一相通電により、当該ロータの回転位置が動かないように保持する制御装置が知られている(特許文献1参照)。ここで、一相通電は、通電ブレーキのことである。 Regarding this, in a control device for controlling a three-phase brushless motor, after performing control to rotate the rotor of the motor to a target stop position, any one of the U phase, V phase, and W phase of the motor A control device is known that holds the rotational position of the rotor so that it does not move by one-phase energization in which only one phase is energized (see Patent Document 1). Here, one-phase energization means an energization brake.
特開2021-075376号公報JP 2021-075376 A
 しかしながら、特許文献1に記載されたような制御装置は、三相ブラシレスのモータのロータの回転位置を保持し続ける間、当該モータのU相、V相、W相のうちのいずれか一相のみへ電流を流し続けなければならない。これは、消費電力の増大を招くため、好ましいことではない。 However, a control device such as that described in Patent Document 1, while continuing to hold the rotational position of the rotor of a three-phase brushless motor, controls only one of the U-phase, V-phase, and W-phase of the motor. current must continue to flow to This is not preferable because it causes an increase in power consumption.
 本開示は、このような事情を考慮してなされたもので、モータの回転位置を保持するための消費電力を低減することができる制御装置、及び制御方法を提供することを課題とする。 The present disclosure has been made in consideration of such circumstances, and an object thereof is to provide a control device and a control method capable of reducing power consumption for holding the rotational position of the motor.
 本開示の一態様は、三相ブラシレスのモータを制御する制御部を備え、前記制御部は、前記モータのロータを停止させる目標となる目標停止位置まで前記ロータを回転させる駆動制御が行われた後、保持制御を行い、前記保持制御は、前記ロータの回転位置が前記目標停止位置からずれていない場合、前記モータへの電流を流さず、前記回転位置が前記目標停止位置からずれている場合、前記回転位置と前記目標停止位置とのずれをもたらした負荷の大きさに応じた電流を前記モータへ流し、前記回転位置を前記目標停止位置に保持する制御である、制御装置である。 One aspect of the present disclosure includes a control unit that controls a three-phase brushless motor, and the control unit performs drive control to rotate the rotor to a target stop position, which is a target for stopping the rotor of the motor. After that, holding control is performed, and when the rotational position of the rotor has not deviated from the target stop position, the holding control does not supply current to the motor, and when the rotational position has deviated from the target stop position. and a control device for maintaining the rotational position at the target stop position by applying a current to the motor according to the magnitude of the load that caused the deviation between the rotational position and the target stop position.
 また、本開示の他の態様は、上記の制御装置において、前記制御部は、前記駆動制御が行われた後、所定の周期が経過する毎に、前記保持制御を繰り返し行う、構成が用いられてもよい。 In another aspect of the present disclosure, in the control device described above, a configuration is used in which the control unit repeatedly performs the holding control every time a predetermined period elapses after the driving control is performed. may
 また、本開示の他の態様は、上記の制御装置において、前記制御部は、前記保持制御において、前記回転位置が前記目標停止位置からずれている場合、前記負荷の大きさが大きいほど、前記モータへ流す電流を大きくする、構成が用いられてもよい。 In another aspect of the present disclosure, in the control device described above, in the holding control, when the rotational position is deviated from the target stop position, the greater the magnitude of the load, the more the A configuration that increases the current to the motor may be used.
 また、本開示の他の態様は、上記の制御装置において、前記負荷の大きさを示す負荷値情報と、前記モータへ流す電流の大きさを示す電流値情報とが対応付けられた対応情報が記憶された記憶部を更に備え、前記制御部は、前記対応情報に基づいて、前記保持制御を行う、構成が用いられてもよい。 Further, according to another aspect of the present disclosure, in the control device described above, correspondence information in which load value information indicating the magnitude of the load and current value information indicating the magnitude of current flowing to the motor are associated is provided. A configuration may be used in which a storage unit is further provided, and the control unit performs the holding control based on the correspondence information.
 また、本開示の他の態様は、上記の制御装置において、前記制御部は、PWM制御によって前記モータを制御し、前記電流値情報は、デューティ比によって、前記モータへ流す電流の大きさを示す、構成が用いられてもよい。 In another aspect of the present disclosure, in the control device described above, the control unit controls the motor by PWM control, and the current value information indicates the magnitude of the current to be supplied to the motor by a duty ratio. , configurations may be used.
 また、本開示の他の態様は、上記の制御装置において、前記負荷値情報は、前記回転位置と前記目標停止位置とのずれの大きさによって、前記負荷の大きさを示す、構成が用いられてもよい。 Further, according to another aspect of the present disclosure, in the control device described above, a configuration is used in which the load value information indicates the magnitude of the load according to the magnitude of the deviation between the rotational position and the target stop position. may
 また、本開示の他の態様は、上記の制御装置において、前記制御部は、前記回転位置を検出する検出部からの出力信号に基づいて、前記回転位置を特定する、構成が用いられてもよい。 Further, according to another aspect of the present disclosure, in the control device described above, the control unit identifies the rotational position based on an output signal from a detection unit that detects the rotational position. good.
 また、本開示の他の態様は、上記の制御装置において、前記検出部は、ホールセンサを有する、構成が用いられてもよい。 In another aspect of the present disclosure, in the control device described above, a configuration may be used in which the detection unit has a Hall sensor.
 また、本開示の他の態様は、三相ブラシレスのモータを制御する制御方法であって、前記制御方法は、前記モータのロータを停止させる目標となる目標停止位置まで前記ロータを回転させる駆動制御が行われた後、保持制御を行い、前記保持制御は、前記ロータの回転位置が前記目標停止位置からずれていない場合、前記モータへの電流を流さず、前記回転位置が前記目標停止位置からずれている場合、前記回転位置と前記目標停止位置とのずれをもたらした負荷の大きさに応じた電流を前記モータへ流し、前記回転位置を前記目標停止位置に保持する制御である、制御方法である。 Another aspect of the present disclosure is a control method for controlling a three-phase brushless motor, wherein the control method includes drive control for rotating the rotor to a target stop position, which is a target for stopping the rotor of the motor. is performed, holding control is performed, and the holding control does not apply current to the motor when the rotational position of the rotor is not deviated from the target stop position, and the rotational position is shifted from the target stop position. A control method comprising, if there is a deviation, applying a current to the motor according to the magnitude of the load that caused the deviation between the rotational position and the target stop position to maintain the rotational position at the target stop position. is.
 本開示によれば、モータの回転位置を保持するための消費電力を低減することができる。 According to the present disclosure, power consumption for holding the rotational position of the motor can be reduced.
実施形態に係る制御システム1の構成の一例を示す図である。It is a figure showing an example of composition of control system 1 concerning an embodiment. 制御装置10が駆動制御及び保護制御を行う処理の流れの一例を示す図である。4 is a diagram showing an example of the flow of processing in which the control device 10 performs drive control and protection control; FIG. 対応情報の一例を示す図である。It is a figure which shows an example of correspondence information. 制御装置10が保持制御によりロータの回転位置を保持する場合と、制御装置10が一相通電によりロータの回転位置を保持する場合とのそれぞれにおける消費電流の大きさの一例を示す図である。FIG. 4 is a diagram showing an example of current consumption when the control device 10 maintains the rotational position of the rotor by holding control and when the control device 10 maintains the rotational position of the rotor by one-phase energization;
 <実施形態>
 以下、本開示の実施形態について、図面を参照して説明する。
<Embodiment>
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 <制御システムの構成>
 まず、図1を参照し、実施形態に係る制御システム1の構成について説明する。図1は、実施形態に係る制御システム1の構成の一例を示す図である。
<Configuration of control system>
First, the configuration of a control system 1 according to an embodiment will be described with reference to FIG. FIG. 1 is a diagram showing an example of the configuration of a control system 1 according to an embodiment.
 制御システム1は、モータMと、制御装置10と、情報処理装置20を備える。すなわち、制御システム1は、情報処理装置20からの制御信号によって、制御装置10にモータMを制御させるシステムである。なお、制御システム1は、情報処理装置20とモータMとの少なくとも一方を備えない構成であってもよい。また、制御システム1は、モータMと、制御装置10と、情報処理装置20とのうちの少なくとも制御装置10に加えて、他の装置、他の部材等を備える構成であってもよい。 The control system 1 includes a motor M, a control device 10, and an information processing device 20. That is, the control system 1 is a system that causes the control device 10 to control the motor M according to the control signal from the information processing device 20 . Note that the control system 1 may be configured without at least one of the information processing device 20 and the motor M. FIG. Further, the control system 1 may be configured to include at least the control device 10 among the motor M, the control device 10, and the information processing device 20, as well as other devices, other members, and the like.
 モータMは、三相ブラシレスのモータである。モータMは、例えば、自動車のグリルシャッターの開閉、流体の流量を調整するバルブの回転等を行わせるために用いられる。なお、モータMの用途は、これらに限られるわけではない。以下では、一例として、モータMが、グリルシャッターの開閉を行わせるために用いられるモータである場合について説明する。また、以下では、説明の便宜上、モータMのロータを、単にロータと称して説明する。また、以下では、説明の便宜上、ロータの回転位置を、単に回転位置と称して説明する。 The motor M is a three-phase brushless motor. The motor M is used, for example, to open and close a grille shutter of an automobile, rotate a valve that adjusts the flow rate of fluid, and the like. Note that the applications of the motor M are not limited to these. In the following, as an example, a case where the motor M is a motor used for opening and closing the grille shutter will be described. Further, hereinafter, for convenience of explanation, the rotor of the motor M will be simply referred to as a rotor. Further, hereinafter, the rotational position of the rotor will be simply referred to as the rotational position for convenience of explanation.
 回転位置は、検出部MS1によって検出される。検出部MS1は、モータMに備えられる構成であってもよく、モータM以外の装置に備えられる構成であってもよい。以下では、一例として、検出部MS1が、モータMに備えられる場合について説明する。この場合、検出部MS1は、例えば、図1に示したように、ホールセンサを有する。なお、検出部MS1は、ホールセンサに代えて、MR(Magneto Resistive)素子、エンコーダ等、回転位置を検出可能な他のセンサ、他の部材等を有する構成であってもよい。検出部MS1がホールセンサを有する場合、検出部MS1は、例えば、図1に示したように、ホールセンサSU、ホールセンサSV、ホールセンサSWの3つのホールセンサを有する。なお、検出部MS1は、これら3つのホールセンサのうちの2つのセンサを有する構成であってもよく、これら3つのホールセンサに加えて、1つ以上のホールセンサを有する構成であってもよい。 The rotational position is detected by the detection unit MS1. The detection unit MS1 may be provided in the motor M, or may be provided in a device other than the motor M. In the following, as an example, a case where the motor M is provided with the detection unit MS1 will be described. In this case, the detection unit MS1 has, for example, a Hall sensor, as shown in FIG. It should be noted that the detection unit MS1 may be configured to have other sensors capable of detecting the rotational position, such as MR (Magneto Resistive) elements, encoders, etc., other members, etc., instead of the Hall sensors. When the detection unit MS1 has Hall sensors, the detection unit MS1 has, for example, three Hall sensors, a Hall sensor SU, a Hall sensor SV, and a Hall sensor SW, as shown in FIG. Note that the detection unit MS1 may be configured to have two of these three Hall sensors, or may be configured to have one or more Hall sensors in addition to these three Hall sensors. .
 モータMにおいて、ホールセンサSUと、ホールセンサSVと、ホールセンサSWのそれぞれは、例えば、ロータの回転軸周りに互いに等間隔に離れて(すなわち、120°離れて)設けられる。なお、モータMにおけるホールセンサSUと、ホールセンサSVと、ホールセンサSWのそれぞれは、当該回転軸周りに互いに等間隔に設けられる構成に代えて、当該回転軸周りに互いに非等間隔に設けられる構成であってもよい。 In the motor M, the Hall sensor SU, the Hall sensor SV, and the Hall sensor SW are provided, for example, equidistantly apart from each other (that is, 120° apart) around the rotation axis of the rotor. Note that the Hall sensors SU, Hall sensors SV, and Hall sensors SW in the motor M are provided at non-equal intervals around the rotation axis instead of being arranged at equal intervals around the rotation axis. It may be a configuration.
 検出部MS1においては、ホールセンサSU、ホールセンサSV、ホールセンサSWの3つのホールセンサのそれぞれは、回転位置の変化に応じた立ち上がりと立ち下がりとを周期的に繰り返すパルス信号を制御装置10に出力する。このため、これら3つのホールセンサのそれぞれから出力されるパルス信号において、パルス列は、互いに位相が(2π/3)ずつ、ずれている。これら3つのホールセンサのそれぞれは、出力しているパルス信号におけるパルスの立ち上がりを検出した場合、出力し続けているパルス信号とともに、割り込み信号を制御装置10に出力する。制御装置10は、この割り込み信号を取得する毎に、これら3つのホールセンサから出力され続けているパルス信号を取得し、回転位置が変化したことを検出部MS1が検出したタイミングで、回転位置を特定し直す。これにより、制御装置10は、最新の回転位置を特定している状態を常に保持することができる。 In detection unit MS1, each of the three Hall sensors, Hall sensor SU, Hall sensor SV, and Hall sensor SW, sends a pulse signal that periodically repeats rising and falling according to changes in rotational position to controller 10. Output. Therefore, in the pulse signals output from each of these three Hall sensors, the pulse trains are out of phase with each other by (2π/3). Each of these three Hall sensors outputs an interrupt signal to the control device 10 together with the pulse signal that is being output when detecting the rise of the pulse in the pulse signal that is being output. Each time the control device 10 acquires this interrupt signal, the control device 10 acquires the pulse signals that are continuously output from these three Hall sensors, and detects the change in the rotational position at the timing when the detection unit MS1 detects that the rotational position has changed. re-identify. Thereby, the control device 10 can always keep the state of specifying the latest rotational position.
 ロータが1回転する間において、ホールセンサSU、ホールセンサSV、ホールセンサSWの3つのホールセンサのそれぞれが出力するパルス信号に含まれるパルスの数は、モータMが有するコイルの、磁石の数等によって変わる。このため、回転位置の移動量は、パルスの数によって表されることがある。以下では、一例として、これら3つのホールセンサのそれぞれが、ロータの1回転が90パルスに対応する場合(すなわち、ロータの1回転が90パルスによって表される場合)について説明する。この場合、これら3つのホールセンサのそれぞれは、ロータが120°回転する毎に30パルスを含むパルス信号を出力し、ロータが1回転する毎に90パルスを含むパルス信号を出力する。 During one rotation of the rotor, the number of pulses contained in the pulse signals output by each of the three Hall sensors SU, SV, and SW corresponds to the number of coils, magnets, etc. of the motor M. change depending on Therefore, the amount of movement of the rotational position may be represented by the number of pulses. In the following, as an example, the case where each of these three Hall sensors corresponds to 90 pulses for one rotation of the rotor (that is, the case where one rotation of the rotor is represented by 90 pulses) will be described. In this case, each of these three Hall sensors outputs a pulse signal containing 30 pulses for each 120° rotation of the rotor and a pulse signal containing 90 pulses for each rotation of the rotor.
 ここで、ホールセンサSU、ホールセンサSV、ホールセンサSWの3つのホールセンサのそれぞれから出力されるパルス信号の信号レベルの組み合わせは、ロータの回転(すなわち、回転位置の変化)に応じて、以下の1~6によってラベル付けされる状態を周期的に繰り返す。なお、以下では、説明の便宜上、ホールセンサSUから出力されるパルス信号の信号レベルをUレベル、ホールセンサSVから出力されるパルス信号の信号レベルをVレベル、ホールセンサSWから出力されるパルス信号の信号レベルをWレベルと称して説明する。また、以下では、説明の便宜上、当該状態を、信号レベル状態と称して説明する。 Here, the combination of the signal levels of the pulse signals output from each of the three Hall sensors, Hall sensor SU, Hall sensor SV, and Hall sensor SW, depends on the rotation of the rotor (that is, change in rotational position). cyclically repeats the states labeled by 1 to 6 of . In the following, for convenience of explanation, the signal level of the pulse signal output from the Hall sensor SU is U level, the signal level of the pulse signal output from the Hall sensor SV is V level, and the pulse signal output from the Hall sensor SW is The signal level of is referred to as W level. In the following, for convenience of explanation, this state will be referred to as a signal level state.
1:(Uレベル、Vレベル、Wレベル)=(0、0、1)
2:(Uレベル、Vレベル、Wレベル)=(0、1、1)
3:(Uレベル、Vレベル、Wレベル)=(0、1、0)
4:(Uレベル、Vレベル、Wレベル)=(1、1、0)
5:(Uレベル、Vレベル、Wレベル)=(1、0、0)
6:(Uレベル、Vレベル、Wレベル)=(1、0、1)
1: (U level, V level, W level) = (0, 0, 1)
2: (U level, V level, W level) = (0, 1, 1)
3: (U level, V level, W level) = (0, 1, 0)
4: (U level, V level, W level) = (1, 1, 0)
5: (U level, V level, W level) = (1, 0, 0)
6: (U level, V level, W level) = (1, 0, 1)
 ロータが正転方向に回転する場合、信号レベル状態は、ロータの回転に応じて、上記の1~6の状態を、1、2、3、4、5、6、1、2、…、の順に周期的に変化する。一方、ロータが逆転方向に回転する場合、信号レベル状態は、ロータの回転に応じて、上記の1~6の状態を、1、6、5、4、3、2、1、6、…、の順に周期的に変化する。なお、ロータが回転可能な2つの回転方向のうちの一方が正転方向であり、他方が逆転方向である。正転方向は、当該2つの回転方向のいずれであってもよい。 When the rotor rotates in the forward direction, the signal level states change from 1 to 6 to 1, 2, 3, 4, 5, 6, 1, 2, . It changes periodically in order. On the other hand, when the rotor rotates in the reverse direction, the signal level states change from 1 to 6 to 1, 6, 5, 4, 3, 2, 1, 6, . changes periodically in the order of One of the two rotation directions in which the rotor can rotate is the forward rotation direction, and the other is the reverse rotation direction. The forward rotation direction may be either of the two rotation directions.
 制御装置10は、情報処理装置20からの制御信号を取得し、取得した制御信号に基づいて、モータMの回転を制御する。より具体的には、制御装置10は、ロータを停止させる目標となる目標停止位置までロータを回転させる駆動制御と、駆動制御が行われた後に回転位置を保持する保持制御との2つの制御を行う。なお、制御装置10は、これら2つの制御に加えて、他の制御を行う構成であってもよい。また、制御装置10は、駆動制御を行わず、保持制御を行う構成であってもよい。この場合、駆動制御は、制御装置10と異なる装置により行われる。 The control device 10 acquires a control signal from the information processing device 20 and controls the rotation of the motor M based on the acquired control signal. More specifically, the control device 10 performs two types of control: drive control for rotating the rotor to a target stop position, which is a target for stopping the rotor, and holding control for holding the rotational position after the drive control is performed. conduct. Note that the control device 10 may be configured to perform other controls in addition to these two controls. Further, the control device 10 may be configured to perform holding control without performing drive control. In this case, drive control is performed by a device different from the control device 10 .
 駆動制御により目標停止位置まで回転したロータは、目標停止位置又は目標停止位置の近くの位置において停止する。目標停止位置の近くの位置は、例えば、目標停止位置を中心位置として含む所定の範囲内に含まれる位置であるが、これに限られるわけではない。なお、この所定の範囲は、例えば、目標停止位置からの回転位置の移動量、すなわち、パルスの数によって表されるが、他の値によって表されてもよい。また、本実施形態において、ロータが停止することは、ロータの回転速度が0になったことを意味する。また、本実施形態において、ロータの回転速度が0であることは、ある期間内において、回転位置が変化しないことを意味する。当該期間は、例えば、後述する所定の周期が経過する期間であるが、これに限られるわけではない。 The rotor rotated to the target stop position by drive control stops at the target stop position or at a position near the target stop position. A position near the target stop position is, for example, a position included within a predetermined range including the target stop position as the center position, but is not limited to this. The predetermined range is represented by, for example, the amount of movement of the rotational position from the target stop position, that is, the number of pulses, but may be represented by other values. Further, in the present embodiment, stopping the rotor means that the rotation speed of the rotor has become zero. Further, in this embodiment, the fact that the rotational speed of the rotor is 0 means that the rotational position does not change within a certain period. The period is, for example, a period in which a predetermined cycle described later elapses, but is not limited to this.
 ここで、制御装置10は、回転位置を特定しながら、駆動制御及び保持制御を行う。制御装置10は、検出部MS1から取得される3つのパルス信号に基づいて、回転位置を特定する。例えば、制御装置10は、これら3つのパルス信号に基づいて、あるタイミングと、当該タイミングよりも後のタイミングとの2つの異なるタイミングにおける信号レベル状態を特定することにより、ロータの回転方向を特定することができる。また、制御装置10は、ロータの回転方向が正転方向であることを特定した場合、信号レベル状態を示す値(この一例において、上記の1~6によってラベル付けされた状態)が変化する毎に、基準となる基準位置からの回転位置の移動量を示す移動量カウンタの値を1増加させる。なお、移動量カウンタの値は、基準位置からの回転位置の移動量が0の場合、0である。一方、制御装置10は、回転方向が逆転方向であることを特定した場合、信号レベル状態を示す値(この一例において、上記の1~6によってラベル付けされた状態)が変化する毎に、移動量カウンタの値を1減少させる。このようにして、制御装置10は、回転位置を、基準位置からの回転位置の移動量を示す移動量カウンタの値として特定する。 Here, the control device 10 performs drive control and holding control while specifying the rotational position. Control device 10 identifies the rotational position based on the three pulse signals obtained from detector MS1. For example, the control device 10 identifies the direction of rotation of the rotor by identifying signal level states at two different timings, a certain timing and a later timing, based on these three pulse signals. be able to. Further, when the control device 10 specifies that the rotation direction of the rotor is the forward rotation direction, each time the value indicating the signal level state (in this example, the states labeled with 1 to 6 above) changes. Then, the value of the movement amount counter, which indicates the amount of movement of the rotational position from the reference position, is incremented by one. Note that the value of the movement amount counter is 0 when the movement amount of the rotational position from the reference position is 0. On the other hand, when the control device 10 specifies that the direction of rotation is the reverse direction, each time the value indicating the signal level state (in this example, the states labeled by 1 to 6 above) changes, the movement Decrease the value of the quantity counter by one. In this way, the control device 10 identifies the rotational position as the value of the movement amount counter that indicates the amount of movement of the rotational position from the reference position.
 移動量カウンタを利用した場合、グリルシャッターの開度と、移動量カウンタの値とは、一対一に対応付けることができる。その結果、制御装置10は、グリルシャッターの開度を所望の開度にさせる指示を情報処理装置20から受け付けた場合、当該所望の開度を、目標停止位置を示す移動量カウンタの値に変換することができる。以下では、説明の便宜上、現在の回転位置を、現在位置と称して説明する。また、以下では、目標停止位置を示す移動量カウンタの値を、目標停止位置カウンタ値と称して説明する。 When using the movement amount counter, the opening degree of the grille shutter and the value of the movement amount counter can be associated one-to-one. As a result, when the control device 10 receives an instruction to set the opening degree of the grille shutter to a desired opening degree from the information processing device 20, the control device 10 converts the desired opening degree into the value of the movement amount counter indicating the target stop position. can do. In the following, for convenience of explanation, the current rotational position will be referred to as the current position. Further, in the following description, the value of the movement amount counter indicating the target stop position is referred to as the target stop position counter value.
 制御装置10は、例えば、以下のような制御を、駆動制御として行う。制御装置10は、目標停止位置を示す目標停止位置情報を情報処理装置20から受信すると、受信した目標停止位置情報に基づいて駆動制御を行う。目標停止位置情報は、例えば、グリルシャッターの開度のうちのユーザーが所望する開度を示す情報である。制御装置10は、グリルシャッターの開度のうちのユーザーが所望する開度を示す情報を目標停止位置情報として情報処理装置20から受信した場合、受信した目標停止位置情報が示す開度を、目標停止位置カウンタ値に変換する。そして、制御装置10は、目標停止位置カウンタ値と、特定した現在位置を示す移動量カウンタの値との差分を、ロータを回転させる回転量として算出する。制御装置10は、算出した回転量だけロータを回転させるためのPWM信号をモータMに出力し、目標停止位置までロータを回転させる。この際、制御装置10は、所定の周期が経過する毎に、現在位置とロータの回転速度とを特定し、フィードバック制御を行いながら目標停止位置までロータを回転させる。制御装置10は、例えば、以上のような制御を駆動制御として行うことにより、目標停止位置までロータを回転させる。なお、駆動制御は、例えば、ロータの回転速度が0になるまで行われるが、ロータの回転速度が所定の回転速度以下になった場合に終了する構成であってもよい。 The control device 10 performs, for example, the following control as drive control. When receiving the target stop position information indicating the target stop position from the information processing device 20, the control device 10 performs drive control based on the received target stop position information. The target stop position information is, for example, information indicating the degree of opening desired by the user among the degree of opening of the grille shutter. When control device 10 receives, as target stop position information, information indicating the degree of opening desired by the user out of the degree of opening of the grille shutter from information processing device 20, control device 10 sets the degree of opening indicated by the received target stop position information as a target. Convert to stop position counter value. Then, the control device 10 calculates the difference between the target stop position counter value and the movement amount counter value indicating the specified current position as the rotation amount for rotating the rotor. The control device 10 outputs to the motor M a PWM signal for rotating the rotor by the calculated amount of rotation, and rotates the rotor to the target stop position. At this time, the control device 10 identifies the current position and the rotation speed of the rotor each time a predetermined period elapses, and rotates the rotor to the target stop position while performing feedback control. The control device 10 rotates the rotor to the target stop position, for example, by performing the above control as drive control. The drive control is performed, for example, until the rotational speed of the rotor becomes 0, but may be terminated when the rotational speed of the rotor becomes equal to or less than a predetermined rotational speed.
 制御装置10は、このような駆動制御が行われた後、保持制御により回転位置を保持する。制御装置10は、保持制御として、以下のような制御を行う。制御装置10は、現在位置が目標停止位置からずれているか否かを判定する。制御装置10は、現在位置が目標停止位置からずれていない場合、モータMへの電流を流さず、現在位置が目標停止位置からずれている場合、現在位置と目標停止位置とのずれをもたらした負荷の大きさに応じた電流をモータMへ流し、現在位置を保持する。現在位置と目標停止位置とのずれをもたらす負荷とは、例えば、走行風がグリルシャッターに当たることでグリルシャッターを回転させる力が働くので、この力により与えられた負荷のことを意味する。制御装置10は、以上のような制御を、保持制御として行う。これにより、制御装置10は、回転位置を保持するための消費電力を低減することができる。また、制御装置10は、駆動制御が行われた後、所定の周期が経過する毎に、保持制御を繰り返し行う。これにより、制御装置10は、ハンチングを起こすことなく、前述の所定の範囲内において現在位置を保持し続けることができる。保持制御のこれ以上の詳細については、後述する。 After such drive control is performed, the control device 10 holds the rotational position by holding control. The control device 10 performs the following control as holding control. The control device 10 determines whether or not the current position is deviated from the target stop position. When the current position is not deviated from the target stop position, the control device 10 does not apply current to the motor M, and when the current position is deviated from the target stop position, the current position and the target stop position are deviated. A current corresponding to the magnitude of the load is supplied to the motor M to hold the current position. The load that causes the deviation between the current position and the target stop position means, for example, the load applied by the force that rotates the grille shutter when the running wind hits the grille shutter. The control device 10 performs the above control as holding control. Thereby, the control device 10 can reduce the power consumption for holding the rotational position. In addition, the control device 10 repeats the holding control every time a predetermined period elapses after the drive control is performed. As a result, the control device 10 can continue to hold the current position within the aforementioned predetermined range without causing hunting. Further details of retention control are provided below.
 制御装置10は、例えば、LIN(Local Interconnect Network)を介した通信により、情報処理装置20から制御信号を受信する。前述した通り、この一例では、モータMは、グリルシャッターの開閉を行うモータである。この場合、モータM、制御装置10、情報処理装置20のそれぞれは、モータMが搭載された自動車に搭載される。そして、この場合、情報処理装置20は、自動車に搭載された装置のうち制御装置10よりも上位の装置であり、例えば、モータM及び制御装置10を搭載した自動車のECU(Electronic Control Unit)である。なお、制御装置10は、LINに代えて、CAN(Controller Area Network)等の他の通信網を介した通信により、情報処理装置20から制御信号を受信する構成であってもよい。 The control device 10 receives control signals from the information processing device 20, for example, through communication via a LIN (Local Interconnect Network). As described above, in this example, the motor M is a motor that opens and closes the grille shutter. In this case, each of the motor M, the control device 10, and the information processing device 20 is mounted on a vehicle in which the motor M is mounted. In this case, the information processing device 20 is a higher order device than the control device 10 among the devices mounted on the automobile, and is, for example, an ECU (Electronic Control Unit) of the automobile equipped with the motor M and the control device 10. be. Note that the control device 10 may be configured to receive the control signal from the information processing device 20 by communication via another communication network such as CAN (Controller Area Network) instead of LIN.
 制御装置10は、例えば、ハードウェアとして、図示しないプロセッサと、記憶部H1と、検出部H2を備える。 The control device 10 includes, for example, a processor (not shown), a storage unit H1, and a detection unit H2 as hardware.
 制御装置10が備えるプロセッサは、制御装置10の全体を制御する。例えば、当該プロセッサは、CPU(Central Processing Unit)である。なお、当該プロセッサは、FPGA(Field Programmable Gate Array)等の他のプロセッサであってもよい。当該プロセッサは、記憶部H1に格納された各種のプログラムを実行する。 The processor included in the control device 10 controls the control device 10 as a whole. For example, the processor is a CPU (Central Processing Unit). Note that the processor may be another processor such as an FPGA (Field Programmable Gate Array). The processor executes various programs stored in the storage unit H1.
 制御装置10では、プロセッサが記憶部H1に格納された各種のプログラムを実行することにより、各種のソフトウェア機能部が実現される。すなわち、制御装置10は、このようなソフトウェア機能部として、通信部S1と、指示抽出部S2と、AD(Analog Digital)変換部S3と、算出部S4と、制御部S5と、PWM変換部S6と、エラー情報出力部S7を備える。 In the control device 10, various software functional units are realized by the processor executing various programs stored in the storage unit H1. That is, the control device 10 includes, as such software function units, a communication unit S1, an instruction extraction unit S2, an AD (Analog Digital) conversion unit S3, a calculation unit S4, a control unit S5, and a PWM conversion unit S6. and an error information output unit S7.
 通信部S1は、情報処理装置20から制御信号を制御装置10が受信した場合、受信した制御信号を指示抽出部S2に出力する。 When the control device 10 receives a control signal from the information processing device 20, the communication section S1 outputs the received control signal to the instruction extraction section S2.
 指示抽出部S2は、通信部S1から取得した制御信号に、モータMを回転させる指示が含まれているか否かを判定する。制御信号には、例えば、目標停止位置情報が当該指示として含まれる。この場合、指示抽出部S2は、制御信号に目標停止位置情報が含まれていると判定した場合、制御信号に当該指示が含まれていると判定する。指示抽出部S2は、制御信号に当該指示が含まれていると判定した場合、制御信号から目標停止位置情報を抽出する。ここで、前述した通り、目標停止位置情報は、例えば、グリルシャッターの開度を示す情報である。グリルシャッターの開度を示す情報は、モータMが動かす物体の位置を示す情報の一例である。なお、目標停止位置情報は、モータMが動かす物体の他の位置を示す情報であってもよく、回転位置を示す情報であってもよく、目標停止位置カウンタ値を示す目標停止位置カウンタ値情報であってもよく、目標停止位置を示す他の値であってもよい。指示抽出部S2は、抽出した目標停止位置情報を、目標停止位置カウンタ値に変換する。指示抽出部S2は、例えば、グリルシャッターの開度と、目標停止位置カウンタ値とを対応付ける情報に基づいて、この変換を行う。この場合、当該情報は、例えば、記憶部H1に予め記憶されている。指示抽出部S2は、変換した後の目標停止位置カウンタ値を示す目標停止位置カウンタ値情報を制御部S5に出力するとともに、目標停止位置カウンタ値情報を記憶部H1に記憶させる。 The instruction extraction unit S2 determines whether or not the control signal acquired from the communication unit S1 includes an instruction to rotate the motor M. The control signal includes, for example, target stop position information as the instruction. In this case, when determining that the target stop position information is included in the control signal, the command extraction unit S2 determines that the control signal includes the command. When determining that the instruction is included in the control signal, the instruction extractor S2 extracts the target stop position information from the control signal. Here, as described above, the target stop position information is, for example, information indicating the degree of opening of the grille shutter. Information indicating the degree of opening of the grille shutter is an example of information indicating the position of the object moved by the motor M. FIG. The target stop position information may be information indicating another position of the object moved by the motor M, information indicating the rotational position, or target stop position counter value information indicating the target stop position counter value. or any other value indicating the target stop position. The instruction extraction unit S2 converts the extracted target stop position information into a target stop position counter value. The command extracting unit S2 performs this conversion based on, for example, information that associates the opening degree of the grille shutter with the target stop position counter value. In this case, the information is stored in advance in the storage unit H1, for example. The instruction extraction unit S2 outputs target stop position counter value information indicating the converted target stop position counter value to the control unit S5, and stores the target stop position counter value information in the storage unit H1.
 AD変換部S3は、アナログ信号をデジタル信号に変換する。AD変換部S3は、各種のアナログ信号が入力され、入力されたアナログ信号をデジタル信号に変換する。図1には、AD変換部S3に入力されるアナログ信号の一例として、電源電圧DV1を示すアナログ信号、基板温度DV2を示すアナログ信号、モータ電流DV3を示すアナログ信号のそれぞれが示されている。AD変換部S3には、これら3つのアナログ信号に加えて、他のアナログ信号が入力されてもよい。AD変換部S3は、変換した後のデジタル信号を指示抽出部S2、制御部S5、エラー情報出力部S7のそれぞれに出力する。なお、本明細書では、電源電圧DV1、基板温度DV2、モータ電流DV3のそれぞれを検出するセンサについては、本明細書において説明する制御装置10の保持制御と無関係であるため、説明を省略する。 The AD converter S3 converts the analog signal into a digital signal. The AD converter S3 receives various analog signals and converts the input analog signals into digital signals. FIG. 1 shows an analog signal indicating the power supply voltage DV1, an analog signal indicating the substrate temperature DV2, and an analog signal indicating the motor current DV3 as examples of the analog signals input to the AD converter S3. In addition to these three analog signals, another analog signal may be input to the AD converter S3. The AD conversion section S3 outputs the converted digital signal to each of the instruction extraction section S2, the control section S5, and the error information output section S7. Note that in this specification, the sensors for detecting the power supply voltage DV1, the substrate temperature DV2, and the motor current DV3 are not related to the holding control of the control device 10 described in this specification, so descriptions thereof will be omitted.
 算出部S4は、検出部MS1が有する3つのホールセンサのそれぞれから割り込み信号が取得される毎に、3つのホールセンサのそれぞれから出力され続けているパルス信号の信号レベルを特定する。算出部S4は、特定した3つの信号レベルに基づいて、現在の信号レベル状態を特定する。算出部S4は、前回特定した信号レベル状態と、今回特定した信号レベル状態とを比較し、ロータの回転方向を特定し、特定した回転方向に応じて移動量カウンタの値を1変化させる。これにより、算出部S4は、現在位置として、移動量カウンタの値を特定する。また、算出部S4は、前回信号レベル状態を特定した時刻と、今回信号レベル状態を特定した時刻との差分に基づいて、ロータの回転速度を算出する。このような回転速度の算出は、信号レベル状態の値が1変化した場合のロータの回転する角度が予め分かっているため、可能である。算出部S4は、値を変化させた後の移動量カウンタの値を示す移動量カウンタ値情報と、算出した当該回転速度を示す回転速度情報とを、記憶部H1に記憶させる。そして、算出部S4は、移動量カウンタ値情報及び回転速度情報を記憶部H1に記憶させたことを示す信号を、制御部S5に出力する。 Every time an interrupt signal is acquired from each of the three Hall sensors included in the detection unit MS1, the calculation unit S4 identifies the signal level of the pulse signal that continues to be output from each of the three Hall sensors. The calculator S4 identifies the current signal level state based on the identified three signal levels. The calculator S4 compares the signal level state specified last time with the signal level state specified this time, specifies the rotation direction of the rotor, and changes the value of the movement amount counter by 1 according to the specified rotation direction. Thereby, the calculator S4 identifies the value of the movement amount counter as the current position. Further, the calculation unit S4 calculates the rotation speed of the rotor based on the difference between the time at which the signal level state was specified last time and the time at which the signal level state was specified this time. Such calculation of the rotational speed is possible because the angle of rotation of the rotor when the value of the signal level state changes by 1 is known in advance. The calculation unit S4 causes the storage unit H1 to store movement amount counter value information indicating the value of the movement amount counter after the value is changed, and rotation speed information indicating the calculated rotation speed. Then, the calculator S4 outputs to the controller S5 a signal indicating that the movement amount counter value information and the rotational speed information have been stored in the memory H1.
 制御部S5は、算出部S4から信号を取得する毎に、記憶部H1に記憶された移動量カウンタ値情報及び回転速度情報を記憶部H1から読み出すことにより、現在位置を示す移動量カウンタの値と、ロータの現在の回転速度とを特定する。また、算出部S4は、指示抽出部S2から目標停止位置カウンタ値情報を取得した場合、現在特定している現在位置を示す移動量カウンタの値と、目標停止位置カウンタ値情報が示す目標停止位置カウンタ値との差分を、回転量として算出する。制御部S5は、算出した回転量を示す回転量情報をPWM変換部S6に出力する。これにより、PWM変換部S6は、制御部S5から取得した回転量情報が示す回転量だけロータを回転させるためのPWM信号を生成し、生成したPWM信号をモータMに出力する。これにより、ロータは、目標停止位置まで回転する。このような回転量をPWM信号へ変換する方法は、既知の方法であってもよく、これから開発される方法であってもよい。制御部S5は、このような制御を駆動制御として行い、目標停止位置までロータを回転させる。 The control unit S5 reads the movement amount counter value information and the rotation speed information stored in the storage unit H1 from the storage unit H1 every time it acquires the signal from the calculation unit S4, thereby obtaining the value of the movement amount counter indicating the current position. and the current rotational speed of the rotor. Further, when the target stop position counter value information is acquired from the instruction extraction unit S2, the calculation unit S4 calculates the value of the movement amount counter indicating the currently specified current position and the target stop position indicated by the target stop position counter value information. The difference from the counter value is calculated as the amount of rotation. The control section S5 outputs rotation amount information indicating the calculated rotation amount to the PWM conversion section S6. As a result, the PWM converter S6 generates a PWM signal for rotating the rotor by the rotation amount indicated by the rotation amount information acquired from the controller S5, and outputs the generated PWM signal to the motor M. This causes the rotor to rotate to the target stop position. A method for converting such a rotation amount into a PWM signal may be a known method or a method to be developed in the future. The controller S5 performs such control as drive control to rotate the rotor to the target stop position.
 制御部S5は、駆動制御が行われた後、保持制御を行う。制御部S5は、周期的に特定される現在位置を示す移動量カウンタの値と、目標停止位置カウンタ値とに基づいて、現在位置が目標停止位置からずれているか否かを判定する。制御部S5は、移動量カウンタの値と目標停止位置カウンタ値とが一致する場合、現在位置が目標停止位置からずれていないと判定する。一方、制御部S5は、移動量カウンタの値と目標停止位置カウンタ値とが一致しない場合、現在位置が目標停止位置からずれていると判定する。制御部S5は、現在位置が目標停止位置からずれていないと判定した場合、モータMへの電流を流さないように、PWM変換部S6を制御する。これは、例えば、PWM変換部S6が生成するPWM信号のデューティ比を0に設定することにより実現可能であるが、他の方法により実現されてもよい。これにより、制御部S5は、現在位置を保持するための消費電力を低減することができる。一方、制御部S5は、現在位置が目標停止位置からずれていると判定した場合、現在位置と目標停止位置とのずれをもたらした負荷の大きさを特定する。この負荷の大きさの特定方法については、後述する。制御部S5は、特定した負荷の大きさに応じた電流をモータMへ流すように、PWM変換部S6を制御する。これは、例えば、PWM変換部S6が生成するPWM信号のデューティ比を、当該電流がモータMへ流れるデューティ比に設定することにより実現可能であるが、他の方法により実現されてもよい。当該電流は、当該負荷の大きさと同じ(又はほぼ同じ)大きさのトルクをモータMが発生させる場合においてモータMに流れる電流のことである。これにより、制御部S5は、当該負荷によって現在位置が他の回転位置に移動してしまうことを抑制し、現在位置を保持することができる。また、この場合も、制御部S5は、現在位置と目標停止位置とのずれを0にしようとしてロータを回転させるために必要な電力よりも低い電力を使用するため、現在位置を保持するための消費電力を低減することができる。制御部S5は、このような制御を保持制御として行い、現在位置を保持する。 After the drive control is performed, the control unit S5 performs holding control. The controller S5 determines whether or not the current position is shifted from the target stop position based on the value of the movement amount counter that indicates the current position that is periodically specified and the target stop position counter value. When the movement amount counter value and the target stop position counter value match, the control unit S5 determines that the current position does not deviate from the target stop position. On the other hand, when the movement amount counter value and the target stop position counter value do not match, the controller S5 determines that the current position is deviated from the target stop position. When the control unit S5 determines that the current position is not deviated from the target stop position, the control unit S5 controls the PWM conversion unit S6 so as not to flow the current to the motor M. This can be achieved, for example, by setting the duty ratio of the PWM signal generated by the PWM converter S6 to 0, but it may be achieved by another method. Thereby, the control unit S5 can reduce the power consumption for holding the current position. On the other hand, when determining that the current position has deviated from the target stop position, the control section S5 identifies the magnitude of the load that has caused the deviation between the current position and the target stop position. A method for specifying the magnitude of the load will be described later. The control unit S5 controls the PWM conversion unit S6 so that a current corresponding to the magnitude of the specified load is supplied to the motor M. This can be realized, for example, by setting the duty ratio of the PWM signal generated by the PWM converter S6 to the duty ratio at which the current flows to the motor M, but it may be realized by another method. The current is the current that flows through the motor M when the motor M generates a torque that is the same (or nearly the same) as the load. As a result, the control unit S5 can prevent the current position from moving to another rotational position due to the load, and can hold the current position. Also in this case, the control unit S5 uses power lower than the power required to rotate the rotor in an attempt to reduce the deviation between the current position and the target stop position to zero. Power consumption can be reduced. The control unit S5 performs such control as holding control to hold the current position.
 また、駆動制御が行われた後、制御部S5は、所定の周期が経過する毎に、保持制御を繰り返し行う。所定の周期は、例えば、10ミリ秒であるが、10ミリ秒より短い時間であってもよく、10ミリ秒より長い時間であってもよい。これにより、制御部S5は、現在位置と目標停止位置とのずれをもたらした負荷が増減した場合であっても、モータMに流す電流の大きさを調整し、現在位置を所定の範囲内に保持することができる。 Also, after the drive control is performed, the control unit S5 repeats the holding control every time a predetermined period elapses. The predetermined period is, for example, 10 milliseconds, but may be shorter or longer than 10 milliseconds. As a result, even when the load that causes the deviation between the current position and the target stop position increases or decreases, the control section S5 adjusts the magnitude of the current flowing through the motor M to keep the current position within a predetermined range. can hold.
 PWM変換部S6は、駆動制御において、制御部S5から取得した回転量情報に基づいて、モータMの三相のそれぞれに出力するPWM信号を生成し、生成したPWM信号をモータMに出力する。これにより、PWM変換部S6は、目標停止位置までロータを回転させる。また、PWM変換部S6は、保持制御において、制御部S5により設定されたデューティ比に基づくPWM信号を生成し、生成したPWM信号をモータMに出力する。なお、図1に示した例では、PWM変換部S6には、電流制限信号CCが入力される。電流制限信号CCは、PWM変換部S6から出力されるPWM信号の信号レベルが、所定の範囲内に収まるように制限するための信号である。電流制限信号CCを出力する主体は、制御装置10自身であってもよく、モータMであってもよく、情報処理装置20であってもよく、他の装置であってもよい。また、電流制限信号CCに基づいてPWM変換部S6が行う処理については、本明細書では、これ以上の詳細な説明を省略する。 In drive control, the PWM converter S6 generates PWM signals to be output to each of the three phases of the motor M based on the rotation amount information acquired from the controller S5, and outputs the generated PWM signals to the motor M. As a result, the PWM converter S6 rotates the rotor to the target stop position. Further, the PWM conversion section S6 generates a PWM signal based on the duty ratio set by the control section S5 and outputs the generated PWM signal to the motor M in the holding control. In the example shown in FIG. 1, the current limiting signal CC is input to the PWM conversion section S6. The current limit signal CC is a signal for limiting the signal level of the PWM signal output from the PWM converter S6 so that it falls within a predetermined range. The entity that outputs the current limiting signal CC may be the control device 10 itself, the motor M, the information processing device 20, or another device. Further, further detailed description of the processing performed by the PWM converter S6 based on the current limiting signal CC will be omitted in this specification.
 エラー情報出力部S7は、検出部H2から出力される信号に基づいて、モータMの駆動においてエラーが発生しているか否かを判定する。エラー情報出力部S7は、モータMの駆動においてエラーが発生していると判定した場合、エラーを示す信号を、通信部S1を介して情報処理装置20に送信する。 The error information output section S7 determines whether an error has occurred in driving the motor M based on the signal output from the detection section H2. When the error information output unit S7 determines that an error has occurred in driving the motor M, it transmits a signal indicating the error to the information processing device 20 via the communication unit S1.
 記憶部H1は、例えば、EEPROM(Electrically Erasable Programmable Read-Only Memory)、RAM(Random Access Memory)、SSD(Solid State Drive)等を含む。なお、記憶部H1は、制御装置10に内蔵されるものに代えて、USB(Universal Serial Bus)等のデジタル入出力ポート等によって接続された外付け型の記憶装置であってもよい。記憶部H1は、制御装置10が処理する各種の情報、各種のプログラム等を格納する。 The storage unit H1 includes, for example, EEPROM (Electrically Erasable Programmable Read-Only Memory), RAM (Random Access Memory), SSD (Solid State Drive), and the like. Note that the storage unit H1 may be an external storage device connected by a digital input/output port such as USB (Universal Serial Bus) instead of being built in the control device 10 . The storage unit H1 stores various information, various programs, and the like processed by the control device 10 .
 検出部H2は、過電流検出部191と、温度保護部192を備える。 The detection unit H2 includes an overcurrent detection unit 191 and a temperature protection unit 192.
 過電流検出部191は、モータMに流れた過電流を検出する回路である。過電流検出部191は、モータMに過電流が流れたことを検出した場合、エラー情報出力部S7からエラー情報を出力させるための信号をエラー情報出力部S7に出力する。 The overcurrent detection unit 191 is a circuit that detects overcurrent flowing through the motor M. When the overcurrent detection unit 191 detects that an overcurrent has flowed through the motor M, the overcurrent detection unit 191 outputs a signal to the error information output unit S7 to cause the error information output unit S7 to output error information.
 温度保護部192は、モータMの温度が所定の温度閾値を超えたことを検出する回路である。温度保護部192は、モータMの温度が所定の温度閾値を超えたことを検出した場合、エラー情報出力部S7からエラー情報を出力させるための信号をエラー情報出力部S7に出力する。 The temperature protection unit 192 is a circuit that detects when the temperature of the motor M exceeds a predetermined temperature threshold. When the temperature protection unit 192 detects that the temperature of the motor M has exceeded a predetermined temperature threshold, the temperature protection unit 192 outputs a signal to the error information output unit S7 to cause the error information output unit S7 to output error information.
 <制御装置が駆動制御及び保護制御を行う処理>
 以下、図2を参照し、制御装置10が駆動制御及び保護制御を行う処理について説明する。図2は、制御装置10が駆動制御及び保護制御を行う処理の流れの一例を示す図である。なお、以下では、一例として、図2に示したステップS110の処理が行われるよりも前のタイミングにおいて、ロータが回転しておらず、且つ、制御部S5が現在位置を特定している場合について説明する。すなわち、以下では、一例として、当該タイミングにおいて、現在位置を示す移動量カウンタの値を示す移動カウンタ値情報が、記憶部H1に記憶されている場合について説明する。
<Processing in which the control device performs drive control and protection control>
Hereinafter, with reference to FIG. 2, a process of performing drive control and protection control by the control device 10 will be described. FIG. 2 is a diagram showing an example of the flow of processing in which the control device 10 performs drive control and protection control. In the following, as an example, the case where the rotor is not rotating and the current position is specified by the control unit S5 at the timing before the processing of step S110 shown in FIG. 2 is performed will be described. explain. That is, hereinafter, as an example, a case will be described in which movement counter value information indicating the value of the movement amount counter indicating the current position is stored in the storage unit H1 at the timing.
 通信部S1は、情報処理装置20から制御信号を受信するまで待機する(ステップS110)。 The communication unit S1 waits until it receives a control signal from the information processing device 20 (step S110).
 指示抽出部S2は、情報処理装置20から制御信号を受信したと通信部S1が判定した場合(ステップS110-YES)、通信部S1が受信した制御信号を通信部S1から取得する。そして、指示抽出部S2は、通信部S1から取得した制御信号に、モータMを回転させる指示が含まれているか否かを判定する(ステップS120)。図2では、ステップS120の処理を、「指示あり?」によって示している。 When the communication unit S1 determines that the control signal has been received from the information processing device 20 (step S110-YES), the instruction extraction unit S2 acquires the control signal received by the communication unit S1 from the communication unit S1. Then, the instruction extraction unit S2 determines whether or not the control signal acquired from the communication unit S1 includes an instruction to rotate the motor M (step S120). In FIG. 2, the process of step S120 is indicated by "Is there an instruction?"
 通信部S1は、通信部S1から取得した制御信号に、モータMを回転させる指示が含まれていないと指示抽出部S2が判定した場合(ステップS120-NO)、ステップS110に遷移し、情報処理装置20から制御信号を受信するまで再び待機する。 When the instruction extraction unit S2 determines that the control signal acquired from the communication unit S1 does not include an instruction to rotate the motor M (step S120—NO), the communication unit S1 proceeds to step S110 to perform information processing. It waits again until it receives a control signal from the device 20 .
 一方、指示抽出部S2は、通信部S1から取得した制御信号に、モータMを回転させる指示が含まれていると判定した場合(ステップS120-YES)、当該制御信号に当該指示として含まれている目標停止位置情報を抽出する。そして、指示抽出部S2は、抽出した目標停止位置情報を、目標停止位置カウンタ値に変換する(ステップS130)。 On the other hand, when the instruction extraction unit S2 determines that the control signal acquired from the communication unit S1 includes an instruction to rotate the motor M (step S120-YES), the instruction extraction unit S2 determines that the instruction is included in the control signal. Extract the target stop position information. The instruction extraction unit S2 then converts the extracted target stop position information into a target stop position counter value (step S130).
 次に、指示抽出部S2は、ステップS140において変換した後の目標停止位置カウンタ値を示す目標停止位置カウンタ値情報を制御部S5に出力するとともに、当該目標停止位置カウンタ値情報を記憶部H1に記憶させる(ステップS140)。図2では、ステップS140の処理を、「目標停止位置カウンタ値情報記憶」によって示している。 Next, the instruction extraction unit S2 outputs target stop position counter value information indicating the target stop position counter value after conversion in step S140 to the control unit S5, and stores the target stop position counter value information in the storage unit H1. Store (step S140). In FIG. 2, the process of step S140 is indicated by "storage of target stop position counter value information".
 次に、制御部S5は、記憶部H1に予め記憶された移動量カウンタ値情報(すなわち、現在位置を示す移動量カウンタの値を示す移動量カウンタ値情報)を記憶部H1から読み出す。そして、制御部S5は、読み出した移動量カウンタ値情報が示す移動量カウンタの値と、ステップS140において指示抽出部S2から取得した目標停止位置カウンタ値情報が示す目標停止位置カウンタ値との差分を、回転量として算出する。制御部S5は、算出した回転量を示す回転量情報をPWM変換部S6に出力する。その結果、PWM変換部S6は、取得した回転量情報が示す回転量だけロータを回転させるためのPWM信号を生成し、生成したPWM信号をモータMに出力する。これにより、制御部S5は、目標停止位置までロータを回転させる(ステップS150)。図2では、ステップS150の処理を、「回転」によって示している。 Next, the control unit S5 reads from the storage unit H1 the movement amount counter value information stored in advance in the storage unit H1 (that is, the movement amount counter value information indicating the value of the movement amount counter indicating the current position). Then, the control unit S5 calculates the difference between the movement amount counter value indicated by the read movement amount counter value information and the target stop position counter value indicated by the target stop position counter value information acquired from the instruction extraction unit S2 in step S140. , is calculated as the amount of rotation. The control section S5 outputs rotation amount information indicating the calculated rotation amount to the PWM conversion section S6. As a result, the PWM converter S6 generates a PWM signal for rotating the rotor by the amount of rotation indicated by the obtained rotation amount information, and outputs the generated PWM signal to the motor M. Thereby, the controller S5 rotates the rotor to the target stop position (step S150). In FIG. 2, the process of step S150 is indicated by "rotation".
 以上のステップS110~ステップS150の処理が、制御装置10が駆動制御を行う処理である。 The process of steps S110 to S150 described above is the process for the control device 10 to perform drive control.
 ステップS110~ステップS150の処理によって駆動制御が行われた後、制御部S5は、モータMの制御を終了するか否かを判定する(ステップS160)。ここで、制御部S5は、例えば、情報処理装置20からモータMの制御の終了を指示する制御信号を通信部S1が受信している場合、モータMの制御を終了すると判定する。また、制御部S5は、例えば、当該制御信号を通信部S1が受信していない場合、モータMの制御を終了しないと判定する。 After the drive control is performed by the processing of steps S110 to S150, the control unit S5 determines whether or not to end the control of the motor M (step S160). Here, for example, the control unit S5 determines to end the control of the motor M when the communication unit S1 receives a control signal instructing to end the control of the motor M from the information processing device 20 . Further, the control unit S5 determines not to end the control of the motor M, for example, when the communication unit S1 has not received the control signal.
 制御部S5は、モータMの制御を終了すると判定した場合(ステップS160-YES)、図2に示したフローチャートの処理を終了する。 When the control unit S5 determines to end the control of the motor M (step S160-YES), it ends the processing of the flowchart shown in FIG.
 一方、制御部S5は、モータMの制御を終了しないと判定した場合(ステップS160-NO)、所定の周期が経過したか否かを判定する(ステップS170)。ここで、ステップS170における計時は、例えば、ステップS150の処理が行われたタイミングを最初のタイミングとして、その後、所定の周期が経過する毎に、繰り返し開始される。すなわち、ステップS170の判定は、最初のタイミング、又は、前回の所定の周期の計時が終わったタイミングから所定の周期が経過したか否かの判定である。 On the other hand, when the control unit S5 determines not to end the control of the motor M (step S160-NO), it determines whether or not a predetermined period has elapsed (step S170). Here, the timing in step S170 is started repeatedly every time a predetermined period elapses, starting from the timing at which the process of step S150 is performed, for example. That is, the determination in step S170 is a determination as to whether or not a predetermined period has elapsed from the initial timing or the timing at which the timing of the previous predetermined period ended.
 制御部S5は、所定の周期が経過していないと判定した場合(ステップS170-NO)、ステップS160に遷移し、モータMの制御を終了するか否かを再び判定する。 When the control unit S5 determines that the predetermined period has not elapsed (step S170-NO), it transitions to step S160 and determines again whether or not to end the control of the motor M.
 一方、制御部S5は、所定の周期が経過していると判定した場合(ステップS170-YES)、ロータの回転方向と逆の方向に向かって現在位置が目標停止位置からずれているか否かを判定する(ステップS180)。すなわち、制御部S5は、当該場合、現在位置が目標停止位置の手前であるか否かを判定する。ここで、図2では、現在位置を、CPによって示している。また、図2では、目標停止位置を、TPによって示している。そして、図2では、ステップS180の処理を、「TP>CP?」によって示している。制御部S5は、例えば、前回特定した移動量カウンタの値と、今回特定した移動量カウンタの値とを比較し、ロータの回転方向を特定する。制御部S5は、特定した回転方向を第1方向とし、特定した第1方向と逆の回転方向を第2方向として特定する。そして、制御部S5は、現在位置を示す移動量カウンタの値と、目標停止位置カウンタ値とに基づいて、特定した第2方向に向かって現在位置が目標停止位置からずれているか否かを判定する。例えば、制御部S5は、第1方向が、移動量カウンタの値が増加していく回転方向(すなわち、正転方向)であった場合、移動量カウンタの値より目標停止位置カウンタ値が大きければ、特定した第2方向に向かって現在位置が目標停止位置からずれていると判定する。また、例えば、制御部S5は、当該場合、移動量カウンタの値より目標停止位置カウンタ値以下であれば、特定した第2方向に向かって現在位置が目標停止位置からずれていないと判定する。また、例えば、制御部S5は、第1方向が、移動量カウンタの値が減少していく回転方向であった場合、移動量カウンタの値より目標停止位置カウンタの値が小さければ、特定した第2方向に向かって現在位置が目標停止位置からずれていると判定する。また、例えば、制御部S5は、当該場合、移動量カウンタの値より目標停止位置カウンタの値以上であれば、特定した第2方向に向かって現在位置が目標停止位置からずれていないと判定する。ここで、特定した第2方向に向かって現在位置が目標停止位置からずれているとは、グリルシャッター、ひいてはロータを第2方向へ回転させるような負荷が走行風などの外因によって与えられたことを意味する。 On the other hand, if the controller S5 determines that the predetermined period has passed (step S170-YES), it determines whether the current position is deviated from the target stop position in the direction opposite to the rotating direction of the rotor. Determine (step S180). That is, in this case, the controller S5 determines whether or not the current position is before the target stop position. Here, in FIG. 2, the current position is indicated by CP. Moreover, in FIG. 2, the target stop position is indicated by TP. In FIG. 2, the process of step S180 is indicated by "TP>CP?". The control unit S5, for example, compares the value of the movement amount counter identified last time with the value of the movement amount counter identified this time, and identifies the rotation direction of the rotor. The control unit S5 identifies the specified rotation direction as the first direction, and specifies the rotation direction opposite to the specified first direction as the second direction. Then, the control unit S5 determines whether or not the current position deviates from the target stop position in the specified second direction based on the value of the movement amount counter indicating the current position and the target stop position counter value. do. For example, when the first direction is the direction of rotation in which the value of the movement amount counter increases (that is, the forward rotation direction), if the target stop position counter value is greater than the value of the movement amount counter, , it is determined that the current position deviates from the target stop position in the specified second direction. Further, for example, in this case, if the movement amount counter value is equal to or less than the target stop position counter value, the control unit S5 determines that the current position does not deviate from the target stop position in the specified second direction. Further, for example, when the first direction is the rotation direction in which the value of the movement amount counter decreases, if the value of the target stop position counter is smaller than the value of the movement amount counter, the control unit S5 It is determined that the current position deviates from the target stop position in two directions. Further, for example, in this case, if the value of the movement amount counter is greater than the value of the target stop position counter, the control unit S5 determines that the current position does not deviate from the target stop position in the specified second direction. . Here, the fact that the current position deviates from the target stop position in the specified second direction means that a load that rotates the grille shutter and, in turn, the rotor in the second direction is applied by an external factor such as running wind. means
 制御部S5は、現在位置が目標停止位置から第2方向にずれていると判定した場合(ステップS180-YES)、ロータの回転方向を第1方向に設定する(ステップS190)。すなわち、ステップS190では、制御部S5は、ずれをもたらした負荷を打ち消すべく、この負荷と逆方向の負荷をモータMが発生させるようにする。ここで、ロータの回転方向を第1方向又は第2方向に設定する方法は、既知の方法であってもよく、これから開発される方法であってもよい。このため、ロータの回転方向を第1方向又は第2方向に設定する方法については、詳細な説明を省略する。 When the controller S5 determines that the current position is shifted in the second direction from the target stop position (step S180-YES), it sets the rotation direction of the rotor to the first direction (step S190). That is, in step S190, the controller S5 causes the motor M to generate a load in the opposite direction to cancel the load that caused the deviation. Here, the method of setting the rotation direction of the rotor to the first direction or the second direction may be a known method or a method to be developed in the future. Therefore, a detailed description of the method for setting the rotation direction of the rotor to the first direction or the second direction will be omitted.
 次に、制御部S5は、現在位置を示す移動量カウンタの値と、目標停止位置カウンタ値との差分を、回転量として算出する(ステップS200)。 Next, the control unit S5 calculates the difference between the value of the movement amount counter indicating the current position and the value of the target stop position counter as the amount of rotation (step S200).
 制御部S5は、ステップS200において算出した回転量に基づいて、デューティ比を決定する(ステップS210)。ここで、ステップS210の処理について説明する。制御部S5は、記憶部H1に予め記憶された対応情報を記憶部H1から読み出す。対応情報は、モータMのロータに掛かる負荷の大きさを示す負荷値情報と、モータMへ流す電流の大きさを示す電流値情報とが対応付けられた情報のことである。ここで、負荷値情報は、例えば、回転位置と目標停止位置とのずれの大きさによって負荷の大きさを示す情報である。この一例において、このずれの大きさは、パルス信号のパルスの数によって表される。また、電流値情報は、例えば、PWM制御におけるデューティ比によって、モータMへ流す電流の大きさを示す情報である。このため、制御部S5は、ステップS200において算出した回転量、すなわち、パルス信号のパルスの数に対応する電流の大きさを、デューティ比として特定することができる。制御部S5は、特定したデューティ比を、PWM変換部S6により出力させるPWM信号のデューティ比として設定する。 The control unit S5 determines the duty ratio based on the amount of rotation calculated in step S200 (step S210). Here, the processing of step S210 will be described. The control unit S5 reads the correspondence information pre-stored in the storage unit H1 from the storage unit H1. The correspondence information is information in which load value information indicating the magnitude of the load applied to the rotor of the motor M and current value information indicating the magnitude of the current flowing to the motor M are associated with each other. Here, the load value information is, for example, information indicating the magnitude of the load based on the magnitude of the deviation between the rotational position and the target stop position. In this example, the magnitude of this deviation is represented by the number of pulses in the pulse signal. Further, the current value information is information indicating the magnitude of the current to be supplied to the motor M by, for example, the duty ratio in PWM control. Therefore, the controller S5 can specify the amount of rotation calculated in step S200, that is, the magnitude of the current corresponding to the number of pulses of the pulse signal as the duty ratio. The control unit S5 sets the specified duty ratio as the duty ratio of the PWM signal output by the PWM conversion unit S6.
 図3は、対応情報の一例を示す図である。図3に示したグラフの横軸は、回転位置と目標停止位置とのずれの大きさを示している。また、図3では、この大きさを、「移動距離」によって示している。回転位置と目標停止位置とのずれは、回転位置を示す移動量カウンタの値と、目標停止位置カウンタ値との差分によって表すことができる。そして、この差分は、ロータの回転した角度とパルスの数との対応関係に基づいて、パルスの数に変換することができる。このため、図3では、当該ずれの大きさを、パルスの数によって示している。当該グラフの縦軸は、PWM信号のパルス幅、すなわち、デューティ比を示している。そして、当該グラフ上にプロットされた9つの点は、事前の実験において、ロータに加える負荷を9段階に変えながら、ロータに加わる負荷の大きさと、モータMのトルクの大きさとが釣り合う場合における回転位置とモータMに供給されるPWM信号のデューティ比とをプロットした点である。例えば、ある重みの錘によってロータを基準位置から回転させた場合、且つ、あるトルクをモータMに発生させた場合、当該重みと当該トルクとが釣り合う回転位置までロータが基準位置から回転する。そして、当該重みと当該トルクとが釣り合う回転位置において、ロータの回転が止まる。このため、止まったロータの回転位置と基準位置との差は、当該トルクに逆らってロータを回転させた負荷の大きさと一対一に対応付けることができる。すなわち、当該グラフの横軸は、ロータに加えた負荷の大きさを示していると換言することができる。そして、当該重みと当該トルクとが釣り合っている場合においてモータMに供給されているPWM信号のデューティ比は、当該場合においてモータMに流れている電流の大きさと一対一に対応する。以上のことから、対応情報は、より具体的には、ロータに加わる負荷の大きさを示す負荷値情報と、ロータに加わる負荷の大きさと同じ大きさのトルクを発生させる場合においてモータMへ流す電流の大きさを示す電流値情報とが対応付けられた情報である。また、これら9つの点を直線によって順に繋いだ線が、当該グラフ上の折れ線である。なお、負荷は、ロータを正転方向に回転させる負荷と、ロータを逆転方向に回転させる負荷とが存在する。本実施形態における対応情報では、ある大きさの負荷に対応するデューティ比は、ロータを正転方向に回転させる当該大きさの負荷に対応するデューティ比と、ロータを逆転方向に回転させる当該大きさの負荷に対応するデューティ比との平均値を用いている。しかしながら、対応情報では、これら2つの種類の負荷を別々に取り扱ってもよく、これら2つの種類の負荷について他の取り扱い方をしてもよい。 FIG. 3 is a diagram showing an example of correspondence information. The horizontal axis of the graph shown in FIG. 3 indicates the magnitude of deviation between the rotational position and the target stop position. In addition, in FIG. 3, this magnitude is indicated by "movement distance". The deviation between the rotational position and the target stop position can be represented by the difference between the value of the movement amount counter indicating the rotational position and the target stop position counter value. This difference can then be converted into the number of pulses based on the correspondence between the angle of rotation of the rotor and the number of pulses. Therefore, in FIG. 3, the magnitude of the shift is indicated by the number of pulses. The vertical axis of the graph indicates the pulse width of the PWM signal, that is, the duty ratio. The nine points plotted on the graph correspond to the rotation when the magnitude of the load applied to the rotor and the magnitude of the torque of the motor M are balanced while changing the load applied to the rotor in nine steps in a preliminary experiment. It is a plot of the position and the duty ratio of the PWM signal supplied to the motor M. FIG. For example, when the rotor is rotated from the reference position by a weight having a certain weight and the motor M is caused to generate a certain torque, the rotor rotates from the reference position to a rotation position where the weight and the torque are balanced. Then, the rotation of the rotor stops at the rotational position where the weight and the torque are balanced. Therefore, the difference between the rotational position of the stopped rotor and the reference position can be associated one-to-one with the magnitude of the load that causes the rotor to rotate against the torque. That is, it can be said that the horizontal axis of the graph indicates the magnitude of the load applied to the rotor. When the weight and the torque are balanced, the duty ratio of the PWM signal supplied to the motor M has a one-to-one correspondence with the magnitude of the current flowing through the motor M in that case. From the above, more specifically, the corresponding information includes load value information indicating the magnitude of the load applied to the rotor, and torque applied to the motor M in the case of generating torque having the same magnitude as the magnitude of the load applied to the rotor. This information is associated with current value information indicating the magnitude of the current. A line connecting these nine points with a straight line in turn is a polygonal line on the graph. The load includes a load that rotates the rotor in the normal direction and a load that rotates the rotor in the reverse direction. In the correspondence information in this embodiment, the duty ratio corresponding to a load of a certain magnitude is the duty ratio corresponding to a load of that magnitude that causes the rotor to rotate in the forward rotation direction, and the duty ratio that corresponds to the load of that magnitude to rotate the rotor in the reverse rotation direction. The average value of the duty ratio corresponding to the load is used. However, the correspondence information may handle these two types of loads separately, or may handle these two types of loads in other ways.
 ステップS210において、制御部S5は、ステップS200において算出した回転量を、パルスの数に変換する。そして、制御部S5は、変換したパルスの数と、記憶部H1から読み出した対応情報とに基づいて、当該パルスの数に対応する負荷の大きさに対応するデューティ比を、モータMに流す電流の大きさとして決定する。図3に示したグラフを見て分かるように、制御部S5は、対応情報に基づいて、現在位置が目標停止位置からずれている場合、現在位置と目標停止位置とのずれをもたらした負荷の大きさが大きいほど、デューティ比を大きくする、すなわち、モータMへ流す電流を大きくする。そして、制御部S5は、当該負荷の大きさが大きくなるに従って、デューティ比の大きさを、二次関数的に大きくする。また、制御部S5は、当該負荷の大きさがゼロ、すなわち、当該ずれがない場合、デューティ比を0にし、モータMへ流す電流をゼロにする。なお、対応情報を示すグラフは、当該ずれの大きさが大きくなるに従って、二次関数よりも高次の関数、指数関数等によって表される曲線に沿って大きくなる構成であってもよい。 At step S210, the controller S5 converts the rotation amount calculated at step S200 into the number of pulses. Then, based on the converted number of pulses and the correspondence information read from the storage unit H1, the control unit S5 sets the duty ratio corresponding to the magnitude of the load corresponding to the number of pulses to the current flowing through the motor M. is determined as the size of As can be seen from the graph shown in FIG. 3, if the current position is deviated from the target stop position based on the correspondence information, the control unit S5 determines the load that caused the deviation between the current position and the target stop position. The greater the magnitude, the greater the duty ratio, that is, the greater the current that flows to the motor M. Then, the controller S5 quadratically increases the magnitude of the duty ratio as the magnitude of the load increases. Further, when the magnitude of the load is zero, that is, when there is no deviation, the control section S5 sets the duty ratio to 0 and sets the current flowing to the motor M to zero. The graph showing the correspondence information may be configured to increase along a curve represented by a higher-order function than a quadratic function, an exponential function, or the like, as the magnitude of the deviation increases.
 ステップS210の処理が行われた後、制御部S5は、ステップS210において決定したデューティ比をPWM変換部S6により生成されるPWM信号のデューティ比として設定する(ステップS220)。これにより、PWM変換部S6は、制御部S5により設定されたデューティ比のPWM信号を生成し、生成したPWM信号をモータMに出力する。その結果、現在位置は、保持される。ステップS220の処理が行われた後、制御部S5は、ステップS160に遷移し、モータMの制御を終了するか否かを再び判定する。 After the processing of step S210 is performed, the control unit S5 sets the duty ratio determined in step S210 as the duty ratio of the PWM signal generated by the PWM conversion unit S6 (step S220). As a result, the PWM conversion section S6 generates a PWM signal having the duty ratio set by the control section S5 and outputs the generated PWM signal to the motor M. As a result, the current position is retained. After the processing of step S220 is performed, the control unit S5 proceeds to step S160 and determines again whether or not to end the control of the motor M.
 一方、制御部S5は、現在位置が目標停止位置から第2方向にずれていないと判定した場合(ステップS180-NO)、現在位置が目標停止位置から第1方向にずれているか否かを判定する(ステップS230)。すなわち、制御部S5は、当該場合、目標停止位置が現在位置の手前であるか否かを判定する。そして、図2では、ステップS230の処理を、「TP<CP?」によって示している。制御部S5は、例えば、ステップS180において特定した第1方向に向かって現在位置が目標停止位置からずれているか否かを判定する。例えば、制御部S5は、第1方向が、移動量カウンタの値が増加していく回転方向(すなわち、正転方向)であった場合、移動量カウンタの値より目標停止位置カウンタ値が小さければ、特定した第1方向に向かって現在位置が目標停止位置からずれていると判定する。また、例えば、制御部S5は、当該場合、移動量カウンタの値より目標停止位置カウンタ値以上であれば、特定した第1方向に向かって現在位置が目標停止位置からずれていないと判定する。また、例えば、制御部S5は、第1方向が、移動量カウンタの値が減少していく回転方向であった場合、移動量カウンタの値より目標停止位置カウンタの値が大きければ、特定した第1方向に向かって現在位置が目標停止位置からずれていると判定する。また、例えば、制御部S5は、当該場合、移動量カウンタの値より目標停止位置カウンタの値以下であれば、特定した第1方向に向かって現在位置が目標停止位置からずれていないと判定する。ここで、特定した第1方向に向かって現在位置が目標停止位置からずれているとは、グリルシャッター、ひいてはロータを第1方向へ回転させるような負荷が走行風などの外因によって与えられたことを意味する。 On the other hand, when the control unit S5 determines that the current position has not deviated from the target stop position in the second direction (step S180-NO), it determines whether the current position has deviated from the target stop position in the first direction. (step S230). That is, in this case, the control unit S5 determines whether or not the target stop position is before the current position. In FIG. 2, the process of step S230 is indicated by "TP<CP?". The controller S5, for example, determines whether or not the current position deviates from the target stop position in the first direction specified in step S180. For example, if the first direction is the direction of rotation in which the value of the movement amount counter increases (that is, the forward rotation direction), the control unit S5 determines that if the target stop position counter value is smaller than the value of the movement amount counter, , it is determined that the current position deviates from the target stop position in the specified first direction. Also, for example, in this case, if the value of the movement amount counter is equal to or greater than the target stop position counter value, the control unit S5 determines that the current position does not deviate from the target stop position in the specified first direction. Further, for example, when the first direction is the rotation direction in which the value of the movement amount counter decreases, if the value of the target stop position counter is larger than the value of the movement amount counter, the control unit S5 It is determined that the current position deviates from the target stop position in one direction. Further, for example, in this case, if the value of the movement amount counter is less than the value of the target stop position counter, the control unit S5 determines that the current position does not deviate from the target stop position in the specified first direction. . Here, the fact that the current position deviates from the target stop position in the specified first direction means that a load that rotates the grille shutter and, in turn, the rotor in the first direction is applied by an external factor such as running wind. means
 制御部S5は、現在位置が目標停止位置から第1方向にずれていると判定した場合(ステップS230-YES)、ロータの回転方向を第2方向に設定する(ステップS240)。すなわち、ステップS240では、制御部S5は、ずれをもたらした負荷を打ち消すべく、この負荷と逆方向の負荷をモータMが発生させるようにする。 When the controller S5 determines that the current position is deviated in the first direction from the target stop position (step S230-YES), it sets the rotation direction of the rotor to the second direction (step S240). That is, in step S240, the controller S5 causes the motor M to generate a load in the opposite direction to cancel the load that caused the deviation.
 次に、制御部S5は、現在位置を示す移動量カウンタの値と、目標停止位置カウンタ値との差分を、回転量として算出する(ステップS250)。 Next, the control unit S5 calculates the difference between the value of the movement amount counter indicating the current position and the value of the target stop position counter as the amount of rotation (step S250).
 ステップS250の処理が行われた後、制御部S5は、ステップS210に遷移し、ステップS200において算出した回転量に代えて、ステップS250において算出した回転量に基づいて、デューティ比を決定する。 After the process of step S250 is performed, the control unit S5 transitions to step S210 and determines the duty ratio based on the rotation amount calculated in step S250 instead of the rotation amount calculated in step S200.
 一方、制御部S5は、現在位置が目標停止位置から第1方向にずれていないと判定した場合(ステップS230-NO)、PWM変換部S6により生成されるPWM信号のデューティ比を0に設定し、モータMに電流を流さない(ステップS260)。図2では、ステップS260の処理を、「電流供給停止」によって示している。ステップS260の処理が行われた後、制御部S5は、ステップS160に遷移し、モータMの制御を終了するか否かを再び判定する。なお、制御部S5は、ステップS260の処理を、対応情報に基づいて行ってもよく、対応情報を使わずに行ってもよい。 On the other hand, when the controller S5 determines that the current position is not shifted in the first direction from the target stop position (step S230-NO), it sets the duty ratio of the PWM signal generated by the PWM converter S6 to 0. , no current is applied to the motor M (step S260). In FIG. 2, the process of step S260 is indicated by "current supply stop". After the processing of step S260 is performed, the control unit S5 proceeds to step S160 and determines again whether or not to end the control of the motor M. Note that the control unit S5 may perform the process of step S260 based on the correspondence information, or may perform the process without using the correspondence information.
 以上のステップS160~ステップS260の処理が、制御装置10が保持制御を行う処理である。 The processing from step S160 to step S260 described above is the processing in which the control device 10 performs holding control.
 以上のように、制御装置10は、目標停止位置までロータを回転させる駆動制御が行われた後、保持制御を行う。具体的には、制御装置10は、保持制御として、回転位置が目標停止位置からずれていない場合、モータMへの電流を流さず、回転位置が目標停止位置からずれている場合、回転位置と目標停止位置とのずれをもたらした負荷の大きさに応じた電流をモータMへ流し、回転位置を保持する制御を行う。これにより、制御装置10は、回転位置を保持するための消費電力を低減することができる。 As described above, the control device 10 performs holding control after performing drive control for rotating the rotor to the target stop position. Specifically, as the holding control, the control device 10 does not apply current to the motor M when the rotational position is not deviated from the target stop position, and when the rotational position is deviated from the target stop position, the rotational position is A current corresponding to the magnitude of the load that caused the deviation from the target stop position is applied to the motor M, and control is performed to hold the rotational position. Thereby, the control device 10 can reduce the power consumption for holding the rotational position.
 また、制御装置10は、駆動制御が行われた後、所定の周期が経過する毎に、保持制御を繰り返し行う。これにより、制御装置10は、ハンチングを起こすことなく、前述の所定の範囲内において現在位置を保持し続けることができる。また、これにより、制御装置10は、ロータに加わる負荷が減少した場合、ハンチングを伴うことなく、現在位置を目標停止位置に近づけることができる。例えば、ある負荷が掛かった時に、負荷の掛かり始めに所定の周期が到来すると、見かけ上は移動量が少なく見えるので低いデューティ比が設定され、次の周期が到来すると、さらに移動量が増えているので高いデューティ比が設定され、これが繰り返されることで、現在位置が保持された状態となる。 In addition, the control device 10 repeats the holding control every time a predetermined period elapses after the drive control is performed. As a result, the control device 10 can continue to hold the current position within the aforementioned predetermined range without causing hunting. Further, as a result, when the load applied to the rotor is reduced, the control device 10 can bring the current position closer to the target stop position without hunting. For example, when a certain load is applied, when a predetermined cycle arrives at the beginning of load application, the amount of movement appears to be small, so a low duty ratio is set, and when the next cycle arrives, the amount of movement increases further. Therefore, a high duty ratio is set, and by repeating this, the current position is held.
 図4は、制御装置10が保持制御により回転位置を保持する場合と、制御装置10が一相通電により回転位置を保持する場合とのそれぞれにおける消費電流の大きさの一例を示す図である。 FIG. 4 is a diagram showing an example of current consumption when the control device 10 holds the rotational position by holding control and when the control device 10 holds the rotational position by one-phase energization.
 例えば、図4に示したテーブルの一番上のレコードに含まれる負荷は、14.7mNmである。この負荷がロータに加えられている場合において、回転位置を一相通電により保持する場合、回転位置を保持している間の消費電流の大きさは、0.29Aである。一方、この負荷がロータに加えられている場合において、回転位置を保持制御により保持する場合、回転位置を保持している間の消費電流の大きさは、一相通電の場合と同じ、0.29Aである。 For example, the load included in the top record of the table shown in FIG. 4 is 14.7 mNm. When this load is applied to the rotor and the rotational position is held by one-phase energization, the amount of current consumed while the rotational position is held is 0.29A. On the other hand, when this load is applied to the rotor and the rotational position is held by holding control, the magnitude of current consumption while holding the rotational position is the same as in the case of one-phase energization, ie, 0.5. 29A.
 しかしながら、例えば、図4に示したテーブルの上から2番目のレコードに含まれる負荷は、9.8mNmである。この負荷がロータに加えられている場合において、回転位置を一相通電により保持する場合、回転位置を保持している間の消費電流の大きさは、変わらずに0.29Aである。一方、この負荷がロータに加えられている場合において、回転位置を保持制御により保持する場合、回転位置を保持している間の消費電流の大きさは、一相通電の場合よりも小さい0.16Aである。 However, for example, the load included in the second record from the top of the table shown in FIG. 4 is 9.8 mNm. When this load is applied to the rotor and the rotational position is held by one-phase energization, the magnitude of current consumption while the rotational position is held remains 0.29A. On the other hand, when this load is applied to the rotor and the rotational position is held by holding control, the magnitude of current consumption while holding the rotational position is 0.00, which is smaller than in the case of one-phase energization. 16A.
 更に、例えば、図4に示したテーブルの上から3番目のレコードに含まれる負荷は、4.9mNmである。この負荷がロータに加えられている場合において、回転位置を一相通電により保持する場合、回転位置を保持している間の消費電流の大きさは、変わらずに0.29Aである。一方、この負荷がロータに加えられている場合において、回転位置を保持制御により保持する場合、回転位置を保持している間の消費電流の大きさは、一相通電の場合よりも更に小さい0.06Aである。 Further, for example, the load included in the third record from the top of the table shown in FIG. 4 is 4.9 mNm. When this load is applied to the rotor and the rotational position is held by one-phase energization, the magnitude of current consumption while the rotational position is held remains 0.29A. On the other hand, when this load is applied to the rotor and the rotational position is held by holding control, the magnitude of current consumption while holding the rotational position is 0, which is even smaller than in the case of one-phase energization. .06A.
 そして、例えば、図4に示したテーブルの上から4番目のレコードに含まれる負荷は、0mNmである。この場合、ロータには、負荷が加えられていない。負荷がロータに加えられていない場合においても、回転位置を一相通電により保持する場合、回転位置を保持している間の消費電流の大きさは、変わらずに0.29Aである。一方、負荷がロータに加えられていない場合において、回転位置を保持制御により保持する場合、回転位置を保持している間の消費電流の大きさは、0.02Aである。この0.02Aは、ホールセンサを駆動維持するためにホールセンサに流れる電流であり、モータMに流れる電流はゼロとなる。つまり、制御装置10は、この場合、モータMへ電流を流していない。 Then, for example, the load included in the fourth record from the top of the table shown in FIG. 4 is 0 mNm. In this case the rotor is unloaded. Even when no load is applied to the rotor, when the rotational position is held by the one-phase energization, the current consumption while holding the rotational position remains unchanged at 0.29A. On the other hand, when no load is applied to the rotor and the rotational position is held by holding control, the amount of current consumed while the rotational position is held is 0.02A. This 0.02 A is the current that flows through the Hall sensor to keep the Hall sensor driven, and the current that flows through the motor M is zero. That is, the control device 10 does not apply current to the motor M in this case.
 以上のことから、制御装置10は、ロータに加わる負荷の大きさが小さいほど、ロータを目標停止位置又は目標停止位置の近くの位置において保持する消費電力を、小さくすることができる。すなわち、制御装置10は、回転位置を保持するための消費電力を低減することができる。 From the above, the smaller the magnitude of the load applied to the rotor, the smaller the power consumption for holding the rotor at or near the target stop position. That is, the control device 10 can reduce power consumption for holding the rotational position.
 なお、制御装置10は、繰り返し行われる保持制御において、現在位置が目標停止位置からずれており、且つ、現在位置が変化していないと制御部S5が所定の回数以上判定した場合、使用する対応情報を、第2対応情報に変更する構成であってもよい。第2対応情報は、例えば、図3に示した対応情報のグラフにおける折れ線を、最小値と最大値を固定したまま、Y軸の正方向に向かって移動させたような折れ線のグラフによって表される対応情報のことである。これにより、制御装置10は、保持制御において、現在位置が目標停止位置に近づきやすくすることができる。その結果、制御装置10は、現在位置を目標停止位置のより近くに保持することができる。なお、所定の回数は、例えば、3回であるが、3回より少ない回数であってもよく、3回より多い回数であってもよい。 It should be noted that, in the holding control that is repeatedly performed, if the control unit S5 determines that the current position is deviated from the target stop position and the current position has not changed more than a predetermined number of times, the control device 10 uses The information may be changed to the second correspondence information. The second correspondence information is represented by, for example, a line graph in which the line in the graph of the correspondence information shown in FIG. 3 is moved in the positive direction of the Y-axis while the minimum and maximum values are fixed. It is the correspondence information that As a result, the control device 10 can make it easier for the current position to approach the target stop position in the holding control. As a result, the control device 10 can keep the current position closer to the target stop position. The predetermined number of times is, for example, three times, but it may be less than three times or more than three times.
 また、制御装置10は、繰り返し行われる保持制御において、現在位置が目標停止位置からずれており、且つ、現在位置が変化していないと制御部S5が所定の回数以上判定した場合、PWM変換部S6により生成されるPWM信号のデューティ比を、所定の割合増大させる構成であってもよい。所定の割合は、例えば、10%であるが、10%よりも小さい割合であってもよく、10%より大きい割合であってもよい。 Further, when the control unit S5 determines that the current position is deviated from the target stop position and the current position has not changed in the holding control that is repeatedly performed, the PWM conversion unit The duty ratio of the PWM signal generated by S6 may be increased by a predetermined rate. The predetermined percentage is, for example, 10%, but it may be less than 10% or greater than 10%.
 以上のように、実施形態に係る制御装置(上記において説明した例では、制御装置10)は、三相ブラシレスのモータ(上記において説明した例では、モータM)を制御する制御部(上記において説明した例では、制御部S5)を備え、制御部は、モータのロータを停止させる目標となる目標停止位置までロータを回転させる駆動制御が行われた後、保持制御を行い、保持制御は、ロータの回転位置が目標停止位置からずれていない場合、モータへの電流を流さず、当該回転位置が目標停止位置からずれている場合、当該回転位置と目標停止位置とのずれをもたらした負荷の大きさに応じた電流をモータへ流し、当該回転位置を目標停止位置に保持する制御である。これにより、制御装置は、モータの回転位置を保持するための消費電力を低減することができる。 As described above, the control device according to the embodiment (control device 10 in the example described above) controls the three-phase brushless motor (motor M in the example described above). In this example, a control unit S5) is provided, and after performing drive control for rotating the rotor to a target stop position, which is a target for stopping the rotor of the motor, the control unit performs holding control. When the rotational position of is not deviated from the target stop position, no current is applied to the motor, and when the rotational position is deviated from the target stop position, the magnitude of the load that caused the deviation In this control, a current is supplied to the motor according to the state of the motor, and the rotational position is held at the target stop position. Thereby, the control device can reduce the power consumption for holding the rotational position of the motor.
 また、制御装置では、制御部は、駆動制御が行われた後、所定の周期(上記において説明した例では、10ミリ秒)が経過する毎に、保持制御を繰り返し行う、構成が用いられてもよい。 Further, in the control device, the control unit repeats the holding control every time a predetermined period (10 milliseconds in the example described above) elapses after the drive control is performed. good too.
 また、制御装置では、制御部は、保持制御において、ロータの回転位置が目標停止位置からずれている場合、負荷の大きさが大きいほど、モータへ流す電流を大きくする、構成が用いられてもよい。 Further, in the control device, in the holding control, when the rotational position of the rotor deviates from the target stop position, the greater the magnitude of the load, the greater the current supplied to the motor. good.
 また、制御装置では、負荷の大きさを示す負荷値情報と、モータへ流す電流の大きさを示す電流値情報とが対応付けられた対応情報が記憶された記憶部(上記において説明した例では、記憶部H1)を更に備え、制御部は、対応情報に基づいて、保持制御を行う、構成が用いられてもよい。 Further, in the control device, the storage unit (in the example described above, , a storage unit H1), and the control unit performs holding control based on the correspondence information.
 また、制御装置では、制御部は、PWM制御によってモータを制御し、電流値情報は、デューティ比によって、モータへ流す電流の大きさを示す、構成が用いられてもよい。 Also, in the control device, a configuration may be used in which the control unit controls the motor by PWM control, and the current value information indicates the magnitude of the current to be supplied to the motor according to the duty ratio.
 また、制御装置では、負荷値情報は、ロータの回転位置と目標停止位置とのずれの大きさによって、負荷の大きさを示す、構成が用いられてもよい。 Also, in the control device, a configuration may be used in which the load value information indicates the magnitude of the load according to the magnitude of the deviation between the rotational position of the rotor and the target stop position.
 また、制御装置では、制御部は、ロータの回転位置を検出する検出部(上記において説明した例では、検出部MS1)からの出力信号に基づいて、ロータの回転位置を特定する、構成が用いられてもよい。 Further, in the control device, the control unit uses a configuration that identifies the rotational position of the rotor based on the output signal from the detection unit that detects the rotational position of the rotor (the detection unit MS1 in the example described above). may be
 また、制御装置では、検出部は、ホールセンサ(上記において説明した例では、ホールセンサSU、ホールセンサSV、ホールセンサSW)を有する、構成が用いられてもよい。 In addition, in the control device, a configuration may be used in which the detection unit has a Hall sensor (in the example described above, Hall sensor SU, Hall sensor SV, and Hall sensor SW).
 以上、この開示の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この開示の要旨を逸脱しない限り、変更、置換、削除等されてもよい。 The embodiments of this disclosure have been described in detail above with reference to the drawings, but the specific configuration is not limited to these embodiments, and modifications, replacements, deletions, etc., can be made without departing from the gist of this disclosure. may be
 また、以上に説明した装置(例えば、制御装置10、情報処理装置20等)における任意の構成部の機能を実現するためのプログラムを、コンピューター読み取り可能な記録媒体に記録し、そのプログラムをコンピューターシステムに読み込ませて実行するようにしてもよい。なお、ここでいう「コンピューターシステム」とは、OS(Operating System)や周辺機器等のハードウェアを含むものとする。また、「コンピューター読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD(Compact Disk)-ROM等の可搬媒体、コンピューターシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピューター読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバーやクライアントとなるコンピューターシステム内部の揮発性メモリー(RAM)のように、一定時間プログラムを保持しているものも含むものとする。 In addition, a program for realizing functions of arbitrary components in the above-described devices (eg, control device 10, information processing device 20, etc.) is recorded in a computer-readable recording medium, and the program is stored in a computer system. You can also load and execute it. The term "computer system" as used herein includes hardware such as an OS (Operating System) and peripheral devices. In addition, "computer-readable recording medium" refers to portable media such as flexible disks, magneto-optical disks, ROM, CD (Compact Disk)-ROM, and storage devices such as hard disks built into computer systems. . In addition, "computer-readable recording medium" means a volatile memory (RAM) inside a computer system that acts as a server or client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. , includes those that hold the program for a certain period of time.
 また、上記のプログラムは、このプログラムを記憶装置等に格納したコンピューターシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピューターシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
 また、上記のプログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、上記のプログラムは、前述した機能をコンピューターシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
Moreover, the above program may be transmitted from a computer system storing this program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in a transmission medium. Here, the "transmission medium" for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
Also, the above program may be for realizing part of the functions described above. Furthermore, the above program may be a so-called difference file (difference program) that can realize the functions described above in combination with a program already recorded in the computer system.
 なお、上記の実施形態では、回転位置と目標停止位置とのずれをもたらした負荷を相殺するべく、当該負荷と逆方向の負荷をモータMにより発生させる際に、ホールセンサにより検出された回転位置の移動量を基に、外因によりロータに与えられた負荷を推定し、この負荷を相殺する方向へ当該負荷と同等の大きさの負荷をモータMにより発生させるようにしたが、外因によりロータに与えられた負荷を直接測定したり、回転位置の移動量以外の他の指標を基に推定したりしてもよい。 In the above-described embodiment, in order to offset the load that caused the deviation between the rotational position and the target stop position, when the motor M generates a load in the opposite direction to the load, the rotational position detected by the Hall sensor Based on the movement amount of , the load applied to the rotor by an external factor is estimated, and a load of the same magnitude as the load is generated by the motor M in a direction to offset this load. The applied load may be directly measured or estimated based on other indexes than the amount of movement of the rotational position.
1…制御システム、10…制御装置、20…情報処理装置、191…過電流検出部、192…温度保護部、CC…電流制限信号、DV1…電源電圧、DV2…基板温度、DV3…モータ電流、H1…記憶部、H2…検出部、M…モータ、MS1…検出部、S1…通信部、S2…指示抽出部、S3…AD変換部、S4…算出部、S5…制御部、S6…PWM変換部、S7…エラー情報出力部、SU、SV、SW…ホールセンサ REFERENCE SIGNS LIST 1 control system 10 control device 20 information processing device 191 overcurrent detector 192 temperature protection unit CC current limit signal DV1 power supply voltage DV2 substrate temperature DV3 motor current H1...storage unit, H2...detection unit, M...motor, MS1...detection unit, S1...communication unit, S2...instruction extraction unit, S3...AD conversion unit, S4...calculation unit, S5...control unit, S6...PWM conversion part, S7... error information output part, SU, SV, SW... hall sensor

Claims (9)

  1.  三相ブラシレスのモータを制御する制御部を備え、
     前記制御部は、
     前記モータのロータを停止させる目標となる目標停止位置まで前記ロータを回転させる駆動制御が行われた後、保持制御を行い、
     前記保持制御は、前記ロータの回転位置が前記目標停止位置からずれていない場合、前記モータへの電流を流さず、前記回転位置が前記目標停止位置からずれている場合、前記回転位置と前記目標停止位置とのずれをもたらした負荷の大きさに応じた電流を前記モータへ流し、前記回転位置を前記目標停止位置に保持する制御である、
     制御装置。
    Equipped with a control unit that controls a three-phase brushless motor,
    The control unit
    After drive control for rotating the rotor to a target stop position, which is a target for stopping the rotor of the motor, is performed, holding control is performed;
    The holding control is such that when the rotational position of the rotor does not deviate from the target stop position, current is not supplied to the motor, and when the rotational position deviates from the target stop position, the rotational position and the target stop position are controlled. A control for maintaining the rotational position at the target stop position by applying a current to the motor according to the magnitude of the load that caused the deviation from the stop position.
    Control device.
  2.  前記制御部は、前記駆動制御が行われた後、所定の周期が経過する毎に、前記保持制御を繰り返し行う、
     請求項1に記載の制御装置。
    The control unit repeats the holding control every time a predetermined period elapses after the drive control is performed.
    A control device according to claim 1 .
  3.  前記制御部は、前記保持制御において、前記回転位置が前記目標停止位置からずれている場合、前記負荷の大きさが大きいほど、前記モータへ流す電流を大きくする、
     請求項1又は2に記載の制御装置。
    In the holding control, when the rotational position is deviated from the target stop position, the control unit increases a current to be supplied to the motor as the magnitude of the load increases.
    3. A control device according to claim 1 or 2.
  4.  前記負荷の大きさを示す負荷値情報と、前記モータへ流す電流の大きさを示す電流値情報とが対応付けられた対応情報が記憶された記憶部を更に備え、
     前記制御部は、前記対応情報に基づいて、前記保持制御を行う、
     請求項1から3のうちいずれか一項に記載の制御装置。
    further comprising a storage unit storing correspondence information in which load value information indicating the magnitude of the load and current value information indicating the magnitude of current flowing to the motor are associated,
    The control unit performs the holding control based on the correspondence information.
    4. A control device as claimed in any one of claims 1 to 3.
  5.  前記制御部は、PWM制御によって前記モータを制御し、
     前記電流値情報は、デューティ比によって、前記モータへ流す電流の大きさを示す、 請求項4に記載の制御装置。
    The control unit controls the motor by PWM control,
    5. The control device according to claim 4, wherein the current value information indicates the magnitude of the current to be supplied to the motor by a duty ratio.
  6.  前記負荷値情報は、前記回転位置と前記目標停止位置とのずれの大きさによって、前記負荷の大きさを示す、
     請求項4又は5に記載の制御装置。
    The load value information indicates the magnitude of the load according to the magnitude of the deviation between the rotational position and the target stop position.
    6. A control device according to claim 4 or 5.
  7.  前記制御部は、前記回転位置を検出する検出部からの出力信号に基づいて、前記回転位置を特定する、
     請求項1から6のうちいずれか一項に記載の制御装置。
    The control unit identifies the rotational position based on an output signal from a detection unit that detects the rotational position.
    Control device according to any one of claims 1 to 6.
  8.  前記検出部は、ホールセンサを有する、
     請求項7に記載の制御装置。
    The detection unit has a Hall sensor,
    A control device according to claim 7 .
  9.  三相ブラシレスのモータを制御する制御方法であって、
     前記制御方法は、
     前記モータのロータを停止させる目標となる目標停止位置まで前記ロータを回転させる駆動制御が行われた後、保持制御を行い、
     前記保持制御は、
     前記ロータの回転位置が前記目標停止位置からずれていない場合、前記モータへの電流を流さず、前記回転位置が前記目標停止位置からずれている場合、前記回転位置と前記目標停止位置とのずれをもたらした負荷の大きさに応じた電流を前記モータへ流し、前記回転位置を前記目標停止位置に保持する制御である、
     制御方法。
    A control method for controlling a three-phase brushless motor, comprising:
    The control method is
    After drive control for rotating the rotor to a target stop position, which is a target for stopping the rotor of the motor, is performed, holding control is performed;
    The holding control is
    When the rotational position of the rotor has not deviated from the target stop position, current is not supplied to the motor, and when the rotational position has deviated from the target stop position, the deviation between the rotational position and the target stop position A current corresponding to the magnitude of the load that caused the motor is passed to the motor, and the rotational position is held at the target stop position.
    control method.
PCT/JP2022/023091 2021-06-29 2022-06-08 Control device and control method WO2023276593A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-107785 2021-06-29
JP2021107785 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023276593A1 true WO2023276593A1 (en) 2023-01-05

Family

ID=84690281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023091 WO2023276593A1 (en) 2021-06-29 2022-06-08 Control device and control method

Country Status (1)

Country Link
WO (1) WO2023276593A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004129451A (en) * 2002-10-07 2004-04-22 Denso Corp Motor controller
JP2016157317A (en) * 2015-02-25 2016-09-01 三菱重工業株式会社 System identification device and system identification method
JP2019068598A (en) * 2017-09-29 2019-04-25 日産自動車株式会社 Method and device for controlling variable magnetic force motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004129451A (en) * 2002-10-07 2004-04-22 Denso Corp Motor controller
JP2016157317A (en) * 2015-02-25 2016-09-01 三菱重工業株式会社 System identification device and system identification method
JP2019068598A (en) * 2017-09-29 2019-04-25 日産自動車株式会社 Method and device for controlling variable magnetic force motor

Similar Documents

Publication Publication Date Title
JP5952502B2 (en) 3-phase brushless motor drive device
JP5214619B2 (en) Method and apparatus for eliminating stall and cogging in a multiphase stepping motor
US10333439B2 (en) Methods of estimating a position of a rotor in a motor under transient and systems thereof
JP2017163789A (en) Motor drive device and phase current detection method in motor drive device
JP6405687B2 (en) Motor control device and motor control method
CN113939671B (en) Electric oil pump for clutch engagement of transmission of automobile, control method thereof, vehicle, and electric oil pump for vehicle
WO2023276593A1 (en) Control device and control method
CN108768217B (en) Motor control method, motor control apparatus, and storage medium
JP4426433B2 (en) Motor control device
US10892697B2 (en) Motor control apparatus and method of controlling the same
JP6667529B2 (en) Method for optimizing the drive control dynamics of an electric motor, preferably used in a hydrostatic clutch actuator of a motor vehicle
CN110815233B (en) Robot driving method, device, storage medium and robot
JP2018143085A (en) System and method for controlling motor
JP7290434B2 (en) MOTOR DRIVE CONTROL DEVICE AND MOTOR DRIVE CONTROL METHOD
JP6648103B2 (en) Synchronous motor, control device and method for generating control signals for managing operation of actuator
US10727771B2 (en) Motor control apparatus and method of controlling the same
JP4062228B2 (en) DC motor drive device
JP2010213518A (en) Motor driving device
JP2010136583A (en) Torque controller for electric motor
JP2010206967A (en) Motor overload detecting device
US20230208331A1 (en) Motor control device and motor control method
JP2006136064A (en) Synchronous motor controller
JP3982091B2 (en) Control device for synchronous motor
WO2018198406A1 (en) Motor control apparatus and motor control method
JP5196802B2 (en) Control device for rotating electrical machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22832750

Country of ref document: EP

Kind code of ref document: A1