WO2023276143A1 - Phosphatic fertilizer, pottery, and production method therefor - Google Patents

Phosphatic fertilizer, pottery, and production method therefor Download PDF

Info

Publication number
WO2023276143A1
WO2023276143A1 PCT/JP2021/025132 JP2021025132W WO2023276143A1 WO 2023276143 A1 WO2023276143 A1 WO 2023276143A1 JP 2021025132 W JP2021025132 W JP 2021025132W WO 2023276143 A1 WO2023276143 A1 WO 2023276143A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramics
bone china
fertilizer
phosphate
crushed
Prior art date
Application number
PCT/JP2021/025132
Other languages
French (fr)
Japanese (ja)
Inventor
朗裕 小島
明祐 西岡
直樹 木谷
幹夫 滝本
Original Assignee
ニッコー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニッコー株式会社 filed Critical ニッコー株式会社
Priority to JP2022580449A priority Critical patent/JP7433484B2/en
Priority to PCT/JP2021/025132 priority patent/WO2023276143A1/en
Publication of WO2023276143A1 publication Critical patent/WO2023276143A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G19/00Table service
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/30Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure
    • B65D85/44Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure for crockery
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B17/00Other phosphatic fertilisers, e.g. soft rock phosphates, bone meal

Definitions

  • the present invention relates to phosphate fertilizers, ceramics, and manufacturing methods.
  • Patent Literature 1 discloses a method for producing a silicic fertilizer by firing a mixed raw material containing at least a silicic acid source, a phosphoric acid source, and a calcium source at 1200 to 1400°C.
  • Patent Document 2 discloses a step of preparing chicken bones, a step of boiling the chicken bones to obtain a broth containing oil and fat extracted from the chicken bones, and a step of obtaining a chicken bone residue from which the oil and fat are extracted, and A step of collecting the fat extracted from the oil and fat to obtain a fat collection, heating the collection to 43 ° C or higher, supplying it to a burner and burning it, so that the chicken bone residue is white in an atmosphere of 600 ° C or higher. and calcining to , resulting in a composition comprising HAP derived from chicken bones.
  • the purpose of the present invention is to reduce waste derived from ceramics.
  • the main raw material of the phosphate fertilizer according to the present invention is crushed bone china ceramics.
  • the bone china porcelain is porcelain containing 30% or more of tricalcium phosphate specified in JIS S2401, and the crushed material has a maximum diameter of 3 mm or less.
  • the ceramics according to the present invention contain calcium phosphate that can be reused as fertilizer.
  • the method for producing a phosphate fertilizer according to the present invention includes a step of crushing bone china ceramics and a step of sieving the crushed bone china ceramics.
  • waste derived from ceramics can be reduced.
  • FIG. 4 is a graph showing the soluble evaluation result of the phosphate fertilizer in an Example. 4 is a graph showing the relationship between the content of tricalcium phosphate in ceramics and the concentration of citric acid. It is a figure which shows the cultivation test result of Japanese mustard spinach.
  • FIG. 4 is a diagram showing the results of a Japanese mustard spinach growing test in which crushed bone china porcelain was added excessively.
  • FIG. 4 is a diagram showing the results of growing Japanese mustard spinach when the particle size of crushed bone china porcelain is varied.
  • Ceramics that are no longer needed due to damage or surface scratches are used as raw materials for ceramics and aggregates for outer walls, but most are disposed of in landfills as industrial waste. As a result, it continues to put a burden on the environment.
  • ceramics containing calcium phosphate especially bone china ceramics with a high calcium phosphate content, are difficult to reuse as ceramics due to their ease of melting at high temperatures, and have been disposed of in landfills.
  • activities to reduce industrial waste and create a sustainable society are becoming popular, but the fields of application are limited.
  • the inventors of the present application focused on phosphoric acid from the chemical components of ceramics containing calcium phosphate and ceramics made from bone china, and discovered the possibility of using them as fertilizers. It was found to be effective as a powdered phosphate fertilizer for investigation. Therefore, in the embodiment of the present invention, ceramics containing calcium phosphate and ceramics made of bone china, which have been landfilled as industrial waste with little utility value in the past, are used as phosphate fertilizers for growing plants. Phosphorus as a phosphate fertilizer is mostly imported and is a scarce resource, so new fertilizers containing phosphorus are also expected.
  • the ceramics of this embodiment are ceramics containing reusable calcium phosphate as fertilizer. More specifically, the ceramics used as raw materials for the phosphate fertilizer are bone china ceramics. The ceramics used as raw materials for the phosphate fertilizer of this example are ceramics (tableware) containing 30% or more of tricalcium phosphate specified in JIS S2401.
  • the phosphate fertilizer of this embodiment is a fertilizer whose main raw material is crushed bone china ceramics. More specifically, the phosphate fertilizer is a fertilizer mainly composed of crushed porcelain containing 30% or more of tricalcium phosphate and having a maximum diameter of 3 mm or less. The phosphate fertilizer of this example is a 70-mesh pass product among crushed bone china tableware.
  • FIG. 1 is a graph showing the soluble evaluation results of phosphate fertilizers in Examples. Bone china tableware manufactured by Nikko Co., Ltd. was crushed, and the crushed material of each particle size was used as a phosphate fertilizer. FIG. 1 shows the dissolution rate when these are dissolved in a 2% citric acid solution. From the dissolution rate shown in FIG. 1, the maximum particle size of the crushed material is preferably 3 mm.
  • the method of measuring citric acid phosphate is a measuring method according to "Fertilizer Test Method (2020) 4.2.3.a Ammonium vanadomolybdate absorption photometry", 150 mL of 2% citric acid aqueous solution at 30 ° C.
  • Fig. 2 is a graph showing the relationship between the content of tricalcium phosphate in ceramics and the concentration of citric acid. As shown in FIG. 2, it can be seen that the citric acid concentration is approximately proportional to the amount of tricalcium phosphate contained in the ceramics.
  • FIG. 3 shows the results of a cultivation test of Japanese mustard spinach. This is the result of growing Japanese mustard spinach for 28 days using river sand as a standard medium.
  • Example 1 was grown by adding liquid fertilizer containing nitrogen and potassium without adding crushed bone china ceramics, and Example 2 added crushed bone china ceramics.
  • Example 3 1.3% by weight of crushed bone china ceramics were added and a liquid fertilizer containing nitrogen and potash was applied.
  • Example 4 3.3% by weight of crushed bone china porcelain was added, and a liquid fertilizer containing nitrogen and potash was applied.
  • the ones grown with the addition of crushed bone china ceramics (Examples 3 and 4) are comparable to the ones grown with a liquid fertilizer containing nitrogen, phosphoric acid and potash (Example 2). A significant difference is shown compared to Example 1 without the addition of phosphoric acid.
  • Fig. 4 shows the results of a growth test of Japanese mustard spinach when an excessive amount of crushed bone china porcelain was added.
  • Example 2 was grown by adding 3.3% by weight (reference amount) of crushed bone china ceramics and giving liquid fertilizer containing nitrogen and potash.
  • crushed bone china porcelain was added twice, three times, and four times the standard amount, respectively, and liquid fertilizer containing nitrogen and potash was given to grow the plants.
  • FIG. 4 even if the crushed bone china porcelain is excessively added as a phosphoric acid source, there is almost no effect. This is probably because Japanese mustard spinach dissolves and absorbs the required amount of the crushed product.
  • FIG. 5 shows the results of growing Japanese mustard spinach when the particle size of crushed bone china ceramics is varied. As shown in FIG. 5, the finer the grain size of the crushed material, the faster the growth rate.
  • crushed bone china ceramics can be utilized as a slow-release fertilizer component.
  • slow-release fertilizers generally release fertilizer components after a certain period of time, but in the case of the phosphate fertilizer in this example, considering the dissolution and absorption from the roots, it is immediate and sustainable. It is an effective fertilizer.
  • the amount of waste can be reduced by reusing crushed bone china porcelain as fertilizer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Fertilizers (AREA)

Abstract

The purpose of the present invention is to reduce waste matter derived from pottery. This production method for a phosphatic fertilizer comprises: a step for pulverizing pottery made of bone china; and a step for sieving the pulverized pottery made of bone china. Preferably, the pottery made of bone china is porcelain containing at least 30% of tricalcium phosphate as specified in JIS S2401, and the pulverized matter has a maximum particle size of at most 3 millimeters.

Description

リン酸肥料、陶磁器及び製造方法Phosphate fertilizer, ceramics and manufacturing method
 本発明は、リン酸肥料、陶磁器及び製造方法に関する。 The present invention relates to phosphate fertilizers, ceramics, and manufacturing methods.
 例えば、特許文献1には、けい酸源、りん酸源、およびカルシウム源を少なくとも含む混合原料を、1200~1400℃で焼成して製造するけい酸質肥料の製造方法が開示されている。
 また、特許文献2には、鶏ガラを準備する工程と、鶏ガラを煮込み、鶏ガラから抽出された油脂を含有する煮汁、及び油脂を抽出された鶏骨の残渣を得る工程と、鶏ガラから抽出された油脂を収集して油脂の収集物を得る工程と、収集物を43℃以上に加熱してバーナに供給して燃焼させて、600℃以上の雰囲気下で鶏骨の残渣が白色になるまで焼成させる工程と、を含み、鶏骨に由来するHAPを含んで成る組成物を得る、鶏ガラに由来する廃棄物を再資源化させる方法が開示されている。
For example, Patent Literature 1 discloses a method for producing a silicic fertilizer by firing a mixed raw material containing at least a silicic acid source, a phosphoric acid source, and a calcium source at 1200 to 1400°C.
Further, Patent Document 2 discloses a step of preparing chicken bones, a step of boiling the chicken bones to obtain a broth containing oil and fat extracted from the chicken bones, and a step of obtaining a chicken bone residue from which the oil and fat are extracted, and A step of collecting the fat extracted from the oil and fat to obtain a fat collection, heating the collection to 43 ° C or higher, supplying it to a burner and burning it, so that the chicken bone residue is white in an atmosphere of 600 ° C or higher. and calcining to , resulting in a composition comprising HAP derived from chicken bones.
 また、特許文献3には、高ケイ酸質低品位リン鉱石に、ナトリウム化合物、カルシウム化合物及びマグネシウム化合物をP25:Na2O:CaO(モル比)=1:1~2:4~6かつMgO:(CaO+MgO)(モル比)=0.05~0.30:1となるように添加し、焼成することを特徴とする焼成リン酸肥料の製造方法が開示されている。 Further, in Patent Document 3, a sodium compound, a calcium compound and a magnesium compound are added to a high silicic low-grade phosphate rock at a molar ratio of P 2 O 5 :Na 2 O:CaO=1:1 to 2:4. 6 and MgO:(CaO+MgO) (molar ratio)=0.05 to 0.30:1, followed by calcination.
特開2018-043896号公報JP 2018-043896 A 特開2019-217460号公報JP 2019-217460 A 特開平05-262589号公報JP-A-05-262589
 本発明は、陶磁器に由来する廃棄物を削減することを目的とする。 The purpose of the present invention is to reduce waste derived from ceramics.
 本発明に係るリン酸肥料は、ボーンチャイナ製陶磁器の破砕物を主原料とする。 The main raw material of the phosphate fertilizer according to the present invention is crushed bone china ceramics.
 好適には、前記ボーンチャイナ製陶磁器は、JIS S2401に定められたリン酸三カルシウムを30%以上含有する磁器であり、前記破砕物は、最大径3ミリメートル以下である。 Preferably, the bone china porcelain is porcelain containing 30% or more of tricalcium phosphate specified in JIS S2401, and the crushed material has a maximum diameter of 3 mm or less.
 また、本発明に係る陶磁器は、肥料として再利用可能なリン酸カルシウムを含有する。 In addition, the ceramics according to the present invention contain calcium phosphate that can be reused as fertilizer.
 また、本発明に係るリン酸肥料の製造方法は、ボーンチャイナ製陶磁器を破砕する工程と、破砕されたボーンチャイナ製陶磁器を篩にかける工程とを有する。 In addition, the method for producing a phosphate fertilizer according to the present invention includes a step of crushing bone china ceramics and a step of sieving the crushed bone china ceramics.
 本発明によれば、陶磁器に由来する廃棄物を削減できる。 According to the present invention, waste derived from ceramics can be reduced.
実施例におけるリン酸肥料のク溶性評価結果を示すグラフである。It is a graph which shows the soluble evaluation result of the phosphate fertilizer in an Example. 陶磁器のリン酸三カルシウムの含有量と、ク溶性リン酸濃度との関係を示すグラフである。4 is a graph showing the relationship between the content of tricalcium phosphate in ceramics and the concentration of citric acid. 小松菜の育成試験結果を示す図である。It is a figure which shows the cultivation test result of Japanese mustard spinach. ボーンチャイナ製陶磁器の破砕物を過剰に添加した場合の小松菜の育成試験結果を示す図である。FIG. 4 is a diagram showing the results of a Japanese mustard spinach growing test in which crushed bone china porcelain was added excessively. ボーンチャイナ製陶磁器の破砕物の粒径を振った場合の小松菜の育成結果を示す図である。FIG. 4 is a diagram showing the results of growing Japanese mustard spinach when the particle size of crushed bone china porcelain is varied.
 まず、本発明がなされた背景を説明する。
 破損や表面の傷等で不要となった陶磁器は、一部陶磁器原料や外壁材の骨材等で利用されているが、ほとんどは産業廃棄物として埋め立て処分されている。その結果、環境に負荷を与え続けてきた。特にリン酸カルシウムを含有する陶磁器、中でも含有率の高いボーンチャイナ製陶磁器は、その高温での熔けやすさから、陶磁器としての再利用が困難であり、埋め立て処分されてきた。
 また、現在SDGsの観点から、産業廃棄物を削減し、持続可能な社会とする活動が盛んになってきてはいるものの、その利用分野は限られている。
First, the background of the present invention will be described.
Ceramics that are no longer needed due to damage or surface scratches are used as raw materials for ceramics and aggregates for outer walls, but most are disposed of in landfills as industrial waste. As a result, it continues to put a burden on the environment. In particular, ceramics containing calcium phosphate, especially bone china ceramics with a high calcium phosphate content, are difficult to reuse as ceramics due to their ease of melting at high temperatures, and have been disposed of in landfills.
In addition, from the viewpoint of SDGs, activities to reduce industrial waste and create a sustainable society are becoming popular, but the fields of application are limited.
 このような状況の中で、本願発明者は、リン酸カルシウムを含有する陶磁器並びにボーンチャイナ製陶磁器の利用において、その化学成分からリン酸に注目し、リン酸肥料としての可能性に至り、肥料としての検討の粉末リン酸肥料として効果のあることを発見した。
 そこで、本発明の実施形態では、リン酸カルシウムを含有する陶磁器並びにボーンチャイナ製陶磁器のうち、従来利用価値がほとんどなく産業廃棄物として埋め立て処分されていたものを植物育成のリン酸肥料として利用する。
 なお、リン酸肥料としてのリンは、ほとんどを輸入に頼っており希少な資源であるためリンを含有する新しい肥料も期待されている。
Under such circumstances, the inventors of the present application focused on phosphoric acid from the chemical components of ceramics containing calcium phosphate and ceramics made from bone china, and discovered the possibility of using them as fertilizers. It was found to be effective as a powdered phosphate fertilizer for investigation.
Therefore, in the embodiment of the present invention, ceramics containing calcium phosphate and ceramics made of bone china, which have been landfilled as industrial waste with little utility value in the past, are used as phosphate fertilizers for growing plants.
Phosphorus as a phosphate fertilizer is mostly imported and is a scarce resource, so new fertilizers containing phosphorus are also expected.
 (原料:陶磁器)
 本実施形態の陶磁器は、肥料として再利用可能なリン酸カルシウムを含有する陶磁器である。より具体的には、リン酸肥料の原料となる陶磁器は、ボーンチャイナ製陶磁器である。本例のリン酸肥料の原料となる陶磁器は、JIS S2401に定められたリン酸三カルシウムを30%以上含有する磁器(食器)である。
(raw material: ceramics)
The ceramics of this embodiment are ceramics containing reusable calcium phosphate as fertilizer. More specifically, the ceramics used as raw materials for the phosphate fertilizer are bone china ceramics. The ceramics used as raw materials for the phosphate fertilizer of this example are ceramics (tableware) containing 30% or more of tricalcium phosphate specified in JIS S2401.
 (リン酸肥料)
 本実施形態のリン酸肥料は、ボーンチャイナ製陶磁器の破砕物を主原料とする肥料である。より具体的には、リン酸肥料は、リン酸三カルシウムを30%以上含有する磁器の破砕物であって、最大径3ミリメートル以下の破砕物を主原料とする肥料である。本例のリン酸肥料は、ボーンチャイナ製の食器を破砕した破砕物のうち、70メッシュパス品である。
(phosphate fertilizer)
The phosphate fertilizer of this embodiment is a fertilizer whose main raw material is crushed bone china ceramics. More specifically, the phosphate fertilizer is a fertilizer mainly composed of crushed porcelain containing 30% or more of tricalcium phosphate and having a maximum diameter of 3 mm or less. The phosphate fertilizer of this example is a 70-mesh pass product among crushed bone china tableware.
 (製造方法)
 次に、リン酸肥料の製造方法を説明する。
[破砕工程]
 まず、原料となるボーンチャイナ製食器を破砕機で破砕し、粒状の破砕物にする。
[篩工程]
 次に、粒状の破砕物を篩にかけて、最大径3ミリメートル以下の破砕物を選別する。例えば、70メッシュの篩機にかけて選別する。
[混合工程]
 最後に、選別された破砕物と、他の添加成分とを混合して、リン酸肥料とする。
(Production method)
Next, a method for producing a phosphate fertilizer will be described.
[Crushing process]
First, bone china tableware, which is a raw material, is crushed by a crusher into crushed grains.
[Sieving process]
Next, the granular crushed matter is sieved to select crushed matter having a maximum diameter of 3 mm or less. For example, it is screened through a 70-mesh sieve.
[Mixing process]
Finally, the screened crushed material is mixed with other additive components to obtain a phosphate fertilizer.
 (実施例)
 図1は、実施例におけるリン酸肥料のク溶性評価結果を示すグラフである。
 ニッコー株式会社製のボーンチャイナ製食器を破砕し、各粒径の破砕物をリン酸肥料とした。図1は、これらを2%クエン酸溶液に溶解させたときの溶解率を示す。図1に示す溶解率から、破砕物の最大粒径は3mmが好ましい。
 なお、ク溶性リン酸測定の方法は、「肥料等試験法(2020) 4.2.3.a バナドモリブデン酸アンモニウム吸光光度法」に準じた測定方法であり、30℃の2%クエン酸水溶液150mLに、破砕物(試料)1gを入れて、1時間抽出し、分光光度計(420nm)で測定した。
 同様に、他社製のボーンチャイナ製陶磁器を粉末にして、ク溶性リン酸を評価したところ、ニッコー製が17.2%であるのに対して、A社製で15.3%、B社製で14.3%となっており、他社製のボーンチャイナ製陶磁器であっても、リン酸肥料の原料として使用できることがわかった。
(Example)
FIG. 1 is a graph showing the soluble evaluation results of phosphate fertilizers in Examples.
Bone china tableware manufactured by Nikko Co., Ltd. was crushed, and the crushed material of each particle size was used as a phosphate fertilizer. FIG. 1 shows the dissolution rate when these are dissolved in a 2% citric acid solution. From the dissolution rate shown in FIG. 1, the maximum particle size of the crushed material is preferably 3 mm.
In addition, the method of measuring citric acid phosphate is a measuring method according to "Fertilizer Test Method (2020) 4.2.3.a Ammonium vanadomolybdate absorption photometry", 150 mL of 2% citric acid aqueous solution at 30 ° C. 1 g of the crushed product (sample) was added to the container, extracted for 1 hour, and measured with a spectrophotometer (420 nm).
Similarly, when bone china ceramics made by other companies were powdered and citric phosphoric acid was evaluated, Nikko was 17.2%, Company A was 15.3%, and Company B was 15.3%. It is 14.3% in , and it was found that even bone china ceramics made by other companies can be used as a raw material for phosphate fertilizer.
 図2は、陶磁器のリン酸三カルシウムの含有量と、ク溶性リン酸濃度との関係を示すグラフである。図2に示すように、ク溶性リン酸濃度は、陶磁器に含まれるリン酸三カルシウムの量にほぼ比例することがわかる。 Fig. 2 is a graph showing the relationship between the content of tricalcium phosphate in ceramics and the concentration of citric acid. As shown in FIG. 2, it can be seen that the citric acid concentration is approximately proportional to the amount of tricalcium phosphate contained in the ceramics.
 図3は、小松菜の育成試験結果を示す。川砂を基準培地として、小松菜を28日間育成した結果である。
 図3において、実施例1は、ボーンチャイナ製陶磁器の破砕物を添加せず、窒素及びカリを含む液肥を与えて育成したものであり、実施例2は、ボーンチャイナ製陶磁器の破砕物を添加せず、窒素、リン酸及びカリを含む液肥を与えて育成したものであり、実施例3は、ボーンチャイナ製陶磁器の破砕物を1.3重量%添加し、窒素及びカリを含む液肥を与えて育成したものであり、実施例4は、ボーンチャイナ製陶磁器の破砕物を3.3重量%添加し、窒素及びカリを含む液肥を与えて育成したものである。ボーンチャイナ製陶磁器の破砕物を添加して育成したもの(実施例3及び4)は、窒素、リン酸及びカリを含む液肥を与えて育成したもの(実施例2)と比べても遜色なく、リン酸の添加が無い実施例1と比べて、有意な差を示している。
FIG. 3 shows the results of a cultivation test of Japanese mustard spinach. This is the result of growing Japanese mustard spinach for 28 days using river sand as a standard medium.
In FIG. 3, Example 1 was grown by adding liquid fertilizer containing nitrogen and potassium without adding crushed bone china ceramics, and Example 2 added crushed bone china ceramics. In Example 3, 1.3% by weight of crushed bone china ceramics were added and a liquid fertilizer containing nitrogen and potash was applied. In Example 4, 3.3% by weight of crushed bone china porcelain was added, and a liquid fertilizer containing nitrogen and potash was applied. The ones grown with the addition of crushed bone china ceramics (Examples 3 and 4) are comparable to the ones grown with a liquid fertilizer containing nitrogen, phosphoric acid and potash (Example 2). A significant difference is shown compared to Example 1 without the addition of phosphoric acid.
 図4は、ボーンチャイナ製陶磁器の破砕物を過剰に添加した場合の小松菜の育成試験結果を示す。図4において、実施例2は、ボーンチャイナ製陶磁器の破砕物を3.3重量%(基準量)添加し、窒素及びカリを含む液肥を与えて育成したものであり、実施例3~5は、ボーンチャイナ製陶磁器の破砕物を、それぞれ基準量の2倍、3倍、4倍添加し、窒素及びカリを含む液肥を与えて育成したものである。図4からわかるように、ボーンチャイナ製陶磁器の破砕物をリン酸源として過剰に添加しても、その影響はほとんど見られない。これは、小松菜が破砕物を必要な分だけ溶解吸収しているためであると考えられる。 Fig. 4 shows the results of a growth test of Japanese mustard spinach when an excessive amount of crushed bone china porcelain was added. In FIG. 4, Example 2 was grown by adding 3.3% by weight (reference amount) of crushed bone china ceramics and giving liquid fertilizer containing nitrogen and potash. , crushed bone china porcelain was added twice, three times, and four times the standard amount, respectively, and liquid fertilizer containing nitrogen and potash was given to grow the plants. As can be seen from FIG. 4, even if the crushed bone china porcelain is excessively added as a phosphoric acid source, there is almost no effect. This is probably because Japanese mustard spinach dissolves and absorbs the required amount of the crushed product.
 図5は、ボーンチャイナ製陶磁器の破砕物の粒径を振った場合の小松菜の育成結果を示す。
 図5に示すように、破砕物の粒径が細かいほど、生育速度が早くなっている。
FIG. 5 shows the results of growing Japanese mustard spinach when the particle size of crushed bone china ceramics is varied.
As shown in FIG. 5, the finer the grain size of the crushed material, the faster the growth rate.
 以上説明したように、本実施形態におけるリン酸肥料によれば、ボーンチャイナ製陶磁器の破砕物を緩効性肥料成分として活用できる。さらに、緩効性肥料は一般的に一定時間経過後肥料成分が出る場合がほとんどであるが、本例のリン酸肥料の場合、根からの溶解吸収を考えると即効性でもありかつ持続的に効果のある肥料といえる。
 また、ボーンチャイナ製陶磁器の破砕物を肥料として再利用することにより、廃棄物の量を削減できる。
As described above, according to the phosphate fertilizer of this embodiment, crushed bone china ceramics can be utilized as a slow-release fertilizer component. Furthermore, slow-release fertilizers generally release fertilizer components after a certain period of time, but in the case of the phosphate fertilizer in this example, considering the dissolution and absorption from the roots, it is immediate and sustainable. It is an effective fertilizer.
In addition, the amount of waste can be reduced by reusing crushed bone china porcelain as fertilizer.

Claims (4)

  1.  ボーンチャイナ製陶磁器の破砕物を主原料とするリン酸肥料。 A phosphate fertilizer made mainly from crushed bone china porcelain.
  2.  前記ボーンチャイナ製陶磁器は、JIS S2401に定められたリン酸三カルシウムを30%以上含有する磁器であり、
     前記破砕物は、最大径3ミリメートル以下である
     請求項1のリン酸肥料。
    The bone china porcelain is a porcelain containing 30% or more of tricalcium phosphate specified in JIS S2401,
    The phosphate fertilizer according to claim 1, wherein the crushed material has a maximum diameter of 3 millimeters or less.
  3.  肥料として再利用可能なリン酸カルシウムを含有する陶磁器。 A ceramic containing calcium phosphate that can be reused as fertilizer.
  4.  ボーンチャイナ製陶磁器を破砕する工程と、
     破砕されたボーンチャイナ製陶磁器を篩にかける工程と
     を有するリン酸肥料の製造方法。
    A process of crushing bone china ceramics;
    A method for producing a phosphate fertilizer comprising the step of sieving crushed bone china ceramics.
PCT/JP2021/025132 2021-07-02 2021-07-02 Phosphatic fertilizer, pottery, and production method therefor WO2023276143A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022580449A JP7433484B2 (en) 2021-07-02 2021-07-02 Phosphate fertilizer, ceramics and manufacturing method
PCT/JP2021/025132 WO2023276143A1 (en) 2021-07-02 2021-07-02 Phosphatic fertilizer, pottery, and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/025132 WO2023276143A1 (en) 2021-07-02 2021-07-02 Phosphatic fertilizer, pottery, and production method therefor

Publications (1)

Publication Number Publication Date
WO2023276143A1 true WO2023276143A1 (en) 2023-01-05

Family

ID=84692607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025132 WO2023276143A1 (en) 2021-07-02 2021-07-02 Phosphatic fertilizer, pottery, and production method therefor

Country Status (2)

Country Link
JP (1) JP7433484B2 (en)
WO (1) WO2023276143A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230917A (en) * 2007-03-20 2008-10-02 Dowa Holdings Co Ltd Soil improvement fertilizer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230917A (en) * 2007-03-20 2008-10-02 Dowa Holdings Co Ltd Soil improvement fertilizer

Also Published As

Publication number Publication date
JPWO2023276143A1 (en) 2023-01-05
JP7433484B2 (en) 2024-02-19

Similar Documents

Publication Publication Date Title
EP3638641B1 (en) Compacted polyhalite and potash mixture and a process for the production thereof
IL277452B2 (en) Polyhalite and potash granules
CN104498050A (en) Method for production of high-activity soil conditioner and co-production of sulfuric acid employing phosphorus gypsum and potassium feldspar
CN101450875A (en) Method for preparing multielement micropore mineral fertilizer from silicate rock through hydrothermal chemical reaction
CA2808200C (en) Sulphur-based fertilizer composition with low rock phosphate content
CN100509710C (en) Method for preparing clean urea-sulfuricacid compound-mixed fertilizer
UA105202C2 (en) Fertilizers, containing sulphur, and the process for their manufacture
CN109133995A (en) A method of soluble potash fertilizer is prepared by decomposing of potassium feldspar
EP3883693A1 (en) Compacted polyhalite and a process for the production thereof
WO2023276143A1 (en) Phosphatic fertilizer, pottery, and production method therefor
JP6722969B2 (en) Silicate fertilizer and method for producing the same
CN109928836A (en) A method of mineral organic compound fertilizer is prepared using gangue
US3713803A (en) Production of phosphate fertilizers
US20230016469A1 (en) A fertilizer granule of polyhalite and potassium sulphate and a compaction process for the production thereof
JP2013032269A (en) Phosphate fertilizer and method for producing the same
BR112020015159A2 (en) POTASSA POWDER GRANULATION PROCESS
JP3495301B2 (en) Production method of humic acid soil improvement material
US1918454A (en) Based ammonium sulphate fertilizer and process of making the same
SU1087503A1 (en) Method for producing suspended mineral fertilizers
JP2018043888A (en) Silicate fertilizer and production method thereof
CN106278725A (en) Comprehensive soil conditioner containing boron mud and preparation technology thereof and application
US1042400A (en) Process of manufacturing available phosphoric acid.
US972567A (en) Fertilizer and process of making the same.
Baskerville Extraction of Thoria.
EA044470B1 (en) POLYHALITE AND POTASH GRANULES

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022580449

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE