WO2023276114A1 - Data collection device - Google Patents

Data collection device Download PDF

Info

Publication number
WO2023276114A1
WO2023276114A1 PCT/JP2021/024984 JP2021024984W WO2023276114A1 WO 2023276114 A1 WO2023276114 A1 WO 2023276114A1 JP 2021024984 W JP2021024984 W JP 2021024984W WO 2023276114 A1 WO2023276114 A1 WO 2023276114A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
data
unit
acquisition unit
rolled
Prior art date
Application number
PCT/JP2021/024984
Other languages
French (fr)
Japanese (ja)
Inventor
杏奈 田中
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to CN202180049357.7A priority Critical patent/CN115843277A/en
Priority to JP2022535170A priority patent/JP7327675B2/en
Priority to PCT/JP2021/024984 priority patent/WO2023276114A1/en
Priority to TW111106051A priority patent/TWI814254B/en
Publication of WO2023276114A1 publication Critical patent/WO2023276114A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/04Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring thickness, width, diameter or other transverse dimensions of the product

Definitions

  • the present invention relates to a data collection device.
  • a steel process that rolls steel includes a rolling system that includes a hot rolling line and a cold rolling line, and rolls a material (rolled material) in multiple lines or processes.
  • Patent Document 1 discloses a technique related to an abnormality prediction method and apparatus for the steel process, particularly the annealing process in which strip-shaped steel sheets are continuously heat-treated.
  • Patent Document 1 discloses a method for determining the quality of a desired manufacturing process (annealing) and predicting and preventing quality abnormalities on the premise that operation and control data are stored for each position in the longitudinal direction of the steel sheet. is shown.
  • Patent Document 2 in the steel process, a support system that assists the operator's estimation work for estimating the cause of the quality abnormality of the product manufactured in the production line composed of a plurality of processes including the quality inspection process. disclosed.
  • Patent Literature 2 discloses a method of estimating the cause by matching data of a plurality of processes, and a method of supporting an operator involved in determination.
  • Patent Document 3 discloses a tracking method in feedforward control as a technique for synchronizing the positions of steel materials between multiple processes in the manufacturing process of steel materials.
  • a means for detecting the position of the steel material is provided in order to store control input data in combination with position information in the previous step. If no special means are provided, the material must be restrained between two processes, such as between two stands when co-rolling.
  • the present invention has been made to solve the above problems, and even when rolling a material by a plurality of rolling processes, it is possible to easily collect rolling performance data for each same point of the material in each rolling process. It is an object of the present invention to provide a data collection device capable of
  • a data collection device is a data collection device that collects rolling performance data from a rolling system that rolls a material in a previous process and a next process, in which a plurality of different rolling directions of the material rolled in the previous process
  • a first data acquisition unit that acquires rolling performance data at each position, a first storage unit that stores the rolling performance data acquired by the first data acquisition unit, and a rolling direction of the material rolled in the next step.
  • a second data acquisition unit that acquires rolling performance data at each of a plurality of positions; a second storage unit that stores the rolling performance data acquired by the second data acquisition unit; and a rolling performance acquired by the first data acquisition unit
  • a positioning unit that aligns each of a plurality of positions with each other; rolling performance data stored in the first storage unit for each of the plurality of positions that are aligned by the positioning unit and that are different in the rolling direction of the material;
  • a generating unit that associates the actual rolling data stored in the storage unit with the actual rolling data for each identical point of the material, and stores the actual rolling data for each identical point of the material generated by the generating unit.
  • the data collection device preferably includes a shear data acquisition unit that acquires shear data indicating the sheared lengths of the front end and the tail end in the rolling direction of the raw material rolled in the previous step. , based on the shear data acquired by the shear data acquisition unit and the actual rolling data acquired by the first data acquisition unit, a calculation unit for calculating the material entry side length for the next process, The positioning unit rolls the material rolled in the previous process based on the material loading side length for the next process calculated by the calculation unit and the rolling performance data acquired by the second data acquisition unit A plurality of positions in different directions are associated with and matched with a plurality of positions in different rolling directions of the raw material rolled in the next step.
  • the shear data acquisition unit performs computation based on the length of the sheared material in the rolling direction detected by the sensor and the difference in weight of the material before and after shearing.
  • the shear data is obtained by
  • the alignment unit includes feature points included in the rolling performance data acquired by the first data acquisition unit and the second data acquisition unit Based on the characteristic points included in the obtained rolling performance data, each of a plurality of positions different in the rolling direction of the material rolled in the previous process and each of a plurality of positions different in the rolling direction of the material rolled in the next process. are associated with each other.
  • FIG. 3 is a functional block diagram illustrating functions of the data collection device according to one embodiment
  • FIG. 4 is a diagram illustrating data stored in a first storage unit and a second storage unit
  • FIG. (a) is a graph showing the relationship between the position in the rolling direction on the exit side of the preceding process and the thickness of the rolled material.
  • (b) is a graph showing the relationship between the position in the rolling direction on the delivery side of the next process and the thickness of the rolled material.
  • (c) is a graph showing the relationship between the combined position in the rolling direction and the thick plate in the previous step and the thick plate in the next step.
  • FIG. 4 is a diagram schematically showing positioning in the rolling direction within the same line.
  • FIG. 1 is a diagram showing a configuration example of a rolling system 1 equipped with a data collection device according to one embodiment.
  • the rolling system 1 is configured by, for example, connecting a hot rolling line 2 and a cold rolling line 3 to a data collection device 4 via a control network 10, and performing a plurality of rolling processes.
  • the materials (rolled materials) are sequentially rolled.
  • the control network 10 is, for example, a network such as a LAN (Local Area Network), and may be configured to include a control LAN and an information system LAN.
  • LAN Local Area Network
  • the hot rolling line 2 includes, for example, a heating furnace (RF: Reheating Furnace) 20, a roughing mill (RM: Roughing mill) 21, a crop shear (CS: Crop Shear) 22, a finishing mill (FM: Finishing Mills) 23, It has a cooling device (ROT: Run Out Table) 24 and a winder (DC: Down Coiler) 25 .
  • the hot rolling line 2 is equipped with sensors 26-1 to 26-4, for example, and is configured such that the pre-process control device 27 controls each part of the hot rolling line 2.
  • the rough rolling mill 21 performs rough rolling on the slab output from the heating furnace 20 , and the crop shear 22 cuts the rolled material and sends it to the finishing rolling mill 23 .
  • the rough rolled material is further rolled to a predetermined specification by the finishing rolling mill 23 , cooled by the cooling device 24 , and then wound by the winder 25 .
  • the rolling process performed by the hot rolling line 2 is referred to as the pre-process.
  • the sensor 26 - 1 is arranged on the delivery side of the roughing mill 21 , detects rolling performance data of the material rolled by the roughing mill 21 , and outputs it to the pre-process control device 27 .
  • the sensor 26-1 is configured so that the pre-process control device 27 can acquire the length, thickness, width, temperature, etc. of the rolled material at each of a plurality of different positions in the rolling direction (advancing direction of the rolled material). Detect each actual value in the rolling process.
  • the sensor 26 - 2 is arranged on the entry side of the finishing rolling mill 23 , detects raw material rolling performance data sent to the finishing rolling mill 23 , and outputs it to the pre-process control device 27 .
  • the sensor 26-2 detects each actual value for the material so that the pre-process control device 27 can acquire the length, thickness, width, temperature, etc. of the rolled material at each of a plurality of different positions in the rolling direction. do.
  • the sensor 26-3 is arranged on the delivery side of the finishing rolling mill 23, detects rolling performance data of the material rolled by the finishing rolling mill 23, and outputs it to the pre-process control device 27. For example, the sensor 26-3 obtains each actual value in the rolling process so that the pre-process control device 27 can acquire the length, thickness, width, temperature, etc. of the rolled material at each of a plurality of different positions in the rolling direction. To detect.
  • the sensor 26 - 4 is arranged on the delivery side of the cooling device 24 , detects rolling result data of the material cooled by the cooling device 24 , and outputs it to the pre-process control device 27 .
  • the sensor 26-4 detects each actual value after the cooling process so that the pre-process control device 27 can acquire the length, thickness, width, temperature, etc. of the rolled material at each of a plurality of different positions in the rolling direction. to detect
  • the pre-process control device 27 transmits each rolling performance data detected by the sensors 26-1 to 26-4 to the data collection device 4 via the control network 10.
  • the cold rolling line 3 includes, for example, a payoff reel 30, an entry-side shear 31, a welder 32, a looper 33, a rolling mill 34, an exit-side shear 35, a tension reel 36, a plurality of sensors 37, an exit-side sensor 38, and a next process. It has a controller 39 .
  • the cold rolling line 3 is configured such that each part constituting the cold rolling line 3 is controlled by the next process control device 39 .
  • the cold rolling line 3 further rolls the rolled material rolled by the hot rolling line 2 with the tail end of the coil of the rolled material wound by the winder 25 of the hot rolling line 2 as the tip.
  • the rolling process performed by the cold rolling line 3 is referred to as the next process.
  • the payoff reel 30 pays out the rolled material toward the entry side shear 31 with the tail end of the coil wound by the winder 25 as the leading end.
  • the entry-side shear 31 and the exit-side shear 35 pinch and pass the rolled material between front and rear pinch rolls (not shown) in order to trim the leading and trailing ends of the rolled material. Cut the rolled material.
  • the welder 32 has the function of connecting coils by welding and making it possible to continuously perform the rolling process for a plurality of coils.
  • the looper 33 stores the rolled material and supplies the rolled material to the rolling mill 34 at a constant rate.
  • the rolling mill 34 further rolls the rolled material.
  • the tension reel 36 winds up the rolled material rolled by the rolling mill 34 .
  • a plurality of sensors 37 are arranged around a plurality of stands provided in the rolling mill 34 to detect, for example, the thickness of the rolled material and output it to the next process control device 39 .
  • the sensor 37 detects each actual value in the rolling process so that the next process control device 39 can acquire the length, width, temperature, etc. of the rolled material at each of a plurality of different positions in the rolling direction.
  • next process control device 39 transmits each rolling performance data detected by each sensor 37 and delivery side sensor 38 to the data collection device 4 via the control network 10 .
  • the rolling system 1 rolls the rolled material by the hot rolling line 2 (previous process) and the cold rolling line 3 (next process), and the data collection device 4 collects rolling performance data in each rolling process. do.
  • FIG. 2 is a functional block diagram illustrating functions of the data collection device 4 according to one embodiment.
  • the data collection device 4 is, for example, a computer, and includes a first storage unit 41 that stores the rolling performance data of the previous process as a database, a second storage unit 42 that stores the rolling performance data of the next process as a database, and the previous process and It has a third storage unit 43 for storing the same point data of the rolled material in the next process as a database.
  • the first storage unit 41 has a first data acquisition unit 410 , a first storage unit 412 and a first information extraction unit 414 .
  • the first data acquisition unit 410 acquires rolling performance data at each of a plurality of different positions in the rolling direction of the rolled material rolled in the previous process via the control network 10, Output to the first storage unit 412 and the calculation unit 431 .
  • the first data acquisition unit 410 acquires the actual rolling data detected by the hot rolling line 2 for one coil when the winder 25 of the hot rolling line 2 completes coil winding. You may
  • the first storage unit 412 stores rolling performance data acquired by the first data acquisition unit 410 under the control of the first information extraction unit 414, and constitutes a database. In addition, the first storage unit 412 outputs the stored rolling performance data to the generation unit 433 upon access from the generation unit 433 .
  • the first storage unit 412 stores length information, strip width, strip thickness, temperature during rolling, etc. with respect to the coil of the rolled material in association with each other.
  • the second storage unit 42 has a second data acquisition unit 420 , a second storage unit 422 and a second information extraction unit 424 .
  • the second data acquisition unit 420 acquires rolling performance data at each of a plurality of different positions in the rolling direction of the rolled material rolled in the next step via the control network 10, Output to the second storage unit 422 and the alignment unit 432 .
  • the second data acquisition unit 420 acquires the actual rolling data detected by the cold rolling line 3 for one coil when the tension reel 36 of the cold rolling line 3 completes coil winding.
  • the second storage unit 422 stores the rolling performance data acquired by the second data acquisition unit 420 under the control of the second information extraction unit 424, and constitutes a database. Also, the second storage unit 422 outputs the stored rolling performance data to the generation unit 433 upon access from the generation unit 433 .
  • the second storage unit 422 stores length information, strip width, strip thickness, temperature during rolling, etc. with respect to the coil of the rolled material in association with each other.
  • the third storage unit 43 has a shear data acquisition unit 430 , a calculation unit 431 , an alignment unit 432 , a generation unit 433 and a third storage unit 434 .
  • the shear data acquisition unit 430 acquires shear data indicating the sheared lengths of the leading edge and trailing edge in the rolling direction of the rolled material rolled in the preceding process via the control network 10, and outputs the shear data to the calculating unit 431. do.
  • the shear data acquisition unit 430 performs a calculation based on the length in the rolling direction of the rolled material after shearing detected by the hot rolling line 2 and the cold rolling line 3 and the difference in weight of the rolled material before and after shearing. data may be obtained.
  • the shear data acquisition unit 430 uses the coil weight after hot rolling and the coil weight after cold rolling to obtain the length of the sheared rolled material more accurately. It may be configured to calculate the length of the sheared rolled material in consideration of the increase due to plating.
  • the shear data acquisition unit 430 may be configured to adopt the length calculated from the weight if there is a difference between the detected length and the length calculated from the weight.
  • the shear data acquisition unit 430 may also be configured to use the length ratio of the rolled material to improve the calculation accuracy.
  • the calculation unit 431 calculates the length of the rolled material on the loading side for the next process, and performs alignment. Output to the unit 432 .
  • the alignment unit 432 determines the rolling direction of the material rolled in the previous step based on the actual rolling data acquired by the first data acquiring unit 410 and the actual rolling data acquired by the second data acquiring unit 420. Each of the plurality of positions is associated with each of the plurality of positions different in the rolling direction of the rolled material rolled in the next step, and matching is performed.
  • the alignment unit 432 may determine the previous A plurality of positions in the rolling direction of the rolled material rolled in the process are associated with and aligned with a plurality of positions in the rolling direction of the rolled material rolled in the next process. At this time, the alignment part 432 aligns the position based on reversal of the longitudinal direction of the rolled material, change in length due to temperature, and the like.
  • the alignment unit 432 determines the length of the rolled material for the next process calculated by the calculation unit 431 and the length obtained by the second data acquisition unit 420. Based on the actual rolling data, each of a plurality of positions different in the rolling direction of the rolled material rolled in the previous process is associated with each of a plurality of positions different in the rolling direction of the rolled material rolled in the next process. Perform matching processing.
  • FIG. 4 is a diagram showing a specific example before and after aligning a plurality of different positions in the rolling direction of the rolled material with the alignment part 432 .
  • FIG. 4A is a graph showing the relationship between the position in the rolling direction on the delivery side of the preceding process and the thickness of the rolled material.
  • FIG. 4(b) is a graph showing the relationship between the position in the rolling direction on the delivery side of the next process and the thickness of the rolled material.
  • FIG. 4(c) is a graph showing the relationship between the combined position in the rolling direction and the thick plate in the previous step and the thick plate in the next step.
  • the range on the horizontal axis in FIG. 4(b) is larger than the range on the horizontal axis in FIG. 4(a) because the rolled material is further rolled in the next step. That is, the alignment unit 432 may reduce the range of the horizontal axis in FIG. 4B to match the range of the horizontal axis in FIG. 4A, or the range of the horizontal axis in FIG. may be expanded to match the range of the horizontal axis in FIG. 4(b).
  • the alignment unit 432 extracts characteristic points from the waveform information of the sheet width and thickness, and the characteristic points are shifted between the product after hot rolling and the product after cold rolling.
  • the feature points may be matched by shifting (sliding) the phase.
  • the alignment unit 432 may perform alignment by adjusting the expansion/contraction rate before and after the feature point to improve the accuracy.
  • the thick plate in the previous process and the thick plate in the next process can be easily positioned for each position in the rolling direction. A comparison is possible.
  • the alignment unit 432 outputs information indicating a plurality of different positions in the rolling direction of the aligned rolled material to the generation unit 433 .
  • the generation unit 433 generates the actual rolling data stored in the first storage unit 412 and the actual rolling data stored in the second storage unit 422 for each of a plurality of positions that are aligned in the rolling direction of the rolled material aligned by the alignment unit 432. are associated with each other to generate rolling performance data for each identical point of the rolled material, and output to the third storage unit 434 .
  • the third storage unit 434 stores rolling performance data for each identical point of the rolled material generated by the generating unit 433, and constitutes a database.
  • FIG. 5 is a diagram exemplifying rolling performance data for each identical point of the rolled material stored in the third storage unit 434. As shown in FIG. As shown in FIG. 5, after the alignment unit 432 aligns a plurality of different positions in the rolling direction of the rolled material, the third storage unit 434 stores the thick plate in the previous process and the thick plate in the next process. etc. can be easily compared for each position in the rolling direction.
  • the data collection device 4 can easily collect rolling performance data for each same point of the rolled material in each rolling process even when the rolled material is rolled in a plurality of rolling processes in the rolling system 1. , the quality analysis in each rolling process of the rolled material can be facilitated. In other words, even if a quality problem is found in the final coil, the data collection device 4 can easily identify the location of the problem, and can easily analyze the rolling results of the previous and next processes.
  • the preceding process is the hot rolling process and the next process is the cold rolling process, but as shown in FIG. It may be configured to create a database in which the rolling direction is aligned within the same line, with rough rolling and the next process being finish rolling in the hot rolling line.
  • the data collection device 4 uses the actual rolling data detected by the sensors 26-1 to 26-4 (see FIG. 1).
  • the data collection device 4 also has a function to detect the crop cut length in the hot rolling line by using a sensor and correct it using the difference between the slab weight and the coil weight and the scale weight (estimated value). may be
  • the tail end of the previous process is used as the front end of the next process. is naturally performed.
  • the data collection device 4 uses the coil ID that is always managed as the manufacturing process information when the coil is divided or combined between the previous process and the next process.
  • Each function of the data collection device 4 may be configured partially or entirely by hardware such as a PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array), or may be executed by a processor such as a CPU. It may be configured as a program to

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Recording Measured Values (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)
  • Refuse Collection And Transfer (AREA)
  • Surgical Instruments (AREA)

Abstract

A data collection device according to one aspect of the present invention comprises: a first data acquisition unit that acquires rolling performance data at each of a plurality of different positions in a rolling direction of a material rolled in a preceding step; a second data acquisition unit that acquires rolling performance data at each of a plurality of different positions in the rolling direction of the material rolled in the following step; an alignment unit that associates and aligns, on the basis of the rolling performance data which has been acquired by the first data acquisition unit and the rolling performance data which has been acquired by the second data acquisition unit, each of the plurality of different positions in the rolling direction of the material rolled in the preceding step and a corresponding one of the plurality of different positions in the rolling direction of the material rolled in the following step; a generation unit that, with respect to each of the plurality of different positions in the rolling direction of the material which have been aligned by the alignment unit, generates rolling performance data for each identical point of the material; and a storage unit that stores the rolling performance data of each identical point of the material.

Description

データ収集装置data collection device
 本発明は、データ収集装置に関する。 The present invention relates to a data collection device.
 例えば、鉄鋼を圧延する鉄鋼プロセスには、熱間圧延ライン及び冷間圧延ラインを備え、素材(圧延材)を複数のライン又は工程でそれぞれ圧延させる圧延システムなどが用いられる。 For example, a steel process that rolls steel includes a rolling system that includes a hot rolling line and a cold rolling line, and rolls a material (rolled material) in multiple lines or processes.
 従来、このような圧延システムでは、最終製品ラインに達したときにコイルに品質問題が見つかることがある。このとき、品質問題の要因が上流工程にあった場合には、各圧延工程のデータを集めて、最終製品ラインから順にさかのぼって各種の圧延情報を確認し、問題箇所の特定を行っていた。そのため、品質問題の要因箇所を探ることに時間を要していた。 Conventionally, in such rolling systems, quality problems are sometimes found in coils when they reach the final product line. At this time, if the cause of the quality problem was in the upstream process, the data of each rolling process was collected, and the various rolling information was checked in order from the final product line to identify the problem area. Therefore, it took a long time to find the cause of the quality problem.
 また、各圧延工程により圧延材の長さが変化するため、各圧延工程の圧延実績データを用いて、各圧延工程におけるコイル長さの位置合わせを手作業で行っていたため、問題箇所の特定精度も低かった。 In addition, since the length of the rolled material changes with each rolling process, the position of the coil length in each rolling process was manually adjusted using the rolling performance data of each rolling process, so it was difficult to identify the problem location accurately. was also low.
 また、上流工程のデータ管理ができていない、又は圧延材のカット長さの正確な把握が行われていないことも多く、下流工程データと上流工程データとの位置合わせが不正確であるために、要因箇所を誤認することもあった。 In addition, there are many cases where the upstream process data is not managed or the cut length of the rolled material is not accurately grasped, and the alignment between the downstream process data and the upstream process data is inaccurate. , there was also a misidentification of the factor location.
 例えば鉄・非鉄プラントにおいては、最終製品の品質問題が把握された場合、自ライン及び上流工程ラインのどこに問題の要因があったかを調査するために、最終製品ラインからさかのぼって工程毎に管理されたデータを収集して、解析することが必要となる。 For example, in ferrous and non-ferrous plants, when a quality problem in the final product is identified, it is managed for each process going back from the final product line in order to investigate where the cause of the problem lies in the own line and the upstream process line. Data must be collected and analyzed.
 また、特許文献1には、鉄鋼プロセス、特に帯状鋼板を連続的に熱処理する焼鈍プロセスを対象にした異常予知方法及び装置に関する技術が開示されている。そして、特許文献1は、鋼板の長手方向からの位置毎に操業・制御データを記憶することを前提にして、所望の製造プロセス(焼鈍)の良否を判定し、品質異常を予測し防止する方法を示している。 In addition, Patent Document 1 discloses a technique related to an abnormality prediction method and apparatus for the steel process, particularly the annealing process in which strip-shaped steel sheets are continuously heat-treated. Patent Document 1 discloses a method for determining the quality of a desired manufacturing process (annealing) and predicting and preventing quality abnormalities on the premise that operation and control data are stored for each position in the longitudinal direction of the steel sheet. is shown.
 また、特許文献2には、鉄鋼プロセスにおいて、品質検査工程を含む複数の工程から構成される製造ラインで製造された製造物の品質異常の原因を推定するオペレータの推定作業を支援する支援システムが開示されている。そして、特許文献2は、複数のプロセスのデータを突き合わせて原因を推定する方法、及び、判断に関わるオペレータの支援方法を示している。 In addition, in Patent Document 2, in the steel process, a support system that assists the operator's estimation work for estimating the cause of the quality abnormality of the product manufactured in the production line composed of a plurality of processes including the quality inspection process. disclosed. Patent Literature 2 discloses a method of estimating the cause by matching data of a plurality of processes, and a method of supporting an operator involved in determination.
 また、特許文献3には、鋼材の製造プロセスにおいて、複数の工程間で鋼材の位置を同期させる技術として、フィードフォワード制御におけるトラッキング方法が開示されている。一般に、フィードフォワード制御を行う場合、1つ前の工程で制御の入力データを位置情報と組合せて記憶するために、鋼材の位置を検出する手段が備えられている。特別な手段が備えられていない場合、同時圧延しているときの2つのスタンド間など、2つの工程の間で材料が拘束されている必要がある。 In addition, Patent Document 3 discloses a tracking method in feedforward control as a technique for synchronizing the positions of steel materials between multiple processes in the manufacturing process of steel materials. In general, when feedforward control is performed, a means for detecting the position of the steel material is provided in order to store control input data in combination with position information in the previous step. If no special means are provided, the material must be restrained between two processes, such as between two stands when co-rolling.
日本特許第4992046号公報Japanese Patent No. 4992046 日本特許第6116445号公報Japanese Patent No. 6116445 日本特許第4400253号公報Japanese Patent No. 4400253
 しかしながら、従来は、複数の圧延工程間で素材の同一点を精度よく取得することは容易ではなかった。本発明は、上記のような課題を解決するためになされたものであり、複数の圧延工程により素材を圧延する場合にも、各圧延工程における素材の同一点ごとの圧延実績データを容易に収集することができるデータ収集装置を提供することを目的とする。 However, in the past, it was not easy to accurately acquire the same point on the material between multiple rolling processes. The present invention has been made to solve the above problems, and even when rolling a material by a plurality of rolling processes, it is possible to easily collect rolling performance data for each same point of the material in each rolling process. It is an object of the present invention to provide a data collection device capable of
 本発明の一態様にかかるデータ収集装置は、素材を前工程及び次工程それぞれにより圧延する圧延システムから圧延実績データを収集するデータ収集装置において、前工程により圧延された素材の圧延方向に異なる複数の位置それぞれにおける圧延実績データを取得する第1データ取得部と、前記第1データ取得部が取得した圧延実績データを記憶する第1記憶部と、次工程により圧延された素材の圧延方向に異なる複数の位置それぞれにおける圧延実績データを取得する第2データ取得部と、前記第2データ取得部が取得した圧延実績データを記憶する第2記憶部と、前記第1データ取得部が取得した圧延実績データと、前記第2データ取得部が取得した圧延実績データとに基づいて、前工程により圧延された素材の圧延方向に異なる複数の位置それぞれと、次工程により圧延された素材の圧延方向に異なる複数の位置それぞれとを対応付けて合わせる位置合わせ部と、前記位置合わせ部が合わせた素材の圧延方向に異なる複数の位置それぞれに対し、前記第1記憶部が記憶した圧延実績データと、前記第2記憶部が記憶した圧延実績データとを対応づけて、素材の同一点ごとの圧延実績データを生成する生成部と、前記生成部が生成した素材の同一点ごとの圧延実績データを記憶する第3記憶部とを有することを特徴とする。 A data collection device according to one aspect of the present invention is a data collection device that collects rolling performance data from a rolling system that rolls a material in a previous process and a next process, in which a plurality of different rolling directions of the material rolled in the previous process A first data acquisition unit that acquires rolling performance data at each position, a first storage unit that stores the rolling performance data acquired by the first data acquisition unit, and a rolling direction of the material rolled in the next step. a second data acquisition unit that acquires rolling performance data at each of a plurality of positions; a second storage unit that stores the rolling performance data acquired by the second data acquisition unit; and a rolling performance acquired by the first data acquisition unit Based on the data and the rolling performance data acquired by the second data acquisition unit, each of a plurality of positions different in the rolling direction of the material rolled in the previous process and different in the rolling direction of the material rolled in the next process a positioning unit that aligns each of a plurality of positions with each other; rolling performance data stored in the first storage unit for each of the plurality of positions that are aligned by the positioning unit and that are different in the rolling direction of the material; 2. A generating unit that associates the actual rolling data stored in the storage unit with the actual rolling data for each identical point of the material, and stores the actual rolling data for each identical point of the material generated by the generating unit. 3 storage units.
 また、本発明の一態様にかかるデータ収集装置は、好適には、前工程により圧延された素材の圧延方向先端及び尾端を剪断した長さをそれぞれ示す剪断データを取得する剪断データ取得部と、前記剪断データ取得部が取得した剪断データ、及び前記第1データ取得部が取得した圧延実績データに基づいて、次工程に対する素材の実入側長さを算出する算出部とをさらに有し、前記位置合わせ部が、前記算出部が算出した次工程に対する素材の実入側長さ、及び前記第2データ取得部が取得した圧延実績データとに基づいて、前工程により圧延された素材の圧延方向に異なる複数の位置それぞれと、次工程により圧延された素材の圧延方向に異なる複数の位置それぞれとを対応付けて合わせることを特徴とする。 Further, the data collection device according to one aspect of the present invention preferably includes a shear data acquisition unit that acquires shear data indicating the sheared lengths of the front end and the tail end in the rolling direction of the raw material rolled in the previous step. , based on the shear data acquired by the shear data acquisition unit and the actual rolling data acquired by the first data acquisition unit, a calculation unit for calculating the material entry side length for the next process, The positioning unit rolls the material rolled in the previous process based on the material loading side length for the next process calculated by the calculation unit and the rolling performance data acquired by the second data acquisition unit A plurality of positions in different directions are associated with and matched with a plurality of positions in different rolling directions of the raw material rolled in the next step.
 また、本発明の一態様にかかるデータ収集装置は、好適には、剪断データ取得部が、センサが検出した剪断された素材の圧延方向の長さ、及び剪断前後の素材の重量差に基づく演算によって前記剪断データを取得することを特徴とする。 In the data collection device according to one aspect of the present invention, preferably, the shear data acquisition unit performs computation based on the length of the sheared material in the rolling direction detected by the sensor and the difference in weight of the material before and after shearing. The shear data is obtained by
 また、本発明の一態様にかかるデータ収集装置は、好適には、前記位置合わせ部が、前記第1データ取得部が取得した圧延実績データに含まれる特徴点と、前記第2データ取得部が取得した圧延実績データに含まれる特徴点とに基づいて、前工程により圧延された素材の圧延方向に異なる複数の位置それぞれと、次工程により圧延された素材の圧延方向に異なる複数の位置それぞれとを対応付けて合わせることを特徴とする。 Further, in the data collection device according to one aspect of the present invention, preferably, the alignment unit includes feature points included in the rolling performance data acquired by the first data acquisition unit and the second data acquisition unit Based on the characteristic points included in the obtained rolling performance data, each of a plurality of positions different in the rolling direction of the material rolled in the previous process and each of a plurality of positions different in the rolling direction of the material rolled in the next process. are associated with each other.
 本発明によれば、複数の圧延工程により素材を圧延する場合にも、各圧延工程における素材の同一点ごとの圧延実績データを容易に収集することができる。 According to the present invention, even when a material is rolled in a plurality of rolling processes, it is possible to easily collect rolling performance data for each identical point of the material in each rolling process.
一実施形態にかかるデータ収集装置を備えた圧延システムの構成例を示す図である。It is a figure showing an example of composition of a rolling system provided with a data collection device concerning one embodiment. 一実施形態にかかるデータ収集装置が有する機能を例示する機能ブロック図である。3 is a functional block diagram illustrating functions of the data collection device according to one embodiment; FIG. 第1記憶部及び第2記憶部が記憶するデータを例示する図である。4 is a diagram illustrating data stored in a first storage unit and a second storage unit; FIG. (a)は、前工程出側の圧延方向の位置と圧延材の板厚との関係を示すグラフである。(b)は、次工程出側の圧延方向の位置と圧延材の板厚との関係を示すグラフである。(c)は、合わされた圧延方向の位置と、前工程における厚板及び次工程における厚板との関係を示すグラフである。(a) is a graph showing the relationship between the position in the rolling direction on the exit side of the preceding process and the thickness of the rolled material. (b) is a graph showing the relationship between the position in the rolling direction on the delivery side of the next process and the thickness of the rolled material. (c) is a graph showing the relationship between the combined position in the rolling direction and the thick plate in the previous step and the thick plate in the next step. 第3記憶部が記憶する圧延材の同一点ごとの圧延実績データを例示する図である。It is a figure which illustrates the rolling result data for every same point of the rolled material which a 3rd memory|storage part memorize|stores. 同一ライン内での圧延方向の位置合わせを模式的に示す図である。FIG. 4 is a diagram schematically showing positioning in the rolling direction within the same line.
 以下に、図面を用いて圧延システムの一実施形態を説明する。図1は、一実施形態にかかるデータ収集装置を備えた圧延システム1の構成例を示す図である。図1に示すように、圧延システム1は、例えば熱間圧延ライン2及び冷間圧延ライン3がそれぞれ制御ネットワーク10を介してデータ収集装置4に接続されることによって構成され、複数の圧延工程によって素材(圧延材)を順次に圧延する。 An embodiment of the rolling system will be described below using the drawings. FIG. 1 is a diagram showing a configuration example of a rolling system 1 equipped with a data collection device according to one embodiment. As shown in FIG. 1, the rolling system 1 is configured by, for example, connecting a hot rolling line 2 and a cold rolling line 3 to a data collection device 4 via a control network 10, and performing a plurality of rolling processes. The materials (rolled materials) are sequentially rolled.
 制御ネットワーク10は、例えばLAN(Local Area Network)などのネットワークであり、制御用LAN及び情報系LANを含むように構成されてもよい。 The control network 10 is, for example, a network such as a LAN (Local Area Network), and may be configured to include a control LAN and an information system LAN.
 熱間圧延ライン2は、例えば加熱炉(RF:Reheating Furnace)20、粗圧延機(RM:Roughing mill)21、クロップシャー(CS:Crop Shear)22、仕上圧延機(FM:Finishing Mills)23、冷却装置(ROT:Run Out Table)24、及び巻取機(DC:Down Coiler)25を有する。また、熱間圧延ライン2は、例えばセンサ26-1~26-4を備え、熱間圧延ライン2を構成する各部を前工程制御装置27が制御するように構成されている。 The hot rolling line 2 includes, for example, a heating furnace (RF: Reheating Furnace) 20, a roughing mill (RM: Roughing mill) 21, a crop shear (CS: Crop Shear) 22, a finishing mill (FM: Finishing Mills) 23, It has a cooling device (ROT: Run Out Table) 24 and a winder (DC: Down Coiler) 25 . In addition, the hot rolling line 2 is equipped with sensors 26-1 to 26-4, for example, and is configured such that the pre-process control device 27 controls each part of the hot rolling line 2. FIG.
 熱間圧延ライン2は、加熱炉20が出力するスラブに対して粗圧延機21が粗圧延を行い、クロップシャー22がカットした圧延材を仕上圧延機23へ送る。そして、熱間圧延ライン2は、粗圧延された圧延材を仕上圧延機23がさらに所定の仕様まで圧延し、冷却装置24が冷却させた後に巻取機25が巻き取る。ここでは、熱間圧延ライン2が行う圧延工程を前工程とする。 In the hot rolling line 2 , the rough rolling mill 21 performs rough rolling on the slab output from the heating furnace 20 , and the crop shear 22 cuts the rolled material and sends it to the finishing rolling mill 23 . In the hot rolling line 2 , the rough rolled material is further rolled to a predetermined specification by the finishing rolling mill 23 , cooled by the cooling device 24 , and then wound by the winder 25 . Here, the rolling process performed by the hot rolling line 2 is referred to as the pre-process.
 センサ26-1は、粗圧延機21の出側に配置されており、粗圧延機21により圧延された素材の圧延実績データを検出し、前工程制御装置27に対して出力する。例えば、センサ26-1は、圧延方向(圧延材の進行方向)に異なる複数の位置それぞれにおける圧延材の長さ、厚さ、幅、及び温度などを前工程制御装置27が取得できるように、圧延工程における各実績値を検出する。 The sensor 26 - 1 is arranged on the delivery side of the roughing mill 21 , detects rolling performance data of the material rolled by the roughing mill 21 , and outputs it to the pre-process control device 27 . For example, the sensor 26-1 is configured so that the pre-process control device 27 can acquire the length, thickness, width, temperature, etc. of the rolled material at each of a plurality of different positions in the rolling direction (advancing direction of the rolled material). Detect each actual value in the rolling process.
 センサ26-2は、仕上圧延機23の入側に配置されており、仕上圧延機23に対して送られる素材の圧延実績データを検出し、前工程制御装置27に対して出力する。例えば、センサ26-2は、圧延方向に異なる複数の位置それぞれにおける圧延材の長さ、厚さ、幅、及び温度などを前工程制御装置27が取得できるように、素材に対する各実績値を検出する。 The sensor 26 - 2 is arranged on the entry side of the finishing rolling mill 23 , detects raw material rolling performance data sent to the finishing rolling mill 23 , and outputs it to the pre-process control device 27 . For example, the sensor 26-2 detects each actual value for the material so that the pre-process control device 27 can acquire the length, thickness, width, temperature, etc. of the rolled material at each of a plurality of different positions in the rolling direction. do.
 センサ26-3は、仕上圧延機23の出側に配置されており、仕上圧延機23により圧延された素材の圧延実績データを検出し、前工程制御装置27に対して出力する。例えば、センサ26-3は、圧延方向に異なる複数の位置それぞれにおける圧延材の長さ、厚さ、幅、及び温度などを前工程制御装置27が取得できるように、圧延工程における各実績値を検出する。 The sensor 26-3 is arranged on the delivery side of the finishing rolling mill 23, detects rolling performance data of the material rolled by the finishing rolling mill 23, and outputs it to the pre-process control device 27. For example, the sensor 26-3 obtains each actual value in the rolling process so that the pre-process control device 27 can acquire the length, thickness, width, temperature, etc. of the rolled material at each of a plurality of different positions in the rolling direction. To detect.
 センサ26-4は、冷却装置24の出側に配置されており、冷却装置24により冷却された素材の圧延実績データを検出し、前工程制御装置27に対して出力する。例えば、センサ26-4は、圧延方向に異なる複数の位置それぞれにおける圧延材の長さ、厚さ、幅、及び温度などを前工程制御装置27が取得できるように、冷却工程後の各実績値を検出する。 The sensor 26 - 4 is arranged on the delivery side of the cooling device 24 , detects rolling result data of the material cooled by the cooling device 24 , and outputs it to the pre-process control device 27 . For example, the sensor 26-4 detects each actual value after the cooling process so that the pre-process control device 27 can acquire the length, thickness, width, temperature, etc. of the rolled material at each of a plurality of different positions in the rolling direction. to detect
 そして、前工程制御装置27は、センサ26-1~26-4が検出した各圧延実績データを、制御ネットワーク10を介してデータ収集装置4へ送信する。 Then, the pre-process control device 27 transmits each rolling performance data detected by the sensors 26-1 to 26-4 to the data collection device 4 via the control network 10. FIG.
 冷間圧延ライン3は、例えばペイオフリール30、入側シャー31、溶接機32、ルーパー33、圧延機34、出側シャー35、テンションリール36、複数のセンサ37、出側センサ38、及び次工程制御装置39を有する。そして、冷間圧延ライン3は、冷間圧延ライン3を構成する各部を次工程制御装置39が制御するように構成されている。 The cold rolling line 3 includes, for example, a payoff reel 30, an entry-side shear 31, a welder 32, a looper 33, a rolling mill 34, an exit-side shear 35, a tension reel 36, a plurality of sensors 37, an exit-side sensor 38, and a next process. It has a controller 39 . The cold rolling line 3 is configured such that each part constituting the cold rolling line 3 is controlled by the next process control device 39 .
 冷間圧延ライン3は、熱間圧延ライン2の巻取機25が巻き取った圧延材のコイルの尾端を先端として、熱間圧延ライン2が圧延した圧延材をさらに圧延する。ここでは、冷間圧延ライン3が行う圧延工程を次工程とする。 The cold rolling line 3 further rolls the rolled material rolled by the hot rolling line 2 with the tail end of the coil of the rolled material wound by the winder 25 of the hot rolling line 2 as the tip. Here, the rolling process performed by the cold rolling line 3 is referred to as the next process.
 より具体的には、ペイオフリール30は、巻取機25が巻き取ったコイルの尾端を先端として、圧延材を入側シャー31に向けて払い出す。入側シャー31及び出側シャー35は、圧延材の先端及び尾端を整えるために、前後のピンチロール(図示せず)により圧延材を挟んで通し、次工程制御装置39の制御に応じて圧延材をカットする。 More specifically, the payoff reel 30 pays out the rolled material toward the entry side shear 31 with the tail end of the coil wound by the winder 25 as the leading end. The entry-side shear 31 and the exit-side shear 35 pinch and pass the rolled material between front and rear pinch rolls (not shown) in order to trim the leading and trailing ends of the rolled material. Cut the rolled material.
 溶接機32は、コイルとコイルを溶接でつなぎ、複数のコイルに対する圧延工程を連続的に行うことを可能にする機能を有する。ルーパー33は、圧延材を貯め込み、圧延機34に対して圧延材を一定供給する。 The welder 32 has the function of connecting coils by welding and making it possible to continuously perform the rolling process for a plurality of coils. The looper 33 stores the rolled material and supplies the rolled material to the rolling mill 34 at a constant rate.
 圧延機34は、圧延材をさらに圧延する。テンションリール36は、圧延機34が圧延した圧延材を巻き取る。 The rolling mill 34 further rolls the rolled material. The tension reel 36 winds up the rolled material rolled by the rolling mill 34 .
 複数のセンサ37は、圧延機34内に設けられた複数のスタンド周辺に配置され、例えば圧延材の厚さを検出し、次工程制御装置39に対して出力する。また、センサ37は、圧延方向に異なる複数の位置それぞれにおける圧延材の長さ、幅、及び温度なども次工程制御装置39が取得できるように、圧延工程における各実績値を検出する。 A plurality of sensors 37 are arranged around a plurality of stands provided in the rolling mill 34 to detect, for example, the thickness of the rolled material and output it to the next process control device 39 . In addition, the sensor 37 detects each actual value in the rolling process so that the next process control device 39 can acquire the length, width, temperature, etc. of the rolled material at each of a plurality of different positions in the rolling direction.
 そして、次工程制御装置39は、各センサ37及び出側センサ38が検出した各圧延実績データを、制御ネットワーク10を介してデータ収集装置4へ送信する。 Then, the next process control device 39 transmits each rolling performance data detected by each sensor 37 and delivery side sensor 38 to the data collection device 4 via the control network 10 .
 このように、圧延システム1は、熱間圧延ライン2(前工程)及び冷間圧延ライン3(次工程)それぞれによって圧延材を圧延し、データ収集装置4が各圧延工程における圧延実績データを収集する。 In this way, the rolling system 1 rolls the rolled material by the hot rolling line 2 (previous process) and the cold rolling line 3 (next process), and the data collection device 4 collects rolling performance data in each rolling process. do.
 次に、データ収集装置4が有する機能について詳述する。図2は、一実施形態にかかるデータ収集装置4が有する機能を例示する機能ブロック図である。データ収集装置4は、例えばコンピュータであり、前工程の圧延実績データをデータベースとして格納する第1格納部41、次工程の圧延実績データをデータベースとして格納する第2格納部42、及び、前工程と次工程における圧延材の同一点データをデータベースとして格納する第3格納部43を有する。 Next, the functions of the data collection device 4 will be described in detail. FIG. 2 is a functional block diagram illustrating functions of the data collection device 4 according to one embodiment. The data collection device 4 is, for example, a computer, and includes a first storage unit 41 that stores the rolling performance data of the previous process as a database, a second storage unit 42 that stores the rolling performance data of the next process as a database, and the previous process and It has a third storage unit 43 for storing the same point data of the rolled material in the next process as a database.
 第1格納部41は、第1データ取得部410、第1記憶部412、及び第1情報抽出部414を有する。 The first storage unit 41 has a first data acquisition unit 410 , a first storage unit 412 and a first information extraction unit 414 .
 第1データ取得部410は、第1情報抽出部414の制御により、制御ネットワーク10を介して、前工程により圧延された圧延材の圧延方向に異なる複数の位置それぞれにおける圧延実績データを取得し、第1記憶部412及び算出部431に対して出力する。 Under the control of the first information extraction unit 414, the first data acquisition unit 410 acquires rolling performance data at each of a plurality of different positions in the rolling direction of the rolled material rolled in the previous process via the control network 10, Output to the first storage unit 412 and the calculation unit 431 .
 例えば、第1データ取得部410は、熱間圧延ライン2の巻取機25がコイルの巻取を完了したときに、1コイルに対して熱間圧延ライン2により検出された圧延実績データを取得してもよい。 For example, the first data acquisition unit 410 acquires the actual rolling data detected by the hot rolling line 2 for one coil when the winder 25 of the hot rolling line 2 completes coil winding. You may
 第1記憶部412は、第1情報抽出部414の制御により、第1データ取得部410が取得した圧延実績データを記憶し、データベースを構成する。また、第1記憶部412は、生成部433からのアクセスにより、記憶した圧延実績データを生成部433に対して出力する。 The first storage unit 412 stores rolling performance data acquired by the first data acquisition unit 410 under the control of the first information extraction unit 414, and constitutes a database. In addition, the first storage unit 412 outputs the stored rolling performance data to the generation unit 433 upon access from the generation unit 433 .
 例えば、第1記憶部412は、図3に示したように、圧延材のコイルに対する長さ情報、板幅、板厚、及び圧延時の温度などを対応づけて記憶する。 For example, as shown in FIG. 3, the first storage unit 412 stores length information, strip width, strip thickness, temperature during rolling, etc. with respect to the coil of the rolled material in association with each other.
 第2格納部42は、第2データ取得部420、第2記憶部422、及び第2情報抽出部424を有する。 The second storage unit 42 has a second data acquisition unit 420 , a second storage unit 422 and a second information extraction unit 424 .
 第2データ取得部420は、第2情報抽出部424の制御により、制御ネットワーク10を介して、次工程により圧延された圧延材の圧延方向に異なる複数の位置それぞれにおける圧延実績データを取得し、第2記憶部422及び位置合わせ部432に対して出力する。 Under the control of the second information extraction unit 424, the second data acquisition unit 420 acquires rolling performance data at each of a plurality of different positions in the rolling direction of the rolled material rolled in the next step via the control network 10, Output to the second storage unit 422 and the alignment unit 432 .
 例えば、第2データ取得部420は、冷間圧延ライン3のテンションリール36がコイルの巻取を完了したときに、1コイルに対して冷間圧延ライン3により検出された圧延実績データを取得してもよい。 For example, the second data acquisition unit 420 acquires the actual rolling data detected by the cold rolling line 3 for one coil when the tension reel 36 of the cold rolling line 3 completes coil winding. may
 第2記憶部422は、第2情報抽出部424の制御により、第2データ取得部420が取得した圧延実績データを記憶し、データベースを構成する。また、第2記憶部422は、生成部433からのアクセスにより、記憶した圧延実績データを生成部433に対して出力する。 The second storage unit 422 stores the rolling performance data acquired by the second data acquisition unit 420 under the control of the second information extraction unit 424, and constitutes a database. Also, the second storage unit 422 outputs the stored rolling performance data to the generation unit 433 upon access from the generation unit 433 .
 例えば、第2記憶部422は、図3に示した例と同様に、圧延材のコイルに対する長さ情報、板幅、板厚、及び圧延時の温度などを対応づけて記憶する。 For example, as in the example shown in FIG. 3, the second storage unit 422 stores length information, strip width, strip thickness, temperature during rolling, etc. with respect to the coil of the rolled material in association with each other.
 第3格納部43は、剪断データ取得部430、算出部431、位置合わせ部432、生成部433、及び第3記憶部434を有する。 The third storage unit 43 has a shear data acquisition unit 430 , a calculation unit 431 , an alignment unit 432 , a generation unit 433 and a third storage unit 434 .
 剪断データ取得部430は、制御ネットワーク10を介して、前工程により圧延された圧延材の圧延方向先端及び尾端を剪断した長さをそれぞれ示す剪断データを取得し、算出部431に対して出力する。 The shear data acquisition unit 430 acquires shear data indicating the sheared lengths of the leading edge and trailing edge in the rolling direction of the rolled material rolled in the preceding process via the control network 10, and outputs the shear data to the calculating unit 431. do.
 例えば、剪断データ取得部430は、熱間圧延ライン2及び冷間圧延ライン3により検出された剪断後の圧延材の圧延方向の長さ、及び剪断前後の圧延材の重量差に基づく演算によって剪断データを取得してもよい。 For example, the shear data acquisition unit 430 performs a calculation based on the length in the rolling direction of the rolled material after shearing detected by the hot rolling line 2 and the cold rolling line 3 and the difference in weight of the rolled material before and after shearing. data may be obtained.
 また、剪断データ取得部430は、剪断した圧延材の長さをより正確に取得するために、熱間圧延後のコイル重量と冷間圧延後のコイル重量とを用いて、酸洗による減量やメッキによる増量などを考慮して剪断した圧延材の長さを算出するように構成されてもよい。 In addition, the shear data acquisition unit 430 uses the coil weight after hot rolling and the coil weight after cold rolling to obtain the length of the sheared rolled material more accurately. It may be configured to calculate the length of the sheared rolled material in consideration of the increase due to plating.
 このとき、剪断データ取得部430は、検出された長さと、重量から算出した長さとに差異がある場合には、重量から算出した長さを採用するように構成されてもよい。また、剪断データ取得部430は、圧延材の長さの比率を用いて算出精度を向上させるように構成されてもよい。 At this time, the shear data acquisition unit 430 may be configured to adopt the length calculated from the weight if there is a difference between the detected length and the length calculated from the weight. The shear data acquisition unit 430 may also be configured to use the length ratio of the rolled material to improve the calculation accuracy.
 算出部431は、剪断データ取得部430が取得した剪断データ、及び第1データ取得部410が取得した圧延実績データに基づいて、次工程に対する圧延材の実入側長さを算出し、位置合わせ部432に対して出力する。 Based on the shear data acquired by the shear data acquisition unit 430 and the actual rolling data acquired by the first data acquisition unit 410, the calculation unit 431 calculates the length of the rolled material on the loading side for the next process, and performs alignment. Output to the unit 432 .
 位置合わせ部432は、第1データ取得部410が取得した圧延実績データと、第2データ取得部420が取得した圧延実績データとに基づいて、前工程により圧延された圧延材の圧延方向に異なる複数の位置それぞれと、次工程により圧延された圧延材の圧延方向に異なる複数の位置それぞれとを対応付けて合わせる処理を行う。 The alignment unit 432 determines the rolling direction of the material rolled in the previous step based on the actual rolling data acquired by the first data acquiring unit 410 and the actual rolling data acquired by the second data acquiring unit 420. Each of the plurality of positions is associated with each of the plurality of positions different in the rolling direction of the rolled material rolled in the next step, and matching is performed.
 例えば、位置合わせ部432は、第1データ取得部410が取得した圧延実績データに含まれる特徴点と、第2データ取得部420が取得した圧延実績データに含まれる特徴点とに基づいて、前工程により圧延された圧延材の圧延方向に異なる複数の位置それぞれと、次工程により圧延された圧延材の圧延方向に異なる複数の位置それぞれとを対応付けて合わせる処理を行う。このとき、位置合わせ部432は、圧延材の長手方向の反転、温度による長さの変化などに基づいて位置を合わせる。 For example, the alignment unit 432 may determine the previous A plurality of positions in the rolling direction of the rolled material rolled in the process are associated with and aligned with a plurality of positions in the rolling direction of the rolled material rolled in the next process. At this time, the alignment part 432 aligns the position based on reversal of the longitudinal direction of the rolled material, change in length due to temperature, and the like.
 また、位置合わせ部432は、剪断データ取得部430が剪断データを取得している場合、算出部431が算出した次工程に対する圧延材の実入側長さ、及び第2データ取得部420が取得した圧延実績データとに基づいて、前工程により圧延された圧延材の圧延方向に異なる複数の位置それぞれと、次工程により圧延された圧延材の圧延方向に異なる複数の位置それぞれとを対応付けて合わせる処理を行う。 Further, when the shear data acquisition unit 430 acquires the shear data, the alignment unit 432 determines the length of the rolled material for the next process calculated by the calculation unit 431 and the length obtained by the second data acquisition unit 420. Based on the actual rolling data, each of a plurality of positions different in the rolling direction of the rolled material rolled in the previous process is associated with each of a plurality of positions different in the rolling direction of the rolled material rolled in the next process. Perform matching processing.
 図4は、位置合わせ部432が圧延材の圧延方向に異なる複数の位置それぞれを合わせる前後の具体例を示す図である。図4(a)は、前工程出側の圧延方向の位置と圧延材の板厚との関係を示すグラフである。図4(b)は、次工程出側の圧延方向の位置と圧延材の板厚との関係を示すグラフである。図4(c)は、合わされた圧延方向の位置と、前工程における厚板及び次工程における厚板との関係を示すグラフである。 FIG. 4 is a diagram showing a specific example before and after aligning a plurality of different positions in the rolling direction of the rolled material with the alignment part 432 . FIG. 4A is a graph showing the relationship between the position in the rolling direction on the delivery side of the preceding process and the thickness of the rolled material. FIG. 4(b) is a graph showing the relationship between the position in the rolling direction on the delivery side of the next process and the thickness of the rolled material. FIG. 4(c) is a graph showing the relationship between the combined position in the rolling direction and the thick plate in the previous step and the thick plate in the next step.
 なお、図4(b)における横軸のレンジは、圧延材が次工程によってさらに圧延されているので、図4(a)における横軸のレンジよりも大きい。つまり、位置合わせ部432は、図4(b)における横軸のレンジを縮小させて、図4(a)における横軸のレンジに合わせてもよいし、図4(a)における横軸のレンジを拡大させて、図4(b)における横軸のレンジに合わせてもよい。 The range on the horizontal axis in FIG. 4(b) is larger than the range on the horizontal axis in FIG. 4(a) because the rolled material is further rolled in the next step. That is, the alignment unit 432 may reduce the range of the horizontal axis in FIG. 4B to match the range of the horizontal axis in FIG. 4A, or the range of the horizontal axis in FIG. may be expanded to match the range of the horizontal axis in FIG. 4(b).
 例えば、位置合わせ部432は、図4に例示したように、板幅や板厚の波形情報から特徴点の抽出を行い、特徴点が熱間圧延後の製品と冷間圧延後の製品でずれた場合には、位相をずらして(スライドして)特徴点を合せてもよい。また、位置合わせ部432は、特徴点の前後で各々に伸縮率を調整して位置合わせを行い、精度を向上させてもよい。 For example, as illustrated in FIG. 4, the alignment unit 432 extracts characteristic points from the waveform information of the sheet width and thickness, and the characteristic points are shifted between the product after hot rolling and the product after cold rolling. In this case, the feature points may be matched by shifting (sliding) the phase. Further, the alignment unit 432 may perform alignment by adjusting the expansion/contraction rate before and after the feature point to improve the accuracy.
 図4に示したように、位置合わせ部432が圧延材の圧延方向に異なる複数の位置それぞれを合わせた後には、前工程における厚板及び次工程における厚板が圧延方向の位置ごとに容易に対比可能となっている。 As shown in FIG. 4 , after the alignment part 432 aligns each of the plurality of different positions in the rolling direction of the rolled material, the thick plate in the previous process and the thick plate in the next process can be easily positioned for each position in the rolling direction. A comparison is possible.
 そして、位置合わせ部432は、合わせた圧延材の圧延方向に異なる複数の位置を示す情報を生成部433に対して出力する。 Then, the alignment unit 432 outputs information indicating a plurality of different positions in the rolling direction of the aligned rolled material to the generation unit 433 .
 生成部433は、位置合わせ部432が合わせた圧延材の圧延方向に異なる複数の位置それぞれに対し、第1記憶部412が記憶した圧延実績データと、第2記憶部422が記憶した圧延実績データとを対応づけて、圧延材の同一点ごとの圧延実績データを生成し、第3記憶部434に対して出力する。 The generation unit 433 generates the actual rolling data stored in the first storage unit 412 and the actual rolling data stored in the second storage unit 422 for each of a plurality of positions that are aligned in the rolling direction of the rolled material aligned by the alignment unit 432. are associated with each other to generate rolling performance data for each identical point of the rolled material, and output to the third storage unit 434 .
 第3記憶部434は、生成部433が生成した圧延材の同一点ごとの圧延実績データを記憶し、データベースを構成する。 The third storage unit 434 stores rolling performance data for each identical point of the rolled material generated by the generating unit 433, and constitutes a database.
 図5は、第3記憶部434が記憶する圧延材の同一点ごとの圧延実績データを例示する図である。図5に示したように、位置合わせ部432が圧延材の圧延方向に異なる複数の位置それぞれを合わせた後には、第3記憶部434は、前工程における厚板等と、次工程における厚板等とを圧延方向の位置ごとに容易に対比可能にしている。 FIG. 5 is a diagram exemplifying rolling performance data for each identical point of the rolled material stored in the third storage unit 434. As shown in FIG. As shown in FIG. 5, after the alignment unit 432 aligns a plurality of different positions in the rolling direction of the rolled material, the third storage unit 434 stores the thick plate in the previous process and the thick plate in the next process. etc. can be easily compared for each position in the rolling direction.
 このように、データ収集装置4は、圧延システム1における複数の圧延工程により圧延材を圧延する場合にも、各圧延工程における圧延材の同一点ごとの圧延実績データを容易に収集することができ、圧延材の各圧延工程における品質分析を容易にすることができる。つまり、データ収集装置4は、最終コイルにおいて品質問題が見つかったとしても、問題となった箇所を容易に特定可能にし、前工程及び次工程の圧延実績の分析を容易にすることができる。 In this way, the data collection device 4 can easily collect rolling performance data for each same point of the rolled material in each rolling process even when the rolled material is rolled in a plurality of rolling processes in the rolling system 1. , the quality analysis in each rolling process of the rolled material can be facilitated. In other words, even if a quality problem is found in the final coil, the data collection device 4 can easily identify the location of the problem, and can easily analyze the rolling results of the previous and next processes.
 なお、上述した実施形態では、前工程を熱間圧延工程とし、次工程を冷間圧延工程としたが、図6に示したように、データ収集装置4は、前工程を熱間圧延ラインの粗圧延とし、次工程を熱間圧延ラインの仕上圧延として、同一ライン内で圧延方向の位置を合わせたデータベースを作成するように構成されてもよい。このとき、データ収集装置4は、センサ26-1~26-4(図1参照)が検出した各圧延実績データを用いる。 In the above-described embodiment, the preceding process is the hot rolling process and the next process is the cold rolling process, but as shown in FIG. It may be configured to create a database in which the rolling direction is aligned within the same line, with rough rolling and the next process being finish rolling in the hot rolling line. At this time, the data collection device 4 uses the actual rolling data detected by the sensors 26-1 to 26-4 (see FIG. 1).
 また、データ収集装置4は、熱間圧延ライン内におけるクロップカット長さについても、センサによる検出とともに、スラブ重量とコイル重量の差、及びスケール重量(推定値)を用いて補正を行う機能を備えていてもよい。 In addition, the data collection device 4 also has a function to detect the crop cut length in the hot rolling line by using a sensor and correct it using the difference between the slab weight and the coil weight and the scale weight (estimated value). may be
 また、熱間圧延後の冷間圧延、冷間圧延後の焼鈍工程など、工程間で圧延材の先端と尾端が反転する場合には、前工程の尾端を次工程の先端とするなどの反転処理も当然行われる。 In addition, when the front end and tail end of the rolled material are reversed between processes such as cold rolling after hot rolling and annealing after cold rolling, the tail end of the previous process is used as the front end of the next process. is naturally performed.
 また、データ収集装置4は、前工程から次工程の間でコイルが分割されたり、結合されたりする場合は、製造プロセス情報として必ず管理されているコイルIDを利用する。 In addition, the data collection device 4 uses the coil ID that is always managed as the manufacturing process information when the coil is divided or combined between the previous process and the next process.
 なお、データ収集装置4が有する各機能は、それぞれ一部又は全部がPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアによって構成されてもよいし、CPU等のプロセッサが実行するプログラムとして構成されてもよい。 Each function of the data collection device 4 may be configured partially or entirely by hardware such as a PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array), or may be executed by a processor such as a CPU. It may be configured as a program to
 1・・・圧延システム、2・・・熱間圧延ライン、3・・・冷間圧延ライン、4・・・データ収集装置、10・・・制御ネットワーク、20・・・加熱炉、21・・・粗圧延機、22・・・クロップシャー、23・・・仕上圧延機、24・・・冷却装置、25・・・巻取機、26-1~26-4・・・センサ、27・・・前工程制御装置、30・・・ペイオフリール、31・・・入側シャー、32・・・溶接機、33・・・ルーパー、34・・・圧延機、35・・・出側シャー、36・・・テンションリール、37・・・センサ、38・・・出側センサ、39・・・次工程制御装置、41・・・第1格納部、42・・・第2格納部、43・・・第3格納部、410・・・第1データ取得部、412・・・第1記憶部、414・・・第1情報抽出部、420・・・第2データ取得部、422・・・第2記憶部、424・・・第2情報抽出部、430・・・剪断データ取得部、431・・・算出部、432・・・位置合わせ部、433・・・生成部、434・・・第3記憶部 DESCRIPTION OF SYMBOLS 1... Rolling system, 2... Hot rolling line, 3... Cold rolling line, 4... Data acquisition device, 10... Control network, 20... Heating furnace, 21... Rough rolling mill 22 Crop shear 23 Finishing rolling mill 24 Cooling device 25 Winding machine 26-1 to 26-4 Sensor 27 Pre-process control device 30 Payoff reel 31 Enter side shear 32 Welding machine 33 Looper 34 Rolling mill 35 Delivery side shear 36 ... tension reel, 37 ... sensor, 38 ... output side sensor, 39 ... next process control device, 41 ... first storage section, 42 ... second storage section, 43 ... Third storage unit 410 First data acquisition unit 412 First storage unit 414 First information extraction unit 420 Second data acquisition unit 422 Second 2 storage unit 424 second information extraction unit 430 shear data acquisition unit 431 calculation unit 432 alignment unit 433 generation unit 434 second 3 memory

Claims (4)

  1.  素材を前工程及び次工程それぞれにより圧延する圧延システムから圧延実績データを収集するデータ収集装置において、
     前工程により圧延された素材の圧延方向に異なる複数の位置それぞれにおける圧延実績データを取得する第1データ取得部と、
     前記第1データ取得部が取得した圧延実績データを記憶する第1記憶部と、
     次工程により圧延された素材の圧延方向に異なる複数の位置それぞれにおける圧延実績データを取得する第2データ取得部と、
     前記第2データ取得部が取得した圧延実績データを記憶する第2記憶部と、
     前記第1データ取得部が取得した圧延実績データと、前記第2データ取得部が取得した圧延実績データとに基づいて、前工程により圧延された素材の圧延方向に異なる複数の位置それぞれと、次工程により圧延された素材の圧延方向に異なる複数の位置それぞれとを対応付けて合わせる位置合わせ部と、
     前記位置合わせ部が合わせた素材の圧延方向に異なる複数の位置それぞれに対し、前記第1記憶部が記憶した圧延実績データと、前記第2記憶部が記憶した圧延実績データとを対応づけて、素材の同一点ごとの圧延実績データを生成する生成部と、
     前記生成部が生成した素材の同一点ごとの圧延実績データを記憶する第3記憶部と
     を有することを特徴とするデータ収集装置。
    In a data collection device that collects rolling performance data from a rolling system that rolls a material in each of the previous process and the next process,
    a first data acquisition unit that acquires rolling performance data at each of a plurality of different positions in the rolling direction of the material rolled in the previous process;
    a first storage unit that stores rolling performance data acquired by the first data acquisition unit;
    a second data acquisition unit that acquires rolling performance data at each of a plurality of positions different in the rolling direction of the material rolled in the next step;
    a second storage unit that stores the rolling performance data acquired by the second data acquisition unit;
    Based on the actual rolling data acquired by the first data acquiring unit and the actual rolling data acquired by the second data acquiring unit, each of a plurality of positions different in the rolling direction of the material rolled in the previous process and the following an alignment unit that associates and aligns each of a plurality of positions that are different in the rolling direction of the raw material rolled by the process;
    The actual rolling data stored in the first storage unit and the actual rolling data stored in the second storage unit are associated with each of a plurality of positions that are aligned by the alignment unit and are different in the rolling direction of the material, a generation unit that generates rolling performance data for each identical point of a material;
    A data collection device, comprising: a third storage unit that stores the rolling result data for each same point of the material generated by the generation unit.
  2.  前工程により圧延された素材の圧延方向先端及び尾端を剪断した長さをそれぞれ示す剪断データを取得する剪断データ取得部と、
     前記剪断データ取得部が取得した剪断データ、及び前記第1データ取得部が取得した圧延実績データに基づいて、次工程に対する素材の実入側長さを算出する算出部と
     をさらに有し、
     前記位置合わせ部は、
     前記算出部が算出した次工程に対する素材の実入側長さ、及び前記第2データ取得部が取得した圧延実績データとに基づいて、前工程により圧延された素材の圧延方向に異なる複数の位置それぞれと、次工程により圧延された素材の圧延方向に異なる複数の位置それぞれとを対応付けて合わせること
     を特徴とする請求項1に記載のデータ収集装置。
    a shear data acquisition unit that acquires shear data indicating lengths obtained by shearing the front end and the tail end of the raw material rolled in the previous step in the rolling direction;
    a calculation unit that calculates the actual entry side length of the material for the next process based on the shear data acquired by the shear data acquisition unit and the rolling performance data acquired by the first data acquisition unit,
    The alignment unit
    A plurality of different positions in the rolling direction of the material rolled in the previous process based on the material entry side length for the next process calculated by the calculation unit and the rolling performance data acquired by the second data acquisition unit 2. The data collection device according to claim 1, wherein each position is associated with a plurality of positions different in the rolling direction of the raw material rolled in the next step.
  3.  剪断データ取得部は、
     センサが検出した剪断された素材の圧延方向の長さ、及び剪断前後の素材の重量差に基づく演算によって前記剪断データを取得すること
     を特徴とする請求項2に記載のデータ収集装置。
    The shear data acquisition unit
    3. The data collection device according to claim 2, wherein the shear data is acquired by calculation based on the length of the sheared material in the rolling direction detected by the sensor and the difference in weight of the material before and after shearing.
  4.  前記位置合わせ部は、
     前記第1データ取得部が取得した圧延実績データに含まれる特徴点と、前記第2データ取得部が取得した圧延実績データに含まれる特徴点とに基づいて、前工程により圧延された素材の圧延方向に異なる複数の位置それぞれと、次工程により圧延された素材の圧延方向に異なる複数の位置それぞれとを対応付けて合わせること
     を特徴とする請求項1~3のいずれか1項に記載のデータ収集装置。
    The alignment unit
    Based on the feature points included in the actual rolling data acquired by the first data acquisition unit and the feature points included in the actual rolling data acquired by the second data acquisition unit, the material rolled in the previous process is rolled. The data according to any one of claims 1 to 3, wherein each of a plurality of positions different in the direction is associated with each of a plurality of positions different in the rolling direction of the material rolled in the next step. collector.
PCT/JP2021/024984 2021-07-01 2021-07-01 Data collection device WO2023276114A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180049357.7A CN115843277A (en) 2021-07-01 2021-07-01 Data collection device
JP2022535170A JP7327675B2 (en) 2021-07-01 2021-07-01 data collection device
PCT/JP2021/024984 WO2023276114A1 (en) 2021-07-01 2021-07-01 Data collection device
TW111106051A TWI814254B (en) 2021-07-01 2022-02-18 Data collection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024984 WO2023276114A1 (en) 2021-07-01 2021-07-01 Data collection device

Publications (1)

Publication Number Publication Date
WO2023276114A1 true WO2023276114A1 (en) 2023-01-05

Family

ID=84692570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024984 WO2023276114A1 (en) 2021-07-01 2021-07-01 Data collection device

Country Status (4)

Country Link
JP (1) JP7327675B2 (en)
CN (1) CN115843277A (en)
TW (1) TWI814254B (en)
WO (1) WO2023276114A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121162A (en) * 1978-03-14 1979-09-20 Toshiba Corp Rolling technique data display apparatus
JP2000028547A (en) * 1998-07-09 2000-01-28 Nkk Corp Surface defect inspecting device for steel plate
JP2005283574A (en) * 2004-03-03 2005-10-13 Jfe Steel Kk Outside development information practical use method of steel strip and collection/display program of defect data on steel strip
JP2010151493A (en) * 2008-12-24 2010-07-08 Kobe Steel Ltd Process failure detecting device and process failure detecting method
JP2013215782A (en) * 2012-04-10 2013-10-24 Jfe Steel Corp Defective part control system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190105720A1 (en) * 2017-10-05 2019-04-11 Honeywell International Inc. System and method for trim loss optimization for metal industries
CN110082365B (en) * 2019-04-08 2020-07-03 燕山大学 Robot for detecting quality of edge of steel coil based on machine vision
CN112974533B (en) * 2019-12-12 2022-10-14 上海梅山钢铁股份有限公司 Strip steel head and tail length optimized shearing method based on hot rolling incoming material data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121162A (en) * 1978-03-14 1979-09-20 Toshiba Corp Rolling technique data display apparatus
JP2000028547A (en) * 1998-07-09 2000-01-28 Nkk Corp Surface defect inspecting device for steel plate
JP2005283574A (en) * 2004-03-03 2005-10-13 Jfe Steel Kk Outside development information practical use method of steel strip and collection/display program of defect data on steel strip
JP2010151493A (en) * 2008-12-24 2010-07-08 Kobe Steel Ltd Process failure detecting device and process failure detecting method
JP2013215782A (en) * 2012-04-10 2013-10-24 Jfe Steel Corp Defective part control system

Also Published As

Publication number Publication date
TW202302239A (en) 2023-01-16
JP7327675B2 (en) 2023-08-16
JPWO2023276114A1 (en) 2023-01-05
CN115843277A (en) 2023-03-24
TWI814254B (en) 2023-09-01

Similar Documents

Publication Publication Date Title
JP5647917B2 (en) Control apparatus and control method
WO2016184257A1 (en) Equipment for automatic shearing of cold-rolled variable thickness plate, and shearing method based on same
JP6187603B2 (en) Energy consumption prediction device for rolling line
US5560236A (en) Method of rolling and cutting endless hot-rolled steel strip
US6216503B1 (en) Method for setting operating conditions for continuous hot rolling facilities
KR20140019719A (en) Data analysys apparatus
JP2007245215A (en) Continuous cold rolling equipment
WO2023276114A1 (en) Data collection device
US6513358B2 (en) Method and device for controlling flatness
JP5999265B2 (en) Energy-saving operation recommendation system
JP6493315B2 (en) Reduction leveling control device and reduction leveling control method
JP2005034875A (en) Method for controlling width of rolling stock in hot rolling
JP7230880B2 (en) Rolling load prediction method, rolling method, method for manufacturing hot-rolled steel sheet, and method for generating rolling load prediction model
US3820366A (en) Rolling mill gauge control method and apparatus including temperatureand hardness correction
JP2022508735A (en) How to make metal workpieces
JP7156569B1 (en) Anomaly detector
KR100957915B1 (en) method and apparatus for removing surface defect of strip
JP2000107804A (en) Method for deciding cutting length of bar steel and device therefor
JPH03258407A (en) Method and device for setting hot strip mill
JPH10263648A (en) Method for control of plate width in hot rolling line
JPH08318304A (en) Method and device for controlling meandering in tandem mill
JP2017225988A (en) Draft leveling control device and draft leveling control method
JP3436744B2 (en) Hot rolling strip thickness changing method and rolling device
JPH03221203A (en) Method for preventing necking of hot strip
JP2002137012A (en) Meandering control method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022535170

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21948418

Country of ref document: EP

Kind code of ref document: A1