WO2023274311A1 - 一种电池包及用电设备 - Google Patents

一种电池包及用电设备 Download PDF

Info

Publication number
WO2023274311A1
WO2023274311A1 PCT/CN2022/102458 CN2022102458W WO2023274311A1 WO 2023274311 A1 WO2023274311 A1 WO 2023274311A1 CN 2022102458 W CN2022102458 W CN 2022102458W WO 2023274311 A1 WO2023274311 A1 WO 2023274311A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
section
cell
hole
battery
Prior art date
Application number
PCT/CN2022/102458
Other languages
English (en)
French (fr)
Inventor
袁宏伟
王慎波
蒋超
徐卫潘
Original Assignee
东莞新能安科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞新能安科技有限公司 filed Critical 东莞新能安科技有限公司
Priority to EP22832123.8A priority Critical patent/EP4207456A1/en
Publication of WO2023274311A1 publication Critical patent/WO2023274311A1/zh
Priority to US18/193,948 priority patent/US20230246285A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/231Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiments of the present application relate to the technical field of batteries, and in particular, to a battery pack and an electrical device.
  • the inventors of the present application found that the electric core generates a lot of heat during use, and when all the electric cores are packaged with potting glue, the heat generated by the electric core is not easy to discharge, so that the The internal temperature of the entire battery pack is high, which is very dangerous.
  • the embodiments of the present application provide a battery pack and an electrical device, which solve the problems of poor heat dissipation of the battery cells and high internal temperature of the entire battery pack.
  • a battery pack including: a cell module, at least one covering member, a first resin layer and at least one first structural member, the cell module includes A plurality of cell assemblies stacked in one direction, the cell module includes a first surface and a second surface opposite to each other along a first direction and a first side and a second side opposite to a third direction, the The cover comprises a first section, a second section and a third section connecting the second section of the first section, the first section covers at least part of the first side, the The second section covers at least a part of the second side surface, the third section covers the first surface, and the battery module includes first ones located on both sides of a cover along a second direction.
  • the first resin layer is formed by setting a first resin material in the first region and fixing it, the first resin layer is bonded to the covering member, and the at least one first The structural member is arranged between the two adjacent cell assemblies, so that the adjacent cell assemblies are separated to form a channel, and the part of the channel located in the second region includes a gap.
  • the covering part can restrict the potting compound from flowing into the channel, and the channel can communicate with the outside air, and the channel can discharge the heat generated inside the battery pack to reduce the internal temperature of the battery pack.
  • An external blower or air exhauster is arranged at the channel to accelerate the air flow in the channel and improve the heat dissipation of the battery pack, thereby reducing the internal temperature of the entire battery pack.
  • the battery pack includes a battery pack case, and the battery pack case is provided with a receiving cavity, a first through hole and a second through hole, and the first through hole and the second through hole
  • the holes are arranged opposite to each other along the third direction, and both the first through hole and the second through hole communicate with the storage cavity, the cell module is stored in the storage cavity, and the first through hole,
  • the second through hole at least partially overlaps the channel in a third direction.
  • the battery pack casing includes a connected first casing and a second casing, and the first casing and the second casing form a storage chamber for the battery module,
  • the first casing is provided with a third through hole communicating with the receiving cavity, and along the direction opposite to the first direction, the third through hole is located above the first bonding area.
  • the first section and the second section are provided with a recess, and the side of the cell module along the third direction is accommodated in the recess.
  • the cell assembly includes at least one cell, and each cell includes an electrode assembly, a cell casing for accommodating the electrode assembly, and a cell connected to the electrode assembly.
  • the battery pack further includes a heat conduction member, and the heat conduction member covers an outer surface of each battery cell assembly located in the second region.
  • the heat conducting member can be used to dissipate the heat generated by the battery cells located in the second area, and then use the channels between the battery cell components to discharge the heat out of the battery pack to reduce the internal temperature of the battery pack.
  • the heat conduction member covers a part of the surface of each of the electric core assemblies located in the first region, and the heat conduction member covers a portion of the surface of each of the electric core assemblies located in the first area. A part of the surface of the third area.
  • the heat conduction member can be used to dissipate the heat generated by the battery cells located in the first area and the third area, and then use the channels between the battery cell components to discharge the heat out of the battery pack to reduce the internal temperature of the battery pack.
  • the at least one covering part includes a first covering part and a second covering part arranged in sequence along the direction opposite to the second direction;
  • the battery module further includes a third area , the first area, the second area, and the third area are sequentially arranged along the direction opposite to the second direction, the first covering member is located between the first area and the second area, and the first The second wrapper is located between the second area and the third area.
  • the battery pack further includes a second resin layer, which is formed by placing a second resin material on the third region and then fixing it, the second resin layer and the second coating The parts are bonded, and the portion of the channel between the first covering part and the second covering part includes a gap.
  • the covering member includes a fourth section connecting the first section and the second section, and the fourth section is arranged opposite to the third section, so The fourth section covers the second surface.
  • the covering member is a ring structure.
  • the covering member partially overlaps the first through hole and the second through hole in the third direction, which is beneficial to reduce the entry of foreign matter from the outside into the first region and the third region Inside.
  • the first section and the second section are provided with recesses, and the sides of the cell module along the third direction are accommodated in the recesses.
  • the recess can be used to limit the position of the battery module, and at the same time, the recess can store a part of glue, which is convenient for bonding and fixing the battery.
  • a bonding protrusion extends from the groove bottom of the recess toward the cell module.
  • the bonding protrusion can slow down the flow of glue in the recess, which is beneficial to the bonding and fixing of the cell module.
  • the battery pack further includes an adapter assembly
  • the adapter assembly includes an adapter plate and an adapter piece, the adapter plate is disposed on the first end of the battery cell, The adapter is arranged on the adapter plate, and the adapter is connected to the electric core.
  • the adapter assembly can be used to connect external components.
  • the first section is provided with a seventh through hole
  • the second section is provided with an eighth through hole
  • the seventh through hole is opposite to the eighth through hole
  • the seventh through hole, the eighth through hole at least partially overlap with the channel in the third direction.
  • the battery pack further includes a circuit board, the circuit board is arranged on a surface of the battery pack shell away from the battery module, the circuit board is connected to the adapter board electrical connections.
  • the circuit board can be used to control data such as the voltage of the battery cell.
  • an electric device including the above-mentioned battery pack.
  • the embodiment of the present application is provided with a battery module, at least one covering member, a first resin layer and at least one first structural member, and the battery module includes A plurality of cell assemblies stacked, the cell module includes a first surface and a second surface opposite to each other along a first direction and a first side and a second side opposite to a third direction, wherein the The cover includes a first section, a second section and a third section connecting the first section and the second section, the first section covers at least part of the first side, the The second section covers at least part of the second side surface, the third section covers the first surface, and the cell module includes a first section located on both sides of a cover along a second direction.
  • the first area and the second area, the first direction, the second direction and the third direction are perpendicular to each other, the first resin layer is formed by setting the first resin material in the first area and fixing it, and the The first resin layer is bonded to the covering member.
  • at least one first structural member is arranged between the two adjacent cell assemblies, so that two adjacent cell modules are separated to form The channel, the part of the channel located in the second area includes a gap, the channel communicates with the outside air, and the heat generated by the battery cell assembly is discharged from the battery pack through the channel to reduce the internal temperature of the battery pack, and at the same time,
  • the external blowing parts or exhausting parts can be arranged at the channel to accelerate the air flow in the channel and improve the heat dissipation of the battery pack, thereby reducing the internal temperature of the entire battery pack.
  • Fig. 1 is a schematic diagram of the overall structure assembly of the battery pack of the embodiment of the present application
  • Fig. 2 is an exploded schematic diagram of the overall structure of the battery pack of the embodiment of the present application.
  • FIG. 3 is an exploded schematic diagram of the overall structure of the battery pack case of the battery pack in the embodiment of the present application;
  • Fig. 4 is a schematic side view of part of the internal structure of the battery pack of the embodiment of the present application.
  • Fig. 5 is a schematic diagram of a partial structure assembly of a battery pack according to an embodiment of the present application.
  • Fig. 6 is a schematic diagram of the explosion of multiple cell modules of the battery pack according to the embodiment of the present application.
  • Fig. 7 is a schematic diagram of a part of the structural assembly of the battery pack of the embodiment of the present application.
  • Fig. 8 is a schematic diagram of another part of the structure and assembly of the battery pack of the embodiment of the present application.
  • Fig. 9 is a schematic exploded view of a single cell structure of a battery pack according to an embodiment of the present application.
  • Fig. 10 is a schematic diagram of the overall structure of a single battery cell in the battery pack of the embodiment of the present application.
  • Fig. 11 is a schematic side view of multiple cell modules stacked in a stacking sequence in the battery pack of the embodiment of the present application;
  • Fig. 12 is a schematic side view of a plurality of cell modules of the battery pack in the embodiment of the present application according to a stacking order and another stacking;
  • Fig. 13 is a schematic side view of multiple cell modules stacked in another stacking sequence of the battery pack according to the embodiment of the present application;
  • Fig. 14 is a schematic side view of multiple cell modules stacked in another stacking sequence of the battery pack according to the embodiment of the present application;
  • Fig. 15 is a schematic diagram of the assembly of the adapter assembly of the battery pack and the cell module of the embodiment of the present application;
  • Fig. 16 is a schematic structural diagram of the adapter plate of the adapter assembly of the battery pack according to the embodiment of the present application.
  • Fig. 17 is a schematic structural view of the covering part of the battery pack according to the embodiment of the present application.
  • Fig. 18 is a schematic structural view of the covering part of another embodiment of the battery pack of the present application.
  • FIG. 19 is a schematic diagram of the assembly of the covering part and the cell module of another embodiment of the battery pack of the present application.
  • the structure of the battery pack 01 will be described in conjunction with the X, Y, and Z coordinate axes, wherein the X, Y, and Z coordinate axes are perpendicular to each other.
  • the battery pack 01 includes a cell module 10 , a first resin layer 20 , at least one first structural component 40 and a covering component 50 .
  • the cell module 10 includes a plurality of cell assemblies 11 stacked along the first direction Z.
  • the at least one covering member 50 covers the outer surface of the cell module 10, and the first resin layer 20 is disposed at one end of the cell module 10 along the second direction Y, so that The first resin layer 20 includes a first resin material.
  • the first structural member 40 is arranged in the cell module 10, so that a channel 10a is formed at intervals in the cell module 10, and the channel 10a communicates with the outside air, and the channel 10a can carry the battery
  • the heat generated inside the pack is exhausted from the inside of the battery pack to reduce the internal temperature of the battery pack.
  • an external blower or air exhauster can also be arranged at the passage 10a to accelerate the air flow in the passage 10a and improve the heat dissipation of the battery pack, thereby It has the effect of reducing the internal temperature of the entire battery pack.
  • the battery pack 01 also includes a second resin layer 30 , a battery pack case 70 , an adapter assembly 80 , a circuit board 90 and a heat conducting element 100 .
  • the battery pack case 70 can be used to accommodate the battery module 10 .
  • the second resin layer 30 includes a second resin material. Along the second direction Y, the second resin layer 30 is disposed at the other end of the cell module 10, the adapter assembly 80 is disposed at one end of the cell module 10, and is connected to the The battery module 10 is electrically connected.
  • the adapter assembly 80 and the first resin layer 20 are disposed at the same end of the cell module 10 .
  • the circuit board 90 is disposed on a surface of the battery pack casing 70 away from the cell module 10, the circuit board 90 is electrically connected to the adapter assembly 80, and, The heat conduction element 100 is wrapped around the cell assembly 11 , and the heat conduction element 100 is located between the covering element 50 and the cell assembly 11 .
  • the battery pack case 70 includes a first case 71 and a second case 72, and the first case 71 is provided with a first cavity (not marked), the second shell 72 is provided with a second cavity (not marked), the first shell 71 is connected to the second shell 72, the first cavity is connected to the first cavity
  • the two cavities form the receiving chamber 70 a of the battery pack case 70 , and the receiving chamber 70 a can be used to accommodate the battery module 10 .
  • the battery pack housing is provided with a first through hole 701 and a second through hole 702, the first through hole 701 and the second through hole 702 are arranged opposite to each other along the third direction X, and the battery pack
  • the casing 70 includes a first side wall 703 and a second side wall 704 oppositely disposed along the third direction X, the first through hole 701 is located on the first side wall 703, and the second through hole 702 is located on the The second side wall 704, and the first through hole 701, the second through hole 702 overlap at least partially with the channel 10a in the third direction X, the first through hole 701 and the second through hole 702 It is convenient for the passage 10a to communicate with the outside air, and at the same time, the air flow in the passage 10a can be improved to improve the heat dissipation of the battery pack.
  • the positions of the first through hole 701 and the second through hole 702 are not limited to be set on the first side wall 703 and the second side wall 704, and the first through hole 701 can also be and the second through hole 702 are located at other positions, the positions of the first through hole 701 and the second through hole 702 can be set according to the position of the channel 10a, for example, the channel opening of the channel 10a faces the In the second direction Y, the positions of the first through hole 701 and the second through hole 702 are arranged on the other side walls of the battery pack casing along the second direction Y, and are connected with the channel 10a in the at least partially overlap in the second direction Y.
  • the first housing 71 is provided with a third through hole 705, the third through hole 705 communicates with the receiving cavity 70a, and along the direction opposite to the first direction Z, the first The three through holes 705 are located above the first region 12 , and the third through holes 705 are convenient for pouring the first resin material into the first region 12 .
  • the second housing 72 is provided with a fourth through hole 706, the fourth through hole 706 communicates with the receiving cavity 70a, and along the direction opposite to the first direction Z, the first The four through holes 706 are located above the second region 13 , and the fourth through holes 706 are convenient for pouring the second resin material into the second region 13 .
  • the structure of the battery pack casing is not limited to the connection between the first casing 71 and the second casing 72 as described above, the structure of the battery pack casing can also be integrally formed, and the integrally formed
  • the battery pack housing is provided with a first opening (not shown) communicating with the receiving cavity 70a, and the first opening is convenient for the battery module 10 to be placed in the receiving cavity 70a.
  • the cell module 10 includes a plurality of cell assemblies 11 stacked along the first direction Z, and the cell module 10 includes first The surface 10b and the second surface 10c and the first side 10d and the second side 10e oppositely arranged along the third direction X.
  • the cell module 10 includes a first area 12, a second area 13 and a third area 14, the first area 12, the second area 13 and The third regions 14 are sequentially arranged along the direction opposite to the second direction Y.
  • the first area 12 can be used to form the first resin layer 20 after the first resin material is set
  • the second area 13 can be used to set the channel 10a
  • the third area 14 can be used to provide the first resin layer 20.
  • the second resin layer 30 is formed after the two resin materials are set.
  • the cell assembly 11 includes at least one cell, and each cell includes an electrode assembly 111 , a cell casing 112 for accommodating the electrode assembly 111 , and a cell casing 112 connected to the The tab 113 of the electrode assembly 111 is described above.
  • the cell housing 112 includes a first portion 1122 for accommodating the electrode assembly and a second portion 1121 extending outward from the first portion 1122 , and the tab 113 extends from the second portion 1121 along the The second direction Y extends out of the cell case 112 , and the part of the tab 113 extending out of the cell case is located in the first area 12 .
  • the second part 1121 seals the electrode assembly 111 accommodated in the first part 1122 to prevent external water vapor from entering the battery case 112 .
  • the tab 113 includes a positive tab 113a and a negative tab 113b, and the positive tabs 113a and the negative tabs 113b are connected between the plurality of battery cells.
  • the second part 1121 of the cell casing 112 is bonded and fixed to realize sealing the electrode assembly 111 in the cell casing 112, wherein the bonding
  • the sealed second part 1121 forms the top seal of the cell.
  • one end of the tab 113 of the cell is connected to the electrode assembly 111 , and the other end of the tab 113 protrudes from the second portion 1121 along the second direction Y.
  • the cell assembly 11 includes a first cell assembly 101 , a second cell assembly 102 and a third cell assembly 103 , and the first cell assembly 101 , the second cell assembly 102 and the third cell assembly 103 are arranged in a stack along the first direction Z in sequence.
  • the number of batteries in the first battery assembly 101 is 2
  • the number of batteries in the second battery assembly 102 is 2
  • the number of batteries in the third battery assembly 103 is 1 indivual.
  • the width of the channel 10a between the three cell assemblies 11 along the first direction Z is 3mm. In some other embodiments, the width of the channel 10a along the first direction Z is 1.6 mm.
  • the stacking manner among the first cell assembly 101, the second cell assembly 102 and the third cell assembly 103 is not limited to the above-mentioned arrangement, for example: as shown in FIGS. 13-14 , according to The third cell assembly 103, the first cell assembly 101 and the second cell assembly 102 are stacked in sequence along the first direction Z, as another example, according to the first cell assembly 101, the third cell assembly 103 and the second cell assembly The two battery cell assemblies 102 are stacked in sequence along the first direction Z.
  • the first structural member 40 includes foam, which can be compressed, and the foam can provide an expansion space for the expansion of the battery cell, which is beneficial to improve the service life of the battery pack.
  • the adapter assembly 80 includes an adapter plate 801 , an adapter piece 802 and a conductive sheet 803 .
  • the adapter plate 801 is arranged on the end of the cell close to the tab 113
  • the adapter piece 802 is arranged on the adapter plate 801
  • the conductive sheet 803 is arranged on the adapter plate 801 away from A surface of the battery core.
  • the adapter assembly 80 can be used to connect external components.
  • the external components can include a safety device. When the internal current of the battery exceeds a specified value, the safety device can disconnect the circuit to effectively protect the internal circuit of the battery.
  • the safety device is a fuse, and when the internal current of the battery exceeds a specified value, the fuse can disconnect the circuit to effectively protect the internal circuit of the battery.
  • the conductive sheet 803 is used to connect the battery cells to realize the electrical connection between the adapter plate 801 and the battery cells.
  • the adapter board 801 is a PCB circuit board, and the PCB can be used as a carrier of electronic components, which facilitates the connection between internal components of the battery pack.
  • the adapter plate 801 is provided with a second opening 8011, and the second opening 8011 can be used for
  • the adapter plate 801 dissipates heat to limit the temperature rise of the adapter plate 801 from being damaged.
  • the second opening 8011 facilitates the flow of the first resin material and reduces the curing time of the first resin material.
  • the adapter plate 801 is provided with a fifth through hole 8012 and a sixth through hole 8013, the fifth through hole 8012 and the sixth through hole 8013 are located on both sides of the conductive sheet 803, so The fifth through hole 8012 and the sixth through hole 8013 are convenient for the tab 113 of the battery cell to pass through and connect with the adapter plate 801 .
  • the adapter 802 includes a first adapter 8021 and a second adapter 8022, and the first adapter 8021 is connected to a tab 113 of the cell. , the second adapter 8022 is connected to the other tab 113 of the cell.
  • the adapter 802 includes a copper bar.
  • the first transition piece 8021 can be the main positive copper bar
  • the second transition piece 8022 can be the main negative copper bar. It can be understood that the first transition piece 8021 is not limited to be the main positive copper bar, and the second transition piece 8022 is not limited to be the main negative copper bar.
  • the polarity of the first adapter 8021 and the second adapter 8022 are opposite.
  • the adapter 802 may also include a plurality of first adapters 8021 and second adapters 8022, multiple batteries may be connected in series or in parallel, and multiple first adapters 8021 may be connected to the positive ear of the battery 113a or the negative tab 113b, a plurality of second adapters 8022 can be connected to the negative tab 113b or the positive tab 113a of the cell.
  • the polarity of the first adapter 8021 and the second adapter 8022 connected to the tab 113 of the cell is not limited.
  • the first adapter 8021 can be connected to the positive ear 113a of the battery
  • the second adapter 8022 can be connected to the negative ear 113b of the battery.
  • the poles connected to the first adapter 8021 and the second adapter 8022 The polarity of the ear 113 is not limited, as long as the first adapter 8021 and the second adapter 8022 meet the requirements of connecting the ear 113 with opposite polarity.
  • circuit board 90 As for the above-mentioned circuit board 90, as shown in FIG. connect.
  • the circuit board 90 is a Battery Management System (BMS) board, and the BMS board can be used to control data such as the voltage of the battery cell.
  • BMS Battery Management System
  • the covering member 50 includes a first section 501 , a second section 502 , and a third section 503 connecting the first section 501 and the second section 502 .
  • the first section 501 is arranged opposite to the second section 502 .
  • the length of the first section 501 is smaller than the length of the battery assembly 11 , and the first section 501 covers at least part of the first side 10d.
  • the length of the second section 502 is smaller than the length of the battery assembly 11 , and the second section 502 covers at least part of the second side 10e.
  • the length of the third section 503 is smaller than the length of the battery assembly 11, the third section 503 covers at least part of the first surface 10b, and the covering member 50 will
  • the cell module 10 is divided to form a first area 12 and a second area 13 .
  • the covering member 50 can be used to limit the position of the cell assembly 11 and reduce the shaking of the cell assembly 11 .
  • the covering member 50 partially overlaps with the first through hole 701 and the second through hole 702 in the third direction X, which is beneficial to reduce foreign matter entering the first region 12 and the first region 12 and the second through hole 702.
  • foreign objects may include dust particles and the like.
  • the covering member 50 includes a fourth section 505 connecting the first section 501 and the second section 502 .
  • the fourth section 505 is arranged opposite to the third section 503 .
  • the length of the fourth section 505 is smaller than the length of the battery assembly 11, the fourth section 505 covers at least part of the second surface 10c, and can be further used to define the battery cell Component 11 location.
  • the covering member 50 is a ring structure.
  • the covering member 50 includes a first covering member 51 and a second covering member 52 arranged in sequence along the opposite direction of the second direction Y, the The first covering member 51 is spaced apart from the second covering member 52, the first covering member 51 is located between the first region 12 and the second region 13, and the second covering member 52 The part is located between the second area 13 and the third area 14, and the part of the channel 10a located in the second area 13 includes a gap.
  • the first covering member 51 can restrict the first resin material disposed in the first region 12 from flowing into the second region 13, and the second covering member 52 can restrict the flow of the first resin material disposed in the third region.
  • the first resin material in 14 flows into the second region 13 .
  • the first covering part 51 and the second covering part 52 are sealing foam.
  • the first covering part 51 is integrally formed, and the second covering part 52 is integrally formed.
  • the first covering member 51 includes a first section 501 , a second section 502 , a third section 503 and a fourth section 505 .
  • the second covering member 52 includes a first section 501 , a second section 502 , a third section 503 and a fourth section 505 .
  • the inner surface of the covering member 50 connected to the battery core assembly 11 is provided with adhesive glue, which facilitates the bonding and fixing of the covering member 501 and the plurality of battery core assemblies 11, further restricting the first Flow of resin material.
  • the covering member 50 has elasticity, and the size of the covering member 50 is smaller than the outer peripheral dimensions of the plurality of electric core assemblies 11, so that the covering member 50 applies The pressure can further restrict the flow of the first resin material.
  • the first covering part 51 and the second covering part 52 are integrally formed into the covering part 50, and the covering part 50 is provided with A first section 501, a second section 502, a third section 503 and a fourth section 505, the third section 503 connecting one end of the first section 501 and the second section 502,
  • the fourth section 505 connects the other end of the first section 501 and the second section 502, and the third section 503 covers the first surface 10b along the third direction.
  • the fourth section 505 covers a part of the second surface 10c, which can reduce the shaking of the cell assembly 11 .
  • the first section 501 is provided with a seventh through hole 5011
  • the second section 502 is provided with an eighth through hole 5021
  • the seventh through hole 5011 and the eighth through hole 5021 are oppositely arranged
  • the seventh through hole 5011 and the eighth through hole 5021 overlap at least partially with the channel 10a in the third direction X
  • the seventh through hole 5011 and the eighth through hole 5021 are convenient for all
  • the passage 10a communicates with the outside air, which is beneficial to the internal heat dissipation of the battery pack.
  • the first section 501 and the second section 502 are provided with a recess 504 , and the side of the cell module 10 along the third direction X is accommodated in the recess 504 .
  • the concave part 504 can be used to limit the position of the battery module 10, and reduce the shaking of the battery module 10 in the battery pack casing.
  • the concave part 504 can store a part of glue, which is convenient for fixing the battery module 10. Adhesive fixation of group 10.
  • the groove bottom of the recess 504 has a protrusion 5041 extending toward the cell module 10, and the protrusion 5041 can slow down the flow of glue in the recess 504, which is beneficial to the cell module. 10's of adhesive fixation.
  • the first resin layer 20 is located in the first region 12, and the second resin layer 30 in the second area 13 .
  • the first resin layer 20 is formed by setting a first resin material in the first region 12 and fixing it
  • the second resin layer 30 is formed by setting a second resin material in the second region 13 and fixing it. Forming, the first resin layer 20 is bonded to the first covering part 51 , and the second resin layer 30 is bonded to the second covering part 52 .
  • the first resin layer 20 is used to bond the plurality of electric cores and to bond and fix the plurality of electric cores to the first casing 71
  • the second resin layer 30 is used to bond the A plurality of battery cells and bonding and fixing the plurality of battery cells to the second casing 72
  • the first resin material and the second resin material include potting glue, and the potting glue is poured into the first area 12 and the second area through the third through hole 705 and the fourth through hole 706 respectively. 13 , wherein the first resin layer 20 is formed after the potting glue poured into the first region 12 is cured, and the second resin layer 30 is formed after the potting glue poured into the second region 13 is cured.
  • the pouring method of the first resin layer 20 and the second resin layer 30 may be glue potting or injection molding, for example: low-pressure injection molding.
  • the potting glue of the first resin layer 20 and the second resin layer 30 can play the roles of bonding, sealing, potting and coating protection for components.
  • the first resin layer 20 and the second resin layer 30 include epoxy resin potting compound. It can be understood that, the first resin layer 20 and the second resin layer 30 are not limited to include epoxy resin layer potting compound, in some other embodiments, the first resin layer 20 and the second resin layer 30 also include Can be replaced with other types of potting compound.
  • the heat conduction member 100 As shown in FIG. 2 and FIG. Between the covering member 50 and the cell assembly 11, the heat conduction member 100 is used to dissipate the heat generated by the cell, and then use the channel 10a between the cell assemblies 11 to discharge the heat from the battery pack, reducing the battery pack internal temperature.
  • the heat conducting member 100 covers a portion of the surface of each cell assembly 11 located in the first region 12 .
  • the heat conducting member 100 covers a part of the surface of each cell assembly 11 located in the third region 14 .
  • the heat conducting member 100 is an aluminum shell, and the aluminum shell has good thermal conductivity, which is beneficial to dissipate the heat generated by the battery cell.
  • the embodiment of the present application also provides a comparative test of three cell assemblies in different stacking sequences and channels of different widths.
  • Test materials the first cell assembly 101, the second cell assembly 102 and the third cell assembly 103, the first cell assembly 101 includes 2 cells, the second cell assembly 102 includes 2 cells, the third The cell assembly 103 includes one cell.
  • Test conditions the wind speed of the external environment is 2m/s, and the maximum temperature of the battery cell is set to 70°C.
  • the first cell assembly 101, the second cell assembly 102 and the third cell assembly 103 are stacked in sequence along the first direction Z, the first cell assembly 101, the second cell assembly 102 and the third cell assembly There is no passage 10a between the core assemblies 103, and the time required for the cell temperature of the currently set battery pack to cool down from the maximum temperature of 70°C to 55°C, 45°C and 35°C was tested.
  • Solution 1 As shown in Figure 11, the first cell assembly 101, the second cell assembly 102 and the third cell assembly 103 are stacked in sequence along the first direction Z, the first cell assembly 101, the second cell assembly A channel 10a is provided between 102 and the third cell assembly 103, and the width of the channel 10a in the first direction Z is set to 1.6 mm, and the cell temperature of the currently set battery pack is cooled from a maximum temperature of 70°C to 55°C , 45°C and 35°C required time.
  • Solution 2 As shown in Figure 12, the first cell assembly 101, the second cell assembly 102 and the third cell assembly 103 are stacked in sequence along the first direction Z, the first cell assembly 101, the second cell assembly A channel 10a is provided between 102 and the third battery cell assembly 103, and the width of the channel 10a in the first direction Z is set to 3mm, and the temperature of the battery cells in the currently set battery pack is cooled from a higher temperature of 70°C to 55°C. °C, 45°C and 35°C required time.
  • Solution 3 As shown in Figure 13, the first cell assembly 101, the third cell assembly 103 and the second cell assembly 102 are stacked in sequence along the first direction Z, the first cell assembly 101, the third cell assembly A channel 10a is provided between 103 and the second battery cell assembly 102, and the width of the channel 10a in the first direction Z is set to 3 mm, and the temperature of the battery cells in the currently set battery pack is cooled from a higher temperature of 70°C to 55°C. °C, 45°C and 35°C required time.
  • Solution 4 As shown in Figure 14, the third cell assembly 103, the first cell assembly 101 and the second cell assembly 102 are stacked in sequence along the first direction Z, the third cell assembly 103, the first cell assembly A channel 10a is provided between 101 and the second cell assembly 102, and the width of the channel 10a in the first direction Z is set to be 3mm, and the cell temperature of the currently set battery pack is cooled from a higher temperature of 70°C to 55°C. °C, 45°C and 35°C required time.
  • the channel 10a is not set in the existing scheme, and the cells in the existing scheme are cooled from a higher temperature of 70°C to 55°C, 45°C, and 35°C corresponding to The time required is longer.
  • the time required for the cooling of the battery core from 70°C to 55°C is shortened by 1.8 minutes compared with the existing solution
  • the cooling time of the battery core from 70°C to The time required for 45°C is shortened by 5 minutes
  • the time required for cooling the cell from 70°C to 35°C in the first solution is shortened by 11 minutes compared with the current solution.
  • the heat dissipation effect of the channel 10a provided between the three cell components is better than that of the existing solution (without the channel 10a), and when the width of the channel 10a in the first direction Z is 3 mm, The heat dissipation effect is better.
  • the stacking order of the three cell assemblies in the first direction Z has an impact on the heat dissipation of the cells, and when the third cell assembly 103, the first cell assembly 101 and the second cell assembly When the stacking sequence of the components 102 is stacked along the first direction Z, the heat dissipation effect of the battery cells is better.
  • the cell module 10 includes stacking along the first direction Z A plurality of cell assemblies 11, the cell module 10 includes a first surface 10b and a second surface 10c oppositely arranged along the first direction Z, and a first side 10d and a second side oppositely arranged along the third direction X 10e.
  • the covering member comprises a first section 501, a second section 502 and a third section 503 connecting the first section 501 and the second section 502, and the first section 501 covers at least part of The first side 10d, the second section 502 covers at least part of the second side 10e, and the third section 503 covers the first surface 10b.
  • the cell module 10 includes a first region 12 and a second region 13 located on both sides of a covering member 50 along a second direction Y, the first direction Z, the second direction Y and the third direction X The two are perpendicular to each other, the first resin layer 20 is formed by setting the first resin material in the first region 12 and fixing it, and the first resin layer 20 is bonded to the covering member.
  • At least one first structural member 40 is arranged between the two adjacent cell assemblies 11, so that two adjacent cell assemblies 11 are separated to form a channel 10a, and the channel 10a is located at the first
  • the part of the second area 13 includes a gap, and the channel 10a communicates with the outside air, and the heat generated by the battery cell assembly 11 is discharged from the battery pack by using the channel 10a, thereby reducing the internal temperature of the battery pack.
  • the ventilation part is arranged at the channel 10a to accelerate the air flow in the channel 10a, improve the heat dissipation of the battery pack, and thereby reduce the internal temperature of the entire battery pack.
  • the present application also provides an embodiment of an electric device, the electric device includes the above battery pack, and the electric device includes but is not limited to agricultural drones, two-wheeled electric vehicles, energy storage devices, hand-held electric tools, etc. , the functions and structures of the battery pack can refer to the above-mentioned embodiments, and will not be repeated here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例涉及电池技术领域,特别公开了一种电池包及用电设备,包括电芯模组、至少一个包覆件、第一树脂层和至少一个第一结构件,电芯模组包括沿第一方向堆叠设置的多个电芯组件、沿第一方向相对设置的第一表面和第二表面、沿第三方向相对设置的第一侧面和第二侧面及沿第二方向位于一包覆件两侧的第一区域和第二区域,包覆件包括第一区段、第二区段和连接第一区段和第二区段的第三区段,第一区段包覆至少部分第一侧面,第二区段包覆至少部分第二侧面,第三区段包覆第一表面,第一树脂层设于第一区域,第一结构件设于相邻两个电芯组件之间,使相邻两个电芯组件隔开形成通道。通过上述方式,本申请实施例能利用通道将电芯产生的热量排出电池包。

Description

一种电池包及用电设备
相关申请的交叉参考
本申请要求于2021年06月30日提交中国专利局,申请号为202110738687.9,名称为“一种电池包及用电设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电池技术领域,特别是涉及一种电池包及用电设备。
背景技术
目前市场上,常用的电池包含有单个电芯,由于单个电芯的电量较少,为了增大电量,通常将多个电芯包裹形成一个新的电池包,新的电池包可解决电池电量较少的问题。其中,多个电芯通常利用灌封胶封装固定。
本申请的发明人在实现本申请的过程中,发现电芯在使用过程中会产生较多热量,而当利用灌封胶将电芯全部封装时,使得电芯产生的热量不易排出,从而使得整个电池包的内部温度较高,非常危险。
申请内容
鉴于上述问题,本申请实施例提供了一种电池包及用电设备,改善了上述电芯散热较差,整个电池包内部温度较高等问题。
根据本申请实施例的一个方面,提供了一种电池包,包括:电芯模组、至少一个包覆件、第一树脂层和至少一个第一结构件,所述电芯模组包括沿第一方向堆叠设置的多个电芯组件,所述电芯模组包括沿第一方向相对设置的第一表面和第二表面以及沿第三方向相对设置的第一侧面和第二侧面,所述包覆件包括第一区段、第二区段和连接所述第一区段的第二区段的第三区段,所述第一区段包覆至少部分所述第一侧面,所述第二区段包覆至少部分所述第二侧面,所述第三区段包覆所述第一表面,所述电池模组包括沿第二方向位于一所述包覆件两侧的第一区域和第二区域,所述第一树脂层通过将第一树脂材料设于所述第一区域后 固定形成,所述第一树脂层与所述包覆件粘接,所述至少一个第一结构件设置于所述相邻两个电芯组件之间,以使相邻所述电芯组件之间隔开形成通道,所述通道位于所述第二区域的部分包括间隙。
所述包覆件可限制灌封胶流入所述通道,所述通道与外界空气流通,所述通道可将电池包内部产生的热量排出电池包内部,降低电池包内部温度,同时,也可将外界吹风件或抽风件设于所述通道处,加速所述通道内的空气流动,提高电池包的散热,从而起到降低整个电池包内部温度的效果。
在一种可选的方式中,所述电池包包括电池包壳体,所述电池包壳体设置有收容腔、第一通孔和第二通孔,所述第一通孔和第二通孔沿第三方向相对设置,并且所述第一通孔和第二通孔均与所述收容腔连通,所述电芯模组收容于所述收容腔内,且所述第一通孔、第二通孔与所述通道在第三方向上至少部分重叠。
在一种可选的方式中,所述电池包壳体包括连接的第一壳体和第二壳体,所述第一壳体和第二壳体形成所述电芯模组的收容腔,所述第一壳体设有连通所述收容腔的第三通孔,沿所述第一方向相反方向,所述第三通孔位于所述第一粘结区上方。
在一种可选的方式中,所述第一区段和第二区段设置有凹部,所述电芯模组沿所述第三方向的侧边收容于所述凹部。
在一种可选的方式中,所述电芯组件包括至少一个电芯,所述每个电芯包括电极组件、用于容纳所述电极组件的电芯壳体、以及连接至所述电极组件并且从所述电芯壳体引出的极耳;所述电芯壳体包括包括用于容纳所述电极组件的第一部分和从所述第一部分向外延伸的第二部分,极耳从第二部分延伸出电芯壳体,且所述极耳延伸出电芯壳体的部分位于所述第一区域。
在一种可选的方式中,所述电池包还包括导热件,所述导热件包覆于每个所述电芯组件的位于所述第二区域的外表面。所述导热件可用于将位于所述第二区域内的电芯产生的热量导出,之后利用所述电芯组件之间的通道将热量排出电池包,降低电池包内部温度。
在一种可选的方式中,所述导热件包覆于每个所述电芯组件的位于所述第一区域的一部分表面,所述导热件包覆于每个所述电芯组件的位于所述第三区域的一部分表面。所述导热件可用于将位于所述第一区域和所述第三区域内的电芯产生的热量导出,之后利用电芯组件之间的通道将热量排出电池包,降低电池包内部温度。
在一种可选的方式中,所述至少一个包覆件包括沿所述第二方向相 反方向依次设置的第一包覆件和第二包覆件;所述电池模组还包括第三区域,所述第一区域、第二区域以及第三区域沿所述第二方向相反方向依次设置,所述第一包覆件位于所述第一区域和所述第二区域之间,所述第二包覆件位于所述第二区域和所述第三区域之间。
在一种可选的方式中,所述电池包还包括第二树脂层,通过将第二树脂材料设于所述第三区域后固定形成,所述第二树脂层与所述第二包覆件粘接,且所述通道位于所述第一包覆件和所述第二包覆件之间的部分包括间隙。
在一种可选的方式中,所述包覆件包括连接所述第一区段和第二区段的第四区段,所述第四区段与所述第三区段相对设置,所述第四区段包覆于所述第二表面。
在一种可选的方式中,所述包覆件为环状结构。
在一种可选的方式中,所述包覆件与所述第一通孔和第二通孔在第三方向上部分重叠,有利于减少外界异物进入所述第一区域和所述第三区域内。
在一种可选的方式中,所述第一区段和第二区段设置有凹部,所述电芯模组沿所述第三方向的侧边收容于所述凹部内。所述凹部可用于限定所述电芯模组的位置,同时,所述凹部可储存一部分胶水,便于对所述电芯的粘结固定。
在一种可选的方式中,所述凹部的槽底朝所述电芯模组方向延伸有粘结凸起。所述粘结凸起可减缓凹部内的胶水的流动,利于所述电芯模组的粘结固定。
在一种可选的方式中,所述电池包还包括转接组件,所述转接组件包括转接板和转接件,所述转接板设置于所述电芯的第一端部,所述转接件设置于所述转接板上,所述转接件连接于所述电芯。所述转接组件可用于连接外接部件。
在一种可选的方式中,所述第一区段设置有第七通孔,所述第二区段设置有第八通孔,所述第七通孔和所述第八通孔相对设置,且所述第七通孔、第八通孔与所述通道在所述第三方向上至少部分重叠。
在一种可选的方式中,所述电池包还包括电路板,所述电路板设置于所述电池包壳体背离所述电芯模组的一表面,所述电路板与所述转接板电连接。所述电路板可用于对电芯的电压等数据进行控制。
根据本申请实施例的另一个方面,提供了一种用电设备,包括如上所述的电池包。
本申请实施例的有益效果是:本申请实施例通过设置有电芯模组、 至少一个包覆件、第一树脂层和至少一个第一结构件,所述电芯模组包括沿第一方向堆叠设置的多个电芯组件,所述电芯模组包括沿第一方向相对设置的第一表面和第二表面以及沿第三方向相对设置的第一侧面和第二侧面,其中,所述包覆件包括第一区段、第二区段和连接所述第一区段和第二区段的第三区段,所述第一区段包覆至少部分所述第一侧面,所述第二区段包覆至少部分所述第二侧面,所述第三区段包覆所述第一表面,所述电芯模组包括沿第二方向位于一所述包覆件两侧的第一区域和第二区域,所述第一方向、第二方向以及第三方向两两相互垂直,所述第一树脂层通过将第一树脂材料设于所述第一区域后固定形成,所述第一树脂层与所述包覆件粘接,此外,至少一个第一结构件设置于所述相邻两个电芯组件之间,以使相邻两个所述电芯模组隔开形成通道,所述通道位于所述第二区域的部分包括间隙,所述通道与外界空气流通,利用所述通道将所述电芯组件产生的热量排出电池包,降低电池包内部温度,同时,也可将外界吹风件或抽风件设于通道处,加速通道内的空气流动,提高电池包的散热,从而起到降低整个电池包内部温度的效果。
附图说明
为了更清楚地说明本申请具体实施例或现有技术中的技术方案,下面将对具体实施例或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。
图1是本申请实施例电池包的整体结构组装示意图;
图2是本申请实施例电池包的整体结构***示意图;
图3是本申请实施例电池包的电池包壳体的整体结构***示意图;
图4是本申请实施例电池包的部分内部结构侧面示意图;
图5是本申请实施例电池包的部分结构组装示意图;
图6是本申请实施例电池包的多个电芯模组***示意图;
图7是本申请实施例电池包的一部分结构组装示意图;
图8是本申请实施例电池包的又一部分结构组装示意图;
图9是本申请实施例电池包的单个电芯结构***示意图;
图10是本申请实施例电池包的单个电芯整体结构示意图;
图11是本申请实施例电池包的多个电芯模组按一堆叠顺序堆叠侧面示意图;
图12是本申请实施例电池包的多个电芯模组按一堆叠顺序另一堆 叠侧面示意图;
图13是本申请实施例电池包的多个电芯模组按另一堆叠顺序堆叠侧面示意图;
图14是本申请实施例电池包的多个电芯模组按又一堆叠顺序堆叠侧面示意图;
图15是本申请实施例电池包的转接组件与电芯模组的组装示意图;
图16是本申请实施例电池包的的转接组件的转接板的结构示意图;
图17是本申请实施例电池包的包覆件的结构示意图;
图18是本申请电池包的另一实施例的包覆件结构示意图;
图19是本申请电池包的另一实施例的包覆件与电芯模组组装示意图。
附图说明:10、电芯模组;10a、通道;10b、第一表面;10c、第二表面;10d、第一侧面;10e、第二侧面;11、电芯组件;11a、电芯;12、第一区域;13、第二区域;14、第三区域;111、电极组件;112、电芯壳体;1121、第二部分;1122、第一部分;101、第一电芯组件;102、第二电芯组件;103、第三电芯组件;113、极耳;113a、正极耳;113b、负极耳;20、第一树脂层;30、第二树脂层;40、第一结构件;50、包覆件;51、第一包覆件;52、第二包覆件;501、第一区段;5011、第七通孔;502、第二区段;5021、第八通孔;503、第三区段;504、凹部;5041、粘结凸起;505、第四区段;70、电池包壳体;70a、收容腔;701、第一通孔;702、第二通孔;703、第一侧壁;704、第二侧壁;705、第三通孔;706、第四通孔;71、第一壳体;72、第二壳体;80、转接组件;801、转接板;8011、第二开口;8012、第五通孔;8013、第六通孔;802、转接件;8021、第一转接件;8022、第二转接件;803、导电片;90、电路板;100、导热件。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本说明书中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
为了更好的对电池包01的结构进行说明,将结合X、Y、Z坐标轴对电池包01的结构进行叙述,其中,X、Y、Z坐标轴两两垂直。
请参阅图1-图3,电池包01包括电芯模组10、第一树脂层20、至少一个第一结构件40和包覆件50。电芯模组10包括多个沿第一方向Z堆叠设置的电芯组件11。所述至少一个包覆件50包覆于所述电芯模组10的外表面,沿所述第二方向Y,所述第一树脂层20设置于所述电芯模组10的一端,所述第一树脂层20包括第一树脂材料。一所述第一结构件40设置于所述电芯模组10内,以使所述电芯模组10内间隔形成通道10a,所述通道10a与外界空气流通,所述通道10a可将电池包内部产生的热量排出电池包内部,降低电池包内部温度,同时,也可将外界吹风件或抽风件设于所述通道10a处,加速通道10a内的空气流动,提高电池包的散热,从而起到降低整个电池包内部温度的效果。
电池包01还包括第二树脂层30、电池包壳体70、转接组件80、电路板90和导热件100。所述电池包壳体70可用于***述电芯模组10。第二树脂层30包括第二树脂材料。沿所述第二方向Y,所述第二树脂层30设置于所述电芯模组10的另一端,所述转接组件80设于所述电芯模组10的一端,并与所述电芯模组10电连接。可选的,所述转接组件80和所述第一树脂层20设于所述电芯模组10的同一端。沿第一方向Z,所述电路板90设置于所述电池包壳体70的背离所述电芯模组10的一表面,所述电路板90与所述转接组件80电连接,此外,所述导热件100包覆于所述电芯组件11,所述导热件100位于所述包覆件50和所述电芯组件11之间。
对于上述电池包壳体70,如图2和图3所示,所述电池包壳体70包括第一壳体71和第二壳体72,所述第一壳体71设置有第一空腔(未标示),所述第二壳体72设置有第二空腔(未标示),所述第一壳体71与所述第二壳体72连接,所述第一空腔与所述第二空腔形成所述电池包壳体70的收容腔70a,所述收容腔70a可用于***述电芯模组10。
所述电池包壳体上设置有第一通孔701和第二通孔702,所述第一通孔701和所述第二通孔702沿所述第三方向X相对设置,所述电池包壳体70包括沿第三方向X相对设置的第一侧壁703和第二侧壁704,所 述第一通孔701位于所述第一侧壁703,所述第二通孔702位于所述第二侧壁704,且所述第一通孔701、第二通孔702与所述通道10a在第三方向X上至少部分重叠,所述第一通孔701和所述第二通孔702便于所述通道10a与外界空气流通,同时可提升通道10a内的空气流动,提高电池包的散热。
可以理解的是,所述第一通孔701和所述第二通孔702的位置不限设置所述第一侧壁703和第二侧壁704上,也可将所述第一通孔701和所述第二通孔702设于其他位置,所述第一通孔701和第二通孔702的位置可根据所述通道10a的位置进行设定,例如所述通道10a的通道口朝向所述第二方向Y,则所述第一通孔701和第二通孔702的位置沿所述第二方向Y设置于所述电池包壳体其它侧壁上,并与所述通道10a在所述第二方向Y上至少部分重叠。
在一些实施例中,所述第一壳体71设置有第三通孔705,所述第三通孔705连通所述收容腔70a,且沿所述第一方向Z相反的方向,所述第三通孔705位于所述第一区域12的上方,所述第三通孔705便于将第一树脂材料灌注设于所述第一区域12。
在一些实施例中,所述第二壳体72设置有第四通孔706,所述第四通孔706连通所述收容腔70a,且沿所述第一方向Z相反的方向,所述第四通孔706位于所述第二区域13的上方,所述第四通孔706便于将第二树脂材料灌注于第二区域13。
所述电池包壳体结构不限于上述利用所述第一壳体71和所述第二壳体72连接而成,所述电池包壳体的结构也可为一体制作成型,且一体制作成型的电池包壳体设置有连通所述收容腔70a的第一开口(图未示),所述第一开口便于所述电芯模组10放置于所述收容腔70a内。
如图4-图6所示,所述电芯模组10包括沿第一方向Z堆叠设置的多个电芯组件11,所述电芯模组10包括沿第一方向Z相对设置的第一表面10b和第二表面10c以及沿第三方向X相对设置的第一侧面10d和第二侧面10e。
在一些实施例中,如图7和图8所示,所述电芯模组10包括第一区域12、第二区域13和第三区域14,所述第一区域12、第二区域13以及第三区域14沿所述第二方向Y相反方向依次设置。所述第一区域12可用于供所述第一树脂材料设置后形成所述第一树脂层20,所述第二区域13可用于设置所述通道10a,所述第三区域14可用于供第二树脂材料设置后形成所述第二树脂层30。
如图9和图10所示,所述电芯组件11包括至少一个电芯,每个所 述电芯包括电极组件111、用于容纳所述电极组件111的电芯壳体112以及连接于所述电极组件111的极耳113。所述电芯壳体112包括用于容纳所述电极组件的第一部分1122和从所述第一部分1122向外延伸的第二部分1121,所述极耳113从所述第二部分1121沿所述第二方向Y延伸出所述电芯壳体112,且所述极耳113延伸出所述电芯壳体的部分位于所述第一区域12。所述第二部分1121将收容于所述第一部分1122内的电极组件111进行密封,限制外部的水汽进入电芯壳体112内。可选的,所述极耳113包括正极耳113a和负极耳113b,所述多个电芯之间的正极耳113a和负极耳113b连接。
在所述电极组件111设置于电芯壳体112内后,所述电芯壳体112的第二部分1121粘结固定,实现将电极组件111密封在电芯壳体112内,其中,粘结密封后的第二部分1121形成电芯的顶封。同时,电芯的极耳113一端连接电极组件111,极耳113的另一端从所述第二部分1121沿第二方向Y伸出。
在一些实施例中,如图11和图12所示,所述电芯组件11包括第一电芯组件101、第二电芯组件102和第三电芯组件103,所述第一电芯组件101、第二电芯组件102和第三电芯组件103依次沿所述第一方向Z堆叠设置。可选的,所述第一电芯组件101的电芯数量为2个,所述第二电芯组件102的电芯数量为2个,所述第三电芯组件103的电芯数量为1个。可选的,所述第一电芯组件101、第二电芯组件102和第三电芯组件103,这三个电芯组件11之间的通道10a沿所述第一方向Z上的宽度为3毫米。在一些其他实施例中,所述通道10a沿所述第一方向Z上的宽度为1.6毫米。
可以理解的是,所述第一电芯组件101、第二电芯组件102和第三电芯组件103之间的堆叠方式不限于上述排列方式,例如:如图13-图14所示,按照第三电芯组件103、第一电芯组件101和第二电芯组件102依次沿所述第一方向Z堆叠设置,又如,按照第一电芯组件101、第三电芯组件103和第二电芯组件102依次沿所述第一方向Z堆叠设置。
在一些实施例中,所述第一结构件40包括泡棉,泡棉可被压缩,所述泡棉可为电芯的膨胀提供膨胀空间,有利于提高电池包的使用寿命。
对于上述转接组件80,如图2和图15所示,所述转接组件80包括转接板801、转接件802和导电片803。所述转接板801设置于所述电芯靠近所述极耳113的一端,所述转接件802设置于所述转接板801,所述导电片803设置于所述转接板801背离所述电芯的一表面。其中,所述转接组件80可用于连接外接部件,例如外接部件可包括保险装置, 所述保险装置在电池内部电流超过规定值时,保险装置可断开电路,有效保护电池内部电路。在一些实施例中,所述保险装置为熔断器,在电池内部电流超过规定值时,熔断器可断开电路,有效保护电池内部电路。导电片803用于连接电芯,实现将转接板801和电芯之间电连接。
在一些实施例中,所述转接板801为PCB电路板,所述PCB可作为电子元器件的载体,有利于电池组内部部件之间的连接。
在一些实施例中,如图16所示,所述转接板801上设置有第二开口8011,所述极耳113和所述导电片803焊接过程中,所述第二开口8011可用于对转接板801进行散热,限制转接板801温升过高而损坏。在将所述第一树脂材料灌注到第一区域20时,所述第二开口8011有利于第一树脂材料的流动,减少第一树脂材料的固化时间。
在一些实施例中,所述转接板801上设置第五通孔8012和第六通孔8013,所述第五通孔8012和第六通孔8013位于所述导电片803的两侧,所述第五通孔8012和第六通孔8013便于电芯的极耳113穿过与转接板801连接。
在一些实施例中,如图15所示,所述转接件802包括第一转接件8021和第二转接件8022,所述第一转接件8021连接于电芯的一极耳113,所述第二转接件8022连接于所述电芯的另一极耳113。可选的,所述转接件802包括铜排。进一步的,所述第一转接件8021可为总正铜排,第二转接件8022可为总负铜排。可以理解的是,所述第一转接件8021不限于为总正铜排,所述第二转接件8022不限于为总负铜排。第一转接件8021和第二转接件8022电极性相反。转接件802也可以包括多个第一转接件8021和第二转接件8022,多个电芯之间可以串联或并联,多个第一转接件8021可以连接到电芯的正极耳113a或负极耳113b,多个第二转接件8022可以连接到电芯的负极耳113b或正极耳113a。
第一转接件8021和第二转接件8022连接电芯的极耳113的极性不作限制。此外,第一转接件8021可连接电芯的正极耳113a,第二转接件8022则连接电芯的负极耳113b,所述第一转接件8021和第二转接件8022连接的极耳113的极性不作限制,只要第一转接件8021和第二转接件8022满足连接极性相反的极耳113即可。
对于上述电路板90,如图2所示,所述电路板90设置于所述电池包壳体70背离所述电芯组件11的一表面,所述电路板90与所述转接板801电连接。
在一些实施例中,所述电路板90为Battery Management System(BMS)板,所述BMS板可用于对电芯的电压等数据进行控制。
如图7和图8所示,所述包覆件50包括第一区段501、第二区段502、连接所述第一区段501和第二区段502的第三区段503。沿所述第三方向X,所述第一区段501与所述第二区段502相对设置。沿所述第二方向Y,所述第一区段501长度小于所述电池组件11的长度,所述第一区段501包覆至少部分所述第一侧面10d。沿所述第二方向Y,所述第二区段502长度小于所述电池组件11的长度,所述第二区段502包覆至少部分所述第二侧面10e。沿所述第二方向Y,所述第三区段503长度小于所述电池组件11的长度,所述第三区段503包覆至少部分所述第一表面10b,所述包覆件50将所述电芯模组10分隔形成第一区域12和第二区域13。所述包覆件50可用于限定所述电芯组件11的位置,减少所述电芯组件11的晃动。
在一些实施例中,所述包覆件50与所述第一通孔701和第二通孔702在所述第三方向X上部分重叠,有利于减少外界异物进入所述第一区域12和第三区域14内,外界异物可包括灰尘颗粒等等。
在一些实施例中,如图17所示,所述包覆件50包括连接所述第一区段501和第二区段502的第四区段505。沿第一方向Z,所述第四区段505与所述第三区段503相对设置。沿第二方向Y,所述第四区段505长度小于所述电池组件11的长度,所述第四区段505包覆至少部分所述第二表面10c,可进一步用于限定所述电芯组件11的位置。可选的,所述包覆件50为环状结构。
在一些实施例中,如图7和图17所示,所述包覆件50包括沿所述第二方向Y相反方向依次设置的第一包覆件51和第二包覆件52,所述第一包覆件51与所述第二包覆件52间隔设置,所述第一包覆件51位于所述第一区域12和所述第二区域13之间,所述第二包覆52件位于所述第二区域13和所述第三区域14之间,且所述通道10a位于第二区域13的部分包括间隙。所述第一包覆件51可限制设于所述第一区域12内的第一树脂材料流入所述第二区域13内,所述第二包覆件52可限制设于所述第三区域14内的第一树脂材料流入所述第二区域13内。可选的,所述第一包覆件51和所述第二包覆件52为封胶泡棉。可选的,所述第一包覆件51为一体成型结构,所述第二包覆件52为一体成型结构。可选的,所述第一包覆件51包括第一区段501、第二区段502、第三区段503和第四区段505。可选的,所述第二包覆件52包括第一区段501、第二区段502、第三区段503和第四区段505。
可选的,所述包覆件50和所述电芯组件11连接的内表面设置有粘接胶,有利于所述包覆件501和多个电芯组件11粘接固定,进一步限 制第一树脂材料的流动。可选的,所述包覆件50具有弹性,包覆件50的的尺寸小于所述多个电芯组件11的外周围尺寸,以使得所述包覆件50对多个电芯组件11施加压力,可进一步限制第一树脂材料的流动。
在一些实施例中,如图18-19所示,所述第一包覆件51和所述第二包覆件52一体成型制造成所述包覆件50,所述包覆件50设置有第一区段501、第二区段502、第三区段503和第四区段505,所述第三区段503连接所述第一区段501和所述第二区段502的一端,所述第四区段505连接所述第一区段501和所述第二区段502的另一端,所述第三区段503包覆于所述第一表面10b,沿所述第三方向X,所述第四区段505包覆部分所述第二表面10c,可减少所述电芯组件11晃动的作用。
在一些实施例中,所述第一区段501设置有第七通孔5011,所述第二区段502设置有第八通孔5021,所述第七通孔5011和所述第八通孔5021相对设置,且所述第七通孔5011、第八通孔5021与所述通道10a在所述第三方向X上至少部分重叠,所述第七通孔5011和第八通孔5021便于所述通道10a与外界空气流通,利于电池包的内部散热。
在一些实施例中,所述第一区段501和第二区段502设置有凹部504,所述电芯模组10沿所述第三方向X的侧边收容于所述凹部504内。所述凹部504可用于限定电芯模组10的位置,减少所述电芯模组10在所述电池包壳体内晃动,同时,所述凹部504可储存一部分胶水,便于对所述电芯模组10的粘结固定。
在一些实施例中,所述凹部504的槽底朝所述电芯模组10方向延伸有凸起5041,所述凸起5041可减缓凹部504内的胶水的流动,利于所述电芯模组10的粘结固定。
对于上述第一树脂层20和第二树脂层30,如图2、图7以及图8所示,所述第一树脂层20设于所述第一区域12,所述第二树脂层30设于所述第二区域13。其中,所述第一树脂层20通过将第一树脂材料设于所述第一区域12后固定形成,所述第二树脂层30通过将第二树脂材料设于所述第二区域13后固定形成,所述第一树脂层20与所述第一包覆件51粘接,所述第二树脂层30与所述第二包覆件52粘接。所述第一树脂层20用于粘结所述多个电芯以及将多个电芯与所述第一壳体71之间粘结固定,所述第二树脂层30用于粘结所述多个电芯以及将多个电芯与所述第二壳体72之间粘结固定。所述第一树脂材料和所述第二树脂材料包括灌封胶,所述灌封胶分别从所述第三通孔705和第四通孔706灌注于所述第一区域12和第二区域13,其中,灌注于所述第一区域12的灌封胶固化后形成所述第一树脂层20,灌注于所述第二区域13 的灌封胶固化后形成所述第二树脂层30。
可以理解的是,所述第一树脂层20和第二树脂层30的灌注方式可为灌胶或注塑,例如:低压注塑。本实施例中,所述第一树脂层20和第二树脂层30的灌封胶可以起到对元器件进行粘结、密封、灌封和涂覆保护等作用。所述第一树脂层20和第二树脂层30包括环氧树脂灌封胶。可以理解的是,所述第一树脂层20和第二树脂层30不限于包括环氧树脂层灌封胶,在一些其他实施例中,所述第一树脂层20和第二树脂层30还可替换为其他类型的灌封胶。
对于上述导热件100,如图2和图7所示,所述导热件100包覆于每个所述电芯组件11的位于所述第二区域13的外表面,所述导热件100位于所述包覆件50和所述电芯组件11之间,所述导热件100用于将电芯产生的热量导出,之后利用电芯组件11之间的通道10a将热量排出电池包,降低电池包内部温度。
在一些实施例中,所述导热件100包覆于每个所述电芯组件11的位于所述第一区域12的一部分表面。
在一些实施例中,所述导热件100包覆于每个所述电芯组件11的位于所述第三区域14的一部分表面。
在一些实施例中,所述导热件100为铝壳,所述铝壳具有较好的导热性,利于将电芯产生的热量导出。
为了更好地说明本申请技术方案所采形成的通道10a所能达到的散热效果,本申请实施例还提供了不同堆叠顺序的三个电芯组件以及不同宽度的通道的对比试验。
试验材料:第一电芯组件101、第二电芯组件102以及第三电芯组件103,第一电芯组件101包括2个电芯,第二电芯组件102包括2个电芯,第三电芯组件103包括1个电芯。
试验条件:外界环境风速为2m/s,设定电芯最高温度70℃。
现有方案:第一电芯组件101、第二电芯组件102和第三电芯组件103依次沿第一方向Z堆叠设置,第一电芯组件101、第二电芯组件102和第三电芯组件103之间未设置通道10a,测试当前设置的电池包的电芯温度由最高温度70℃冷却至55℃、45℃以及35℃所需要的的时间。
方案一:如图11所示,第一电芯组件101、第二电芯组件102和第三电芯组件103依次沿第一方向Z堆叠设置,第一电芯组件101、第二电芯组件102和第三电芯组件103之间设置有通道10a,设定通道10a在第一方向Z上的宽度为1.6毫米,探究当前设置的电池包的电芯温度由最高温度70℃冷却至55℃、45℃以及35℃所需要的的时间。
方案二:如图12所示,第一电芯组件101、第二电芯组件102和第三电芯组件103依次沿第一方向Z堆叠设置,第一电芯组件101、第二电芯组件102和第三电芯组件103之间设置有通道10a,设定通道10a在第一方向Z上的宽度为3毫米,探究当前设置的电池包的电芯温度由较高温度70℃冷却至55℃、45℃以及35℃所需要的的时间。
方案三:如图13所示,第一电芯组件101、第三电芯组件103和第二电芯组件102依次沿第一方向Z堆叠设置,第一电芯组件101、第三电芯组件103和第二电芯组件102之间设置有通道10a,设定通道10a在第一方向Z上的宽度为3毫米,探究当前设置的电池包的电芯温度由较高温度70℃冷却至55℃、45℃以及35℃所需要的的时间。
方案四:如图14所示,第三电芯组件103、第一电芯组件101和第二电芯组件102依次沿第一方向Z堆叠设置,第三电芯组件103、第一电芯组件101和第二电芯组件102之间设置有通道10a,设定通道10a在第一方向Z上的宽度为3毫米,探究当前设置的电池包的电芯温度由较高温度70℃冷却至55℃、45℃以及35℃所需要的的时间。
分析结果如下表1所示:
表1
Figure PCTCN2022102458-appb-000001
由表1中的现有方案和方案一的试验数据对比可知:现有方案中未设置通道10a,现有方案中的电芯由较高温度70℃冷却至55℃、45℃、35℃对应所需要的时间较长,具体的,方案一较现有方案中的电芯从70℃冷却至55℃所需要的时间缩短1.8分钟,方案一较现有方案中的电芯从70℃冷却至45℃所需要的时间缩短5分钟,方案一较现有方案中的电芯从70℃冷却至35℃所需要的时间缩短11分钟。
由表1中的方案一和方案二的试验数据对比可知:在三个电芯组件的堆叠排列方式相同的情况下,通道10a在第一方向Z上的宽度对电芯散热的存在影响,且在通道10a在第一方向Z上的宽度较大时,通道10a对电芯的散热效果较好,具体的,方案二较方案一中的电芯从70℃冷却至55℃所需要的时间缩短2.1分钟,方案二较方案一中的电芯从70℃冷却至45℃所需要的时间缩短3.4分钟,方案二较方案一中的电芯从70℃冷却至35℃所需要的时间缩短5.8分钟。
由表1中的方案二和方案三的试验数据对比可知:在通道10a在第一方向Z上的宽度相同的情况下,三个电芯组件的堆叠顺序对电芯散热存在影响,其中方案三中电芯的散热效果较好,具体的,方案三较方案二中的电芯从70℃冷却至55℃所需要的时间缩短0.7分钟,方案三较方案二中的电芯从70℃冷却至45℃所需要的时间缩短1.7分钟,方案三较方案二中的电芯从70℃冷却至35℃所需要的时间缩短3.1分钟。
由表1中的方案三和方案四的试验数据对比可知:在通道10a在第一方向Z上的宽度相同的情况下,三个电芯组件的堆叠顺序对电芯散热存在影响,其中,方案四种电芯的散热效果最好,具体的,方案四较方案三中的电芯从70℃冷却至55℃所需要的时间缩短1.6分钟,方案四较方案三中的电芯从70℃冷却至45℃所需要的时间缩短1.6分钟,方案三较方案二中的电芯从70℃冷却至35℃所需要的时间缩短0.4分钟。
综上所述,三个电芯组件间设置有通道10a的散热效果较现有方案(未设置通道10a)的散热效果较好,且通道10a在第一方向Z上的宽度为3毫米时,散热效果较好,此外,三个电芯组件的在第一方向Z上的堆叠顺序对电芯散热存在影响,且当按第三电芯组件103、第一电芯组件101和第二电芯组件102的堆叠顺序沿第一方向Z堆叠时,电芯的散热效果较好。
在本申请实施例中,通过设置有电芯模组10、包覆件50、第一树脂层20和至少一个第一结构件40,所述电芯模组10包括沿第一方向Z堆叠设置的多个电芯组件11,所述电芯模组10包括沿第一方向Z相对设置的第一表面10b和第二表面10c以及沿第三方向X相对设置的第一侧面10d和第二侧面10e。所述包覆件包括第一区段501、第二区段502和连接所述第一区段501和第二区段502的第三区段503,所述第一区段501包覆至少部分所述第一侧面10d,所述第二区段502包覆至少部分所述第二侧面10e,所述第三区段503包覆所述第一表面10b。所述电芯模组10包括沿第二方向Y位于一所述包覆件50两侧的第一区域12和第二区域13,所述第一方向Z、第二方向Y以及第三方向X两两相互 垂直,所述第一树脂层20通过将第一树脂材料设于所述第一区域12后固定形成,所述第一树脂层20与所述包覆件粘接。此外,至少一个第一结构件40设置于所述相邻两个电芯组件11之间,以使相邻两个所述电芯组件11隔开形成通道10a,所述通道10a位于所述第二区域13的部分包括间隙,所述通道10a与外界空气流通,利用所述通道10a将所述电芯组件11产生的热量排出电池包,降低电池包内部温度,同时,也可将外界吹风件或抽风件设于通道10a处,加速通道10a内的空气流动,提高电池包的散热,从而起到降低整个电池包内部温度的效果。
本申请还提供了一种用电设备的实施例,用电设备包括以上的电池包,所述用电设备包括但不限于农用无人机、二轮电动车、储能设备、手持电动工具等,电池包的功能和结构可参阅上述实施例,此处不再一一赘述。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (15)

  1. 一种电池包,包括电芯模组,所述电芯模组包括沿第一方向堆叠设置的多个电芯组件,所述电芯模组包括沿所述第一方向相对设置的第一表面和第二表面以及沿第三方向相对设置的第一侧面和第二侧面,其特征在于,所述电池包还包括:
    包覆件,包括第一区段、第二区段和连接所述第一区段和第二区段的第三区段,所述第一区段包覆至少部分所述第一侧面,所述第二区段包覆至少部分所述第二侧面,所述第三区段包覆至少部分所述第一表面,所述电芯模组包括沿第二方向位于一所述包覆件两侧的第一区域和第二区域;
    第一树脂层,通过将第一树脂材料设于所述第一区域后固定形成,所述第一树脂层与所述包覆件粘接;
    至少一个第一结构件,设置于所述相邻两个电芯组件之间,以使相邻两个所述电芯组件之间隔开形成通道,所述通道位于所述第二区域的部分包括间隙。
  2. 根据权利要求1所述的电池包,其特征在于,
    所述电池包包括电池包壳体,所述电池包壳体设置有收容腔、第一通孔和第二通孔,所述第一通孔和第二通孔沿所述第三方向相对设置,并且所述第一通孔和第二通孔均与所述收容腔连通,所述电芯模组收容于所述收容腔内,且所述第一通孔、第二通孔与所述通道在第三方向上至少部分重叠。
  3. 根据权利要求2所述的电池包,其特征在于,
    所述包覆件与所述第一通孔和第二通孔在第三方向上部分重叠。
  4. 根据权利要求2所述的电池包,其特征在于,
    所述电池包壳体包括连接的第一壳体和第二壳体,所述第一壳体和第二壳体形成所述电芯模组的收容腔,所述第一壳体设有连通所述收容腔的第三通孔,沿与所述第一方向相反的方向,所述第三通孔位于所述第一区域上方。
  5. 根据权利要求1所述的电池包,其特征在于,
    所述第一区段和第二区段设置有凹部,所述电芯模组沿所述第三方向的侧边部分收容于所述凹部。
  6. 根据权利要求1所述的电池包,其特征在于,
    所述电芯组件包括至少一个电芯,所述每个电芯包括电极组件、用于容纳所述电极组件的电芯壳体、以及连接至所述电极组件并且从所述电芯壳体引出的极耳;
    所述电芯壳体包括包括用于容纳所述电极组件的第一部分和从所述第一部分向外延伸的第二部分,极耳从第二部分沿所述第二方向延伸出电芯壳体,且所述极耳延伸出电芯壳体的部分位于所述第一区域。
  7. 根据权利要求1所述的电池包,其特征在于,
    所述包覆件包括沿所述第二方向相反方向依次设置的第一包覆件和第二包覆件;
    所述电池模组还包括第三区域,所述第一区域、第二区域以及第三区域沿所述第二方向相反方向依次设置,所述第一包覆件位于所述第一区域和所述第二区域之间,所述第二包覆件位于所述第二区域和所述第三区域之间。
  8. 根据权利要求7所述的电池包,其特征在于,
    所述电池包还包括第二树脂层,通过将第二树脂材料设于所述第三区域后固定形成,所述第二树脂层与所述第二包覆件粘接。
  9. 根据权利要求7所述的电池包,其特征在于,
    所述电池包还包括导热件,所述导热件包覆于每个所述电芯组件的位于所述第二区域的外表面。
  10. 根据权利要求9所述的电池包,其特征在于,
    所述导热件包覆于每个所述电芯组件的位于所述第一区域的一部分表面,所述导热件包覆于每个所述电芯组件的位于所述第三区域的一部分表面。
  11. 根据权利要求1所述的电池包,其特征在于,所述包覆件包括连接所述第一区段和第二区段的第四区段,所述第四区段与所述第三区段相对设置,所述第四区段包覆于所述第二表面。
  12. 根据权利要求11所述的电池包,其特征在于,所述包覆件为环状结构。
  13. 根据权利要求1所述的电池包,其特征在于,
    所述电池包还包括转接组件,所述转接组件包括转接板和转接件,所述转接板设置于所述电芯的第一侧面,所述转接件设置于所述转接板上,所述转接件连接于所述电芯。
  14. 根据权利要求1所述的电池包,其特征在于,
    所述第一区段设置有第七通孔,所述第二区段设置有第八通孔,所述第七通孔和所述第八通孔相对设置,且所述第七通孔、第八通孔与所述通道在所述第三方向上至少部分重叠。
  15. 一种用电设备,其特征在于,包括权利1至14中任一项所述的电池包。
PCT/CN2022/102458 2021-06-30 2022-06-29 一种电池包及用电设备 WO2023274311A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22832123.8A EP4207456A1 (en) 2021-06-30 2022-06-29 Battery pack and electrical device
US18/193,948 US20230246285A1 (en) 2021-06-30 2023-03-31 Battery pack and electrical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110738687.9 2021-06-30
CN202110738687.9A CN113471589A (zh) 2021-06-30 2021-06-30 一种电池包及用电设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/193,948 Continuation US20230246285A1 (en) 2021-06-30 2023-03-31 Battery pack and electrical device

Publications (1)

Publication Number Publication Date
WO2023274311A1 true WO2023274311A1 (zh) 2023-01-05

Family

ID=77878264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102458 WO2023274311A1 (zh) 2021-06-30 2022-06-29 一种电池包及用电设备

Country Status (4)

Country Link
US (1) US20230246285A1 (zh)
EP (1) EP4207456A1 (zh)
CN (1) CN113471589A (zh)
WO (1) WO2023274311A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116581429A (zh) * 2023-07-12 2023-08-11 深圳海辰储能控制技术有限公司 储能模组和用电设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471589A (zh) * 2021-06-30 2021-10-01 东莞新能安科技有限公司 一种电池包及用电设备
CN113964417A (zh) * 2021-10-20 2022-01-21 东莞新能安科技有限公司 电池组及用电设备
CN115051095B (zh) * 2022-06-30 2024-02-13 东莞新能安科技有限公司 电化学装置、充电***以及用电设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518183A (zh) * 2019-06-17 2019-11-29 东莞新能源科技有限公司 电池组件及电化学装置
CN112072043A (zh) * 2020-10-10 2020-12-11 湖北亿纬动力有限公司 一种电池包
WO2021072726A1 (zh) * 2019-10-18 2021-04-22 淄博火炬能源有限责任公司 电动叉车用锂离子电池模组及电源箱
CN113471589A (zh) * 2021-06-30 2021-10-01 东莞新能安科技有限公司 一种电池包及用电设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518183A (zh) * 2019-06-17 2019-11-29 东莞新能源科技有限公司 电池组件及电化学装置
WO2021072726A1 (zh) * 2019-10-18 2021-04-22 淄博火炬能源有限责任公司 电动叉车用锂离子电池模组及电源箱
CN112072043A (zh) * 2020-10-10 2020-12-11 湖北亿纬动力有限公司 一种电池包
CN113471589A (zh) * 2021-06-30 2021-10-01 东莞新能安科技有限公司 一种电池包及用电设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116581429A (zh) * 2023-07-12 2023-08-11 深圳海辰储能控制技术有限公司 储能模组和用电设备
CN116581429B (zh) * 2023-07-12 2023-10-13 深圳海辰储能控制技术有限公司 储能模组和用电设备

Also Published As

Publication number Publication date
EP4207456A1 (en) 2023-07-05
CN113471589A (zh) 2021-10-01
US20230246285A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
WO2023274311A1 (zh) 一种电池包及用电设备
CN106469839B (zh) 电池模块、包括电池模块的电池组和包括电池组的车辆
WO2020140336A1 (zh) 一种电池包
WO2018008866A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
JP6255016B2 (ja) エネルギー貯蔵装置およびエネルギー貯蔵装置を製作する方法
WO2017209365A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2017104877A1 (ko) 배터리 모듈
US20110097617A1 (en) Battery Set with Heat Conducting Jelly
KR102660518B1 (ko) 전지 모듈
KR102639300B1 (ko) 버스 바와 일체화된 하우징을 포함하는 전지 모듈
KR101806733B1 (ko) 배터리 셀 냉각 구조
WO2019004553A1 (ko) 배터리 모듈
US20110151303A1 (en) Battery module
CN102569935A (zh) 一种用于软包装电池组的散热铝板
WO2020022643A1 (ko) 냉각 효율이 향상된 배터리 모듈 및 이를 포함하는 배터리 팩
WO2023000623A1 (zh) 端盖组件、电池单体、电池和使用电池的装置
CN213026293U (zh) 电池包及电动车
WO2023093051A1 (zh) 电池的箱体、电池、用电装置
WO2024113930A1 (zh) 电池包及用电设备
WO2024067628A1 (zh) 电池、电池模组和具有其的车辆
WO2024046194A1 (zh) 电池组和用电设备
KR20200015207A (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
US20240186617A1 (en) Battery Module Including Insulating Oil and Battery Pack Including the Same
WO2022228565A1 (zh) 一种电池包及用电设备
CN113097639A (zh) 一种电池包

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022832123

Country of ref document: EP

Effective date: 20230331

ENP Entry into the national phase

Ref document number: 2023580560

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE