WO2023273577A1 - 一种用于加速器励磁曲线转换的*** - Google Patents

一种用于加速器励磁曲线转换的*** Download PDF

Info

Publication number
WO2023273577A1
WO2023273577A1 PCT/CN2022/089497 CN2022089497W WO2023273577A1 WO 2023273577 A1 WO2023273577 A1 WO 2023273577A1 CN 2022089497 W CN2022089497 W CN 2022089497W WO 2023273577 A1 WO2023273577 A1 WO 2023273577A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
accelerator
excitation curve
conversion
ibconvert
Prior art date
Application number
PCT/CN2022/089497
Other languages
English (en)
French (fr)
Inventor
吴煊
张玉亮
朱鹏
何泳成
王林
薛康佳
傅世年
Original Assignee
散裂中子源科学中心
中国科学院高能物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 散裂中子源科学中心, 中国科学院高能物理研究所 filed Critical 散裂中子源科学中心
Publication of WO2023273577A1 publication Critical patent/WO2023273577A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1253Measuring galvano-magnetic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0029Treating the measured signals, e.g. removing offset or noise

Definitions

  • the invention relates to the technical field of accelerators, in particular to a system for converting excitation curves of accelerators.
  • the present invention aims to provide a real-time conversion of DC power supply, pulse power supply with preset value, convex rail pulse power supply without preset value and pulse power supply with floating power supply.
  • System for accelerator excitation curve conversion
  • the technical solution adopted in the present invention is: a system for converting the excitation curve of an accelerator, and the system is used for the accelerator to convert the physically set magnetic field value into the current value required by the power supply or convert the current value of the power supply into Corresponding magnetic field value.
  • the system can convert DC power supply, pulse power supply with preset value, bump rail pulse power supply without preset value and pulse power supply with floating power supply in real time.
  • the system includes two parts, the IBConvert program module and the EpicsDBGenerator program module.
  • the IBConvert program module is a standard EPICS soft IOC, which needs to run all the time to realize the real-time conversion of I and B.
  • the IBConvert program module is designed according to the EPICS specification, mainly including the design of EPICS records and the function design of processing waveform data.
  • the design of the EPICS record is carried out according to the classification of the power supply, and the designed DB includes the following database files with the suffix .db: DC.db, PulseWithDC.db, InjectionBump.db, Quadrupole.db, EnergyFactor.db and iocAdminSoft.db .
  • Described EpicsDBGenerator program module adopts Java application program, is used for generating the DB file that IBConvert program needs, when power quantity, name, excitation curve fitting coefficient have variation, need run this program and generate new DB file.
  • the function design of the described processing waveform data is to use the Array Subroutine record of EPICS, can call different C programs through this record, and the conversion of waveform data is just completed in the C program.
  • the steps to install the IBConvert program module are:
  • Described EpicsDBGenerator program module is used for reading the excitation curve coefficient that is preserved in Excel, and automatically generates and is used for I and B conversion EPICS DB file
  • the system of the present invention can be applied to large scientific devices, has strong compatibility, is simple to install and use, and can simultaneously realize DC power supply, pulse power supply with preset value, Real-time switching between bump rail pulse power with presets and pulse power with floating power.
  • Fig. 1 is a schematic diagram of the logical connection structure of the present invention.
  • Fig. 2 is a logical schematic diagram of converting the DC power excitation curve in the first embodiment.
  • Fig. 3 is a schematic diagram of logic for converting pulse waveform data in the second embodiment.
  • Fig. 4 is a schematic diagram of the conversion logic of the excitation curve of the floating power supply in the fourth embodiment.
  • a system for accelerator excitation curve conversion is used in the accelerator to convert the physically set magnetic field value into the current value required by the power supply or convert the current value of the power supply into the corresponding magnetic field value.
  • the whole system includes two parts: IBConvert program module and EpicsDBGenerator program module.
  • the IBConvert program is a standard EPICS soft IOC, which needs to run all the time to realize the real-time conversion of I (current) and B (magnetic field);
  • the EpicsDBGenerator program module uses a Java application program to generate the DB (runtime database) required by the IBConvert program file, when the power supply quantity, name, and excitation curve fitting coefficient change, you need to run this program to generate a new DB file.
  • the IBConvert program module in the present invention is designed according to the EPICS specification, mainly including EPICS (EPICS is "Experimental Physics and Industrial Control System” (Experimental Physics and Industrial Control System), two basic mechanisms in the EPICS software system are channel access and Distributed dynamic database.) Record design and function design for processing waveform data.
  • EPICS record is the core to realize I and B conversion. According to the conversion requirements in the technical agreement and the type of magnet power supply, it can be divided into four types of power supply: DC power supply, pulse power supply with preset value, bump rail pulse power supply without preset value and pulse power supply with floating power supply.
  • the design of EPICS records is also carried out according to the classification of power supplies.
  • the designed DB files include: DC.db file, which realizes DC power supply I/B conversion, except for floating power supplies; PulseWithDC.db file, which is a pulse power supply I with preset values /B conversion, except for the quadrupole magnet pulse power supply; the InjectionBump.db file is the I/B conversion of the convex rail magnet pulse power supply without preset values; the Quadrupole.db file is the quadrupole magnet pulse power supply and its floating power supply I/B B conversion; the EnergyFactor.db file is to realize energy factor related calculation and parameter setting; the iocAdminSoft.db file is derived from the software package devIocStats and is used to monitor the IOC running status.
  • Embodiment 1 I/B conversion for DC power supply
  • the DC power supply in this embodiment includes MEBT (medium energy beam transmission line), HEBT (high energy beam transmission line) and ring DC power supply, except for the floating power supply, because the calculation method of the floating power supply is different.
  • MEBT medium energy beam transmission line
  • HEBT high energy beam transmission line
  • ring DC power supply except for the floating power supply, because the calculation method of the floating power supply is different.
  • the magnetic fields of MEBT and HEBT need to consider energy correction.
  • MEBT needs to use the rest energy of negative hydrogen ions
  • HEBT needs to use the rest energy of protons.
  • the magnetic field on the ring also introduces an energy factor, but Its value is always 1 and does not affect the calculation result.
  • the calculated theoretical magnetic field pickup values include PID:B and MID:B, which are exactly equal in value.
  • PID:B and MID:B are calculated using the real-time recovery current value GetI, the difference is that PID:B is calculated using the average excitation curve fitting coefficient, and MID:B The calculations are performed using the respective excitation curve fitting coefficients.
  • the theoretical kinetic energy, actual kinetic energy and rest energy parameters of the particles need to be set for the MEBT and HEBT, and there is no special requirement for the setting sequence and timing.
  • Embodiment two I/B conversion for the pulse power supply with preset value
  • the pulse power supply with preset value includes dipole iron, quadrupole iron, hexapole iron and correction iron pulse power supply on the synchronous ring. Such power supplies require conversion of magnetic field presets and total magnetic field waveform data.
  • the conversion of the preset value is completely the same as the I/B conversion logic of the DC power supply in the embodiment, which will not be repeated here.
  • the conversion of the pulse waveform data is shown in FIG. 2 .
  • the preset current value SetI_Tmp, the effective length of the magnetic field waveform data BT-Length and the magnetic field waveform data BT-SET calculated according to the preset magnetic field value B-SET are calculated according to the excitation curve fitting coefficient 200,000 points of current waveform data SetWaveI_Raw, then set the effective data length SetWaveI_Out.NUSE output to SetWaveI according to BT-Length, and finally output the data in SetWaveI_Raw to SetWaveI according to the effective data length and trigger the power remote control program WFCreate to send Waveform data.
  • the calculated magnetic field waveform echo values include PID:BT and MID:BT, which are exactly equal in value.
  • PID:BT uses the average excitation curve fitting coefficient to calculate
  • MID:BT uses the average excitation curve fitting coefficient to calculate
  • Embodiment 3 I/B conversion for bump rail pulse power supply without preset value
  • Embodiment 4 I/B conversion for quadrupole magnet pulse power supply and its floating power supply
  • the conversion method of the four-pole magnet pulse power supply is exactly the same as that of the pulse power supply with preset values described in the second embodiment, and the floating power supply is related to its corresponding main magnet power supply.
  • the total magnetic field value QD-PS:B-SET of the main pulse power supply should be set first, and the total current setting value QD-PS:SetI is calculated according to the average excitation curve fitting coefficient, and then according to this
  • the current and their respective fitting coefficients inversely calculate the magnetic field value setting QD01-FPS01:B-SET_All of each main quadrupole magnet, and superimpose the magnetic field setting value of the floating power supply to obtain a new magnetic field value QD01-FPS01:B-SET_Total, Then calculate the total current value according to the respective fitting coefficients, subtract the current value QD-PS:SetI of the main magnet power supply to obtain the floating power supply current setting value QD01-FPS01:SetI and send it to the power supply remote control program, QD01 -
  • the current value of FPS02 is obtained from QD01-FPS01, and it is always consistent.
  • I->B conversion When I->B conversion, first read back the real-time current feedback value of the main magnet power supply and floating power supply according to a certain period such as 1 second (the period can be modified in st.cmd) R:MG:QD-PS:GetI and QD01 -FPS01: GetI, the total current recovery value is obtained after superposition QD01-FPS01: GetI_Total, the total magnetic field recovery value is calculated according to the respective excitation curve fitting coefficients, and the respective main magnetic field recovery value QD01:B is subtracted to obtain the magnetic field of the floating power supply Recovery value QD01-FPS02:B.
  • a certain period such as 1 second (the period can be modified in st.cmd)
  • the total current recovery value is obtained after superposition QD01-FPS01: GetI_Total
  • the total magnetic field recovery value is calculated according to the respective excitation curve fitting coefficients
  • the respective main magnetic field recovery value QD01:B is subtracted to obtain the magnetic field of the
  • the precautions for the conversion of the excitation curve of the main quadrupole magnet pulse power supply are the same as those described in Embodiment 2.
  • the floating power supply performs excitation curve conversion, it is necessary to first set the preset value of the main magnetic field and then set the floating power supply. Magnetic field setpoint. Since the MID of the floating power supply is the same as that of the main quadrupole magnet pulse power supply, the MID:B of the floating power supply is no longer converted.
  • the waveform data needs to be processed when the pulse magnet power supply performs excitation curve conversion, that is, it is necessary to calculate each magnetic field waveform data or current waveform data according to the excitation curve fitting coefficient.
  • excitation curve conversion that is, it is necessary to calculate each magnetic field waveform data or current waveform data according to the excitation curve fitting coefficient.
  • the pulse power supply performs excitation curve conversion, that is, it is necessary to calculate each magnetic field waveform data or current waveform data according to the excitation curve fitting coefficient.
  • the pulse power supply of the preset value is different when I/B conversion is performed.
  • the Array Subroutine (aSub) record of EPICS needs to be used, through which different C programs can be called, and the conversion of waveform data is completed in the C program.
  • the steps to install the IBConvert program module are:
  • the present invention is used in conjunction with third-party software.
  • the IBConvert program module runs normally, it can be used in conjunction with the graphics software containing EPICS channel access protocol (channel access support) of the third party, such as ControlSystemStudio (CSS), OpenXAL software or the like, It is recommended to use OpenXAL software, which is an open-source, cross-platform pure Java program, which can provide rich upper-level applications for accelerator physical tuning. At present, this software is widely used in domestic and international large scientific installations.
  • EpicsDBGenerator program module is used for reading the excitation curve coefficient that is stored in Excel, and automatically generates and is used for I and B conversion EPICS DB file.
  • EpicsDBGenerator is developed using java language, the compilation and running environment requires JKD7 or above, and the jxl package is used to read Excel tables. Therefore, it is necessary to convert the Excel file into a file with the suffix xls.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Particle Accelerators (AREA)

Abstract

一种用于加速器励磁曲线转换的***,该***用于加速器将物理设定的磁场值转换为电源所需的电流值或者将电源的电流值转换为对应的磁场值;该***可应用于大科学装置中,对设备要求低,兼容性强,安装和使用简单,能同时实现可对直流电源、带预设值的脉冲电源、不带预设值的凸轨脉冲电源和带漂浮电源的脉冲电源进行实时转换。

Description

一种用于加速器励磁曲线转换的***
本申请要求于2021年07月02日提交中国专利局、申请号为202110753262.5、发明名称为“一种用于加速器励磁曲线转换的***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及加速器技术领域,尤指一种用于加速器励磁曲线转换的***。
背景技术
在加速器领域,通常利用磁场来约束带电粒子在真空管道中的运动,根据带电粒子是做直线运动还是圆周运动以及粒子能量的不同,所需的磁力线和磁场强度也是不同的。各种磁场的产生是通过直流、交流或者脉冲电源为线圈提供所需的电流,励磁曲线通过实际的磁测获得。电源***能提供的是实时的电流值I,而在物理调束软件中使用的是磁场值B,这就需要一个IOC程序来实时对I和B进行转换,才能实现对带电粒子运行轨道的调节和监测。IOC程序的设计最主要是设计运行时数据库--EPICS记录文件。I和B的相互转换的逻辑以及计算公式比较复杂,需要带入到公式里计算的测算系数很多,如果靠人工来书写EPICS记录文件,工作量将非常巨大且容易出错,如果更改了程序逻辑或者测算数据,EPICS记录文件又需要全部重写。因此,设计一个能够生成EPICS记录以及实现I和B自动转换的***尤为必要。由于各类加速器的原理类似以及该***的通用性较强,只需将程序稍加改动就能移植到其它大科学装置中。
发明内容
本发明针对加速器的技术需求,旨在提供一种能实现对直流电源、带预设值的脉冲电源、不带预设值的凸轨脉冲电源和带漂浮电源的脉冲电源进行实时转换的一种用于加速器励磁曲线转换的***。
本发明所采用的技术方案是:一种用于加速器励磁曲线转换的***, 所述的***用于加速器将物理设定的磁场值转换为电源所需的电流值或者将电源的电流值转换为对应的磁场值。
所述的***可对直流电源、带预设值的脉冲电源、不带预设值的凸轨脉冲电源和带漂浮电源的脉冲电源进行实时转换。
所述的***包括IBConvert程序模块和EpicsDBGenerator程序模块两部分。
所述的IBConvert程序模块是标准的EPICS软IOC,需要一直运行,实现I和B的实时转换。
所述的IBConvert程序模块根据EPICS规范进行设计,主要包括EPICS记录的设计和处理波形数据的函数设计。
所述的EPICS记录的设计根据电源的分类来进行,设计的DB包括以下后缀是.db的数据库文件:DC.db、PulseWithDC.db、InjectionBump.db、Quadrupole.db、EnergyFactor.db和iocAdminSoft.db。
所述的EpicsDBGenerator程序模块采用Java应用程序,用于生成IBConvert程序所需要的DB文件,当电源数量、名称、励磁曲线拟合系数有变动时,需要运行该程序生成新的DB文件。
所述处理波形数据的函数设计是用EPICS的Array Subroutine记录,通过该记录可以调用不同的C程序,波形数据的转换就在C程序中完成。
所述的IBConvert程序模块安装的步骤是:
S1、根据需要将IBConvert程序包解压到任一用户目录下;
S2、修改IBConvert/configure/RELEASE文件,指定EPICS_BASE、AUTOSAVE、IOCADMIN和CALC的绝对安装路径;
S3、在IBConvert目录下执行make clean&&make即可。
所述的EpicsDBGenerator程序模块用来读取保存在Excel中的励磁曲线系数,并自动生成用于I与B转换EPICS DB文件
本发明的采用的技术方案的有益效果是:本发明的***可应用于大科学装置中,兼容性强,安装和使用简单,能同时实现可对直流电源、带预设值的脉冲电源、不带预设值的凸轨脉冲电源和带漂浮电源的脉冲电源进行实时转换。
附图说明
图1是本发明的逻辑连接结构示意图。
图2是本实施例一中对直流电源励磁曲线转换的逻辑示意图。
图3是本实施例二中对脉冲波形数据转换逻辑示意图。
图4是本实施例四中对漂浮电源励磁曲线转换逻辑示意图。
具体实施方式
如图1-4所示,一种用于加速器励磁曲线转换的***用于加速器中将物理设定的磁场值转换为电源所需的电流值或者将电源的电流值转换为对应的磁场值,整个***包括IBConvert程序模块和EpicsDBGenerator程序模块两部分。其中IBConvert程序是标准的EPICS软IOC,需要一直运行,实现I(电流)和B(磁场)的实时转换;EpicsDBGenerator程序模块采用Java应用程序,用于生成IBConvert程序所需要的DB(运行时数据库)文件,当电源数量、名称、励磁曲线拟合系数有变动时,需要运行该程序生成新的DB文件。
本发明中的IBConvert程序模块是根据EPICS规范进行设计,主要包括EPICS(EPICS即“实验物理及工业控制***”(Experimental Physics and Industrial Control System),EPICS软件***中的两个基本机制是通道访问和分布式动态数据库。)记录的设计和处理波形数据的函数设计。其中,EPICS记录是实现I和B转换的核心。根据技术协议中的转换要求和磁铁电源的类型,可以分为四类电源:直流电源、带预设值的脉冲电源、不带预设值的凸轨脉冲电源和带漂浮电源的脉冲电源。EPICS记录的设计也根据电源的分类来进行,设计的DB文件包括:DC.db文件,是实现直流电源I/B转换,漂浮电源除外;PulseWithDC.db文件,是带预设值的脉冲电源I/B转换,四极磁铁脉冲电源除外;InjectionBump.db文件,是不带预设值的凸轨磁铁脉冲电源I/B转换;Quadrupole.db文件,是四极磁铁脉冲电源及其漂浮电源I/B转换;EnergyFactor.db文件,是实现能量因子相关计算和参数设定;iocAdminSoft.db文件,是来源于软件包devIocStats,用于 监测IOC运行状态。
实施例一:用于直流电源的I/B转换
本实施例中的直流电源包括MEBT(中能束流传输线)、HEBT(高能束流传输线)和环直流电源,漂浮电源除外,原因是漂浮电源的计算方法不同。MEBT和HEBT的磁场需要考虑能量修正,MEBT需要使用负氢离子的静止能量,HEBT需要使用质子的静止能量,为了使生成EPICS DB的JAVA程序便于开发,环上的磁场也引入了能量因子,但其值始终为1,不影响计算结果。
以直流电源M:MG:HC01-PS为例,I/B转换逻辑如图1所示:
当B->I转换时,首先设置理论磁场值B-SET,根据能量因子Energy_Factor计算得到实际磁场设定值B-SET_Actual,再根据励磁曲线拟合系数计算得到电流设定值SetI并下发给电源远控程序。
当I->B转换时,首先按一定的周期如1秒(周期可以在st.cmd中修改)回读实时的电流回采值GetI,根据励磁曲线拟合系数计算得到实际磁场回采值B_Actual,再根据能量因子Energy_Factor计算得到理论磁场回采值B。对于单独供电的磁铁,计算的理论磁场回采值包括PID:B和MID:B,其值完全相等。对于一台电源给多台磁铁供电的情况,PID:B和MID:B都使用实时的回采电流值GetI进行计算,不同的是PID:B采用平均的励磁曲线拟合系数进行计算,MID:B采用各自的励磁曲线拟合系数进行计算。
在本实施例中,在I/B转换时,需要设定MEBT和HEBT的理论动能、实际动能和粒子的静止能量参数,设置顺序和时机没有特殊要求。
实施例二:用于带预设值的脉冲电源的I/B转换
带预设值的脉冲电源包括同步环上的二极铁、四极铁、六极铁、校正铁脉冲电源。此类电源需要转换磁场预设值和总的磁场波形数据。
以脉冲电源R:MG:VC01为例,预设值的转换与实施例一种直流电源I/B转换逻辑完全相同,此处不再累述,脉冲波形数据的转换如图2所示。
当B->I转换时,首先根据预设磁场值B-SET计算得到的预设电流值SetI_Tmp、磁场波形数据有效长度BT-Length以及磁场波形数据BT-SET,根据励磁曲线拟合系数计算得到20万个点电流波形数据SetWaveI_Raw, 再根据BT-Length设定输出给SetWaveI的有效数据长度SetWaveI_Out.NUSE,最后将SetWaveI_Raw中的数据按有效数据长度输出到SetWaveI中并触发电源远控程序WFCreate下发波形数据。
当I->B转换时,首先按一定的周期如5秒(周期可以在st.cmd中修改)回读实时的电流曲线回采值GetWaveI,根据励磁曲线拟合系数计算得到磁场波形回采值BT。对于单独供电的磁铁,计算的磁场波形回采值包括PID:BT和MID:BT,其值完全相等。对于一台电源给多台磁铁供电的情况,PID:BT和MID:BT都使用实时的回采电流值GetWaveI进行计算,不同的是PID:BT采用平均的励磁曲线拟合系数进行计算,MID:BT采用各自的励磁曲线拟合系数进行计算。
本实施例中,在进行磁场波形数据转换为电流波形数据时,需要首先设定磁场预设值B-SET,然后设定波形有效长度BT-Length,最后再设定磁场波形数据BT-SET,这个设定顺序是因为SetI和BT-Length需要参与运算以及程序设计逻辑决定的。无论修改哪一设定值,最终都需要重新设定磁场波形数据BT-SET才会生效。
实施例三:用于不带预设值的凸轨脉冲电源的I/B转换
同步环上的两台凸轨脉冲电源没有预设值,脉冲波形数据的转换与实施例二中描述的转换方法相同,此处不再累述。
本实施例中,在进行磁场波形数据转换为电流波形数据时,需要先设定波形有效长度BT-Length,再设定磁场波形数据BT-SET,这个设定顺序是因为BT-Length需要参与运算以及程序设计逻辑决定的。无论修改哪一设定值,最终都需要重新设定磁场波形数据BT-SET才会生效。
实施例四:用于四极磁铁脉冲电源及其漂浮电源的I/B转换
四极磁铁脉冲电源与实施例二所描述的带预设值的脉冲电源的转换方法完全相同,漂浮电源与其对应的主磁铁电源相关。
以漂浮电源R:MG:QD01-FPS01和R:MG:QD01-FPS02为例,I/B转换逻辑如图3所示。
当B->I转换时,首先应设置主脉冲电源的总磁场值QD-PS:B-SET,根据平均的励磁曲线拟合系数计算得到总电流设定值QD-PS:SetI,再根据 此电流以及各自的拟合系数反算各个主四极磁铁的磁场值设定值QD01-FPS01:B-SET_All,叠加漂浮电源的磁场设定值后得到新的磁场值QD01-FPS01:B-SET_Total,再根据各自的拟合系数计算得到总的电流值,减去主磁铁电源的电流值QD-PS:SetI后得到漂浮电源电流设定值QD01-FPS01:SetI并下发给电源远控程序,QD01-FPS02的电流值从QD01-FPS01出获取,始终保持一致。
当I->B转换时,首先按一定的周期如1秒(周期可以在st.cmd中修改)回读主磁铁电源和漂浮电源实时的电流回采值R:MG:QD-PS:GetI和QD01-FPS01:GetI,叠加后得到总的电流回采值QD01-FPS01:GetI_Total,根据各自的励磁曲线拟合系数计算得到总磁场回采值,减去各自的主磁场回采值QD01:B得到漂浮电源的磁场回采值QD01-FPS02:B。
本实施例中,主四极磁铁脉冲电源励磁曲线转换的注意事项与实施例二描述的注意事项相同,漂浮电源在进行励磁曲线转换时需要注意先设置主磁场的预设值再设置漂浮电源的磁场设定值。由于漂浮电源的MID和主四极磁铁脉冲电源的MID相同,所以不再转换漂浮电源的MID:B。
本发明中,脉冲磁铁电源进行励磁曲线转换时需要处理波形数据,即需要对每个磁场波形数据或者电流波形数据按照励磁曲线拟合系数进行计算,另外对于带预设值的脉冲电源和不带预设值的脉冲电源在I/B转换时的计算方法是不同的。为了实现这一功能,需要使用EPICS的Array Subroutine(aSub)记录,通过该记录可以调用不同的C程序,波形数据的转换就在C程序中完成。
本发明中对IBConvert程序模块的安装时,计算机要求如下:物理PC机、工作站或者虚拟机均可;内存至少4G;Linux操作***,最好是Redhat或者Centos,版本为6.0及以上;软件版本要求:EPICS base版本为3.14或3.15;synApps版本为5.6及以上。
IBConvert程序模块安装的步骤是:
S1、根据需要将IBConvert程序包解压到任一用户目录下。
S2、修改IBConvert/configure/RELEASE文件,指定EPICS_BASE、AUTOSAVE、IOCADMIN和CALC的绝对安装路径。
S3、在IBConvert目录下执行make clean&&make即可。
将本发明与第三方软件配合使用,当IBConvert程序模块正常运行后,可与第三方的含有EPICS通道访问协议(channel access support)的图形软件配合使用,比如ControlSystemStudio(CSS)、OpenXAL软件等等,这里推荐使用OpenXAL软件,该软件是开源、跨平台的纯Java程序,可以为加速器物理调束提供丰富的上层应用程序,目前该软件广泛应用于国内和国际的大科学装置中。
本发明中EpicsDBGenerator程序模块的使用方法,EpicsDBGenerator程序模块用来读取保存在Excel中的励磁曲线系数,并自动生成用于I与B转换EPICS DB文件。EpicsDBGenerator使用java语言开发,编译和运行环境要求JKD7以上,读取Excel表格使用了jxl包。因此,需要把Excel文件转换成后缀为xls的文件。

Claims (10)

  1. 一种用于加速器励磁曲线转换的***,其特征在于:所述的***用于加速器将物理设定的磁场值转换为电源所需的电流值或者将电源的电流值转换为对应的磁场值。
  2. 根据权利要求1所述的一种用于加速器励磁曲线转换的***,其特征在于:所述的***根据转换要求和磁铁电源的类型可对直流电源、带预设值的脉冲电源、不带预设值的凸轨脉冲电源和带漂浮电源的脉冲电源进行实时转换。
  3. 根据权利要求1所述的一种用于加速器励磁曲线转换的***,其特征在于:所述的***包括IBConvert程序模块和EpicsDBGenerator程序模块两部分。
  4. 根据权利要求3所述的一种用于加速器励磁曲线转换的***,其特征在于:所述的IBConvert程序模块是标准的EPICS软IOC,需要一直运行,实现I和B的实时转换。
  5. 根据权利要求3所述的一种用于加速器励磁曲线转换的***,其特征在于:所述的IBConvert程序模块根据EPICS规范进行设计,主要包括EPICS记录的设计和处理波形数据的函数设计。
  6. 根据权利要求5所述的一种用于加速器励磁曲线转换的***,其特征在于:所述的EPICS记录的设计根据电源的分类来进行,设计的DB包括以下后缀是.db的数据库文件:DC.db、PulseWithDC.db、InjectionBump.db、Quadrupole.db、EnergyFactor.db和iocAdminSoft.db。
  7. 根据权利要求3所述的一种用于加速器励磁曲线转换的***,其特征在于:所述的EpicsDBGenerator程序模块采用Java应用程序,用于生成IBConvert程序所需要的DB文件,当电源数量、名称、励磁曲线拟合系数有变动时,需要运行该程序生成新的DB文件。
  8. 根据权利要求3所述的一种用于加速器励磁曲线转换的***,其特征在于:所述处理波形数据的函数设计是用EPICS的Array Subroutine记录,通过该记录可以调用不同的C程序,波形数据的转换就在C程序中完成。
  9. 根据权利要求3所述的一种用于加速器励磁曲线转换的***,其特征在于:所述的IBConvert程序模块安装的步骤是:
    S1、根据需要将IBConvert程序包解压到任一用户目录下;
    S2、修改IBConvert/configure/RELEASE文件,指定EPICS_BASE、AUTOSAVE、IOCADMIN和CALC的绝对安装路径;
    S3、在IBConvert目录下执行make clean&&make即可。
  10. 根据权利要求3所述的一种用于加速器励磁曲线转换的***,其特征在于:所述的EpicsDBGenerator程序模块用来读取保存在Excel中的励磁曲线系数,并自动生成用于I与B转换EPICS DB文件。
PCT/CN2022/089497 2021-07-02 2022-04-27 一种用于加速器励磁曲线转换的*** WO2023273577A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110753262.5A CN113466762B (zh) 2021-07-02 2021-07-02 一种用于加速器励磁曲线转换的***
CN202110753262.5 2021-07-02

Publications (1)

Publication Number Publication Date
WO2023273577A1 true WO2023273577A1 (zh) 2023-01-05

Family

ID=77877906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089497 WO2023273577A1 (zh) 2021-07-02 2022-04-27 一种用于加速器励磁曲线转换的***

Country Status (2)

Country Link
CN (5) CN116699486A (zh)
WO (1) WO2023273577A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116699486A (zh) * 2021-07-02 2023-09-05 散裂中子源科学中心 用于漂浮电源i/b转换的励磁曲线转换***

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548182A (zh) * 2012-01-14 2012-07-04 中国科学院近代物理研究所 消除同步加速器磁滞效应影响的运行方法
CN102982963A (zh) * 2012-11-14 2013-03-20 中国科学院高能物理研究所 电磁铁电源及其控制方法和数字控制器
JP2016007456A (ja) * 2014-06-26 2016-01-18 株式会社日立製作所 粒子線治療システム及び電磁石の初期化方法
CN105813367A (zh) * 2016-03-10 2016-07-27 东莞中子科学中心 一种在交流磁铁上得到高精度时变磁场的方法和装置
CN110234196A (zh) * 2019-06-04 2019-09-13 中国科学院近代物理研究所 一种用于同步加速器的数字低电平***
JP2019195408A (ja) * 2018-05-08 2019-11-14 株式会社日立製作所 スキャニング照射装置および粒子線治療システム、ならびにスキャニング照射装置の調整方法
CN110856336A (zh) * 2019-11-27 2020-02-28 中国原子能科学研究院 回旋加速器磁铁电源实时调整设备与方法
CN111462975A (zh) * 2020-03-31 2020-07-28 清华大学 一种磁场产生方法、同步加速器、存储介质和设备
CN111556643A (zh) * 2020-05-09 2020-08-18 清华大学 一种磁场产生方法和同步加速器
CN112996214A (zh) * 2021-02-19 2021-06-18 中国科学院近代物理研究所 一种磁场稳定性控制***及方法
CN113466762A (zh) * 2021-07-02 2021-10-01 散裂中子源科学中心 一种用于加速器励磁曲线转换的***

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548182A (zh) * 2012-01-14 2012-07-04 中国科学院近代物理研究所 消除同步加速器磁滞效应影响的运行方法
CN102982963A (zh) * 2012-11-14 2013-03-20 中国科学院高能物理研究所 电磁铁电源及其控制方法和数字控制器
JP2016007456A (ja) * 2014-06-26 2016-01-18 株式会社日立製作所 粒子線治療システム及び電磁石の初期化方法
CN105813367A (zh) * 2016-03-10 2016-07-27 东莞中子科学中心 一种在交流磁铁上得到高精度时变磁场的方法和装置
JP2019195408A (ja) * 2018-05-08 2019-11-14 株式会社日立製作所 スキャニング照射装置および粒子線治療システム、ならびにスキャニング照射装置の調整方法
CN110234196A (zh) * 2019-06-04 2019-09-13 中国科学院近代物理研究所 一种用于同步加速器的数字低电平***
CN110856336A (zh) * 2019-11-27 2020-02-28 中国原子能科学研究院 回旋加速器磁铁电源实时调整设备与方法
CN111462975A (zh) * 2020-03-31 2020-07-28 清华大学 一种磁场产生方法、同步加速器、存储介质和设备
CN111556643A (zh) * 2020-05-09 2020-08-18 清华大学 一种磁场产生方法和同步加速器
CN112996214A (zh) * 2021-02-19 2021-06-18 中国科学院近代物理研究所 一种磁场稳定性控制***及方法
CN113466762A (zh) * 2021-07-02 2021-10-01 散裂中子源科学中心 一种用于加速器励磁曲线转换的***

Also Published As

Publication number Publication date
CN117388777A (zh) 2024-01-12
CN113466762A (zh) 2021-10-01
CN113466762B (zh) 2023-06-27
CN116609713A (zh) 2023-08-18
CN116520211A (zh) 2023-08-01
CN116699486A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
WO2023273577A1 (zh) 一种用于加速器励磁曲线转换的***
CN107544283B (zh) 一种基于虚拟同步发电机控制策略的半实物仿真***
Liu et al. Virtual variable sampling repetitive control of single-phase DC/AC PWM converters
Wen et al. Modeling the output impedance negative incremental resistance behavior of grid-tied inverters
Zhao et al. Small-signal synchronization stability of grid-forming converters with regulated DC-link dynamics
d'Amico et al. Simulation Package based on PLACET
CN105867161A (zh) 基于rtds的风力发电数字物理混合仿真***及方法
Hans et al. Towards full electrical certification of wind turbines on test benches-experiences gained from the HiL-GridCoP project
Zhou et al. Power decoupling control of DFIG rotor‐side PWM converter based on auto‐disturbance rejection control
Corbett et al. Accelerator control middle layer
Bordry et al. RST Digital Algorithm for controlling the LHC magnet current
Liu et al. Performance of Active Power Synchronization Control under Unbalanced Condition
Olayiwola et al. Digital controller for a boost PFC converter in continuous conduction mode
Ye et al. Study on CLLC-SMES System based on the Passivity Control Strategy
Tang et al. Online parameter optimization method of harmonic controller for grid-connected inverter
Do et al. Controlling matrix converter in flywheel energy storage system using AFPM by processor-in-the-loop method
Walker et al. Preparations for the double-double bend achromat installation in Diamond Light Source
Li et al. Emerging Importance of EVs in the Green Grid Era
Hu et al. Grid impedance impact analysis of the weak grid-tied VSC
Beltran et al. Initial design of a global fast orbit feedback system for the ALBA synchrotron
CN117713161A (zh) 构网型储能接入新能源电力***的短路比计算方法及***
Braga et al. Development environment for control strategies of hybrid active power filters using Matlab (R) and dSpace (R) DSP
Xu et al. RLS Impedance Intelligence Control Algorithm for Wire Peeler of Robot in Complex Power Networks
Geng et al. Design of ITER Data Sharing System for PFCS
Lécorché et al. A Small but Efficient Collaboration for the Spiral2 Control System Development

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE