WO2023273476A1 - 一种检测设备方法和电子设备 - Google Patents

一种检测设备方法和电子设备 Download PDF

Info

Publication number
WO2023273476A1
WO2023273476A1 PCT/CN2022/084821 CN2022084821W WO2023273476A1 WO 2023273476 A1 WO2023273476 A1 WO 2023273476A1 CN 2022084821 W CN2022084821 W CN 2022084821W WO 2023273476 A1 WO2023273476 A1 WO 2023273476A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
electronic device
signal strength
angle
wifi
Prior art date
Application number
PCT/CN2022/084821
Other languages
English (en)
French (fr)
Inventor
吴泰洋
贾淼
龙水平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023273476A1 publication Critical patent/WO2023273476A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength

Definitions

  • the present application relates to the field of computer technology, in particular to a method for detecting equipment and electronic equipment.
  • the current electronic equipment for anti-sneak shooting and monitoring needs to detect a large area, and it is relatively difficult to detect and find possible sneak shooting and monitoring devices.
  • the embodiment of the present application provides a method for detecting equipment and electronic equipment, which can effectively reduce the area to be detected by electronic equipment for preventing sneak shooting and listening, and reduce the difficulty of detecting and finding possible sneak shooting and listening devices.
  • the embodiment of the present application provides a method for detecting equipment, the method comprising:
  • the user is prompted to find the target device through an interface prompt.
  • the antenna pattern of the electronic device and the first signal strength data of the target device are calculated by using the cyclic cross-correlation direction finding algorithm, and before the algorithm result is obtained, further include:
  • determining a target channel or a target frequency band where the target device is located If it is determined that the target device exists, determining a target channel or a target frequency band where the target device is located;
  • the working mode includes detecting a WiFi networking device or detecting a cellular network device.
  • the working mode includes detecting a WiFi networking device
  • the first network includes different WiFi channels around the electronic device
  • the working mode includes detecting a cellular network device
  • the first network includes different cellular signal frequency bands around the electronic device.
  • the scanning and traversing the first network according to the working mode selected by the user to determine whether The target device exists specifically:
  • the target device If it is determined that the target device is included in the first device list, continue to perform the step of determining the target channel or target frequency band where the target device is located;
  • the target device If it is determined that the target device is not included in the first device list, enable the Sniffer function of the WiFi chip in the electronic device to sniff network transmission information of all surrounding WiFi channels;
  • the machine learning algorithm is used to calculate the target features of the sniffed data packets to determine whether there is video transmission data
  • the target device is searched according to the video transmission data, and the step of determining the target channel or target frequency band where the target device is located is continued.
  • the working mode includes detecting the cellular network device, the scanning and traversing the first network according to the working mode selected by the user to determine whether The target device exists, specifically:
  • the determining the target channel or target frequency band where the target device is located specifically includes:
  • the working mode includes the detection of WiFi networking devices
  • the selecting the antenna pattern of the electronic device corresponding to the target channel or the target frequency band according to the target channel or the target frequency band specifically includes:
  • the target WiFi channel select the WiFi antenna pattern of the two WiFi antennas of the electronic device in the target WiFi channel;
  • the working mode includes detecting the cellular network device
  • the selecting the antenna pattern of the electronic device corresponding to the target channel or the target frequency band according to the target channel or the target frequency band specifically includes:
  • the collecting the first signal strength data of the target device specifically includes:
  • the working mode includes detecting a WiFi networked device
  • the first operation includes: the user holds the electronic device and rotates it in situ;
  • the first operation includes: the user selects a holding manner corresponding to the target cellular network frequency band, and holds the electronic device to rotate on the spot.
  • the target cellular network frequency band includes a low-frequency cellular network, a medium-frequency cellular network, or a high-frequency cellular network.
  • the first signal strength data when the working mode includes the detection of WiFi networking devices, includes the target device received by the two WiFi antennas The difference in signal strength data for .
  • the calculation of the antenna pattern of the electronic device and the first signal strength data of the target device by using a circular cross-correlation direction finding algorithm to obtain an algorithm result specifically includes :
  • the third included angle is less than or equal to the angle threshold, use the third included angle as the specified angle, and continue to perform the first step of obtaining the first included specified angle with the first included angle according to the antenna pattern. Steps for planar pattern data.
  • the angle value of the second included angle in the first result is calculated by a data fusion method to obtain the first target azimuth angle
  • the judging whether the confidence degree is greater than the coefficient threshold further includes:
  • prompting the user to find the target device through an interface prompt specifically includes:
  • the third interface prompt includes a direction guide for finding the target device
  • different colors are used to record the track points of the user, and at the same time, the user is prompted by means of sound urgency according to the real-time signal strength.
  • the second operation includes: the user holds the electronic device and rotates it to the first target azimuth, and rotates the electronic device at the first target azimuth. Swing the electronic device up and down in the direction of the corner.
  • the preset angle includes 15°.
  • the angle threshold includes 120°.
  • the coefficient threshold includes 0.5.
  • the target device when the working mode includes detecting a WiFi networking device, the target device includes a camera;
  • the target device When the working mode includes detecting a cellular network device, the target device includes a listener.
  • the embodiment of the present application provides a first electronic device, including a processor and a memory, wherein the memory is used to store a computer program, and the computer program includes program instructions.
  • the processor runs the
  • the program instruction is used, the electronic device is made to perform the following steps:
  • the user is prompted to find the target device through an interface prompt.
  • the electronic device when the processor runs the program instruction, the electronic device is caused to perform the following steps:
  • the calculation of the antenna pattern of the electronic device and the first signal strength data of the target device through the cyclic cross-correlation direction finding algorithm, before obtaining the algorithm result also includes:
  • determining a target channel or a target frequency band where the target device is located If it is determined that the target device exists, determining a target channel or a target frequency band where the target device is located;
  • the working mode includes detecting a WiFi networking device or detecting a cellular network device.
  • the working mode includes detecting a WiFi networking device
  • the first network includes different WiFi channels around the electronic device
  • the working mode includes detecting a cellular network device
  • the first network includes different cellular signal frequency bands around the electronic device.
  • the electronic device when the processor runs the program instruction, the electronic device is caused to perform the following steps:
  • the scanning and traversing the first network according to the working mode selected by the user to determine whether the target device exists specifically includes:
  • the target device If it is determined that the target device is included in the first device list, continue to perform the step of determining the target channel or target frequency band where the target device is located;
  • the target device If it is determined that the target device is not included in the first device list, enable the Sniffer function of the WiFi chip in the electronic device to sniff network transmission information of all surrounding WiFi channels;
  • the machine learning algorithm is used to calculate the target features of the sniffed data packets to determine whether there is video transmission data
  • the target device is searched according to the video transmission data, and the step of determining the target channel or target frequency band where the target device is located is continued.
  • the electronic device when the processor runs the program instruction, the electronic device is caused to perform the following steps:
  • the scanning and traversing the first network according to the working mode selected by the user to determine whether the target device exists specifically includes:
  • the electronic device when the processor runs the program instruction, the electronic device is caused to perform the following steps:
  • the determining the target channel or target frequency band where the target device is located specifically includes:
  • the electronic device when the processor runs the program instruction, the electronic device is caused to perform the following steps:
  • the working mode includes the detection of WiFi networking equipment
  • the selecting the antenna pattern of the electronic device corresponding to the target channel or the target frequency band according to the target channel or the target frequency band specifically includes:
  • the target WiFi channel select the WiFi antenna pattern of the two WiFi antennas of the electronic device in the target WiFi channel;
  • the electronic device when the processor runs the program instruction, the electronic device is caused to perform the following steps:
  • the working mode includes the detection of cellular network equipment
  • the selecting the antenna pattern of the electronic device corresponding to the target channel or the target frequency band according to the target channel or the target frequency band specifically includes:
  • the electronic device when the processor runs the program instruction, the electronic device is caused to perform the following steps:
  • the collecting the first signal strength data of the target device specifically includes:
  • the working mode includes the detection of a WiFi networking device
  • the first operation includes: the user holds the electronic device and rotates it in situ;
  • the first operation includes: the user selects a holding manner corresponding to the target cellular network frequency band, and holds the electronic device to rotate on the spot.
  • the target cellular network frequency band includes a low-frequency cellular network, a medium-frequency cellular network, or a high-frequency cellular network.
  • the first signal strength data when the working mode includes the detection of WiFi networked devices, includes the target device received by the two WiFi antennas The difference in signal strength data for .
  • the electronic device when the processor runs the program instruction, the electronic device is caused to perform the following steps:
  • the calculation of the antenna pattern of the electronic device and the first signal strength data of the target device through the cyclic cross-correlation direction finding algorithm, to obtain the algorithm result specifically includes:
  • the third included angle is less than or equal to the angle threshold, use the third included angle as the specified angle, and continue to perform the first step of obtaining the first included specified angle with the first included angle according to the antenna pattern. Steps for planar pattern data.
  • the electronic device when the processor runs the program instruction, the electronic device is caused to perform the following steps:
  • the judging whether the third included angle is greater than an angle threshold it also includes:
  • the angle value of the second included angle in the first result is calculated by a data fusion method to obtain the first target azimuth angle
  • the electronic device when the processor runs the program instruction, the electronic device is caused to perform the following steps:
  • the judging whether the confidence degree is greater than the coefficient threshold it also includes:
  • the electronic device when the processor runs the program instruction, the electronic device is caused to perform the following steps:
  • an interface prompt which specifically includes:
  • the third interface prompt includes a direction guide for finding the target device
  • different colors are used to record the track points of the user, and at the same time, the user is prompted by means of sound urgency according to the real-time signal strength.
  • the second operation includes: the user holds the electronic device and rotates it to the first target azimuth, and rotates the electronic device at the first target azimuth. Swing the electronic device up and down in the direction of the corner.
  • the preset angle includes 15°.
  • the angle threshold includes 120°.
  • the coefficient threshold includes 0.5.
  • the target device when the working mode includes detecting a WiFi networking device, the target device includes a camera;
  • the target device When the working mode includes detecting a cellular network device, the target device includes a listener.
  • the embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes program instructions, and when the program request is executed by the computer, the A computer executes the method as described above.
  • the antenna pattern of the electronic device and the first signal strength data of the target device are calculated through the cyclic cross-correlation direction finding algorithm to obtain the algorithm result; according to the As a result of the algorithm, prompting the user to search for the target device through interface prompts can effectively reduce the area to be detected by the anti-sneak shooting and listening electronic equipment, and reduce the difficulty of detecting and finding possible sneak shooting and listening devices.
  • FIG. 1 is a flow chart of a method for detecting equipment provided in an embodiment of the present application
  • Fig. 2 is the schematic diagram that the user selects to detect WiFi networking equipment in the detection interface
  • FIG. 3 is a schematic diagram of a user selecting and detecting a cellular network device in a detection interface
  • FIG. 4 is a specific flowchart of scanning and traversing the first network according to the working mode selected by the user in FIG. 1 to determine whether there is a target device;
  • FIG. 5 is a specific flow chart of selecting the antenna pattern of the electronic device corresponding to the target channel or target frequency band according to the target channel or target frequency band in FIG. 1;
  • FIG. 6 is a schematic diagram of a WiFi antenna in an electronic device
  • FIG. 7 is a schematic diagram of a cellular network antenna in an electronic device
  • FIG. 8 is a specific flowchart of collecting the first signal strength data of the target device in FIG. 1;
  • Fig. 9 is a schematic diagram of the first interface
  • FIG. 10 is a schematic diagram of a user holding an electronic device with his right hand
  • Fig. 11 is a schematic diagram of a holding mode corresponding to an intermediate frequency cellular network
  • Fig. 12 is the antenna pattern of the electronic equipment and the coordinate system to which it belongs;
  • Fig. 13 is the planar antenna pattern when the first included angle ⁇ is equal to 90°;
  • FIG. 14 is a schematic diagram of the one-dimensional antenna pattern data after the planar antenna pattern in FIG. 13 is expanded;
  • Fig. 15 is a specific flow chart of calculating the antenna pattern of the electronic device and the first signal strength data of the target device through the cyclic cross-correlation direction finding algorithm in Fig. 1 to obtain the algorithm result;
  • Fig. 16 is a specific flowchart of prompting the user to find the target device through an interface prompt according to the algorithm result in Fig. 1;
  • Fig. 17 is a schematic diagram of the third interface
  • FIG. 18 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the wireless signal detector is currently the most commonly used electronic device for detecting and finding sneak shots and monitoring devices of wireless transmission.
  • the wireless signal detector mainly uses the signal detector and its extendable antenna to detect wireless signals in a certain frequency band (such as 600MHz to 7GHz). The closer the wireless signal is to the wireless signal detector, the stronger the signal of the wireless signal detected by the wireless signal detector. Therefore, the distance between the wireless signal detector and the target signal source can be judged by the change of signal strength, so as to find candid shots and listening devices.
  • the sneak shooting and monitoring equipment are generally small in size, they are often hidden in relatively hidden corners. Therefore, when using the wireless signal detector, the user needs to traverse all corners of the target area to be detected, and there may be interference from wireless signals of other electronic devices. Therefore, the actual use of the wireless signal detector is time-consuming and laborious and depends on the user's experience. Ordinary people do not use it much in daily life, and the protective effect is limited.
  • the sensor detection method mainly uses the corresponding sensors to detect and find the equipment according to the different characteristics of the sneak shooting and monitoring equipment. For example, the sneak camera and monitor will heat up when they are working. You can use the thermal imager to find the sneak camera and monitoring equipment whose temperature is significantly higher than the ambient temperature.
  • the motor used by the camera to focus the lens contains a magnet inside, which can use the intensity change of the magnetic field sensor to detect if there is a camera.
  • the sensor detection method is similar to the shortcomings of the wireless signal detector in the above-mentioned related art 1. It mainly requires the user to use the corresponding sensor to traverse and scan the target area to be detected to detect the hidden camera and monitoring equipment that may be hidden in the corner. However, it is difficult for users to perform carpet scanning in actual use, and it is impossible to ensure the effectiveness of the related technology 2 in detecting sneak shots and monitoring equipment; and thermal imaging cameras and magnetic field sensors cannot avoid environmental factors (such as hot objects or other magnets) equipment) interference.
  • the ultrasonic interference method modulates the white noise for interference on the ultrasonic waves that cannot be heard by the human ear.
  • people in the current environment cannot perceive the interference white noise; and since most microphones that collect sound signals have nonlinear , so the interference white noise modulated on the ultrasonic wave will be demodulated after being collected by the microphone, so the sound received by the monitor contains interference white noise, which can protect the user's conversation and other voice information from being eavesdropped.
  • Ultrasound has strong directionality.
  • the ultrasonic jamming method needs to deploy ultrasonic jammers in multiple directions, which generally costs a lot; in order to better interfere with the eavesdropping effect of the listener, ultrasonic jamming
  • the device needs to emit strong ultrasonic waves, so the electronic equipment used in the ultrasonic interference method is usually large in size, high in power consumption, not easy to carry, and difficult to popularize and use in daily life.
  • the embodiment of the present application provides a method for detecting equipment and electronic equipment, by using the ability of electronic equipment to receive wireless signals in different frequency bands to detect target equipment for sneak shooting and monitoring, and proposes a method based on electronic equipment
  • the cyclic cross-correlation direction finding algorithm of the antenna pattern can quickly determine the azimuth angle of the target device hidden in the hidden place relative to the user, which can effectively reduce the scope of the target area to be detected and reduce the difficulty of use. Since the detection device method provided by the embodiment of the present application is applied to electronic devices, users do not need to carry additional detection devices, which can reduce the cost of use and protect personal privacy and signal security in daily life and work.
  • FIG. 1 is a flow chart of a method for detecting equipment provided by an embodiment of the present application. As shown in Figure 1, the method includes:
  • Step 102 Scan and traverse the first network according to the working mode selected by the user to determine whether there is a target device.
  • target areas include conference rooms, classrooms, or bedrooms.
  • a detection interface is displayed on the screen of the electronic device, and the detection interface includes two selection buttons, one of which is a "cellular network” button, and the other selection button is a "WiFi device” button .
  • the detection interface is used to display the detected network device type to the user, and the user selects the device network type to be detected by clicking the selection button corresponding to the network device type.
  • the working mode includes detecting a WiFi networking device or detecting a cellular network device.
  • the selection button clicked by the user is the "WiFi device” button, and the working mode selected by the user at this time includes detecting WiFi networked devices.
  • the selection button clicked by the user is the "cellular network” button, and the working mode selected by the user at this time includes detecting the cellular network device.
  • the first network when the working mode includes detecting WiFi networked devices, the first network includes different WiFi channels around the electronic device; when the working mode includes detecting cellular network devices, the first network includes different cellular signal frequency bands around the electronic device.
  • the target device when the working mode includes detecting a WiFi networked device, the target device includes a camera; when the working mode includes detecting a cellular network device, the target device includes a listener.
  • step 102 specifically includes:
  • Step 102a searching for a list of first devices connected to the same WiFi hotspot as the electronic device.
  • the first device list includes all first devices connected to the same WiFi hotspot as the electronic device. Specifically, discover the IP address of the first device through the Internet Control Message Protocol (Internet Control Message Protocol, ICMP), and then find the first device corresponding to the Internet Protocol (Internet Protocol, IP) address according to the Address Resolution Protocol (Address Resolution Protocol, ARP). Information such as the Media Access Control (MAC) address and port number of the device.
  • Internet Control Message Protocol Internet Control Message Protocol
  • ARP Address Resolution Protocol
  • Information such as the Media Access Control (MAC) address and port number of the device.
  • Step 102b According to the target parameter of the first device in the first device list, determine whether the target device is included in the first device list; if yes, continue to execute step 104; if not, execute step 102c.
  • the target parameter includes related device information such as the MAC address and port number of the first device.
  • the first device includes a camera according to related device information such as the MAC address and port number of the first device.
  • Step 102c enabling the Sniffer function of the WiFi chip in the electronic device to sniff the network transmission information of all surrounding WiFi channels.
  • the Sniffer function of the WiFi chip in the electronic device is turned on to sniff the network transmission information of all surrounding WiFi channels.
  • Step 102d Calculate the target feature of the sniffed data packet by using a machine learning algorithm to determine whether there is video transmission data.
  • the target features include the size, interval, rate and other features of the data packet.
  • Step 102e if it is determined that there is video transmission data, search for the target device according to the video transmission data, and continue to execute step 104.
  • step 104 if it is determined that there is video transmission data, it indicates that there is a camera in the detected target area, and then the corresponding camera is searched according to the video transmission data, and step 104 is continued.
  • step 102 specifically includes: scanning and traversing different cellular signal frequency bands according to the working mode selected by the user to determine whether there is a cellular signal.
  • the working mode includes detecting cellular network devices
  • other known cellular network devices need to be turned off and the airplane mode is turned on before step 102 .
  • an electronic device (such as a mobile phone) has a cellular signal channel, and the cellular signal channel is mainly used to self-test the ability of the electronic device to receive cellular signals.
  • the electronic device transmits a signal by itself and then uses the cellular signal channel Check the emitted signal strength.
  • the embodiment of the present application reuses this function, and when the cellular signal channel is opened to detect cellular signals, the electronic device itself does not transmit signals, so it can be used to detect cellular network devices in the external environment.
  • the embodiment of the present application requires the user to actively shut down the known cellular network device, so the cellular signal channel function of the electronic device can be used to detect the cellular network sniffer.
  • the cellular network signals of different frequency bands are directly scanned, and if a cellular signal is found, the frequency band to which the cellular signal belongs is recorded.
  • the electronic device actively sends out sound signals at regular intervals to trigger possible monitors, and at the same time scans for cellular network signals in different frequency bands. If a cellular signal is found, record the band.
  • Step 104 if it is determined that there is a target device, determine a target channel or a target frequency band where the target device is located.
  • step 104 specifically includes: determining a target WiFi channel or a target cellular network frequency band where the target device is located.
  • Step 106 according to the target channel or target frequency band, select the antenna pattern of the electronic device corresponding to the target channel or target frequency band.
  • step 106 specifically includes:
  • Step 1062 according to the target WiFi channel, select the WiFi antenna pattern of the two WiFi antennas of the electronic device on the target WiFi channel.
  • an electronic device such as a mobile phone generally has two WiFi antennas.
  • 2.4G WiFi has two antennas T1 and T2; 5G WiFi has two antennas T3 and T4). If the target WiFi channel includes the 2.4G WiFi channel, select the WiFi antenna pattern of the two WiFi antennas T1 and T2 in the 2.4G WiFi channel; if the target WiFi channel includes the 5G WiFi channel, select the two WiFi antennas T3 and T4 in the 5G Wi-Fi antenna pattern for a Wi-Fi channel.
  • Step 1064 Subtract the two WiFi antenna patterns to obtain the antenna pattern.
  • the two WiFi antennas can be virtualized into one antenna with better directivity.
  • step 106 specifically includes: selecting the antenna pattern of the electronic device corresponding to the target cellular network frequency band according to the target cellular network frequency band.
  • the cellular network antenna of the electronic device includes a low-frequency cellular antenna, an intermediate-frequency cellular antenna, and a high-frequency cellular antenna.
  • the target cellular network frequency band includes a low-frequency cellular network, an intermediate-frequency cellular network, or a high-frequency cellular network.
  • Cellular network includes a low-frequency cellular network, an intermediate-frequency cellular network, or a high-frequency cellular network.
  • the antenna pattern in the embodiment of the present application is the actual antenna pattern after considering the influence of the human body (mainly the torso and hands) on the electronic device, so as to better reflect the actual use The signal strength received by the electronic device during the process.
  • the antenna pattern considering the influence of the human body is also related to the way the electronic device is held. For different holding methods, the antenna pattern of the same electronic device will be different. In actual use, the user mainly holds it with the right hand. For this holding method, the antenna pattern data when the right hand holds the electronic device can be simulated through software or actually collected.
  • Step 108 collecting first signal strength data of the target device.
  • the target device when the working mode includes detecting a WiFi networked device, the target device includes a camera.
  • the electronic device selects an appropriate method for collecting signal strength according to the discovery method of the camera.
  • the embodiment of the present application does not limit the method for collecting signal strength by the electronic device.
  • the method for electronic equipment to collect signal strength includes establishing a Transmission Control Protocol (Transmission Control Protocol, TCP) connection or establishing a User Datagram Protocol (User Datagram Protocol, UDP) connection, etc.
  • TCP Transmission Control Protocol
  • UDP User Datagram Protocol
  • the electronic device can periodically (for example, every 20ms) try to establish a Transmission Control Protocol (TCP) with the camera Connection, no matter whether the TCP connection is successful or not, the electronic device will receive the feedback frame of the camera's response to the TCP connection, and the signal strength of the camera can be obtained by analyzing the feedback frame.
  • TCP Transmission Control Protocol
  • the Sniffer function of the WiFi chip of the electronic device captures and analyzes the data frame of the MAC address in a targeted manner, and the signal strength of the camera can be obtained.
  • step 108 specifically includes:
  • Step 1082 Generate a first interface prompt for prompting the user to perform the first operation.
  • the electronic device when the working mode includes detecting WiFi networked devices, after detecting the camera and selecting the antenna pattern, the electronic device generates a first interface, and the first interface includes a first interface for prompting the user to perform the first operation.
  • Interface prompt As shown in FIG. 9 , the first interface also includes a compass and direction guidance.
  • the working mode includes the detection of the WiFi networked device
  • the first operation includes: the user holds the electronic device and rotates it in situ.
  • the user may use the left hand, right hand or both hands to hold the electronic device.
  • the user may use the left hand, right hand or both hands to hold the electronic device.
  • the user holds the electronic device with the right hand.
  • the first operation is that the user uses the right hand to hold the electronic device and rotate it around.
  • the "one circle” here is just an overview.
  • the user may need to turn multiple times in a certain direction to collect signal strength data for the entire circle.
  • part of the radian in the circle at the bottom of the first interface is a thick solid line, which means that the signal strength data collection in the corresponding direction is completed; in actual use, the user may still have signals in some directions after one rotation If the intensity data is not collected, the thick solid line will not appear in the arc in the corresponding direction at this time.
  • the first operation when the working mode includes the detection of cellular network equipment, includes: the user selects a holding method corresponding to the target cellular network frequency band, and holds the electronic device Spin in place.
  • different target cellular network frequency bands adopt different holding methods, so as to reduce interference of hands and bodies to received cellular signals.
  • the low-frequency cellular antenna is located on the top of the electronic device
  • the medium-frequency cellular antenna is located in the middle of the electronic device
  • the high-frequency cellular antenna is located at the bottom of the electronic device.
  • the corresponding holding method is that the user uses the right hand to hold the area from the middle to the bottom of the electronic device, and the low-frequency cellular antenna faces outward, so that the low-frequency cellular antenna can better receive cellular signals ;
  • the corresponding holding method is that the user uses both hands to hold the top and bottom areas of the electronic device respectively, and the intermediate frequency cellular antenna faces outward, so that the intermediate frequency cellular The antenna is better for receiving cellular signals;
  • the target cellular network frequency band includes high-frequency cellular networks
  • the corresponding holding method is that the user uses the right hand to hold the area from the bottom to the middle of the electronic device, and the high-frequency cellular antenna faces outward to Make the high-frequency cellular antenna better receive cellular signals.
  • Step 1084 when the user performs the first operation according to the prompt on the first interface, collect the first signal strength data of the target device.
  • the first signal strength data is the signal strength of the target device incident from different angles collected by the electronic device when the user holds the electronic device and rotates in situ. Therefore, the first signal strength data may also be referred to as full circle signal strength data.
  • the first signal strength data includes a difference between signal strength data of the target device received by two WiFi antennas. Since an electronic device generally has two WiFi antennas, for the convenience of calculation, the difference between the signal strength data collected by the two WiFi antennas is used as the first signal strength data.
  • Step 110 Calculate the antenna pattern of the electronic device and the first signal strength data of the target device by using a circular cross-correlation direction finding algorithm to obtain an algorithm result.
  • FIG. 12 is a diagram of the antenna pattern of the electronic device and its coordinate system.
  • the direction of the X-axis is the rightward direction of the electronic device held by the front
  • the direction of the Y-axis is the forward direction of the electronic device held by the front
  • the direction of the Z-axis is the vertical upward direction of the electronic device held by the front.
  • the second angle ⁇ is formed between the X axis and the Y axis, and the value range of the second angle ⁇ includes 0-360 degrees; the angle with the Z axis is the first angle ⁇ , and the value of the first angle ⁇ is The value range includes 0-180 degrees.
  • the embodiment of the present application cuts the antenna pattern of the electronic device into a plurality of planar antenna patterns corresponding to different first included angles ⁇ , which are respectively compared with the collected Cross-correlation calculation is performed on the first signal strength data, and after confirming the first target azimuth angle corresponding to the second included angle ⁇ of the target device relative to the electronic device, the signal strength is re-acquired by rotating the electronic device up and down in the direction of the second included angle ⁇ , performing cross-correlation calculation on the signal strength data and the plane antenna pattern data corresponding to the second included angle ⁇ , and the second target azimuth angle corresponding to the first included angle ⁇ of the target device relative to the electronic device can be obtained.
  • the algorithm result includes the first target azimuth angle and the second target azimuth angle.
  • the planar antenna pattern is shown in Figure 13
  • the one-dimensional antenna pattern data after expanding the planar antenna pattern shown in Figure 13 As shown in Figure 14.
  • step 110 specifically includes:
  • Step 110a obtain the first plane pattern data including the specified angle with the first included angle according to the antenna pattern.
  • the designated angle may be set according to actual conditions. For example, set the specified angle to 60°.
  • Step 110b Calculate the first signal strength data and the first plane pattern data by using a circular cross-correlation calculation formula to obtain a first cross-correlation value between the first signal strength data and the first plane pattern data.
  • the first plane pattern data is represented by f( ⁇ , ⁇ )
  • the first signal strength data is represented by S( ⁇ )
  • the plane pattern data f(90, ⁇ ) is calculated as follows:
  • the corresponding first cross-correlation value can also be calculated according to the above principle.
  • Step 110c recording the angle value of the second included angle corresponding to the maximum value of the first cross-correlation value into the first result.
  • Step 110d adding the first included angle to the preset angle to obtain the third included angle.
  • the preset angle may be set according to actual conditions. For example, set the preset angle to 15°.
  • Step 110e judging whether the third included angle is greater than the angle threshold, if not, execute step 110f; if yes, execute step 110g.
  • the angle threshold may be set according to actual conditions. For example, set the angle threshold to 120°.
  • Step 110f taking the third included angle as the designated angle, and continuing to execute step 110a.
  • the above-mentioned specified angle is 60°
  • the above-mentioned first included angle is also the specified angle of 60°
  • the third angle is obtained after adding the first included angle to the preset angle of 15°
  • the third angle is 75°
  • the third angle of 75° is used as the specified angle, and when step 110a is continued, the specified angle should be 75°.
  • Step 110g calculate the angle value of the second included angle in the first result by using the data fusion method to obtain the first target azimuth angle.
  • the data fusion method includes taking an average value, a weighted average value, or a maximum Pearson correlation coefficient, and the like.
  • Step 110h obtaining the rotated antenna pattern by rotating the antenna pattern to the first target azimuth angle
  • Step 110i by calculating the first signal strength data and the rotated antenna pattern, the confidence between the first signal strength data and the rotated antenna pattern is obtained.
  • the Pearson correlation coefficient, complexity or Spedarman correlation coefficient, etc. are used as the first signal strength data and the rotated antenna pattern. Confidence between the antenna patterns of .
  • Step 110j judging whether the confidence degree is greater than the coefficient threshold, if not, continue to execute step 108; if yes, execute step 110k.
  • the confidence level is used to judge the validity of the first signal strength data collected this time. If the calculated confidence is greater than the coefficient threshold, the determination result is valid; otherwise, the user is prompted to collect the first signal strength data again.
  • the coefficient threshold may be set according to actual conditions. For example, set the coefficient threshold to 0.5.
  • Step 110k generating a second interface prompt for prompting the user to perform a second operation according to the first target azimuth angle.
  • the second operation includes: the user holds the electronic device and rotates it to the first target azimuth angle, and swings the electronic device up and down in the direction of the first target azimuth angle.
  • Step 110l when the user performs the second operation according to the second interface prompt, collect the second signal strength data of the target device
  • Step 110m calculate the second signal strength and the second plane pattern data including the first target azimuth angle with the second angle through the circular cross-correlation calculation formula, and obtain the second signal strength data and the second plane pattern data The second cross-correlation value between;
  • Step 110n selecting the angle value of the first included angle corresponding to the maximum value of the second cross-correlation value as the second target azimuth angle.
  • Step 112 prompting the user to find the target device through an interface prompt according to the algorithm result.
  • step 112 specifically includes:
  • Step 112a Generate a third interface prompt according to the first target azimuth angle and the second target azimuth angle, where the third interface prompt includes direction guidance for finding the target device.
  • the target direction that is, the second target azimuth angle
  • the prompt mode of the third interface the user is guided to find the target device in the target direction, such as Figure 17 shows.
  • Step 112b During the process of searching for the target device according to the prompt of the third interface, the user's walking track and the real-time signal strength of the target device are collected.
  • Step 112c according to the walking track and the real-time signal strength, record the user's track points in different colors, and at the same time prompt the user by means of sound urgency according to the real-time signal strength.
  • the third interface includes a current area map, which is used to record the user's walking trajectory, and mark the trajectory points with colors according to the real-time signal strength received by the electronic device at the current location. The stronger the signal strength, the color The darker it is; at the same time, the user is prompted by sound how far away from the target device is, and the stronger the signal strength, the louder the sound.
  • the method for detecting equipment based on the antenna pattern of the electronic device cuts the three-dimensional antenna pattern of the electronic device into multiple planar antenna pattern data, and uses the cyclic cross-correlation direction finding algorithm to compare with the rotating electronic device respectively.
  • the wireless signal strength of the target device received in a circle is calculated by cyclic cross-correlation to obtain the algorithm result.
  • the algorithm structure includes the azimuth angle information of the target device relative to the position of the electronic device. According to the result of the algorithm, the user goes to the corresponding direction and detects the signal strength of the area to find the target device. There is no need to check all areas, which can effectively reduce the area to be detected, and reduce the difficulty of detecting and finding possible sneak shots and listening devices.
  • two WiFi antennas are virtualized as one antenna with better directivity, so as to improve the accuracy of the circular cross-correlation direction finding algorithm based on the antenna pattern.
  • the embodiment of the present application can confirm the azimuth angle information of the detected target device, detect the wireless signal of the target device fixedly, and is less likely to be interfered by other wireless signals in the environment.
  • the antenna pattern of the electronic device and the first signal strength data of the target device are calculated through the cyclic cross-correlation direction finding algorithm to obtain the algorithm result; according to the algorithm result, through the interface
  • the prompt mode prompts the user to find the target device, which can effectively reduce the area to be detected by the anti-sneak shooting and monitoring electronic equipment, and reduce the difficulty of detecting and finding possible sneak shooting and monitoring devices.
  • the detection device method provided by the embodiment of the present application is described in detail above with reference to FIG. 1 to FIG. 17 , and the device embodiment of the present application will be described in detail below in conjunction with FIG. 18 . It should be understood that the electronic device in the embodiment of the present application can execute various methods in the foregoing embodiments of the present application, that is, the specific working processes of the following various products can refer to the corresponding processes in the foregoing method embodiments.
  • An embodiment of the present application provides an electronic device, and the electronic device may be a terminal device or a circuit device built in the terminal device.
  • the electronic device may be used to execute the functions/steps in the foregoing method embodiments.
  • FIG. 18 is a schematic structural diagram of an electronic device 300 provided by an embodiment of the present application.
  • the electronic device 300 may include a processor 310, an external memory interface 320, an internal memory 321, a universal serial bus (universal serial bus, USB) interface 330, a charging management module 340, a power management module 341, a battery 342, an antenna 1, and an antenna 2 , mobile communication module 350, wireless communication module 360, audio module 370, speaker 370A, receiver 370B, microphone 370C, earphone jack 370D, sensor module 380, button 390, motor 391, indicator 392, camera 393, display screen 394, and A subscriber identification module (subscriber identification module, SIM) card interface 395 and the like.
  • SIM subscriber identification module
  • the sensor module 380 may include a pressure sensor 380A, a gyroscope sensor 380B, an air pressure sensor 380C, a magnetic sensor 380D, an acceleration sensor 380E, a distance sensor 380F, a proximity light sensor 380G, a fingerprint sensor 380H, a temperature sensor 380J, a touch sensor 380K, and an ambient light sensor.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the electronic device 300 .
  • the electronic device 300 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the processor 310 may include one or more processing units, for example: the processor 310 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • the controller can generate an operation control signal according to the instruction opcode and timing signal, and complete the control of fetching and executing the instruction.
  • a memory may also be provided in the processor 310 for storing instructions and data.
  • the memory in processor 310 is a cache memory.
  • the memory may hold instructions or data that the processor 310 has just used or recycled. If the processor 310 needs to use the instruction or data again, it can be called directly from the memory. Repeated access is avoided, and the waiting time of the processor 310 is reduced, thereby improving the efficiency of the system.
  • processor 310 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transmitter (universal asynchronous receiver/transmitter, UART) interface, mobile industry processor interface (mobile industry processor interface, MIPI), general-purpose input and output (general-purpose input/output, GPIO) interface, subscriber identity module (subscriber identity module, SIM) interface, and /or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input and output
  • subscriber identity module subscriber identity module
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus, including a serial data line (serial data line, SDA) and a serial clock line (derail clock line, SCL).
  • processor 310 may include multiple sets of I2C buses.
  • the processor 310 can be respectively coupled to the touch sensor 380K, the charger, the flashlight, the camera 393 and so on through different I2C bus interfaces.
  • the processor 310 may be coupled to the touch sensor 380K through the I2C interface, so that the processor 310 and the touch sensor 380K communicate through the I2C bus interface to realize the touch function of the electronic device 300 .
  • the I2S interface can be used for audio communication.
  • processor 310 may include multiple sets of I2S buses.
  • the processor 310 may be coupled to the audio module 370 through an I2S bus to implement communication between the processor 310 and the audio module 370 .
  • the audio module 370 can transmit audio signals to the wireless communication module 360 through the I2S interface, so as to realize the function of answering calls through the Bluetooth headset.
  • the PCM interface can also be used for audio communication, sampling, quantizing and encoding the analog signal.
  • the audio module 370 and the wireless communication module 360 may be coupled through a PCM bus interface.
  • the audio module 370 can also transmit audio signals to the wireless communication module 360 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • a UART interface is generally used to connect the processor 310 and the wireless communication module 360 .
  • the processor 310 communicates with the Bluetooth module in the wireless communication module 360 through the UART interface to realize the Bluetooth function.
  • the audio module 370 can transmit audio signals to the wireless communication module 360 through the UART interface, so as to realize the function of playing music through the Bluetooth headset.
  • the MIPI interface can be used to connect the processor 310 with peripheral devices such as the display screen 394 and the camera 393 .
  • MIPI interface includes camera serial interface (camera serial interface, CSI), display serial interface (display serial interface, DSI), etc.
  • the processor 310 communicates with the camera 393 through the CSI interface to realize the shooting function of the electronic device 300 .
  • the processor 310 communicates with the display screen 394 through the DSI interface to realize the display function of the electronic device 300 .
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 310 with the camera 393 , the display screen 394 , the wireless communication module 360 , the audio module 370 , the sensor module 380 and so on.
  • the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 330 is an interface conforming to the USB standard specification, specifically, it may be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 330 can be used to connect a charger to charge the electronic device 300 , and can also be used to transmit data between the electronic device 300 and peripheral devices. It can also be used to connect headphones and play audio through them. This interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules shown in the embodiment of the present application is only a schematic illustration, and does not constitute a structural limitation of the electronic device 300 .
  • the electronic device 300 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the charging management module 340 is configured to receive charging input from the charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 340 can receive charging input from a wired charger through the USB interface 330 .
  • the charging management module 340 may receive wireless charging input through a wireless charging coil of the electronic device 300 . While the charging management module 340 is charging the battery 342 , it can also supply power to the electronic device through the power management module 341 .
  • the power management module 341 is used for connecting the battery 342 , the charging management module 340 and the processor 310 .
  • the power management module 341 receives the input from the battery 342 and/or the charging management module 340 to provide power for the processor 310 , the internal memory 321 , the display screen 394 , the camera 393 , and the wireless communication module 360 .
  • the power management module 341 can also be used to monitor parameters such as battery capacity, battery cycle times, and battery health status (leakage, impedance).
  • the power management module 341 may also be disposed in the processor 310 .
  • the power management module 341 and the charging management module 340 may also be set in the same device.
  • the wireless communication function of the electronic device 300 can be realized by the antenna 1 , the antenna 2 , the mobile communication module 350 , the wireless communication module 360 , a modem processor, a baseband processor, and the like.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 300 may be used to cover single or multiple communication frequency bands. Different antennas can also be multiplexed to improve the utilization of the antennas.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 350 can provide wireless communication solutions including 2G/3G/4G/5G applied on the electronic device 300 .
  • the mobile communication module 350 may include at least one filter, switch, power amplifier, low noise amplifier (low noise amplifier, LNA) and the like.
  • the mobile communication module 350 can receive electromagnetic waves through the antenna 1, filter and amplify the received electromagnetic waves, and send them to the modem processor for demodulation.
  • the mobile communication module 350 can also amplify the signal modulated by the modem processor, convert it into electromagnetic wave and radiate it through the antenna 1 .
  • at least part of the functional modules of the mobile communication module 350 may be set in the processor 310 .
  • at least part of the functional modules of the mobile communication module 350 and at least part of the modules of the processor 310 may be set in the same device.
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used for modulating the low-frequency baseband signal to be transmitted into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator sends the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low-frequency baseband signal is passed to the application processor after being processed by the baseband processor.
  • the application processor outputs sound signals through audio equipment (not limited to speaker 370A, receiver 370B, etc.), or displays images or videos through display screen 394 .
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent from the processor 310, and be set in the same device as the mobile communication module 350 or other functional modules.
  • the wireless communication module 360 can provide wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (Wireless Fidelity, Wi-Fi) network), bluetooth (bluetooth, BT), global navigation satellite, etc. applied on the electronic device 300.
  • System global navigation satellite system, GNSS
  • frequency modulation frequency modulation, FM
  • near field communication technology near field communication, NFC
  • infrared technology infrared, IR
  • the wireless communication module 360 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 360 receives electromagnetic waves via the antenna 2 , frequency-modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 310 .
  • the wireless communication module 360 can also receive the signal to be sent from the processor 310 , frequency-modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the antenna 1 of the electronic device 300 is coupled to the mobile communication module 350, and the antenna 2 is coupled to the wireless communication module 360, so that the electronic device 300 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access, CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR techniques, etc.
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • code division multiple access code division multiple access
  • CDMA broadband Code division multiple access
  • WCDMA wideband code division multiple access
  • time division code division multiple access time-division code division multiple access
  • TD-SCDMA time-division code division multiple access
  • the GNSS may include a global positioning system (global positioning system, GPS), a global navigation satellite system (global navigation satellite system, GLONASS), a Beidou navigation satellite system (beidou navigation satellite system, BDS), a quasi-zenith satellite system (quasi -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • Beidou navigation satellite system beidou navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the electronic device 300 implements a display function through a GPU, a display screen 394, and an application processor.
  • the GPU is a microprocessor for image processing, connected to the display screen 394 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 310 may include one or more GPUs that execute program instructions to generate or alter display information.
  • the display screen 394 is used to display images, videos and the like.
  • Display 394 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light emitting diode, AMOLED), flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light emitting diodes (quantum dot light emitting diodes, QLED), etc.
  • the electronic device 300 may include 1 or N display screens 394, where N is a positive integer greater than 1.
  • the electronic device 300 can realize the shooting function through an ISP, a camera 393 , a video codec, a GPU, a display screen 394 , and an application processor.
  • the ISP is used for processing the data fed back by the camera 393 .
  • the light is transmitted to the photosensitive element of the camera through the lens, and the light signal is converted into an electrical signal, and the photosensitive element of the camera transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and skin color.
  • ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be located in the camera 393 .
  • Camera 393 is used to capture still images or video.
  • the object generates an optical image through the lens and projects it to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the light signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other image signals.
  • the electronic device 300 may include 1 or N cameras 393, where N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the electronic device 300 selects a frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point.
  • Video codecs are used to compress or decompress digital video.
  • the electronic device 300 may support one or more video codecs.
  • the electronic device 300 can play or record videos in various encoding formats, for example: moving picture experts group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4 and so on.
  • MPEG moving picture experts group
  • the NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • the NPU can quickly process input information, and can also continuously learn by itself.
  • Applications such as intelligent cognition of the electronic device 300 can be realized through the NPU, such as image recognition, face recognition, speech recognition, text understanding, and the like.
  • the external memory interface 320 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 300.
  • the external memory card communicates with the processor 310 through the external memory interface 320 to implement a data storage function. Such as saving music, video and other files in the external memory card.
  • the internal memory 321 may be used to store computer-executable program code, which includes instructions.
  • the internal memory 321 may include an area for storing programs and an area for storing data.
  • the stored program area can store an operating system, at least one application program required by a function (such as a sound playing function, an image playing function, etc.) and the like.
  • the storage data area can store data (such as audio data, phone book, etc.) created during the use of the electronic device 300 .
  • the internal memory 321 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (universal flash storage, UFS) and the like.
  • the processor 310 executes various functional applications and data processing of the electronic device 300 by executing instructions stored in the internal memory 321 and/or instructions stored in a memory provided in the processor.
  • the electronic device 300 can implement audio functions through an audio module 370 , a speaker 370A, a receiver 370B, a microphone 370C, an earphone interface 370D, and an application processor. Such as music playback, recording, etc.
  • the audio module 370 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signal.
  • the audio module 370 may also be used to encode and decode audio signals.
  • the audio module 370 can be set in the processor 310 , or some functional modules of the audio module 370 can be set in the processor 310 .
  • Speaker 370A also called “horn” is used to convert audio electrical signals into sound signals.
  • Electronic device 300 can listen to music through speaker 370A, or listen to hands-free calls.
  • Receiver 370B also called “earpiece” is used to convert audio electrical signals into audio signals.
  • the receiver 370B can be placed close to the human ear to receive the voice.
  • the microphone 370C also called “microphone” or “microphone” is used to convert sound signals into electrical signals.
  • the user can put his mouth close to the microphone 370C to make a sound, and input the sound signal to the microphone 370C.
  • the electronic device 300 may be provided with at least one microphone 370C. In some other embodiments, the electronic device 300 may be provided with two microphones 370C, which may also implement a noise reduction function in addition to collecting sound signals. In some other embodiments, the electronic device 300 can also be provided with three, four or more microphones 370C, so as to collect sound signals, reduce noise, identify sound sources, and realize directional recording functions, etc.
  • the earphone interface 370D is used to connect wired earphones.
  • the earphone interface 370D may be a USB interface 330, or a 3.5mm open mobile terminal platform (open mobile terminal platform, OMTP) standard interface, or a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the pressure sensor 380A is used to sense the pressure signal and convert the pressure signal into an electrical signal.
  • pressure sensor 380A may be located on display screen 394 .
  • pressure sensors 380A there are many types of pressure sensors 380A, such as resistive pressure sensors, inductive pressure sensors, and capacitive pressure sensors.
  • a capacitive pressure sensor may be comprised of at least two parallel plates with conductive material.
  • the electronic device 300 determines the intensity of the pressure from the change in capacitance.
  • the electronic device 300 detects the intensity of the touch operation according to the pressure sensor 380A.
  • the electronic device 300 may also calculate the touched position according to the detection signal of the pressure sensor 380A.
  • touch operations acting on the same touch position but with different touch operation intensities may correspond to different operation instructions.
  • the gyro sensor 380B can be used to determine the motion posture of the electronic device 300 .
  • the angular velocity of the electronic device 300 about three axes may be determined by the gyro sensor 380B.
  • the gyro sensor 380B can be used for image stabilization. Exemplarily, when the shutter is pressed, the gyro sensor 380B detects the shaking angle of the electronic device 300, calculates the distance that the lens module needs to compensate according to the angle, and allows the lens to counteract the shaking of the electronic device 300 through reverse movement to achieve anti-shake.
  • the gyroscope sensor 380B can also be used for navigation and somatosensory game scenes.
  • the air pressure sensor 380C is used to measure air pressure. In some embodiments, the electronic device 300 calculates the altitude based on the air pressure value measured by the air pressure sensor 380C to assist positioning and navigation.
  • the magnetic sensor 380D includes a Hall sensor.
  • the electronic device 300 may use the magnetic sensor 380D to detect the opening and closing of the flip leather case.
  • the electronic device 300 can detect opening and closing of the flip according to the magnetic sensor 380D.
  • features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 380E can detect the acceleration of the electronic device 300 in various directions (generally three axes).
  • the magnitude and direction of gravity can be detected when the electronic device 300 is stationary. It can also be used to identify the posture of electronic devices, and can be used in applications such as horizontal and vertical screen switching, pedometers, etc.
  • the distance sensor 380F is used to measure the distance.
  • the electronic device 300 can measure the distance by infrared or laser. In some embodiments, when shooting a scene, the electronic device 300 can use the distance sensor 380F to measure distance to achieve fast focusing.
  • Proximity light sensor 380G may include, for example, light emitting diodes (LEDs) and light detectors, such as photodiodes.
  • the light emitting diodes may be infrared light emitting diodes.
  • the electronic device 300 emits infrared light through the light emitting diode.
  • Electronic device 300 uses photodiodes to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it may be determined that there is an object near the electronic device 300 . When insufficient reflected light is detected, the electronic device 300 may determine that there is no object near the electronic device 300 .
  • the electronic device 300 can use the proximity light sensor 380G to detect that the user holds the electronic device 300 close to the ear to make a call, so as to automatically turn off the screen to save power.
  • the proximity light sensor 380G can also be used in leather case mode, automatic unlock and lock screen in pocket mode.
  • the ambient light sensor 380L is used for sensing ambient light brightness.
  • the electronic device 300 can adaptively adjust the brightness of the display screen 394 according to the perceived ambient light brightness.
  • the ambient light sensor 380L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 380L can also cooperate with the proximity light sensor 380G to detect whether the electronic device 300 is in the pocket to prevent accidental touch.
  • the fingerprint sensor 380H is used to collect fingerprints.
  • the electronic device 300 can use the collected fingerprint characteristics to implement fingerprint unlocking, access to the application lock, take pictures with the fingerprint, answer calls with the fingerprint, and the like.
  • the temperature sensor 380J is used to detect temperature.
  • the electronic device 300 uses the temperature detected by the temperature sensor 380J to implement a temperature treatment strategy. For example, when the temperature reported by the temperature sensor 380J exceeds the threshold, the electronic device 300 may reduce the performance of a processor located near the temperature sensor 380J, so as to reduce power consumption and implement thermal protection.
  • the electronic device 300 when the temperature is lower than another threshold, the electronic device 300 heats the battery 342 to avoid abnormal shutdown of the electronic device 300 caused by the low temperature.
  • the electronic device 300 boosts the output voltage of the battery 342 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 380K also known as "touch device”.
  • the touch sensor 380K can be arranged on the display screen 394, and the touch sensor 380K and the display screen 394 form a touch screen, also called “touch screen”.
  • the touch sensor 380K is used to detect a touch operation on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to touch operations can be provided through the display screen 394 .
  • the touch sensor 380K may also be disposed on the surface of the electronic device 300 , which is different from the position of the display screen 394 .
  • the bone conduction sensor 380M can acquire vibration signals. In some embodiments, the bone conduction sensor 380M can acquire the vibration signal of the vibrating bone mass of the human voice. The bone conduction sensor 380M can also contact the human pulse and receive the blood pressure beating signal. In some embodiments, the bone conduction sensor 380M can also be disposed in the earphone, combined into a bone conduction earphone.
  • the audio module 370 can analyze the voice signal based on the vibration signal of the vibrating bone mass of the vocal part acquired by the bone conduction sensor 380M, so as to realize the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beating signal acquired by the bone conduction sensor 380M, so as to realize the heart rate detection function.
  • the keys 390 include a power key, a volume key and the like.
  • the key 390 may be a mechanical key. It can also be a touch button.
  • the electronic device 300 may receive key input and generate key signal input related to user settings and function control of the electronic device 300 .
  • the motor 391 can generate a vibrating prompt.
  • the motor 391 can be used for incoming call vibration prompts, and can also be used for touch vibration feedback.
  • touch operations applied to different applications may correspond to different vibration feedback effects.
  • the motor 391 can also correspond to different vibration feedback effects for touch operations acting on different areas of the display screen 394 .
  • Different application scenarios for example: time reminder, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 392 can be an indicator light, which can be used to indicate the charging status, the change of the battery capacity, and can also be used to indicate messages, missed calls, notifications and the like.
  • the SIM card interface 395 is used for connecting a SIM card.
  • the SIM card can be connected and separated from the electronic device 300 by inserting it into the SIM card interface 395 or pulling it out from the SIM card interface 395 .
  • the electronic device 300 may support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • SIM card interface 395 can support Nano SIM card, Micro SIM card, SIM card etc. Multiple cards can be inserted into the same SIM card interface 395 at the same time. The types of the multiple cards may be the same or different.
  • the SIM card interface 395 is also compatible with different types of SIM cards.
  • the SIM card interface 395 is also compatible with external memory cards.
  • the electronic device 300 interacts with the network through the SIM card to implement functions such as calling and data communication.
  • the electronic device 300 adopts an eSIM, that is, an embedded SIM card.
  • the eSIM card can be embedded in the electronic device 300 and cannot be separated from the electronic device 300 .
  • An embodiment of the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instructions are run on a terminal device, the terminal device is made to perform the functions/steps in the foregoing method embodiments.
  • the embodiment of the present application also provides a computer program product containing instructions, and when the computer program product is run on a computer or any at least one processor, the computer is made to execute the functions/steps in the above method embodiments.
  • "at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three kinds of relationships, for example, A and/or B may indicate that A exists alone, A and B exist simultaneously, or B exists alone. Among them, A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following” and similar expressions refer to any combination of these items, including any combination of single items or plural items.
  • At least one of a, b, and c may represent: a, b, c, a-b, a-c, b-c, or a-b-c, wherein a, b, and c may be single or multiple.
  • any function is implemented in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make an electronic device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Abstract

本申请实施例提供了一种检测设备方法和电子设备。本申请实施例提供的技术方案中,通过循环互相关测向算法对电子设备的天线方向图和目标设备的第一信号强度数据进行计算,得到算法结果;根据所述算法结果,通过界面提示方式提示用户查找所述目标设备,可以有效减少防偷拍、监听的电子设备需要检测的区域面积,降低检测、查找可能存在的偷拍、监听设备的难度。

Description

一种检测设备方法和电子设备 技术领域
本申请涉及计算机技术领域,尤其涉及一种检测设备方法和电子设备。
背景技术
当前用于防偷拍、监听的电子设备大多需要使用者在目标区域内进行大范围、详细的探测,使用起来较为繁琐且依赖经验;且此类电子设备在市场上稂莠不齐,低价民用的电子设备使用效果不佳,而专业的电子设备又价格高昂,不适合在日常生活、工作中携带使用。
因此,当前用于防偷拍、监听的电子设备需要检测的区域面积大,并且检测、查找可能存在的偷拍、监听设备的难度较大。
发明内容
有鉴于此,本申请实施例提供了一种检测设备方法和电子设备,可以有效减少防偷拍、监听的电子设备需要检测的区域面积,降低检测、查找可能存在的偷拍、监听设备的难度。
第一方面,本申请实施例提供了一种检测设备方法,所述方法包括:
通过循环互相关测向算法对电子设备的天线方向图和目标设备的第一信号强度数据进行计算,得到算法结果;
根据所述算法结果,通过界面提示方式提示用户查找所述目标设备。
结合第一方面,在第一方面的某些实现方式中,所述通过循环互相关测向算法对电子设备的天线方向图和目标设备的第一信号强度数据进行计算,得到算法结果之前,还包括:
根据所述用户选择的工作模式扫描并遍历第一网络,以判断是否存在所述目标设备;
若判断出存在所述目标设备,确定所述目标设备所在的目标信道或者目标频段;
根据所述目标信道或者所述目标频段,选择与所述目标信道或者所述目标频段对应的所述电子设备的所述天线方向图;
采集所述目标设备的第一信号强度数据。
结合第一方面,在第一方面的某些实现方式中,所述工作模式包括检测WiFi联网设备或者检测蜂窝网络设备。
结合第一方面,在第一方面的某些实现方式中,所述工作模式包括检测WiFi联网设备时,所述第一网络包括所述电子设备周围的不同WiFi信道;
所述工作模式包括检测蜂窝网络设备时,所述第一网络包括所述电子设备周围的不同蜂窝信号频段。
结合第一方面,在第一方面的某些实现方式中,当所述工作模式包括所述检测WiFi联网设备时,所述根据所述用户选择的工作模式扫描并遍历第一网络,以判断是否存在所述目标设备,具体包括:
查找与所述电子设备连接在同一WiFi热点下的第一设备列表;
根据所述第一设备列表中第一设备的目标参数,判断所述第一设备列表中是否包括所述目标设备;
若判断出所述第一设备列表中包括所述目标设备,继续执行所述确定所述目标设备所在的目标信道或者目标频段的步骤;
若判断出所述第一设备列表中不包括所述目标设备,开启所述电子设备中WiFi芯片的Sniffer功能以嗅探周围所有WiFi不同信道的网络传输信息;
通过机器学习算法对嗅探到的数据包的目标特征进行计算,以判断是否有视频传输数据;
若判断出有视频传输数据,根据所述视频传输数据查找所述目标设备,并继续执行所述确定所述目标设备所在的目标信道或者目标频段的步骤。
结合第一方面,在第一方面的某些实现方式中,当所述工作模式包括所述检测蜂窝网络设备时,所述根据所述用户选择的工作模式扫描并遍历第一网络,以判断是否存在所述目标设备,具体包括:
根据所述用户选择的工作模式扫描并遍历不同蜂窝信号频段,以判断是否存在蜂窝信号。
结合第一方面,在第一方面的某些实现方式中,所述确定所述目标设备所在的目标信道或者目标频段,具体包括:
确定所述目标设备所在的目标WiFi信道或者目标蜂窝网络频段。
结合第一方面,在第一方面的某些实现方式中,当所述工作模式包括所述检测WiFi联网设备时,
所述根据所述目标信道或者所述目标频段,选择与所述目标信道或者所述目标频段对应的所述电子设备的所述天线方向图,具体包括:
根据所述目标WiFi信道,选择所述电子设备的两个WiFi天线在所述目标WiFi信道的WiFi天线方向图;
将两个所述WiFi天线方向图相减,得到所述天线方向图。
结合第一方面,在第一方面的某些实现方式中,当所述工作模式包括所述检测蜂窝网络设备时,
所述根据所述目标信道或者所述目标频段,选择与所述目标信道或者所述目标频段对应的所述电子设备的所述天线方向图,具体包括:
根据所述目标蜂窝网络频段,选择与所述目标蜂窝网络频段对应的所述电子设备的所述天线方向图。
结合第一方面,在第一方面的某些实现方式中,所述采集所述目标设备的第一信号强度数据,具体包括:
生成用于提示所述用户执行第一操作的第一界面提示;
在所述用户根据所述第一界面提示执行所述第一操作时,采集所述目标设备的第一信号强度数据。
结合第一方面,在第一方面的某些实现方式中,当所述工作模式包括所述检测WiFi联网设备时,所述第一操作包括:所述用户握持所述电子设备原地旋转;
当所述工作模式包括所述检测蜂窝网络设备时,所述第一操作包括:所述用户选择与所述目标蜂窝网络频段对应的握持方式,握持所述电子设备原地旋转。
结合第一方面,在第一方面的某些实现方式中,所述目标蜂窝网络频段包括低频蜂窝网络、中频蜂窝网络或者高频蜂窝网络。
结合第一方面,在第一方面的某些实现方式中,当所述工作模式包括所述检测WiFi联网设备时,所述第一信号强度数据包括两个所述WiFi天线接收的所述目标设备的信号强度数据的差值。
结合第一方面,在第一方面的某些实现方式中,所述通过循环互相关测向算法对电子设备的天线方向图和目标设备的第一信号强度数据进行计算,得到算法结果,具体包括:
根据所述天线方向图得到以第一夹角包括指定角度的第一平面方向图数据;
通过循环互相关计算公式对所述第一信号强度数据和所述第一平面方向图数据进行计算,得到所述第一信号强度数据和所述第一平面方向图数据之间的第一互相关值;
将与所述第一互相关值的最大值对应的第二夹角的角度值记录到第一结果中;
将所述第一夹角加上预设角度得到第三夹角;
判断所述第三夹角是否大于角度阈值;
若所述第三夹角小于或者等于所述角度阈值,将所述第三夹角作为所述指定角度,继续执行所述根据所述天线方向图得到以第一夹角包括指定角度的第一平面方向图数据的步骤。
结合第一方面,在第一方面的某些实现方式中,所述判断所述第三夹角是否大于角度阈值之后,还包括:
若所述第三夹角大于所述角度阈值,通过数据融合方法对所述第一结果中所述第二夹角的角度值进行计算,得到所述第一目标方位角度;
通过将所述天线方向图旋转至所述第一目标方位角度,得到旋转后的天线方向图;
通过对所述第一信号强度数据和所述旋转后的天线方向图进行计算,得到所述第一信号强度数据和所述旋转后的天线方向图之间的置信度;
判断所述置信度是否大于系数阈值;
若判断出所述置信度小于或者等于所述系数阈值,继续执行所述采集所述目标设备的第一信号强度数据的步骤。
结合第一方面,在第一方面的某些实现方式中,所述判断所述置信度是否大于系数阈值之后,还包括:
若判断出所述置信度大于所述系数阈值,根据所述第一目标方位角度生成用于提示所述用户执行第二操作的第二界面提示;
在所述用户根据所述第二界面提示执行所述第二操作时,采集所述目标设备的第 二信号强度数据;
通过所述循环互相关计算公式对所述第二信号强度和以所述第二夹角包括所述第一目标方位角度的第二平面方向图数据进行计算,得到所述第二信号强度数据和所述第二平面方向图数据之间的第二互相关值;
选择与所述第二互相关值的最大值对应的所述第一夹角的角度值作为第二目标方位角度。
结合第一方面,在第一方面的某些实现方式中,所述根据所述算法结果,通过界面提示方式提示用户查找所述目标设备,具体包括:
根据所述第一目标方位角度和所述第二目标方位角度生成第三界面提示,所述第三界面提示包括用于查找所述目标设备的方向引导;
在所述用户根据所述第三界面提示查找所述目标设备的过程中,采集所述用户的行走轨迹和所述目标设备的实时信号强度;
根据所述行走轨迹和所述实时信号强度,采用不同颜色记录所述用户的轨迹点,同时根据所述实时信号强度通过声音急促程度的方式提示所述用户。
结合第一方面,在第一方面的某些实现方式中,所述第二操作包括:所述用户握持所述电子设备旋转至所述第一目标方位角,并在所述第一目标方位角的方向上下摆动所述电子设备。
结合第一方面,在第一方面的某些实现方式中,所述预设角度包括15°。
结合第一方面,在第一方面的某些实现方式中,所述角度阈值包括120°。
结合第一方面,在第一方面的某些实现方式中,所述系数阈值包括0.5。
结合第一方面,在第一方面的某些实现方式中,所述工作模式包括检测WiFi联网设备时,所述目标设备包括摄像头;
所述工作模式包括检测蜂窝网络设备时,所述目标设备包括***。
第二方面,本申请实施例提供了一种第一电子设备,包括处理器和存储器,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
通过循环互相关测向算法对所述电子设备的天线方向图和目标设备的第一信号强度数据进行计算,得到算法结果;
根据所述算法结果,通过界面提示方式提示用户查找所述目标设备。
结合第二方面,在第二方面的某些实现方式中,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
所述通过循环互相关测向算法对电子设备的天线方向图和目标设备的第一信号强度数据进行计算,得到算法结果之前,还包括:
根据所述用户选择的工作模式扫描并遍历第一网络,以判断是否存在所述目标设备;
若判断出存在所述目标设备,确定所述目标设备所在的目标信道或者目标频段;
根据所述目标信道或者所述目标频段,选择与所述目标信道或者所述目标频段对应的所述电子设备的所述天线方向图;
采集所述目标设备的第一信号强度数据。
结合第二方面,在第二方面的某些实现方式中,所述工作模式包括检测WiFi联网设备或者检测蜂窝网络设备。
结合第二方面,在第二方面的某些实现方式中,所述工作模式包括检测WiFi联网设备时,所述第一网络包括所述电子设备周围的不同WiFi信道;
所述工作模式包括检测蜂窝网络设备时,所述第一网络包括所述电子设备周围的不同蜂窝信号频段。
结合第二方面,在第二方面的某些实现方式中,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
当所述工作模式包括所述检测WiFi联网设备时,所述根据所述用户选择的工作模式扫描并遍历第一网络,以判断是否存在所述目标设备,具体包括:
查找与所述电子设备连接在同一WiFi热点下的第一设备列表;
根据所述第一设备列表中第一设备的目标参数,判断所述第一设备列表中是否包括所述目标设备;
若判断出所述第一设备列表中包括所述目标设备,继续执行所述确定所述目标设备所在的目标信道或者目标频段的步骤;
若判断出所述第一设备列表中不包括所述目标设备,开启所述电子设备中WiFi芯片的Sniffer功能以嗅探周围所有WiFi不同信道的网络传输信息;
通过机器学习算法对嗅探到的数据包的目标特征进行计算,以判断是否有视频传输数据;
若判断出有视频传输数据,根据所述视频传输数据查找所述目标设备,并继续执行所述确定所述目标设备所在的目标信道或者目标频段的步骤。
结合第二方面,在第二方面的某些实现方式中,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
当所述工作模式包括所述检测蜂窝网络设备时,所述根据所述用户选择的工作模式扫描并遍历第一网络,以判断是否存在所述目标设备,具体包括:
根据所述用户选择的工作模式扫描并遍历不同蜂窝信号频段,以判断是否存在蜂窝信号。
结合第二方面,在第二方面的某些实现方式中,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
所述确定所述目标设备所在的目标信道或者目标频段,具体包括:
确定所述目标设备所在的目标WiFi信道或者目标蜂窝网络频段。
结合第二方面,在第二方面的某些实现方式中,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
当所述工作模式包括所述检测WiFi联网设备时,
所述根据所述目标信道或者所述目标频段,选择与所述目标信道或者所述目标频段对应的所述电子设备的所述天线方向图,具体包括:
根据所述目标WiFi信道,选择所述电子设备的两个WiFi天线在所述目标WiFi信道的WiFi天线方向图;
将两个所述WiFi天线方向图相减,得到所述天线方向图。
结合第二方面,在第二方面的某些实现方式中,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
当所述工作模式包括所述检测蜂窝网络设备时,
所述根据所述目标信道或者所述目标频段,选择与所述目标信道或者所述目标频段对应的所述电子设备的所述天线方向图,具体包括:
根据所述目标蜂窝网络频段,选择与所述目标蜂窝网络频段对应的所述电子设备的所述天线方向图。
结合第二方面,在第二方面的某些实现方式中,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
所述采集所述目标设备的第一信号强度数据,具体包括:
生成用于提示所述用户执行第一操作的第一界面提示;
在所述用户根据所述第一界面提示执行所述第一操作时,采集所述目标设备的第一信号强度数据。
结合第二方面,在第二方面的某些实现方式中,当所述工作模式包括所述检测WiFi联网设备时,所述第一操作包括:所述用户握持所述电子设备原地旋转;
当所述工作模式包括所述检测蜂窝网络设备时,所述第一操作包括:所述用户选择与所述目标蜂窝网络频段对应的握持方式,握持所述电子设备原地旋转。
结合第二方面,在第二方面的某些实现方式中,所述目标蜂窝网络频段包括低频蜂窝网络、中频蜂窝网络或者高频蜂窝网络。
结合第二方面,在第二方面的某些实现方式中,当所述工作模式包括所述检测WiFi联网设备时,所述第一信号强度数据包括两个所述WiFi天线接收的所述目标设备的信号强度数据的差值。
结合第二方面,在第二方面的某些实现方式中,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
所述通过循环互相关测向算法对电子设备的天线方向图和目标设备的第一信号强度数据进行计算,得到算法结果,具体包括:
根据所述天线方向图得到以第一夹角包括指定角度的第一平面方向图数据;
通过循环互相关计算公式对所述第一信号强度数据和所述第一平面方向图数据进行计算,得到所述第一信号强度数据和所述第一平面方向图数据之间的第一互相关值;
将与所述第一互相关值的最大值对应的第二夹角的角度值记录到第一结果中;
将所述第一夹角加上预设角度得到第三夹角;
判断所述第三夹角是否大于角度阈值;
若所述第三夹角小于或者等于所述角度阈值,将所述第三夹角作为所述指定角度,继续执行所述根据所述天线方向图得到以第一夹角包括指定角度的第一平面方向图数据的步骤。
结合第二方面,在第二方面的某些实现方式中,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
所述判断所述第三夹角是否大于角度阈值之后,还包括:
若所述第三夹角大于所述角度阈值,通过数据融合方法对所述第一结果中所述第 二夹角的角度值进行计算,得到所述第一目标方位角度;
通过将所述天线方向图旋转至所述第一目标方位角度,得到旋转后的天线方向图;
通过对所述第一信号强度数据和所述旋转后的天线方向图进行计算,得到所述第一信号强度数据和所述旋转后的天线方向图之间的置信度;
判断所述置信度是否大于系数阈值;
若判断出所述置信度小于或者等于所述系数阈值,继续执行所述采集所述目标设备的第一信号强度数据的步骤。
结合第二方面,在第二方面的某些实现方式中,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
所述判断所述置信度是否大于系数阈值之后,还包括:
若判断出所述置信度大于所述系数阈值,根据所述第一目标方位角度生成用于提示所述用户执行第二操作的第二界面提示;
在所述用户根据所述第二界面提示执行所述第二操作时,采集所述目标设备的第二信号强度数据;
通过所述循环互相关计算公式对所述第二信号强度和以所述第二夹角包括所述第一目标方位角度的第二平面方向图数据进行计算,得到所述第二信号强度数据和所述第二平面方向图数据之间的第二互相关值;
选择与所述第二互相关值的最大值对应的所述第一夹角的角度值作为第二目标方位角度。
结合第二方面,在第二方面的某些实现方式中,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
所述根据所述算法结果,通过界面提示方式提示用户查找所述目标设备,具体包括:
根据所述第一目标方位角度和所述第二目标方位角度生成第三界面提示,所述第三界面提示包括用于查找所述目标设备的方向引导;
在所述用户根据所述第三界面提示查找所述目标设备的过程中,采集所述用户的行走轨迹和所述目标设备的实时信号强度;
根据所述行走轨迹和所述实时信号强度,采用不同颜色记录所述用户的轨迹点,同时根据所述实时信号强度通过声音急促程度的方式提示所述用户。
结合第二方面,在第二方面的某些实现方式中,所述第二操作包括:所述用户握持所述电子设备旋转至所述第一目标方位角,并在所述第一目标方位角的方向上下摆动所述电子设备。
结合第二方面,在第二方面的某些实现方式中,所述预设角度包括15°。
结合第二方面,在第二方面的某些实现方式中,所述角度阈值包括120°。
结合第二方面,在第二方面的某些实现方式中,当所述系数阈值包括0.5。
结合第二方面,在第二方面的某些实现方式中,所述工作模式包括检测WiFi联网设备时,所述目标设备包括摄像头;
所述工作模式包括检测蜂窝网络设备时,所述目标设备包括***。
第三方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储 介质存储有计算机程序,所述计算机程序包括程序指令,当所述程序请求被计算机运行时使所述计算机执行如上述所述的方法。
本申请实施例提供的检测设备方法和电子设备的技术方案中,通过循环互相关测向算法对电子设备的天线方向图和目标设备的第一信号强度数据进行计算,得到算法结果;根据所述算法结果,通过界面提示方式提示用户查找所述目标设备,可以有效减少防偷拍、监听的电子设备需要检测的区域面积,降低检测、查找可能存在的偷拍、监听设备的难度。
附图说明
图1为本申请实施例提供的一种检测设备方法的流程图;
图2为用户在检测界面中选择检测WiFi联网设备的示意图;
图3为用户在检测界面中选择检测蜂窝网络设备的示意图;
图4为图1中根据用户选择的工作模式扫描并遍历第一网络,以判断是否存在目标设备的具体流程图;
图5为图1中根据目标信道或者目标频段,选择与目标信道或者目标频段对应的电子设备的天线方向图的具体流程图;
图6为电子设备中WiFi天线的示意图;
图7为电子设备中蜂窝网络天线的示意图;
图8为图1中采集目标设备的第一信号强度数据的具体流程图;
图9为第一界面的示意图;
图10为用户使用右手握持电子设备的示意图;
图11为与中频蜂窝网络对应的握持方式的示意图;
图12为电子设备天线方向图及其所属的坐标系;
图13为第一夹角θ等于90°时的平面天线方向图;
图14为图13的平面天线方向图展开后的一维天线方向图数据的示意图;
图15为图1中通过循环互相关测向算法对电子设备的天线方向图和目标设备的第一信号强度数据进行计算,得到算法结果的具体流程图;
图16为图1中根据算法结果,通过界面提示方式提示用户查找目标设备的具体流程图;
图17为第三界面的示意图;
图18为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制 本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,甲和/或乙,可以表示:单独存在甲,同时存在甲和乙,单独存在乙这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在现代互联网社会中,人们对于个人的自身隐私、商业的信息安全的重视与日俱增。但是随着电子设备小型化技术的发展,各种隐蔽式偷拍、监听设备可能以出人意料的形态在暗处窥探着人们的生活、工作,比如:隐藏在插座中的微型针孔摄像头、藏在日常用品(闹钟、玩具等)中的偷拍摄像头、可插SIM卡的小型GPS定位***等。面对这些越来越小、越来越隐蔽的恶意偷拍、监听设备的威胁,如何保护个人隐私以及商业信息不受侵犯正成为人们越来越关注的领域。
不法分子在使用上述偷拍、监听设备时,为了减少暴露自身的可能性,通常会选择无线传输数据的设备,比如WiFi联网摄像头、可插SIM卡的小型***等。针对此类设备,当前市面上的防偷拍、防监听的相关技术如下:
相关技术一:无线信号探测仪。
无线信号探测仪是目前最常使用的用于检测、查找无线传输类的偷拍、监听设备的电子设备。无线信号探测仪主要利用信号探测仪及其可以延长的天线去探测一定频段内(比如600MHz至7GHz)的无线信号。无线信号距离无线信号探测仪越近,无线信号探测仪探测到的无线信号的信号越强。因此,可以通过信号强度的变化来判断无线信号探测仪与目标信号源的距离,以找到偷拍、监听设备。
但是,由于偷拍、监听设备一般体积较小,且常被藏在较为隐蔽的角落。因此,用户在使用无线信号探测仪时,需要将需检测的目标区域的各个角落都遍历到,而且可能存在其他电子设备的无线信号的干扰。因此,无线信号探测仪在实际使用中,耗时费力且依赖用户的经验,普通人在日常生活中使用不多,且防护效果有限。
相关技术二:传感器检测法。
传感器检测法主要是根据偷拍、监听设备的不同特性,利用相对应的传感器来探测、查找设备。比如,偷拍摄像头、***在工作时会发热,可以通过热成像仪来查找温度明显高于环境温度的偷拍、监听设备;摄像头用于镜头对焦的马达内部含有磁铁,可以利用磁场传感器的强度变化来探测是否有摄像头。
传感器检测法与上述相关技术一中无线信号探测仪的缺点类似,主要还是需要用户利用相对应的传感器,通过遍历、扫描需检测的目标区域来探测可能隐藏在角落的偷拍、监听设备。但是,用户在实际使用中很难做到地毯式扫描,无法确保该相关技术二检测偷拍、监听设备的有效性;并且热成像仪、磁场传感器也无法避免环境因素(比如热的物品或者其它磁铁设备)的干扰。
相关技术三:超声波干扰法。
超声波干扰法通过在人耳听不到的超声波上调制干扰用的白噪声,在正常使用时,当前环境中的人察觉不到干扰白噪声;而由于大多数采集声音信号的麦克风都具有非线性,因此超声波上调制的干扰白噪声在被麦克风采集到后,会被解调出来,因此监 听器接收到的声音含有干扰白噪声,可以保护使用者的谈话等语音信息不被窃听。
超声波具有较强的方向性,针对藏在未知处的***,超声波干扰法需要在多个方向上部署超声波***,一般成本较高;为了能够更好干扰***的偷听效果,超声波***需要发出较强的超声波,因此超声波干扰法使用的电子设备通常体积较大、功耗较高,不易携带,在日常生活中较难普及使用。
综上,相关技术中,专业的用于防偷拍、监听的电子设备目前价格都较高,且依赖用户使用经验,多为专业团队配备,在日常生活、工作中较少涉及。普通民用的无线信号探测仪等电子设备,实际使用效果不佳,且易受到周围环境干扰,无法真正有效起到保护作用。因此,当前用于防偷拍、监听的电子设备需要检测的区域面积大,并且检测、查找可能存在的偷拍、监听设备的难度较大。
基于上述相关技术中存在的技术问题,本申请实施例提供一种检测设备方法和电子设备,通过利用电子设备接收不同频段无线信号的能力来检测用于偷拍、监听的目标设备,提出基于电子设备天线方向图的循环互相关测向算法来快速确定藏在隐蔽处的目标设备相对用户的方位角度,可以有效减少需要探测的目标区域范围,降低使用难度。由于本申请实施例提供的检测设备方法应用于电子设备上,用户无需再携带额外的检测设备,可以减低使用成本,在日常生活、工作中起到个人隐私、信号安全的保护作用。
图1为本申请实施例提供的一种检测设备方法的流程图。如图1所示,该方法包括:
步骤102、根据用户选择的工作模式扫描并遍历第一网络,以判断是否存在目标设备。
本申请实施例的应用场景包括目标区域。例如,目标区域包括会议室、教室或者卧室等。
如图2所示,在步骤102之前,电子设备的屏幕上显示检测界面,该检测界面包括两个选择按钮,其中一个选择按钮为“蜂窝网络”按钮,另一个选择按钮为“WiFi设备”按钮。该检测界面用于向用户展示检测的网络设备类型,用户通过点击与网络设备类型对应的选择按钮,选择需要检测的设备网络类型。
本申请实施例中,工作模式包括检测WiFi联网设备或者检测蜂窝网络设备。如图2所示,用户点击的选择按钮为“WiFi设备”按钮,此时用户选择的工作模式包括检测WiFi联网设备。如图3所示,用户点击的选择按钮为“蜂窝网络”按钮,此时用户选择的工作模式包括检测蜂窝网络设备。
本申请实施例中,工作模式包括检测WiFi联网设备时,第一网络包括电子设备周围的不同WiFi信道;工作模式包括检测蜂窝网络设备时,第一网络包括电子设备周围的不同蜂窝信号频段。
本申请实施例中,工作模式包括检测WiFi联网设备时,目标设备包括摄像头;工作模式包括检测蜂窝网络设备时,目标设备包括***。
本申请实施例中,当工作模式包括检测WiFi联网设备时,如图4所示,步骤102具体包括:
步骤102a、查找与电子设备连接在同一WiFi热点下的第一设备列表。
该步骤中,第一设备列表中包括与电子设备连接在同一WiFi热点下的所有第一设备。具体的,通过互联网控制消息协议(Internet Control Message Protocol,ICMP)发现第一设备的IP地址,再根据地址解析协议(Address Resolution Protocol,ARP)找到对应网络协议(Internet Protocol,IP)地址的第一设备的媒体访问控制(Media Access Control,MAC)地址、端口号等信息。
步骤102b、根据第一设备列表中第一设备的目标参数,判断第一设备列表中是否包括目标设备;若是,继续执行步骤104;若否,执行步骤102c。
本申请实施例中,目标参数包括第一设备的MAC地址、端口号等相关设备信息。
具体地,根据第一设备的MAC地址、端口号等相关设备信息,判断第一设备是否包括摄像头。
步骤102c、开启电子设备中WiFi芯片的Sniffer功能以嗅探周围所有WiFi不同信道的网络传输信息。
该步骤中,若与电子设备连接在同一WiFi热点下的第一设备不包括摄像头,开启电子设备中WiFi芯片的Sniffer功能以嗅探周围所有WiFi不同信道的网络传输信息。
步骤102d、通过机器学习算法对嗅探到的数据包的目标特征进行计算,以判断是否有视频传输数据。
其中,目标特征包括数据包的大小、间隔、速率等特征。
步骤102e、若判断出有视频传输数据,根据视频传输数据查找目标设备,并继续执行步骤104。
该步骤中,若判断出有视频传输数据,表明检测的目标区域中存在摄像头,然后根据视频传输数据查找对应的摄像头,并继续执行步骤104。
本申请实施例中,当工作模式包括检测蜂窝网络设备时,步骤102具体包括:根据用户选择的工作模式扫描并遍历不同蜂窝信号频段,以判断是否存在蜂窝信号。
需要说明的是,当工作模式包括检测蜂窝网络设备时,在步骤102之前,需要关闭已知的其它蜂窝网络设备,并且开启飞行模式。
本申请实施例中,电子设备(比如手机)有一条蜂窝信号通道,该蜂窝信号通道主要用于对电子设备自身接收蜂窝信号的能力自测,一般是电子设备自己发射信号再利用该蜂窝信号通道检测发射的信号强度。本申请实施例复用该功能,在打开该蜂窝信号通道检测蜂窝信号时让电子设备本身不再发射信号,因此可以用于检测外部环境中的蜂窝网络设备。本申请实施例需要用户主动关闭已知的蜂窝网络设备,因此可以使用电子设备的蜂窝信号通道功能检测蜂窝网络***。
具体的,针对开启实时语音监听的***,直接扫描不同频段的蜂窝网络信号,若发现蜂窝信号,记录该蜂窝信号所属频段。
具体的,针对开启定时录音上传语音信号的***,电子设备主动发出间隔规律的声音信号去触发可能存在的***,同时扫描不同频段的蜂窝网络信号,若发现蜂窝信号,记录该蜂窝信号所属频段。
步骤104、若判断出存在目标设备,确定目标设备所在的目标信道或者目标频段。
本申请实施例中,步骤104、具体包括:确定目标设备所在的目标WiFi信道或者目标蜂窝网络频段。
步骤106、根据目标信道或者目标频段,选择与目标信道或者目标频段对应的电子设备的天线方向图。
本申请实施例中,当工作模式包括检测WiFi联网设备时,如图5所示,步骤106具体包括:
步骤1062、根据目标WiFi信道,选择电子设备的两个WiFi天线在目标WiFi信道的WiFi天线方向图。
本申请实施例中,电子设备(比如手机)一般有两根WiFi天线。如图6所示,2.4G WiFi有T1、T2两根天线;5G WiFi有T3、T4两根天线)。若目标WiFi信道为包括2.4G WiFi信道,选择T1、T2两个WiFi天线在2.4G WiFi信道的WiFi天线方向图;若目标WiFi信道为包括5G WiFi信道,选择T3、T4两个WiFi天线在5G WiFi信道的WiFi天线方向图。
步骤1064、将两个WiFi天线方向图相减,得到天线方向图。
本申请实施例通过将两个WiFi天线方向图相减,可以将两根WiFi天线虚拟成为一根方向性更好的天线。
本申请实施例中,当工作模式包括检测蜂窝网络设备时,步骤106具体包括:根据目标蜂窝网络频段,选择与目标蜂窝网络频段对应的电子设备的天线方向图。
本申请实施例中,如图7所示,电子设备的蜂窝网络天线包括低频蜂窝天线、中频蜂窝天线和高频蜂窝天线,对应的,目标蜂窝网络频段包括低频蜂窝网络、中频蜂窝网络或者高频蜂窝网络。
需要说明的是,无论在何种工作模式下,本申请实施例中的天线方向图都是考虑人体(主要是躯干和手)对电子设备影响后的实际天线方向图,以更好反应实际使用过程中电子设备接收到的信号强度。考虑人体影响的天线方向图,也与持握电子设备方式有关,针对不同的持握方式,同一电子设备的天线方向图会不一样。实际使用中,用户主要是用右手持握,针对这种持握方式,可以通过软件仿真或者实际采集右手持握电子设备时的天线方向图数据。
步骤108、采集目标设备的第一信号强度数据。
本申请实施例中,当工作模式包括检测WiFi联网设备时,目标设备包括摄像头。电子设备根据摄像头的发现方式选择合适的采集信号强度的方法。
本申请实施例对电子设备采集信号强度的方法不做限定。例如:电子设备采集信号强度的方法包括建立传输控制协议(Transmission Control Protocol,TCP)连接或者建立用户数据报协议(User Datagram Protocol,UDP)连接等。
以TCP连接为例,若摄像头与电子设备在同一WiFi热点下,根据摄像头的IP地址、端口号,电子设备可以定期(比如每20ms)尝试与该摄像头建立传输控制协议(Transmission Control Protocol,TCP)连接,无论TCP连接成功与否,电子设备都会收到该摄像头对TCP连接响应的反馈帧,对该反馈帧解析可以得到该摄像头的信号强度。
具体的,若摄像头与电子设备不在同一WiFi热点下,根据摄像头的MAC地址,电子设备WiFi芯片的Sniffer功能定向抓取、解析该MAC地址的数据帧,可以得到该摄像头的信号强度。
本申请实施例中,如图8所示,步骤108具体包括:
步骤1082、生成用于提示用户执行第一操作的第一界面提示。
本申请实施例中,当工作模式包括检测WiFi联网设备时,在检测到摄像头并且选定天线方向图之后,电子设备生成第一界面,第一界面包括用于提示用户执行第一操作的第一界面提示。具体的,如图9所示,第一界面还包括指南针和方向指引。
本申请实施例中,当所述工作模式包括所述检测WiFi联网设备时,所述第一操作包括:所述用户握持所述电子设备原地旋转。
本申请实施例中,用户可以使用左手、右手或者双手握持电子设备。例如,如图10所示,用户使用右手握持电子设备。
例如,第一操作为用户使用右手握持电子设备旋转一圈。需要说明的是,这里的“一圈”只是概述,根据用户旋转速度快慢不同,可能需要用户在某一个方向转多次,以采集到整圈的信号强度数据。如图9所示,第一界面中下方的圆圈中有部分弧度是粗实线,代表对应方向上的信号强度数据采集完成;可能实际使用时,用户旋转一圈后仍有部分方向上的信号强度数据没有采集到,此时对应方向上的弧度就不会出现粗实线。
本申请实施例中,当所述工作模式包括所述检测蜂窝网络设备时,所述第一操作包括:所述用户选择与所述目标蜂窝网络频段对应的握持方式,握持所述电子设备原地旋转。
具体的,不同的目标蜂窝网络频段采用不同的握持方式,以减少手和身体对接收到的蜂窝信号的干扰。如图7所示,低频蜂窝天线位于电子设备的顶部,中频蜂窝天线位于电子设备的中部,高频蜂窝天线位于电子设备的底部。当目标蜂窝网络频段包括低频蜂窝网络时,对应的握持方式为用户使用右手握住电子设备的中部至底部的区域,并且将低频蜂窝天线朝外,以使低频蜂窝天线更好的接收蜂窝信号;当目标蜂窝网络频段包括中频蜂窝网络时,如图11所示,对应的握持方式为用户使用双手分别握住电子设备的顶部和底部区域,并且将中频蜂窝天线朝外,以使中频蜂窝天线更好的接收蜂窝信号;当目标蜂窝网络频段包括高频蜂窝网络时,对应的握持方式为用户使用右手握住电子设备的底部至中部的区域,并且将高频蜂窝天线朝外,以使高频蜂窝天线更好的接收蜂窝信号。
步骤1084、在用户根据第一界面提示执行第一操作时,采集目标设备的第一信号强度数据。
本申请实施例中,第一信号强度数据为用户握持电子设备原地旋转时,电子设备采集到目标设备从不同角度入射的信号强度。因此,第一信号强度数据也可以称作整圈信号强度数据。
需要说明的是,当工作模式包括检测WiFi联网设备时,第一信号强度数据包括两个WiFi天线接收的目标设备的信号强度数据的差值。由于电子设备一般有两根WiFi天线,为了方便计算,将两根WiFi天线采集到的信号强度数据的差值作为第一信号强度数据。
步骤110、通过循环互相关测向算法对电子设备的天线方向图和目标设备的第一信号强度数据进行计算,得到算法结果。
本申请实施例的循环互相关测向算法的原理是使用天线方向图来表征电子设备的天线对各个方向的辐射信号能力,同时也是接收信号能力。以电子设备的WiFi天线为例,图12为电子设备天线方向图及其所属的坐标系。其中X轴的方向为正握电子设备方向向右的方向,Y轴的方向为正握电子设备方向向前的方向,Z轴的方向为正握电子设备方向垂直向上的方向。其中X轴与Y轴之间构成第二夹角φ,第二夹角φ的取值范围包括0-360度;与Z轴的夹角为第一夹角θ,第一夹角θ的取值范围包括0-180度。
本申请实施例为了使求得的目标设备相对电子设备的方位角信息更准确,将电子设备的天线方向图切割为多个不同第一夹角θ对应的平面天线方向图,分别与采集到的第一信号强度数据进行互相关计算,确认目标设备相对电子设备的与第二夹角φ对应的第一目标方位角度后,再通过在该第二夹角φ方向上下旋转电子设备重新采集信号强度,将该信号强度数据与该第二夹角φ对应平面天线方向图数据进行互相关计算,可以得到目标设备相对电子设备的与第一夹角θ对应的第二目标方位角度。
其中,算法结果包括第一目标方位角度和第二目标方位角度。
比如,当第一夹角θ等于90°,即与手机屏幕所在平面重合时,平面天线方向图如图13所示,将图13所示的平面天线方向图展开后的一维天线方向图数据如图14所示。
需要说明的是,在采集第一信号强度数据之前,需要记录电子设备当前的方位角作为初始方位角,将该初始方位角作为算法结果的参照角。
本申请实施例中,如图15所示,步骤110具体包括:
步骤110a、根据天线方向图得到以第一夹角包括指定角度的第一平面方向图数据。
本申请实施例中,指定角度可以根据实际情况进行设置。例如,将指定角度设置为60°。
步骤110b、通过循环互相关计算公式对第一信号强度数据和第一平面方向图数据进行计算,得到第一信号强度数据和第一平面方向图数据之间的第一互相关值。
为了方便解释循环互相关计算公式,假设第一平面方向图数据用f(θ,φ)表示,第一信号强度数据用S(φ)表示,其中第一夹角θ=0,5,…,180;第二夹角φ=0,5,…,360。例如,选取第一夹角θ=90°的平面天线方向图数据作为第一平面方向图数据f(90,φ),通过循环互相关计算公式对第一信号强度数据S(φ)和第一平面方向图数据f(90,φ)进行计算如下:
Figure PCTCN2022084821-appb-000001
式中,k与第二夹角φ对应,表示第二夹角φ的角度值,k=0,5,…,360,X(k)为第一信号强度数据S(φ)和第一平面方向图数据f(90,φ)之间的第一互相关值。
上述公式是针对第一夹角θ=90°的平面天线方向图计算出的第一互相关值。同理,对于第一夹角θ取其它角度值的情况也可以根据上述原理计算出对应的第一互相关值。
步骤110c、将与第一互相关值的最大值对应的第二夹角的角度值记录到第一结果中。
本申请实施例中,第一结果用Res表示,Res=argmax X(k)。
步骤110d、将第一夹角加上预设角度得到第三夹角。
本申请实施例中,预设角度可以根据实际情况进行设置。例如,将预设角度设置为15°。
步骤110e、判断第三夹角是否大于角度阈值,若否,执行步骤110f;若是,执行步骤110g。
本申请实施例中,角度阈值可以根据实际情况进行设置。例如,将角度阈值设置为120°。
步骤110f、将第三夹角作为指定角度,继续执行步骤110a。
例如,若上述指定角度为60°,上述第一夹角为指定角度也为60°,将第一夹角加上预设角度15°后得到第三角度,第三角度为75°,由于75°小于角度阈值120°,因此将第三角度75°作为指定角度,继续执行步骤110a时,指定角度应该为75°。
步骤110g、通过数据融合方法对第一结果中第二夹角的角度值进行计算,得到第一目标方位角度。
本申请实施例中,数据融合方法包括取平均值、加权平均值或者最大Pearson相关系数等。
步骤110h、通过将天线方向图旋转至第一目标方位角度,得到旋转后的天线方向图;
步骤110i、通过对第一信号强度数据和旋转后的天线方向图进行计算,得到第一信号强度数据和旋转后的天线方向图之间的置信度。
例如,通过计算第一信号强度数据和旋转后的天线方向图的Pearson相关系数、复杂度或者Spedarman相关系数等,将Pearson相关系数、复杂度或者Spedarman相关系数等作为第一信号强度数据和旋转后的天线方向图之间的置信度。
步骤110j、判断置信度是否大于系数阈值,若否,继续执行步骤108;若是,执行步骤110k。
本申请实施例中将置信度作为判断此次采集的第一信号强度数据的有效性。若计算得到的置信度大于系数阈值,则判定结果有效,否则提示用户重新进行第一信号强度数据的采集。
本申请实施例中,系数阈值可以根据实际情况进行设置。例如,将系数阈值设置为0.5。
步骤110k、根据第一目标方位角度生成用于提示用户执行第二操作的第二界面提示。
本申请实施例中,第二操作包括:用户握持电子设备旋转至第一目标方位角,并在第一目标方位角的方向上下摆动电子设备。
步骤110l、在用户根据第二界面提示执行第二操作时,采集目标设备的第二信号强度数据;
步骤110m、通过循环互相关计算公式对第二信号强度和以第二夹角包括第一目标方位角度的第二平面方向图数据进行计算,得到第二信号强度数据和第二平面方向图数据之间的第二互相关值;
步骤110n、选择与第二互相关值的最大值对应的第一夹角的角度值作为第二目标方位角度。
步骤112、根据算法结果,通过界面提示方式提示用户查找目标设备。
本申请实施例中,如图16所示,步骤112具体包括:
步骤112a、根据第一目标方位角度和第二目标方位角度生成第三界面提示,第三界面提示包括用于查找目标设备的方向引导。
该步骤中,根据算法结果中的第一目标方位角度和第二目标方位角度,通过第三界面提示方式给出目标方向,即第二目标方位角度,引导用户去该目标方向查找目标设备,如图17所示。
步骤112b、在用户根据第三界面提示查找目标设备的过程中,采集用户的行走轨迹和目标设备的实时信号强度。
步骤112c、根据行走轨迹和实时信号强度,采用不同颜色记录用户的轨迹点,同时根据实时信号强度通过声音急促程度的方式提示用户。
如图17所示,第三界面包括当前区域地图,当前区域地图用于记录用户的行走轨迹,并将轨迹点根据当前位置的电子设备接收到的实时信号强度标注颜色,信号强度越强,颜色越深;同时通过声音提示用户距离目标设备远近程度,信号强度越强,声音越响。
本申请实施例提供的基于电子设备的天线方向图的检测设备方法,通过将电子设备的立体天线方向图,切割为多个平面天线方向图数据,通过循环互相关测向算法分别与旋转电子设备一圈接收到的目标设备的无线信号强度进行循环互相关计算,得到算法结果,算法结构包括目标设备相对电子设备位置的方位角度信息。用户根据该算法结果去对应的方向,定向探测该区域的信号强度来查找目标设备,无需检查所有区域,可以有效减少需要检测的区域面积,降低检测、查找可能存在的偷拍、监听设备的难度。
本申请实施例将两根WiFi天线虚拟为一根方向性更好的天线,以提高基于天线方向图的循环互相关测向算法的准确度。
本申请实施例能确认检测出的目标设备的方位角度信息,固定探测该目标设备的无线信号,不易受到环境中其他无线信号的干扰。
本申请实施例提供的检测设备方法的技术方案中,通过循环互相关测向算法对电子设备的天线方向图和目标设备的第一信号强度数据进行计算,得到算法结果;根据算法结果,通过界面提示方式提示用户查找目标设备,可以有效减少防偷拍、监听的电子设备需要检测的区域面积,降低检测、查找可能存在的偷拍、监听设备的难度。
上文结合图1至图17,详细描述了本申请实施例提供的检测设备方法,下面将结合图18,详细描述本申请的装置实施例。应理解,本申请实施例中的电子设备可以执 行前述本申请实施例的各种方法,即以下各种产品的具体工作过程,可以参考前述方法实施例中的对应过程。
本申请实施例提供一种电子设备,该电子设备可以是终端设备也可以是内置于所述终端设备的电路设备。该电子设备可以用于执行上述方法实施例中的功能/步骤。
图18为本申请实施例提供的一种电子设备300的结构示意图。电子设备300可以包括处理器310,外部存储器接口320,内部存储器321,通用串行总线(universal serial bus,USB)接口330,充电管理模块340,电源管理模块341,电池342,天线1,天线2,移动通信模块350,无线通信模块360,音频模块370,扬声器370A,受话器370B,麦克风370C,耳机接口370D,传感器模块380,按键390,马达391,指示器392,摄像头393,显示屏394,以及用户标识模块(subscriber identification module,SIM)卡接口395等。其中传感器模块380可以包括压力传感器380A,陀螺仪传感器380B,气压传感器380C,磁传感器380D,加速度传感器380E,距离传感器380F,接近光传感器380G,指纹传感器380H,温度传感器380J,触摸传感器380K,环境光传感器380L,骨传导传感器380M等。
可以理解的是,本申请实施例示意的结构并不构成对电子设备300的具体限定。在本申请另一些实施例中,电子设备300可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器310可以包括一个或多个处理单元,例如:处理器310可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器310中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器310中的存储器为高速缓冲存储器。该存储器可以保存处理器310刚用过或循环使用的指令或数据。如果处理器310需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器310的等待时间,因而提高了***的效率。
在一些实施例中,处理器310可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器310可以包含多 组I2C总线。处理器310可以通过不同的I2C总线接口分别耦合触摸传感器380K,充电器,闪光灯,摄像头393等。例如:处理器310可以通过I2C接口耦合触摸传感器380K,使处理器310与触摸传感器380K通过I2C总线接口通信,实现电子设备300的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器310可以包含多组I2S总线。处理器310可以通过I2S总线与音频模块370耦合,实现处理器310与音频模块370之间的通信。在一些实施例中,音频模块370可以通过I2S接口向无线通信模块360传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块370与无线通信模块360可以通过PCM总线接口耦合。在一些实施例中,音频模块370也可以通过PCM接口向无线通信模块360传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器310与无线通信模块360。例如:处理器310通过UART接口与无线通信模块360中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块370可以通过UART接口向无线通信模块360传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器310与显示屏394,摄像头393等***器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器310和摄像头393通过CSI接口通信,实现电子设备300的拍摄功能。处理器310和显示屏394通过DSI接口通信,实现电子设备300的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器310与摄像头393,显示屏394,无线通信模块360,音频模块370,传感器模块380等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口330是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口330可以用于连接充电器为电子设备300充电,也可以用于电子设备300与***设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备300的结构限定。在本申请另一些实施例中,电子设备300也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块340用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块340可以通过USB接口330接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块340可以通过电子设备300的无线充电线圈接收无线充电输入。充电管理模块340为电池342充电的同时,还可以通过电源管理模块341为电子设备供电。
电源管理模块341用于连接电池342,充电管理模块340与处理器310。电源管理模块341接收电池342和/或充电管理模块340的输入,为处理器310,内部存储器321,显示屏394,摄像头393,和无线通信模块360等供电。电源管理模块341还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块341也可以设置于处理器310中。在另一些实施例中,电源管理模块341和充电管理模块340也可以设置于同一个器件中。
电子设备300的无线通信功能可以通过天线1,天线2,移动通信模块350,无线通信模块360,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备300中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块350可以提供应用在电子设备300上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块350可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块350可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块350还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块350的至少部分功能模块可以被设置于处理器310中。在一些实施例中,移动通信模块350的至少部分功能模块可以与处理器310的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器370A,受话器370B等)输出声音信号,或通过显示屏394显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器310,与移动通信模块350或其他功能模块设置在同一个器件中。
无线通信模块360可以提供应用在电子设备300上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星***(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块360可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块360经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器310。无线通信模块360还可以从处理器310接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备300的天线1和移动通信模块350耦合,天线2和无线通信模块360耦合,使得电子设备300可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯***(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分 多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位***(global positioning system,GPS),全球导航卫星***(global navigation satellite system,GLONASS),北斗卫星导航***(beidou navigation satellite system,BDS),准天顶卫星***(quasi-zenith satellite system,QZSS)和/或星基增强***(satellite based augmentation systems,SBAS)。
电子设备300通过GPU,显示屏394,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏394和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器310可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏394用于显示图像,视频等。显示屏394包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备300可以包括1个或N个显示屏394,N为大于1的正整数。
电子设备300可以通过ISP,摄像头393,视频编解码器,GPU,显示屏394以及应用处理器等实现拍摄功能。
ISP用于处理摄像头393反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头393中。
摄像头393用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备300可以包括1个或N个摄像头393,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备300在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备300可以支持一种或多种视频编解码器。这样,电子设备300可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构, 例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备300的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口320可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备300的存储能力。外部存储卡通过外部存储器接口320与处理器310通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器321可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。内部存储器321可以包括存储程序区和存储数据区。其中,存储程序区可存储操作***,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备300使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器321可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器310通过运行存储在内部存储器321的指令,和/或存储在设置于处理器中的存储器的指令,执行电子设备300的各种功能应用以及数据处理。
电子设备300可以通过音频模块370,扬声器370A,受话器370B,麦克风370C,耳机接口370D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块370用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块370还可以用于对音频信号编码和解码。在一些实施例中,音频模块370可以设置于处理器310中,或将音频模块370的部分功能模块设置于处理器310中。
扬声器370A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备300可以通过扬声器370A收听音乐,或收听免提通话。
受话器370B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备300接听电话或语音信息时,可以通过将受话器370B靠近人耳接听语音。
麦克风370C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风370C发声,将声音信号输入到麦克风370C。电子设备300可以设置至少一个麦克风370C。在另一些实施例中,电子设备300可以设置两个麦克风370C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备300还可以设置三个,四个或更多麦克风370C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口370D用于连接有线耳机。耳机接口370D可以是USB接口330,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器380A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器380A可以设置于显示屏394。
压力传感器380A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器380A,电极之间的电容改变。电子设备300根据电容的变化确 定压力的强度。当有触摸操作作用于显示屏394,电子设备300根据压力传感器380A检测所述触摸操作强度。电子设备300也可以根据压力传感器380A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器380B可以用于确定电子设备300的运动姿态。在一些实施例中,可以通过陀螺仪传感器380B确定电子设备300围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器380B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器380B检测电子设备300抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备300的抖动,实现防抖。陀螺仪传感器380B还可以用于导航,体感游戏场景。
气压传感器380C用于测量气压。在一些实施例中,电子设备300通过气压传感器380C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器380D包括霍尔传感器。电子设备300可以利用磁传感器380D检测翻盖皮套的开合。在一些实施例中,当电子设备300是翻盖机时,电子设备300可以根据磁传感器380D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器380E可检测电子设备300在各个方向上(一般为三轴)加速度的大小。当电子设备300静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器380F,用于测量距离。电子设备300可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备300可以利用距离传感器380F测距以实现快速对焦。
接近光传感器380G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备300通过发光二极管向外发射红外光。电子设备300使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备300附近有物体。当检测到不充分的反射光时,电子设备300可以确定电子设备300附近没有物体。电子设备300可以利用接近光传感器380G检测用户手持电子设备300贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器380G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器380L用于感知环境光亮度。电子设备300可以根据感知的环境光亮度自适应调节显示屏394亮度。环境光传感器380L也可用于拍照时自动调节白平衡。环境光传感器380L还可以与接近光传感器380G配合,检测电子设备300是否在口袋里,以防误触。
指纹传感器380H用于采集指纹。电子设备300可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器380J用于检测温度。在一些实施例中,电子设备300利用温度传感器380J检测的温度,执行温度处理策略。例如,当温度传感器380J上报的温度超过阈值, 电子设备300执行降低位于温度传感器380J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备300对电池342加热,以避免低温导致电子设备300异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备300对电池342的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器380K,也称“触控器件”。触摸传感器380K可以设置于显示屏394,由触摸传感器380K与显示屏394组成触摸屏,也称“触控屏”。触摸传感器380K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏394提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器380K也可以设置于电子设备300的表面,与显示屏394所处的位置不同。
骨传导传感器380M可以获取振动信号。在一些实施例中,骨传导传感器380M可以获取人体声部振动骨块的振动信号。骨传导传感器380M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器380M也可以设置于耳机中,结合成骨传导耳机。音频模块370可以基于所述骨传导传感器380M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器380M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键390包括开机键,音量键等。按键390可以是机械按键。也可以是触摸式按键。电子设备300可以接收按键输入,产生与电子设备300的用户设置以及功能控制有关的键信号输入。
马达391可以产生振动提示。马达391可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏394不同区域的触摸操作,马达391也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器392可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口395用于连接SIM卡。SIM卡可以通过***SIM卡接口395,或从SIM卡接口395拔出,实现和电子设备300的接触和分离。电子设备300可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口395可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口395可以同时***多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口395也可以兼容不同类型的SIM卡。SIM卡接口395也可以兼容外部存储卡。电子设备300通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备300采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备300中,不能和电子设备300分离。
本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在终端设备上运行时,使得终端设备执行如上述方法实施例中的功能/步骤。
本申请实施例还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机或任一至少一种处理器上运行时,使得计算机执行如上述方法实施例中的功能/ 步骤。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本领域普通技术人员可以意识到,本文中公开的实施例中描述的各单元及算法步骤,能够以电子硬件、计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,任一功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台电子设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以所述权利要求的保护范围为准。

Claims (45)

  1. 一种检测设备方法,其特征在于,所述方法包括:
    通过循环互相关测向算法对电子设备的天线方向图和目标设备的第一信号强度数据进行计算,得到算法结果;
    根据所述算法结果,通过界面提示方式提示用户查找所述目标设备。
  2. 根据权利要求1所述的方法,其特征在于,所述通过循环互相关测向算法对电子设备的天线方向图和目标设备的第一信号强度数据进行计算,得到算法结果之前,还包括:
    根据所述用户选择的工作模式扫描并遍历第一网络,以判断是否存在所述目标设备;
    若判断出存在所述目标设备,确定所述目标设备所在的目标信道或者目标频段;
    根据所述目标信道或者所述目标频段,选择与所述目标信道或者所述目标频段对应的所述电子设备的所述天线方向图;
    采集所述目标设备的第一信号强度数据。
  3. 根据权利要求2所述的方法,其特征在于,所述工作模式包括检测WiFi联网设备或者检测蜂窝网络设备。
  4. 根据权利要求3所述的方法,其特征在于,所述工作模式包括检测WiFi联网设备时,所述第一网络包括所述电子设备周围的不同WiFi信道;
    所述工作模式包括检测蜂窝网络设备时,所述第一网络包括所述电子设备周围的不同蜂窝信号频段。
  5. 根据权利要求4所述的方法,其特征在于,
    当所述工作模式包括所述检测WiFi联网设备时,所述根据所述用户选择的工作模式扫描并遍历第一网络,以判断是否存在所述目标设备,具体包括:
    查找与所述电子设备连接在同一WiFi热点下的第一设备列表;
    根据所述第一设备列表中第一设备的目标参数,判断所述第一设备列表中是否包括所述目标设备;
    若判断出所述第一设备列表中包括所述目标设备,继续执行所述确定所述目标设备所在的目标信道或者目标频段的步骤;
    若判断出所述第一设备列表中不包括所述目标设备,开启所述电子设备中WiFi芯片的Sniffer功能以嗅探周围所有WiFi不同信道的网络传输信息;
    通过机器学习算法对嗅探到的数据包的目标特征进行计算,以判断是否有视频传输数据;
    若判断出有视频传输数据,根据所述视频传输数据查找所述目标设备,并继续执行所述确定所述目标设备所在的目标信道或者目标频段的步骤。
  6. 根据权利要求4所述的方法,其特征在于,
    当所述工作模式包括所述检测蜂窝网络设备时,所述根据所述用户选择的工作模式扫描并遍历第一网络,以判断是否存在所述目标设备,具体包括:
    根据所述用户选择的工作模式扫描并遍历不同蜂窝信号频段,以判断是否存在蜂窝信号。
  7. 根据权利要求2所述的方法,其特征在于,所述确定所述目标设备所在的目标信道或者目标频段,具体包括:
    确定所述目标设备所在的目标WiFi信道或者目标蜂窝网络频段。
  8. 根据权利要求7所述的方法,其特征在于,当所述工作模式包括所述检测WiFi联网设备时,
    所述根据所述目标信道或者所述目标频段,选择与所述目标信道或者所述目标频段对应的所述电子设备的所述天线方向图,具体包括:
    根据所述目标WiFi信道,选择所述电子设备的两个WiFi天线在所述目标WiFi信道的WiFi天线方向图;
    将两个所述WiFi天线方向图相减,得到所述天线方向图。
  9. 根据权利要求7所述的方法,其特征在于,当所述工作模式包括所述检测蜂窝网络设备时,
    所述根据所述目标信道或者所述目标频段,选择与所述目标信道或者所述目标频段对应的所述电子设备的所述天线方向图,具体包括:
    根据所述目标蜂窝网络频段,选择与所述目标蜂窝网络频段对应的所述电子设备的所述天线方向图。
  10. 根据权利要求2所述的方法,其特征在于,所述采集所述目标设备的第一信号强度数据,具体包括:
    生成用于提示所述用户执行第一操作的第一界面提示;
    在所述用户根据所述第一界面提示执行所述第一操作时,采集所述目标设备的第一信号强度数据。
  11. 根据权利要求10所述的方法,其特征在于,当所述工作模式包括所述检测WiFi联网设备时,所述第一操作包括:所述用户握持所述电子设备原地旋转;
    当所述工作模式包括所述检测蜂窝网络设备时,所述第一操作包括:所述用户选择与所述目标蜂窝网络频段对应的握持方式,握持所述电子设备原地旋转。
  12. 根据权利要求11所述的方法,其特征在于,所述目标蜂窝网络频段包括低频蜂窝网络、中频蜂窝网络或者高频蜂窝网络。
  13. 根据权利要求8所述的方法,其特征在于,当所述工作模式包括所述检测WiFi联网设备时,所述第一信号强度数据包括两个所述WiFi天线接收的所述目标设备的信号强度数据的差值。
  14. 根据权利要求1所述的方法,其特征在于,所述通过循环互相关测向算法对电子设备的天线方向图和目标设备的第一信号强度数据进行计算,得到算法结果,具体包括:
    根据所述天线方向图得到以第一夹角包括指定角度的第一平面方向图数据;
    通过循环互相关计算公式对所述第一信号强度数据和所述第一平面方向图数据进行计算,得到所述第一信号强度数据和所述第一平面方向图数据之间的第一互相关值;
    将与所述第一互相关值的最大值对应的第二夹角的角度值记录到第一结果中;
    将所述第一夹角加上预设角度得到第三夹角;
    判断所述第三夹角是否大于角度阈值;
    若所述第三夹角小于或者等于所述角度阈值,将所述第三夹角作为所述指定角度,继续执行所述根据所述天线方向图得到以第一夹角包括指定角度的第一平面方向图数据的步骤。
  15. 根据权利要求14所述的方法,其特征在于,所述判断所述第三夹角是否大于角度阈值之后,还包括:
    若所述第三夹角大于所述角度阈值,通过数据融合方法对所述第一结果中所述第二夹角的角度值进行计算,得到所述第一目标方位角度;
    通过将所述天线方向图旋转至所述第一目标方位角度,得到旋转后的天线方向图;
    通过对所述第一信号强度数据和所述旋转后的天线方向图进行计算,得到所述第一信号强度数据和所述旋转后的天线方向图之间的置信度;
    判断所述置信度是否大于系数阈值;
    若判断出所述置信度小于或者等于所述系数阈值,继续执行所述采集所述目标设备的第一信号强度数据的步骤。
  16. 根据权利要求15所述的方法,其特征在于,所述判断所述置信度是否大于系数阈值之后,还包括:
    若判断出所述置信度大于所述系数阈值,根据所述第一目标方位角度生成用于提示所述用户执行第二操作的第二界面提示;
    在所述用户根据所述第二界面提示执行所述第二操作时,采集所述目标设备的第二信号强度数据;
    通过所述循环互相关计算公式对所述第二信号强度和以所述第二夹角包括所述第一目标方位角度的第二平面方向图数据进行计算,得到所述第二信号强度数据和所述第二平面方向图数据之间的第二互相关值;
    选择与所述第二互相关值的最大值对应的所述第一夹角的角度值作为第二目标方位角度。
  17. 根据权利要求16所述的方法,其特征在于,所述根据所述算法结果,通过界面提示方式提示用户查找所述目标设备,具体包括:
    根据所述第一目标方位角度和所述第二目标方位角度生成第三界面提示,所述第三界面提示包括用于查找所述目标设备的方向引导;
    在所述用户根据所述第三界面提示查找所述目标设备的过程中,采集所述用户的行走轨迹和所述目标设备的实时信号强度;
    根据所述行走轨迹和所述实时信号强度,采用不同颜色记录所述用户的轨迹点,同时根据所述实时信号强度通过声音急促程度的方式提示所述用户。
  18. 根据权利要求16所述的方法,其特征在于,所述第二操作包括:所述用户握持所述电子设备旋转至所述第一目标方位角,并在所述第一目标方位角的方向上下摆动所述电子设备。
  19. 根据权利要求14所述的方法,其特征在于,所述预设角度包括15°。
  20. 根据权利要求14所述的方法,其特征在于,所述角度阈值包括120°。
  21. 根据权利要求15所述的方法,其特征在于,所述系数阈值包括0.5。
  22. 根据权利要求3所述的方法,其特征在于,所述工作模式包括检测WiFi联网 设备时,所述目标设备包括摄像头;
    所述工作模式包括检测蜂窝网络设备时,所述目标设备包括***。
  23. 一种电子设备,其特征在于,包括处理器和存储器,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
    通过循环互相关测向算法对所述电子设备的天线方向图和目标设备的第一信号强度数据进行计算,得到算法结果;
    根据所述算法结果,通过界面提示方式提示用户查找所述目标设备。
  24. 根据权利要求23所述的电子设备,其特征在于,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
    所述通过循环互相关测向算法对电子设备的天线方向图和目标设备的第一信号强度数据进行计算,得到算法结果之前,还包括:
    根据所述用户选择的工作模式扫描并遍历第一网络,以判断是否存在所述目标设备;
    若判断出存在所述目标设备,确定所述目标设备所在的目标信道或者目标频段;
    根据所述目标信道或者所述目标频段,选择与所述目标信道或者所述目标频段对应的所述电子设备的所述天线方向图;
    采集所述目标设备的第一信号强度数据。
  25. 根据权利要求24所述的电子设备,其特征在于,所述工作模式包括检测WiFi联网设备或者检测蜂窝网络设备。
  26. 根据权利要求25所述的电子设备,其特征在于,所述工作模式包括检测WiFi联网设备时,所述第一网络包括所述电子设备周围的不同WiFi信道;
    所述工作模式包括检测蜂窝网络设备时,所述第一网络包括所述电子设备周围的不同蜂窝信号频段。
  27. 根据权利要求26所述的电子设备,其特征在于,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
    当所述工作模式包括所述检测WiFi联网设备时,所述根据所述用户选择的工作模式扫描并遍历第一网络,以判断是否存在所述目标设备,具体包括:
    查找与所述电子设备连接在同一WiFi热点下的第一设备列表;
    根据所述第一设备列表中第一设备的目标参数,判断所述第一设备列表中是否包括所述目标设备;
    若判断出所述第一设备列表中包括所述目标设备,继续执行所述确定所述目标设备所在的目标信道或者目标频段的步骤;
    若判断出所述第一设备列表中不包括所述目标设备,开启所述电子设备中WiFi芯片的Sniffer功能以嗅探周围所有WiFi不同信道的网络传输信息;
    通过机器学习算法对嗅探到的数据包的目标特征进行计算,以判断是否有视频传输数据;
    若判断出有视频传输数据,根据所述视频传输数据查找所述目标设备,并继续执行所述确定所述目标设备所在的目标信道或者目标频段的步骤。
  28. 根据权利要求26所述的电子设备,其特征在于,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
    当所述工作模式包括所述检测蜂窝网络设备时,所述根据所述用户选择的工作模式扫描并遍历第一网络,以判断是否存在所述目标设备,具体包括:
    根据所述用户选择的工作模式扫描并遍历不同蜂窝信号频段,以判断是否存在蜂窝信号。
  29. 根据权利要求24所述的电子设备,其特征在于,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
    所述确定所述目标设备所在的目标信道或者目标频段,具体包括:
    确定所述目标设备所在的目标WiFi信道或者目标蜂窝网络频段。
  30. 根据权利要求29所述的电子设备,其特征在于,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
    当所述工作模式包括检测WiFi联网设备时,
    所述根据所述目标信道或者所述目标频段,选择与所述目标信道或者所述目标频段对应的所述电子设备的所述天线方向图,具体包括:
    根据所述目标WiFi信道,选择所述电子设备的两个WiFi天线在所述目标WiFi信道的WiFi天线方向图;
    将两个所述WiFi天线方向图相减,得到所述天线方向图。
  31. 根据权利要求29所述的电子设备,其特征在于,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
    当所述工作模式包括检测蜂窝网络设备时,
    所述根据所述目标信道或者所述目标频段,选择与所述目标信道或者所述目标频段对应的所述电子设备的所述天线方向图,具体包括:
    根据所述目标蜂窝网络频段,选择与所述目标蜂窝网络频段对应的所述电子设备的所述天线方向图。
  32. 根据权利要求24所述的电子设备,其特征在于,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
    所述采集所述目标设备的第一信号强度数据,具体包括:
    生成用于提示所述用户执行第一操作的第一界面提示;
    在所述用户根据所述第一界面提示执行所述第一操作时,采集所述目标设备的第一信号强度数据。
  33. 根据权利要求32所述的电子设备,其特征在于,当所述工作模式包括所述检测WiFi联网设备时,所述第一操作包括:所述用户握持所述电子设备原地旋转;
    当所述工作模式包括所述检测蜂窝网络设备时,所述第一操作包括:所述用户选择与所述目标蜂窝网络频段对应的握持方式,握持所述电子设备原地旋转。
  34. 根据权利要求33所述的电子设备,其特征在于,所述目标蜂窝网络频段包括低频蜂窝网络、中频蜂窝网络或者高频蜂窝网络。
  35. 根据权利要求30所述的电子设备,其特征在于,当所述工作模式包括所述检测WiFi联网设备时,所述第一信号强度数据包括两个所述WiFi天线接收的所述目标 设备的信号强度数据的差值。
  36. 根据权利要求23所述的电子设备,其特征在于,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
    所述通过循环互相关测向算法对电子设备的天线方向图和目标设备的第一信号强度数据进行计算,得到算法结果,具体包括:
    根据所述天线方向图得到以第一夹角包括指定角度的第一平面方向图数据;
    通过循环互相关计算公式对所述第一信号强度数据和所述第一平面方向图数据进行计算,得到所述第一信号强度数据和所述第一平面方向图数据之间的第一互相关值;
    将与所述第一互相关值的最大值对应的第二夹角的角度值记录到第一结果中;
    将所述第一夹角加上预设角度得到第三夹角;
    判断所述第三夹角是否大于角度阈值;
    若所述第三夹角小于或者等于所述角度阈值,将所述第三夹角作为所述指定角度,继续执行所述根据所述天线方向图得到以第一夹角包括指定角度的第一平面方向图数据的步骤。
  37. 根据权利要求36所述的电子设备,其特征在于,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
    所述判断所述第三夹角是否大于角度阈值之后,还包括:
    若所述第三夹角大于所述角度阈值,通过数据融合方法对所述第一结果中所述第二夹角的角度值进行计算,得到所述第一目标方位角度;
    通过将所述天线方向图旋转至所述第一目标方位角度,得到旋转后的天线方向图;
    通过对所述第一信号强度数据和所述旋转后的天线方向图进行计算,得到所述第一信号强度数据和所述旋转后的天线方向图之间的置信度;
    判断所述置信度是否大于系数阈值;
    若判断出所述置信度小于或者等于所述系数阈值,继续执行所述采集所述目标设备的第一信号强度数据的步骤。
  38. 根据权利要求37所述的电子设备,其特征在于,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
    所述判断所述置信度是否大于系数阈值之后,还包括:
    若判断出所述置信度大于所述系数阈值,根据所述第一目标方位角度生成用于提示所述用户执行第二操作的第二界面提示;
    在所述用户根据所述第二界面提示执行所述第二操作时,采集所述目标设备的第二信号强度数据;
    通过所述循环互相关计算公式对所述第二信号强度和以所述第二夹角包括所述第一目标方位角度的第二平面方向图数据进行计算,得到所述第二信号强度数据和所述第二平面方向图数据之间的第二互相关值;
    选择与所述第二互相关值的最大值对应的所述第一夹角的角度值作为第二目标方位角度。
  39. 根据权利要求38所述的电子设备,其特征在于,当所述处理器运行所述程序指令时,使所述电子设备执行以下步骤:
    所述根据所述算法结果,通过界面提示方式提示用户查找所述目标设备,具体包括:
    根据所述第一目标方位角度和所述第二目标方位角度生成第三界面提示,所述第三界面提示包括用于查找所述目标设备的方向引导;
    在所述用户根据所述第三界面提示查找所述目标设备的过程中,采集所述用户的行走轨迹和所述目标设备的实时信号强度;
    根据所述行走轨迹和所述实时信号强度,采用不同颜色记录所述用户的轨迹点,同时根据所述实时信号强度通过声音急促程度的方式提示所述用户。
  40. 根据权利要求38所述的电子设备,其特征在于,所述第二操作包括:所述用户握持所述电子设备旋转至所述第一目标方位角,并在所述第一目标方位角的方向上下摆动所述电子设备。
  41. 根据权利要求36所述的电子设备,其特征在于,所述预设角度包括15°。
  42. 根据权利要求36所述的电子设备,其特征在于,所述角度阈值包括120°。
  43. 根据权利要求37所述的电子设备,其特征在于,当所述系数阈值包括0.5。
  44. 根据权利要求25所述的电子设备,其特征在于,所述工作模式包括检测WiFi联网设备时,所述目标设备包括摄像头;
    所述工作模式包括检测蜂窝网络设备时,所述目标设备包括***。
  45. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,当所述程序请求被计算机运行时使所述计算机执行如权利要求1-22任一项所述的方法。
PCT/CN2022/084821 2021-06-30 2022-04-01 一种检测设备方法和电子设备 WO2023273476A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110738811.1 2021-06-30
CN202110738811.1A CN115550986A (zh) 2021-06-30 2021-06-30 一种检测设备方法和电子设备

Publications (1)

Publication Number Publication Date
WO2023273476A1 true WO2023273476A1 (zh) 2023-01-05

Family

ID=84691146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084821 WO2023273476A1 (zh) 2021-06-30 2022-04-01 一种检测设备方法和电子设备

Country Status (2)

Country Link
CN (1) CN115550986A (zh)
WO (1) WO2023273476A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116345147A (zh) * 2023-02-16 2023-06-27 荣耀终端有限公司 天线调谐方法及终端设备
CN117176292A (zh) * 2023-11-02 2023-12-05 物空科技(四川)集团有限公司 无线信号定位检测方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110201357A1 (en) * 2010-02-12 2011-08-18 David Garrett Method and system for refining a location of a base station and/or a mobile device based on signal strength measurements and corresponding transmitter and/or receiver antenna patterns
US20160336648A1 (en) * 2015-05-13 2016-11-17 Honeywell International Inc. Two-element traffic collision avoidance system (tcas) antenna
CN107526057A (zh) * 2016-06-21 2017-12-29 中兴通讯股份有限公司 定位终端的方法及装置
CN108248436A (zh) * 2018-02-02 2018-07-06 上海易沐科技有限公司 充电桩端控制设备、充电控制***及车辆充电控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110201357A1 (en) * 2010-02-12 2011-08-18 David Garrett Method and system for refining a location of a base station and/or a mobile device based on signal strength measurements and corresponding transmitter and/or receiver antenna patterns
US20160336648A1 (en) * 2015-05-13 2016-11-17 Honeywell International Inc. Two-element traffic collision avoidance system (tcas) antenna
CN107526057A (zh) * 2016-06-21 2017-12-29 中兴通讯股份有限公司 定位终端的方法及装置
CN108248436A (zh) * 2018-02-02 2018-07-06 上海易沐科技有限公司 充电桩端控制设备、充电控制***及车辆充电控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116345147A (zh) * 2023-02-16 2023-06-27 荣耀终端有限公司 天线调谐方法及终端设备
CN116345147B (zh) * 2023-02-16 2023-11-21 荣耀终端有限公司 天线调谐方法及终端设备
CN117176292A (zh) * 2023-11-02 2023-12-05 物空科技(四川)集团有限公司 无线信号定位检测方法、装置、设备及存储介质
CN117176292B (zh) * 2023-11-02 2024-01-05 物空科技(四川)集团有限公司 无线信号定位检测方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN115550986A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
CN110445978B (zh) 一种拍摄方法及设备
WO2020168965A1 (zh) 一种具有折叠屏的电子设备的控制方法及电子设备
CN112040461B (zh) 一种靠近发现的方法及设备
WO2022170863A1 (zh) 超宽带定位方法及***
US11960327B2 (en) Display control method for electronic device with foldable screen and electronic device
WO2021023046A1 (zh) 一种电子设备控制方法及一种电子设备
WO2020168968A1 (zh) 一种具有折叠屏的电子设备的控制方法及电子设备
WO2023273476A1 (zh) 一种检测设备方法和电子设备
WO2020216098A1 (zh) 一种跨电子设备转接服务的方法、设备以及***
EP3993460B1 (en) Method, electronic device and system for realizing functions through nfc tag
WO2021043198A1 (zh) 一种蓝牙配对方法及相关装置
WO2023273530A1 (zh) 手写笔检测方法、装置及终端设备
CN114610193A (zh) 内容共享方法、电子设备及存储介质
WO2022068670A1 (zh) 设备间触碰建立无线连接的方法、电子设备及芯片
CN113676339B (zh) 组播方法、装置、终端设备及计算机可读存储介质
CN114422340A (zh) 日志上报方法、电子设备及存储介质
CN114257920B (zh) 一种音频播放方法、***和电子设备
WO2022100219A1 (zh) 数据转移方法及相关装置
CN114302063B (zh) 一种拍摄方法及设备
CN114489876A (zh) 一种文本输入的方法、电子设备和***
CN113436635A (zh) 分布式麦克风阵列的自校准方法、装置和电子设备
CN114500725B (zh) 目标内容传输方法、主设备、从设备和存储介质
WO2022042460A1 (zh) 一种设备的连接方法及电子设备
WO2023030067A1 (zh) 遥控方法、遥控设备和被控制设备
CN115706994A (zh) 访问控制方法和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22831307

Country of ref document: EP

Kind code of ref document: A1