WO2023249090A1 - Resin composition and molded article of same - Google Patents

Resin composition and molded article of same Download PDF

Info

Publication number
WO2023249090A1
WO2023249090A1 PCT/JP2023/023176 JP2023023176W WO2023249090A1 WO 2023249090 A1 WO2023249090 A1 WO 2023249090A1 JP 2023023176 W JP2023023176 W JP 2023023176W WO 2023249090 A1 WO2023249090 A1 WO 2023249090A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mass
resin
styrene
parts
Prior art date
Application number
PCT/JP2023/023176
Other languages
French (fr)
Japanese (ja)
Inventor
恵理 神巻
佳那恵 伊勢
大介 元井
裕卓 小林
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2023249090A1 publication Critical patent/WO2023249090A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to a resin composition and a molded article thereof.
  • Patent Document 1 proposes a thermoplastic resin composition containing biomass powder such as wood flour or bamboo flour as a filler. Furthermore, from the viewpoint of waste utilization, it is also being considered to replace calcium carbonate powder, which is blended as an inorganic filler in a thermoplastic resin composition, with eggshell powder, seashell powder, or the like.
  • biomass-containing resin compositions are attracting attention as resin compositions with less environmental impact because by increasing the proportion of biomass-derived materials, the proportion of thermoplastic resins derived from fossil resources can also be reduced. .
  • styrene resins have excellent transparency and moldability, and are inexpensive, so they are widely used as thermoplastic resins for injection molding in each of the above-mentioned applications. Even in styrenic resin compositions that can be used in various applications, there is a need to replace them with biomass-derived materials and to reduce the amount of styrene resins derived from fossil resources.
  • the present inventors replaced the inorganic filler blended in a styrenic resin composition with biomass-derived eggshell powder to produce a resin composition with less environmental impact, and studied its physical properties.
  • an object of the present invention is to provide a styrenic resin composition and a molded article thereof that have a low environmental impact and excellent wear resistance.
  • the inventors of the present invention conducted extensive studies and found that the abrasion resistance of the styrenic resin composition containing eggshell powder was improved by keeping the coefficient of static friction below a certain level, and completed the present invention. I ended up letting it happen. That is, the present invention has the following aspects.
  • a resin composition containing an eggshell powder and a styrene resin wherein the content of the eggshell powder is 20 parts by mass or more based on a total of 100 parts by mass of the eggshell powder and the styrene resin, and the composition is static.
  • the resin composition according to any one of [1] to [6] which is for injection molding.
  • a styrenic resin composition with low environmental impact and good wear resistance and a molded article thereof are provided.
  • the resin composition according to the present embodiment includes an eggshell powder and a styrene resin, and the content of the eggshell powder is 20 parts by mass or more with respect to a total of 100 parts by mass of the eggshell powder and the styrene resin, It is characterized by a static friction coefficient of 0.3 or more and less than 1.0.
  • the resin composition according to this embodiment has good wear resistance. Furthermore, since it contains a certain amount of eggshell powder, which is a biomass-derived material, it has less environmental impact than conventional styrene-based resin compositions. In addition, since the resin composition of this embodiment has good tensile modulus, tensile elongation at break, and moldability, it can also be used for injection molding.
  • the resin composition according to this embodiment contains eggshell powder.
  • the content of the eggshell powder is 20 parts by mass or more based on a total of 100 parts by mass of the eggshell powder and styrene resin.
  • eggshell powder is not particularly limited in its raw material as long as it is made from powdered eggshells, but from the viewpoint of effective utilization of waste, it includes chicken eggshells as a raw material. It is preferable.
  • the content of the eggshell powder in the resin composition may be 30 parts by mass or more, or 40 parts by mass or more, based on a total of 100 parts by mass of the eggshell powder and styrene resin.
  • the amount may be 50 parts by mass or more.
  • the amount is preferably 70 parts by mass or less based on the total of 100 parts by mass of eggshell powder and styrene resin. That is, the proportion of eggshell powder in a total of 100 parts by mass of eggshell powder and styrene resin may be 20 to 70 parts by mass, 30 to 70 parts by mass, or 40 to 70 parts by mass.
  • the amount may be 50 to 70 parts by mass.
  • the content of the eggshell powder may be 20 to 50 parts by mass based on a total of 100 parts by mass of the eggshell powder and styrene resin.
  • the average particle diameter of the eggshell powder is preferably 3 to 50 ⁇ m, more preferably 3 to 40 ⁇ m, and even more preferably 4 to 30 ⁇ m.
  • the plasticizer contained in the resin composition may not be sufficiently absorbed and may bleed out. Further, the dispersibility of the eggshell powder in the resin composition is also likely to decrease. On the other hand, if the average particle diameter is too large, it becomes difficult to obtain a molded article with desired strength and flexibility.
  • the resin tends to break easily and it may be difficult to obtain the desired tensile elongation at break.
  • the average particle size of the eggshell powder can be measured using a particle size distribution measuring device according to the "sieving method".
  • the density (g/cm 3 ) of the eggshell powder is preferably 2.0 to 3.0 g/cm 3 , more preferably 2.0 to 2.8 g/cm 3 , and 2.0 to 3.0 g/cm 3 . .3 to 2.7 g/cm 3 is particularly preferred.
  • the proportion of eggshell powder in the resin composition may be 10 to 70% by mass, or 30 to 60% by mass, based on the total mass of the resin composition.
  • Eggshell powder can be prepared by conventionally known manufacturing methods. For example, eggshells may be crushed by a known method and then classified to obtain eggshell powder having a desired average particle size. Specifically, after removing the eggshell membrane from the eggshell, the eggshell is dried. Thereafter, the eggshell powder is crushed using a crusher or the like to obtain eggshell powder. Thereafter, the eggshell powder can be obtained by classifying it using a sieve having an appropriate mesh diameter.
  • commercially available eggshell powder can also be used.
  • commercially available products include those manufactured by Green Techno 21 Co., Ltd. under the trade name "GT-26” and manufactured by Kewpie Egg Co., Ltd. under the trade name "Calhope (registered trademark)”.
  • the resin composition may contain an inorganic filler other than eggshell powder.
  • inorganic fillers other than eggshell powder include inorganic fillers derived from minerals such as calcium carbonate, talc, and zeolite; inorganic fillers derived from biominerals other than eggshell powder, and the like.
  • biomineral refers to minerals produced by living things, such as pearls, seashells, eggshells, bones, and the exoskeletons of crustaceans.
  • the total amount of the eggshell powder and the inorganic filler is adjusted within a range that does not exceed 70 parts by mass based on the total of 100 parts by mass of the eggshell powder and styrene resin. It is preferable to do so.
  • only eggshell powder may be included as the inorganic filler.
  • the resin composition according to this embodiment contains a styrene resin.
  • the content of the styrene resin is 80 parts by mass or less based on a total of 100 parts by mass of the eggshell powder and the styrene resin.
  • the content of the styrenic resin may be 30 to 80 parts by weight, 60 to 80 parts by weight, or 50 to 80 parts by weight.
  • the content of styrene resin may be 30 to 50 parts by mass based on the total of 100 parts by mass of eggshell powder and styrene resin. good.
  • styrenic resin means a polymer containing monomer units derived from an aromatic vinyl compound.
  • the styrenic resin according to this embodiment is a polymer of an aromatic vinyl compound, a copolymer of a compound copolymerizable with an aromatic vinyl compound and an aromatic vinyl compound, or a polymer of these in the presence of a rubbery polymer. Polymers polymerized below can be included.
  • aromatic vinyl compound examples include styrene, ⁇ -methylstyrene, p-methylstyrene, o-methylstyrene, m-methylstyrene, ethylstyrene, and pt-butylstyrene. These may be used alone or in combination of two or more. Among these, it is preferable to include styrene.
  • Examples of compounds copolymerizable with aromatic vinyl compounds include methacrylic acid esters such as methyl methacrylate and ethyl methacrylate; unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; and acid anhydrides such as maleic anhydride. Can be mentioned. These may be used alone or in combination of two or more.
  • the mass proportion of the copolymerizable compound is preferably 20% by mass or less, more preferably 15% by mass, based on the total amount (100% by mass) of the aromatic vinyl compound and the copolymerizable compound. It is as follows.
  • Examples of the rubbery polymer include conjugated diene rubber, copolymer of conjugated diene and aromatic vinyl compound, ethylene-propylene copolymer rubber, and the like. More specifically, examples include polybutadiene, styrene-butadiene random copolymers, styrene-butadiene block copolymers, and polymers obtained by hydrogenating some or all of these.
  • the weight average molecular weight (Mw) of the styrenic resin is preferably 10,000 to 500,000, more preferably 100,000 to 300,000. If the Mw of the styrene resin is within the above range, the fluidity tends to be good. Note that the Mw of the styrene resin refers to a value calculated by GPC (gel permeation chromatography) in terms of polystyrene.
  • the styrenic resin preferably contains at least one selected from general-purpose polystyrene and high-impact polystyrene, and a styrene-butadiene copolymer.
  • the polystyrene-based resin contains a monomer unit derived from the aromatic vinyl compound and the monomer unit derived from the aromatic vinyl compound. It may contain a polymer containing a monomer unit derived from an unsaturated nitrile compound and the above-mentioned rubbery polymer.
  • a copolymer of acrylonitrile, styrene, and conjugated diene rubber is preferred, and an acrylonitrile-butadiene-styrene copolymer is more preferred.
  • General-purpose polystyrene resin is a homopolymer of styrene, and is a resin expressed as "GPPS." When the styrene resin contains a general-purpose polystyrene resin, the tensile modulus tends to be good.
  • the mass average molecular weight (Mw) of the general-purpose polystyrene resin may be 10,000 to 500,000, or 100,000 to 300,000, from the viewpoint of fluidity.
  • the Mw of a general-purpose polystyrene resin refers to a value calculated by GPC (gel permeation chromatography) in terms of polystyrene.
  • the proportion of the general-purpose polystyrene resin in the styrenic resin is preferably 20 to 95% by mass, more preferably 30 to 80% by mass, based on the total mass of the styrene resin, from the viewpoint of tensile modulus. preferable. Further, the proportion of the general-purpose polystyrene resin in the resin composition may be 10 to 85% by mass, or 10 to 60% by mass, based on the total mass of the resin composition.
  • High-impact polystyrene is a graft polymer obtained by graft-polymerizing a styrene monomer onto a rubbery polymer, and is a resin expressed as "HIPS".
  • HIPS high-impact polystyrene
  • the weight average molecular weight (Mw) of the high-impact polystyrene may be from 100,000 to 250,000, or from 130,000 to 200,000, from the viewpoint of fluidity.
  • the Mw of impact-resistant polystyrene refers to a value calculated by GPC (gel permeation chromatography) in terms of polystyrene.
  • the proportion of high-impact polystyrene in the styrenic resin is preferably 10 to 90% by mass, and 50 to 90% by mass based on the total mass of the styrenic resin, from the viewpoint of improving brittleness due to high filler filling. 85% by mass is more preferred. Further, the proportion of high-impact polystyrene in the resin composition may be 10 to 75% by mass, or 10 to 60% by mass, based on the total mass of the resin composition.
  • Styrene-butadiene copolymer resin is a copolymer resin obtained by polymerizing a monomer mixture containing styrene and butadiene.
  • examples of the styrene-butadiene copolymer resin include styrene-butadiene (SB), styrene-butadiene-butylene (SBB), styrene-butadiene-isoprene (SBI), styrene-butadiene-styrene (SBS), and styrene-butadiene- Examples include block copolymers such as butylene-styrene (SBBS) and styrene-butadiene-isoprene-styrene (SBIS), and hydrogenated block copolymers thereof.
  • the styrene-butadiene copolymer resin preferably contains a styrene-butadiene (SB) copolymer from the viewpoint of improving brittleness due to high filler filling.
  • SB styrene-butadiene
  • the weight average molecular weight (Mw) of the styrene-butadiene copolymer resin is preferably 100,000 to 200,000, more preferably 120,000 to 180,000. If the Mw of the styrene-butadiene copolymer resin is within the above range, the compatibility with the general-purpose polystyrene resin and/or high-impact polystyrene tends to be good. Note that the Mw of the styrene-butadiene copolymer resin refers to a value calculated by GPC (gel permeation chromatography) in terms of polystyrene.
  • GPC gel permeation chromatography
  • the proportion of the styrene-butadiene copolymer resin in the styrene resin is preferably 8 to 60% by mass, and 10 to 50% by mass, based on the total mass of the styrene resin, from the viewpoint of improving brittleness. % is more preferable. Further, the proportion of the styrene-butadiene copolymer resin in the resin composition may be 3 to 45% by mass, or 5 to 35% by mass, based on the total mass of the resin composition.
  • the amount of conjugated diene in the styrene-butadiene copolymer resin is 5 to 5, based on the total mass of the styrene-butadiene copolymer resin. It is preferably 40% by weight, more preferably 6-30% by weight, particularly preferably 8-28% by weight.
  • Conjugated diene amount refers to the amount of butadiene contained in the styrene-butadiene copolymer resin.
  • the amount of conjugated diene may be a value calculated from the amount of butadiene charged when preparing the styrene-butadiene copolymer resin, and the amount of conjugated diene may be a value calculated from the amount of butadiene charged when preparing the styrene-butadiene copolymer resin. It may also be a value measured by titration.
  • the total amount of the general-purpose polystyrene resin and/or the high-impact polystyrene and the styrene-butadiene copolymer resin may be 50 to 100% by weight based on the total weight of the styrenic resin, It may be 60 to 100% by mass. If the total amount of general-purpose polystyrene resin and/or impact-resistant polystyrene and styrene-butadiene copolymer resin in the styrene resin is within the above range, a resin composition with good tensile modulus and fluidity can be obtained. It becomes easier.
  • the styrene resin may contain components (other components) other than the general-purpose polystyrene resin, impact-resistant polystyrene, and styrene-butadiene copolymer resin.
  • Other components include, for example, styrene-based thermoplastic elastomers other than styrene-butadiene copolymer resins (for example, block copolymers such as styrene-isoprene (SI) and styrene-isoprene-styrene (SIS)), and hydrogenated block copolymers, etc.). These may be used alone or in combination of two or more. When the styrenic resin contains other components, the content is preferably 30% by mass or less based on the total mass of the styrene resin.
  • the resin composition preferably includes a plasticizer.
  • the content of the plasticizer is preferably 0.3 to 3.0 parts by weight, may be 0.3 to 2.5 parts by weight, and may be 0.3 to 2.0 parts by weight, based on 50 parts by weight of the eggshell powder. It may be 0 parts by mass or 0.3 to 1.5 parts by mass.
  • the amount is preferably 0.3 to 3.0 parts by mass based on a total of 100 parts by mass of eggshell powder and styrene resin.
  • the content of the plasticizer may be 0.3 to 2.5 parts by weight, may be 0.3 to 2.0 parts by weight, and may be 0.3 to 1.5 parts by weight. It may be a department.
  • Plasticizers include process oils such as paraffin and naphthene, liquid paraffin and other paraffins, waxes, synthetic polymer plasticizers such as silicone oil and silicone rubber, phthalic acid and adipic acid, and sebacin. Examples include ester plasticizers such as acid-based and phosphoric acid-based plasticizers.
  • synthetic polymer plasticizers particularly plasticizers selected from silicone oil and silicone rubber, can be suitably used.
  • silicone oil any known silicone oil can be used, and one selected from the viewpoint of heat resistance, transparency, etc. may be used.
  • the silicone oil for example, dimethylpolysiloxane, methylphenylsiloxane, methylhydrogenpolysiloxane, and modified products thereof may be used. These may be used alone or in combination of two or more. Among these, it is preferable to include dimethylpolysiloxane from the viewpoint of easily obtaining a resin composition with more excellent wear resistance.
  • dimethylsiloxane having a kinematic viscosity of 100 to 500 mm 2 /s at 25° C. may be used.
  • Kinematic viscosity can be measured, for example, by measuring at a test temperature of 37.8°C or 40°C using a Cannon-Fenske viscometer according to "5. Kinematic viscosity test method" of JIS K 2283:2000. .
  • Silicone rubber is a rubber containing polyorganosiloxane rubber.
  • the silicone rubber is a polyorganosiloxane rubber or a silicone/acrylic composite rubber that is a composite of polyorganosiloxane and polyalkyl (meth)acrylate rubber.
  • the silicone/acrylic composite rubber is a rubber obtained by polymerizing two or more constituent monomers, not simply by polymerizing, but by polymerizing in stages.
  • the resin composition includes additives.
  • the content of the additive is preferably 10 parts by mass or less, based on a total of 100 parts by mass of eggshell powder and styrene resin, may be 9 parts by mass or less, may be 8 parts by mass or less, and may be 7 parts by mass or less. It may be less than parts by mass.
  • the lower limit of the content of the additive is not particularly limited as long as it has the effects of the present invention, and may be 0.5 parts by mass or more, or 1 part by mass or more.
  • the additive contains a compound selected from fatty acid amide, fatty acid sodium, and fatty acid ester as a main component.
  • containing a compound as a main component means that the total content of compounds in the additive is more than 50% by mass based on the total mass of the additive.
  • Optionally having a substituent means that one or more hydrogen atoms within the hydrocarbon group may be substituted with a substituent.
  • a resin composition having particularly good tensile elongation at break can be obtained.
  • “Fatty acid amide” includes primary amide, secondary amide, tertiary amide, and those having two or more nitrogen atoms in one molecule.
  • the fatty acid amide in this embodiment does not include a polymer such as an aliphatic polyamide typified by nylon-6.
  • the above R 1 is a hydrocarbon group which may have a substituent, preferably an alkyl group having 2 or more carbon atoms and which may have a substituent, or an alkyl group which may have a substituent. It is a good alkenyl group.
  • Such fatty acid amide is not particularly limited as long as it has the effect of the present invention, but from the viewpoint of compatibility with styrene resin, R 1 is an optionally substituted alkyl having 10 or more carbon atoms.
  • R 1 is an optionally substituted alkyl having 10 or more carbon atoms.
  • saturated fatty acid monoamides such as lauric acid amide, palmitic acid amide, stearic acid amide, and behenic acid amide; unsaturated fatty acid monoamides such as oleic acid amide and erucic acid amide; N-stearyl stearic acid amide, N-stearyl stearic acid amide, -Substituted amides such as stearyl oleamide, N-oleyl stearamide, N-stearyl erucamide; methylene bis stearamide, ethylene biscapric acid amide, ethylene bis lauric acid amide, ethylene bis stearic acid amide, ethylene Saturated fatty acid bisamides such as bisbehenic acid amide, hexamethylene bisstearic acid amide, hexamethylene bisbehenic acid amide, N,N'-distearyladipic acid amide; ethylene bisoleic acid amide, ethylene biserucic acid amide,
  • R 2 can be exemplified by the same compound as R 1 , and preferably has 2 carbon atoms.
  • R 2 can be exemplified by the same compound as R 1 , and preferably has 2 carbon atoms.
  • These are the above alkyl groups which may have a substituent or alkenyl groups which may have a substituent.
  • Such sodium fatty acids are not particularly limited as long as they have the effects of the present invention, but from the viewpoint of compatibility with styrene resins, R 2 is an optionally substituted alkyl having 10 or more carbon atoms.
  • Specific examples include sodium salts of higher fatty acids having 10 to 20 carbon atoms, such as sodium laurate, sodium myristate, sodium palmitate, sodium oleate, and sodium stearate. These may be used alone or in combination of two or more. That is, the fatty acid sodium may be a mixture of the aforementioned higher fatty acid sodium salts having 10 to 20 carbon atoms.
  • the fatty acid ester is an ester containing the aforementioned fatty acid group.
  • the fatty acid ester is preferably a higher fatty acid ester obtained by a reaction between a higher fatty acid having 10 or more carbon atoms and a polyhydric alcohol.
  • the higher fatty acid is preferably an alkyl group or alkenyl group having 10 or more carbon atoms which may have a substituent.
  • examples of the polyhydric alcohol include divalent to hexavalent polyhydric alcohols such as ethylene glycol, glycerin, 1,2,4-butanetriol, diglycerin, pentaerythritol, sorbitol, erythritol, and hexanetriol.
  • the higher fatty acid ester can include glycerin fatty acid ester.
  • glycerin fatty acid esters include lauric acid monoglyceride, lauric acid diglyceride, lauric acid triglyceride, palmitic acid monoglyceride, palmitic acid diglyceride, palmitic acid triglyceride, stearic acid monoglyceride, stearic acid diglyceride, stearic acid triglyceride, stearic acid tetraglyceride, hydroxyl Examples include stearic acid monoglyceride, hydroxystearic acid diglyceride, hydroxystearic acid triglyceride, hydroxystearic acid tetraglyceride, and the like. These may be used alone or in combination of two or more. Among these, from the viewpoint of compatibility with eggshell materials, it is preferable to include hydroxystearic acid glyceride.
  • the compound preferably contains a fatty acid amide and/or a fatty acid sodium from the viewpoint of easily obtaining better tensile elongation at break.
  • the proportion of compounds in the additive may be greater than 50% to 100% by weight, may be 55% to 100% by weight, may be 60% to 100% by weight, based on the total weight of the additive. It may be mass %. It may be 65 to 100% by mass.
  • the additive may include other additives other than the above-mentioned compounds.
  • Other additives include, for example, ultraviolet absorbers, light stabilizers, antioxidants, lubricants, plasticizers, colorants, antistatic agents, flame retardants, mold release agents, other compounds such as mineral oil; glass fibers, Examples include reinforcing fibers such as carbon fiber and aramid fiber. These may be used alone or in combination of two or more.
  • Examples of the ultraviolet absorber include 2-(5'-methyl-2'-hydroxyphenyl)benzotriazole, 2-(5'-t-butyl-2'-hydroxyphenyl)benzotriazole, 2-[2 '-Hydroxy-3',5'-bis( ⁇ , ⁇ -dimethylbenzyl)phenyl]benzotriazole, 2-(3',5'-di-t-butyl-2'-hydroxyphenyl)benzotriazole, 2-(3'-t-butyl-5'-methyl-2'-hydroxyphenyl)-5-chlorobenzotriazole, 2-(3',5'-di-t-butyl-2'-hydroxy phenyl)-5-chlorobenzotriazole, 2-(3',5'-di-t-amyl-2'-hydroxyphenyl)benzotriazole, 2-[3'-(3",4", 5",6"-tetrahydrophthalimidomethyl)-5'-methyl-2'-
  • Examples of the light stabilizer include bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate and bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate. , dimethyl succinate/1-(2-hydroxyethyl)-4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, poly[[6,(1,1,3,3-tetramethylbutyl) )amino-1,3,5-triazine-2,4-diyl][(2,2,6,6-tetramethyl-4-piperidyl)imino]-hexamethylene-[(2,2,6,6- tetramethyl-4-piperidyl)imino]], 1-[2-[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionyloxy]ethyl]-4-[3-(3,5 -di-t-butyl-4-hydroxyphenyl)propionyloxy]-2,2,6,
  • antioxidants include triethylene glycol-bis[3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], 2,4-bis(n-octylthio)- 6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine, pentaerythrityltetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propione -t], octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 2,2-thiobis(4-methyl-6-t-butylphenol) and 1,3 , 5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene and other phenolic antioxidants; ditridecyl-3,3'-thiodipropionate, Sulfur-based antioxidants such as dilauryl,
  • the proportion of other additives in the additive is less than 50% by mass, preferably 40% by mass or less, and more preferably 30% by mass or less, based on the total mass of the additive.
  • the resin composition according to this embodiment containing a certain amount of eggshell powder when additives other than compounds are blended, physical properties such as tensile elongation at break may deteriorate. In that case, it is preferred that the additive contains only the compound.
  • the resin composition according to the present invention can contain thermoplastic resins (other thermoplastic resins) other than styrenic resins, but from the viewpoint of obtaining a resin composition with a low resin content, Preferably, no other thermoplastic resin is included.
  • the static friction coefficient of the resin composition is 0.3 or more and less than 1.0, but the static friction coefficient of the resin composition is preferably 0.5 or more and less than 0.8, and 0. More preferably, it is .6 or more and less than 0.75.
  • the static friction coefficient of the resin composition can be measured using a friction and wear analyzer (for example, Kyowa Interface Science, TS501) according to JIS K7125.
  • good abrasion resistance means, for example, that it is rated B or higher in the abrasion resistance evaluation in the following examples.
  • the MFR of the resin composition under conditions of 200° C. and 5 kg load is preferably 15.0 g/10 min or more. If the MFR (200° C., 5 kg load) of the resin composition is 15.0 g/10 min or more, the moldability tends to be better.
  • the MFR (200° C., 5 kg load) of the resin composition may be 15.0 g/10 min or more, or 20.0 g/10 min or more. It may be 22.0 g/10 min or more. Note that the MFR of the resin composition can be measured according to the standard of JIS K 7210-2:2014 (ISO 133-2:2011).
  • the tensile modulus of the resin composition measured according to ASTM-D638, may be 1000 MPa or more, or 1500 MPa or more. Further, the tensile elongation at break of the resin composition measured according to ASTM-D638 may be 20% or more, or 50% or more.
  • the resin composition according to the present embodiment contains a certain amount or more of eggshell powder, and has good tensile modulus and tensile elongation at break. Moreover, moldability is also good.
  • the resin composition according to this embodiment can be produced by melt-kneading eggshell powder, styrene resin, and components such as a plasticizer and additives as needed.
  • the resin composition in the form of pellets can be prepared by putting the components into a twin-screw extruder, melting and kneading them at a temperature of 200 to 250°C, and then extruding them into strands.
  • the resin composition according to this embodiment has good wear resistance. Therefore, it can be suitably used for manufacturing molded products having parts that require wear resistance, such as containers and assembly kits having fitting parts. Note that, as a matter of course, the use of the resin composition according to the present embodiment is not limited to use in manufacturing containers having a fitting portion, assembly kits, and the like.
  • the molded article according to this embodiment contains the above-mentioned resin composition. Preferably, it is obtained by molding the resin composition according to this embodiment. In the molded product according to this embodiment, wear caused by friction between the molded products is suppressed. Furthermore, the molded product according to this embodiment contains a certain amount of eggshell powder, so it is a molded product with less environmental load.
  • the molded product according to this embodiment can be applied to stationery, furniture, building materials, tableware, containers, gardening materials, toys, and the like.
  • the density of the obtained eggshell powder was measured using a densitometer (manufactured by Shimadzu Corporation, product name: "Dry Automatic Density Meter Accupic II 1340") and found to be 2.6 g/cm 3 .
  • the obtained powder was further classified to obtain eggshell powder with an average particle size of 10 ⁇ m.
  • High-cis polybutadiene rubber manufactured by Asahi Kasei Corporation, trade name "Diene 55AS" was used as the rubbery polymer, and this rubbery polymer (5.3% by mass based on the total mass of polymerization raw materials) and styrene were used. was dissolved in ethylbenzene (5% by mass based on the total mass of the polymerization raw materials) as a solvent to obtain a polymerization raw material.
  • a rubbery polymer antioxidant manufactured by Nippon Ciba Geigy Co., Ltd., trade name "Irganox (registered trademark) 1076" was added to the polymerization raw material.
  • This polymerization raw material was supplied at 12.5 kg/hr to a 14 L jacketed reactor (R-01) equipped with an anchor-type stirring blade with a blade diameter of 0.285 m.
  • Polymerization was carried out by stirring at a reaction temperature of 140° C. and a rotational speed of 2.17 sec ⁇ 1 to obtain a polymer liquid.
  • the polymer percentage of the obtained polymer liquid was 25%.
  • This polymer liquid was introduced into two jacketed plug flow reactors each having an internal volume of 21 L and arranged in series.
  • the jacket temperature was adjusted so that the reaction temperature was 120 to 140° C. in the flow direction of the polymer liquid.
  • the second plug flow reactor (R-03) the jacket temperature was adjusted so that the reaction temperature had a gradient of 130 to 160°C in the flow direction of the polymer liquid.
  • the polymer percentage at the R-02 exit was 50%, and the polymer percentage at the R-03 exit was 70%.
  • the polymer ratio is a value calculated by the following formula (1).
  • Polymer ratio (%) [(amount of polymer produced) / ⁇ (amount of monomer charged) + (amount of solvent) ⁇ ] ⁇ 100 ...
  • the obtained polymer liquid was heated to 230° C. and then sent to a devolatilization tank with a vacuum degree of 5 torr, and unreacted monomers and solvent were separated and recovered. Thereafter, the reactant was extracted from the devolatilization tank using a gear pump, passed through a die plate to form a strand, and then passed through a water tank to be pelletized to obtain impact-resistant polystyrene.
  • the rubber component content of the resulting impact-resistant polystyrene was 4.8% by mass.
  • the Mw of the impact-resistant polystyrene was 210,000 when measured under the same conditions as general-purpose polystyrene resin.
  • SBC styrene-butadiene copolymer resin
  • a styrene-butadiene block copolymer resin was prepared as the styrene-butadiene copolymer resin.
  • 500.0 kg of cyclohexane and 75.0 g of tetrahydrofuran (THF) were placed in a reaction vessel, and 1,000 mL of a 10% by mass cyclohexane solution of n-butyllithium was added thereto as a polymerization initiator solution, and the mixture was kept at 30°C. Ta. 20.0 kg of styrene was added to cause anionic polymerization of styrene.
  • This polymerization liquid was devolatilized and a block copolymer in the form of pellets was obtained using an extruder.
  • the diene content of the obtained styrene-butadiene copolymer calculated from the amount of monomer charged was 28% by mass.
  • Plasticizer The following was used as a plasticizer.
  • Plasticizer (1) Silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd., product name "KF-96 350CS")
  • Plasticizer (2) Metablane (manufactured by Mitsubishi Chemical Corporation, product name: Metablane SX-005)
  • Example 1 40 parts by mass of HIPS, 10 parts by mass of SBC, 50 parts by mass of eggshell powder, 1 part by mass of EBS, 2 parts by mass of sodium fatty acid, and 1 part by mass of silicone oil using a twin screw extruder (Shibaura Kikai Co., Ltd., TEM35-B).
  • the mixture was melted and kneaded at 200° C., 350 rpm, and a discharge rate of 20 kg/h, and extruded into strands to form pellets.
  • the MFR of the obtained pellets under conditions of 200° C. and a load of 5 kg was 15.8 g/10 minutes.
  • the obtained pellets were molded using a heat press (manufactured by Tester Sangyo Co., Ltd., SA-303), and the static friction coefficient, wear resistance evaluation, tensile elastic modulus, tensile elongation at break, and impact strength were determined as follows. The method was evaluated. The results are shown in Table 1.
  • ⁇ Measurement method of static friction coefficient> It was measured according to JISK7125 using a friction and wear analyzer (manufactured by Kyowa Interface Science Co., Ltd., TS501). Specifically, a plate sample with a thickness of 0.40 mm was cut out in a shape of 30 mm x 100 mm to prepare a measurement sample and evaluated. In addition, evaluation was made according to the following evaluation criteria, and a score of B or higher was considered to be a pass. (Evaluation criteria) A: Static friction coefficient is 0.30 or more and less than 0.70. B: Static friction coefficient is 0.70 or more and less than 1.00. C: Static friction coefficient is less than 0.30 or 1.00 or more.
  • Measurement was performed using Autograph (manufactured by Shimadzu Corporation, product name "AGS-X”) according to ASTM-D638. Specifically, a measurement sample was prepared by cutting out a plate sample with a thickness of 0.40 mm in the shape of a No. 1 dumbbell, and the measurement sample was pulled at a tension speed of 5 mm/min at a measurement temperature of 23 ° C. and a humidity of 50%. The elastic modulus was measured. Evaluation was performed according to the following evaluation criteria, and a score of B or higher was considered to be a pass. (Evaluation criteria) A: Tensile modulus is 1200 MPa or more and less than 1800 MPa. B: Tensile modulus is 800 MPa or more and less than 1200 MPa. C: Tensile modulus is less than 800 MPa or 1800 MPa or more.
  • Measurement was performed using Autograph (manufactured by Shimadzu Corporation, product name "AGS-X”) according to ASTM-D638. Specifically, a measurement sample was prepared by cutting out a plate sample with a thickness of 0.40 mm in the shape of a No. 1 dumbbell, and the sample was subjected to tensile rupture at a tensile speed of 5 mm/min under conditions of a measurement temperature of 23 ° C. and a humidity of 50%. Elongation was measured. Evaluation was performed according to the following evaluation criteria, and a score of B or higher was considered to be a pass. (Evaluation criteria) A: Tensile elongation at break is 15% or more. B: Tensile elongation at break is 10% or more and less than 15%. C: Tensile elongation at break is less than 10%.
  • Examples 2 and 3 and Comparative Example 1 A resin composition was prepared in the same manner as in Example 1, except that the composition of the resin composition was as shown in Table 1. Further, pellets were prepared in the same manner as in Example 1, and the MFR was measured. Furthermore, it was molded into a plate shape in the same manner as in Example 1, and the static friction coefficient, abrasion resistance evaluation, tensile elastic modulus, tensile elongation at break, and impact strength were evaluated. The results are shown in Table 1.
  • the resin compositions of Examples 1 to 3 that satisfied the configuration of this embodiment had static friction coefficient values within an appropriate range. Furthermore, the evaluation in the wear resistance test was also good. On the other hand, the resin composition of Comparative Example 1 had a coefficient of static friction that was not within an appropriate range, and the evaluation of the abrasion resistance test was also not good. From the above results, it was found that the resin composition according to the present embodiment had a static friction coefficient within a suitable range and had good wear resistance. Furthermore, the resin composition according to the present embodiment contains a certain amount of eggshell powder, and has a low environmental load.
  • the present invention can provide a styrenic resin composition with low environmental impact and excellent wear resistance, and molded products thereof, and has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides: a styrene resin composition which has a low environmental load and good wear resistance; and a molded article of this styrene resin composition. The present invention provides a resin composition which contains an eggshell powder and a styrene resin, wherein: the content of the eggshell powder is 20 parts by mass or more relative to a total of 100 parts by mass of the eggshell powder and the styrene resin; and the coefficient of static friction is not less than 0.3 but less than 1.0.

Description

樹脂組成物及びその成形品Resin compositions and molded products thereof
 本発明は、樹脂組成物及びその成形品に関する。 The present invention relates to a resin composition and a molded article thereof.
 近年、持続可能な社会の構築に向けて、石油等の化石資源に由来する熱可塑性樹脂に、バイオマス由来の材料を組み合わせた、バイオマス含有樹脂組成物の検討がなされている。例えば、特許文献1には、木粉や竹粉等のバイオマス粉をフィラーとして配合した、熱可塑性樹脂組成物が提案されている。また、廃棄物利用の観点から、熱可塑性樹脂組成物に無機充填材として配合される炭酸カルシウム粉末を、卵殻粉末や貝殻粉末等に置き換えること等も検討されている。このようなバイオマス含有樹脂組成物は、バイオマス由来材料の割合を増やすことで、化石資源に由来する熱可塑性樹脂の割合も減らせるため、より環境への負荷が少ない樹脂組成物として注目されている。 In recent years, with the aim of building a sustainable society, studies have been conducted on biomass-containing resin compositions that combine thermoplastic resins derived from fossil resources such as petroleum with materials derived from biomass. For example, Patent Document 1 proposes a thermoplastic resin composition containing biomass powder such as wood flour or bamboo flour as a filler. Furthermore, from the viewpoint of waste utilization, it is also being considered to replace calcium carbonate powder, which is blended as an inorganic filler in a thermoplastic resin composition, with eggshell powder, seashell powder, or the like. Such biomass-containing resin compositions are attracting attention as resin compositions with less environmental impact because by increasing the proportion of biomass-derived materials, the proportion of thermoplastic resins derived from fossil resources can also be reduced. .
 ところで、家電機器、自動車の内装材、玩具等に使用される樹脂製品は、一般に射出成形等により成形される。このうちスチレン系樹脂は、透明性、成形性に優れ、かつ安価であることから、射出成形用熱可塑性樹脂として、上記の各用途に広く応用されている。これら各種用途への展開が可能なスチレン系樹脂組成物においても、バイオマス由来材料への置き換えや、化石資源に由来するスチレン系樹脂の使用量を減らすこと等が求められている。 By the way, resin products used for home appliances, automobile interior materials, toys, etc. are generally molded by injection molding or the like. Among these, styrene resins have excellent transparency and moldability, and are inexpensive, so they are widely used as thermoplastic resins for injection molding in each of the above-mentioned applications. Even in styrenic resin compositions that can be used in various applications, there is a need to replace them with biomass-derived materials and to reduce the amount of styrene resins derived from fossil resources.
特開2018-119048号公報Japanese Patent Application Publication No. 2018-119048
 係る要求に対し、本願発明者らは、スチレン系樹脂組成物に配合される無機充填材を、バイオマス由来の卵殻粉末に置き換えて環境負荷の少ない樹脂組成物を製造し、その物性について検討した。 In response to such demands, the present inventors replaced the inorganic filler blended in a styrenic resin composition with biomass-derived eggshell powder to produce a resin composition with less environmental impact, and studied its physical properties.
 卵殻粉末含有スチレン系樹脂組成物を用いて射出成形品を作製したところ、嵌合部を備えた成形品である場合に、嵌合を繰り返すと、摩耗が起こり易いことが判明した。
 本発明は、上記事情に鑑みてなされたものであり、環境負荷が少なく、耐摩耗性に優れるスチレン系樹脂組成物及びその成形品を提供することを目的とする。
When an injection molded article was produced using a styrene-based resin composition containing eggshell powder, it was found that when the molded article was provided with a fitting portion, wear was likely to occur if the fitting was repeated.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a styrenic resin composition and a molded article thereof that have a low environmental impact and excellent wear resistance.
 上記課題に対して、本願発明者らは鋭意検討した結果、卵殻粉末含有スチレン系樹脂組成物の静止摩擦係数を一定以下とすることによって耐摩耗性が良好となることを見出し、本発明を完成させるに至った。
 すなわち、本発明は以下の態様を有する。
[1]卵殻粉末とスチレン系樹脂とを含む樹脂組成物であって、前記卵殻粉末の含有量が前記卵殻粉末及び前記スチレン系樹脂の合計100質量部に対して20質量部以上であり、静止摩擦係数が0.3以上1.0未満である樹脂組成物。
[2]前記樹脂組成物は、前記卵殻粉末50質量部に対し0.3~3.0質量部の可塑剤を含有する、[1]に記載の樹脂組成物。
[3]前記可塑剤が、シリコーンオイル及びシリコーン系ゴムから選択される少なくとも1種を含む、[2]に記載の樹脂組成物。
[4]前記スチレン系樹脂が、汎用ポリスチレン及び耐衝撃性ポリスチレンから選択される少なくとも1種と、スチレン-ブタジエン共重合体とを含む、[1]から[3]のいずれかに記載の樹脂組成物。
[5]前記卵殻粉末と前記スチレン系樹脂の合計100質量部に対し添加剤を10質量部未満含み、200℃、5kg荷重条件でのMFRの値が15g/10min以上である、[1]から[4]のいずれかに記載の樹脂組成物。
[6]前記卵殻粉末の平均粒子径が、3~50μmである、[1]から[5]のいずれかに記載の樹脂組成物。
[7]射出成形用である、[1]から[6]のいずれかに記載の樹脂組成物。
[8][1]から[7]のいずれかに記載の樹脂組成物を含む、成形品。
In response to the above problem, the inventors of the present invention conducted extensive studies and found that the abrasion resistance of the styrenic resin composition containing eggshell powder was improved by keeping the coefficient of static friction below a certain level, and completed the present invention. I ended up letting it happen.
That is, the present invention has the following aspects.
[1] A resin composition containing an eggshell powder and a styrene resin, wherein the content of the eggshell powder is 20 parts by mass or more based on a total of 100 parts by mass of the eggshell powder and the styrene resin, and the composition is static. A resin composition having a coefficient of friction of 0.3 or more and less than 1.0.
[2] The resin composition according to [1], wherein the resin composition contains 0.3 to 3.0 parts by mass of a plasticizer based on 50 parts by mass of the eggshell powder.
[3] The resin composition according to [2], wherein the plasticizer contains at least one selected from silicone oil and silicone rubber.
[4] The resin composition according to any one of [1] to [3], wherein the styrenic resin contains at least one selected from general-purpose polystyrene and high-impact polystyrene, and a styrene-butadiene copolymer. thing.
[5] From [1], containing less than 10 parts by mass of additives based on a total of 100 parts by mass of the eggshell powder and the styrene resin, and having an MFR value of 15 g/10 min or more at 200°C and a 5 kg load condition. The resin composition according to any one of [4].
[6] The resin composition according to any one of [1] to [5], wherein the eggshell powder has an average particle diameter of 3 to 50 μm.
[7] The resin composition according to any one of [1] to [6], which is for injection molding.
[8] A molded article containing the resin composition according to any one of [1] to [7].
 本発明によれば、環境負荷が少なく、耐摩耗性が良好なスチレン系樹脂組成物及びその成形品が提供される。 According to the present invention, a styrenic resin composition with low environmental impact and good wear resistance and a molded article thereof are provided.
 以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。一実施形態について記載した特定の説明が他の実施形態についても当てはまる場合には、他の実施形態においてはその説明を省略している場合がある。本明細書において数値範囲を示す「X~Y」との表現は、「X以上Y以下」であることを意味している。 Hereinafter, one embodiment of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within a range that does not impede the effects of the present invention. If a particular description given for one embodiment also applies to other embodiments, that description may be omitted for the other embodiments. In this specification, the expression "X to Y" indicating a numerical range means "more than or equal to X and less than or equal to Y."
[樹脂組成物]
 本実施形態に係る樹脂組成物は、卵殻粉末とスチレン系樹脂とを含み、前記卵殻粉末の含有量が前記卵殻粉末及び前記スチレン系樹脂の合計100質量部に対して20質量部以上であり、静止摩擦係数が0.3以上1.0未満であることを特徴とする。本実施形態に係る樹脂組成物は、耐摩耗性が良好となっている。また、バイオマス由来材料である卵殻粉末を一定量含んでいるため、従来のスチレン系樹脂組成物と比べて、環境への負荷も少ない。
 なお、本実施形態の樹脂組成物は、引張弾性率、引張破断伸び、成形性も良好であるため、射出成形用として用いることもできる。
[Resin composition]
The resin composition according to the present embodiment includes an eggshell powder and a styrene resin, and the content of the eggshell powder is 20 parts by mass or more with respect to a total of 100 parts by mass of the eggshell powder and the styrene resin, It is characterized by a static friction coefficient of 0.3 or more and less than 1.0. The resin composition according to this embodiment has good wear resistance. Furthermore, since it contains a certain amount of eggshell powder, which is a biomass-derived material, it has less environmental impact than conventional styrene-based resin compositions.
In addition, since the resin composition of this embodiment has good tensile modulus, tensile elongation at break, and moldability, it can also be used for injection molding.
<卵殻粉末>
 本実施形態に係る樹脂組成物は、卵殻粉末を含む。卵殻粉末の含有量は、卵殻粉末及びスチレン系樹脂の合計100質量部に対して、20質量部以上である。本明細書において「卵殻粉末」は、卵の殻を粉末状にしたものであれば、その原料は特に限定されないが、廃棄物の有効利用の観点からは、鶏の卵の殻を原料として含むことが好ましい。
<Eggshell powder>
The resin composition according to this embodiment contains eggshell powder. The content of the eggshell powder is 20 parts by mass or more based on a total of 100 parts by mass of the eggshell powder and styrene resin. In this specification, "eggshell powder" is not particularly limited in its raw material as long as it is made from powdered eggshells, but from the viewpoint of effective utilization of waste, it includes chicken eggshells as a raw material. It is preferable.
 一実施形態において、樹脂組成物中の卵殻粉末の含有量は、卵殻粉末及びスチレン系樹脂の合計100質量部に対して、30質量部以上であってもよく、40質量部以上であってもよく、50質量部以上であってもよい。得られる樹脂組成物のコンパウンド化の観点からは、卵殻粉末及びスチレン系樹脂の合計100質量部に対して、70質量部以下とすることが好ましい。すなわち、卵殻粉末及びスチレン系樹脂の合計100質量部における卵殻粉末の割合は、20~70質量部であってもよく、30~70質量部であってもよく、40~70質量部であってもよく、50~70質量部であってもよい。一実施形態において、卵殻粉末の含有量は、卵殻粉末及びスチレン系樹脂の合計100質量部に対して、20~50質量部であってもよい。 In one embodiment, the content of the eggshell powder in the resin composition may be 30 parts by mass or more, or 40 parts by mass or more, based on a total of 100 parts by mass of the eggshell powder and styrene resin. The amount may be 50 parts by mass or more. From the viewpoint of compounding the resulting resin composition, the amount is preferably 70 parts by mass or less based on the total of 100 parts by mass of eggshell powder and styrene resin. That is, the proportion of eggshell powder in a total of 100 parts by mass of eggshell powder and styrene resin may be 20 to 70 parts by mass, 30 to 70 parts by mass, or 40 to 70 parts by mass. The amount may be 50 to 70 parts by mass. In one embodiment, the content of the eggshell powder may be 20 to 50 parts by mass based on a total of 100 parts by mass of the eggshell powder and styrene resin.
 一実施形態において、卵殻粉末の平均粒子径は3~50μmが好ましく、3~40μmがより好ましく、4~30μmがさらに好ましい。卵殻粉末として、より微細な平均粒子径を有する粉末を用いた場合、例えば樹脂組成物に含有される可塑剤等が十分に吸収されず、ブリードアウトする場合がある。また、樹脂組成物中での卵殻粉末の分散性も低下しやすい。一方、平均粒子径が大きすぎると、所望の強度や柔軟性を備える成形品が得られにくくなる。特に、卵殻粉末として、50μmよりも大きな平均粒子径を有する卵殻粉末を配合した場合、樹脂が破断しやすくなり、所望の引張破断伸びが得られにくい場合がある。なお、卵殻粉末の平均粒子径は、「ふるい分け法」に沿って、粒子径分布測定装置で測定することができる。 In one embodiment, the average particle diameter of the eggshell powder is preferably 3 to 50 μm, more preferably 3 to 40 μm, and even more preferably 4 to 30 μm. When a powder having a finer average particle diameter is used as the eggshell powder, for example, the plasticizer contained in the resin composition may not be sufficiently absorbed and may bleed out. Further, the dispersibility of the eggshell powder in the resin composition is also likely to decrease. On the other hand, if the average particle diameter is too large, it becomes difficult to obtain a molded article with desired strength and flexibility. In particular, when an eggshell powder having an average particle diameter larger than 50 μm is blended as the eggshell powder, the resin tends to break easily and it may be difficult to obtain the desired tensile elongation at break. The average particle size of the eggshell powder can be measured using a particle size distribution measuring device according to the "sieving method".
 一実施形態において、卵殻粉末の密度(g/cm)は2.0~3.0g/cmであることが好ましく、2.0~2.8g/cmであることがより好ましく、2.3~2.7g/cmであることが特に好ましい。 In one embodiment, the density (g/cm 3 ) of the eggshell powder is preferably 2.0 to 3.0 g/cm 3 , more preferably 2.0 to 2.8 g/cm 3 , and 2.0 to 3.0 g/cm 3 . .3 to 2.7 g/cm 3 is particularly preferred.
 一実施形態において、樹脂組成物中の卵殻粉末の割合は、樹脂組成物の総質量に対して、10~70質量%であってもよく、30~60質量%であってもよい。 In one embodiment, the proportion of eggshell powder in the resin composition may be 10 to 70% by mass, or 30 to 60% by mass, based on the total mass of the resin composition.
 卵殻粉末は、従来公知の製造方法により調製することができる。例えば、卵殻を公知の方法で粉砕したのち、分級して所望の平均粒子径を有する卵殻粉末を得てもよい。具体的には、卵殻から卵殻膜を除去した後、卵殻を乾燥処理する。その後、粉砕機等で粉砕して卵殻の粉末を得る。その後、適当なメッシュ径を有する篩を用いて分級することで、卵殻粉末とすることができる。 Eggshell powder can be prepared by conventionally known manufacturing methods. For example, eggshells may be crushed by a known method and then classified to obtain eggshell powder having a desired average particle size. Specifically, after removing the eggshell membrane from the eggshell, the eggshell is dried. Thereafter, the eggshell powder is crushed using a crusher or the like to obtain eggshell powder. Thereafter, the eggshell powder can be obtained by classifying it using a sieve having an appropriate mesh diameter.
 また、卵殻粉末は市販品を用いることもできる。市販品としては、例えば、(株)グリーンテクノ21製、商品名「GT-26」、キユーピータマゴ(株)製、商品名「カルホープ(登録商標)」等が挙げられる。 Additionally, commercially available eggshell powder can also be used. Examples of commercially available products include those manufactured by Green Techno 21 Co., Ltd. under the trade name "GT-26" and manufactured by Kewpie Egg Co., Ltd. under the trade name "Calhope (registered trademark)".
 一実施形態において、樹脂組成物中には卵殻粉末以外の無機充填材が含まれていてもよい。卵殻粉末以外の無機充填材としては、例えば、炭酸カルシウム、タルク、ゼオライト等の鉱物由来の無機充填材;卵殻粉末以外のバイオミネラル由来の無機充填材等が挙げられる。なお、「バイオミネラル」とは生物が作り出す鉱物を指し、真珠、貝殻、卵殻、骨、甲殻類の外骨格等を指す。卵殻粉末と前述の無機充填材を併用する場合、卵殻粉末と前記無機充填材の合計量が、卵殻粉末及びスチレン系樹脂の合計100質量部に対して、70質量部を超えない範囲内で調整することが好ましい。なお、引張弾性率及び引張破断伸びと、成形性とを両立しやすくする観点からは、無機充填材として、卵殻粉末のみを含んでいてもよい。 In one embodiment, the resin composition may contain an inorganic filler other than eggshell powder. Examples of inorganic fillers other than eggshell powder include inorganic fillers derived from minerals such as calcium carbonate, talc, and zeolite; inorganic fillers derived from biominerals other than eggshell powder, and the like. The term "biomineral" refers to minerals produced by living things, such as pearls, seashells, eggshells, bones, and the exoskeletons of crustaceans. When eggshell powder and the above-mentioned inorganic filler are used together, the total amount of the eggshell powder and the inorganic filler is adjusted within a range that does not exceed 70 parts by mass based on the total of 100 parts by mass of the eggshell powder and styrene resin. It is preferable to do so. In addition, from the viewpoint of making it easier to achieve both tensile modulus, tensile elongation at break, and moldability, only eggshell powder may be included as the inorganic filler.
<スチレン系樹脂>
 本実施形態に係る樹脂組成物は、スチレン系樹脂を含む。スチレン系樹脂の含有量は、卵殻粉末及びスチレン系樹脂の合計100質量部に対して、80質量部以下である。一実施形態において、スチレン系樹脂の含有量は、30~80質量部であってもよく、60~80質量部であってもよく、50~80質量部であってもよい。よりスチレン系樹脂の含有量の少ない樹脂組成物とする観点からは、スチレン系樹脂の含有量は、卵殻粉末及びスチレン系樹脂の合計100質量部に対して、30~50質量部であってもよい。
<Styrenic resin>
The resin composition according to this embodiment contains a styrene resin. The content of the styrene resin is 80 parts by mass or less based on a total of 100 parts by mass of the eggshell powder and the styrene resin. In one embodiment, the content of the styrenic resin may be 30 to 80 parts by weight, 60 to 80 parts by weight, or 50 to 80 parts by weight. From the viewpoint of creating a resin composition with a lower content of styrene resin, the content of styrene resin may be 30 to 50 parts by mass based on the total of 100 parts by mass of eggshell powder and styrene resin. good.
 本明細書において「スチレン系樹脂」とは、芳香族ビニル化合物に由来する単量体単位を含むポリマーを意味する。本実施形態に係るスチレン系樹脂は、芳香族ビニル化合物の重合体、芳香族ビニル化合物と共重合可能な化合物と、芳香族ビニル化合物との共重合体、または、これらをゴム質重合体の存在下で重合した重合体を含むことができる。 As used herein, "styrenic resin" means a polymer containing monomer units derived from an aromatic vinyl compound. The styrenic resin according to this embodiment is a polymer of an aromatic vinyl compound, a copolymer of a compound copolymerizable with an aromatic vinyl compound and an aromatic vinyl compound, or a polymer of these in the presence of a rubbery polymer. Polymers polymerized below can be included.
 芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、o-メチルスチレン、m-メチルスチレン、エチルスチレン、p-t-ブチルスチレン等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。このうち、スチレンを含むことが好ましい。 Examples of the aromatic vinyl compound include styrene, α-methylstyrene, p-methylstyrene, o-methylstyrene, m-methylstyrene, ethylstyrene, and pt-butylstyrene. These may be used alone or in combination of two or more. Among these, it is preferable to include styrene.
 芳香族ビニル化合物と共重合可能な化合物としては、例えば、メチルメタクリレート、エチルメタクリレート等のメタクリル酸エステル類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル化合物類;無水マレイン酸等の酸無水物等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。 Examples of compounds copolymerizable with aromatic vinyl compounds include methacrylic acid esters such as methyl methacrylate and ethyl methacrylate; unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; and acid anhydrides such as maleic anhydride. Can be mentioned. These may be used alone or in combination of two or more.
 前記共重合可能な化合物の質量割合としては、前記芳香族ビニル化合物と前記共重合可能な化合物との合計量(100質量%)に対して、20質量%以下が好ましく、より好ましくは15質量%以下である。 The mass proportion of the copolymerizable compound is preferably 20% by mass or less, more preferably 15% by mass, based on the total amount (100% by mass) of the aromatic vinyl compound and the copolymerizable compound. It is as follows.
 ゴム質重合体としては、例えば、共役ジエンゴム、共役ジエンと芳香族ビニル化合物との共重合体、エチレン-プロピレン共重合体系ゴム等が挙げられる。より具体的には、ポリブタジエン、スチレン-ブタジエンランダム共重合体、スチレン-ブタジエンブロック共重合体、これらの一部または全部を水添した重合体等が挙げられる。 Examples of the rubbery polymer include conjugated diene rubber, copolymer of conjugated diene and aromatic vinyl compound, ethylene-propylene copolymer rubber, and the like. More specifically, examples include polybutadiene, styrene-butadiene random copolymers, styrene-butadiene block copolymers, and polymers obtained by hydrogenating some or all of these.
 一実施形態において、スチレン系樹脂の重量平均分子量(Mw)は、10,000~500,000であることが好ましく、100,000~300,000であることがより好ましい。スチレン系樹脂のMwが前記範囲内であれば、流動性が良好となりやすい。なお、スチレン系樹脂のMwはGPC(ゲルパーミエーションクロマトグラフィ)により、ポリスチレン換算によって算出した値を指す。 In one embodiment, the weight average molecular weight (Mw) of the styrenic resin is preferably 10,000 to 500,000, more preferably 100,000 to 300,000. If the Mw of the styrene resin is within the above range, the fluidity tends to be good. Note that the Mw of the styrene resin refers to a value calculated by GPC (gel permeation chromatography) in terms of polystyrene.
 一実施形態において、スチレン系樹脂は、汎用ポリスチレン及び耐衝撃性ポリスチレンから選択される少なくとも1種と、スチレン-ブタジエン共重合体とを含むことが好ましい。
 一実施形態において、引張弾性率およびインパクト強度(特にインパクト強度)により優れる樹脂組成物が得られやすくなる観点からは、ポリスチレン系樹脂は、前記芳香族ビニル化合物に由来する単量体単位と、前記不飽和ニトリル化合物類に由来する単量体単位と、前述のゴム質重合体とを含む重合体を含んでいてもよい。このような重合体としては、アクリロニトリルとスチレンと共役ジエンゴムとの共重合体が好ましく、アクリロニトリル-ブタジエン-スチレン共重合体がより好ましい。
In one embodiment, the styrenic resin preferably contains at least one selected from general-purpose polystyrene and high-impact polystyrene, and a styrene-butadiene copolymer.
In one embodiment, from the viewpoint of easily obtaining a resin composition with excellent tensile modulus and impact strength (particularly impact strength), the polystyrene-based resin contains a monomer unit derived from the aromatic vinyl compound and the monomer unit derived from the aromatic vinyl compound. It may contain a polymer containing a monomer unit derived from an unsaturated nitrile compound and the above-mentioned rubbery polymer. As such a polymer, a copolymer of acrylonitrile, styrene, and conjugated diene rubber is preferred, and an acrylonitrile-butadiene-styrene copolymer is more preferred.
(汎用ポリスチレン樹脂)
 汎用ポリスチレン樹脂は、スチレンのホモポリマーであり、「GPPS」と表記される樹脂である。スチレン系樹脂が汎用ポリスチレン樹脂を含むことにより、引張弾性率が良好となりやすい。一実施形態において、汎用ポリスチレン樹脂の質量平均分子量(Mw)は、流動性の観点から、10,000~500,000であってもよく、100,000~300,000であってもよい。汎用ポリスチレン樹脂のMwはGPC(ゲルパーミエーションクロマトグラフィ)により、ポリスチレン換算によって算出した値を指す。
(General-purpose polystyrene resin)
General-purpose polystyrene resin is a homopolymer of styrene, and is a resin expressed as "GPPS." When the styrene resin contains a general-purpose polystyrene resin, the tensile modulus tends to be good. In one embodiment, the mass average molecular weight (Mw) of the general-purpose polystyrene resin may be 10,000 to 500,000, or 100,000 to 300,000, from the viewpoint of fluidity. The Mw of a general-purpose polystyrene resin refers to a value calculated by GPC (gel permeation chromatography) in terms of polystyrene.
 一実施形態において、スチレン系樹脂中の汎用ポリスチレン樹脂の割合は、引張弾性率の観点からは、スチレン系樹脂の総質量に対して、20~95質量%が好ましく、30~80質量%がより好ましい。また、樹脂組成物中の汎用ポリスチレン樹脂の割合は、樹脂組成物の総質量に対して、10~85質量%であってもよく、10~60質量%であってもよい。 In one embodiment, the proportion of the general-purpose polystyrene resin in the styrenic resin is preferably 20 to 95% by mass, more preferably 30 to 80% by mass, based on the total mass of the styrene resin, from the viewpoint of tensile modulus. preferable. Further, the proportion of the general-purpose polystyrene resin in the resin composition may be 10 to 85% by mass, or 10 to 60% by mass, based on the total mass of the resin composition.
(耐衝撃性ポリスチレン)
 耐衝撃性ポリスチレンは、ゴム質重合体にスチレン単量体をグラフト重合させたグラフト重合体であり、「HIPS」と表記される樹脂である。スチレン系樹脂が耐衝撃性ポリスチレンを含むことにより、耐衝撃強度が良好となりやすい。一実施形態において、耐衝撃性ポリスチレンの質量平均分子量(Mw)は、流動性の観点から、100,000~250,000であってもよく、130,000~200,000であってもよい。耐衝撃性ポリスチレンのMwはGPC(ゲルパーミエーションクロマトグラフィ)により、ポリスチレン換算によって算出した値を指す。
(High impact polystyrene)
High-impact polystyrene is a graft polymer obtained by graft-polymerizing a styrene monomer onto a rubbery polymer, and is a resin expressed as "HIPS". When the styrenic resin contains impact-resistant polystyrene, impact resistance strength tends to be good. In one embodiment, the weight average molecular weight (Mw) of the high-impact polystyrene may be from 100,000 to 250,000, or from 130,000 to 200,000, from the viewpoint of fluidity. The Mw of impact-resistant polystyrene refers to a value calculated by GPC (gel permeation chromatography) in terms of polystyrene.
 一実施形態において、スチレン系樹脂中の耐衝撃性ポリスチレンの割合は、フィラー高充填による脆性の改善の観点からは、スチレン系樹脂の総質量に対して、10~90質量%が好ましく、50~85質量%がより好ましい。また、樹脂組成物中の耐衝撃性ポリスチレンの割合は、樹脂組成物の総質量に対して、10~75質量%であってもよく、10~60質量%であってもよい。 In one embodiment, the proportion of high-impact polystyrene in the styrenic resin is preferably 10 to 90% by mass, and 50 to 90% by mass based on the total mass of the styrenic resin, from the viewpoint of improving brittleness due to high filler filling. 85% by mass is more preferred. Further, the proportion of high-impact polystyrene in the resin composition may be 10 to 75% by mass, or 10 to 60% by mass, based on the total mass of the resin composition.
(スチレン-ブタジエン共重合体樹脂)
 スチレン-ブタジエン共重合体樹脂は、スチレンとブタジエンを含むモノマー混合物を重合させて得られる共重合体樹脂である。スチレン-ブタジエン共重合体樹脂としては、例えば、スチレン-ブタジエン(SB)、スチレン-ブタジエン-ブチレン(SBB)、スチレン-ブタジエン-イソプレン(SBI)、スチレン-ブタジエン-スチレン(SBS)、スチレン-ブタジエン-ブチレン-スチレン(SBBS)、及びスチレン-ブタジエン-イソプレン-スチレン(SBIS)等のブロック共重合体、ならびにこれらを水添したブロック共重合体等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。このうち、フィラー高充填による脆性の改善の観点から、スチレン-ブタジエン共重合体樹脂としては、スチレン-ブタジエン(SB)の共重合体を含むことが好ましい。
(Styrene-butadiene copolymer resin)
Styrene-butadiene copolymer resin is a copolymer resin obtained by polymerizing a monomer mixture containing styrene and butadiene. Examples of the styrene-butadiene copolymer resin include styrene-butadiene (SB), styrene-butadiene-butylene (SBB), styrene-butadiene-isoprene (SBI), styrene-butadiene-styrene (SBS), and styrene-butadiene- Examples include block copolymers such as butylene-styrene (SBBS) and styrene-butadiene-isoprene-styrene (SBIS), and hydrogenated block copolymers thereof. These may be used alone or in combination of two or more. Among these, the styrene-butadiene copolymer resin preferably contains a styrene-butadiene (SB) copolymer from the viewpoint of improving brittleness due to high filler filling.
 一実施形態において、スチレン-ブタジエン共重合体樹脂の質量平均分子量(Mw)は、100,000~200,000であることが好ましく、120,000~180,000であることがより好ましい。スチレン-ブタジエン共重合体樹脂のMwが前記範囲内であれば、汎用ポリスチレン樹脂及び/又は耐衝撃性ポリスチレンとの相溶性が良好となりやすい。なお、スチレン-ブタジエン共重合体樹脂のMwはGPC(ゲルパーミエーションクロマトグラフィ)により、ポリスチレン換算によって算出した値を指す。 In one embodiment, the weight average molecular weight (Mw) of the styrene-butadiene copolymer resin is preferably 100,000 to 200,000, more preferably 120,000 to 180,000. If the Mw of the styrene-butadiene copolymer resin is within the above range, the compatibility with the general-purpose polystyrene resin and/or high-impact polystyrene tends to be good. Note that the Mw of the styrene-butadiene copolymer resin refers to a value calculated by GPC (gel permeation chromatography) in terms of polystyrene.
 一実施形態において、スチレン系樹脂中のスチレン-ブタジエン共重合体樹脂の割合は、脆性改善の観点からは、スチレン系樹脂の総質量に対して、8~60質量%が好ましく、10~50質量%がより好ましい。また、樹脂組成物中のスチレン-ブタジエン共重合体樹脂の割合は、樹脂組成物の総質量に対して、3~45質量%であってもよく、5~35質量%であってもよい。 In one embodiment, the proportion of the styrene-butadiene copolymer resin in the styrene resin is preferably 8 to 60% by mass, and 10 to 50% by mass, based on the total mass of the styrene resin, from the viewpoint of improving brittleness. % is more preferable. Further, the proportion of the styrene-butadiene copolymer resin in the resin composition may be 3 to 45% by mass, or 5 to 35% by mass, based on the total mass of the resin composition.
 一実施形態において、樹脂組成物の引張弾性率を調整しやすくする観点から、スチレン-ブタジエン共重合体樹脂中の共役ジエン量は、スチレン-ブタジエン共重合体樹脂の総質量に対して、5~40質量%が好ましく、6~30質量%がより好ましく、8~28質量%が特に好ましい。「共役ジエン量」とは、スチレン-ブタジエン共重合体樹脂に含まれるブタジエンの量を指す。前記共役ジエン量は、スチレン-ブタジエン共重合体樹脂を調製する際のブタジエンの仕込み量から算出された値であってもよく、一塩化ヨウ素、ヨウ化カリウムおよびチオ硫酸ナトリウム標準液を用いた電位差滴定によって測定した値であってもよい。 In one embodiment, from the viewpoint of easily adjusting the tensile modulus of the resin composition, the amount of conjugated diene in the styrene-butadiene copolymer resin is 5 to 5, based on the total mass of the styrene-butadiene copolymer resin. It is preferably 40% by weight, more preferably 6-30% by weight, particularly preferably 8-28% by weight. "Conjugated diene amount" refers to the amount of butadiene contained in the styrene-butadiene copolymer resin. The amount of conjugated diene may be a value calculated from the amount of butadiene charged when preparing the styrene-butadiene copolymer resin, and the amount of conjugated diene may be a value calculated from the amount of butadiene charged when preparing the styrene-butadiene copolymer resin. It may also be a value measured by titration.
 一実施形態において、汎用ポリスチレン樹脂及び/又は耐衝撃性ポリスチレンとスチレン-ブタジエン共重合体樹脂との合計量は、スチレン系樹脂の総質量に対して、50~100質量%であってもよく、60~100質量%であってもよい。スチレン系樹脂中の汎用ポリスチレン樹脂及び/又は耐衝撃性ポリスチレンとスチレン-ブタジエン共重合体樹脂との合計量が上記範囲内であれば、引張弾性率及び流動性の良好な樹脂組成物が得られやすくなる。 In one embodiment, the total amount of the general-purpose polystyrene resin and/or the high-impact polystyrene and the styrene-butadiene copolymer resin may be 50 to 100% by weight based on the total weight of the styrenic resin, It may be 60 to 100% by mass. If the total amount of general-purpose polystyrene resin and/or impact-resistant polystyrene and styrene-butadiene copolymer resin in the styrene resin is within the above range, a resin composition with good tensile modulus and fluidity can be obtained. It becomes easier.
 スチレン系樹脂には、汎用ポリスチレン樹脂、耐衝撃性ポリスチレン、スチレン-ブタジエン共重合体樹脂以外の成分(その他の成分)が含まれていてもよい。その他の成分としては、例えば、スチレン-ブタジエン共重合体樹脂以外のスチレン系熱可塑性エラストマー(例えば、スチレン-イソプレン(SI)、スチレン-イソプレン-スチレン(SIS)等のブロック共重合体、ならびにこれらを水添したブロック共重合体等)が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。スチレン系樹脂がその他の成分を含む場合、スチレン系樹脂の総質量に対して、30質量%以下とすることが好ましい。 The styrene resin may contain components (other components) other than the general-purpose polystyrene resin, impact-resistant polystyrene, and styrene-butadiene copolymer resin. Other components include, for example, styrene-based thermoplastic elastomers other than styrene-butadiene copolymer resins (for example, block copolymers such as styrene-isoprene (SI) and styrene-isoprene-styrene (SIS)), and hydrogenated block copolymers, etc.). These may be used alone or in combination of two or more. When the styrenic resin contains other components, the content is preferably 30% by mass or less based on the total mass of the styrene resin.
<可塑剤>
 一実施形態において、樹脂組成物は、可塑剤を含むことが好ましい。可塑剤の含有量としては、卵殻粉末50質量部に対して、0.3~3.0質量部が好ましく、0.3~2.5質量部であってもよく、0.3~2.0質量部であってもよく、0.3~1.5質量部であってもよい。可塑剤の含有量を0.3質量部以上とすることで、樹脂組成物の静止摩擦係数の上昇が抑制され、3.0質量部以下とすることで、可塑剤がブリードアウトすることが抑制される。
 一実施形態において、卵殻粉末及びスチレン系樹脂の合計100質量部に対して、0.3~3.0質量部が好ましい。一実施形態において、可塑剤の含有量は、0.3~2.5質量部であってもよく、0.3~2.0質量部であってもよく、0.3~1.5質量部であってもよい。
 可塑剤としては、パラフィン系やナフテン系等のプロセスオイル、流動パラフィンやその他のパラフィン類、ワックス類、シリコーンオイルやシリコーン系ゴム等の合成高分子系可塑剤、フタル酸系やアジピン酸系、セバシン酸系やリン酸系等のエステル系可塑剤類等が挙げられる。中でも合成高分子系可塑剤、特にシリコーンオイル及びシリコーン系ゴムから選択される可塑剤を好適に用いることができる。
<Plasticizer>
In one embodiment, the resin composition preferably includes a plasticizer. The content of the plasticizer is preferably 0.3 to 3.0 parts by weight, may be 0.3 to 2.5 parts by weight, and may be 0.3 to 2.0 parts by weight, based on 50 parts by weight of the eggshell powder. It may be 0 parts by mass or 0.3 to 1.5 parts by mass. By setting the content of the plasticizer to 0.3 parts by mass or more, an increase in the coefficient of static friction of the resin composition is suppressed, and by setting the content of the plasticizer to 3.0 parts by weight or less, bleed-out of the plasticizer is suppressed. be done.
In one embodiment, the amount is preferably 0.3 to 3.0 parts by mass based on a total of 100 parts by mass of eggshell powder and styrene resin. In one embodiment, the content of the plasticizer may be 0.3 to 2.5 parts by weight, may be 0.3 to 2.0 parts by weight, and may be 0.3 to 1.5 parts by weight. It may be a department.
Plasticizers include process oils such as paraffin and naphthene, liquid paraffin and other paraffins, waxes, synthetic polymer plasticizers such as silicone oil and silicone rubber, phthalic acid and adipic acid, and sebacin. Examples include ester plasticizers such as acid-based and phosphoric acid-based plasticizers. Among these, synthetic polymer plasticizers, particularly plasticizers selected from silicone oil and silicone rubber, can be suitably used.
(シリコーンオイル)
 シリコーンオイルとしては、公知のものが使用できるが、耐熱性や透明性等の観点から選択したものを使用してよい。シリコーンオイルとしては、例えば、ジメチルポリシロキサン、メチルフェニルシロキサン、メチルハイドロジェンポリシロキサン、およびこれらの変性体を使用してもよい。これらを単独で用いても2種以上を組み合わせて用いてもよい。このうち、より耐摩耗性に優れる樹脂組成物が得られやすい観点からは、ジメチルポリシロキサンを含むことが好ましい。好ましい実施形態において、ジメチルシロキサンとしては、25℃での動粘度が100~500mm/sのものを採用してもよい。動粘度の測定は、例えばJIS K 2283:2000の「5.動粘度試験方法」に従って、キャノンフェンスケ粘度計を用いて37.8℃又は40℃の試験温度で測定することにより行うことができる。
(silicone oil)
As the silicone oil, any known silicone oil can be used, and one selected from the viewpoint of heat resistance, transparency, etc. may be used. As the silicone oil, for example, dimethylpolysiloxane, methylphenylsiloxane, methylhydrogenpolysiloxane, and modified products thereof may be used. These may be used alone or in combination of two or more. Among these, it is preferable to include dimethylpolysiloxane from the viewpoint of easily obtaining a resin composition with more excellent wear resistance. In a preferred embodiment, dimethylsiloxane having a kinematic viscosity of 100 to 500 mm 2 /s at 25° C. may be used. Kinematic viscosity can be measured, for example, by measuring at a test temperature of 37.8°C or 40°C using a Cannon-Fenske viscometer according to "5. Kinematic viscosity test method" of JIS K 2283:2000. .
(シリコーン系ゴム)
 シリコーン系ゴムとは、ポリオルガノシロキサンゴムを含有するゴムである。当該シリコーン系ゴムは、ポリオルガノシロキサンゴム、又はポリオルガノシロキサンとポリアルキル(メタ)アクリレートゴムを複合化したシリコーン/アクリル系複合ゴムである。当該シリコーン/アクリル複合ゴムとは、構成する単量体2種以上を用いて重合する際に、単に重合するのではなく、段階的に重合することにより得られるゴムのことである。
(Silicone rubber)
Silicone rubber is a rubber containing polyorganosiloxane rubber. The silicone rubber is a polyorganosiloxane rubber or a silicone/acrylic composite rubber that is a composite of polyorganosiloxane and polyalkyl (meth)acrylate rubber. The silicone/acrylic composite rubber is a rubber obtained by polymerizing two or more constituent monomers, not simply by polymerizing, but by polymerizing in stages.
<添加剤>
 本発明の一実施形態においては、樹脂組成物は、添加剤を含む。添加剤の含有量としては、卵殻粉末及びスチレン系樹脂の合計100質量部に対して10質量部以下が好ましく、9質量部以下であってもよく、8質量部以下であってもよく、7質量部以下であってもよい。添加剤の含有量の下限は、本発明の効果を有する限り特に限定されず、0.5質量部以上であってもよく、1質量部以上であってもよい。
<Additives>
In one embodiment of the invention, the resin composition includes additives. The content of the additive is preferably 10 parts by mass or less, based on a total of 100 parts by mass of eggshell powder and styrene resin, may be 9 parts by mass or less, may be 8 parts by mass or less, and may be 7 parts by mass or less. It may be less than parts by mass. The lower limit of the content of the additive is not particularly limited as long as it has the effects of the present invention, and may be 0.5 parts by mass or more, or 1 part by mass or more.
(化合物)
 本実施形態において、添加剤は、脂肪酸アマイド、脂肪酸ナトリウム、及び脂肪酸エステルから選択される化合物を主成分として含んでいる。ここで、「化合物を主成分として含む」とは、添加剤中の化合物の合計含有量が、添加剤の総質量に対して50質量%超であることを指す。このような添加剤を、卵殻粉末、スチレン系樹脂と組み合わせることにより、引張破断伸び及び引張弾性率が良好であり、かつ成形性にも優れる樹脂組成物となる。
 化合物は、構造内に「R-C(=O)-」で表される脂肪酸基を有する化合物であり、Rは置換基を有していてもよい炭化水素基である。「置換基を有していてもよい」とは、炭化水素基内の1つ以上の水素原子が置換基で置換されていてもよいことを意味する。このような化合物を主成分として含むことにより、特に引張破断伸びが良好な樹脂組成物が得られる。
(Compound)
In this embodiment, the additive contains a compound selected from fatty acid amide, fatty acid sodium, and fatty acid ester as a main component. Here, "containing a compound as a main component" means that the total content of compounds in the additive is more than 50% by mass based on the total mass of the additive. By combining such additives with eggshell powder and styrene resin, a resin composition with good tensile elongation at break and tensile modulus and excellent moldability can be obtained.
The compound is a compound having a fatty acid group represented by "RC(=O)-" in its structure, and R is a hydrocarbon group which may have a substituent. "Optionally having a substituent" means that one or more hydrogen atoms within the hydrocarbon group may be substituted with a substituent. By containing such a compound as a main component, a resin composition having particularly good tensile elongation at break can be obtained.
 本実施形態において、脂肪酸アマイドは、構造内に「R-C(=O)-N-」で表されるアミド基を有する化合物である。「脂肪酸アマイド」には、第一級アミド、第二級アミド、第三級アミド、及び1分子中に窒素原子を2個以上有するものが含まれる。一方で、本実施形態における脂肪酸アマイドには、ナイロン-6に代表される脂肪族ポリアミドのような重合体は含まれない。
 前記Rは、置換基を有していてもよい炭化水素基であり、好ましくは、炭素数2以上の、置換基を有していてもよいアルキル基、又は置換基を有していてもよいアルケニル基である。このような脂肪酸アマイドとしては本発明の効果を有する限り特に限定されないが、スチレン系樹脂との相溶性の観点からは、Rが炭素数10以上の、置換基を有していてもよいアルキル基、又は置換基を有していてもよいアルケニル基である、高級脂肪酸アマイドであることが好ましい。具体的には、ラウリン酸アマイド、パルミチン酸アマイド、ステアリン酸アマイド、ベヘン酸アマイド等の飽和脂肪酸モノアマイド類;オレイン酸アマイド、エルカ酸アマイド等の不飽和脂肪酸モノアマイド類;N-ステアリルステアリン酸アマイド、N-ステアリルオレイン酸アマイド、N-オレイルステアリン酸アマイド、N-ステアリルエルカ酸アマイド等の置換アマイド類;メチレンビスステアリン酸アマイド、エチレンビスカプリン酸アマイド、エチレンビスラウリン酸アマイド、エチレンビスステアリン酸アマイド、エチレンビスベヘン酸アマイド、ヘキサメチレンビスステアリン酸アマイド、ヘキサメチレンビスベヘン酸アマイド、N,N’-ジステアリルアジピン酸アマイド等の飽和脂肪酸ビスアマイド;エチレンビスオレイン酸アマイド、エチレンビスエルカ酸アマイド、ヘキサメチレンビスオレイン酸アマイド、N,N’-ジオレイルアジピン酸アマイド等の不飽和脂肪酸ビスアマイド類等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。このうち、樹脂との押出の観点からは、炭素数10以上の飽和脂肪酸ビスアマイドを含むことが好ましい。
In the present embodiment, the fatty acid amide is a compound having an amide group represented by "R 1 -C(=O)-N-" in its structure. "Fatty acid amide" includes primary amide, secondary amide, tertiary amide, and those having two or more nitrogen atoms in one molecule. On the other hand, the fatty acid amide in this embodiment does not include a polymer such as an aliphatic polyamide typified by nylon-6.
The above R 1 is a hydrocarbon group which may have a substituent, preferably an alkyl group having 2 or more carbon atoms and which may have a substituent, or an alkyl group which may have a substituent. It is a good alkenyl group. Such fatty acid amide is not particularly limited as long as it has the effect of the present invention, but from the viewpoint of compatibility with styrene resin, R 1 is an optionally substituted alkyl having 10 or more carbon atoms. A higher fatty acid amide, which is a group or an alkenyl group which may have a substituent, is preferable. Specifically, saturated fatty acid monoamides such as lauric acid amide, palmitic acid amide, stearic acid amide, and behenic acid amide; unsaturated fatty acid monoamides such as oleic acid amide and erucic acid amide; N-stearyl stearic acid amide, N-stearyl stearic acid amide, -Substituted amides such as stearyl oleamide, N-oleyl stearamide, N-stearyl erucamide; methylene bis stearamide, ethylene biscapric acid amide, ethylene bis lauric acid amide, ethylene bis stearic acid amide, ethylene Saturated fatty acid bisamides such as bisbehenic acid amide, hexamethylene bisstearic acid amide, hexamethylene bisbehenic acid amide, N,N'-distearyladipic acid amide; ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisamide Examples include unsaturated fatty acid bisamides such as oleic acid amide and N,N'-dioleyladipic acid amide. These may be used alone or in combination of two or more. Among these, from the viewpoint of extrusion with the resin, it is preferable to include a saturated fatty acid bisamide having 10 or more carbon atoms.
 本実施形態において、脂肪酸ナトリウムは、「R-C(=O)-O-Na」で表される化合物であり、Rは、Rと同じものが例示でき、好ましくは、炭素数2以上の、置換基を有していてもよいアルキル基、又は置換基を有していてもよいアルケニル基である。このような脂肪酸ナトリウムとしては本発明の効果を有する限り特に限定されないが、スチレン系樹脂との相溶性の観点からは、Rが炭素数10以上の、置換基を有していてもよいアルキル基、又は置換基を有していてもよいアルケニル基である、高級脂肪酸のナトリウム塩であることが好ましい。具体的には、ラウリン酸ナトリウム、ミリスチン酸ナトリウム、パルミチン酸ナトリウム、オレイン酸ナトリウム、ステアリン酸ナトリウム等の炭素数10~20の高級脂肪酸のナトリウム塩が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。すなわち、脂肪酸ナトリウムは、前述の炭素数10~20の高級脂肪酸ナトリウム塩の混合物であってもよい。 In the present embodiment, the fatty acid sodium is a compound represented by "R 2 -C(=O)-O-Na", and R 2 can be exemplified by the same compound as R 1 , and preferably has 2 carbon atoms. These are the above alkyl groups which may have a substituent or alkenyl groups which may have a substituent. Such sodium fatty acids are not particularly limited as long as they have the effects of the present invention, but from the viewpoint of compatibility with styrene resins, R 2 is an optionally substituted alkyl having 10 or more carbon atoms. A sodium salt of a higher fatty acid, which is a group or an alkenyl group which may have a substituent, is preferable. Specific examples include sodium salts of higher fatty acids having 10 to 20 carbon atoms, such as sodium laurate, sodium myristate, sodium palmitate, sodium oleate, and sodium stearate. These may be used alone or in combination of two or more. That is, the fatty acid sodium may be a mixture of the aforementioned higher fatty acid sodium salts having 10 to 20 carbon atoms.
 本実施形態において、脂肪酸エステルは、前述の脂肪酸基を含むエステルである。一実施形態において、脂肪酸エステルは、炭素数10以上の高級脂肪酸と多価アルコールとの反応によって得られる高級脂肪酸エステルであることが好ましい。前記高級脂肪酸は、置換基を有していてもよい炭素数10以上のアルキル基又はアルケニル基であることが好ましい。また、多価アルコールとしては、エチレングリコール、グリセリン、1,2,4-ブタントリオール、ジグリセリン、ペンタエリスリトール、ソルビトール、エリスリトール、ヘキサントリオール等の2価~6価の多価アルコールが挙げられる。 In this embodiment, the fatty acid ester is an ester containing the aforementioned fatty acid group. In one embodiment, the fatty acid ester is preferably a higher fatty acid ester obtained by a reaction between a higher fatty acid having 10 or more carbon atoms and a polyhydric alcohol. The higher fatty acid is preferably an alkyl group or alkenyl group having 10 or more carbon atoms which may have a substituent. Further, examples of the polyhydric alcohol include divalent to hexavalent polyhydric alcohols such as ethylene glycol, glycerin, 1,2,4-butanetriol, diglycerin, pentaerythritol, sorbitol, erythritol, and hexanetriol.
 好ましい実施形態において、高級脂肪酸エステルは、グリセリン脂肪酸エステルを含むことができる。グリセリン脂肪酸エステルとしては、例えば、ラウリン酸モノグリセリド、ラウリン酸ジグリセリド、ラウリン酸トリグリセリド、パルチミン酸モノグリセリド、パルチミン酸ジグリセリド、パルチミン酸トリグリセリド、ステアリン酸モノグリセリド、ステアリン酸ジグリセリド、ステアリン酸トリグリセリド、ステアリン酸テトラグリセリド、ヒドロキシステアリン酸モノグリセリド、ヒドロキシステアリン酸ジグリセリド、ヒドロキシステアリン酸トリグリセリド、ヒドロキシステアリン酸テトラグリセリド等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。このうち、卵殻材との相溶性の観点からは、ヒドロキシステアリン酸グリセリドを含むことが好ましい。 In a preferred embodiment, the higher fatty acid ester can include glycerin fatty acid ester. Examples of glycerin fatty acid esters include lauric acid monoglyceride, lauric acid diglyceride, lauric acid triglyceride, palmitic acid monoglyceride, palmitic acid diglyceride, palmitic acid triglyceride, stearic acid monoglyceride, stearic acid diglyceride, stearic acid triglyceride, stearic acid tetraglyceride, hydroxyl Examples include stearic acid monoglyceride, hydroxystearic acid diglyceride, hydroxystearic acid triglyceride, hydroxystearic acid tetraglyceride, and the like. These may be used alone or in combination of two or more. Among these, from the viewpoint of compatibility with eggshell materials, it is preferable to include hydroxystearic acid glyceride.
 一実施形態において、より良好な引張破断伸びが得られやすくなる観点からは、化合物は、脂肪酸アマイド及び/又は脂肪酸ナトリウムを含むことが好ましい。 In one embodiment, the compound preferably contains a fatty acid amide and/or a fatty acid sodium from the viewpoint of easily obtaining better tensile elongation at break.
 一実施形態において、添加剤中の化合物の割合は、添加剤の総質量に対して、50質量超~100質量%であってもよく、55~100質量%であってもよく、60~100質量%であってもよく。65~100質量%であってもよい。 In one embodiment, the proportion of compounds in the additive may be greater than 50% to 100% by weight, may be 55% to 100% by weight, may be 60% to 100% by weight, based on the total weight of the additive. It may be mass %. It may be 65 to 100% by mass.
 一実施形態において、添加剤には前述の化合物以外のその他の添加剤を含んでいてもよい。その他の添加剤としては、例えば、紫外線吸収剤、光安定剤、酸化防止剤、滑剤、可塑剤、着色剤、帯電防止剤、難燃剤、離型剤、鉱油等のその他の化合物;ガラス繊維、カーボン繊維、アラミド繊維等の補強繊維等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。 In one embodiment, the additive may include other additives other than the above-mentioned compounds. Other additives include, for example, ultraviolet absorbers, light stabilizers, antioxidants, lubricants, plasticizers, colorants, antistatic agents, flame retardants, mold release agents, other compounds such as mineral oil; glass fibers, Examples include reinforcing fibers such as carbon fiber and aramid fiber. These may be used alone or in combination of two or more.
 紫外線吸収剤としては、例えば、2-(5’-メチル-2’-ヒドロキシフェニル)ベンゾトリアゾ-ル、2-(5’-t-ブチル-2’-ヒドロキシフェニル)ベンゾトリアゾ-ル、2-[2’-ヒドロキシ-3’,5’-ビス(α、α-ジメチルベンジル)フェニル]ベンゾトリアゾ-ル、2-(3’,5’-ジ-t-ブチル-2’-ヒドロキシフェニル)ベンゾトリアゾ-ル、2-(3’-t-ブチル-5’-メチル-2’-ヒドロキシフェニル)-5-クロロベンゾトリアゾ-ル、2-(3’,5’-ジ-t-ブチル-2’-ヒドロキシフェニル)-5-クロロベンゾトリアゾ-ル、2-(3’,5’-ジ-t-アミル-2’-ヒドロキシフェニル)ベンゾトリアゾ-ル、2-[3’-(3”,4”,5”,6”-テトラヒドロ・フタルイミドメチル)-5’-メチル-2’-ヒドロキシフェニル]ベンゾトリアゾ-ル、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾ-ル-2-イル)フェノ-ル]等のベンゾトリアゾ-ル系紫外線吸収剤;2-エトキシ-2’-エチル蓚酸ビスアニリド、2-エトキシ-5-t-ブチル-2’-エチル蓚酸ビスアニリド、2-エトキシ-4’-イソデシルフェニル蓚酸ビスアニリド等の蓚酸アニリド系紫外線吸収剤;2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノン等のベンゾフェノン系紫外線吸収剤;フェニルサリシレ-ト、p-t-ブチルフェニルサリシレ-ト、p-オクチルフェニルサリシレ-ト等のサリチル酸系紫外線吸収剤;2-エチルヘキシル-2-シアノ-3,3’-ジフェニルアクリレ-ト、エチル-2-シアノ-3,3’-ジフェニルアクリレ-ト等のシアノアクリレ-ト系紫外線吸収剤;ルチル型酸化チタン、アナタ-ゼ型酸化チタン、アルミナ、シリカ、シランカップリング剤、チタン系カップリング剤等の表面処理剤で処理された酸化チタン等の酸化チタン系紫外線安定剤等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。 Examples of the ultraviolet absorber include 2-(5'-methyl-2'-hydroxyphenyl)benzotriazole, 2-(5'-t-butyl-2'-hydroxyphenyl)benzotriazole, 2-[2 '-Hydroxy-3',5'-bis(α,α-dimethylbenzyl)phenyl]benzotriazole, 2-(3',5'-di-t-butyl-2'-hydroxyphenyl)benzotriazole, 2-(3'-t-butyl-5'-methyl-2'-hydroxyphenyl)-5-chlorobenzotriazole, 2-(3',5'-di-t-butyl-2'-hydroxy phenyl)-5-chlorobenzotriazole, 2-(3',5'-di-t-amyl-2'-hydroxyphenyl)benzotriazole, 2-[3'-(3",4", 5",6"-tetrahydrophthalimidomethyl)-5'-methyl-2'-hydroxyphenyl]benzotriazole, 2,2'-methylenebis[4-(1,1,3,3-tetramethylbutyl)- Benzotriazole UV absorbers such as 6-(2H-benzotriazol-2-yl)phenol; 2-ethoxy-2'-ethyl oxalate bisanilide, 2-ethoxy-5-t-butyl-2' - Oxalic acid anilide UV absorbers such as ethyl oxalic acid bisanilide, 2-ethoxy-4'-isodecylphenyl oxalic acid bisanilide; 2-hydroxy-4-n-octoxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4 -Methoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2-hydroxy-4- Benzophenone UV absorbers such as methoxy-2'-carboxybenzophenone; Salicylic acid UV absorbers such as phenyl salicylate, pt-butylphenyl salicylate, p-octylphenyl salicylate; 2-ethylhexyl- Cyanoacrylate UV absorbers such as 2-cyano-3,3'-diphenylacrylate and ethyl-2-cyano-3,3'-diphenylacrylate; rutile type titanium oxide, anatase type Examples include titanium oxide-based ultraviolet stabilizers such as titanium oxide, alumina, silica, titanium oxide treated with a surface treatment agent such as a silane coupling agent, and a titanium-based coupling agent. These may be used alone or in combination of two or more.
 光安定剤としては、例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケ-ト、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケ-ト、コハク酸ジメチル・1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、ポリ[[6,(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル][(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]-ヘキサメチレン-[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕]、1-[2-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-2,2,6,6-テトラメチルピペリジン等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。 Examples of the light stabilizer include bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate and bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate. , dimethyl succinate/1-(2-hydroxyethyl)-4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, poly[[6,(1,1,3,3-tetramethylbutyl) )amino-1,3,5-triazine-2,4-diyl][(2,2,6,6-tetramethyl-4-piperidyl)imino]-hexamethylene-[(2,2,6,6- tetramethyl-4-piperidyl)imino]], 1-[2-[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionyloxy]ethyl]-4-[3-(3,5 -di-t-butyl-4-hydroxyphenyl)propionyloxy]-2,2,6,6-tetramethylpiperidine and the like. These may be used alone or in combination of two or more.
 酸化防止剤としては、例えば、トリエチレングリコ-ル-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネ-ト]、2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリチルテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネ-ト]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネ-ト、2,2-チオビス(4-メチル-6-t-ブチルフェノ-ル)及び1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン等のフェノ-ル系酸化防止剤;ジトリデシル-3,3’-チオジプロピオネ-ト、ジラウリル-3,3’-チオジプロピオネ-ト、ジテトラデシル-3,3’-チオジプロピオネ-ト、ジステアリル-3,3’-チオジプロピオネ-ト、ジオクチル-3,3’-チオジプロピオネ-ト等の硫黄系酸化防止剤;トリスノニルフェニルホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシル)ホスファイト、(トリデシル)ペンタエリスリト-ルジホスファイト、ビス(オクタデシル)ペンタエリスリト-ルジホスファイト、ビス(ジ-t-ブチルフェニル)ペンタエリスリト-ルジホスファイト、ビス(ジ-t-ブチル-4-メチルフェニル)ペンタエリスリト-ルジホスファイト、ジノニルフェニルオクチルホスホナイト、テトラキス(2,4-ジ-t-ブチルフェニル)1,4-フェニレン-ジ-ホスホナイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4’-ビフェニレン-ジ-ホスホナイト、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン等の燐系酸化防止剤等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。 Examples of antioxidants include triethylene glycol-bis[3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], 2,4-bis(n-octylthio)- 6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine, pentaerythrityltetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propione -t], octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 2,2-thiobis(4-methyl-6-t-butylphenol) and 1,3 , 5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene and other phenolic antioxidants; ditridecyl-3,3'-thiodipropionate, Sulfur-based antioxidants such as dilauryl-3,3'-thiodipropionate, ditetradecyl-3,3'-thiodipropionate, distearyl-3,3'-thiodipropionate, dioctyl-3,3'-thiodipropionate, etc. Agent; trisnonylphenyl phosphite, 4,4'-butylidene-bis(3-methyl-6-t-butylphenyl-di-tridecyl) phosphite, (tridecyl)pentaerythritol diphosphite, bis(octadecyl) Pentaerythritol diphosphite, bis(di-t-butylphenyl) pentaerythritol diphosphite, bis(di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, dinonylphenyl octyl Phosphonite, tetrakis (2,4-di-t-butylphenyl) 1,4-phenylene-di-phosphonite, tetrakis (2,4-di-t-butylphenyl) 4,4'-biphenylene-di-phosphonite, Examples include phosphorus-based antioxidants such as 10-decyloxy-9,10-dihydro-9-oxa-10-phosphaphenanthrene. These may be used alone or in combination of two or more.
 添加剤中のその他の添加剤の割合は、添加剤の総質量に対して50質量%未満であり、40質量%以下が好ましく、30質量%以下がより好ましい。なお、卵殻粉末を一定量含む本実施形態に係る樹脂組成物では、化合物以外の添加剤を配合した場合、引張破断伸び等の物性が低下する場合がある。その場合、添加剤は化合物のみを含むことが好ましい。 The proportion of other additives in the additive is less than 50% by mass, preferably 40% by mass or less, and more preferably 30% by mass or less, based on the total mass of the additive. In addition, in the resin composition according to this embodiment containing a certain amount of eggshell powder, when additives other than compounds are blended, physical properties such as tensile elongation at break may deteriorate. In that case, it is preferred that the additive contains only the compound.
 本発明に係る樹脂組成物は、スチレン系樹脂以外の熱可塑性樹脂(その他の熱可塑性樹脂)を含むことができるが、樹脂含有量の少ない樹脂組成物を得る観点からは、樹脂組成物中にはその他の熱可塑性樹脂は含まれていないことが好ましい。 The resin composition according to the present invention can contain thermoplastic resins (other thermoplastic resins) other than styrenic resins, but from the viewpoint of obtaining a resin composition with a low resin content, Preferably, no other thermoplastic resin is included.
 本実施形態において、樹脂組成物の静止摩擦係数は、0.3以上1.0未満であるが、樹脂組成物の静止摩擦係数は、0.5以上0.8未満であることが好ましく、0.6以上0.75未満であることがより好ましい。静止摩擦係数が0.3以上であることにより、嵌合部を備えた成形品において嵌合が滑りゆるくなることが抑制され、1.0未満であることにより、耐摩耗性が良好となる。樹脂組成物の静止摩擦係数は、JISK7125に従って、摩擦摩耗解析装置(例えば、協和界面科学、TS501)を用いて測定することができる。
 ここで、耐摩耗性が良好とは、例えば以下の実施例における耐摩耗性評価においてB評価以上であることを意味する。
In this embodiment, the static friction coefficient of the resin composition is 0.3 or more and less than 1.0, but the static friction coefficient of the resin composition is preferably 0.5 or more and less than 0.8, and 0. More preferably, it is .6 or more and less than 0.75. When the coefficient of static friction is 0.3 or more, it is possible to prevent the fitting from becoming slippery in a molded product provided with a fitting part, and when it is less than 1.0, the wear resistance becomes good. The static friction coefficient of the resin composition can be measured using a friction and wear analyzer (for example, Kyowa Interface Science, TS501) according to JIS K7125.
Here, good abrasion resistance means, for example, that it is rated B or higher in the abrasion resistance evaluation in the following examples.
 一実施形態において、樹脂組成物の、200℃、5kg荷重条件におけるMFRは、15.0g/10min以上が好ましい。樹脂組成物のMFR(200℃、5kg荷重)が15.0g/10min以上であれば、成形性がより良好となりやすい。樹脂組成物のMFR(200℃、5kg荷重)は、15.0g/10min以上であってもよく、20.0g/10min以上であってもよく。22.0g/10min以上であってもよい。なお樹脂組成物のMFRは、JIS K 7210-2:2014(ISO 133-2:2011)の規格に従って測定することができる。 In one embodiment, the MFR of the resin composition under conditions of 200° C. and 5 kg load is preferably 15.0 g/10 min or more. If the MFR (200° C., 5 kg load) of the resin composition is 15.0 g/10 min or more, the moldability tends to be better. The MFR (200° C., 5 kg load) of the resin composition may be 15.0 g/10 min or more, or 20.0 g/10 min or more. It may be 22.0 g/10 min or more. Note that the MFR of the resin composition can be measured according to the standard of JIS K 7210-2:2014 (ISO 133-2:2011).
 一実施形態において、ASTM-D638に従って測定される、樹脂組成物の引張弾性率は、1000MPa以上であってもよく、1500MPa以上であってもよい。また、ASTM-D638に従って測定される、樹脂組成物の引張破断伸びは、20%以上であってもよく、50%以上であってもよい。本実施形態に係る樹脂組成物は、卵殻粉末を一定量以上含むが、良好な引張弾性率及び引張破断伸びを有している。また、成形性も良好である。 In one embodiment, the tensile modulus of the resin composition, measured according to ASTM-D638, may be 1000 MPa or more, or 1500 MPa or more. Further, the tensile elongation at break of the resin composition measured according to ASTM-D638 may be 20% or more, or 50% or more. The resin composition according to the present embodiment contains a certain amount or more of eggshell powder, and has good tensile modulus and tensile elongation at break. Moreover, moldability is also good.
 卵殻粉末を含む樹脂組成物では、樹脂と卵殻粉末との密着性が低いなどの理由で引張破断伸びなどの機械物性が低下する場合があるが、化合物を主成分として含む添加剤を一定量配合することにより、得られる樹脂組成物の引張破断伸びが向上する。 In resin compositions containing eggshell powder, mechanical properties such as tensile elongation at break may deteriorate due to poor adhesion between the resin and eggshell powder, but it is possible to reduce mechanical properties such as tensile elongation at break. By doing so, the tensile elongation at break of the resulting resin composition is improved.
[樹脂組成物の製造方法]
 本実施形態に係る樹脂組成物は、卵殻粉末と、スチレン系樹脂と、必要に応じて可塑剤や添加剤等の成分とを溶融混錬することによって製造することができる。具体的には、成分をそれぞれ二軸押出機に投入して、200~250℃の温度で溶融混錬した後、ストランド状に押出することでペレット状の樹脂組成物を調製することができる。
[Method for manufacturing resin composition]
The resin composition according to this embodiment can be produced by melt-kneading eggshell powder, styrene resin, and components such as a plasticizer and additives as needed. Specifically, the resin composition in the form of pellets can be prepared by putting the components into a twin-screw extruder, melting and kneading them at a temperature of 200 to 250°C, and then extruding them into strands.
[用途]
 上記の通り、本実施形態に係る樹脂組成物は、耐摩耗性が良好となっている。よって、耐摩耗性が要求される部位を有する成形品、例えば嵌合部を有する容器や組み立てキット等の製造用途として好適に利用できる。なお、当然ながら、本実施形態に係る樹脂組成物は、その用途が嵌合部を有する容器や組み立てキット等の製造用途に限定されるわけではない。
[Application]
As described above, the resin composition according to this embodiment has good wear resistance. Therefore, it can be suitably used for manufacturing molded products having parts that require wear resistance, such as containers and assembly kits having fitting parts. Note that, as a matter of course, the use of the resin composition according to the present embodiment is not limited to use in manufacturing containers having a fitting portion, assembly kits, and the like.
[成形品]
 本実施形態に係る成形品は、前述の樹脂組成物を含む。好ましくは、本実施形態に係る樹脂組成物を成形して得られるものである。本実施形態に係る成形品は、成形品同士の摩擦による摩耗が抑制されている。また、本実施形態に係る成形品は、卵殻粉末を一定量含んでいるため、環境負荷の少ない成形品である。本実施形態に係る成形品は、文房具、家具、建材、食器、容器、園芸資材、玩具等の用途に応用できる。
[Molding]
The molded article according to this embodiment contains the above-mentioned resin composition. Preferably, it is obtained by molding the resin composition according to this embodiment. In the molded product according to this embodiment, wear caused by friction between the molded products is suppressed. Furthermore, the molded product according to this embodiment contains a certain amount of eggshell powder, so it is a molded product with less environmental load. The molded product according to this embodiment can be applied to stationery, furniture, building materials, tableware, containers, gardening materials, toys, and the like.
 以下、実施例を示して本発明を詳細に説明するが、本発明は以下の記載によって限定されるものではない。
[卵殻粉末の調製]
 鶏の卵殻を水洗浄した後、熱風乾燥機に投入して、乾燥処理を行った。乾燥処理後の卵殻を撹拌分離槽に投入し、高圧水を当てながら撹拌して卵殻の内側の卵膜を分離除去した。その後、卵膜を分離除去した卵殻を熱風乾燥機に再度投入して、90~120℃で6時間乾燥処理した。乾燥処理後の卵殻を、粉砕機を用いて粉砕し、卵殻粉末を得た。得られた卵殻粉末の密度を、密度計((株)島津製作所製、製品名「乾式自動密度計アキュピックII 1340」)を用いて測定したところ、2.6g/cmであった。さらに得られた粉末を分級し、平均粒子径10μmの卵殻粉末を得た。
EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited by the following description.
[Preparation of eggshell powder]
After washing the chicken eggshells with water, they were placed in a hot air dryer for drying. The eggshells after the drying process were placed in a stirring separation tank, and the egg membranes inside the eggshells were separated and removed by stirring while applying high-pressure water. Thereafter, the eggshells from which the egg membrane had been separated and removed were put into the hot air dryer again and dried at 90 to 120°C for 6 hours. The eggshells after the drying treatment were crushed using a crusher to obtain eggshell powder. The density of the obtained eggshell powder was measured using a densitometer (manufactured by Shimadzu Corporation, product name: "Dry Automatic Density Meter Accupic II 1340") and found to be 2.6 g/cm 3 . The obtained powder was further classified to obtain eggshell powder with an average particle size of 10 μm.
[スチレン系樹脂の製造]
<汎用ポリスチレン樹脂(GPPS)の製造>
 内容積200Lの重合缶に、純水70.4kg、第三リン酸カルシウム300gを加えて攪拌した。その後、スチレン80.0kg、ベンゾイルパーオキサイド267.2gを加えて密封し、100℃で6時間反応させた。反応終了後、反応物を冷却、中和、脱水、及び乾燥して、ポリスチレンのホモポリマー(GPPS)を得た。得られた汎用ポリスチレン樹脂のMwを、GPCを用いて以下の条件で測定したところ、167,000であった。
<GPCの測定条件>
 装置:Shodex(株)製、製品名「Shodex SYSTEM-21」
 カラム:PLgel MIXED-B
 測定温度:40℃
 溶媒:テトラヒドロフラン
 流量:1.0mL/分
 検出方法:RI
 サンプル濃度:0.2質量%
 注入量:100μL
 検量線:標準ポリスチレン(Polymer Laboratories製)
[Manufacture of styrenic resin]
<Manufacture of general-purpose polystyrene resin (GPPS)>
70.4 kg of pure water and 300 g of tribasic calcium phosphate were added to a polymerization can with an internal volume of 200 L and stirred. Thereafter, 80.0 kg of styrene and 267.2 g of benzoyl peroxide were added, sealed, and reacted at 100° C. for 6 hours. After the reaction was completed, the reaction product was cooled, neutralized, dehydrated, and dried to obtain a polystyrene homopolymer (GPPS). The Mw of the obtained general-purpose polystyrene resin was measured using GPC under the following conditions, and was found to be 167,000.
<GPC measurement conditions>
Equipment: Manufactured by Shodex Co., Ltd., product name “Shodex SYSTEM-21”
Column: PLgel MIXED-B
Measurement temperature: 40℃
Solvent: Tetrahydrofuran Flow rate: 1.0 mL/min Detection method: RI
Sample concentration: 0.2% by mass
Injection volume: 100μL
Calibration curve: standard polystyrene (manufactured by Polymer Laboratories)
<耐衝撃性ポリスチレン(HIPS)の製造>
 ゴム質重合体としてローシスポリブタジエンゴム(旭化成(株)製、商品名「ジエン55AS」)を使用し、このゴム質重合体(重合原料の総質量に対して5.3質量%)と、スチレンとを、溶剤としてエチルベンゼン(重合原料の総質量に対して5質量%)に溶解して重合原料とした。また、ゴム質重合体の酸化防止剤(日本チバガイギー(株)製、商品名「イルガノックス(登録商標)1076」)0.1質量部を前記重合原料に添加した。この重合原料を、翼径0.285mの錨型撹拌翼を備えた14Lのジャケット付き反応器(R-01)に12.5kg/hrで供給した。反応温度140℃、回転数2.17sec-1で撹拌して重合させ、ポリマー液を得た。得られたポリマー液のポリマー率は25%であった。このポリマー液を、直列に配置した2基の内容積21Lのジャケット付きプラグフロー型反応器に導入した。1基目のプラグフロー型反応器(R-02)では、反応温度がポリマー液の流れ方向に向かって120~140℃となるようにジャケット温度を調整した。2基目のプラグフロー型反応器(R-03)では、反応温度がポリマー液の流れ方向に向かって130~160℃の勾配を持つようにジャケット温度を調整した。R-02出口でのポリマー率は50%、R-03出口でのポリマー率は70%であった。ここで、ポリマー率とは、下記式(1)によって算出される値である。
 ポリマー率(%)=[(生成したポリマー量)/{(仕込んだモノマー量)+(溶剤量)}]×100 ・・・(1)
 得られたポリマー液を230℃に加熱後、真空度5torrの脱揮槽に送り、未反応の単量体、溶剤を分離、回収した。その後、反応物を脱揮槽からギヤポンプで抜き出し、ダイプレートを通してストランドとした後、水槽を通してペレット化し、耐衝撃性ポリスチレンを得た。得られた耐衝撃性ポリスチレンのゴム成分含有量は4.8質量%であった。また、汎用ポリスチレン樹脂と同様の条件で測定した耐衝撃性ポリスチレンのMwは210,000であった。
<Manufacture of high impact polystyrene (HIPS)>
Low-cis polybutadiene rubber (manufactured by Asahi Kasei Corporation, trade name "Diene 55AS") was used as the rubbery polymer, and this rubbery polymer (5.3% by mass based on the total mass of polymerization raw materials) and styrene were used. was dissolved in ethylbenzene (5% by mass based on the total mass of the polymerization raw materials) as a solvent to obtain a polymerization raw material. Further, 0.1 part by mass of a rubbery polymer antioxidant (manufactured by Nippon Ciba Geigy Co., Ltd., trade name "Irganox (registered trademark) 1076") was added to the polymerization raw material. This polymerization raw material was supplied at 12.5 kg/hr to a 14 L jacketed reactor (R-01) equipped with an anchor-type stirring blade with a blade diameter of 0.285 m. Polymerization was carried out by stirring at a reaction temperature of 140° C. and a rotational speed of 2.17 sec −1 to obtain a polymer liquid. The polymer percentage of the obtained polymer liquid was 25%. This polymer liquid was introduced into two jacketed plug flow reactors each having an internal volume of 21 L and arranged in series. In the first plug flow reactor (R-02), the jacket temperature was adjusted so that the reaction temperature was 120 to 140° C. in the flow direction of the polymer liquid. In the second plug flow reactor (R-03), the jacket temperature was adjusted so that the reaction temperature had a gradient of 130 to 160°C in the flow direction of the polymer liquid. The polymer percentage at the R-02 exit was 50%, and the polymer percentage at the R-03 exit was 70%. Here, the polymer ratio is a value calculated by the following formula (1).
Polymer ratio (%) = [(amount of polymer produced) / {(amount of monomer charged) + (amount of solvent)}] × 100 ... (1)
The obtained polymer liquid was heated to 230° C. and then sent to a devolatilization tank with a vacuum degree of 5 torr, and unreacted monomers and solvent were separated and recovered. Thereafter, the reactant was extracted from the devolatilization tank using a gear pump, passed through a die plate to form a strand, and then passed through a water tank to be pelletized to obtain impact-resistant polystyrene. The rubber component content of the resulting impact-resistant polystyrene was 4.8% by mass. Furthermore, the Mw of the impact-resistant polystyrene was 210,000 when measured under the same conditions as general-purpose polystyrene resin.
<スチレン-ブタジエン共重合体樹脂(SBC)の製造>
 スチレン-ブタジエン共重合体樹脂として、スチレン-ブタジエンのブロック共重合体樹脂を調製した。まず、反応容器中にシクロヘキサン500.0kg、テトラヒドロフラン(THF)75.0gを入れ、この中に重合開始剤溶液として、n-ブチルリチウムの10質量%シクロヘキサン溶液1,000mLを加え、30℃に保った。スチレン20.0kgを加えて、スチレンをアニオン重合させた。その際、内温は35℃まで上昇した。スチレンが完全に消費された後、1,3-ブタジエン56kgとスチレン64kgを同時に添加し、スチレンと1,3-ブタジエンが完全に消費された後、反応系の内温を75℃に下げ、さらにスチレン60.0kgを一括添加し、重合を完結させた。最後にすべての重合活性末端を水により失活させて、ポリスチレンブロックと、スチレンとブタジエンのテーパードブロックとを持つスチレン-ブタジエン共重合体を含む重合液を得た。この重合液を脱揮して、押出機を用いてペレット状のブロック共重合体を得た。得られたスチレン-ブタジエン共重合体の、モノマーの仕込み量から計算したジエン量は28質量%であった。
<Production of styrene-butadiene copolymer resin (SBC)>
A styrene-butadiene block copolymer resin was prepared as the styrene-butadiene copolymer resin. First, 500.0 kg of cyclohexane and 75.0 g of tetrahydrofuran (THF) were placed in a reaction vessel, and 1,000 mL of a 10% by mass cyclohexane solution of n-butyllithium was added thereto as a polymerization initiator solution, and the mixture was kept at 30°C. Ta. 20.0 kg of styrene was added to cause anionic polymerization of styrene. At that time, the internal temperature rose to 35°C. After styrene was completely consumed, 56 kg of 1,3-butadiene and 64 kg of styrene were added at the same time, and after styrene and 1,3-butadiene were completely consumed, the internal temperature of the reaction system was lowered to 75°C, and then 60.0 kg of styrene was added all at once to complete the polymerization. Finally, all polymerization active terminals were deactivated with water to obtain a polymerization solution containing a styrene-butadiene copolymer having a polystyrene block and a tapered block of styrene and butadiene. This polymerization liquid was devolatilized and a block copolymer in the form of pellets was obtained using an extruder. The diene content of the obtained styrene-butadiene copolymer calculated from the amount of monomer charged was 28% by mass.
[可塑剤]
 可塑剤として、以下を用いた。
 可塑剤(1):シリコーンオイル(信越化学(株)製、製品名「KF-96 350CS」)
 可塑剤(2):メタブレン(三菱ケミカル(株)製、製品名「メタブレン SX-005」)
[Plasticizer]
The following was used as a plasticizer.
Plasticizer (1): Silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd., product name "KF-96 350CS")
Plasticizer (2): Metablane (manufactured by Mitsubishi Chemical Corporation, product name: Metablane SX-005)
[添加剤]
 添加剤として、以下を用いた。
<化合物>
 化合物(1):脂肪酸アマイド(EBS:エチレンビスステアリン酸アマイド(花王(株)製、製品名「カオーワックス EB-FF」))。
 化合物(2):脂肪酸ナトリウム(ミヨシ油脂(株)製、製品名「タンカルMH」(質量比でラウリン酸:ミリスチン酸:パルミチン酸:ステアリン酸:オレイン酸=3:2:40:15:30の脂肪酸ナトリウムの混合物))。
[Additive]
The following additives were used.
<Compound>
Compound (1): Fatty acid amide (EBS: ethylene bisstearamide (manufactured by Kao Corporation, product name "Kaohwax EB-FF")).
Compound (2): Sodium fatty acid (manufactured by Miyoshi Yushi Co., Ltd., product name "Tancal MH" (mass ratio of lauric acid: myristic acid: palmitic acid: stearic acid: oleic acid = 3:2:40:15:30) mixture of fatty acid sodium)).
[実施例1]
 HIPS40質量部と、SBC10質量部、卵殻粉末50質量部と、EBS1質量部、脂肪酸ナトリウム2質量部、シリコーンオイル1質量部を、二軸押出機(芝浦機械(株)、TEM35-B)を用いて、200℃、350rpm、吐出20kg/hで溶融混錬し、ストランド状に押出しペレット化した。得られたペレットの200℃、5kg荷重条件下でのMFRは15.8g/10分であった。また、得られたペレットを、熱プレス(テスター産業(株)製、SA-303)を用いて成形し、静止摩擦係数、耐摩耗性評価、引張弾性率、引張破断伸び及びインパクト強度を以下の方法で評価した。結果を表1に示す。
[Example 1]
40 parts by mass of HIPS, 10 parts by mass of SBC, 50 parts by mass of eggshell powder, 1 part by mass of EBS, 2 parts by mass of sodium fatty acid, and 1 part by mass of silicone oil using a twin screw extruder (Shibaura Kikai Co., Ltd., TEM35-B). The mixture was melted and kneaded at 200° C., 350 rpm, and a discharge rate of 20 kg/h, and extruded into strands to form pellets. The MFR of the obtained pellets under conditions of 200° C. and a load of 5 kg was 15.8 g/10 minutes. In addition, the obtained pellets were molded using a heat press (manufactured by Tester Sangyo Co., Ltd., SA-303), and the static friction coefficient, wear resistance evaluation, tensile elastic modulus, tensile elongation at break, and impact strength were determined as follows. The method was evaluated. The results are shown in Table 1.
<静止摩擦係数の測定方法>
 摩擦摩耗解析装置(協和界面科学(株)製、TS501)を用いて、JISK7125に従って測定した。具体的には、厚み0.40mmの板状サンプルを30mm×100mmの形状で切り抜き測定サンプルを調製し評価した。また、以下の評価基準に従って評価し、B評価以上を合格とした。
(評価基準)
A:静止摩擦係数が0.30以上、0.70未満。
B:静止摩擦係数が0.70以上、1.00未満。
C:静止摩擦係数が0.30未満、又は1.00以上。
<Measurement method of static friction coefficient>
It was measured according to JISK7125 using a friction and wear analyzer (manufactured by Kyowa Interface Science Co., Ltd., TS501). Specifically, a plate sample with a thickness of 0.40 mm was cut out in a shape of 30 mm x 100 mm to prepare a measurement sample and evaluated. In addition, evaluation was made according to the following evaluation criteria, and a score of B or higher was considered to be a pass.
(Evaluation criteria)
A: Static friction coefficient is 0.30 or more and less than 0.70.
B: Static friction coefficient is 0.70 or more and less than 1.00.
C: Static friction coefficient is less than 0.30 or 1.00 or more.
<耐摩耗性評価>
 射出成形機((株)日本製鋼所製、JSW-140AD)を用いて、成形温度200℃、金型温度80℃で、嵌合部を有する密閉容器(容器本体と蓋体との嵌合による密閉容器)に成形した。成形品に対して、嵌合部を手で開け閉めし30回繰り返した後に嵌合部の状態を観察した。
(評価基準)
A:嵌合部に変化無し
B:やや粉立ちし、嵌りが緩い
C:粉立ちし、嵌合できない
<Abrasion resistance evaluation>
Using an injection molding machine (manufactured by Japan Steel Works, Ltd., JSW-140AD), molding temperature is 200℃ and mold temperature is 80℃. It was molded into a sealed container). After opening and closing the fitting part of the molded product by hand 30 times, the condition of the fitting part was observed.
(Evaluation criteria)
A: No change in the mating part B: Slight dusting and loose fitting C: Dusting and unfitting
<MFR及び成形性評価>
 200℃、5kg荷重の条件で、JIS K 7210-2:2014(ISO 133-2:2011)の規格に従って測定した。また、以下の評価基準に従って成形性を評価し、B評価以上を合格とした。
(評価基準)
 A:MFRが20.0g/10min以上。
 B:MFRが15.0g/10min以上20.0g/10min未満。
 C:MFRが15.0g/10min未満。
<MFR and moldability evaluation>
Measurement was performed under the conditions of 200° C. and 5 kg load according to the standard of JIS K 7210-2:2014 (ISO 133-2:2011). In addition, the moldability was evaluated according to the following evaluation criteria, and those with a B rating or higher were considered to be passed.
(Evaluation criteria)
A: MFR is 20.0g/10min or more.
B: MFR is 15.0 g/10 min or more and less than 20.0 g/10 min.
C: MFR is less than 15.0 g/10 min.
<引張弾性率の測定方法>
 オートグラフ((株)島津製作所製、製品名「AGS-X」)を用いて、ASTM-D638に従って測定した。具体的には、厚み0.40mmの板状サンプルをダンベル1号の形状で切り抜いて測定サンプルを調製し、測定温度23℃、湿度50%の条件下、引張速度5mm/minで測定サンプルの引張弾性率を測定した。以下の評価基準に従って評価し、B評価以上を合格とした。
(評価基準)
 A:引張弾性率が1200MPa以上1800MPa未満。
 B:引張弾性率が800MPa以上1200MPa未満。
 C:引張弾性率が800MPa未満、又は1800MPa以上。
<Method for measuring tensile modulus>
Measurement was performed using Autograph (manufactured by Shimadzu Corporation, product name "AGS-X") according to ASTM-D638. Specifically, a measurement sample was prepared by cutting out a plate sample with a thickness of 0.40 mm in the shape of a No. 1 dumbbell, and the measurement sample was pulled at a tension speed of 5 mm/min at a measurement temperature of 23 ° C. and a humidity of 50%. The elastic modulus was measured. Evaluation was performed according to the following evaluation criteria, and a score of B or higher was considered to be a pass.
(Evaluation criteria)
A: Tensile modulus is 1200 MPa or more and less than 1800 MPa.
B: Tensile modulus is 800 MPa or more and less than 1200 MPa.
C: Tensile modulus is less than 800 MPa or 1800 MPa or more.
<引張破断伸びの測定方法>
 オートグラフ((株)島津製作所製、製品名「AGS-X」)を用いて、ASTM-D638に従って測定した。具体的には、厚み0.40mmの板状サンプルをダンベル1号の形状で切り抜いて測定サンプルを調製し、測定温度23℃、湿度50%の条件下、引張速度5mm/minでサンプルの引張破断伸びを測定した。以下の評価基準に従って評価し、B評価以上を合格とした。
(評価基準)
 A:引張破断伸びが15%以上。
 B:引張破断伸びが10%以上15%未満。
 C:引張破断伸びが10%未満。
<Method for measuring tensile elongation at break>
Measurement was performed using Autograph (manufactured by Shimadzu Corporation, product name "AGS-X") according to ASTM-D638. Specifically, a measurement sample was prepared by cutting out a plate sample with a thickness of 0.40 mm in the shape of a No. 1 dumbbell, and the sample was subjected to tensile rupture at a tensile speed of 5 mm/min under conditions of a measurement temperature of 23 ° C. and a humidity of 50%. Elongation was measured. Evaluation was performed according to the following evaluation criteria, and a score of B or higher was considered to be a pass.
(Evaluation criteria)
A: Tensile elongation at break is 15% or more.
B: Tensile elongation at break is 10% or more and less than 15%.
C: Tensile elongation at break is less than 10%.
<インパクト強度の測定方法>
 フィルムインパクトテスター((株)安田精機製)を用いて、ASTM-D3420に従って測定した。具体的には、厚み0.40mmの板状サンプルを70mm×70mmに切り出して測定サンプルを調製し、インパクト強度を測定した。以下の評価基準に従って評価し、B評価以上を合格とした。
(評価基準)
 A:インパクト強度が2.0J/mm以上。
 B:インパクト強度が1.5J/mm以上2.0J/mm未満。
 C:インパクト強度が1.5J/mm未満。
<Method of measuring impact strength>
It was measured in accordance with ASTM-D3420 using a film impact tester (manufactured by Yasuda Seiki Co., Ltd.). Specifically, a measurement sample was prepared by cutting a 0.40 mm thick plate sample into a size of 70 mm x 70 mm, and the impact strength was measured. Evaluation was performed according to the following evaluation criteria, and a score of B or higher was considered to be a pass.
(Evaluation criteria)
A: Impact strength is 2.0 J/mm or more.
B: Impact strength is 1.5 J/mm or more and less than 2.0 J/mm.
C: Impact strength is less than 1.5 J/mm.
[実施例2、3及び比較例1]
 樹脂組成物の組成を表1に示す通りとした以外は、実施例1と同様の方法で樹脂組成物を調製した。また、実施例1と同様の方法でペレットを作成してMFRを測定した。さらに実施例1と同様の方法で板状に成形し、静止摩擦係数、耐摩耗性評価、引張弾性率、引張破断伸び、及びインパクト強度を評価した。結果を表1に示す。
[Examples 2 and 3 and Comparative Example 1]
A resin composition was prepared in the same manner as in Example 1, except that the composition of the resin composition was as shown in Table 1. Further, pellets were prepared in the same manner as in Example 1, and the MFR was measured. Furthermore, it was molded into a plate shape in the same manner as in Example 1, and the static friction coefficient, abrasion resistance evaluation, tensile elastic modulus, tensile elongation at break, and impact strength were evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、本実施形態の構成を満たす実施例1~3の樹脂組成物は、静止摩擦係数の数値が適切な範囲内であった。また、耐摩耗試験の評価も良好であった。一方、比較例1の樹脂組成物は静止摩擦係数の数値が適切な範囲内ではなく、耐摩耗試験の評価も良好ではなかった。以上の結果から、本実施形態に係る樹脂組成物は、静止摩擦係数の数値が好適な範囲内であり、耐摩耗性が良好となっていることが分かった。また、本実施形態に係る樹脂組成物は、卵殻粉末を一定量含んでおり、環境への負荷も少ない。 As shown in Table 1, the resin compositions of Examples 1 to 3 that satisfied the configuration of this embodiment had static friction coefficient values within an appropriate range. Furthermore, the evaluation in the wear resistance test was also good. On the other hand, the resin composition of Comparative Example 1 had a coefficient of static friction that was not within an appropriate range, and the evaluation of the abrasion resistance test was also not good. From the above results, it was found that the resin composition according to the present embodiment had a static friction coefficient within a suitable range and had good wear resistance. Furthermore, the resin composition according to the present embodiment contains a certain amount of eggshell powder, and has a low environmental load.
 本発明は、環境負荷が少なく、耐摩耗性に優れるスチレン系樹脂組成物及びその成形品を提供することができ、産業上の利用可能性を有している。 The present invention can provide a styrenic resin composition with low environmental impact and excellent wear resistance, and molded products thereof, and has industrial applicability.

Claims (8)

  1.  卵殻粉末とスチレン系樹脂とを含む樹脂組成物であって、前記卵殻粉末の含有量が前記卵殻粉末及び前記スチレン系樹脂の合計100質量部に対して20質量部以上であり、静止摩擦係数が0.3以上1.0未満である樹脂組成物。 A resin composition containing an eggshell powder and a styrene resin, wherein the content of the eggshell powder is 20 parts by mass or more based on a total of 100 parts by mass of the eggshell powder and the styrene resin, and the coefficient of static friction is A resin composition having a particle diameter of 0.3 or more and less than 1.0.
  2.  前記樹脂組成物は、前記卵殻粉末50質量部に対し0.3~3.0質量部の可塑剤を含有する、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the resin composition contains 0.3 to 3.0 parts by mass of a plasticizer based on 50 parts by mass of the eggshell powder.
  3.  前記可塑剤が、シリコーンオイル及びシリコーン系ゴムから選択される少なくとも1種を含む、請求項2に記載の樹脂組成物。 The resin composition according to claim 2, wherein the plasticizer contains at least one selected from silicone oil and silicone rubber.
  4.  前記スチレン系樹脂が、汎用ポリスチレン及び耐衝撃性ポリスチレンから選択される少なくとも1種と、スチレン-ブタジエン共重合体とを含む、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the styrenic resin contains at least one selected from general-purpose polystyrene and high-impact polystyrene, and a styrene-butadiene copolymer.
  5.  前記卵殻粉末と前記スチレン系樹脂の合計100質量部に対し添加剤を10質量部未満含み、200℃、5kg荷重条件でのMFRの値が15g/10min以上である、請求項1又は2に記載の樹脂組成物。 According to claim 1 or 2, the eggshell powder contains less than 10 parts by mass of an additive based on a total of 100 parts by mass of the eggshell powder and the styrene resin, and has an MFR value of 15 g/10 min or more at 200° C. and a 5 kg load condition. resin composition.
  6.  前記卵殻粉末の平均粒子径が、3~50μmである、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the eggshell powder has an average particle diameter of 3 to 50 μm.
  7.  射出成形用である、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, which is for injection molding.
  8.  請求項1又は2に記載の樹脂組成物を含む、成形品。 A molded article comprising the resin composition according to claim 1 or 2.
PCT/JP2023/023176 2022-06-24 2023-06-22 Resin composition and molded article of same WO2023249090A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-101912 2022-06-24
JP2022101912 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023249090A1 true WO2023249090A1 (en) 2023-12-28

Family

ID=89380053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023176 WO2023249090A1 (en) 2022-06-24 2023-06-22 Resin composition and molded article of same

Country Status (2)

Country Link
TW (1) TW202402932A (en)
WO (1) WO2023249090A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294764A (en) * 1988-05-23 1989-11-28 Mitsui Toatsu Chem Inc Rubber-modified styrene resin composition of excellent sliding property
JPH09316259A (en) * 1996-05-27 1997-12-09 Sumitomo Bakelite Co Ltd Styrene-based thermoplastic elastomer composition
JPH11349757A (en) * 1998-06-08 1999-12-21 Daicel Chem Ind Ltd Styrene-based resin composition with excellent sliding characteristics and molding therefrom
US20140323616A1 (en) * 2011-11-17 2014-10-30 Tyson Foods, Inc. Eggshell powder compositions and methods of producing eggshell powder compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294764A (en) * 1988-05-23 1989-11-28 Mitsui Toatsu Chem Inc Rubber-modified styrene resin composition of excellent sliding property
JPH09316259A (en) * 1996-05-27 1997-12-09 Sumitomo Bakelite Co Ltd Styrene-based thermoplastic elastomer composition
JPH11349757A (en) * 1998-06-08 1999-12-21 Daicel Chem Ind Ltd Styrene-based resin composition with excellent sliding characteristics and molding therefrom
US20140323616A1 (en) * 2011-11-17 2014-10-30 Tyson Foods, Inc. Eggshell powder compositions and methods of producing eggshell powder compositions

Also Published As

Publication number Publication date
TW202402932A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
CA2640406C (en) Blends of biopolymers with acrylic copolymers
KR100295508B1 (en) Modified polyolefins and compositions containing them
US5654365A (en) Styrenic polymer composition
EP3368606B1 (en) Alternative methods to control crosslinking in high impact polystyrene
JP2008285663A (en) Thermoplastic resin composition and molded product
KR20200135956A (en) Compositions and thermoplastic molding formulations for making moldings of improved gloss
WO2023249090A1 (en) Resin composition and molded article of same
WO2023249091A1 (en) Resin composition and molded article of same
JPH08311301A (en) Abs resin composition for calendering
US20210355310A1 (en) Heat resistant abs composition with reduced odor for automotive interior application
WO2022224686A1 (en) Resin composition and molded article
KR101746265B1 (en) Environment friendly thermoplastic resin composition having improved weldline and plastics comprising same
WO2023249089A1 (en) Resin composition, molded article and multilayer sheet
JPH08302139A (en) Thermoplastic molding material
WO2023249088A1 (en) Resin composition and molded article
JP3253385B2 (en) Resin composition
US8609754B2 (en) Flame-retardant thermoplastic resin composition and molded article thereof
TW202409172A (en) Resin compositions and molded products
JPH0623820A (en) Production of styrene resin film
JP2022165148A (en) Biomass-derived polymer-containing resin sheet and container made of molding thereof
JP3274934B2 (en) Method for producing polyolefin resin composition
JPH07138426A (en) Polyolefin-based resin composition
JP3243046B2 (en) High rigidity flame-retardant resin composition with excellent surface impact strength
JP2004510006A (en) Thermoplastic molding composition containing additive mixture
JP2023110916A (en) Styrenic resin composition, extrusion sheet, injection molded article, and container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827272

Country of ref document: EP

Kind code of ref document: A1