WO2023248952A1 - Led sealant - Google Patents

Led sealant Download PDF

Info

Publication number
WO2023248952A1
WO2023248952A1 PCT/JP2023/022448 JP2023022448W WO2023248952A1 WO 2023248952 A1 WO2023248952 A1 WO 2023248952A1 JP 2023022448 W JP2023022448 W JP 2023022448W WO 2023248952 A1 WO2023248952 A1 WO 2023248952A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
compound
encapsulant
molecule
led encapsulant
Prior art date
Application number
PCT/JP2023/022448
Other languages
French (fr)
Japanese (ja)
Inventor
慎也 内野
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2023248952A1 publication Critical patent/WO2023248952A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention relates to an encapsulant for LEDs.
  • LEDs Light emitting diodes
  • display devices that are capable of displaying high-quality images by mounting LED chips using minute LEDs called micro-LEDs have been attracting attention (for example, Patent Document 1, etc.).
  • LEDs deteriorate when they come into contact with moisture or gas in the atmosphere, reducing light extraction efficiency, so they are usually sealed using a sealant (LED sealant), but micro LEDs are used.
  • the LED encapsulant is required to have flexibility so that the cured product can follow the expansion and contraction of the LED chip, the bending of the substrate, and the like.
  • An object of the present invention is to provide an LED encapsulant that can be coated with high coating accuracy and whose cured product can follow the expansion and contraction of the LED chip, the bending of the substrate, and the like.
  • the present disclosure 1 is an encapsulant for LEDs containing a curable resin and a polymerization initiator, having a viscosity at 25°C of 100 mPa ⁇ s or less, and a cured product having a tensile elongation at break of 50% or more at 25°C. be.
  • the present disclosure 2 provides that the curable resin comprises a dithiol compound (A) having two thiol groups in one molecule, a polythiol compound (B) having three or more thiol groups in one molecule, and a polythiol compound (B) having three or more thiol groups in one molecule.
  • the LED encapsulant of the present disclosure 1 contains a polyene compound (C) having two or more aliphatic carbon-carbon double bonds.
  • the present disclosure 3 contains a curable resin and a polymerization initiator, and the curable resin contains a dithiol compound (A) having two thiol groups in one molecule, and a dithiol compound (A) having three or more thiol groups in one molecule. and a polyene compound (C) having two or more aliphatic carbon-carbon double bonds in one molecule.
  • Present Disclosure 4 is the LED encapsulant of Present Disclosure 2 or 3, wherein the polyene compound (C) is a (meth)allyl compound having two or three aliphatic carbon-carbon double bonds in one molecule. It is.
  • the present disclosure 5 is the LED encapsulant of the present disclosure 1, 2, 3, or 4 which further contains a leveling agent.
  • the present disclosure 6 is the LED encapsulant of the present disclosure 1, 2, 3, 4, or 5 used for coating by an inkjet method.
  • the present invention will be explained in detail below.
  • the LED encapsulant of the present disclosure 1 is also referred to as the "LED encapsulant of the present invention 1"
  • the LED encapsulant of the present disclosure 3 is also referred to as the "LED encapsulant of the present invention 2”. Further, matters common to the LED encapsulant of the first invention and the LED encapsulant of the second invention are not specified or are described as "the LED encapsulant of the present invention.”
  • the present inventor has developed an LED encapsulant that uses a combination of specific compounds as a curable resin so that the viscosity at 25°C is below a specific value, and the tensile elongation at break of the cured product is set to a specific value.
  • the upper limit of the viscosity of the LED encapsulant of the present invention 1 at 25° C. is 100 mPa ⁇ s. Since the viscosity at 25° C. is 100 mPa ⁇ s or less, the LED encapsulant of the present invention 1 has excellent coating accuracy by an inkjet method or the like.
  • the preferable upper limit of the viscosity at 25° C. is 50 mPa ⁇ s, and the more preferable upper limit is 30 mPa ⁇ s.
  • the lower limit of the viscosity at 25° C. of the LED encapsulant of the present invention 1 is preferably 10.0 mPa ⁇ s, and the more preferable lower limit is 15.0 mPa ⁇ s.
  • the preferred upper limit of the viscosity of the LED sealant of the second aspect of the present invention at 25° C. is 100 mPa ⁇ s. Since the viscosity at 25° C. is 100 mPa ⁇ s or less, the LED encapsulant of the second aspect of the present invention has better coating accuracy by an inkjet method or the like.
  • a more preferable upper limit of the viscosity at 25° C. is 50 mPa ⁇ s, and an even more preferable upper limit is 30 mPa ⁇ s. From the viewpoint of shape retention after application, etc., the lower limit of the viscosity at 25° C.
  • the LED encapsulant of the second invention is preferably 10.0 mPa ⁇ s, and the more preferable lower limit is 15.0 mPa ⁇ s.
  • the above viscosity is measured using, for example, VISCOMETER TV-22 (manufactured by Toki Sangyo Co., Ltd.) as an E-type viscometer, No. The measurement can be performed using one rotor at a rotation speed of 100 rpm.
  • the lower limit of the tensile elongation at 25° C. of the cured product is 50%. Since the cured product has a tensile elongation at break of 50% or more at 25°C, the cured product of the LED encapsulant of the present invention has excellent flexibility and follows the expansion and contraction of the LED chip and the bending of the substrate. become something that can be done. Although there is no particular preferable upper limit for the tensile elongation at break at 25° C. of the cured product of the LED encapsulant of the present invention 1, the practical upper limit is 500%.
  • the preferable lower limit of the tensile elongation at 25° C. of the cured product is 50%. Since the cured product has a tensile elongation at break of 50% or more at 25°C, the cured product of the LED encapsulant of the second invention has excellent flexibility and follows the expansion and contraction of the LED chip and the bending of the substrate. become something that can be done. Although there is no particular preferable upper limit for the tensile elongation at break at 25° C. of the cured product of the LED encapsulant of the present invention 2, the practical upper limit is 500%.
  • the tensile elongation at break at 25°C of the cured product was determined using a tensile tester (for example, "Autograph AG-Xplus” manufactured by Shimadzu Corporation) for a cured product with a width of 5 mm, a length of 400 mm, and a thickness of 500 ⁇ m.
  • the distance between the grips is 25 mm, and the tensile speed is 5 mm/s.
  • the cured product whose tensile elongation at break is measured is, for example, a dithiol compound (A), a polythiol compound (B), a polyene compound (C), and a photo-radical polymerized compound in which the LED encapsulant is a dithiol compound (A), a polythiol compound (B), a polyene compound (C), and
  • the LED encapsulant is a dithiol compound (A), a polythiol compound (B), a polyene compound (C)
  • an initiator it can be obtained by a method of irradiating the LED encapsulant with ultraviolet rays of 3000 mJ/cm 2 .
  • the storage modulus of the cured product at 25° C. has a preferable lower limit of 0.01 MPa and a preferable upper limit of 500 MPa. Since the storage elastic modulus of the cured product at 25° C. is within this range, the LED encapsulant of the present invention has the effect that the cured product follows the expansion and contraction of the LED chip, the bending of the substrate, etc., and the reliability. It becomes better.
  • a more preferable lower limit of the storage modulus of the cured product at 25° C. is 0.1 MPa, and a more preferable upper limit is 300 MPa.
  • the storage elastic modulus at 25°C of the above cured product was measured using a dynamic viscoelasticity measuring device (for example, "DVA-200" manufactured by IT Instruments Control Co., Ltd.) for a cured product with a width of 5 mm, a length of 400 mm, and a thickness of 500 ⁇ m. ) under the conditions of tensile mode, gripping width of 25 mm, and frequency of 1.0 Hz.
  • the LED encapsulant may be a dithiol compound (A), a polythiol compound (B), a polyene compound (C), and a photoradical, which will be described later.
  • a polymerization initiator When a polymerization initiator is contained, it can be obtained by a method such as irradiating the LED sealant with ultraviolet rays of 3000 mJ/cm 2 .
  • the LED encapsulant of the present invention contains a curable resin.
  • the curable resin is a dithiol compound (A) having two thiol groups in one molecule, and a polythiol compound (B) having three or more thiol groups in one molecule. , and a polyene compound (C) having two or more aliphatic carbon-carbon double bonds in one molecule.
  • the curable resin may be a dithiol compound (A) having two thiol groups in one molecule, a polythiol compound (A) having three or more thiol groups in one molecule ( B) and a polyene compound (C) having two or more aliphatic carbon-carbon double bonds in one molecule.
  • the resulting LED encapsulant has low viscosity and excellent applicability, and the cured product has excellent flexibility.
  • the resulting cured product of the LED encapsulant also has excellent heat resistance.
  • the thiol group possessed by the dithiol compound (A) is preferably a secondary thiol group. Since the thiol group of the dithiol compound (A) is a secondary thiol group, the resulting LED encapsulant has excellent storage stability.
  • dithiol compound (A) examples include 1,4-bis(3-mercaptobutyryloxy)butane, butanediol bisthiopropionate, ethylene bis(3-mercaptopropionate), 1,2-bis (2-mercaptoethoxy)ethane, ethylene bis(thioglycolate), and the like. These dithiol compounds (A) may be used alone or in combination of two or more.
  • the preferable lower limit of the content of the dithiol compound (A) in 100 parts by weight of the curable resin is 20 parts by weight, and the preferable upper limit is 70 parts by weight.
  • the resulting LED encapsulant has excellent flexibility.
  • a more preferable lower limit of the content of the dithiol compound (A) is 30 parts by mass, and a more preferable upper limit is 60 parts by mass.
  • the thiol group contained in the polythiol compound (B) is preferably a secondary thiol group. Since the thiol group possessed by the polythiol compound (B) is a secondary thiol group, the resulting LED encapsulant has excellent storage stability.
  • the polythiol compound (B) preferably has 3 to 6 thiol groups in one molecule, and more preferably 3 to 4 thiol groups. .
  • polythiol compound (B) examples include 1,3,5-tris(2-(3-sulfanylbutanoyloxy)ethyl)-1,3,5-triazinane-2,4,6-trione, pentaerythritol Examples include tetrakis (3-mercaptobutyrate), pentaerythritol tetrakis (3-mercaptopropionate), dipentaerythritol hexakis (3-mercaptopropionate), and the like. These polythiol compounds (B) may be used alone or in combination of two or more.
  • the preferable lower limit of the content of the polythiol compound (B) in 100 parts by weight of the curable resin is 2.0 parts by weight, and the preferable upper limit is 70 parts by weight.
  • the resulting LED encapsulant has excellent flexibility and low viscosity.
  • a more preferable lower limit of the content of the polythiol compound (B) is 3.0 parts by mass, and a more preferable upper limit is 30 parts by mass.
  • polyene compound (C) examples include diallyl isophthalate, diallyl maleate, diallyl diphenate, triallyl isocyanurate, pentaerythritol tetraallyl ether, 1,3,4,6-tetraallyltetrahydroimidazo[4,5 -d]imidazole-2,5(1H,3H)-dione and the like.
  • the polyene compound (C) is preferably a (meth)allyl compound having two or three aliphatic carbon-carbon double bonds in one molecule.
  • These polyene compounds (C) may be used alone or in combination of two or more.
  • the above-mentioned "(meth)allyl” means allyl or methallyl.
  • the preferable lower limit of the content of the polyene compound (C) in 100 parts by weight of the curable resin is 20 parts by weight, and the preferable upper limit is 60 parts by weight.
  • the resulting LED encapsulant has excellent flexibility and low viscosity.
  • a more preferable lower limit of the content of the polyene compound (C) is 30 parts by mass, and a more preferable upper limit is 50 parts by mass.
  • the LED encapsulant of the present invention contains a polymerization initiator.
  • the polymerization initiator include a photoradical polymerization initiator and a thermal radical polymerization initiator, and the photoradical polymerization initiator is preferably used.
  • photoradical polymerization initiator examples include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, and thioxanthone compounds.
  • photoradical polymerization initiator examples include 1-hydroxycyclohexylphenyl ketone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-1-butanone, 2-(dimethylamino )-2-((4-methylphenyl)methyl)-1-(4-(4-morpholinyl)phenyl)-1-butanone, 2,2-dimethoxy-1,2-diphenylethan-1-one, bis( 2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one, 1-(4-(2-hydroxyethoxy)-phenyl) -2-hydroxy-2-methyl-1-propan-1-one, 1-(4-(phenylthio)phenyl)-1,2-octanedione 2-(O-benzoyloxime), 2,4,6-trimethyl Examples include benzoyldiphenylphosphin
  • thermal radical polymerization initiator examples include those composed of azo compounds, organic peroxides, and the like.
  • examples of the azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • the polymeric azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via an azo group is preferably one having a polyethylene oxide structure.
  • the azo compound mentioned above is, for example, a polycondensate of 4,4'-azobis(4-cyanopentanoic acid) and polyalkylene glycol, or a polycondensate of 4,4'-azobis(4-cyanopentanoic acid) and a terminal
  • examples include polycondensates of polydimethylsiloxane having amino groups.
  • examples of the organic peroxide include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxy ester, diacyl peroxide, peroxydicarbonate, and the like.
  • the content of the polymerization initiator has a preferable lower limit of 0.1 parts by weight and a preferable upper limit of 5.0 parts by weight based on 100 parts by weight of the curable resin. When the content of the polymerization initiator is within this range, the resulting LED encapsulant has better storage stability and curability.
  • a more preferable lower limit of the content of the polymerization initiator is 0.5 parts by mass, and a more preferable upper limit is 2.0 parts by mass.
  • the LED encapsulant of the present invention further contains a leveling agent from the viewpoint of the flatness of the coating film.
  • leveling agent examples include silicone leveling agents, fluorine leveling agents, acrylic leveling agents, and the like.
  • the content of the leveling agent has a preferable lower limit of 0.01 parts by weight and a preferable upper limit of 10 parts by weight based on 100 parts by weight of the curable resin. When the content of the leveling agent is within this range, the resulting LED encapsulant has better applicability and coating film flatness.
  • a more preferable lower limit of the content of the leveling agent is 0.1 parts by mass, and a more preferable upper limit is 1.0 parts by mass.
  • the LED encapsulant of the present invention may further contain additives such as fillers, plasticizers, surfactants, flame retardants, antistatic agents, antifoaming agents, ultraviolet absorbers, etc., within a range that does not impede the object of the present invention. May contain.
  • the method for producing the LED encapsulant of the present invention includes, for example, a dithiol compound (A), a polythiol compound (B), a polyene compound (C), a polymerization initiator, and a leveling agent added as necessary. Examples include a method of uniformly mixing the above with a stirrer.
  • the LED encapsulant of the present invention is preferably one that can be cured by at least one of light irradiation and heating, and more preferably one that can be cured by light irradiation.
  • Examples of the method for curing the LED sealant of the present invention by light irradiation include a method of irradiating light with a wavelength of 300 to 400 nm and an integrated light amount of 300 to 3000 mJ/cm 2 .
  • Examples of the light source for irradiating the LED encapsulant of the present invention include a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, an excimer laser, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, Examples include metal halide lamps, sodium lamps, halogen lamps, xenon lamps, LED lamps, fluorescent lamps, sunlight, and electron beam irradiation devices. These light sources may be used alone or in combination of two or more.
  • Examples of the means for irradiating light to the LED encapsulant of the present invention include simultaneous irradiation with various light sources, sequential irradiation with time differences, and combination irradiation of simultaneous irradiation and sequential irradiation. Means may also be used.
  • the LED encapsulant of the present invention can be applied with high application accuracy, it is particularly preferably used for application by an inkjet method.
  • an LED encapsulant that can be applied with high application accuracy and whose cured product can follow the expansion and contraction of the LED chip, the bending of the substrate, and the like.
  • Examples 1 to 14, Comparative Examples 1 and 2 The LED encapsulants of Examples 1 to 14 and Comparative Examples 1 and 2 were prepared by stirring and mixing each material using a stirring mixer according to the compounding ratios listed in Tables 1 and 2.
  • Awatori Rentaro ARE-310 (manufactured by Shinky Co., Ltd.) was used.
  • an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., "VISCOMETER TV-22") and No. The viscosity was measured using a No. 1 rotor at 25° C. and a rotation speed of 100 rpm. The results are shown in Tables 1 and 2.
  • each LED encapsulant obtained in Examples and Comparative Examples was coated on a slide glass to a thickness of 500 ⁇ m, and then ultraviolet rays (wavelength 365 nm) of 100 mW/cm 2 were applied using a metal halide lamp. was irradiated for 30 seconds to cure the LED encapsulant.
  • the obtained cured product was cut into a piece having a width of 5 mm, a length of 400 mm, and a thickness of 500 ⁇ m to obtain a test piece.
  • the tensile elongation at break of the obtained test piece was measured using a tensile testing machine (Shimadzu Corporation, "Autograph AG-XPlus”) at 25°C, distance between grips 25 mm, and tensile speed 5 mm/s. did.
  • the results are shown in Tables 1 and 2.
  • the LED encapsulant obtained in Comparative Example 1 the cured product became too soft and it was not possible to prepare a test piece.
  • each LED encapsulant obtained in Examples and Comparative Examples was coated on a slide glass to a thickness of 500 ⁇ m, and then ultraviolet rays (wavelength 365 nm) of 100 mW/cm 2 were applied using a metal halide lamp. was irradiated for 30 seconds to cure the LED encapsulant.
  • the obtained cured product was cut into a piece having a width of 5 mm, a length of 400 mm, and a thickness of 500 ⁇ m to obtain a test piece.
  • the obtained test piece was measured using a dynamic viscoelasticity measuring device (for example, "DVA-200” manufactured by IT Instruments Control Co., Ltd.) at 25°C, tensile mode, grip width 25 mm, and frequency 1.0 Hz.
  • the storage modulus was measured. When the storage elastic modulus is 0.1 MPa or more and less than 10 MPa, it is " ⁇ ", when it is 10 MPa or more and less than 300 MPa, it is “ ⁇ ”, and when it is less than 0.1 MPa or 300 MPa or more, it is "x”. was evaluated. In addition, regarding the LED encapsulant obtained in Comparative Example 1, the cured product became too soft and it was not possible to prepare a test piece.
  • an LED encapsulant that can be applied with high application accuracy and whose cured product can follow the expansion and contraction of the LED chip, the bending of the substrate, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Led Device Packages (AREA)

Abstract

The purpose of the present invention is to provide an LED sealant which can be applied with high precision and a cured product of which can conform to expansion and contraction of an LED chip and bending of a substrate. The present invention is a LED sealant comprising a curable resin and a polymerization initiator, wherein viscosity at 25°C is not more than 100 mPa·s, and tensile breaking elongation of a cured product at 25°C is not less than 50%.

Description

LED用封止剤Encapsulant for LED
本発明は、LED用封止剤に関する。 The present invention relates to an encapsulant for LEDs.
発光ダイオード(LED)は、消費電力が低く、長寿命であることから、表示装置等に広く用いられている。近年、マイクロLEDと呼ばれる微小なLEDを用いてなるLEDチップを実装することで、高品位の画像表示を可能とした表示装置が注目されている(例えば、特許文献1等)。
LEDは、大気中の水分やガスと接触することにより劣化し、光取り出し効率が低下するため、通常、封止剤(LED用封止剤)を用いて封止されるが、マイクロLEDを用いる場合、LEDチップの高さが低く、LEDチップ間の間隔も狭くなるため、インクジェット法等を用いた高い塗布精度でLED用封止剤を塗布することが求められる。
また、LED用封止剤には、硬化物がLEDチップの膨張収縮や基板の屈曲等に追従することができる柔軟性も求められている。
Light emitting diodes (LEDs) have low power consumption and long life, and are therefore widely used in display devices and the like. In recent years, display devices that are capable of displaying high-quality images by mounting LED chips using minute LEDs called micro-LEDs have been attracting attention (for example, Patent Document 1, etc.).
LEDs deteriorate when they come into contact with moisture or gas in the atmosphere, reducing light extraction efficiency, so they are usually sealed using a sealant (LED sealant), but micro LEDs are used. In this case, since the height of the LED chips is low and the distance between the LED chips is narrow, it is required to apply the LED encapsulant with high coating accuracy using an inkjet method or the like.
In addition, the LED encapsulant is required to have flexibility so that the cured product can follow the expansion and contraction of the LED chip, the bending of the substrate, and the like.
特開2019-212694号公報JP2019-212694A
LED用封止剤の硬化物の柔軟性を向上させるために、硬化性樹脂としてウレタンアクリレート等を用いた場合、インクジェット法等により高い塗布精度で塗布することが困難となるという問題があった。
本発明は、高い塗布精度で塗布することができ、硬化物がLEDチップの膨張収縮や基板の屈曲等に追従することができるLED用封止剤を提供することを目的とする。
When urethane acrylate or the like is used as a curable resin to improve the flexibility of a cured product of an LED encapsulant, there is a problem in that it is difficult to apply with high coating accuracy using an inkjet method or the like.
An object of the present invention is to provide an LED encapsulant that can be coated with high coating accuracy and whose cured product can follow the expansion and contraction of the LED chip, the bending of the substrate, and the like.
本開示1は、硬化性樹脂と重合開始剤とを含有し、25℃における粘度が100mPa・s以下であり、硬化物の25℃における引張破断伸びが50%以上であるLED用封止剤である。
本開示2は、上記硬化性樹脂は、1分子中に2つのチオール基を有するジチオール化合物(A)、1分子中に3つ以上のチオール基を有するポリチオール化合物(B)、及び、1分子中に2つ以上の脂肪族炭素-炭素二重結合を有するポリエン化合物(C)を含む本開示1のLED用封止剤である。
本開示3は、硬化性樹脂と重合開始剤とを含有し、上記硬化性樹脂は、1分子中に2つのチオール基を有するジチオール化合物(A)、1分子中に3つ以上のチオール基を有するポリチオール化合物(B)、及び、1分子中に2つ以上の脂肪族炭素-炭素二重結合を有するポリエン化合物(C)を含むLED用封止剤である。
本開示4は、上記ポリエン化合物(C)は、1分子中に2つ又は3つの脂肪族炭素-炭素二重結合を有する(メタ)アリル化合物である本開示2又は3のLED用封止剤である。
本開示5は、更に、レベリング剤を含有する本開示1、2、3又は4のLED用封止剤である。
本開示6は、インクジェット法による塗布に用いられる本開示1、2、3、4又は5のLED用封止剤である。
以下に本発明を詳述する。
なお、本開示1のLED用封止剤を「本発明1のLED用封止剤」ともいい、本開示3のLED用封止剤を「本発明2のLED用封止剤」ともいう。また、本発明1のLED用封止剤と本発明2のLED用封止剤とに共通する事項については、特に指定しないか、又は、「本発明のLED用封止剤」として記載する。
The present disclosure 1 is an encapsulant for LEDs containing a curable resin and a polymerization initiator, having a viscosity at 25°C of 100 mPa·s or less, and a cured product having a tensile elongation at break of 50% or more at 25°C. be.
The present disclosure 2 provides that the curable resin comprises a dithiol compound (A) having two thiol groups in one molecule, a polythiol compound (B) having three or more thiol groups in one molecule, and a polythiol compound (B) having three or more thiol groups in one molecule. The LED encapsulant of the present disclosure 1 contains a polyene compound (C) having two or more aliphatic carbon-carbon double bonds.
The present disclosure 3 contains a curable resin and a polymerization initiator, and the curable resin contains a dithiol compound (A) having two thiol groups in one molecule, and a dithiol compound (A) having three or more thiol groups in one molecule. and a polyene compound (C) having two or more aliphatic carbon-carbon double bonds in one molecule.
Present Disclosure 4 is the LED encapsulant of Present Disclosure 2 or 3, wherein the polyene compound (C) is a (meth)allyl compound having two or three aliphatic carbon-carbon double bonds in one molecule. It is.
The present disclosure 5 is the LED encapsulant of the present disclosure 1, 2, 3, or 4 which further contains a leveling agent.
The present disclosure 6 is the LED encapsulant of the present disclosure 1, 2, 3, 4, or 5 used for coating by an inkjet method.
The present invention will be explained in detail below.
The LED encapsulant of the present disclosure 1 is also referred to as the "LED encapsulant of the present invention 1", and the LED encapsulant of the present disclosure 3 is also referred to as the "LED encapsulant of the present invention 2". Further, matters common to the LED encapsulant of the first invention and the LED encapsulant of the second invention are not specified or are described as "the LED encapsulant of the present invention."
本発明者は、LED用封止剤において、硬化性樹脂として特定の化合物を組み合わせて用いること等により、25℃における粘度を特定値以下となるようにしつつ、硬化物の引張破断伸びを特定値以上となるようにすることを検討した。その結果、高い塗布精度で塗布することができ、硬化物がLEDチップの膨張収縮や基板の屈曲等に追従することができるLED用封止剤を得ることができることを見出し、本発明を完成させるに至った。 The present inventor has developed an LED encapsulant that uses a combination of specific compounds as a curable resin so that the viscosity at 25°C is below a specific value, and the tensile elongation at break of the cured product is set to a specific value. We considered doing the above. As a result, they discovered that it was possible to obtain an encapsulant for LEDs that could be coated with high coating accuracy and whose cured product could follow the expansion and contraction of the LED chip, the bending of the substrate, etc., and completed the present invention. reached.
本発明1のLED用封止剤は、25℃における粘度の上限が100mPa・sである。上記25℃における粘度が100mPa・s以下であることにより、本発明1のLED用封止剤は、インクジェット法等による塗布精度に優れるものとなる。上記25℃における粘度の好ましい上限は50mPa・s、より好ましい上限は30mPa・sである。
塗布後の形状保持性等の観点から、本発明1のLED用封止剤の25℃における粘度の好ましい下限は10.0mPa・s、より好ましい下限は15.0mPa・sである。
また、本発明2のLED用封止剤は、25℃における粘度の好ましい上限が100mPa・sである。上記25℃における粘度が100mPa・s以下であることにより、本発明2のLED用封止剤は、インクジェット法等による塗布精度により優れるものとなる。上記25℃における粘度のより好ましい上限は50mPa・s、更に好ましい上限は30mPa・sである。
塗布後の形状保持性等の観点から、本発明2のLED用封止剤の25℃における粘度の好ましい下限は10.0mPa・s、より好ましい下限は15.0mPa・sである。
なお、上記粘度は、例えば、E型粘度計としてVISCOMETER TV-22(東機産業社製)、No.1のローターを用いて100rpmの回転速度にて測定することができる。
The upper limit of the viscosity of the LED encapsulant of the present invention 1 at 25° C. is 100 mPa·s. Since the viscosity at 25° C. is 100 mPa·s or less, the LED encapsulant of the present invention 1 has excellent coating accuracy by an inkjet method or the like. The preferable upper limit of the viscosity at 25° C. is 50 mPa·s, and the more preferable upper limit is 30 mPa·s.
From the viewpoint of shape retention after coating, etc., the lower limit of the viscosity at 25° C. of the LED encapsulant of the present invention 1 is preferably 10.0 mPa·s, and the more preferable lower limit is 15.0 mPa·s.
Furthermore, the preferred upper limit of the viscosity of the LED sealant of the second aspect of the present invention at 25° C. is 100 mPa·s. Since the viscosity at 25° C. is 100 mPa·s or less, the LED encapsulant of the second aspect of the present invention has better coating accuracy by an inkjet method or the like. A more preferable upper limit of the viscosity at 25° C. is 50 mPa·s, and an even more preferable upper limit is 30 mPa·s.
From the viewpoint of shape retention after application, etc., the lower limit of the viscosity at 25° C. of the LED encapsulant of the second invention is preferably 10.0 mPa·s, and the more preferable lower limit is 15.0 mPa·s.
The above viscosity is measured using, for example, VISCOMETER TV-22 (manufactured by Toki Sangyo Co., Ltd.) as an E-type viscometer, No. The measurement can be performed using one rotor at a rotation speed of 100 rpm.
本発明1のLED用封止剤は、硬化物の25℃における引張破断伸びの下限が50%である。上記硬化物の25℃における引張破断伸びが50%以上であることにより、本発明1のLED用封止剤は、硬化物が柔軟性に優れ、LEDチップの膨張収縮や基板の屈曲等に追従することができるものとなる。
本発明1のLED用封止剤の硬化物の25℃における引張破断伸びの好ましい上限は特にないが、実質的な上限は500%である。
本発明2のLED用封止剤は、硬化物の25℃における引張破断伸びの好ましい下限が50%である。上記硬化物の25℃における引張破断伸びが50%以上であることにより、本発明2のLED用封止剤は、硬化物が柔軟性により優れ、LEDチップの膨張収縮や基板の屈曲等により追従することができるものとなる。
本発明2のLED用封止剤の硬化物の25℃における引張破断伸びの好ましい上限は特にないが、実質的な上限は500%である。
なお、上記硬化物の25℃における引張破断伸びは、幅5mm、長さ400mm、厚さ500μmの硬化物について、引張り試験機(例えば、島津製作所社製、「オートグラフAG-Xplus」)を用いて、つかみ具間距離25mm、引張速度5mm/sの条件により測定することができる。また、上記引張破断伸びを測定する硬化物は、例えば、LED用封止剤が、後述する、ジチオール化合物(A)、ポリチオール化合物(B)、及び、ポリエン化合物(C)、並びに、光ラジカル重合開始剤を含有する場合は、該LED用封止剤に対して、3000mJ/cmの紫外線を照射する方法等により得ることができる。
In the LED encapsulant of the present invention 1, the lower limit of the tensile elongation at 25° C. of the cured product is 50%. Since the cured product has a tensile elongation at break of 50% or more at 25°C, the cured product of the LED encapsulant of the present invention has excellent flexibility and follows the expansion and contraction of the LED chip and the bending of the substrate. become something that can be done.
Although there is no particular preferable upper limit for the tensile elongation at break at 25° C. of the cured product of the LED encapsulant of the present invention 1, the practical upper limit is 500%.
In the LED encapsulant of the second aspect of the present invention, the preferable lower limit of the tensile elongation at 25° C. of the cured product is 50%. Since the cured product has a tensile elongation at break of 50% or more at 25°C, the cured product of the LED encapsulant of the second invention has excellent flexibility and follows the expansion and contraction of the LED chip and the bending of the substrate. become something that can be done.
Although there is no particular preferable upper limit for the tensile elongation at break at 25° C. of the cured product of the LED encapsulant of the present invention 2, the practical upper limit is 500%.
The tensile elongation at break at 25°C of the cured product was determined using a tensile tester (for example, "Autograph AG-Xplus" manufactured by Shimadzu Corporation) for a cured product with a width of 5 mm, a length of 400 mm, and a thickness of 500 μm. The distance between the grips is 25 mm, and the tensile speed is 5 mm/s. In addition, the cured product whose tensile elongation at break is measured is, for example, a dithiol compound (A), a polythiol compound (B), a polyene compound (C), and a photo-radical polymerized compound in which the LED encapsulant is a dithiol compound (A), a polythiol compound (B), a polyene compound (C), and When an initiator is contained, it can be obtained by a method of irradiating the LED encapsulant with ultraviolet rays of 3000 mJ/cm 2 .
本発明のLED用封止剤は、硬化物の25℃における貯蔵弾性率の好ましい下限が0.01MPa、好ましい上限が500MPaである。上記硬化物の25℃における貯蔵弾性率がこの範囲であることにより、本発明のLED用封止剤は、硬化物がLEDチップの膨張収縮や基板の屈曲等に追従する効果、及び、信頼性により優れるものとなる。上記硬化物の25℃における貯蔵弾性率のより好ましい下限は0.1MPa、より好ましい上限は300MPaである。
なお、上記硬化物の25℃における貯蔵弾性率は、幅5mm、長さ400mm、厚さ500μmの硬化物について、動的粘弾性測定装置(例えば、IT計測制御社製、「DVA-200」等)を用いて、引張りモード、掴み幅25mm、周波数1.0Hzの条件で測定することができる。
また、上記貯蔵弾性率を測定する硬化物としては、例えば、LED用封止剤が、後述する、ジチオール化合物(A)、ポリチオール化合物(B)、及び、ポリエン化合物(C)、並びに、光ラジカル重合開始剤を含有する場合は、該LED用封止剤に対して、3000mJ/cmの紫外線を照射する方法等により得ることができる。
In the LED encapsulant of the present invention, the storage modulus of the cured product at 25° C. has a preferable lower limit of 0.01 MPa and a preferable upper limit of 500 MPa. Since the storage elastic modulus of the cured product at 25° C. is within this range, the LED encapsulant of the present invention has the effect that the cured product follows the expansion and contraction of the LED chip, the bending of the substrate, etc., and the reliability. It becomes better. A more preferable lower limit of the storage modulus of the cured product at 25° C. is 0.1 MPa, and a more preferable upper limit is 300 MPa.
The storage elastic modulus at 25°C of the above cured product was measured using a dynamic viscoelasticity measuring device (for example, "DVA-200" manufactured by IT Instruments Control Co., Ltd.) for a cured product with a width of 5 mm, a length of 400 mm, and a thickness of 500 μm. ) under the conditions of tensile mode, gripping width of 25 mm, and frequency of 1.0 Hz.
In addition, as the cured product for measuring the storage modulus, for example, the LED encapsulant may be a dithiol compound (A), a polythiol compound (B), a polyene compound (C), and a photoradical, which will be described later. When a polymerization initiator is contained, it can be obtained by a method such as irradiating the LED sealant with ultraviolet rays of 3000 mJ/cm 2 .
本発明のLED用封止剤は、硬化性樹脂を含有する。
本発明2のLED用封止剤において、上記硬化性樹脂は、1分子中に2つのチオール基を有するジチオール化合物(A)、1分子中に3つ以上のチオール基を有するポリチオール化合物(B)、及び、1分子中に2つ以上の脂肪族炭素-炭素二重結合を有するポリエン化合物(C)を含む。
また、本発明1のLED用封止剤において、上記硬化性樹脂は、1分子中に2つのチオール基を有するジチオール化合物(A)、1分子中に3つ以上のチオール基を有するポリチオール化合物(B)、及び、1分子中に2つ以上の脂肪族炭素-炭素二重結合を有するポリエン化合物(C)を含むことが好ましい。
上記硬化性樹脂としてこれらの成分を含有することにより、得られるLED用封止剤が、低粘度で塗布性により優れるものとなり、かつ、硬化物が柔軟性により優れるものとなる。また、上記ジチオール化合物(A)、上記ポリチオール化合物(B)、及び、上記ポリエン化合物(C)を含有することにより、得られるLED用封止剤の硬化物が耐熱性にも優れるものとなる。
The LED encapsulant of the present invention contains a curable resin.
In the LED encapsulant of the second invention, the curable resin is a dithiol compound (A) having two thiol groups in one molecule, and a polythiol compound (B) having three or more thiol groups in one molecule. , and a polyene compound (C) having two or more aliphatic carbon-carbon double bonds in one molecule.
Further, in the LED encapsulant of the present invention 1, the curable resin may be a dithiol compound (A) having two thiol groups in one molecule, a polythiol compound (A) having three or more thiol groups in one molecule ( B) and a polyene compound (C) having two or more aliphatic carbon-carbon double bonds in one molecule.
By containing these components as the above-mentioned curable resin, the resulting LED encapsulant has low viscosity and excellent applicability, and the cured product has excellent flexibility. Further, by containing the dithiol compound (A), the polythiol compound (B), and the polyene compound (C), the resulting cured product of the LED encapsulant also has excellent heat resistance.
上記ジチオール化合物(A)の有するチオール基は、2級チオール基であることが好ましい。上記ジチオール化合物(A)の有するチオール基が2級チオール基であることにより、得られるLED用封止剤が保存安定性に優れるものとなる。 The thiol group possessed by the dithiol compound (A) is preferably a secondary thiol group. Since the thiol group of the dithiol compound (A) is a secondary thiol group, the resulting LED encapsulant has excellent storage stability.
上記ジチオール化合物(A)としては、例えば、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、ブタンジオールビスチオプロピオネート、エチレンビス(3-メルカプトプロピオネート)、1,2-ビス(2-メルカプトエトキシ)エタン、エチレンビス(チオグリコラート)等が挙げられる。これらのジチオール化合物(A)は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 Examples of the dithiol compound (A) include 1,4-bis(3-mercaptobutyryloxy)butane, butanediol bisthiopropionate, ethylene bis(3-mercaptopropionate), 1,2-bis (2-mercaptoethoxy)ethane, ethylene bis(thioglycolate), and the like. These dithiol compounds (A) may be used alone or in combination of two or more.
上記硬化性樹脂100質量部中における上記ジチオール化合物(A)の含有量の好ましい下限は20質量部、好ましい上限は70質量部である。上記ジチオール化合物(A)の含有量がこの範囲であることにより、得られるLED用封止剤が柔軟性により優れるものとなる。上記ジチオール化合物(A)の含有量のより好ましい下限は30質量部、より好ましい上限は60質量部である。 The preferable lower limit of the content of the dithiol compound (A) in 100 parts by weight of the curable resin is 20 parts by weight, and the preferable upper limit is 70 parts by weight. When the content of the dithiol compound (A) is within this range, the resulting LED encapsulant has excellent flexibility. A more preferable lower limit of the content of the dithiol compound (A) is 30 parts by mass, and a more preferable upper limit is 60 parts by mass.
上記ポリチオール化合物(B)の有するチオール基は、2級チオール基であることが好ましい。上記ポリチオール化合物(B)の有するチオール基が2級チオール基であることにより、得られるLED用封止剤が保存安定性に優れるものとなる。 The thiol group contained in the polythiol compound (B) is preferably a secondary thiol group. Since the thiol group possessed by the polythiol compound (B) is a secondary thiol group, the resulting LED encapsulant has excellent storage stability.
上記ポリチオール化合物(B)は、貯蔵弾性率向上の観点から、1分子中に3つ以上6つ以下のチオール基を有することが好ましく、3つ以上4つ以下のチオール基を有することがより好ましい。 From the viewpoint of improving storage modulus, the polythiol compound (B) preferably has 3 to 6 thiol groups in one molecule, and more preferably 3 to 4 thiol groups. .
上記ポリチオール化合物(B)としては、例えば、1,3,5-トリス(2-(3-スルファニルブタノイルオキシ)エチル)-1,3,5-トリアジナン-2,4,6-トリオン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ジペンタエリトリトールヘキサキス(3-メルカプトプロピオネート)等が挙げられる。これらのポリチオール化合物(B)は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 Examples of the polythiol compound (B) include 1,3,5-tris(2-(3-sulfanylbutanoyloxy)ethyl)-1,3,5-triazinane-2,4,6-trione, pentaerythritol Examples include tetrakis (3-mercaptobutyrate), pentaerythritol tetrakis (3-mercaptopropionate), dipentaerythritol hexakis (3-mercaptopropionate), and the like. These polythiol compounds (B) may be used alone or in combination of two or more.
上記硬化性樹脂100質量部中における上記ポリチオール化合物(B)の含有量の好ましい下限は2.0質量部、好ましい上限は70質量部である。上記ポリチオール化合物(B)の含有量がこの範囲であることにより、得られるLED用封止剤が柔軟性や低粘度性により優れるものとなる。上記ポリチオール化合物(B)の含有量のより好ましい下限は3.0質量部、より好ましい上限は30質量部である。 The preferable lower limit of the content of the polythiol compound (B) in 100 parts by weight of the curable resin is 2.0 parts by weight, and the preferable upper limit is 70 parts by weight. When the content of the polythiol compound (B) is within this range, the resulting LED encapsulant has excellent flexibility and low viscosity. A more preferable lower limit of the content of the polythiol compound (B) is 3.0 parts by mass, and a more preferable upper limit is 30 parts by mass.
上記ポリエン化合物(C)としては、例えば、イソフタル酸ジアリル、マレイン酸ジアリル、ジフェン酸ジアリル、トリアリルイソシアヌレート、ペンタエリスリトールテトラアリルエーテル、1,3,4,6-テトラアリルテトラヒドロイミダゾ[4,5-d]イミダゾール-2,5(1H,3H)-ジオン等が挙げられる。なかでも、上記ポリエン化合物(C)は、1分子中に2つ又は3つの脂肪族炭素-炭素二重結合を有する(メタ)アリル化合物であることが好ましい。これらのポリエン化合物(C)は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
なお、本明細書において上記「(メタ)アリル」とは、アリル又はメタリルを意味する。
Examples of the polyene compound (C) include diallyl isophthalate, diallyl maleate, diallyl diphenate, triallyl isocyanurate, pentaerythritol tetraallyl ether, 1,3,4,6-tetraallyltetrahydroimidazo[4,5 -d]imidazole-2,5(1H,3H)-dione and the like. Among these, the polyene compound (C) is preferably a (meth)allyl compound having two or three aliphatic carbon-carbon double bonds in one molecule. These polyene compounds (C) may be used alone or in combination of two or more.
In addition, in this specification, the above-mentioned "(meth)allyl" means allyl or methallyl.
上記硬化性樹脂100質量部中における上記ポリエン化合物(C)の含有量の好ましい下限は20質量部、好ましい上限は60質量部である。上記ポリエン化合物(C)の含有量がこの範囲であることにより、得られるLED用封止剤が柔軟性や低粘度性により優れるものとなる。上記ポリエン化合物(C)の含有量のより好ましい下限は30質量部、より好ましい上限は50質量部である。 The preferable lower limit of the content of the polyene compound (C) in 100 parts by weight of the curable resin is 20 parts by weight, and the preferable upper limit is 60 parts by weight. When the content of the polyene compound (C) is within this range, the resulting LED encapsulant has excellent flexibility and low viscosity. A more preferable lower limit of the content of the polyene compound (C) is 30 parts by mass, and a more preferable upper limit is 50 parts by mass.
上記ジチオール化合物(A)と上記ポリチオール化合物(B)と上記ポリエン化合物(C)との含有割合としては、上記ジチオール化合物(A)及び上記ポリチオール化合物(B)の有するチオール基と上記ポリエン化合物(C)の有する脂肪族炭素-炭素二重結合との割合が、モル比で、チオール基:脂肪族炭素-炭素二重結合=1.5:1.0~1.0:1.5となる範囲となることが好ましく、チオール基:脂肪族炭素-炭素二重結合=1.2:1.0~1.0:1.2となる範囲となることがより好ましい。 The content ratio of the dithiol compound (A), the polythiol compound (B), and the polyene compound (C) is as follows: ) has a molar ratio of thiol group:aliphatic carbon-carbon double bond=1.5:1.0 to 1.0:1.5. It is preferable that the ratio is thiol group:aliphatic carbon-carbon double bond=1.2:1.0 to 1.0:1.2.
本発明のLED用封止剤は、重合開始剤を含有する。
上記重合開始剤としては、光ラジカル重合開始剤や熱ラジカル重合開始剤が挙げられ、光ラジカル重合開始剤が好適に用いられる。
The LED encapsulant of the present invention contains a polymerization initiator.
Examples of the polymerization initiator include a photoradical polymerization initiator and a thermal radical polymerization initiator, and the photoradical polymerization initiator is preferably used.
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン化合物、アセトフェノン化合物、アシルフォスフィンオキサイド化合物、チタノセン化合物、オキシムエステル化合物、ベンゾインエーテル化合物、チオキサントン化合物等が挙げられる。
上記光ラジカル重合開始剤としては、具体的には例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン、2-(ジメチルアミノ)-2-((4-メチルフェニル)メチル)-1-(4-(4-モルホリニル)フェニル)-1-ブタノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、1-(4-(フェニルチオ)フェニル)-1,2-オクタンジオン2-(O-ベンゾイルオキシム)、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等が挙げられる。
上記光ラジカル重合開始剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
Examples of the photoradical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, and thioxanthone compounds.
Specific examples of the photoradical polymerization initiator include 1-hydroxycyclohexylphenyl ketone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-1-butanone, 2-(dimethylamino )-2-((4-methylphenyl)methyl)-1-(4-(4-morpholinyl)phenyl)-1-butanone, 2,2-dimethoxy-1,2-diphenylethan-1-one, bis( 2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one, 1-(4-(2-hydroxyethoxy)-phenyl) -2-hydroxy-2-methyl-1-propan-1-one, 1-(4-(phenylthio)phenyl)-1,2-octanedione 2-(O-benzoyloxime), 2,4,6-trimethyl Examples include benzoyldiphenylphosphine oxide.
The above photoradical polymerization initiators may be used alone or in combination of two or more.
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物や有機過酸化物等で構成されるものが挙げられる。
上記アゾ化合物としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ化合物としては、ポリエチレンオキサイド構造を有するものが好ましい。
上記アゾ化合物としては、具体的には例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられる。
上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。
Examples of the thermal radical polymerization initiator include those composed of azo compounds, organic peroxides, and the like.
Examples of the azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
The polymeric azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via an azo group is preferably one having a polyethylene oxide structure.
Specifically, the azo compound mentioned above is, for example, a polycondensate of 4,4'-azobis(4-cyanopentanoic acid) and polyalkylene glycol, or a polycondensate of 4,4'-azobis(4-cyanopentanoic acid) and a terminal Examples include polycondensates of polydimethylsiloxane having amino groups.
Examples of the organic peroxide include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxy ester, diacyl peroxide, peroxydicarbonate, and the like.
上記重合開始剤の含有量は、上記硬化性樹脂100質量部に対して、好ましい下限が0.1質量部、好ましい上限が5.0質量部である。上記重合開始剤の含有量がこの範囲であることにより、得られるLED用封止剤が保存安定性及び硬化性により優れるものとなる。上記重合開始剤の含有量のより好ましい下限は0.5質量部、より好ましい上限は2.0質量部である。 The content of the polymerization initiator has a preferable lower limit of 0.1 parts by weight and a preferable upper limit of 5.0 parts by weight based on 100 parts by weight of the curable resin. When the content of the polymerization initiator is within this range, the resulting LED encapsulant has better storage stability and curability. A more preferable lower limit of the content of the polymerization initiator is 0.5 parts by mass, and a more preferable upper limit is 2.0 parts by mass.
本発明のLED用封止剤は、塗膜の平坦性の観点から、更に、レベリング剤を含有することが好ましい。 It is preferable that the LED encapsulant of the present invention further contains a leveling agent from the viewpoint of the flatness of the coating film.
上記レベリング剤としては、例えば、シリコーン系レベリング剤、フッ素系レベリング剤、アクリル系レベリング剤等が挙げられる。 Examples of the leveling agent include silicone leveling agents, fluorine leveling agents, acrylic leveling agents, and the like.
上記レベリング剤の含有量は、上記硬化性樹脂100質量部に対して、好ましい下限が0.01質量部、好ましい上限が10質量部である。上記レベリング剤の含有量がこの範囲であることにより、得られるLED用封止剤が塗布性及び塗膜の平坦性により優れるものとなる。上記レベリング剤の含有量のより好ましい下限は0.1質量部、より好ましい上限は1.0質量部である。 The content of the leveling agent has a preferable lower limit of 0.01 parts by weight and a preferable upper limit of 10 parts by weight based on 100 parts by weight of the curable resin. When the content of the leveling agent is within this range, the resulting LED encapsulant has better applicability and coating film flatness. A more preferable lower limit of the content of the leveling agent is 0.1 parts by mass, and a more preferable upper limit is 1.0 parts by mass.
本発明のLED用封止剤は、更に、本発明の目的を阻害しない範囲において、充填剤、可塑剤、界面活性剤、難燃剤、帯電防止剤、消泡剤、紫外線吸収剤等の添加剤を含有してもよい。 The LED encapsulant of the present invention may further contain additives such as fillers, plasticizers, surfactants, flame retardants, antistatic agents, antifoaming agents, ultraviolet absorbers, etc., within a range that does not impede the object of the present invention. May contain.
本発明のLED用封止剤を製造する方法としては、例えば、ジチオール化合物(A)、ポリチオール化合物(B)、ポリエン化合物(C)、重合開始剤、及び、必要に応じて添加されるレベリング剤等を、撹拌機を用いて均一に混合する方法等が挙げられる。 The method for producing the LED encapsulant of the present invention includes, for example, a dithiol compound (A), a polythiol compound (B), a polyene compound (C), a polymerization initiator, and a leveling agent added as necessary. Examples include a method of uniformly mixing the above with a stirrer.
本発明のLED用封止剤は、光照射及び加熱の少なくともいずれかにより硬化させることができるものであることが好ましく、光照射により硬化させることができるものであることがより好ましい。 The LED encapsulant of the present invention is preferably one that can be cured by at least one of light irradiation and heating, and more preferably one that can be cured by light irradiation.
本発明のLED用封止剤を光照射により硬化させる方法としては、例えば、300~400nmの波長及び300~3000mJ/cmの積算光量の光を照射する方法等が挙げられる。 Examples of the method for curing the LED sealant of the present invention by light irradiation include a method of irradiating light with a wavelength of 300 to 400 nm and an integrated light amount of 300 to 3000 mJ/cm 2 .
本発明のLED用封止剤に光を照射するための光源としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、エキシマレーザ、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ、ナトリウムランプ、ハロゲンランプ、キセノンランプ、LEDランプ、蛍光灯、太陽光、電子線照射装置等が挙げられる。これらの光源は単独で用いられてもよいし、2種以上が併用されてもよい。 Examples of the light source for irradiating the LED encapsulant of the present invention include a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, an excimer laser, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, Examples include metal halide lamps, sodium lamps, halogen lamps, xenon lamps, LED lamps, fluorescent lamps, sunlight, and electron beam irradiation devices. These light sources may be used alone or in combination of two or more.
本発明のLED用封止剤への光の照射手段としては、例えば、各種光源の同時照射、時間差をおいての逐次照射、同時照射と逐次照射との組み合わせ照射等が挙げられ、いずれの照射手段を用いてもよい。 Examples of the means for irradiating light to the LED encapsulant of the present invention include simultaneous irradiation with various light sources, sequential irradiation with time differences, and combination irradiation of simultaneous irradiation and sequential irradiation. Means may also be used.
本発明のLED用封止剤は、高い塗布精度で塗布することができるため、特に、インクジェット法による塗布に用いられることが好ましい。 Since the LED encapsulant of the present invention can be applied with high application accuracy, it is particularly preferably used for application by an inkjet method.
本発明によれば、高い塗布精度で塗布することができ、硬化物がLEDチップの膨張収縮や基板の屈曲等に追従することができるLED用封止剤を提供することができる。 According to the present invention, it is possible to provide an LED encapsulant that can be applied with high application accuracy and whose cured product can follow the expansion and contraction of the LED chip, the bending of the substrate, and the like.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples.
(実施例1~14、比較例1、2)
表1、2に記載された配合比に従い、各材料を、撹拌混合機を用いて撹拌混合することにより、実施例1~14及び比較例1、2のLED用封止剤を調製した。撹拌混合機としては、あわとり練太郎ARE-310(シンキー社製)を用いた。
実施例及び比較例で得られた各LED用封止剤について、E型粘度計(東機産業社製、「VISCOMETER TV-22」)及びNo.1のローターを用い、25℃、回転速度100rpmの条件で粘度を測定した。結果を表1、2に示した。
また、実施例及び比較例で得られた各LED用封止剤を、厚さ500μmとなるようにしてスライドガラス上に塗布した後、メタルハライドランプを用いて100mW/cmの紫外線(波長365nm)を30秒照射してLED用封止剤を硬化させた。得られた硬化物を、幅5mm、長さ400mm、厚さ500μmに切り出して試験片を得た。得られた試験片について、引張り試験機(島津製作所社製、「オートグラフAG-XPlus」)を用いて、25℃、つかみ具間距離25mm、引張速度5mm/sの条件により引張破断伸びを測定した。結果を表1、2に示した。なお、比較例1で得られたLED用封止剤については、硬化物が柔らかくなりすぎて試験片を作製することができなかった。
(Examples 1 to 14, Comparative Examples 1 and 2)
The LED encapsulants of Examples 1 to 14 and Comparative Examples 1 and 2 were prepared by stirring and mixing each material using a stirring mixer according to the compounding ratios listed in Tables 1 and 2. As the stirring mixer, Awatori Rentaro ARE-310 (manufactured by Shinky Co., Ltd.) was used.
For each LED encapsulant obtained in Examples and Comparative Examples, an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., "VISCOMETER TV-22") and No. The viscosity was measured using a No. 1 rotor at 25° C. and a rotation speed of 100 rpm. The results are shown in Tables 1 and 2.
In addition, each LED encapsulant obtained in Examples and Comparative Examples was coated on a slide glass to a thickness of 500 μm, and then ultraviolet rays (wavelength 365 nm) of 100 mW/cm 2 were applied using a metal halide lamp. was irradiated for 30 seconds to cure the LED encapsulant. The obtained cured product was cut into a piece having a width of 5 mm, a length of 400 mm, and a thickness of 500 μm to obtain a test piece. The tensile elongation at break of the obtained test piece was measured using a tensile testing machine (Shimadzu Corporation, "Autograph AG-XPlus") at 25°C, distance between grips 25 mm, and tensile speed 5 mm/s. did. The results are shown in Tables 1 and 2. In addition, regarding the LED encapsulant obtained in Comparative Example 1, the cured product became too soft and it was not possible to prepare a test piece.
<評価>
実施例及び比較例で得られた各LED用封止剤について、以下の方法により評価を行った。結果を表1、2に示した。
<Evaluation>
Each LED encapsulant obtained in Examples and Comparative Examples was evaluated by the following method. The results are shown in Tables 1 and 2.
(吐出性及び塗布精度)
実施例及び比較例で得られた各LED用封止剤を、インクジェット吐出装置(マイクロジェット社製、「NanoPrinter500」)を用いて、スライドガラス上に1ドットが10pLの液適量になるように塗布した。
吐出可能であった場合を「○」、吐出不可であった場合を「×」として吐出性を評価した。
更に、吐出したドットを無作為に3点選びその直径の平均からの誤差の最大値が5%以内であった場合を「◎」、5%を超え10%以内であった場合を「○」、10%を超えた場合又は塗布不可であった場合を「×」として塗布精度を評価した。
(Discharge performance and coating accuracy)
Each of the LED encapsulants obtained in Examples and Comparative Examples was applied onto a slide glass using an inkjet discharging device (manufactured by Microjet, "NanoPrinter500") so that each dot had an appropriate amount of liquid of 10 pL. did.
The ejectability was evaluated as "○" if the product could be ejected, and "x" if the product could not be ejected.
Furthermore, select three dots at random and mark them as "◎" if the maximum error from the average diameter is within 5%, and "○" if it exceeds 5% and falls within 10%. , the coating accuracy was evaluated by setting "×" in cases where the coating amount exceeded 10% or coating was impossible.
(柔軟性)
また、実施例及び比較例で得られた各LED用封止剤を、厚さ500μmとなるようにしてスライドガラス上に塗布した後、メタルハライドランプを用いて100mW/cmの紫外線(波長365nm)を30秒照射してLED用封止剤を硬化させた。得られた硬化物を、幅5mm、長さ400mm、厚さ500μmに切り出して試験片を得た。得られた試験片について、動的粘弾性測定装置(例えば、IT計測制御社製、「DVA-200」等)を用いて、25℃、引張りモード、掴み幅25mm、周波数1.0Hzの条件で貯蔵弾性率を測定した。
貯蔵弾性率が0.1MPa以上10MPa未満であった場合を「◎」、10MPa以上300MPa未満であった場合を「○」、0.1MPa未満又は300MPa以上であった場合を「×」として柔軟性を評価した。なお、比較例1で得られたLED用封止剤については、硬化物が柔らかくなりすぎて試験片を作製することができなかった。
(Flexibility)
In addition, each LED encapsulant obtained in Examples and Comparative Examples was coated on a slide glass to a thickness of 500 μm, and then ultraviolet rays (wavelength 365 nm) of 100 mW/cm 2 were applied using a metal halide lamp. was irradiated for 30 seconds to cure the LED encapsulant. The obtained cured product was cut into a piece having a width of 5 mm, a length of 400 mm, and a thickness of 500 μm to obtain a test piece. The obtained test piece was measured using a dynamic viscoelasticity measuring device (for example, "DVA-200" manufactured by IT Instruments Control Co., Ltd.) at 25°C, tensile mode, grip width 25 mm, and frequency 1.0 Hz. The storage modulus was measured.
When the storage elastic modulus is 0.1 MPa or more and less than 10 MPa, it is "◎", when it is 10 MPa or more and less than 300 MPa, it is "○", and when it is less than 0.1 MPa or 300 MPa or more, it is "x". was evaluated. In addition, regarding the LED encapsulant obtained in Comparative Example 1, the cured product became too soft and it was not possible to prepare a test piece.
(保存安定性)
実施例及び比較例で得られた各LED用封止剤について、製造直後の初期粘度と、製造後に25℃で1週間保管した後の粘度とを測定した。(保管後の粘度)/(初期粘度)を増粘率とし、増粘率が1.4未満であったものを「○」、1.4以上2.0未満であったものを「△」、2.0以上又はゲル化したものを「×」として保存安定性を評価した。
なお、LED用封止剤の粘度は、E型粘度計(東機産業社製、「VISCOMETER TV-22」)及びNo.1のローターを用い、25℃、回転速度100rpmの条件で測定した。
(Storage stability)
For each of the LED encapsulants obtained in Examples and Comparative Examples, the initial viscosity immediately after production and the viscosity after storage at 25° C. for one week after production were measured. (Viscosity after storage)/(Initial viscosity) is the viscosity increase rate. If the viscosity increase rate is less than 1.4, "○", if it is 1.4 or more and less than 2.0, "△" , 2.0 or more or gelatinized as "x" and storage stability was evaluated.
The viscosity of the LED encapsulant was measured using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., "VISCOMETER TV-22") and No. The measurement was carried out using a rotor of No. 1 under the conditions of 25° C. and a rotation speed of 100 rpm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
本発明によれば、高い塗布精度で塗布することができ、硬化物がLEDチップの膨張収縮や基板の屈曲等に追従することができるLED用封止剤を提供することができる。 According to the present invention, it is possible to provide an LED encapsulant that can be applied with high application accuracy and whose cured product can follow the expansion and contraction of the LED chip, the bending of the substrate, and the like.

Claims (6)

  1. 硬化性樹脂と重合開始剤とを含有し、
    25℃における粘度が100mPa・s以下であり、硬化物の25℃における引張破断伸びが50%以上である
    ことを特徴とするLED用封止剤。
    Contains a curable resin and a polymerization initiator,
    An encapsulant for an LED, characterized in that the viscosity at 25°C is 100 mPa·s or less, and the cured product has a tensile elongation at break of 50% or more at 25°C.
  2. 前記硬化性樹脂は、1分子中に2つのチオール基を有するジチオール化合物(A)、1分子中に3つ以上のチオール基を有するポリチオール化合物(B)、及び、1分子中に2つ以上の脂肪族炭素-炭素二重結合を有するポリエン化合物(C)を含む請求項1記載のLED用封止剤。 The curable resin includes a dithiol compound (A) having two thiol groups in one molecule, a polythiol compound (B) having three or more thiol groups in one molecule, and a dithiol compound (B) having two or more thiol groups in one molecule. The encapsulant for LED according to claim 1, comprising a polyene compound (C) having an aliphatic carbon-carbon double bond.
  3. 硬化性樹脂と重合開始剤とを含有し、
    前記硬化性樹脂は、1分子中に2つのチオール基を有するジチオール化合物(A)、1分子中に3つ以上のチオール基を有するポリチオール化合物(B)、及び、1分子中に2つ以上の脂肪族炭素-炭素二重結合を有するポリエン化合物(C)を含む
    ことを特徴とするLED用封止剤。
    Contains a curable resin and a polymerization initiator,
    The curable resin includes a dithiol compound (A) having two thiol groups in one molecule, a polythiol compound (B) having three or more thiol groups in one molecule, and a dithiol compound (B) having two or more thiol groups in one molecule. An encapsulant for LED characterized by containing a polyene compound (C) having an aliphatic carbon-carbon double bond.
  4. 前記ポリエン化合物(C)は、1分子中に2つ又は3つの脂肪族炭素-炭素二重結合を有する(メタ)アリル化合物である請求項2又は3記載のLED用封止剤。 The LED encapsulant according to claim 2 or 3, wherein the polyene compound (C) is a (meth)allyl compound having two or three aliphatic carbon-carbon double bonds in one molecule.
  5. 更に、レベリング剤を含有する請求項1、2、3又は4記載のLED用封止剤。 The LED encapsulant according to claim 1, further comprising a leveling agent.
  6. インクジェット法による塗布に用いられる請求項1、2、3、4又は5記載のLED用封止剤。 The LED sealant according to claim 1, which is used for coating by an inkjet method.
PCT/JP2023/022448 2022-06-20 2023-06-16 Led sealant WO2023248952A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-098857 2022-06-20
JP2022098857 2022-06-20

Publications (1)

Publication Number Publication Date
WO2023248952A1 true WO2023248952A1 (en) 2023-12-28

Family

ID=89379940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022448 WO2023248952A1 (en) 2022-06-20 2023-06-16 Led sealant

Country Status (2)

Country Link
TW (1) TW202411307A (en)
WO (1) WO2023248952A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054373A1 (en) * 1998-04-17 1999-10-28 Sanyo Chemical Industries, Ltd. Curable composition and cured article thereof
JP2009193995A (en) * 2008-02-12 2009-08-27 Citizen Holdings Co Ltd Led light source and chromaticity adjustment method thereof
WO2020241368A1 (en) * 2019-05-31 2020-12-03 ダウ・東レ株式会社 Curable organopolysiloxane composition, and optical member formed from cured product of same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054373A1 (en) * 1998-04-17 1999-10-28 Sanyo Chemical Industries, Ltd. Curable composition and cured article thereof
JP2009193995A (en) * 2008-02-12 2009-08-27 Citizen Holdings Co Ltd Led light source and chromaticity adjustment method thereof
WO2020241368A1 (en) * 2019-05-31 2020-12-03 ダウ・東レ株式会社 Curable organopolysiloxane composition, and optical member formed from cured product of same

Also Published As

Publication number Publication date
TW202411307A (en) 2024-03-16

Similar Documents

Publication Publication Date Title
CN107109190B (en) Sealing agent for electronic device and method for manufacturing electronic device
JP5988567B2 (en) Urethane (meth) acrylate and production method thereof, crosslinked urethane (meth) acrylate and production method thereof, and photocurable aqueous emulsion
TWI568799B (en) A high-reliability hardened silicon oxide composition and an optical semiconductor device using the same
TWI825135B (en) Ultraviolet curable polysiloxane composition and cured product thereof for photo-modelling
JP7227016B2 (en) Photocurable resin composition for electronic devices
JP7457686B2 (en) Encapsulant for organic EL display elements
WO2023248952A1 (en) Led sealant
JP2020172581A (en) Uv-curable silicone gel composition and damping material
TW201527502A (en) Sealant for display element
JP7449713B2 (en) Curable resin compositions, cured products, and electronic components
JP2023181439A (en) Photocurable resin composition for electronic device
JP2024022608A (en) Encapsulant for organic el display element
WO2021229944A1 (en) Photocurable silicone composition, adhesive, and cured silicone product
JP2016110788A (en) Sealant for display element
JP2021134329A (en) Ultraviolet curable silicone composition, and sealant or sheet film using the same
WO2013146607A1 (en) Sealing agent for semiconductor light emitting elements, cured film using same, and semiconductor light emitting device
WO2021085241A1 (en) Photocurable resin composition for electronic devices
JP2017045646A (en) Sealant for display element
JP7474007B2 (en) Photocurable silicone resin composition
JP7397666B2 (en) Encapsulant for organic EL display elements
JP7426608B2 (en) photocurable composition
JP7474052B2 (en) Sealant for organic EL display devices
WO2024070200A1 (en) Photo- and heat-curable silicone composition and production method for cured product thereof
JP2024048448A (en) Heat and photo-curable silicone composition, and production method of cured product of the same
TW202423998A (en) Curable composition, cured product thereof, LED element, electronic device and optical element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023547708

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827137

Country of ref document: EP

Kind code of ref document: A1