WO2023248635A1 - Substrate for inspection device, inspection device, and method for manufacturing inspection device - Google Patents

Substrate for inspection device, inspection device, and method for manufacturing inspection device Download PDF

Info

Publication number
WO2023248635A1
WO2023248635A1 PCT/JP2023/017509 JP2023017509W WO2023248635A1 WO 2023248635 A1 WO2023248635 A1 WO 2023248635A1 JP 2023017509 W JP2023017509 W JP 2023017509W WO 2023248635 A1 WO2023248635 A1 WO 2023248635A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
hydrophobic
test device
impregnated
test
Prior art date
Application number
PCT/JP2023/017509
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 文珠
学 平川
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2023248635A1 publication Critical patent/WO2023248635A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to a substrate for a test device, a test device, and a method for manufacturing a test device.
  • test chip that uses a measurement method called immunochromatography that combines the principles of sandwich ELISA and chromatography. ing.
  • Such an inspection device may include, for example, a first layer on the front side and a second layer on the back side, the first layer and the second layer being adjacent to each other, and the first layer or the second layer being adjacent to each other. one of them has a liquid receiving part, the first layer has at least a detection confirmation part, and the second layer has at least a liquid flow part adjacent to the detection confirmation part, and a liquid flow part adjacent to the detection confirmation part.
  • a sheet-shaped test chip having a liquid flow path connected to a flow section has been proposed (see, for example, Patent Document 1).
  • the liquid receiving part when the first layer has a liquid receiving part, the liquid receiving part is separated from the detection confirmation part, and when the test liquid is dropped into the liquid receiving part, the liquid receiving part is separated from the detection confirmation part.
  • the liquid is configured to flow through the liquid receiving section, the liquid flow path, and the liquid distribution section in this order to the detection confirmation section due to capillary action.
  • test chip of Patent Document 1 forms a flow path etc. by thermally transferring a thermal transfer medium to a base material, it holds a hydrophobic material (ink) containing a hydrophobic component as a thermal transfer medium, and There is a limit to the amount of ink that can be impregnated into a material (for example, filter paper). Even if the amount of ink impregnated is increased in order to improve the ink impregnating property, permeation in the surface direction also occurs at the same time, leading to deterioration of flow path precision. Furthermore, there is a limit to the average thickness of a base material that can form a flow path, and a thinner base material is preferable for forming a flow path.
  • the base material requires a certain degree of strength (paper strength) for handling.
  • paper strength it is preferable that the cellulose density is high.
  • the base material becomes thin and dense, the flowability of the test object decreases, making it unsuitable for highly viscous test objects or suspended test objects.
  • raw milk containing large milk fat particles has a problem in that the milk fat particles remain between the fibers constituting the base material and block the flow path.
  • An object of the present invention is to solve the above-mentioned conventional problems and achieve the following objects. That is, the present invention provides a base material for a test device that can achieve both flow path formation property and flowability of a highly viscous test object or a suspended test object, a test device using the above-mentioned test device base material, and a method for manufacturing an inspection device.
  • Means for solving the above problem are as follows. That is, ⁇ 1> A substrate for a test device having an average thickness of 250 ⁇ m or more and 350 ⁇ m or less, and a density of 0.25 ⁇ 10 6 g/m 3 or more and 0.40 ⁇ 10 6 g/m 3 or less. ⁇ 2> The substrate for an inspection device according to ⁇ 1> above, having a basis weight of 50 g/m 2 or more and 100 g/m 2 or less. ⁇ 3> The base material for a test device according to ⁇ 1> or ⁇ 2>, which includes at least one selected from filter paper, high-quality paper, nonwoven fabric, and nitrocellulose.
  • a testing device that tests for the presence or absence of a target substance in an object to be tested,
  • the test device substrate according to ⁇ 1> or ⁇ 2> is impregnated with a hydrophobic material
  • the testing device is characterized in that it has a hydrophobic portion impregnated with the hydrophobic material and an exposed portion where the testing device substrate is exposed without being impregnated with the hydrophobic material.
  • the exposed portion includes a liquid receiving portion, a flow path portion communicating with the liquid receiving portion, and a detection portion communicating with the flow path portion.
  • the test device substrate has the hydrophobic portion and the exposed portion on both sides
  • the test device according to ⁇ 4> or ⁇ 5> wherein flow channels with different designs are formed on both sides of the test device substrate, and the test device has a three-dimensional flow path in which the flow channels communicate with each other.
  • ⁇ 7> The test device according to any one of ⁇ 4> to ⁇ 6>, wherein the amount of impregnation of the hydrophobic material into the test device substrate is 15 g/m 2 or more and 20 g/m 2 or less. be.
  • the testing device according to any one of ⁇ 4> to ⁇ 7> which is for testing an emulsion containing droplets with a particle size of 1 ⁇ m or more.
  • test device according to any one of ⁇ 4> to ⁇ 8>, which is for testing homogenized unprocessed milk.
  • a hydrophobic material is impregnated from both sides of the test device substrate according to any one of ⁇ 1> to ⁇ 9>, so that the hydrophobic portion impregnated with the hydrophobic material and the hydrophobic
  • This method of manufacturing a test device is characterized by including an impregnating step of forming an exposed portion in which the test device substrate is exposed without being impregnated with a material.
  • the above-mentioned problems in the conventional art can be solved, the above-mentioned objectives can be achieved, and the test can achieve both flow path formation property and flowability of a highly viscous test object or a suspended test object.
  • a substrate for a device, a test device using the substrate for a test device, and a method for manufacturing a test device can be provided.
  • FIG. 1 is a schematic diagram showing an example of the inspection device of the present invention.
  • FIG. 2 is a schematic diagram showing an example of a thermal transfer medium.
  • FIG. 3A is a schematic diagram showing an example of a channel pattern on the channel side.
  • FIG. 3B is a schematic diagram showing an example of a flow path pattern on the detection unit side.
  • FIG. 4A is a diagram showing a state in which there is no leakage of the test object into the flow path in Example 1 and the barrier properties are good.
  • FIG. 4B is a diagram showing a state in which the test object leaks into the flow path in Comparative Example 2 and the barrier properties are poor.
  • the base material for a test device of the present invention is a base material used for a test device that tests the presence or absence of a target substance in an object to be tested.
  • the base material for a test device of the present invention by optimizing the average thickness, density, and basis weight of the substrate for testing devices, flow path formation properties and flowability of highly viscous test objects or suspended test objects can be improved. Can be compatible.
  • the average thickness of the test device substrate is 250 ⁇ m or more and 350 ⁇ m or less, preferably 250 ⁇ m or more and 300 ⁇ m or less.
  • the average thickness can be measured, for example, in accordance with JIS P8118:2014 "Paper and paperboard - Test method for thickness, density and specific volume”.
  • the density of the test device substrate is 0.25 ⁇ 10 6 g/m 3 or more and 0.40 ⁇ 10 6 g/m 3 or less, and 0.25 ⁇ 10 6 g/m 3 or more and 0.35 ⁇ 10 6 g/m 3 or less is preferred.
  • the density can be calculated by dividing the basis weight of the test device base material by the average thickness of the test device base material.
  • the basis weight of the substrate for a test device is preferably 50 g/m 2 or more and 100 g/m 2 or less, more preferably 75 g/m 2 or more and 95 g/m 2 or less.
  • the basis weight is a value measured based on JIS P8124:2011 "Paper and paperboard - Measuring method of basis weight”.
  • the material of the base material for the inspection device is not particularly limited and can be selected as appropriate depending on the purpose.
  • filter paper such as membrane membrane, plain paper, high quality paper, watercolor paper, Kent paper, synthetic paper, synthetic paper, etc.
  • Examples include resin films, special papers with coated layers, nitrocellulose, fabrics, and textile products. These may be used alone or in combination of two or more.
  • filter papers such as membrane membranes, high-quality paper, and cloth are preferred.
  • the fabric examples include artificial fibers such as rayon, Bemberg, acetate, nylon, polyester, and vinylon, natural fibers such as cotton and silk, blended fibers thereof, and nonwoven fabrics thereof.
  • the shape of the test device substrate is not particularly limited and can be appropriately selected depending on the purpose, such as a sheet shape, a strip shape, etc.
  • test object There are no particular restrictions on the test object as long as it is a liquid, and it can be selected as appropriate depending on the purpose, such as blood (serum, plasma), lymph fluid, urine, spinal fluid, nasal fluid, saliva, or sample extraction. Examples include liquid.
  • the object to be tested is any animal including humans.
  • nucleic acids examples include circulating normal DNA, circulating tumor DNA, non-coding RNA (miRNA, transfer RNA, ribosomal RNA, etc.). .
  • proteins examples include albumin, hemoglobin, ⁇ -globulin, fibrinogen, antithrombin III, transferrin, ceruloplasmin, cytokines including growth factors, and chemokines.
  • lipids examples include neutral fats, HDL cholesterol, and LDL cholesterol.
  • the tumor marker is not particularly limited and can be appropriately selected depending on the purpose, such as ⁇ -fetoprotein (AFP), carcinoembryonic antigen (CEA), CA19-9 (serial Lewis A saccharide), prostate Examples include specific antigen (PSA), CA125 (glycoprotein), and SSC (squamous cell carcinoma-related antigen).
  • AFP ⁇ -fetoprotein
  • CEA carcinoembryonic antigen
  • CA19-9 sinar Lewis A saccharide
  • PSA specific antigen
  • CA125 glycoprotein
  • SSC squamous cell carcinoma-related antigen
  • the inflammatory marker is not particularly limited and can be appropriately selected depending on the purpose, such as C-reactive protein (CRP).
  • CRP C-reactive protein
  • the inspection device of the present invention has a hydrophobic part and an exposed part, and further has other members as necessary.
  • the hydrophobic portion is a portion impregnated with a hydrophobic material.
  • the hydrophobic portion has hydrophobicity due to the impregnated hydrophobic material, and the object to be examined does not circulate through capillary action.
  • the liquid receiving part is a part into which the test object is dropped.
  • the liquid receiving part, the flow path part, and the detection part, which are the exposed parts, allow the test object to flow through the capillary phenomenon.
  • the shape of the liquid receiving part 4 in plan view is not particularly limited, and can be appropriately selected depending on the purpose. For example, it may be circular, oval, rectangular, or the like.
  • the shape of the detection unit 5 in plan view is not particularly limited and can be appropriately selected depending on the purpose, and may be circular, oval, rectangular, etc.
  • the method for manufacturing a test device of the present invention includes an impregnation step, and further includes other steps as necessary.
  • a hydrophobic material is impregnated from both sides of the substrate for a test device of the present invention, so that the hydrophobic portion is impregnated with the hydrophobic material and the substrate for a test device is not impregnated with the hydrophobic material.
  • an exposed portion is formed.
  • the impregnation step is performed using a thermal laminator using a thermal transfer medium.
  • a thermal transfer medium with a flow path side pattern extracted on both sides of a substrate for a test device and a thermal transfer medium with a detection part side pattern extracted on the opposite side and passing it through a thermal laminator set at a predetermined temperature,
  • a three-dimensional flow path can be formed in the base material by impregnating the hydrophobic material contained in the transfer layer on the thermal transfer medium, which is cut out in different shapes from the front and back sides, into the base material.
  • the structure of the support may be a single layer structure or a laminated structure.
  • the size of the support body can be appropriately selected depending on the size of the testing device, etc.
  • the support is not particularly limited, and may be appropriately synthesized or a commercially available product may be used.
  • the wax is not particularly limited and can be selected as appropriate depending on the purpose; for example, natural waxes such as beeswax, carnauba wax, spermaceti wax, wood wax, candelilla wax, rice bran wax, and montan wax; paraffin; Synthetic waxes such as wax, microcrystalline wax, oxidized wax, ozokerite, ceresin, ester wax, polyethylene wax, oxidized polyethylene wax; high grade such as margaric acid, lauric acid, myristic acid, palmitic acid, stearic acid, furoic acid, behenic acid, etc.
  • natural waxes such as beeswax, carnauba wax, spermaceti wax, wood wax, candelilla wax, rice bran wax, and montan wax
  • paraffin Synthetic waxes such as wax, microcrystalline wax, oxidized wax, ozokerite, ceresin, ester wax, polyethylene wax, oxidized polyethylene wax
  • high grade such as margaric
  • Fatty acids Fatty acids; higher alcohols such as stearin alcohol and behenyl alcohol; esters such as fatty acid esters of sorbitan; amides such as stearinamide and oleinamide; and the like. These may be used alone or in combination of two or more.
  • the binder resin is not particularly limited and can be selected as appropriate depending on the purpose, for example, ethylene-vinyl acetate copolymer, partially saponified ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer.
  • ethylene-sodium methacrylate copolymer polyamide, polyester, polyurethane, polyvinyl alcohol, methylcellulose, carboxymethylcellulose, starch, polyacrylic acid, isobutylene-maleic acid copolymer, styrene-maleic acid copolymer, polyacrylamide, polyvinyl Examples include acetal, polyvinyl chloride, polyvinylidene chloride, isoprene rubber, styrene-butadiene copolymer, ethylene-propylene copolymer, butyl rubber, acrylonitrile-butadiene copolymer, and the like. These may be used alone or in combination of two or more.
  • hydrophobic material is preferably heated and melted before forming the transfer layer.
  • the formation (printing) of the flow path pattern on the transfer layer on the support is not particularly limited, but for example, a thermal transfer printer can be suitably used. and in a first printing step, the first transfer layer on the first support is used to print the first transfer layer on the first support in a reverse design of the first layer of the test device. to print. Also, in the second printing step, the second transfer layer on the second support is used, and the second transfer layer on the second support is inverted so as to have an inverted design of the second layer of the test device. to print.
  • the design to be printed can be created in advance using, for example, a personal computer, and the data can be imported into the printing device. Moreover, printing on the front and back sides of the substrate for a test device may be performed separately or simultaneously.
  • the viscosity of the obtained hydrophobic material was measured at 140° C. and 3,000/s using a rheometer AR-G2 manufactured by TA Instruments, and found to be 23 mPa ⁇ s.
  • thermal transfer medium 20 having the configuration shown in FIG. 2 was produced.
  • 11 is a support
  • 12 is a transfer layer.
  • Thermal lamination was performed using a GL535ML manufactured by GBC as a thermal laminator.
  • Heat lamination was performed at a temperature of 85° C. to 120° C. and a line speed of 10 mm/sec.
  • Impregnation of the hydrophobic material into the base material Heat lamination was carried out at a temperature of 85° C. to 120° C. and a line speed of 5 mm/sec.
  • FIG. 4A shows a state in which the test object does not leak into the flow path in Example 1 and the barrier properties are good.
  • FIG. 4B shows a state in which the test object leaked into the flow path of Comparative Example 2 and the barrier properties were poor.
  • ⁇ Paper power> It was evaluated based on the following criteria whether each of the produced test devices could be cut into a predetermined shape using a cutter (Hyper AL type, manufactured by Olfa Corporation). [Evaluation criteria] ⁇ : Easy to cut with a cutter ⁇ : Can be cut with a cutter ⁇ : Difficult to cut with a cutter ⁇ : Cannot be cut with a cutter (fiber cohesion is weak and will tear)
  • the average thickness of the base material is 250 ⁇ m or more and 350 ⁇ m or less, and the density is 0.25 ⁇ 10 6 g/m 3 or more and 0.40 ⁇ 10 6 g. /m 3 or less, and it was found that liquid flowability, barrier properties, and paper strength were all good.
  • Example 4 the impregnation amount of the hydrophobic material did not satisfy the range of 15 g/m 2 or more and 20 g/m 2 or less, so it was found that the barrier properties and water circulation properties were slightly lower than in Examples 1 to 3. Ta.
  • Comparative Example 1 the average thickness of the base material was small, so the flow path was blocked by raw cow milk that had not been homogenized.
  • Comparative Example 2 It was found that in Comparative Example 2, the average thickness of the base material was large and the density was low, resulting in poor barrier properties and water circulation.
  • Comparative Example 3 It was found that in Comparative Example 3, the average thickness of the base material was thin and the density was low, so the flow path was blocked by water and unhomogenized cow milk, resulting in low paper strength.
  • the testing device of the present invention using the base material for a testing device of the present invention can achieve both flow path formation properties and flowability of a highly viscous test object or a suspended test object, and therefore does not require homogenization. It is possible to test raw milk from cows without occlusion, and it is possible to detect hormone components such as progesterone contained in milk fat particles, which can be applied to pregnancy test drugs.

Abstract

Provided is a substrate for an inspection device, the substrate having an average thickness of 250 µm to 350 µm and a density of 0.25×106g/m3 to 0.40×106g/m3.

Description

検査デバイス用基材、検査デバイス、及び検査デバイスの製造方法Base material for inspection device, inspection device, and method for manufacturing inspection device
 本発明は、検査デバイス用基材、検査デバイス、及び検査デバイスの製造方法に関する。 The present invention relates to a substrate for a test device, a test device, and a method for manufacturing a test device.
 近年、POCT(Point of Care Testing;臨床現場即時診断)を目的とした測定方法が急速に普及している。代表例としてイムノクロマト法と呼ばれる、サンドイッチELISA法の原理とクロマトグラフィーの原理を組み合わせた測定方法を利用した検査デバイス(以下、「検査チップ」、「検査装置」などと称することもある)が用いられている。 In recent years, measurement methods aimed at POCT (Point of Care Testing; immediate diagnosis at clinical sites) have rapidly become popular. A typical example is a test device (hereinafter sometimes referred to as a "test chip" or "test device") that uses a measurement method called immunochromatography that combines the principles of sandwich ELISA and chromatography. ing.
 このような検査デバイスとしては、例えば、表面側の第1層と、裏面側の第2層とを備え、前記第1層及び前記第2層は隣接し、前記第1層又は前記第2層のいずれか一方が、液受入部を有し、前記第1層は、少なくとも、検出確認部を有し、前記第2層は、少なくとも、前記検出確認部に隣接する液流通部と、前記液流通部に接続された液流路とを有するシート状の検査チップが提案されている(例えば、特許文献1参照)。 Such an inspection device may include, for example, a first layer on the front side and a second layer on the back side, the first layer and the second layer being adjacent to each other, and the first layer or the second layer being adjacent to each other. one of them has a liquid receiving part, the first layer has at least a detection confirmation part, and the second layer has at least a liquid flow part adjacent to the detection confirmation part, and a liquid flow part adjacent to the detection confirmation part. A sheet-shaped test chip having a liquid flow path connected to a flow section has been proposed (see, for example, Patent Document 1).
 特許文献1の検査チップでは、前記第1層が液受入部を有する場合、前記液受入部は、前記検出確認部から離隔し、被検査液を前記液受入部に滴下したときに当該被検査液が、毛細管現象により、前記液受入部、前記液流路及び前記液流通部をこの順で経由して、前記検出確認部まで流通するように構成されている。 In the test chip of Patent Document 1, when the first layer has a liquid receiving part, the liquid receiving part is separated from the detection confirmation part, and when the test liquid is dropped into the liquid receiving part, the liquid receiving part is separated from the detection confirmation part. The liquid is configured to flow through the liquid receiving section, the liquid flow path, and the liquid distribution section in this order to the detection confirmation section due to capillary action.
日本国特開2021-175970号公報Japanese Patent Application Publication No. 2021-175970
 しかしながら、上記特許文献1の検査チップは、基材に熱転写媒体を熱転写することにより流路などを形成することから、熱転写媒体として疎水性成分を含有する疎水性材料(インク)を保持し、基材(例えば濾紙)に含浸できるインク含浸量には限りがある。たとえ、インクの含浸性を向上させるためにインク含浸量を増加しても面方向への浸透も同時に生じるため、流路精度の劣化にもつながる。また、流路形成できる基材の平均厚みにも制限があり、より薄い基材の方が流路形成には好ましい。 However, since the test chip of Patent Document 1 forms a flow path etc. by thermally transferring a thermal transfer medium to a base material, it holds a hydrophobic material (ink) containing a hydrophobic component as a thermal transfer medium, and There is a limit to the amount of ink that can be impregnated into a material (for example, filter paper). Even if the amount of ink impregnated is increased in order to improve the ink impregnating property, permeation in the surface direction also occurs at the same time, leading to deterioration of flow path precision. Furthermore, there is a limit to the average thickness of a base material that can form a flow path, and a thinner base material is preferable for forming a flow path.
 一方、前記基材は、その取扱い上ある程度の強度(紙力)が必要となる。紙力を付与するためにはセルロース密度は高い方が好ましい。しかし、前記基材が薄くかつ高密度となると、検査対象物の流通性が低下し、高粘度な検査対象物又は懸濁した検査対象物には不向きとなる。特に大きな乳脂肪粒子を含む生乳では乳脂肪粒子が基材を構成する繊維間に留まり流路を閉塞してしまうという課題がある。 On the other hand, the base material requires a certain degree of strength (paper strength) for handling. In order to impart paper strength, it is preferable that the cellulose density is high. However, when the base material becomes thin and dense, the flowability of the test object decreases, making it unsuitable for highly viscous test objects or suspended test objects. In particular, raw milk containing large milk fat particles has a problem in that the milk fat particles remain between the fibers constituting the base material and block the flow path.
 本発明は、従来にける前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、流路形成性と、高粘度な検査対象物又は懸濁した検査対象物の流通性とを両立できる検査デバイス用基材、前記検査デバイス用基材を用いた検査デバイス、及び検査デバイスの製造方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned conventional problems and achieve the following objects. That is, the present invention provides a base material for a test device that can achieve both flow path formation property and flowability of a highly viscous test object or a suspended test object, a test device using the above-mentioned test device base material, and a method for manufacturing an inspection device.
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 平均厚みが250μm以上350μm以下であり、かつ密度が0.25×10g/m以上0.40×10g/m以下である検査デバイス用基材である。
 <2> 坪量が50g/m以上100g/m以下である、前記<1>に記載の検査デバイス用基材である。
 <3> 濾紙、上質紙、不織布、及びニトロセルロースから選択される少なくとも1種を含む、前記<1>又は<2>に記載の検査デバイス用基材である。
 <4> 検査対象物における対象物質の存在の有無を検査する検査デバイスであって、
 前記<1>又は<2>にに記載の検査デバイス用基材に疎水性材料を含浸させてなり、
 前記疎水性材料が含浸した疎水性部と、前記疎水性材料が含浸せず前記検査デバイス用基材が露出した露出部とを有することを特徴とする検査デバイスである。
 <5> 前記露出部が、液受入部と、前記液受入部と連通した流路部と、前記流路部と連通した検出部とを有する、前記<4>に記載の検査デバイスである。
 <6> 前記検査デバイス用基材の両面に、前記疎水性部と、前記露出部とを有し、
 前記検査デバイス用基材の両面で異なるデザインの流路が形成され、かつ前記流路が連通している三次元流路を有する、前記<4>又は<5>に記載の検査デバイスである。
 <7> 前記疎水性材料の前記検査デバイス用基材に対する含浸量が15g/m以上20g/m以下である、前記<4>から<6>のいずれか一つに記載の検査デバイスである。
 <8> 粒径1μm以上の液滴を含むエマルジョン検査用である、前記<4>から<7>のいずれか一つに記載の検査デバイスである。
 <9> ホモジナイズ未処理乳汁検査用である、前記<4>から<8>のいずれか一つに記載の検査デバイスである。
 <10> 前記<1>から<9>のいずれか一つに記載の検査デバイス用基材の両面から疎水性材料を含浸させて、前記疎水性材料が含浸した疎水性部と、前記疎水性材料が含浸せず前記検査デバイス用基材が露出した露出部とを形成する含浸工程を含むことを特徴とする検査デバイスの製造方法である。
Means for solving the above problem are as follows. That is,
<1> A substrate for a test device having an average thickness of 250 μm or more and 350 μm or less, and a density of 0.25×10 6 g/m 3 or more and 0.40×10 6 g/m 3 or less.
<2> The substrate for an inspection device according to <1> above, having a basis weight of 50 g/m 2 or more and 100 g/m 2 or less.
<3> The base material for a test device according to <1> or <2>, which includes at least one selected from filter paper, high-quality paper, nonwoven fabric, and nitrocellulose.
<4> A testing device that tests for the presence or absence of a target substance in an object to be tested,
The test device substrate according to <1> or <2> is impregnated with a hydrophobic material,
The testing device is characterized in that it has a hydrophobic portion impregnated with the hydrophobic material and an exposed portion where the testing device substrate is exposed without being impregnated with the hydrophobic material.
<5> The test device according to <4>, wherein the exposed portion includes a liquid receiving portion, a flow path portion communicating with the liquid receiving portion, and a detection portion communicating with the flow path portion.
<6> The test device substrate has the hydrophobic portion and the exposed portion on both sides,
The test device according to <4> or <5>, wherein flow channels with different designs are formed on both sides of the test device substrate, and the test device has a three-dimensional flow path in which the flow channels communicate with each other.
<7> The test device according to any one of <4> to <6>, wherein the amount of impregnation of the hydrophobic material into the test device substrate is 15 g/m 2 or more and 20 g/m 2 or less. be.
<8> The testing device according to any one of <4> to <7>, which is for testing an emulsion containing droplets with a particle size of 1 μm or more.
<9> The test device according to any one of <4> to <8>, which is for testing homogenized unprocessed milk.
<10> A hydrophobic material is impregnated from both sides of the test device substrate according to any one of <1> to <9>, so that the hydrophobic portion impregnated with the hydrophobic material and the hydrophobic This method of manufacturing a test device is characterized by including an impregnating step of forming an exposed portion in which the test device substrate is exposed without being impregnated with a material.
 本発明によると、従来における前記諸問題を解決し、前記目的を達成することができ、流路形成性と、高粘度な検査対象物又は懸濁した検査対象物の流通性とを両立できる検査デバイス用基材、前記検査デバイス用基材を用いた検査デバイス、及び検査デバイスの製造方法を提供することができる。 According to the present invention, the above-mentioned problems in the conventional art can be solved, the above-mentioned objectives can be achieved, and the test can achieve both flow path formation property and flowability of a highly viscous test object or a suspended test object. A substrate for a device, a test device using the substrate for a test device, and a method for manufacturing a test device can be provided.
図1は、本発明の検査デバイスの一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of the inspection device of the present invention. 図2は、熱転写媒体の一例を示す概略図である。FIG. 2 is a schematic diagram showing an example of a thermal transfer medium. 図3Aは、流路側の流路パターンの一例を示す概略図である。FIG. 3A is a schematic diagram showing an example of a channel pattern on the channel side. 図3Bは、検出部側の流路パターンの一例を示す概略図である。FIG. 3B is a schematic diagram showing an example of a flow path pattern on the detection unit side. 図4Aは、実施例1における流路への検査対象物の漏洩が生じておらず、バリア性が良好である状態を示す図である。FIG. 4A is a diagram showing a state in which there is no leakage of the test object into the flow path in Example 1 and the barrier properties are good. 図4Bは、比較例2における流路への検査対象物の漏洩が生じており、バリア性が不良である状態を示す図である。FIG. 4B is a diagram showing a state in which the test object leaks into the flow path in Comparative Example 2 and the barrier properties are poor.
(検査デバイス用基材)
 本発明の検査デバイス用基材は、検査対象物における対象物質の存在の有無を検査する検査デバイスに用いられる基材である。本発明においては、検査デバイス用基材の平均厚み及び密度、更に坪量を最適化することにより、流路形成性と、高粘度な検査対象物又は懸濁した検査対象物の流通性とを両立することができる。
(Base material for inspection devices)
The base material for a test device of the present invention is a base material used for a test device that tests the presence or absence of a target substance in an object to be tested. In the present invention, by optimizing the average thickness, density, and basis weight of the substrate for testing devices, flow path formation properties and flowability of highly viscous test objects or suspended test objects can be improved. Can be compatible.
 前記検査デバイス用基材の平均厚みは、250μm以上350μm以下であり、250μm以上300μm以下が好ましい。ここで、前記平均厚みは、例えば、JIS P8118:2014「紙及び板紙-厚さ、密度及び比容積の試験方法」に準拠して測定することができる。 The average thickness of the test device substrate is 250 μm or more and 350 μm or less, preferably 250 μm or more and 300 μm or less. Here, the average thickness can be measured, for example, in accordance with JIS P8118:2014 "Paper and paperboard - Test method for thickness, density and specific volume".
 前記検査デバイス用基材の密度は0.25×10g/m以上0.40×10g/m以下であり、0.25×10g/m以上0.35×10g/m以下が好ましい。前記密度は、検査デバイス用基材の坪量を検査デバイス用基材の平均厚みで除することにより算出することができる。 The density of the test device substrate is 0.25×10 6 g/m 3 or more and 0.40×10 6 g/m 3 or less, and 0.25×10 6 g/m 3 or more and 0.35×10 6 g/m 3 or less is preferred. The density can be calculated by dividing the basis weight of the test device base material by the average thickness of the test device base material.
 前記検査デバイス用基材の坪量は、50g/m以上100g/m以下が好ましく、75g/m以上95g/m以下がより好ましい。前記坪量は、JIS P8124:2011「紙及び板紙-坪量の測定方法」に基づき測定した値である。 The basis weight of the substrate for a test device is preferably 50 g/m 2 or more and 100 g/m 2 or less, more preferably 75 g/m 2 or more and 95 g/m 2 or less. The basis weight is a value measured based on JIS P8124:2011 "Paper and paperboard - Measuring method of basis weight".
 前記検査デバイス用基材の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メンブレン膜等の濾紙、普通紙、上質紙、水彩紙、ケント紙、合成紙、合成樹脂フィルム、コート層を有する専用紙、ニトロセルロース、布地、繊維製品などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、メンブレン膜等の濾紙、上質紙、布地が好ましい。 The material of the base material for the inspection device is not particularly limited and can be selected as appropriate depending on the purpose. For example, filter paper such as membrane membrane, plain paper, high quality paper, watercolor paper, Kent paper, synthetic paper, synthetic paper, etc. Examples include resin films, special papers with coated layers, nitrocellulose, fabrics, and textile products. These may be used alone or in combination of two or more. Among these, filter papers such as membrane membranes, high-quality paper, and cloth are preferred.
 前記布地としては、例えば、レーヨン、ベンベルグ、アセテート、ナイロン、ポリエステル、ビニロン等の人造繊維、綿、絹等の天然繊維、又はこれらの混紡繊維、あるいはこれらの不織布などが挙げられる。 Examples of the fabric include artificial fibers such as rayon, Bemberg, acetate, nylon, polyester, and vinylon, natural fibers such as cotton and silk, blended fibers thereof, and nonwoven fabrics thereof.
 前記検査デバイス用基材の形状については、特に制限はなく、目的に応じて適宜選択することができ、例えば、シート状、短冊状などが挙げられる。 The shape of the test device substrate is not particularly limited and can be appropriately selected depending on the purpose, such as a sheet shape, a strip shape, etc.
 前記検査デバイス用基材の構造としては、特に制限はなく、目的に応じて適宜選択することができる。 The structure of the substrate for the inspection device is not particularly limited and can be appropriately selected depending on the purpose.
 本発明の検査デバイス用基材は、流路形成性と、高粘度な検査対象物又は懸濁した検査対象物の流通性とを両立することができるので、以下に説明するように、本発明の検査デバイスの基材として好適に用いられる。 The substrate for a test device of the present invention can achieve both flow path formation properties and flowability of a highly viscous test object or a suspended test object. It is suitably used as a base material for inspection devices.
(検査デバイス)
 本発明の検査デバイスは、検査対象物における対象物質の存在の有無を検査する検査デバイスであり、本発明の検査デバイス用基材に疎水性材料を含浸させてなり、前記疎水性材料が含浸した疎水性部と、前記疎水性材料が含浸せず前記検査デバイス用基材が露出した露出部とを有する。
(Testing device)
The testing device of the present invention is a testing device for testing the presence or absence of a target substance in an object to be tested, and is made by impregnating the base material for the testing device of the present invention with a hydrophobic material. It has a hydrophobic part and an exposed part where the test device substrate is exposed without being impregnated with the hydrophobic material.
<検査対象物>
 検査対象物としては、液体であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、血液(血清、血漿)、リンパ液、尿、髄液、鼻孔液、唾液、又は検体抽出液などが挙げられる。前記検査対象物としては、人間を含むあらゆる動物が対象となる。
<Inspection object>
There are no particular restrictions on the test object as long as it is a liquid, and it can be selected as appropriate depending on the purpose, such as blood (serum, plasma), lymph fluid, urine, spinal fluid, nasal fluid, saliva, or sample extraction. Examples include liquid. The object to be tested is any animal including humans.
<対象物質>
 対象物質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、細胞、核酸、タンパク質、アミノ酸、糖質、脂質、腫瘍マーカー、炎症マーカー、酵素、ホルモン、シグナル伝達物質などが挙げられる。
<Target substance>
Target substances are not particularly limited and can be selected as appropriate depending on the purpose; for example, cells, nucleic acids, proteins, amino acids, carbohydrates, lipids, tumor markers, inflammatory markers, enzymes, hormones, signal transducers, etc. can be mentioned.
 前記細胞としては、例えば、血中循環腫瘍細胞(CTC)、赤血球、白血球などが挙げられる。 Examples of the cells include circulating tumor cells (CTCs), red blood cells, and white blood cells.
 前記核酸としては、例えば、circulating normal DNA、circulating tumor DNA、non-coding RNA(miRNA、transfer RNA、ribosomal RNA等)などが挙げられる。 Examples of the nucleic acids include circulating normal DNA, circulating tumor DNA, non-coding RNA (miRNA, transfer RNA, ribosomal RNA, etc.). .
 前記タンパク質としては、例えば、アルブミン、ヘモグロビン、γ-グロブリン、フィブリノーゲン、アンチトロンビンIII、トランスフェリン、セルロプラスミン、成長因子を含むサイトカイン、ケモカインなどが挙げられる。 Examples of the proteins include albumin, hemoglobin, γ-globulin, fibrinogen, antithrombin III, transferrin, ceruloplasmin, cytokines including growth factors, and chemokines.
 前記糖質としては、例えば、ブドウ糖、1.5AG(1.5アンヒドログリシトール)などが挙げられる。 Examples of the carbohydrate include glucose, 1.5AG (1.5 anhydroglycitol), and the like.
 前記脂質としては、例えば、中性脂肪、HDLコレステロール、LDLコレステロールなどが挙げられる。 Examples of the lipids include neutral fats, HDL cholesterol, and LDL cholesterol.
 前記腫瘍マーカーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、α-フェトプロテイン(AFP)、癌胎児性抗原(CEA)、CA19-9(シリアルルイスA糖類)、前立腺特異抗原(PSA)、CA125(糖タンパク)、SSC(扁平上皮癌関連抗原)などが挙げられる。 The tumor marker is not particularly limited and can be appropriately selected depending on the purpose, such as α-fetoprotein (AFP), carcinoembryonic antigen (CEA), CA19-9 (serial Lewis A saccharide), prostate Examples include specific antigen (PSA), CA125 (glycoprotein), and SSC (squamous cell carcinoma-related antigen).
 前記炎症マーカーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、C反応性タンパク質(CRP)などが挙げられる。 The inflammatory marker is not particularly limited and can be appropriately selected depending on the purpose, such as C-reactive protein (CRP).
 前記酵素としては、例えば、γ-GTP、AST(アスパラギン酸アミノトランスフェラーゼ)、ALT(アラニンアミノトランスフェラーゼ)、アミラーゼなどが挙げられる。 Examples of the enzyme include γ-GTP, AST (aspartate aminotransferase), ALT (alanine aminotransferase), amylase, and the like.
 前記ホルモンとしては、例えば、副腎皮質刺激ホルモン、黄体形成ホルモン、卵胞刺激ホルモン、プロラクトン、甲状腺ホルモン、副甲状腺ホルモン、アルドステロン、インスリン、エストロゲン、プロゲステロン、成長ホルモンなどが挙げられる。 Examples of the hormones include adrenocorticotropic hormone, luteinizing hormone, follicle stimulating hormone, prolactone, thyroid hormone, parathyroid hormone, aldosterone, insulin, estrogen, progesterone, and growth hormone.
 本発明の検査デバイスは、疎水性部と、露出部とを有し、更に必要に応じてその他の部材を有する。 The inspection device of the present invention has a hydrophobic part and an exposed part, and further has other members as necessary.
<疎水性部>
 疎水性部は、疎水性材料が含浸した部である。前記疎水性部は、含浸された疎水性材料により疎水性を有しており、毛細管現象による検査対象物の流通が発現されない。
<Hydrophobic part>
The hydrophobic portion is a portion impregnated with a hydrophobic material. The hydrophobic portion has hydrophobicity due to the impregnated hydrophobic material, and the object to be examined does not circulate through capillary action.
<露出部>
 露出部は、疎水性材料が含浸せず検査デバイス用基材が露出した部である。前記露出部は、液受入部と、前記液受入部と連通した流路部と、前記流路部と連通した検出部とを有することが好ましい。前記液受入部に付与する液は、検査対象物である。
<Exposed part>
The exposed portion is a portion where the test device substrate is exposed without being impregnated with the hydrophobic material. It is preferable that the exposed part has a liquid receiving part, a flow path part communicating with the liquid receiving part, and a detection part communicating with the flow path part. The liquid applied to the liquid receiving section is an object to be inspected.
 前記液受入部は、検査対象物が滴下される部位である。 The liquid receiving part is a part into which the test object is dropped.
 前記検出部は、液受入部に滴下された検査対象物中に対象物質が存在するか否かを確認する部位である。 The detection unit is a part that confirms whether or not a target substance is present in the test object dropped into the liquid receiving unit.
 前記露出部である液受入部、流路部、及び検出部は、毛細管現象により検査対象物の流通が発現される。 The liquid receiving part, the flow path part, and the detection part, which are the exposed parts, allow the test object to flow through the capillary phenomenon.
 前記検査デバイス用基材の両面に、前記疎水性部と、前記露出部とを有することが好ましい。これにより、基材中に三次元流路を形成することができる。 It is preferable to have the hydrophobic part and the exposed part on both sides of the testing device substrate. Thereby, a three-dimensional flow path can be formed in the base material.
 前記検査デバイス用基材の両面で異なるデザインの流路が形成され、かつ前記流路が連通している三次元流路を有することが好ましい。 It is preferable that flow channels with different designs are formed on both sides of the testing device substrate, and that the test device has a three-dimensional flow channel in which the flow channels communicate with each other.
 前記疎水性材料の前記検査デバイス用基材に対する含浸量は15g/m以上20g/m以下が好ましく、15g/m以上18g/m以下がより好ましい。前記疎水性材料の含浸量が15g/m以上20g/m以下であると、流路形成性と、高粘度な検査対象物又は懸濁した検査対象物の流通性とを両立できる。前記疎水性材料の含浸量が20g/mを超えると、流路内の厚み方向だけでなく面方向にも疎水性材料が浸透して流路を塞いでしまうことがある。 The amount of impregnation of the hydrophobic material into the substrate for a test device is preferably 15 g/m 2 or more and 20 g/m 2 or less, more preferably 15 g/m 2 or more and 18 g/m 2 or less. When the amount of impregnation of the hydrophobic material is 15 g/m 2 or more and 20 g/m 2 or less, it is possible to achieve both flow path formation property and flowability of a highly viscous test object or a suspended test object. If the amount of the hydrophobic material impregnated exceeds 20 g/m 2 , the hydrophobic material may penetrate not only in the thickness direction but also in the surface direction within the flow path, thereby blocking the flow path.
 前記疎水性材料の検査デバイス用基材への含浸は、例えば、熱転写媒体の疎水性材料を含有する転写層を検査デバイス用基材に接触させて熱転写することにより行われることが好ましい。 The impregnation of the hydrophobic material into the testing device substrate is preferably carried out, for example, by bringing a transfer layer containing the hydrophobic material of the thermal transfer medium into contact with the testing device substrate and thermally transferring the transfer layer.
<その他の部材>
 前記その他の部材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、保護部材などが挙げられる。
<Other parts>
The other members are not particularly limited and can be appropriately selected depending on the purpose, and include, for example, a protective member.
 前記保護部材は、検査デバイスに手が触れたときの汚染を防ぐ目的の部材である。前記保護部材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、検査デバイスの全体を覆うハウジング、流路等の露出部上に設けられる保護フィルムなどが挙げられる。 The protection member is a member intended to prevent contamination when the testing device is touched by hands. The protective member is not particularly limited and can be appropriately selected depending on the purpose, and includes, for example, a housing that covers the entire test device, a protective film provided on exposed parts such as flow channels, and the like.
 前記保護フィルムの材料としては、検査デバイスから容易に剥がすことができるものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、シリコーン紙、ポリプロピレン等のポリオレフィンシート、ポリテトラフルオロエチレンシートなどが挙げられる。 The material for the protective film is not particularly limited as long as it can be easily peeled off from the inspection device, and can be appropriately selected depending on the purpose. For example, silicone paper, polyolefin sheets such as polypropylene, polytetra Examples include fluoroethylene sheet.
 ここで、図1は、本発明の検査デバイスの一例を示す概略図である。図1は検査デバイスを模式的に分解した図であり、図1の左側に示すように、検査デバイス10は、検査デバイス用基材1と、疎水性材料からなる第1層2と、疎水性材料からなる第2層3とを有する。また、検査デバイス10は、検査デバイス用基材1に対して両面から第1層1と第2層3が含浸した構成を有する。 Here, FIG. 1 is a schematic diagram showing an example of the inspection device of the present invention. FIG. 1 is a schematic exploded view of the testing device. As shown on the left side of FIG. It has a second layer 3 made of material. Moreover, the test device 10 has a structure in which the test device base material 1 is impregnated with the first layer 1 and the second layer 3 from both sides.
 検査デバイス10は、液受入部4と、前記液受入部と連通した流路部6と、前記流路部と連通した検出部5とを有し、検査対象物を液受入部4に滴下すると、検査対象物が毛細管現象により、液受入部4、流路部6、検出部5の順に流通するように構成されている。 The inspection device 10 includes a liquid receiving section 4, a channel section 6 communicating with the liquid receiving section, and a detecting section 5 communicating with the channel section, and when an object to be inspected is dropped into the liquid receiving section 4, The test object is configured to flow through the liquid receiving section 4, the channel section 6, and the detecting section 5 in this order due to capillary action.
 液受入部4の平面視の形状は、特に限定されず、目的に応じて適宜選択することができ
、例えば、円形であってもよく、また、楕円形、矩形等であってもよい。
The shape of the liquid receiving part 4 in plan view is not particularly limited, and can be appropriately selected depending on the purpose. For example, it may be circular, oval, rectangular, or the like.
 検出部5の平面視の形状は、特に限定されず、目的に応じて適宜選択することができ、円形であってもよく、また、楕円形、矩形等であってもよい。 The shape of the detection unit 5 in plan view is not particularly limited and can be appropriately selected depending on the purpose, and may be circular, oval, rectangular, etc.
(検査デバイスの製造方法)
 本発明の検査デバイスの製造方法は、含浸工程を含み、更に必要に応じてその他の工程を含む。
(Method for manufacturing inspection device)
The method for manufacturing a test device of the present invention includes an impregnation step, and further includes other steps as necessary.
<含浸工程>
 前記含浸工程は、本発明の検査デバイス用基材の両面から疎水性材料を含浸させて、前記疎水性材料が含浸した疎水性部と、前記疎水性材料が含浸せず前記検査デバイス用基材が露出した露出部とを形成する工程である。
<Impregnation process>
In the impregnation step, a hydrophobic material is impregnated from both sides of the substrate for a test device of the present invention, so that the hydrophobic portion is impregnated with the hydrophobic material and the substrate for a test device is not impregnated with the hydrophobic material. In this step, an exposed portion is formed.
 前記含浸工程は、熱転写媒体を用い、熱ラミネーターにより行われる。例えば、検査デバイス用基材の表裏の両面に流路側パターンを抜き取った熱転写媒体と反対面に検出部側パターンを抜き取った熱転写媒体を固定し、所定の温度に設定した熱ラミネーターに通すことにより、表裏から異なる形状に抜き取られた熱転写媒体上の転写層に含まれる疎水性材料を基材中に含浸させ、基材内に三次元形状の流路を形成することができる。 The impregnation step is performed using a thermal laminator using a thermal transfer medium. For example, by fixing a thermal transfer medium with a flow path side pattern extracted on both sides of a substrate for a test device and a thermal transfer medium with a detection part side pattern extracted on the opposite side, and passing it through a thermal laminator set at a predetermined temperature, A three-dimensional flow path can be formed in the base material by impregnating the hydrophobic material contained in the transfer layer on the thermal transfer medium, which is cut out in different shapes from the front and back sides, into the base material.
-熱転写媒体-
 熱転写媒体は、支持体と、該支持体上に疎水性材料を含有する転写層を有し、更に必要に応じてその他の部材を有する。
-Thermal transfer medium-
The thermal transfer medium has a support, a transfer layer containing a hydrophobic material on the support, and further has other members as necessary.
--支持体--
 支持体としては、その形状、構造、大きさ、材質等については、特に制限はなく、目的に応じて適宜選択することができる。
--Support--
The shape, structure, size, material, etc. of the support are not particularly limited and can be appropriately selected depending on the purpose.
 前記支持体の形状としては、例えば、リボン状、フィルム状などが挙げられる。 Examples of the shape of the support include a ribbon shape and a film shape.
 前記支持体の構造としては、単層構造であってもよいし、積層構造であってもよい。 The structure of the support may be a single layer structure or a laminated structure.
 前記支持体の大きさとしては、検査デバイスの大きさ等に応じて適宜選択することができる。 The size of the support body can be appropriately selected depending on the size of the testing device, etc.
 前記支持体の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリカーボネート、ポリイミド樹脂(PI)、ポリアミド、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、スチレン-アクリロニトリル共重合体、セルロースアセテートなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)が特に好ましい。 The material of the support is not particularly limited and can be appropriately selected depending on the purpose, such as polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polycarbonate, polyimide resin (PI), Examples include polyamide, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, styrene-acrylonitrile copolymer, and cellulose acetate. These may be used alone or in combination of two or more. Among these, polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are particularly preferred.
 支持体は、特に制限はなく、適宜合成したものであってもよいし、市販品を使用してもよい。 The support is not particularly limited, and may be appropriately synthesized or a commercially available product may be used.
 支持体の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、3μm以上100μm以下が好ましく、5μm以上50μm以下がより好ましい。 The average thickness of the support is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 3 μm or more and 100 μm or less, more preferably 5 μm or more and 50 μm or less.
--転写層--
 前記転写層は疎水性材料を含有し、前記支持体上に前記疎水性材料を付与することにより形成される。前記疎水性材料は、検査デバイス用基材に含浸することができ、かつ検査デバイス用基材における毛細管現象を阻害するものであれば、特に限定されず、疎水性成分を含有し、バインダー樹脂を含有することが好ましく、更に必要に応じてその他の成分を含有する。
--Transfer layer--
The transfer layer contains a hydrophobic material and is formed by applying the hydrophobic material onto the support. The hydrophobic material is not particularly limited as long as it can be impregnated into the base material for a test device and inhibits capillarity in the base material for a test device, and it may contain a hydrophobic component and binder resin. It is preferable to contain, and further contains other components as necessary.
---疎水性成分---
 前記疎水性成分としては、例えば、ワックスなどが挙げられる。
--- Hydrophobic component ---
Examples of the hydrophobic component include wax.
 前記ワックスとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、蜜ロウ、カルナバワックス、鯨ロウ、木ロウ、キャンデリラワックス、米ぬかロウ、モンタンワックス等の天然ワックス;パラフィンワックス、マイクロクリスタリンワックス、酸化ワックス、オゾケライト、セレシン、エステルワックス、ポリエチレンワックス、酸化ポリエチレンワックス等の合成ワックス;マルガリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、フロイン酸、ベヘニン酸等の高級脂肪酸;ステアリンアルコール、ベヘニルアルコール等の高級アルコール;ソルビタンの脂肪酸エステル等のエステル類;ステアリンアミド、オレインアミド等のアミド類などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。 The wax is not particularly limited and can be selected as appropriate depending on the purpose; for example, natural waxes such as beeswax, carnauba wax, spermaceti wax, wood wax, candelilla wax, rice bran wax, and montan wax; paraffin; Synthetic waxes such as wax, microcrystalline wax, oxidized wax, ozokerite, ceresin, ester wax, polyethylene wax, oxidized polyethylene wax; high grade such as margaric acid, lauric acid, myristic acid, palmitic acid, stearic acid, furoic acid, behenic acid, etc. Fatty acids; higher alcohols such as stearin alcohol and behenyl alcohol; esters such as fatty acid esters of sorbitan; amides such as stearinamide and oleinamide; and the like. These may be used alone or in combination of two or more.
---バインダー樹脂---
 前記バインダー樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エチレン-酢酸ビニル共重合体、部分ケン化エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-メタクリル酸ナトリウム共重合体、ポリアミド、ポリエステル、ポリウレタン、ポリビニルアルコール、メチルセルロース、カルボキシメチルセルロース、デンプン、ポリアクリル酸、イソブチレン-マレイン酸共重合体、スチレン-マレイン酸共重合体、ポリアクリルアミド、ポリビニルアセタール、ポリ塩化ビニル、ポリ塩化ビニリデン、イソプレンゴム、スチレン-ブタジエン共重合体、エチレン-プロピレン共重合体、ブチルゴム、アクリロニトリル-ブタジエン共重合体などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
---Binder resin---
The binder resin is not particularly limited and can be selected as appropriate depending on the purpose, for example, ethylene-vinyl acetate copolymer, partially saponified ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer. , ethylene-sodium methacrylate copolymer, polyamide, polyester, polyurethane, polyvinyl alcohol, methylcellulose, carboxymethylcellulose, starch, polyacrylic acid, isobutylene-maleic acid copolymer, styrene-maleic acid copolymer, polyacrylamide, polyvinyl Examples include acetal, polyvinyl chloride, polyvinylidene chloride, isoprene rubber, styrene-butadiene copolymer, ethylene-propylene copolymer, butyl rubber, acrylonitrile-butadiene copolymer, and the like. These may be used alone or in combination of two or more.
---その他の成分---
 前記その他の成分としては、例えば、着色剤、粘度調整剤、分散剤、分散助剤、フィラーなどが挙げられる。
---Other ingredients---
Examples of the other components include colorants, viscosity modifiers, dispersants, dispersion aids, and fillers.
 前記転写層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ホットメルト塗工法、前記ワックス及び前記バインダー樹脂を溶剤に分散させた塗布液を塗布する方法などが挙げられる。 The method for forming the transfer layer is not particularly limited and can be selected as appropriate depending on the purpose; for example, a hot melt coating method, a method of applying a coating liquid in which the wax and the binder resin are dispersed in a solvent. Examples include.
 なお、前記疎水性材料は、転写層を形成するに当たり、加熱して溶融させておくことが好ましい。 Note that the hydrophobic material is preferably heated and melted before forming the transfer layer.
 前記支持体上の転写層への流路パターンの形成(印刷)は、特に限定されないが、例えば、熱転写プリンタを好適に用いることができる。そして、第1の印刷工程では、第1の支持体上の第1の転写層を用い、検査デバイスの第1の層の反転デザインとなるように第1の支持体上の第1の転写層に印刷する。また、第2の印刷工程では、第2の支持体上の第2の転写層を用い、検査デバイスの第2の層の反転デザインとなるように第2の支持体上の第2の転写層に印刷する。 The formation (printing) of the flow path pattern on the transfer layer on the support is not particularly limited, but for example, a thermal transfer printer can be suitably used. and in a first printing step, the first transfer layer on the first support is used to print the first transfer layer on the first support in a reverse design of the first layer of the test device. to print. Also, in the second printing step, the second transfer layer on the second support is used, and the second transfer layer on the second support is inverted so as to have an inverted design of the second layer of the test device. to print.
 なお、印刷するデザインは、例えば、パソコン等によりあらかじめ作成し、そのデータを印刷装置に取り込むことができる。また、検査デバイス用基材の表面及び裏面の印刷は別々に行ってもよく、同時に行ってもよい。 Note that the design to be printed can be created in advance using, for example, a personal computer, and the data can be imported into the printing device. Moreover, printing on the front and back sides of the substrate for a test device may be performed separately or simultaneously.
 前記熱転写プリンタとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリアルサーマルヘッド、ライン型サーマルヘッド等を有するサーマルプリンタなどが挙げられる。 The thermal transfer printer is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include thermal printers having a serial thermal head, a line-type thermal head, etc.
<その他の工程>
 前記その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、乾燥工程、搬送工程などが挙げられる。
<Other processes>
The other steps are not particularly limited and can be appropriately selected depending on the purpose, and include, for example, a drying step, a transportation step, and the like.
 本発明の検査デバイスは、粒径1μm以上の液滴を含むエマルジョン検査用であることが好ましい。粒径1μm以上の液滴としては、例えば、乳脂肪粒子などが挙げられる。 The testing device of the present invention is preferably for testing emulsions containing droplets with a particle size of 1 μm or more. Examples of droplets having a particle size of 1 μm or more include milk fat particles.
 また、本発明の検査デバイスは、ホモジナイズ未処理乳汁検査用であることが好ましい。具体的には、ホモジナイズ加工されていない牛の生乳などが挙げられる。 Furthermore, the testing device of the present invention is preferably used for testing homogenized untreated milk. Specifically, raw milk from cows that has not been homogenized may be used.
 本発明の検査デバイス用基材を用いた本発明の検査デバイスは、流路形成性と、高粘度な検査対象物又は懸濁した検査対象物の流通性とを両立できるので、ホモジナイズ加工されていない牛の生乳を閉塞することなく検査可能であり、乳脂肪粒子に含まれるプロゲステロン等のホルモン成分の検出も可能となり、妊娠検査薬などに好適に用いることができる。 The testing device of the present invention using the base material for a testing device of the present invention can achieve both flow path formation properties and flowability of a highly viscous test object or a suspended test object, and therefore does not require homogenization. It is possible to test raw milk from cows without occlusion, and it is also possible to detect hormonal components such as progesterone contained in milk fat particles, so it can be suitably used as a pregnancy test.
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these Examples in any way.
(実施例1~4及び比較例1~5)
<検査デバイスの製造>
-疎水性材料の調製-
 疎水性成分としてのパラフィンワックス(日本精鑞株式会社製、Praffin Wax-135)72質量部、疎水性成分としての合成ワックス(三菱ケミカル株式会社製、「ダイヤカルナ(登録商標)30」)18質量部、エチレン-酢酸ビニル共重合樹脂(東ソー株式会社製、「ウルトラセン 722」)11.25質量部、及び着色剤としてのカーボンブラック(三菱ケミカル株式会社製、「MA-100」)1.8質量部を配合し、100℃で溶融混合した。その際、サンドミルを用いて各成分の分散を行った。以上により、疎水性材料を調製した。
(Examples 1 to 4 and Comparative Examples 1 to 5)
<Manufacture of inspection devices>
-Preparation of hydrophobic materials-
Paraffin wax (manufactured by Nippon Seirin Co., Ltd., Praffin Wax-135) 72 parts by mass as a hydrophobic component, synthetic wax (manufactured by Mitsubishi Chemical Corporation, "Diakaruna (registered trademark) 30") 18 parts by mass as a hydrophobic component 11.25 parts by mass of ethylene-vinyl acetate copolymer resin (manufactured by Tosoh Corporation, "Ultracene 722"), and 1.8 parts of carbon black as a coloring agent (manufactured by Mitsubishi Chemical Corporation, "MA-100") Parts by mass were blended and melt-mixed at 100°C. At that time, each component was dispersed using a sand mill. As described above, a hydrophobic material was prepared.
 得られた疎水性材料について、140℃、3,000/sの条件でティー・エイ・インスツルメント社製レオメーターAR-G2を用いて粘度を測定したところ、23mPa・sであった。 The viscosity of the obtained hydrophobic material was measured at 140° C. and 3,000/s using a rheometer AR-G2 manufactured by TA Instruments, and found to be 23 mPa·s.
-熱転写媒体の作製-
 次に、120℃に保持したホットプレート上に、支持体(東レ株式会社製、ルミラー6C F531、PETフィルム、厚み6μm)を配置した。次いで、支持体上に、120℃で溶融状態を維持した上述の疎水性材料をメイヤーバー(三井電気精機株式会社製)により、平均厚みが5μm~12μmとなるように塗布し、転写層を形成し、図2に示す構成の熱転写媒体20を作製した。図2中11は支持体、12は転写層である。
-Preparation of thermal transfer medium-
Next, a support (manufactured by Toray Industries, Inc., Lumirror 6C F531, PET film, thickness 6 μm) was placed on a hot plate maintained at 120°C. Next, the above-mentioned hydrophobic material maintained in a molten state at 120° C. is applied onto the support using a Mayer bar (manufactured by Mitsui Electric Seiki Co., Ltd.) so that the average thickness is 5 μm to 12 μm to form a transfer layer. Then, a thermal transfer medium 20 having the configuration shown in FIG. 2 was produced. In FIG. 2, 11 is a support, and 12 is a transfer layer.
-流路の形成(印刷)-
 次に、熱転写プリンタ(サトーホールディングス株式会社製、レスプリR412v-ex)を用い、表1に示す基材の流路(表)側は図3Aに示す直径4mmの円が中心距離6mm間隔に4つ配置され、これらの円が2.5mm幅の流路で接続されたパターン、検出部(裏)側は図3Bに示す流路の最上部と最下部の円部が同一径で貫通するパターンを、それぞれ上記熱転写プリンタにより表1に示す基材上に印刷することにより、熱転写媒体に印刷部の疎水性材料が抜き取られた流路パターンを形成した。
- Formation of flow path (printing) -
Next, using a thermal transfer printer (manufactured by Sato Holdings Co., Ltd., Respri R412v-ex), on the flow path (front) side of the base material shown in Table 1, four circles with a diameter of 4 mm shown in Figure 3A were placed at intervals of 6 mm between centers. A pattern in which these circles are connected by a channel with a width of 2.5 mm, and a pattern in which the top and bottom circular parts of the channel shown in Figure 3B penetrate with the same diameter on the detection part (back) side. , were printed on the base materials shown in Table 1 using the above thermal transfer printer, thereby forming a flow path pattern in which the hydrophobic material of the printed portion was removed on the thermal transfer medium.
-基材中への流路の形成-
 基材の一の面に流路側パターンを抜き取った熱転写媒体と、基材の反対面に検出部側パターンを抜き取った熱転写媒体を固定し、下記の条件の熱ラミネーターに通すことにより、表裏から異なる形状に抜き取られた熱転写媒体の疎水性材料を基材中に含浸させ、基材内に三次元形状の流路を形成した。
- Formation of a flow path in the base material -
By fixing the thermal transfer medium with the flow path side pattern extracted on one side of the base material and the thermal transfer medium with the detection part side pattern extracted on the opposite side of the base material, and passing it through a thermal laminator under the following conditions, the front and back sides are different. The hydrophobic material of the thermal transfer medium cut out into the shape was impregnated into the base material to form a three-dimensional flow path within the base material.
-熱ラミネート条件-
 熱ラミネーターとしてGBC社製、GL535MLを用いて熱ラミネートを行った。
(1)基材への疎水性材料の転写:温度85℃以上120℃以下にてライン速度10mm/secにて熱ラミネートした。
(2)基材への疎水性材料の含浸:温度85℃以上120℃以下にてライン速度5mm/secにて熱ラミネートした。
-Thermal lamination conditions-
Thermal lamination was performed using a GL535ML manufactured by GBC as a thermal laminator.
(1) Transfer of hydrophobic material to base material: Heat lamination was performed at a temperature of 85° C. to 120° C. and a line speed of 10 mm/sec.
(2) Impregnation of the hydrophobic material into the base material: Heat lamination was carried out at a temperature of 85° C. to 120° C. and a line speed of 5 mm/sec.
-基材への疎水性材料の含浸量の異なる流路の形成-
 表1に示すように、流路側パターンを形成するために用いる熱転写媒体の疎水性材料の重量(厚み)と、検出部側パターンを形成するために用いる熱転写媒体の疎水性材料の重量(厚み)との組み合わせにより疎水性材料の含浸量を調整した流路をそれぞれ形成した。
- Formation of channels with different amounts of hydrophobic material impregnated into the base material -
As shown in Table 1, the weight (thickness) of the hydrophobic material of the thermal transfer medium used to form the pattern on the flow path side and the weight (thickness) of the hydrophobic material of the thermal transfer medium used to form the pattern on the detection side A flow path with an adjusted amount of hydrophobic material impregnated was formed by combining the two.
 以上により、実施例1~4及び比較例1~5の検査デバイスを作製した。 Through the above steps, testing devices of Examples 1 to 4 and Comparative Examples 1 to 5 were manufactured.
 次に、作製した各検査デバイスについて、以下のようにして、諸性能を評価した。結果を表2に示した。 Next, various performances of each of the manufactured test devices were evaluated as follows. The results are shown in Table 2.
<バリア性>
 作製した各検査デバイスにおいて、アスクル株式会社製の蛍光サインペンより抽出した水性蛍光インクを蒸留水(検査対象物)に溶かした溶液を液受入部にスポイトで16μL滴下し、流路に通して、流路からの溶液の漏れの有無を、UVランプ(株式会社コンテック製、BL-LED3435-UV)を用いて目視観察し、下記の基準で判定した。
[評価基準]
  〇:流路からの漏れがなく、バリア性が良好である
  △:流路からの漏れが僅かに生じるが、実用上問題ないレベルである
  ×:流路から漏れが生じ、バリア性が不良である
<Barrier properties>
In each of the fabricated test devices, 16 μL of a solution of water-based fluorescent ink extracted from a fluorescent felt-tip pen manufactured by Askul Co., Ltd. dissolved in distilled water (test object) was dropped into the liquid receiving part with a dropper, passed through the flow path, and then The presence or absence of solution leakage from the road was visually observed using a UV lamp (BL-LED3435-UV, manufactured by Contec Co., Ltd.), and judged according to the following criteria.
[Evaluation criteria]
〇: There is no leakage from the flow path, and the barrier properties are good. △: There is a slight leakage from the flow path, but it is at a level that poses no practical problems. ×: There is leakage from the flow path, and the barrier properties are poor. be
 濾紙中への疎水性材料の含浸が充分でない場合、流路外に検査対象物の漏洩が生じる。流路外に検査対象物が漏洩した程度を観察した。なお、図4Aは、実施例1の流路への検査対象物の漏洩が生じていないバリア性が良好である状態を示す。図4Bは、比較例2の流路への検査対象物の漏洩が生じており、バリア性が不良である状態を示す。 If the hydrophobic material is not sufficiently impregnated into the filter paper, the test object will leak out of the flow path. The extent to which the test object leaked out of the flow path was observed. Note that FIG. 4A shows a state in which the test object does not leak into the flow path in Example 1 and the barrier properties are good. FIG. 4B shows a state in which the test object leaked into the flow path of Comparative Example 2 and the barrier properties were poor.
<液流通性>
 各検査デバイスについて、ホモジナイズ加工されていない牛の生乳及び上記水性蛍光インクを蒸留水に溶解した溶液を液受入部にスポイトで16μL滴下してから、検出部に到達するまでの時間をストップウォッチで測定した。3分(180秒)までに検出部に到達しない場合は「閉塞」とした。なお、評価数はn=3、流通時間はn=3の平均値、「閉塞」がn=3中に1つでも確認された場合は「閉塞」と判定した。
<Liquid flowability>
For each test device, a stopwatch measures the time from when 16 μL of a solution of unhomogenized cow milk and the above water-based fluorescent ink dissolved in distilled water is dropped into the liquid receiving part with a dropper until it reaches the detection part. It was measured. If the detection part was not reached within 3 minutes (180 seconds), it was regarded as "occlusion". The number of evaluations was n = 3, the circulation time was the average value of n = 3, and if even one "occlusion" was confirmed among n = 3, it was determined as "occlusion".
<紙力>
 作製した各検査デバイスを、カッター(オルファ株式会社製、ハイパーAL型)を用いて所定の形状に裁断できるか否かを下記の基準で評価した。
[評価基準]
  〇:カッターで容易に裁断できる
 〇△:カッターによる裁断が可能である
  △:カッターによる裁断が困難である
  ×:カッターによる裁断できない(繊維の凝集力が弱く、破れる)
<Paper power>
It was evaluated based on the following criteria whether each of the produced test devices could be cut into a predetermined shape using a cutter (Hyper AL type, manufactured by Olfa Corporation).
[Evaluation criteria]
〇: Easy to cut with a cutter 〇△: Can be cut with a cutter △: Difficult to cut with a cutter ×: Cannot be cut with a cutter (fiber cohesion is weak and will tear)
-基材-
・サンプル1~サンプル4:表1に示す平均厚み、坪量、及び密度となるように作製した濾紙
・Whatman #40、#41、#42:市販の定量濾紙、メルク社製
・Advantec No.60:市販の粘調液用濾紙、アドバンテック東洋株式会社製
-Base material-
- Samples 1 to 4: Filter papers manufactured to have the average thickness, basis weight, and density shown in Table 1 - Whatman #40, #41, #42: Commercially available quantitative filter papers, manufactured by Merck & Co., Ltd. - Advantec No. 60: Commercially available filter paper for viscous liquid, manufactured by Advantech Toyo Co., Ltd.
 表1及び表2の結果から、実施例1~3は、基材の平均厚みが250μm以上350μm以下であり、かつ密度が0.25×10g/m以上0.40×10g/m以下を満たしており、液流通性、バリア性、及び紙力がいずれも良好であることがわかった。 From the results in Tables 1 and 2, in Examples 1 to 3, the average thickness of the base material is 250 μm or more and 350 μm or less, and the density is 0.25×10 6 g/m 3 or more and 0.40×10 6 g. /m 3 or less, and it was found that liquid flowability, barrier properties, and paper strength were all good.
 実施例4は、疎水性材料の含浸量が15g/m以上20g/m以下を満たしていないため、実施例1~3に比べてバリア性及び水の流通性がやや低下することがわかった。 In Example 4, the impregnation amount of the hydrophobic material did not satisfy the range of 15 g/m 2 or more and 20 g/m 2 or less, so it was found that the barrier properties and water circulation properties were slightly lower than in Examples 1 to 3. Ta.
 これに対して、比較例1は、基材の平均厚みが薄いため、ホモジナイズ加工されていない牛の生乳で流路が閉塞してしまった。 On the other hand, in Comparative Example 1, the average thickness of the base material was small, so the flow path was blocked by raw cow milk that had not been homogenized.
 比較例2は、基材の平均厚みが厚く、密度が低いため、バリア性及び水の流通性が低下することがわかった。 It was found that in Comparative Example 2, the average thickness of the base material was large and the density was low, resulting in poor barrier properties and water circulation.
 比較例3は、基材の平均厚みが薄く、密度が低いため、水及びホモジナイズ加工されていない牛の生乳で流路が閉塞してしまい、紙力が低いことがわかった。 It was found that in Comparative Example 3, the average thickness of the base material was thin and the density was low, so the flow path was blocked by water and unhomogenized cow milk, resulting in low paper strength.
 比較例4及び5は、基材の平均厚みが薄く、密度が高いため、流通時間が大幅に遅くなってしまい、ホモジナイズ加工されていない牛の生乳で流路が閉塞してしまった。 In Comparative Examples 4 and 5, the average thickness of the base material was small and the density was high, so the distribution time was significantly delayed, and the flow path was blocked by raw milk from cows that had not been homogenized.
 本発明の検査デバイス用基材を用いた本発明の検査デバイスは、流路形成性と、高粘度な検査対象物又は懸濁した検査対象物の流通性とを両立できるので、ホモジナイズ加工されていない牛の生乳を閉塞することなく検査可能であり、乳脂肪粒子に含まれるプロゲステロン等のホルモン成分の検出が可能となり、妊娠検査薬などに応用することができる。 The testing device of the present invention using the base material for a testing device of the present invention can achieve both flow path formation properties and flowability of a highly viscous test object or a suspended test object, and therefore does not require homogenization. It is possible to test raw milk from cows without occlusion, and it is possible to detect hormone components such as progesterone contained in milk fat particles, which can be applied to pregnancy test drugs.
 本出願は、2022年6月23日に日本国特許庁に出願した特願2022-100746号に基づいて優先権を主張し、前記出願に記載された全ての内容を援用する。 This application claims priority based on Japanese Patent Application No. 2022-100746 filed with the Japan Patent Office on June 23, 2022, and all contents described in said application are incorporated.
 1 検査デバイス用基材
 2 第1層
 3 第2層
 4 液受入部
 5 検出部
 6 流路部
 10 検査デバイス
 11 支持体
 12 転写層
 20 熱転写媒体

 
1 Base material for inspection device 2 First layer 3 Second layer 4 Liquid receiving section 5 Detection section 6 Channel section 10 Inspection device 11 Support 12 Transfer layer 20 Thermal transfer medium

Claims (10)

  1.  平均厚みが250μm以上350μm以下であり、かつ密度が0.25×10g/m以上0.40×10g/m以下である検査デバイス用基材。 A substrate for a test device having an average thickness of 250 μm or more and 350 μm or less, and a density of 0.25×10 6 g/m 3 or more and 0.40×10 6 g/m 3 or less.
  2.  坪量が50g/m以上100g/m以下である、請求項1に記載の検査デバイス用基材。 The substrate for an inspection device according to claim 1, having a basis weight of 50 g/m 2 or more and 100 g/m 2 or less.
  3.  濾紙、上質紙、不織布、及びニトロセルロースから選択される少なくとも1種を含む、請求項1又は2に記載の検査デバイス用基材。 The substrate for a testing device according to claim 1 or 2, comprising at least one selected from filter paper, high-quality paper, nonwoven fabric, and nitrocellulose.
  4.  検査対象物における対象物質の存在の有無を検査する検査デバイスであって、
     請求項1から2のいずれかに記載の検査デバイス用基材に疎水性材料を含浸させてなり、
     前記疎水性材料が含浸した疎水性部と、前記疎水性材料が含浸せず前記検査デバイス用基材が露出した露出部とを有することを特徴とする検査デバイス。
    A testing device that tests for the presence or absence of a target substance in an object to be tested,
    The test device base material according to any one of claims 1 to 2 is impregnated with a hydrophobic material,
    A testing device comprising: a hydrophobic portion impregnated with the hydrophobic material; and an exposed portion not impregnated with the hydrophobic material and exposing the testing device substrate.
  5.  前記露出部が、液受入部と、前記液受入部と連通した流路部と、前記流路部と連通した検出部とを有する、請求項4に記載の検査デバイス。 The inspection device according to claim 4, wherein the exposed portion has a liquid receiving portion, a flow path portion communicating with the liquid receiving portion, and a detection portion communicating with the flow path portion.
  6.  前記検査デバイス用基材の両面に、前記疎水性部と、前記露出部とを有し、
     前記検査デバイス用基材の両面で異なるデザインの流路が形成され、かつ前記流路が連通している三次元流路を有する、請求項4に記載の検査デバイス。
    The test device substrate has the hydrophobic portion and the exposed portion on both sides,
    The testing device according to claim 4, wherein channels of different designs are formed on both sides of the testing device substrate, and the testing device has a three-dimensional channel in which the channels communicate with each other.
  7.  前記疎水性材料の前記検査デバイス用基材に対する含浸量が15g/m以上20g/m以下である、請求項4に記載の検査デバイス。 The test device according to claim 4, wherein the amount of impregnation of the hydrophobic material into the test device substrate is 15 g/m 2 or more and 20 g/m 2 or less.
  8.  粒径1μm以上の液滴を含むエマルジョン検査用である、請求項4に記載の検査デバイス。 The testing device according to claim 4, which is used for testing emulsions containing droplets with a particle size of 1 μm or more.
  9.  ホモジナイズ未処理乳汁検査用である、請求項4に記載の検査デバイス。 The testing device according to claim 4, which is used for testing homogenized unprocessed milk.
  10.  請求項1又は2に記載の検査デバイス用基材の両面から疎水性材料を含浸させて、前記疎水性材料が含浸した疎水性部と、前記疎水性材料が含浸せず前記検査デバイス用基材が露出した露出部とを形成する含浸工程を含むことを特徴とする検査デバイスの製造方法。

     
    A hydrophobic material is impregnated from both sides of the base material for a test device according to claim 1 or 2, so that a hydrophobic part is impregnated with the hydrophobic material and the base material for a test device is not impregnated with the hydrophobic material. 1. A method for manufacturing an inspection device, comprising an impregnating step of forming an exposed portion.

PCT/JP2023/017509 2022-06-23 2023-05-10 Substrate for inspection device, inspection device, and method for manufacturing inspection device WO2023248635A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-100746 2022-06-23
JP2022100746A JP2024001901A (en) 2022-06-23 2022-06-23 Substrate for inspection device, inspection device, and method for manufacturing inspection device

Publications (1)

Publication Number Publication Date
WO2023248635A1 true WO2023248635A1 (en) 2023-12-28

Family

ID=89379528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017509 WO2023248635A1 (en) 2022-06-23 2023-05-10 Substrate for inspection device, inspection device, and method for manufacturing inspection device

Country Status (2)

Country Link
JP (1) JP2024001901A (en)
WO (1) WO2023248635A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110111517A1 (en) * 2008-03-27 2011-05-12 President And Fellows Of Harvard College Paper-based microfluidic systems
JP2015007604A (en) * 2013-02-28 2015-01-15 株式会社リコー Fluid device and method of manufacturing the same, and transfer material for manufacturing the fluid device
JP2021037612A (en) * 2019-08-29 2021-03-11 キヤノン株式会社 Manufacturing method for micro-passage device
JP2021175970A (en) * 2020-04-28 2021-11-04 デクセリアルズ株式会社 Testing chip and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110111517A1 (en) * 2008-03-27 2011-05-12 President And Fellows Of Harvard College Paper-based microfluidic systems
JP2015007604A (en) * 2013-02-28 2015-01-15 株式会社リコー Fluid device and method of manufacturing the same, and transfer material for manufacturing the fluid device
JP2021037612A (en) * 2019-08-29 2021-03-11 キヤノン株式会社 Manufacturing method for micro-passage device
JP2021175970A (en) * 2020-04-28 2021-11-04 デクセリアルズ株式会社 Testing chip and method for manufacturing same

Also Published As

Publication number Publication date
JP2024001901A (en) 2024-01-11

Similar Documents

Publication Publication Date Title
Lewis et al. High throughput method for prototyping three-dimensional, paper-based microfluidic devices
JP6657556B2 (en) Fluid device, inspection apparatus, and method of manufacturing fluid device
KR102241787B1 (en) System and method for forming bonded substrates
EP3047272B1 (en) Testing device and use thereof
JP6439307B2 (en) Fluid device, transfer material, and method of manufacturing fluid device
JP6454956B2 (en) Fluid device, method for producing the same, and transfer material for fluid device production
JP6825212B2 (en) Inspection equipment, transfer material, manufacturing method of inspection equipment, and inspection kit
WO2015129924A1 (en) Testing device, testing kit, transfer member, testing device fabrication method, and testing method
JP2015131257A (en) Fluid device, manufacturing method thereof, and thermal transfer medium for manufacturing fluid device
WO2023248635A1 (en) Substrate for inspection device, inspection device, and method for manufacturing inspection device
WO2021220716A1 (en) Testing chip and method for manufacturing same
JP6686278B2 (en) Inspection device, inspection kit, transfer medium, inspection device manufacturing method, and inspection method
US20160008812A1 (en) Fluidic device and fabrication method thereof, and thermal transfer medium for fluidic device fabrication
TW202409567A (en) Base material for inspection device, inspection device, and method of manufacturing inspection device
US10539562B2 (en) Testing device and method for producing same, and testing kit, transfer medium for testing device, and testing method
US10302639B2 (en) Thermal transfer medium for testing device, testing device and method for producing same, and testing kit
JP2016161299A (en) Target inspection device, target inspection kit, target inspection method, transfer medium, and method for manufacturing target inspection device
RU2807028C1 (en) Test circuit and method of its manufacturing
WO2018179983A1 (en) Blood cell separation membrane for immunochromatograph, and strip for immunochromatograph
US20180080940A1 (en) Testing device and method for producing same, and testing kit and transfer medium for producing testing device
EP4317990A1 (en) Testing chip and method for manufacturing same
JP2018100888A (en) Transfer medium for inspection device, inspection device, method for manufacturing inspection device, and inspection kit
JP2018025472A (en) Inspection device, inspection kit, transfer medium for inspection device, and method for manufacturing inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826824

Country of ref document: EP

Kind code of ref document: A1