WO2023248585A1 - Stator and motor - Google Patents

Stator and motor Download PDF

Info

Publication number
WO2023248585A1
WO2023248585A1 PCT/JP2023/014744 JP2023014744W WO2023248585A1 WO 2023248585 A1 WO2023248585 A1 WO 2023248585A1 JP 2023014744 W JP2023014744 W JP 2023014744W WO 2023248585 A1 WO2023248585 A1 WO 2023248585A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
stator
axis
stator core
mold part
Prior art date
Application number
PCT/JP2023/014744
Other languages
French (fr)
Japanese (ja)
Inventor
猛 前川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023248585A1 publication Critical patent/WO2023248585A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/44Protection against moisture or chemical attack; Windings specially adapted for operation in liquid or gas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present disclosure relates to a stator and a motor. More specifically, the present disclosure relates to a stator that includes a stator core, a coil, and a mold section that molds the stator core and the coil, and a motor that includes this stator.
  • Patent Document 1 describes a conventional rotating electric machine.
  • This rotating electric machine includes a rotatably supported substantially cylindrical rotor, a stator, and a bracket that supports the stator.
  • the bracket has a cooling channel and a portion that comes into close contact with the stator coil through an insulator.
  • An object of the present disclosure is to provide a stator and a motor that are easy to downsize and easily increase cooling efficiency.
  • a stator includes a stator core having an annular yoke surrounding the axis of a rotating shaft of a rotor, and teeth protruding from an inner circumferential surface of the yoke toward the axis; It includes a coil to be wound, a mold part for molding the stator core and the coil, and a cover part attached to the mold part.
  • the mold part has a groove whose internal space serves as a waterway. The cover portion closes the opening of the groove.
  • the stator further includes an insulator interposed between the stator core and the coil, and the insulator is molded together with the stator core and the coil by the mold section.
  • the stator further includes a bus bar connected to a conducting wire constituting the coil, and the bus bar is molded together with the stator core and the coil by the mold section.
  • the conducting wire is wound around the teeth, and the bus bar is arranged on a side opposite to the axis of the coil.
  • the cross-sectional shape of the conducting wire constituting the coil may be square.
  • the coil may be a molded coil.
  • the water channel is adjacent to the coil through a part of the mold part in the direction in which the axis extends.
  • a first coil end located closest to the axis and in the direction in which the axis extends is located at a position furthest from the axis side and in the direction in which the axis extends. It is preferable that the axis protrudes further in the extending direction than the second coil end.
  • the first coil end protrudes further than all of the second coil ends in the direction in which the axis extends.
  • a motor according to another aspect of the present disclosure includes the stator and a rotor facing the stator.
  • stator and motor of the present disclosure it is easy to achieve miniaturization, and it is easy to increase cooling efficiency.
  • FIG. 1 is a perspective view of a stator according to the first embodiment.
  • FIG. 2 is a perspective view of the stator with the cover removed.
  • FIG. 3 is a perspective view of a stator core in the stator same as above.
  • FIG. 4 is a plan view of a motor having a stator similar to the above (with the cover removed from the stator).
  • FIG. 5 is a sectional view of the stator core and coils same as above.
  • FIG. 6 is a sectional view of a main part of the stator same as above.
  • FIG. 7 is a flowchart of a method for manufacturing the stator described above.
  • FIG. 8 is a sectional view of a main part of a stator according to the second embodiment.
  • FIG. 9 is a perspective view including a cross section of a main part of the stator as described above.
  • FIG. 10 is a sectional view of a main part of a stator according to a third embodiment.
  • FIG. 11 is a perspective view including a cut surface of a main part of the stator as described above.
  • FIG. 1 is a perspective view of a stator 1 according to the first embodiment.
  • FIG. 2 is a perspective view of the stator 1 with the cover part 5 removed.
  • FIG. 3 is a perspective view of the stator core 2 in the stator 1 same as above.
  • FIG. 4 is a plan view of the motor 8 having the stator 1 as described above (with the cover portion 5 removed from the stator 1).
  • FIG. 5 is a sectional view of the stator core 2 and coil 3 same as above.
  • the stator 1 includes a stator core 2, a coil 3, a mold part 4 for molding the stator core 2 and the coil 3, and a cover part 5 attached to the mold part 4. , is provided.
  • the mold part 4 has a groove 41 whose internal space becomes the water channel 11.
  • the cover portion 5 closes the groove opening 410.
  • a motor 8 As shown in FIG. 4, a motor 8 according to the present disclosure includes a stator 1 and a rotor 9.
  • the stator 1 and motor 8 described above can be easily miniaturized. Moreover, in the stator 1 and motor 8 described above, the cooling efficiency can be easily increased.
  • the stator 1 includes a stator core 2, a coil 3, a mold section 4, a cover section 5, an insulator 6 (see FIG. 6 described later), and a bus bar 7.
  • the stator core 2 includes a yoke 21 and teeth 22.
  • the yoke 21 has an annular shape surrounding the axis 10 of the rotation shaft 90 of the rotor 9 that rotates with respect to the stator 1.
  • the yoke 21 has an annular shape when viewed in the direction 100 in which the axis 10 extends (hereinafter referred to as the extending direction 100).
  • the center of the yoke 21 coincides with the axis 10 of the rotating shaft 90 of the rotor 9.
  • the yoke 21 has a plurality of steel plates stacked in the stretching direction 100.
  • the steel plate is made of a magnetic material such as a silicon steel plate.
  • a fitting part 211 into which the teeth 22 are fitted is formed at the end of the yoke 21 on the axis 10 side (hereinafter referred to as inside).
  • the 18 teeth 22 are fitted into 18 fitting portions 211 formed at equal intervals in the circumferential direction of the inner end of the yoke 21, respectively.
  • a fitting part 221 formed at the end of each tooth 22 on the yoke 21 side is fitted into a fitting part 211 formed inside the yoke 21.
  • the teeth 22 protrude from the inner peripheral surface of the yoke 21 toward the axis 10.
  • 18 teeth 22 are provided in the stator core 2.
  • Teeth 22 are molded separately from yoke 21.
  • the teeth 22 are fitted into the yoke 21, and the yoke 21 and the teeth 22 are integrated.
  • a fitting portion 221 corresponding to the fitting portion 211 of the yoke 21 is formed on each tooth 22 .
  • the fitting portion 221 of one tooth 22 is fitted into each fitting portion 211 of the yoke 21, so that the 18 teeth 22 are integrally attached to the yoke 21.
  • Coil A conducting wire 30 constituting the coil 3 is wound around each tooth 22. Thereby, the coil 3 is formed. Eighteen coils 3 are provided in the stator core 2.
  • the cross-sectional shape of the conducting wire 30 is rectangular.
  • Coil 3 is a shaped coil.
  • the shaped coil in the present disclosure does not include a coil in which a conducting wire having a constant width and thickness is simply wound in a spiral shape.
  • a shaped coil is formed, for example, by preparing a plurality of rectangular plates having different lengths, widths, or thicknesses, and joining these plates by cold welding, welding, or other methods.
  • the material of the plate material is a so-called low resistance material such as copper or aluminum.
  • the shaped coil may be formed by so-called casting, in which copper or the like is melted and poured into a mold.
  • a shaped coil may be formed by bending at a predetermined position a plate-shaped conducting wire that has been formed in advance to have different widths and thicknesses along the way.
  • a shaped coil may be formed by rolling a plate-shaped conducting wire having a constant width and thickness at a predetermined portion, changing the width or thickness midway through the rolling process, and then winding the wire into a spiral shape.
  • the shaped coil is formed by adding another process to the conductor wire in addition to winding it, or by using a method different from simply winding the conductor wire.
  • FIG. 6 is a sectional view of main parts of the stator 1 according to the first embodiment. As shown in FIG. 6, the insulator 6 is interposed between the stator core 2 and the coil 3. Insulator 6 is formed of an insulator. The insulator 6 is divided into two parts in the stretching direction 100. The insulator 6 is arranged so as to cover both end faces of the teeth 22 in the extending direction 100 in two divided parts. The insulator 6 ensures an appropriate insulation distance between the stator core 2 and the coil 3.
  • the bus bar 7 is connected to the conducting wire 30.
  • the bus bar 7 facilitates the flow of a large current.
  • the bus bar 7 is electrically connected to the conducting wires 30 of the respective coils 3 to form connections for the U-phase, V-phase, and W-phase.
  • the bus bar 7 is arranged on the side opposite to the axis 10 of the coil 3 (ie, on the outside).
  • the bus bar 7 is adjacent to the outside of the coil 3 through a part of the molded part 4 in the inside-outside direction. Thereby, it is easy to suppress an increase in the size of the stator 1 in the stretching direction 100.
  • the bus bar 7 is arranged adjacent to the yoke 21 through a part of the molded part 4 in the stretching direction 100.
  • a stator body 20 is constituted by the stator core 2, coil 3, insulator 6, and bus bar 7.
  • the mold section 4 molds the stator core 2, the coil 3, the insulator 6, and the bus bar 7.
  • the mold part 4 is made of resin.
  • the molded portion 4 is formed in a portion adjacent to both end faces of the stator core 2 in the stretching direction 100 and a portion between adjacent teeth 22 .
  • portions adjacent to both end surfaces of the stator core 2 in the stretching direction 100 are connected by the portion formed between the adjacent teeth 22. As a result, an integral mold part 4 that is not divided is formed.
  • the mold part 4 has a groove 41 whose internal space becomes a water channel 11.
  • the groove 41 water channel 11
  • the groove 41 has an opening 410 that opens on one side (upper side in FIG. 6) in the stretching direction 100.
  • the groove 41 (water channel 11) extends annularly around the axis 10.
  • the grooves 41 (water channels 11) are formed in substantially the same shape as the stator core 2.
  • a partition 12 is formed inside the groove 41 (water channel 11).
  • the partition 12 partitions the groove 41 in the circumferential direction.
  • a first port 13 and a second port 14 communicating with the outside are formed on both sides of the partition 12 of the mold part 4 in the circumferential direction, respectively.
  • the first port 13 and the second port 14 are formed by holes penetrating the outer wall of the mold part 4 in the groove 41 portion.
  • One of the first port 13 and the second port 14 serves as an inlet for water into the groove 41 (channel 11), and the other serves as an outlet for water from the groove 41 (channel 11).
  • (2.6) Cover Part As shown in FIGS. 1 and 6, the cover part 5 is attached to the mold part 4.
  • the cover portion 5 closes the opening 410 of the groove 41.
  • the cover portion 5 is made of resin.
  • the cover part 5 is integrally attached to the mold part 4 by welding such as laser welding. As a result, a water channel 11 is formed inside the integral resin part made up of the mold part 4 and the cover part 5.
  • the water channel 11 is adjacent to the coil 3 through a part of the mold part 4 in the stretching direction 100.
  • the direction in which the water channel 11 is formed when viewed from the stator core 2 is defined as the upper side (the upper side in FIG. 6), and the opposite direction is defined as the lower side.
  • the bottom surface (lower inner surface) of the water channel 11 is inclined in the inner part so that the further inward it goes, the lower the position is.
  • the coil end at the upper end in the extending direction 100 of the conductor 30 wound around the teeth 22 via the insulator 6 is also inclined at the same angle as the bottom surface of the water channel 11, so that it is located downward as it goes inward.
  • a part of the molded part 4 is interposed between the bottom surface of the water channel 11 and the coil end of the conducting wire 30 with substantially the same thickness in the inner and outer directions.
  • the cross-sectional shape of the conducting wire 30 is square. Therefore, compared to the case where the conductor wire 30 having a circular cross section is used, variations in the outer diameter are less likely to occur when the conductor wire 30 is wound around the teeth 22 via the insulator 6. Therefore, the margin for the thickness of the mold part 4 can be reduced.
  • the motor 8 includes a stator 1 and a rotor 9.
  • the rotor 9 has a rotating shaft 90.
  • the rotor 9 rotates around the axis 10 of a rotating shaft 90.
  • magnetic flux generated from a plurality of coils 3 (18 in FIG. 1) in the stator 1 generates an electromagnetic force that rotates the rotor 9.
  • the rotor 9 has a cylindrical rotor core 91, a plurality of magnets 92, and a rotating shaft 90.
  • Rotating shaft 90 is held inside rotor core 91.
  • the magnets 92 are arranged in a polygonal shape.
  • FIG. 7 is a flowchart of the stator 1 manufacturing method according to the first embodiment. As shown in FIG. 7, the method for manufacturing the stator 1 includes a first step (step S1) to a fourth step (step S4).
  • step S1 the stator core 2, coil 3, and insulator 6 are assembled.
  • the stator core 2 is formed by fitting teeth 22 into a yoke 21.
  • An insulator 6 is combined with the stator core 2, and the coil 3 is wound around the teeth 22 via the insulator 6.
  • step S2 the process moves to the second step (step S2).
  • step S2 the stator main body 20 is assembled. That is, the bus bar 7 is combined with the stator core 2, coil 3, and insulator 6 assembled in the first step (step S1). As shown in FIG. 3, a plurality of bus bars 7 are stacked in the stretching direction 100. However, it is necessary to avoid contact with each other. A jig that functions as a spacer is interposed between the plurality of bus bars 7. The bus bars 7 are arranged so that the bus bars 7 do not come into contact with each other. Next, the conductive wire 30 of the coil 3 and the corresponding bus bar 7 are connected by welding.
  • step S3 The end of the conducting wire 30 to be welded to the bus bar 7 protrudes in one direction (upward) in the stretching direction 100 than the other portions of the coil 3 .
  • the end of the bus bar 7 is welded to this protruding portion.
  • step S3 the mold part 4 is formed on the stator main body 20.
  • the mold portion 4 is formed by placing the stator main body 20 in a predetermined mold, pouring molten resin into the mold, and solidifying the resin by cooling.
  • step S4 the process moves to the fourth step (step S4).
  • step S4 the cover part 5 is attached to the mold part 4 formed on the stator main body 20.
  • the cover portion 5 is integrally attached to a portion of the mold portion 4 along the opening 410 by laser welding.
  • a finished product of the stator 1 is obtained through the first step (step S1) to the fourth step (step S4).
  • the stator 1 described above includes a mold section 4 that molds the stator core 2 and the coil 3.
  • the mold part 4 has a groove 41.
  • the opening 410 of the groove 41 is closed by the cover part 5, and a water channel 11 is formed in the resin part.
  • the water channel 11 can be formed in a portion close to the stator main body 20 (inside the stator core 2). Therefore, it is no longer necessary to provide a cooling mechanism in the bracket to which the stator is attached, as in the conventional case. Therefore, it is easy to downsize the member to which the motor 8 is attached.
  • the water channel 11 is formed in the mold part 4 near the stator main body 20. Therefore, the water channel 11 can be provided close to the coil 3 which is a heat source.
  • the resin of the mold part 4 is also filled between the conductive wires 30 of the coil 3 and between the conductive wires 30 and the water channels 11. Therefore, heat insulation due to voids is suppressed. Therefore, also in this respect, the cooling efficiency of the coil 3 can be easily increased. Further, a water channel 11 can be provided close to the coil 3. Therefore, it becomes easier to downsize the stator 1 (motor 8) itself.
  • the cross-sectional shape of the conducting wire 30 is square. Therefore, as described above, the thickness margin of the mold part 4 can be reduced. As a result, the distance between the bottom surface of the water channel 11 and the coil end of the conducting wire 30 becomes shorter. Therefore, it becomes easier to further improve the cooling performance of the coil 3.
  • the water channel 11 is adjacent to the coil 3 through a part of the mold part 4 in the stretching direction 100. Therefore, it is easy to form the water channel 11 using the dead space. Furthermore, even if the water channel 11 is formed, the stator 1 is not easily enlarged. In this embodiment, the end of the conducting wire 30 to be welded to the bus bar 7 protrudes in one direction (upward) in the stretching direction 100 than the other portions of the coil 3. A dead space was originally formed in this part, and the water channel 11 is formed by making good use of this dead space. This suppresses the stator 1 and the motor 8 from increasing in size.
  • FIG. 8 is a sectional view of a main part of the stator 1 according to the second embodiment.
  • FIG. 9 is a perspective view including a cross section of the main parts of the stator 1 same as above.
  • the stator 1 according to the second embodiment is largely the same as the stator 1 according to the first embodiment. Therefore, the same reference numerals are given to the overlapping components, and detailed explanations are cited.
  • the upper end of the coil end in the extending direction 100 of the conducting wire 30 wound around the teeth 22 via the insulator 6 moves downward as the tip of the coil end goes inward. Slanted to position.
  • the amount of protrusion in the stretching direction 100 of the first coil end 31 located closest to the axis 10 is greater than the amount of protrusion of the second coil end 32 located furthest away from the axis 10. small.
  • the amount of protrusion of the first coil end 31 in the stretching direction 100 is larger than the amount of protrusion of the second coil end 32 in the stretching direction 100.
  • the amount of protrusion of the first coil end 31 in the stretching direction 100 is larger than the amount of protrusion of all the second coil ends 32 in the stretching direction 100.
  • the amount of heat generated in the conducting wire 30 of the coil 3 is larger as the conducting wire 30 is located on the inner side. Therefore, by making the first coil end 31 protrude more than the second coil end 32, the first coil end 31 can be easily cooled by the water flowing through the water channel 11. Therefore, the cooling efficiency of the coil 3 can be easily increased.
  • FIG. 10 is a sectional view of a main part of the stator 1 according to the third embodiment.
  • FIG. 11 is a perspective view including a cross section of the main parts of the stator 1 same as above.
  • the stator 1 according to the third embodiment is mostly the same as the stator 1 according to the first embodiment. Therefore, the same reference numerals are given to the overlapping components, and detailed explanations are cited.
  • the water channel 11 is adjacent to the coil 3 through a part of the mold part 4 in the stretching direction 100.
  • the water channel 11 is adjacent to the coil 3 through a part of the molded part 4 on the outside.
  • the waterway 11 has a first portion 110 similar to the waterway 11 of the first embodiment, and a second portion 111 consisting of an additional groove formed on the bottom surface of the waterway 11. Thereby, the water channel 11 can be formed even closer to the coil 3. Therefore, the cooling efficiency of the coil 3 can be improved.
  • the shape of the yoke 21 seen in the stretching direction 100 does not have to be annular and is not limited to an annular shape.
  • the number of teeth 22 and coils 3 formed in the stator core 2 is not limited to the first embodiment.
  • the cross-sectional shape of the conducting wire 30 may be circular instead of square.
  • the cross-sectional shape of the conducting wire 30 is not particularly limited.
  • the insulator 6 has an arbitrary configuration in the present disclosure.
  • the insulator 6 may not be provided on the stator 1.
  • the bus bar 7 does not need to be arranged adjacent to the outside of the coil 3 through a part of the molded part 4 in the inside-outside direction.
  • the bus bar 7 does not have to be arranged adjacent to the yoke 21 through a part of the molded part 4 in the stretching direction 100.
  • the bus bar 7 has an arbitrary configuration in the present disclosure.
  • the bus bar 7 does not need to be provided on the stator 1. If the bus bar 7 is not provided, a conductor may be connected to the stator 1 and the conductor 30 of the coil 3 instead of the bus bar 7.
  • the stator main body 20 does not have to include the stator core 2, the coil 3, the insulator 6, and the bus bar 7.
  • the stator main body 20 only needs to include at least the stator core 2 and the coils 3. That is, the insulator 6 and the bus bar 7 have arbitrary configurations. These do not need to be included in the stator main body 20.
  • the mold part 4 only needs to mold at least the stator core 2 and the coil 3.
  • the mold part 4 does not need to mold either or both of the insulator 6 and the bus bar 7.
  • the mold part 4 does not need to be formed in the part adjacent to both end faces of the stator core 2 in the stretching direction 100 and the part between the adjacent teeth 22.
  • the mold part 4 may be formed to cover the entire stator core 2.
  • the cover part 5 may be attached to the mold part 4 by a method other than welding.
  • the cover part 5 was explained as being made of resin.
  • the cover portion 5 may be made of other materials, such as a metal material with high thermal conductivity.
  • a groove 41 and a molded part 4 made of resin are present between the cover part 5 made of a metal material and the stator core 2 or coil 3. Therefore, since the cover part 5 does not come into direct contact with the stator core 2 or the coil 3, the cover part 5 is not required to have insulation properties. Therefore, in general, when the cover portion 5 is formed of a metal material having higher heat conductivity than a resin material, high heat dissipation performance can be expected.
  • What flows through the water channel 11 is not limited to water, but any liquid may be used.
  • the stator (1) of the first aspect includes a stator core (2), a coil (3), a stator core (2) and a coil ( 3), and a cover part (5) attached to the mold part (4).
  • the stator core (2) includes an annular yoke (21) that surrounds the axis (10) of the rotating shaft (90) of the rotor (9), and a ring-shaped yoke (21) that protrudes from the inner peripheral surface of the yoke (21) toward the axis (10). It has teeth (22).
  • the coil (3) is wound around the stator core (2).
  • the mold part (4) has a groove (41) whose internal space becomes a waterway (11).
  • the cover part (5) closes the opening (410) of the groove (41).
  • the water channel (11) is formed in the mold part (4).
  • the water channel (11) can be provided close to the coil (3) which is a heat source. Therefore, it becomes easier to improve the cooling efficiency of the coil (3).
  • the resin of the mold part (4) is also filled between the conductive wires (30) of the coil (3) and between the conductive wires (30) and the water channels (11). Therefore, heat insulation due to voids can be suppressed. Therefore, also in this respect, it becomes easier to increase the cooling efficiency of the coil (3).
  • a water channel (11) can be provided adjacent to the coil (3). Therefore, it becomes easier to downsize the stator (1).
  • the stator (1) further includes an insulator (6) interposed between the stator core (2) and the coil (3).
  • the insulator (6) is molded together with the stator core (2) and the coil (3) by the mold part (4).
  • the insulator (6) can ensure an appropriate insulation distance between the stator core (2) and the coil (3).
  • the stator (1) further includes a bus bar (7) connected to a conducting wire (30) constituting the coil (3).
  • the bus bar (7) is molded together with the stator core (2) and the coil (3) by the mold part (4).
  • the bus bar (7) makes it easier to flow a large current.
  • the fourth aspect can be realized in combination with the third aspect.
  • the conducting wire (30) is wound around the teeth (22).
  • the bus bar (7) is arranged on the side opposite to the axis (10) of the coil (3).
  • the fourth aspect it is easy to suppress the increase in size in the direction (100) in which the axis (10) of the stator (1) extends.
  • the fifth aspect can be realized in combination with the third or fourth aspect.
  • the conductive wire (30) constituting the coil (3) has a rectangular cross-sectional shape.
  • the thickness margin of the mold part (4) can be reduced. Thereby, the distance between the bottom of the water channel (11) and the coil end of the conducting wire (30) can be shortened, making it easier to further improve the cooling performance of the coil (3).
  • the sixth aspect can be realized in combination with the fifth aspect.
  • the coil (3) is a shaped coil.
  • the conducting wire (30) when the conducting wire (30) is wound around the teeth (22), the conducting wire (30) has a circular cross section. Therefore, it is easy to wind the conducting wire (30) around the teeth (22).
  • the seventh aspect can be realized in combination with any one of the first to sixth aspects.
  • the water channel (11) of the seventh aspect is adjacent to the coil (3) through a part of the molded part (4) in the direction (100) in which the axis (10) extends.
  • the seventh aspect it is easy to form the waterway (11) using the dead space. Therefore, even if the water channel (11) is formed, it is difficult to increase the size.
  • the eighth aspect can be realized in combination with the seventh aspect.
  • the water channel (11) is adjacent to the coil (3) through a part of the molded part (4) on the side opposite to the axis (10).
  • the water channel (11) can be formed even closer to the coil (3). Therefore, it is easy to increase the cooling efficiency of the coil (3).
  • the ninth aspect can be realized in combination with any one of the first to eighth aspects.
  • the first coil end (31) located closest to the axis (10) and in the direction in which the axis (10) extends is the first coil end (31) closest to the axis (10).
  • the second coil end (32) protrudes in the direction in which the shaft center (10) extends from the second coil end (32) in the direction in which the shaft center (10) extends.
  • the first coil end (31) is easily cooled by the water flowing through the water channel (11). Therefore, it is easy to increase the cooling efficiency of the coil (3).
  • the tenth aspect can be realized in combination with the ninth aspect.
  • the first coil end (31) protrudes further than all of the second coil ends (32) in the direction in which the axis (10) extends.
  • the first coil end (31) is easily cooled by the water flowing through the water channel (11). Therefore, it is easy to further improve the cooling efficiency of the coil (3).
  • a motor (8) includes the stator (1) according to any one of the first to tenth aspects, and a rotor (9) facing the stator (1).
  • the water channel (11) is formed in the mold part (4).
  • the water channel (11) can be provided close to the coil (3) which is a heat source. This makes it easier to increase the cooling efficiency of the coil (3).
  • the resin of the mold part (4) is also filled between the conductive wires (30) of the coil (3) and between the conductive wires (30) and the water channels (11). Therefore, heat insulation due to voids is suppressed. Therefore, also in this respect, it becomes easier to increase the cooling efficiency of the coil (3).
  • a water channel (11) can be provided adjacent to the coil (3). Therefore, it becomes easier to downsize the motor (8).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

A stator according to the present invention comprises a stator core, a coil, a mold part in which the stator core and the coil are molded, and a cover part that is attached to the mold part. The stator core includes: an annular yoke that surrounds the axial center of a rotary shaft of a rotor; and teeth that protrude toward the axial center from the inner circumferential surface of the yoke. The coil is wound around the stator core. The mold part has a groove, the internal space of which serves as a water channel. The cover part closes the opening of the groove.

Description

ステータ及びモータstator and motor
 本開示は、ステータ及びモータに関する。より詳細には、本開示は、ステータコアと、コイルと、ステータコアとコイルとをモールドするモールド部と、を備えるステータ、及びこのステータを備えるモータに関する。 The present disclosure relates to a stator and a motor. More specifically, the present disclosure relates to a stator that includes a stator core, a coil, and a mold section that molds the stator core and the coil, and a motor that includes this stator.
 特許文献1には、従来の回転電機が記載されている。この回転電機は、回転自在に支持された実質的に円筒形の回転子と、固定子と、固定子を支持するブラケットと、を備える。ブラケットは、冷却水路を有するとともに、絶縁体を介し、固定子コイルと密着する部分を有する。 Patent Document 1 describes a conventional rotating electric machine. This rotating electric machine includes a rotatably supported substantially cylindrical rotor, a stator, and a bracket that supports the stator. The bracket has a cooling channel and a portion that comes into close contact with the stator coil through an insulator.
 しかしながら、特許文献1に記載された回転電機にあっては、冷却水路がブラケットに設けられている。このため、ブラケットが大型化するためモータが大型化してしまう。また、発熱源となるコイルから冷却水路までの距離が長くなる。よって、冷却効率が低い。 However, in the rotating electric machine described in Patent Document 1, the cooling water channel is provided in the bracket. As a result, the bracket becomes larger and the motor becomes larger. Moreover, the distance from the coil, which is a heat source, to the cooling water channel becomes long. Therefore, cooling efficiency is low.
国際公開第2011/92928号International Publication No. 2011/92928
 本開示は、小型化を図りやすく、かつ、冷却効率を高めやすいステータ及びモータを提供することを目的とする。 An object of the present disclosure is to provide a stator and a motor that are easy to downsize and easily increase cooling efficiency.
 本開示の一態様に係るステータは、ロータの回転軸の軸心を囲う環状のヨークと、前記ヨークの内周面から前記軸心に向かって突出するティースと、を有するステータコアと、前記ステータコアに巻き回されるコイルと、前記ステータコアと前記コイルとをモールドするモールド部と、前記モールド部に取り付けられるカバー部と、を備える。前記モールド部は、内部空間が水路となる溝を有する。前記カバー部は、前記溝の開口を閉塞している。 A stator according to one aspect of the present disclosure includes a stator core having an annular yoke surrounding the axis of a rotating shaft of a rotor, and teeth protruding from an inner circumferential surface of the yoke toward the axis; It includes a coil to be wound, a mold part for molding the stator core and the coil, and a cover part attached to the mold part. The mold part has a groove whose internal space serves as a waterway. The cover portion closes the opening of the groove.
 前記ステータは、前記ステータコアと前記コイルとの間に介在するインシュレータを更に備え、前記インシュレータは、前記モールド部により、前記ステータコアと前記コイルとともにモールドされていることが好ましい。 Preferably, the stator further includes an insulator interposed between the stator core and the coil, and the insulator is molded together with the stator core and the coil by the mold section.
 前記ステータは、前記コイルを構成する導線と接続されるバスバーを更に備え、前記バスバーは、前記モールド部により、前記ステータコアと前記コイルとともにモールドされていることが好ましい。 Preferably, the stator further includes a bus bar connected to a conducting wire constituting the coil, and the bus bar is molded together with the stator core and the coil by the mold section.
 前記導線は、前記ティースに巻き回され、前記バスバーは、前記コイルの前記軸心側と反対側に配置されていることが好ましい。 Preferably, the conducting wire is wound around the teeth, and the bus bar is arranged on a side opposite to the axis of the coil.
 前記コイルを構成する導線の断面形状が四角形状であってもよい。 The cross-sectional shape of the conducting wire constituting the coil may be square.
 前記コイルは成形コイルであってもよい。 The coil may be a molded coil.
 前記水路は、前記軸心が延伸する方向において、前記モールド部の一部を介して前記コイルに隣接していることが好ましい。 It is preferable that the water channel is adjacent to the coil through a part of the mold part in the direction in which the axis extends.
 前記コイルのうち、最も前記軸心側に位置し、前記軸心が延伸する方向における第1のコイルエンドが、最も前記軸心側とは異なる位置であって、前記軸心が延伸する方向における第2のコイルエンドよりも前記軸心が延伸する方向に突出していることが好ましい。 Among the coils, a first coil end located closest to the axis and in the direction in which the axis extends is located at a position furthest from the axis side and in the direction in which the axis extends. It is preferable that the axis protrudes further in the extending direction than the second coil end.
 前記第1のコイルエンドが、前記第2のコイルエンドの全てよりも前記軸心が延伸する方向に突出していることが好ましい。 It is preferable that the first coil end protrudes further than all of the second coil ends in the direction in which the axis extends.
 本開示の他の一態様に係るモータは、前記ステータと、前記ステータと向き合うロータと、を備える。 A motor according to another aspect of the present disclosure includes the stator and a rotor facing the stator.
 本開示のステータ及びモータにあっては、小型化を図りやすく、かつ、冷却効率を高めやすい。 With the stator and motor of the present disclosure, it is easy to achieve miniaturization, and it is easy to increase cooling efficiency.
図1は、第一実施形態に係るステータの斜視図である。FIG. 1 is a perspective view of a stator according to the first embodiment. 図2は、同上のステータからカバー部を外した状態の斜視図である。FIG. 2 is a perspective view of the stator with the cover removed. 図3は、同上のステータにおけるステータコアの斜視図である。FIG. 3 is a perspective view of a stator core in the stator same as above. 図4は、同上のステータを有するモータ(ステータからカバー部を外した状態)の平面図である。FIG. 4 is a plan view of a motor having a stator similar to the above (with the cover removed from the stator). 図5は、同上のステータコア及びコイルの断面図である。FIG. 5 is a sectional view of the stator core and coils same as above. 図6は、同上のステータの要部断面図である。FIG. 6 is a sectional view of a main part of the stator same as above. 図7は、同上のステータの製造方法のフロー図である。FIG. 7 is a flowchart of a method for manufacturing the stator described above. 図8は、第二実施形態に係るステータの要部断面図である。FIG. 8 is a sectional view of a main part of a stator according to the second embodiment. 図9は、同上のステータの要部の切断面を含む斜視図である。FIG. 9 is a perspective view including a cross section of a main part of the stator as described above. 図10は、第三実施形態に係るステータの要部断面図である。FIG. 10 is a sectional view of a main part of a stator according to a third embodiment. 図11は、同上のステータの要部の切断面を含む斜視図である。FIG. 11 is a perspective view including a cut surface of a main part of the stator as described above.
 (1)概要
 本開示に係るステータ及びモータについて説明する。以下に説明する実施形態は、本開示の様々な実施形態の一部に過ぎない。以下の実施形態において、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。
(1) Overview The stator and motor according to the present disclosure will be explained. The embodiments described below are only some of the various embodiments of the present disclosure. In the following embodiments, various changes can be made depending on the design etc. as long as the objective of the present disclosure can be achieved.
 図1は、第一実施形態に係るステータ1の斜視図である。図2は、同上のステータ1からカバー部5を外した状態の斜視図である。図3は、同上のステータ1におけるステータコア2の斜視図である。図4は、同上のステータ1を有するモータ8(ステータ1からカバー部5を外した状態)の平面図である。図5は、同上のステータコア2及びコイル3の断面図である。 FIG. 1 is a perspective view of a stator 1 according to the first embodiment. FIG. 2 is a perspective view of the stator 1 with the cover part 5 removed. FIG. 3 is a perspective view of the stator core 2 in the stator 1 same as above. FIG. 4 is a plan view of the motor 8 having the stator 1 as described above (with the cover portion 5 removed from the stator 1). FIG. 5 is a sectional view of the stator core 2 and coil 3 same as above.
 図1~図3に示すように、本開示に係るステータ1は、ステータコア2と、コイル3と、ステータコア2とコイル3とをモールドするモールド部4と、モールド部4に取り付けられるカバー部5と、を備える。モールド部4は、内部空間が水路11となる溝41を有する。カバー部5は、溝の開口410を閉塞している。 As shown in FIGS. 1 to 3, the stator 1 according to the present disclosure includes a stator core 2, a coil 3, a mold part 4 for molding the stator core 2 and the coil 3, and a cover part 5 attached to the mold part 4. , is provided. The mold part 4 has a groove 41 whose internal space becomes the water channel 11. The cover portion 5 closes the groove opening 410.
 図4に示すように、本開示に係るモータ8は、ステータ1と、ロータ9と、を備える。 As shown in FIG. 4, a motor 8 according to the present disclosure includes a stator 1 and a rotor 9.
 上記のステータ1及びモータ8にあっては、小型化を図りやすい。かつ、上記のステータ1及びモータ8にあっては、冷却効率を高めやすい。 The stator 1 and motor 8 described above can be easily miniaturized. Moreover, in the stator 1 and motor 8 described above, the cooling efficiency can be easily increased.
 (2)第一実施形態
 ステータ1は、ステータコア2と、コイル3と、モールド部4と、カバー部5と、インシュレータ6(後述する図6を参照)と、バスバー7と、を備える。
(2) First Embodiment The stator 1 includes a stator core 2, a coil 3, a mold section 4, a cover section 5, an insulator 6 (see FIG. 6 described later), and a bus bar 7.
 (2.1)ステータコア
 図3に示すように、ステータコア2は、ヨーク21と、ティース22と、を有する。図4に示すように、ヨーク21は、ステータ1に対して回転するロータ9の回転軸90の軸心10を囲む環状をしている。本実施形態では、ヨーク21は、軸心10が延伸する方向100(以下、延伸方向100という)に見て、円環状をしている。ヨーク21の中心は、ロータ9の回転軸90の軸心10に一致する。ヨーク21は、延伸方向100に積層される複数の鋼板を有する。鋼板は、例えばケイ素鋼板等の磁性材料により形成される。ここで、図5に示すように、ヨーク21の軸心10側(以下、内側という)の端部には、ティース22が嵌め込まれる嵌合部211が形成されている。18個のティース22が、ヨーク21の内側端部の周方向に均等に間隔をあけて形成されている18個の嵌合部211に、それぞれ嵌め込まれている。具体的には、それぞれのティース22のヨーク21側端部に形成された嵌合部221は、ヨーク21の内側に形成された嵌合部211に嵌め込まれている。
(2.1) Stator Core As shown in FIG. 3, the stator core 2 includes a yoke 21 and teeth 22. As shown in FIG. 4, the yoke 21 has an annular shape surrounding the axis 10 of the rotation shaft 90 of the rotor 9 that rotates with respect to the stator 1. In this embodiment, the yoke 21 has an annular shape when viewed in the direction 100 in which the axis 10 extends (hereinafter referred to as the extending direction 100). The center of the yoke 21 coincides with the axis 10 of the rotating shaft 90 of the rotor 9. The yoke 21 has a plurality of steel plates stacked in the stretching direction 100. The steel plate is made of a magnetic material such as a silicon steel plate. Here, as shown in FIG. 5, a fitting part 211 into which the teeth 22 are fitted is formed at the end of the yoke 21 on the axis 10 side (hereinafter referred to as inside). The 18 teeth 22 are fitted into 18 fitting portions 211 formed at equal intervals in the circumferential direction of the inner end of the yoke 21, respectively. Specifically, a fitting part 221 formed at the end of each tooth 22 on the yoke 21 side is fitted into a fitting part 211 formed inside the yoke 21.
 図3、図5に示すように、ティース22は、ヨーク21の内周面から軸心10の方に向けて突出している。本実施形態では、ティース22は、ステータコア2に18個設けられる。ティース22は、ヨーク21とは別体として成形される。ヨーク21に嵌め込まれて、ヨーク21とティース22とが一体化される。各ティース22には、ヨーク21の嵌合部211に対応する嵌合部221が形成される。ヨーク21の各嵌合部211に1個のティース22の嵌合部221が嵌め込まれて、18個のティース22がヨーク21に一体的に取り付けられる。 As shown in FIGS. 3 and 5, the teeth 22 protrude from the inner peripheral surface of the yoke 21 toward the axis 10. In this embodiment, 18 teeth 22 are provided in the stator core 2. Teeth 22 are molded separately from yoke 21. The teeth 22 are fitted into the yoke 21, and the yoke 21 and the teeth 22 are integrated. A fitting portion 221 corresponding to the fitting portion 211 of the yoke 21 is formed on each tooth 22 . The fitting portion 221 of one tooth 22 is fitted into each fitting portion 211 of the yoke 21, so that the 18 teeth 22 are integrally attached to the yoke 21.
 (2.2)コイル
 各ティース22には、コイル3を構成する導線30が巻き回されている。これにより、コイル3が形成される。コイル3は、ステータコア2に18個設けられる。導線30の断面形状は、四角形状をしている。コイル3は成形コイルである。本開示における成形コイルとは、幅及び厚さが一定の導線が螺旋状に巻き回されただけのコイルを含まない。
(2.2) Coil A conducting wire 30 constituting the coil 3 is wound around each tooth 22. Thereby, the coil 3 is formed. Eighteen coils 3 are provided in the stator core 2. The cross-sectional shape of the conducting wire 30 is rectangular. Coil 3 is a shaped coil. The shaped coil in the present disclosure does not include a coil in which a conducting wire having a constant width and thickness is simply wound in a spiral shape.
 成形コイルは、例えば、長さ、幅あるいは厚みが異なる複数の長方形の板材を準備し、これらの板材の冷間圧接、溶接あるいはその他の方法で接合することで形成される。板材の材質は、銅、アルミニウム等のいわゆる低抵抗材料である。 A shaped coil is formed, for example, by preparing a plurality of rectangular plates having different lengths, widths, or thicknesses, and joining these plates by cold welding, welding, or other methods. The material of the plate material is a so-called low resistance material such as copper or aluminum.
 成形コイルは、銅等を溶融して鋳型に流し込む、いわゆる鋳造により形成されてもよい。幅や厚さを予め途中で異なるように形成した板状の導線を所定の位置で曲げ加工することで、成形コイルが形成されてもよい。幅及び厚さが一定の板状の導線を所定の部位で圧延加工して、途中で幅又は厚さを変更した後に螺旋状に巻き回して、成形コイルが形成されてもよい。要するに、導線を巻き回す以外に更に別の加工を加えるか、あるいは、単に巻き回すのとは異なる工法で、成形コイルは形成される。 The shaped coil may be formed by so-called casting, in which copper or the like is melted and poured into a mold. A shaped coil may be formed by bending at a predetermined position a plate-shaped conducting wire that has been formed in advance to have different widths and thicknesses along the way. A shaped coil may be formed by rolling a plate-shaped conducting wire having a constant width and thickness at a predetermined portion, changing the width or thickness midway through the rolling process, and then winding the wire into a spiral shape. In short, the shaped coil is formed by adding another process to the conductor wire in addition to winding it, or by using a method different from simply winding the conductor wire.
 (2.3)インシュレータ
 図6は、第一実施形態に係るステータ1の要部断面図である。図6に示すように、インシュレータ6は、ステータコア2とコイル3との間に介在する。インシュレータ6は、絶縁体により形成される。インシュレータ6は、延伸方向100に二分割されている。インシュレータ6は、ティース22の延伸方向100の両方の端面を二分割された部分で、それぞれ覆うように配置される。インシュレータ6により、ステータコア2とコイル3との間に適切な絶縁距離が確保される。
(2.3) Insulator FIG. 6 is a sectional view of main parts of the stator 1 according to the first embodiment. As shown in FIG. 6, the insulator 6 is interposed between the stator core 2 and the coil 3. Insulator 6 is formed of an insulator. The insulator 6 is divided into two parts in the stretching direction 100. The insulator 6 is arranged so as to cover both end faces of the teeth 22 in the extending direction 100 in two divided parts. The insulator 6 ensures an appropriate insulation distance between the stator core 2 and the coil 3.
 (2.4)バスバー
 図3に示すように、バスバー7は、導線30と接続される。バスバー7により、大きな電流が流れやすくなる。バスバー7は、U相、V相、W相となる結線を形成するために、それぞれ対象となるコイル3の導線30と電気的に接続される。バスバー7は、コイル3の軸心10側と反対側(すなわち外側)に配置されている。バスバー7は、内外方向において、モールド部4の一部を介してコイル3の外側に隣接している。これにより、ステータ1の延伸方向100方向のサイズの大型化を抑制しやすい。
(2.4) Bus Bar As shown in FIG. 3, the bus bar 7 is connected to the conducting wire 30. The bus bar 7 facilitates the flow of a large current. The bus bar 7 is electrically connected to the conducting wires 30 of the respective coils 3 to form connections for the U-phase, V-phase, and W-phase. The bus bar 7 is arranged on the side opposite to the axis 10 of the coil 3 (ie, on the outside). The bus bar 7 is adjacent to the outside of the coil 3 through a part of the molded part 4 in the inside-outside direction. Thereby, it is easy to suppress an increase in the size of the stator 1 in the stretching direction 100.
 バスバー7は、延伸方向100において、モールド部4の一部を介してヨーク21に隣接して配置される。 The bus bar 7 is arranged adjacent to the yoke 21 through a part of the molded part 4 in the stretching direction 100.
 ステータコア2、コイル3、インシュレータ6及びバスバー7により、ステータ本体20が構成される。 A stator body 20 is constituted by the stator core 2, coil 3, insulator 6, and bus bar 7.
 (2.5)モールド部
 図6に示すように、モールド部4は、ステータコア2と、コイル3と、インシュレータ6と、バスバー7と、をモールドする。モールド部4は、樹脂により形成される。モールド部4は、延伸方向100におけるステータコア2の両方の端面に隣接する部分と、隣接するティース22の間の部分に形成される。モールド部4は、隣接するティース22の間に形成された部分により、延伸方向100におけるステータコア2の両方の端面に隣接する部分同士が連結される。これにより、分断されない一体のモールド部4が形成される。
(2.5) Mold Section As shown in FIG. 6, the mold section 4 molds the stator core 2, the coil 3, the insulator 6, and the bus bar 7. The mold part 4 is made of resin. The molded portion 4 is formed in a portion adjacent to both end faces of the stator core 2 in the stretching direction 100 and a portion between adjacent teeth 22 . In the molded portion 4, portions adjacent to both end surfaces of the stator core 2 in the stretching direction 100 are connected by the portion formed between the adjacent teeth 22. As a result, an integral mold part 4 that is not divided is formed.
 図2、図4に示すように、モールド部4は、内部空間が水路11となる溝41を有する。図6に示すように、溝41(水路11)は、モールド部4のうち、延伸方向100の一方側(図6においては上側)において、コイル3から見てステータコア2と反対側となる位置に形成される。溝41は、延伸方向100の一方側(図6においては上側)に開放する開口410を有する。 As shown in FIGS. 2 and 4, the mold part 4 has a groove 41 whose internal space becomes a water channel 11. As shown in FIG. 6, the groove 41 (water channel 11) is located at a position opposite to the stator core 2 when viewed from the coil 3 on one side (upper side in FIG. 6) of the molded part 4 in the stretching direction 100. It is formed. The groove 41 has an opening 410 that opens on one side (upper side in FIG. 6) in the stretching direction 100.
 図2、図4に示すように、溝41(水路11)は、軸心10回りに環状に延びている。延伸方向100に見て、溝41(水路11)は、ステータコア2と実質的に同じ形状に形成される。溝41(水路11)の内部には、仕切12が形成される。仕切12は、溝41を周方向に仕切る。モールド部4の仕切12の周方向における両側には、それぞれ外部と通じる第1のポート13と第2のポート14とがそれぞれ形成される。第1のポート13と第2のポート14は、モールド部4の溝41の部分における外側の壁を貫通する孔により構成される。第1のポート13と第2のポート14は、いずれか一方が溝41(水路11)への水の流入口となり、いずれか他方が溝41(水路11)からの水の流出口となる。 As shown in FIGS. 2 and 4, the groove 41 (water channel 11) extends annularly around the axis 10. When viewed in the stretching direction 100, the grooves 41 (water channels 11) are formed in substantially the same shape as the stator core 2. A partition 12 is formed inside the groove 41 (water channel 11). The partition 12 partitions the groove 41 in the circumferential direction. A first port 13 and a second port 14 communicating with the outside are formed on both sides of the partition 12 of the mold part 4 in the circumferential direction, respectively. The first port 13 and the second port 14 are formed by holes penetrating the outer wall of the mold part 4 in the groove 41 portion. One of the first port 13 and the second port 14 serves as an inlet for water into the groove 41 (channel 11), and the other serves as an outlet for water from the groove 41 (channel 11).
 (2.6)カバー部
 図1、図6に示すように、カバー部5は、モールド部4に取り付けられている。カバー部5は、溝41の開口410を閉塞している。カバー部5は、樹脂により形成される。カバー部5は、レーザ溶着等の溶着により、モールド部4に一体に取り付けられる。これにより、モールド部4及びカバー部5よりなる一体の樹脂部の内部に、水路11が形成される。
(2.6) Cover Part As shown in FIGS. 1 and 6, the cover part 5 is attached to the mold part 4. The cover portion 5 closes the opening 410 of the groove 41. The cover portion 5 is made of resin. The cover part 5 is integrally attached to the mold part 4 by welding such as laser welding. As a result, a water channel 11 is formed inside the integral resin part made up of the mold part 4 and the cover part 5.
 (2.7)水路
 図6に示すように、水路11は、延伸方向100において、モールド部4の一部を介してコイル3に隣接している。便宜上、延伸方向100において、ステータコア2からみて水路11が形成される方を上方(図6における上方)とし、その反対を下方とする。水路11の底面(下側の内面)は、内側の部分において、内側へ行くほど下方に位置するように傾斜している。インシュレータ6を介してティース22に巻き回される導線30の延伸方向100における上端のコイルエンドも、水路11の底面と同様の角度の傾斜により、内側へ行くほど下方に位置するように傾斜している。水路11の底面と導線30のコイルエンドの間には、モールド部4の一部が内外方向において実質的に同じ厚みで介在している。
(2.7) Water Channel As shown in FIG. 6, the water channel 11 is adjacent to the coil 3 through a part of the mold part 4 in the stretching direction 100. For convenience, in the stretching direction 100, the direction in which the water channel 11 is formed when viewed from the stator core 2 is defined as the upper side (the upper side in FIG. 6), and the opposite direction is defined as the lower side. The bottom surface (lower inner surface) of the water channel 11 is inclined in the inner part so that the further inward it goes, the lower the position is. The coil end at the upper end in the extending direction 100 of the conductor 30 wound around the teeth 22 via the insulator 6 is also inclined at the same angle as the bottom surface of the water channel 11, so that it is located downward as it goes inward. There is. A part of the molded part 4 is interposed between the bottom surface of the water channel 11 and the coil end of the conducting wire 30 with substantially the same thickness in the inner and outer directions.
 ステータ1では、導線30の断面形状が四角形状をしている。このため、断面円形状の導線30を使用する場合と比較して、インシュレータ6を介してティース22に巻き回されたときの外径のばらつきが生じにくい。したがって、モールド部4の厚みの余裕を小さくすることができる。 In the stator 1, the cross-sectional shape of the conducting wire 30 is square. Therefore, compared to the case where the conductor wire 30 having a circular cross section is used, variations in the outer diameter are less likely to occur when the conductor wire 30 is wound around the teeth 22 via the insulator 6. Therefore, the margin for the thickness of the mold part 4 can be reduced.
 (2.8)モータ、ロータ
 モータ8は、ステータ1と、ロータ9とを備えている。ロータ9は、回転軸90を有する。ロータ9は、回転軸90の軸心10回りに回転する。モータ8にあっては、ステータ1における複数(図1では18個)のコイル3から発生する磁束により、ロータ9を回転させる電磁気力が発生する。
(2.8) Motor, Rotor The motor 8 includes a stator 1 and a rotor 9. The rotor 9 has a rotating shaft 90. The rotor 9 rotates around the axis 10 of a rotating shaft 90. In the motor 8, magnetic flux generated from a plurality of coils 3 (18 in FIG. 1) in the stator 1 generates an electromagnetic force that rotates the rotor 9.
 ロータ9は、円筒状のロータコア91と、複数の磁石92と、回転軸90と、を有している。回転軸90は、ロータコア91の内側に保持されている。磁石92は多角形状に配置されている。 The rotor 9 has a cylindrical rotor core 91, a plurality of magnets 92, and a rotating shaft 90. Rotating shaft 90 is held inside rotor core 91. The magnets 92 are arranged in a polygonal shape.
 (2.9)ステータの製造方法
 図7は、第一実施形態に係るステータ1の製造方法のフロー図である。図7に示すように、ステータ1の製造方法は、第1の工程(ステップS1)~第4の工程(ステップS4)からなる。
(2.9) Stator manufacturing method FIG. 7 is a flowchart of the stator 1 manufacturing method according to the first embodiment. As shown in FIG. 7, the method for manufacturing the stator 1 includes a first step (step S1) to a fourth step (step S4).
 第1の工程(ステップS1)では、ステータコア2、コイル3及びインシュレータ6が組み立てられる。ステータコア2は、ヨーク21にティース22が嵌め込まれて形成される。ステータコア2にインシュレータ6が組み合わされ、インシュレータ6を介してティース22にコイル3が巻き回される。次に、第2の工程(ステップS2)に移行する。 In the first step (step S1), the stator core 2, coil 3, and insulator 6 are assembled. The stator core 2 is formed by fitting teeth 22 into a yoke 21. An insulator 6 is combined with the stator core 2, and the coil 3 is wound around the teeth 22 via the insulator 6. Next, the process moves to the second step (step S2).
 第2の工程(ステップS2)では、ステータ本体20が組み立てられる。すなわち、第1の工程(ステップS1)において組み立てられたステータコア2、コイル3及びインシュレータ6に、バスバー7が組み合わされる。図3に示すように、バスバー7は延伸方向100に複数個が重ねられる。しかし、互いに接触しないようにする必要がある。複数のバスバー7の間には、スペーサとして機能する治具が介在する。バスバー7同士が接触しないように、バスバー7が配置される。次に、コイル3の導線30と、対応するバスバー7とが溶接により接続される。導線30のバスバー7と溶接される端部は、コイル3の他の部分よりも延伸方向100の一方向(上方)に突出する。この突出した部分に、バスバー7の端部が溶接される。溶接が終了すると、治具が除去され、ステータ本体20の組み立てが完成する。次に、第3の工程(ステップS3)に移行する。 In the second step (step S2), the stator main body 20 is assembled. That is, the bus bar 7 is combined with the stator core 2, coil 3, and insulator 6 assembled in the first step (step S1). As shown in FIG. 3, a plurality of bus bars 7 are stacked in the stretching direction 100. However, it is necessary to avoid contact with each other. A jig that functions as a spacer is interposed between the plurality of bus bars 7. The bus bars 7 are arranged so that the bus bars 7 do not come into contact with each other. Next, the conductive wire 30 of the coil 3 and the corresponding bus bar 7 are connected by welding. The end of the conducting wire 30 to be welded to the bus bar 7 protrudes in one direction (upward) in the stretching direction 100 than the other portions of the coil 3 . The end of the bus bar 7 is welded to this protruding portion. When the welding is completed, the jig is removed and the assembly of the stator main body 20 is completed. Next, the process moves to the third step (step S3).
 第3の工程(ステップS3)では、ステータ本体20に、モールド部4が形成される。モールド部4の形成は、所定の金型にステータ本体20を配置し、金型内に溶融した樹脂を流し込み、冷却して樹脂が固化することにより、行われる。次に、第4の工程(ステップS4)に移行する。 In the third step (step S3), the mold part 4 is formed on the stator main body 20. The mold portion 4 is formed by placing the stator main body 20 in a predetermined mold, pouring molten resin into the mold, and solidifying the resin by cooling. Next, the process moves to the fourth step (step S4).
 第4の工程(ステップS4)では、ステータ本体20に形成されたモールド部4に、カバー部5を取り付ける。カバー部5は、レーザ溶着により、モールド部4の開口410に沿う部分に、一体に取り付けられる。 In the fourth step (step S4), the cover part 5 is attached to the mold part 4 formed on the stator main body 20. The cover portion 5 is integrally attached to a portion of the mold portion 4 along the opening 410 by laser welding.
 第1の工程(ステップS1)~第4の工程(ステップS4)により、ステータ1の完成品が得られる。 A finished product of the stator 1 is obtained through the first step (step S1) to the fourth step (step S4).
 (2.10)効果
 上述したステータ1は、ステータコア2とコイル3とをモールドするモールド部4を備える。モールド部4は溝41を有する。溝41の開口410がカバー部5に閉塞されて、樹脂部に水路11が形成されている。これにより、水路11をステータ本体20に近い部分(ステータコア2の内部)に形成することができる。よって、従来のように、ステータを取り付けるブラケット等に冷却機構を設ける必要がなくなる。したがって、モータ8を取り付ける部材の小型化を図りやすい。また、水路11をステータ本体20に近いモールド部4に形成する。このため、水路11を発熱源となるコイル3に近接して設けることができる。したがって、コイル3の冷却効率を高めやすくなる。また、コイル3の導線30間及び導線30と水路11の間にもモールド部4の樹脂が充填される。このため、空隙による断熱を抑制する。したがって、この点でもコイル3の冷却効率を高めやすくなる。また、コイル3に近接して水路11を設けることができる。したがって、ステータ1(モータ8)自体の小型化も図りやすくなる。
(2.10) Effects The stator 1 described above includes a mold section 4 that molds the stator core 2 and the coil 3. The mold part 4 has a groove 41. The opening 410 of the groove 41 is closed by the cover part 5, and a water channel 11 is formed in the resin part. Thereby, the water channel 11 can be formed in a portion close to the stator main body 20 (inside the stator core 2). Therefore, it is no longer necessary to provide a cooling mechanism in the bracket to which the stator is attached, as in the conventional case. Therefore, it is easy to downsize the member to which the motor 8 is attached. Moreover, the water channel 11 is formed in the mold part 4 near the stator main body 20. Therefore, the water channel 11 can be provided close to the coil 3 which is a heat source. Therefore, it becomes easier to increase the cooling efficiency of the coil 3. Further, the resin of the mold part 4 is also filled between the conductive wires 30 of the coil 3 and between the conductive wires 30 and the water channels 11. Therefore, heat insulation due to voids is suppressed. Therefore, also in this respect, the cooling efficiency of the coil 3 can be easily increased. Further, a water channel 11 can be provided close to the coil 3. Therefore, it becomes easier to downsize the stator 1 (motor 8) itself.
 導線30の断面形状が四角形状をしている。このため、上述したように、モールド部4の厚みの余裕を小さくすることができる。この結果、水路11の底面と導線30のコイルエンドの間の距離が短くなる。したがって、コイル3の冷却性能をより一層高めやすくなる。 The cross-sectional shape of the conducting wire 30 is square. Therefore, as described above, the thickness margin of the mold part 4 can be reduced. As a result, the distance between the bottom surface of the water channel 11 and the coil end of the conducting wire 30 becomes shorter. Therefore, it becomes easier to further improve the cooling performance of the coil 3.
 水路11は、延伸方向100において、モールド部4の一部を介してコイル3に隣接している。このため、デッドスペースを利用して水路11を形成しやすい。また、水路11を形成してもステータ1が大型化しにくい。本実施形態では、導線30のバスバー7と溶接される端部は、コイル3の他の部分よりも延伸方向100の一方向(上方)に突出している。この部分に元々デッドスペースが形成されていたところ、このデッドスペースをうまく利用して水路11を形成する。これにより、ステータ1の大型化及びモータ8の大型化を抑制している。 The water channel 11 is adjacent to the coil 3 through a part of the mold part 4 in the stretching direction 100. Therefore, it is easy to form the water channel 11 using the dead space. Furthermore, even if the water channel 11 is formed, the stator 1 is not easily enlarged. In this embodiment, the end of the conducting wire 30 to be welded to the bus bar 7 protrudes in one direction (upward) in the stretching direction 100 than the other portions of the coil 3. A dead space was originally formed in this part, and the water channel 11 is formed by making good use of this dead space. This suppresses the stator 1 and the motor 8 from increasing in size.
 (3)第二実施形態
 以下、第二実施形態に係るステータ1について、図8及び図9を参照して説明する。図8は、第二実施形態に係るステータ1の要部断面図である。図9は、同上のステータ1の要部の切断面を含む斜視図である。第二実施形態に係るステータ1は、第一実施形態に係るステータ1と大部分において同じである。よって、重複する構成要素には同じ符号を付与し、詳細な説明については援用する。
(3) Second Embodiment A stator 1 according to a second embodiment will be described below with reference to FIGS. 8 and 9. FIG. 8 is a sectional view of a main part of the stator 1 according to the second embodiment. FIG. 9 is a perspective view including a cross section of the main parts of the stator 1 same as above. The stator 1 according to the second embodiment is largely the same as the stator 1 according to the first embodiment. Therefore, the same reference numerals are given to the overlapping components, and detailed explanations are cited.
 図6に示すように、第一実施形態では、インシュレータ6を介してティース22に巻き回される導線30の延伸方向100における上端のコイルエンドは、コイルエンドの先端部が内側へ行くほど下方に位置するように傾斜している。コイル3のうち、最も軸心10側に位置する第1のコイルエンド31において、延伸方向100における突出量は、最も軸心10側とは異なる位置の第2のコイルエンド32の突出量よりも小さい。 As shown in FIG. 6, in the first embodiment, the upper end of the coil end in the extending direction 100 of the conducting wire 30 wound around the teeth 22 via the insulator 6 moves downward as the tip of the coil end goes inward. Slanted to position. Among the coils 3, the amount of protrusion in the stretching direction 100 of the first coil end 31 located closest to the axis 10 is greater than the amount of protrusion of the second coil end 32 located furthest away from the axis 10. small.
 これに対して、図8に示すように、第二実施形態では、第1のコイルエンド31の延伸方向100における突出量は、第2のコイルエンド32の延伸方向100における突出量よりも大きい。特に、第1のコイルエンド31の延伸方向100における突出量は、第2のコイルエンド32の全ての延伸方向100における突出量よりも大きい。 On the other hand, as shown in FIG. 8, in the second embodiment, the amount of protrusion of the first coil end 31 in the stretching direction 100 is larger than the amount of protrusion of the second coil end 32 in the stretching direction 100. In particular, the amount of protrusion of the first coil end 31 in the stretching direction 100 is larger than the amount of protrusion of all the second coil ends 32 in the stretching direction 100.
 コイル3の導線30における発熱量は、内側の導線30ほど大きい。このため、第1のコイルエンド31を第2のコイルエンド32よりも突出させることで、水路11を流れる水により第1のコイルエンド31を冷却しやすい。よって、コイル3の冷却効率を高めやすい。 The amount of heat generated in the conducting wire 30 of the coil 3 is larger as the conducting wire 30 is located on the inner side. Therefore, by making the first coil end 31 protrude more than the second coil end 32, the first coil end 31 can be easily cooled by the water flowing through the water channel 11. Therefore, the cooling efficiency of the coil 3 can be easily increased.
 (4)第三実施形態
 以下、第三実施形態に係るステータ1について、図10及び図11を参照して説明する。図10は、第三実施形態に係るステータ1の要部断面図である。図11は、同上のステータ1の要部の切断面を含む斜視図である。第三実施形態に係るステータ1は、第一実施形態に係るステータ1と大部分において同じである。よって、重複する構成要素には同じ符号を付与し、詳細な説明については援用する。
(4) Third Embodiment Hereinafter, a stator 1 according to a third embodiment will be described with reference to FIGS. 10 and 11. FIG. 10 is a sectional view of a main part of the stator 1 according to the third embodiment. FIG. 11 is a perspective view including a cross section of the main parts of the stator 1 same as above. The stator 1 according to the third embodiment is mostly the same as the stator 1 according to the first embodiment. Therefore, the same reference numerals are given to the overlapping components, and detailed explanations are cited.
 第三実施形態では、水路11は、延伸方向100において、モールド部4の一部を介してコイル3に隣接している。水路11は、外側において、モールド部4の一部を介してコイル3に隣接している。 In the third embodiment, the water channel 11 is adjacent to the coil 3 through a part of the mold part 4 in the stretching direction 100. The water channel 11 is adjacent to the coil 3 through a part of the molded part 4 on the outside.
 水路11は、第一実施形態の水路11と同様の第1部分110と、水路11の底面に形成された更なる溝からなる第2部分111と、を有している。これにより、より一層、コイル3に近接させて水路11を形成できる。よって、コイル3の冷却効率を高めることができる。 The waterway 11 has a first portion 110 similar to the waterway 11 of the first embodiment, and a second portion 111 consisting of an additional groove formed on the bottom surface of the waterway 11. Thereby, the water channel 11 can be formed even closer to the coil 3. Therefore, the cooling efficiency of the coil 3 can be improved.
 (5)変形例
 第一実施形態~第三実施形態の変形例を列挙する。以下の変形例は、適宜組み合わせて実現されてもよい。
(5) Modifications Modifications of the first to third embodiments will be listed. The following modified examples may be realized in combination as appropriate.
 延伸方向100に見たヨーク21の形状は、円環状でなくてもよく、円環状に限定されない。 The shape of the yoke 21 seen in the stretching direction 100 does not have to be annular and is not limited to an annular shape.
 ステータコア2に形成されるティース22及びコイル3の個数は、第一実施形態に限定されない。 The number of teeth 22 and coils 3 formed in the stator core 2 is not limited to the first embodiment.
 導線30の断面形状は、四角形状ではなく、円形状であってもよい。導線30の断面形状は、特に限定されない。 The cross-sectional shape of the conducting wire 30 may be circular instead of square. The cross-sectional shape of the conducting wire 30 is not particularly limited.
 インシュレータ6は、本開示においては任意の構成である。インシュレータ6は、ステータ1に設けられなくてもよい。 The insulator 6 has an arbitrary configuration in the present disclosure. The insulator 6 may not be provided on the stator 1.
 バスバー7は、内外方向において、モールド部4の一部を介してコイル3の外側に隣接するように配置されなくてもよい。バスバー7は、延伸方向100において、モールド部4の一部を介してヨーク21に隣接するように配置されなくてもよい。バスバー7は、本開示においては任意の構成である。バスバー7は、ステータ1に設けられなくてもよい。バスバー7が設けられない場合、ステータ1には、コイル3の導線30にはバスバー7の代わりとして導線が接続されてもよい。 The bus bar 7 does not need to be arranged adjacent to the outside of the coil 3 through a part of the molded part 4 in the inside-outside direction. The bus bar 7 does not have to be arranged adjacent to the yoke 21 through a part of the molded part 4 in the stretching direction 100. The bus bar 7 has an arbitrary configuration in the present disclosure. The bus bar 7 does not need to be provided on the stator 1. If the bus bar 7 is not provided, a conductor may be connected to the stator 1 and the conductor 30 of the coil 3 instead of the bus bar 7.
 ステータ本体20は、ステータコア2、コイル3、インシュレータ6及びバスバー7を有しなくてもよい。ステータ本体20は、少なくともステータコア2及びコイル3を有すればよい。すなわち、インシュレータ6及びバスバー7は任意の構成である。これらはステータ本体20に含まれなくてもよい。 The stator main body 20 does not have to include the stator core 2, the coil 3, the insulator 6, and the bus bar 7. The stator main body 20 only needs to include at least the stator core 2 and the coils 3. That is, the insulator 6 and the bus bar 7 have arbitrary configurations. These do not need to be included in the stator main body 20.
 モールド部4は、少なくともステータコア2とコイル3とをモールドすればよい。モールド部4は、インシュレータ6とバスバー7のいずれか又は両方をモールドしなくてもよい。 The mold part 4 only needs to mold at least the stator core 2 and the coil 3. The mold part 4 does not need to mold either or both of the insulator 6 and the bus bar 7.
 モールド部4は、延伸方向100におけるステータコア2の両方の端面に隣接する部分と、隣接するティース22の間の部分に形成されるものでなくてもよい。例えば、モールド部4は、ステータコア2の全体を覆うように形成されてもよい。 The mold part 4 does not need to be formed in the part adjacent to both end faces of the stator core 2 in the stretching direction 100 and the part between the adjacent teeth 22. For example, the mold part 4 may be formed to cover the entire stator core 2.
 カバー部5は、溶着以外の方法により、モールド部4に取り付けられてもよい。上記説明において、カバー部5は、樹脂で形成されたものを例示して説明した。カバー部5は、他の材料、例えば、熱伝導性が高い金属材料などを用いることができる。この場合、金属材料で形成されたカバー部5と、ステータコア2あるいはコイル3との間には樹脂で構成された溝41及びモールド部4が存在する。よって、カバー部5と、ステータコア2あるいはコイル3とが直接接することがないため、カバー部5には絶縁性が求められない。したがって、一般的に、樹脂材料よりも高い伝熱性を有する金属材料でカバー部5を形成した場合、高い放熱性能が期待できる。 The cover part 5 may be attached to the mold part 4 by a method other than welding. In the above description, the cover part 5 was explained as being made of resin. The cover portion 5 may be made of other materials, such as a metal material with high thermal conductivity. In this case, a groove 41 and a molded part 4 made of resin are present between the cover part 5 made of a metal material and the stator core 2 or coil 3. Therefore, since the cover part 5 does not come into direct contact with the stator core 2 or the coil 3, the cover part 5 is not required to have insulation properties. Therefore, in general, when the cover portion 5 is formed of a metal material having higher heat conductivity than a resin material, high heat dissipation performance can be expected.
 水路11を流れるのは、水に限定されず、液体であればよい。 What flows through the water channel 11 is not limited to water, but any liquid may be used.
 (6)まとめ
 以上、述べた実施形態およびその変形例から明らかなように、第1の態様のステータ(1)は、ステータコア(2)と、コイル(3)と、ステータコア(2)とコイル(3)とをモールドするモールド部(4)と、モールド部(4)に取り付けられるカバー部(5)と、を備える。ステータコア(2)は、ロータ(9)の回転軸(90)の軸心(10)を囲う環状のヨーク(21)と、ヨーク(21)の内周面から軸心(10)に向かって突出するティース(22)と、を有する。コイル(3)は、ステータコア(2)に巻き回される。モールド部(4)は、内部空間が水路(11)となる溝(41)を有する。カバー部(5)は、溝(41)の開口(410)を閉塞している。
(6) Summary As is clear from the embodiments and modifications thereof described above, the stator (1) of the first aspect includes a stator core (2), a coil (3), a stator core (2) and a coil ( 3), and a cover part (5) attached to the mold part (4). The stator core (2) includes an annular yoke (21) that surrounds the axis (10) of the rotating shaft (90) of the rotor (9), and a ring-shaped yoke (21) that protrudes from the inner peripheral surface of the yoke (21) toward the axis (10). It has teeth (22). The coil (3) is wound around the stator core (2). The mold part (4) has a groove (41) whose internal space becomes a waterway (11). The cover part (5) closes the opening (410) of the groove (41).
 第1の態様によれば、水路(11)をモールド部(4)に形成する。このため、水路(11)を発熱源となるコイル(3)に近接して設けることができる。よって、コイル(3)の冷却効率を高めやすくなる。また、コイル(3)の導線(30)間及び導線(30)と水路(11)の間にもモールド部(4)の樹脂が充填される。このため、空隙による断熱を抑制できる。したがって、この点でもコイル(3)の冷却効率を高めやすくなる。コイル(3)に近接して水路(11)を設けることができる。このため、ステータ(1)の小型化を図りやすくなる。 According to the first aspect, the water channel (11) is formed in the mold part (4). For this reason, the water channel (11) can be provided close to the coil (3) which is a heat source. Therefore, it becomes easier to improve the cooling efficiency of the coil (3). Moreover, the resin of the mold part (4) is also filled between the conductive wires (30) of the coil (3) and between the conductive wires (30) and the water channels (11). Therefore, heat insulation due to voids can be suppressed. Therefore, also in this respect, it becomes easier to increase the cooling efficiency of the coil (3). A water channel (11) can be provided adjacent to the coil (3). Therefore, it becomes easier to downsize the stator (1).
 第2の態様は、第1の態様との組み合わせにより実現され得る。第2の態様では、ステータ(1)は、ステータコア(2)とコイル(3)との間に介在するインシュレータ(6)を更に備える。インシュレータ(6)は、モールド部(4)により、ステータコア(2)とコイル(3)とともにモールドされている。 The second aspect can be realized in combination with the first aspect. In a second aspect, the stator (1) further includes an insulator (6) interposed between the stator core (2) and the coil (3). The insulator (6) is molded together with the stator core (2) and the coil (3) by the mold part (4).
 第2の態様によれば、インシュレータ(6)により、ステータコア(2)とコイル(3)との間に適切な絶縁距離を確保することができる。 According to the second aspect, the insulator (6) can ensure an appropriate insulation distance between the stator core (2) and the coil (3).
 第3の態様は、第1又は第2の態様との組み合わせにより実現され得る。第3の態様では、ステータ(1)は、コイル(3)を構成する導線(30)と接続されるバスバー(7)を更に備える。バスバー(7)は、モールド部(4)により、ステータコア(2)とコイル(3)とともにモールドされている。 The third aspect can be realized in combination with the first or second aspect. In a third aspect, the stator (1) further includes a bus bar (7) connected to a conducting wire (30) constituting the coil (3). The bus bar (7) is molded together with the stator core (2) and the coil (3) by the mold part (4).
 第3の態様によれば、バスバー(7)により、大きな電流を流しやすくなる。 According to the third aspect, the bus bar (7) makes it easier to flow a large current.
 第4の態様は、第3の態様との組み合わせにより実現され得る。第4の態様では、導線(30)は、ティース(22)に巻き回される。バスバー(7)は、コイル(3)の軸心(10)側と反対側に配置されている。 The fourth aspect can be realized in combination with the third aspect. In the fourth aspect, the conducting wire (30) is wound around the teeth (22). The bus bar (7) is arranged on the side opposite to the axis (10) of the coil (3).
 第4の態様によれば、ステータ(1)の軸心(10)が延伸する方向(100)のサイズの大型化を抑制しやすい。 According to the fourth aspect, it is easy to suppress the increase in size in the direction (100) in which the axis (10) of the stator (1) extends.
 第5の態様は、第3又は第4の態様との組み合わせにより実現され得る。第5の態様では、コイル(3)を構成する導線(30)の断面形状が四角形状である。 The fifth aspect can be realized in combination with the third or fourth aspect. In the fifth aspect, the conductive wire (30) constituting the coil (3) has a rectangular cross-sectional shape.
 第5の態様によれば、モールド部(4)の厚みの余裕を小さくすることができる。これにより、水路(11)の底面と導線(30)のコイルエンドの間の距離を短くして、コイル(3)の冷却性能をより一層高めやすくなる。 According to the fifth aspect, the thickness margin of the mold part (4) can be reduced. Thereby, the distance between the bottom of the water channel (11) and the coil end of the conducting wire (30) can be shortened, making it easier to further improve the cooling performance of the coil (3).
 第6の態様は、第5の態様との組み合わせにより実現され得る。第6の態様では、コイル(3)は、成形コイルである。 The sixth aspect can be realized in combination with the fifth aspect. In a sixth aspect, the coil (3) is a shaped coil.
 第6の態様によれば、導線(30)をティース(22)に巻き回されるときには、導線(30)は断面円形状をしている。このため、導線(30)をティース(22)に巻き回しやすい。 According to the sixth aspect, when the conducting wire (30) is wound around the teeth (22), the conducting wire (30) has a circular cross section. Therefore, it is easy to wind the conducting wire (30) around the teeth (22).
 第7の態様は、第1~第6のいずれかの態様との組み合わせにより実現され得る。第7の態様の水路(11)は、軸心(10)が延伸する方向(100)において、モールド部(4)の一部を介してコイル(3)に隣接している。 The seventh aspect can be realized in combination with any one of the first to sixth aspects. The water channel (11) of the seventh aspect is adjacent to the coil (3) through a part of the molded part (4) in the direction (100) in which the axis (10) extends.
 第7の態様によれば、デッドスペースを利用して水路(11)を形成しやすい。したがって、水路(11)を形成しても大型化しにくい。 According to the seventh aspect, it is easy to form the waterway (11) using the dead space. Therefore, even if the water channel (11) is formed, it is difficult to increase the size.
 第8の態様は、第7の態様との組み合わせにより実現され得る。第8の態様では、水路(11)は、軸心(10)側と反対側において、モールド部(4)の一部を介してコイル(3)に隣接している。 The eighth aspect can be realized in combination with the seventh aspect. In the eighth aspect, the water channel (11) is adjacent to the coil (3) through a part of the molded part (4) on the side opposite to the axis (10).
 第8の態様によれば、より一層、コイル(3)に近接させて水路(11)を形成できる。よって、コイル(3)の冷却効率を高めやすい。 According to the eighth aspect, the water channel (11) can be formed even closer to the coil (3). Therefore, it is easy to increase the cooling efficiency of the coil (3).
 第9の態様は、第1~第8のいずれかの態様との組み合わせにより実現され得る。第9の態様では、コイル(3)のうち、最も軸心(10)側に位置し、軸心(10)が延伸する方向における第1のコイルエンド(31)が、最も軸心(10)側とは異なる位置であって、軸心(10)が延伸する方向における第2のコイルエンド(32)よりも軸心(10)が延伸する方向に突出している。 The ninth aspect can be realized in combination with any one of the first to eighth aspects. In the ninth aspect, among the coils (3), the first coil end (31) located closest to the axis (10) and in the direction in which the axis (10) extends is the first coil end (31) closest to the axis (10). The second coil end (32) protrudes in the direction in which the shaft center (10) extends from the second coil end (32) in the direction in which the shaft center (10) extends.
 第9の態様によれば、水路(11)を流れる水により、第1のコイルエンド(31)を冷却しやすい。よって、コイル(3)の冷却効率を高めやすい。 According to the ninth aspect, the first coil end (31) is easily cooled by the water flowing through the water channel (11). Therefore, it is easy to increase the cooling efficiency of the coil (3).
 第10の態様は、第9の態様との組み合わせにより実現され得る。第10の態様では、第1のコイルエンド(31)が、第2のコイルエンド(32)の全てよりも軸心(10)が延伸する方向に突出している。 The tenth aspect can be realized in combination with the ninth aspect. In the tenth aspect, the first coil end (31) protrudes further than all of the second coil ends (32) in the direction in which the axis (10) extends.
 第10の態様によれば、水路(11)を流れる水により第1のコイルエンド(31)を冷却しやすい。よって、コイル(3)の冷却効率をより一層高めやすい。 According to the tenth aspect, the first coil end (31) is easily cooled by the water flowing through the water channel (11). Therefore, it is easy to further improve the cooling efficiency of the coil (3).
 第11の態様は、第1~第10のいずれかの態様との組み合わせにより実現され得る。第11の態様では、モータ(8)は、第1~第10のいずれかの態様のステータ(1)と、ステータ(1)と向き合うロータ(9)と、を備える。 The eleventh aspect can be realized in combination with any one of the first to tenth aspects. In an eleventh aspect, a motor (8) includes the stator (1) according to any one of the first to tenth aspects, and a rotor (9) facing the stator (1).
 第11の態様によれば、水路(11)をモールド部(4)に形成する。このため、水路(11)を発熱源となるコイル(3)に近接して設けることができる。これにより、コイル(3)の冷却効率を高めやすくなる。また、コイル(3)の導線(30)間及び導線(30)と水路(11)の間にもモールド部(4)の樹脂が充填される。このため、空隙による断熱を抑制する。したがって、この点でもコイル(3)の冷却効率を高めやすくなる。コイル(3)に近接して水路(11)を設けることができる。このため、モータ(8)の小型化を図りやすくなる。 According to the eleventh aspect, the water channel (11) is formed in the mold part (4). For this reason, the water channel (11) can be provided close to the coil (3) which is a heat source. This makes it easier to increase the cooling efficiency of the coil (3). Moreover, the resin of the mold part (4) is also filled between the conductive wires (30) of the coil (3) and between the conductive wires (30) and the water channels (11). Therefore, heat insulation due to voids is suppressed. Therefore, also in this respect, it becomes easier to increase the cooling efficiency of the coil (3). A water channel (11) can be provided adjacent to the coil (3). Therefore, it becomes easier to downsize the motor (8).
 1   ステータ
 10  軸心
 100 延伸方向
 11  水路
 2   ステータコア
 21  ヨーク
 22  ティース
 211、221 嵌合部
 3   コイル
 30  導線
 31  第1のコイルエンド
 32  第2のコイルエンド
 4   モールド部
 41  溝
 410 開口
 5   カバー部
 6   インシュレータ
 7   バスバー
1 Stator 10 Axis 100 Extension direction 11 Waterway 2 Stator core 21 Yoke 22 Teeth 211, 221 Fitting portion 3 Coil 30 Conductor 31 First coil end 32 Second coil end 4 Mold portion 41 Groove 410 Opening 5 Cover portion 6 Insulator 7 Bus bar

Claims (11)

  1.   ロータの回転軸の軸心を囲う環状のヨークと、
      前記ヨークの内周面から前記軸心に向かって突出するティースと、
     を有するステータコアと、
     前記ステータコアに巻き回されるコイルと、
     前記ステータコアと前記コイルとをモールドするモールド部と、
     前記モールド部に取り付けられるカバー部と、を備え、
     前記モールド部は、内部空間が水路となる溝を有し、
     前記カバー部は、前記溝の開口を閉塞している、
     ステータ。
    an annular yoke surrounding the axis of the rotation axis of the rotor;
    Teeth protruding from the inner peripheral surface of the yoke toward the axis;
    a stator core having;
    a coil wound around the stator core;
    a mold part for molding the stator core and the coil;
    a cover part attached to the mold part,
    The mold part has a groove whose internal space becomes a waterway,
    The cover portion closes the opening of the groove.
    stator.
  2.  前記ステータコアと前記コイルとの間に介在するインシュレータを更に備え、
     前記インシュレータは、前記モールド部により、前記ステータコアと前記コイルとともにモールドされている、
     請求項1に記載のステータ。
    further comprising an insulator interposed between the stator core and the coil,
    The insulator is molded together with the stator core and the coil by the mold part.
    A stator according to claim 1.
  3.  前記コイルを構成する導線と接続されるバスバーを更に備え、
     前記バスバーは、前記モールド部により、前記ステータコアと前記コイルとともにモールドされている、
     請求項1又は2に記載のステータ。
    further comprising a bus bar connected to a conductor forming the coil,
    The bus bar is molded together with the stator core and the coil by the mold section.
    A stator according to claim 1 or 2.
  4.  前記導線は、前記ティースに巻き回され、
     前記バスバーは、前記コイルの前記軸心側と反対側に配置されている、
     請求項3に記載のステータ。
    The conducting wire is wound around the teeth,
    The bus bar is arranged on a side opposite to the axial center side of the coil.
    A stator according to claim 3.
  5.  前記コイルを構成する導線の断面形状が四角形状である、
     請求項3又は4に記載のステータ。
    The conductive wire constituting the coil has a rectangular cross-sectional shape;
    The stator according to claim 3 or 4.
  6.  前記コイルは成形コイルである、
     請求項5に記載のステータ。
    the coil is a shaped coil;
    A stator according to claim 5.
  7.  前記水路は、前記軸心が延伸する方向において、前記モールド部の一部を介して前記コイルに隣接している、
     請求項1~6のいずれか一項に記載のステータ。
    The water channel is adjacent to the coil through a part of the mold part in the direction in which the axis extends,
    A stator according to any one of claims 1 to 6.
  8.  前記水路は、前記軸心側と反対側において、前記モールド部の一部を介して前記コイルに隣接している、
     請求項7に記載のステータ。
    The water channel is adjacent to the coil via a part of the molded portion on a side opposite to the axis side.
    A stator according to claim 7.
  9.  前記コイルのうち、最も前記軸心側に位置し、前記軸心が延伸する方向における第1のコイルエンドが、最も前記軸心側とは異なる位置であって、前記軸心が延伸する方向における第2のコイルエンドよりも前記軸心が延伸する方向に突出している、
     請求項1~8のいずれか一項に記載のステータ。
    Among the coils, a first coil end located closest to the axis and in the direction in which the axis extends is located at a position furthest from the axis side and in the direction in which the axis extends. The axis protrudes from the second coil end in the extending direction;
    A stator according to any one of claims 1 to 8.
  10.  前記第1のコイルエンドが、前記第2のコイルエンドの全てよりも前記軸心が延伸する方向に突出している、
     請求項9に記載のステータ。
    The first coil end protrudes further than all of the second coil ends in the direction in which the axis extends.
    A stator according to claim 9.
  11.  請求項1~10に記載のステータと、
     前記ステータと向き合うロータと、を備える、
     モータ。
    A stator according to claims 1 to 10;
    a rotor facing the stator;
    motor.
PCT/JP2023/014744 2022-06-23 2023-04-11 Stator and motor WO2023248585A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-101310 2022-06-23
JP2022101310 2022-06-23

Publications (1)

Publication Number Publication Date
WO2023248585A1 true WO2023248585A1 (en) 2023-12-28

Family

ID=89379453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014744 WO2023248585A1 (en) 2022-06-23 2023-04-11 Stator and motor

Country Status (1)

Country Link
WO (1) WO2023248585A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008301582A (en) * 2007-05-30 2008-12-11 Toyota Motor Corp Rotating electrical machine cooler
JP2009089456A (en) * 2007-09-27 2009-04-23 Toyota Motor Corp Stator structure
JP2012085391A (en) * 2010-10-07 2012-04-26 Toyota Motor Corp Cooling device of motor
JP2020526167A (en) * 2017-06-27 2020-08-27 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングMAHLE International GmbH Electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008301582A (en) * 2007-05-30 2008-12-11 Toyota Motor Corp Rotating electrical machine cooler
JP2009089456A (en) * 2007-09-27 2009-04-23 Toyota Motor Corp Stator structure
JP2012085391A (en) * 2010-10-07 2012-04-26 Toyota Motor Corp Cooling device of motor
JP2020526167A (en) * 2017-06-27 2020-08-27 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングMAHLE International GmbH Electric machine

Similar Documents

Publication Publication Date Title
JP6455585B2 (en) Bus bar unit and motor
JP3901104B2 (en) STATOR COIL MODULE, MANUFACTURING METHOD THEREOF, Rotating Electric Machine, Rotating Electric Machine Manufacturing Method
CN103023168B (en) Motor and method of manufacturing motor
US7221073B2 (en) Axial gap electronic motor
JP6299729B2 (en) Rotating electrical machine stator
KR20120041127A (en) Stator, brushless motor, and manufacturing method of the same
JP4623129B2 (en) Rotating electric machine stator and rotating electric machine
WO2015181889A1 (en) Rotating electric machine
JP4665454B2 (en) motor
US20190052138A1 (en) Rotor assembly and motor including the same
JP4631340B2 (en) Rotating electric machine
JP6021772B2 (en) Rotating electric machine
JP2022179599A (en) Wiring component
WO2023248585A1 (en) Stator and motor
JP5151309B2 (en) Rotating electric machine
JP6809801B2 (en) Stator, motor, and how to manufacture the stator
JP6331950B2 (en) Stator
JP2014207840A (en) Dynamo-electric machine and stator for use therein
JP2019205244A (en) Stator of rotary electric machine
JP2016127681A (en) Stator for rotary electric machine
JP2009254001A (en) Coil and split stator equipped with this coil
JP2020188586A (en) Armature manufacturing method
JP2020058132A (en) Rotor manufacturing device of cage-type induction rotary electric machine
US20240235311A1 (en) Armature and motor
JPWO2022185842A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826774

Country of ref document: EP

Kind code of ref document: A1