WO2023248466A1 - Stator, electric motor, compressor, refrigeration cycle device, and method of producing electric motor - Google Patents

Stator, electric motor, compressor, refrigeration cycle device, and method of producing electric motor Download PDF

Info

Publication number
WO2023248466A1
WO2023248466A1 PCT/JP2022/025324 JP2022025324W WO2023248466A1 WO 2023248466 A1 WO2023248466 A1 WO 2023248466A1 JP 2022025324 W JP2022025324 W JP 2022025324W WO 2023248466 A1 WO2023248466 A1 WO 2023248466A1
Authority
WO
WIPO (PCT)
Prior art keywords
protrusion
stator
core
yoke
gap
Prior art date
Application number
PCT/JP2022/025324
Other languages
French (fr)
Japanese (ja)
Inventor
航希 杉浦
勇二 廣澤
浩二 矢部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/025324 priority Critical patent/WO2023248466A1/en
Publication of WO2023248466A1 publication Critical patent/WO2023248466A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures

Definitions

  • the present disclosure relates to a stator, an electric motor, a compressor, a refrigeration cycle device, and a method of manufacturing an electric motor.
  • the stator of the electric motor has a stator core and a winding wound around the stator core.
  • the stator core has an annular yoke, and slots for accommodating the windings are formed on the radially inner side of the yoke.
  • stator cores that are divided into a plurality of divided cores in the circumferential direction have been developed. Adjacent split cores are coupled to each other at a coupling portion formed in the yoke.
  • each split core has protrusions on the inner circumferential side and the outer circumferential side of the joint portion. When the split cores are combined, the protrusions of adjacent split cores come into contact with each other.
  • the present disclosure has been made to solve the above problems, and aims to reduce iron loss due to compressive stress while preventing damage to the winding.
  • the stator according to the present disclosure is fixed inside the shell.
  • the stator includes a stator core having an annular yoke and a slot formed radially inside the yoke.
  • the stator core has a first split core and a second split core combined in the circumferential direction of the yoke.
  • the first split core has a first protrusion and a second protrusion located radially inside the first protrusion at an end facing the second split core.
  • the second protrusion is spaced radially outward from the inner periphery of the yoke.
  • a first gap is formed between the first protrusion and the second protrusion.
  • a second gap is formed between the second protrusion and the inner periphery of the yoke.
  • the first gap and the second gap are formed between the first split core and the second split core, the compressive stress that each split core receives from the shell is reduced, and the Losses can be reduced. Furthermore, since the second protrusion is spaced radially outward from the inner periphery of the yoke, damage to the winding within the slot due to deformation of the second protrusion is prevented.
  • FIG. 1 is a cross-sectional view showing an electric motor of Embodiment 1.
  • FIG. 1 is an enlarged cross-sectional view of a part of the electric motor of Embodiment 1.
  • FIG. FIG. 3 is a plan view showing the stator core of the first embodiment.
  • FIG. 3 is a plan view showing two divided cores of the stator core according to the first embodiment.
  • 7 is a plan view showing another configuration example of two divided cores of the stator core according to the first embodiment.
  • FIGS. 3A and 3B are schematic diagrams illustrating an example of the shape of a gap in a stator core according to Embodiment 1.
  • FIGS. 3 is a flowchart showing a manufacturing process of the electric motor of Embodiment 1.
  • FIG. 7 is a plan view showing two divided cores of a stator core of a comparative example.
  • FIGS. 3A and 3B are diagrams showing the outer diameter of the stator core and the inner diameter of the shell that have been removed after shrink fitting.
  • FIG. 3 is a schematic diagram for explaining the radial length L3 of the yoke and the total length L4 of the gap portion of the first embodiment. It is a graph showing the relationship between size ratio L4/L3 and motor efficiency.
  • FIG. 7 is a plan view showing two divided cores of the stator core according to the second embodiment.
  • FIG. 7 is a plan view showing a split core according to a second embodiment.
  • FIG. 7 is a plan view showing two divided cores of the stator core of Embodiment 3;
  • FIG. 7 is a plan view showing a split core of Embodiment 3;
  • FIG. 2 is a longitudinal sectional view showing a compressor to which the electric motor of each embodiment can be applied.
  • FIG. 18 is a diagram showing a refrigeration cycle device to which the compressor of FIG. 17 can be applied.
  • FIG. 1 is a sectional view showing the electric motor 3 of the first embodiment.
  • the electric motor 3 shown in FIG. 1 is an embedded permanent magnet electric motor, and is used, for example, in a compressor 500 (FIG. 17).
  • the electric motor 3 includes a shaft 70 that is a rotating shaft, a rotor 5 fixed to the shaft 70, and a stator 1 provided so as to surround the rotor 5.
  • An air gap of, for example, 0.3 to 1.0 mm is formed between the stator 1 and the rotor 5.
  • the stator 1 is assembled inside a shell 30, which is a cylindrical housing of a compressor 500 (FIG. 17), which will be described later.
  • the direction of the axis Ax which is the center of rotation of the rotor 5, that is, the central axis of the shaft 70, will be referred to as the "axial direction.”
  • the radial direction centered on the axis Ax is defined as the “radial direction.”
  • the circumferential direction centered on the axis Ax is defined as the “circumferential direction.”
  • the rotor 5 has an annular rotor core 50 centered on the axis Ax, and a permanent magnet 60 attached to the rotor core 50.
  • the rotor core 50 has a laminate in which electromagnetic steel sheets are laminated in the axial direction.
  • the thickness of the electromagnetic steel plate is 0.1 to 0.7 mm, and here it is 0.35 mm.
  • a center hole 53 is formed in the radial center of the rotor core 50.
  • a shaft 70 is fixed to the center hole 53 of the rotor core 50 by shrink fitting, press fitting, or the like.
  • the rotor core 50 also has a circumferential outer periphery 50a.
  • a plurality of magnet insertion holes 51 are formed along the outer periphery 50a of the rotor core 50.
  • One permanent magnet 60 is arranged in each magnet insertion hole 51.
  • One magnet insertion hole 51 corresponds to one magnetic pole. Since the rotor core 50 has six magnet insertion holes 51, the number of poles of the rotor 5 is six. However, the number of poles of the rotor 5 is not limited to six, but may be two or more. Further, two or more permanent magnets 60 may be arranged in each magnet insertion hole 51.
  • the permanent magnet 60 is a flat member that is long in the axial direction of the rotor core 50, has a width in the circumferential direction, and has a thickness in the radial direction. Each permanent magnet 60 is magnetized in the thickness direction.
  • the permanent magnet 60 is made of, for example, a rare earth magnet containing neodymium (Nd), iron (Fe), and boron (B).
  • Rare earth magnets have the property that their coercive force decreases as the temperature rises, and the rate of decrease is -0.5 to -0.6 [%/K].
  • a coercive force of 1100 to 1500 [A/m] is required to prevent demagnetization of the rare earth magnet when the maximum load expected in the compressor is generated.
  • the coercive force at room temperature that is, 20 [° C.] must be 1800 to 2300 [A/m].
  • Dy dysprosium
  • the coercive force of a rare earth magnet at room temperature is 1800 [A/m] without adding Dy, and becomes 2300 [A/m] with the addition of 2 [wt%] Dy.
  • the addition of Dy causes an increase in manufacturing costs and a decrease in the residual magnetic flux density, it is desirable to reduce the amount of Dy to be added or not to add Dy.
  • FIG. 2 is an enlarged view of each part of the stator 1 and rotor 5.
  • the circumferential center of the magnet insertion hole 51 is the polar center P.
  • a straight line in the radial direction passing through the polar center P is referred to as a polar center line.
  • An interpolar portion is formed between adjacent magnetic poles.
  • the magnet insertion hole 51 here extends linearly in a direction perpendicular to the pole center line. However, the magnet insertion hole 51 may extend in a V-shape.
  • Flux barriers 52 which are air gaps, are formed on both sides of the magnet insertion hole 51 in the circumferential direction.
  • a thin wall portion is formed between the flux barrier 52 and the outer periphery 50a of the rotor core 50.
  • the radial width of the thin portion is set to be, for example, the same as the thickness of the electromagnetic steel sheet.
  • a radially long slit 54 is formed on the radially outer side of the magnet insertion hole 51.
  • the slit 54 is formed to control the magnetic flux density distribution on the surface of the rotor 5.
  • seven slits 54 are formed symmetrically with respect to the polar center line, but the number and arrangement of the slits 54 are arbitrary.
  • the rotor core 50 does not necessarily have to be provided with the slit 54.
  • Through holes 56 and 57 are formed inside the magnet insertion hole 51 in the radial direction.
  • the circumferential position of the through hole 56 coincides with the pole center P, and the circumferential position of the through hole 57 coincides with the interpolar portion.
  • a circumferentially long arcuate slit 58 is formed between the circumferentially adjacent through holes 57 .
  • the through holes 56 and 57 and the slit 58 all penetrate the rotor core 50 in the axial direction and constitute a refrigerant passage.
  • the arrangement of the through holes 56, 57 and the slit 58 is not limited to the positions described here. Further, the rotor core 50 does not necessarily need to be provided with the through holes 56 and 57 and the slit 58.
  • the caulking portion 59 for fixing the electromagnetic steel sheet is formed radially inward from each flux barrier 52 at a circumferential position corresponding to the interpole portion.
  • the arrangement of the caulking portion 59 is not limited to this position.
  • the electromagnetic steel plates of the rotor core 50 may be fixed by a method other than caulking.
  • the stator 1 includes a stator core 10 that surrounds a rotor core 50 from the outside in the radial direction, and a winding 20 that is wound around the stator core 10.
  • the stator core 10 is made by laminating a plurality of electromagnetic steel plates in the axial direction and fixing them by caulking or the like.
  • the thickness of the electromagnetic steel plate is 0.1 to 0.7 mm, and here it is 0.35 mm.
  • the stator core 10 has an annular yoke 11 centered on the axis Ax, and a plurality of teeth 12 extending radially inward from the yoke 11.
  • the teeth 12 are arranged at regular intervals in the circumferential direction.
  • the number of teeth 12 is nine here. However, the number of teeth 12 is not limited to nine, and may be two or more.
  • Slot 13 is an area in which winding 20 is accommodated.
  • the number of slots 13 is nine, which is the same as the number of teeth 12.
  • the winding 20 is formed of a magnet wire as a coil, and is wound around each tooth 12 in a concentrated winding manner. A current having a frequency corresponding to the rotational speed of the electric motor 3 is passed through the winding 20, and a rotating magnetic field that rotates the rotor 5 is generated.
  • the wire diameter of the winding 20 and the number of turns of the winding 20 on one tooth 12 are determined by required specifications such as rotational speed and torque, supply voltage, cross-sectional area of the slot 13, etc.
  • the linearity of the winding 20 is 1.0 mm, and the number of turns is 80 turns.
  • An insulating part (for example, the insulating part 40 shown in FIG. 17) made of a resin such as polybutylene terephthalate (PBT) is provided between the stator core 10 and the winding 20.
  • the insulating section is formed by attaching a resin molded body to the stator core 10 or by integrally molding the resin with the stator core 10 .
  • an insulating film made of resin such as polyethylene terephthalate (PET) may be provided on the inner surface of the slot 13.
  • FIG. 3 is a plan view showing the stator core 10. As shown in FIG. 3, the teeth 12 extend radially inward from the annular yoke 11. The teeth 12 have tooth tips 12a facing the rotor 5. The tooth tip portion 12a has a wider width in the circumferential direction than other portions of the teeth 12. The tooth tip surface of the tooth tip portion 12a facing the rotor 5 has an arc shape centered on the axis Ax.
  • the side surface 12b of the teeth 12 faces the slot 13.
  • a straight line in the radial direction passing through the center of the teeth 12 in the width direction is referred to as a tooth center line T.
  • the side surface 12b of the tooth 12 is parallel to the tooth center line T here, but may be inclined with respect to the tooth center line T.
  • the outer circumference of the yoke 11 is fixed to the inner circumference of the shell 30 (FIG. 1), and the inner circumference of the yoke 11 faces the slot 13.
  • a recess 17 is formed on the outer periphery of the yoke 11.
  • the recess 17 forms a coolant flow path with the shell 30.
  • the recess 17 is formed on the teeth center line T here, it is not limited to this position.
  • the yoke 11 is formed with a caulking portion 18 that fixes the electromagnetic steel plates of the stator core 10 to each other.
  • the caulking portions 18 are formed on both sides of the teeth center line T.
  • the arrangement of the caulking portion 18 is not limited to this position.
  • the electromagnetic steel plate may be fixed by a method other than caulking.
  • the stator core 10 is formed by combining a plurality of split cores 9 in a ring shape.
  • the divided cores 9 are segments each including one tooth 12.
  • the split cores 9 that are adjacent to each other in the circumferential direction are connected by a connecting portion 14 formed in the yoke 11.
  • the coupling portion 14 is formed between the two teeth 12 in the yoke 11, for example, at a midpoint between the two teeth 12 in the circumferential direction.
  • the coupling portion 14 extends in the radial direction from the inner circumference to the outer circumference of the yoke 11.
  • An arcuate portion of the annular yoke 11 included in one split core 9 is referred to as a yoke portion 110.
  • FIG. 4 is a plan view showing two split cores 9 on both sides of the coupling portion 14.
  • the circumferential direction centered on the axis Ax (FIG. 1) is indicated by an arrow R1.
  • All of the split cores 9 of the stator core 10 have the same shape, but for convenience of explanation, the split core 9 on one side of the coupling portion 14 (the left side in FIG. 4) is referred to as the split core 9A, and the split core 9 on the opposite side
  • the core 9 is referred to as a divided core 9B.
  • the divided core 9A is also referred to as a first divided core
  • the divided core 9B is also referred to as a second divided core.
  • Both of the split cores 9A and 9B have protrusions 15a, 15b, and 15c at each end of the yoke portion 110 in the circumferential direction.
  • the protrusion 15a is disposed at the radially outermost position, and the protrusion 15b is disposed at the radially innermost position.
  • the protrusion 15c is arranged between the protrusions 15a and 15b in the radial direction.
  • the protrusions 15a, 15b, and 15c all protrude in the circumferential direction.
  • the protruding portion 15a reaches the outer periphery 111 of the yoke portion 110.
  • the protruding portion 15b is spaced apart from the inner circumference 112 of the yoke portion 110 in the radial direction.
  • the protrusion 15a is also referred to as a first protrusion or an outer circumferential protrusion.
  • the protrusion 15b is also referred to as a second protrusion or an inner protrusion.
  • the protrusion 15a of the split core 9A abuts the protrusion 15a of the split core 9B.
  • the protrusion 15b of the split core 9A abuts the protrusion 15b of the split core 9B.
  • the protrusion 15c of the split core 9A abuts the protrusion 15c of the split core 9B.
  • a gap 16a is formed between the split cores 9A and 9B and between the protrusion 15a and the protrusion 15c. Furthermore, a gap 16c is formed between the protrusion 15c and the protrusion 15b. A gap 16b is formed between the protrusion 15b and the inner periphery 112 of the yoke 110.
  • the cavity 16a is also referred to as a first cavity, and the cavity 16b is also referred to as a second cavity.
  • the cavity 16b has a radial length L1 and a circumferential length L2.
  • the lengths L1 and L2 satisfy L1 ⁇ L2. That is, the cavity 16b has a radially long slit shape.
  • the radial length L1 of the cavity 16b is longer than each of the radial lengths of the cavities 16a and 16c.
  • the circumferential length L2 of the gap 16b is the same as each of the circumferential lengths of the gaps 16a and 16c.
  • FIG. 5 is a plan view showing another example of split cores 9A and 9B.
  • Both of the split cores 9A and 9B have protrusions 15a and 15b at each end of the yoke portion 110 in the circumferential direction.
  • the protrusion 15a is disposed at the radially outermost position, and the protrusion 15b is disposed at the radially innermost position.
  • the protrusions 15a, 15b of the split core 9A abut against the protrusions 15a, 15b of the split core 9B.
  • a gap 16a is formed between the split cores 9A and 9B and between the protrusion 15a and the protrusion 15b. Furthermore, a gap 16b is formed between the protrusion 15b and the inner circumference 112 of the yoke portion 110.
  • the cavity 16b has a radial length L1 and a circumferential length L2.
  • the lengths L1 and L2 satisfy L1 ⁇ L2.
  • the radial length L1 of the cavity 16b is longer than the radial length of the cavity 16a.
  • the circumferential length L2 of the gap 16b is the same as the circumferential length of the gap 16a.
  • FIG. 4 shows an example in which three protrusions 15a, 15b, 15c are provided at each end of the yoke part 110
  • FIG. 5 shows an example in which two protrusions 15a, 15b are provided at each end of the yoke part 110.
  • the protrusions are provided is shown, four or more protrusions may be provided at each end of the yoke portion 110.
  • FIGS. 6(A) and 6(B) are schematic diagrams for explaining the shape of the cavity 16a shown in FIG. 5.
  • the cavity 16a shown in FIG. 6(A) has a rectangular shape and has four corners 161. Note that although the void portion 16a shown in FIG. 6(A) has a rectangular shape that is long in the radial direction, it may be in a rectangular shape that is long in the circumferential direction, or may be in a square shape.
  • the cavity 16a shown in FIG. 6(B) has a curved corner 162 instead of the corner 161 shown in FIG. 6(A).
  • the curved corner portion 162 extends, for example, in an arc shape in a plane perpendicular to the axis Ax, and is also referred to as a curved portion.
  • the curved corner 162 is formed at the periphery of the gap 16a in FIG. 6(B), it is sufficient if at least a part of the periphery of the gap 16a is curved. Further, the cavity 16a may be circular or elliptical.
  • the periphery of not only the gap 16a but also the gap 16b or 16c may be curved.
  • protrusions 15a, 15b, and 15c shown in FIG. 4 will be referred to as “protrusions 15" unless there is a particular need to distinguish them.
  • protrusions 15a and 15b shown in FIG. 4 the protrusions 15a and 15b shown in FIG. 4 will be referred to as “the voids 16” unless there is a need to distinguish them.
  • FIG. 7 is a flowchart showing the manufacturing process of the electric motor 3.
  • a plurality of electromagnetic steel plates punched using a die are stacked in the axial direction and fixed together by caulking or the like to form the split core 9 (step S101).
  • step S102 an insulating section is attached to the split core 9, and the winding 20 is wound around the teeth 12 via the insulating section.
  • the winding wire 20 is wound before the split cores 9 are combined into an annular shape, so that the winding work can be easily performed.
  • step S103 the plurality of split cores 9 are combined into a ring shape to form the stator core 10 (step S103).
  • the protrusion 15 of the split core 9A and the protrusion 15 of the split core 9B shown in FIG. 4 or 5 come into contact and are fixed by welding.
  • stator 1 Since the winding 20 is already wound around each split core 9, the stator 1 is completed by combining the split cores 9 to form the stator core 10.
  • step S104 the stator 1 is fixed to the cylindrical shell 30 by shrink fitting.
  • the shell 30 is heated to thermally expand, and the stator 1 is inserted inside the shell 30.
  • FIGS. 8(A), (B), and (C) are schematic diagrams for explaining the shrink fitting process.
  • the outer diameter of the stator core 10 before shrink fitting is set to D1
  • the inner diameter of the shell 30 is set to D2.
  • the shell 30 is heated to thermally expand, and the inner diameter of the shell 30 is made larger than the outer diameter D1 of the stator core 10. In this state, the stator 1 is inserted inside the shell 30.
  • the inner diameter of the shell 30 contracts to D3 ( ⁇ D1) as shown in FIG. 8(C).
  • the outer periphery of the stator core 10 fits into the inner periphery of the shell 30.
  • the rotor 5 is formed by laminating a plurality of electromagnetic steel sheets in the axial direction to form a rotor core 50, and inserting the permanent magnets 60 into the magnet insertion holes 51.
  • the shaft 70 is fixed in the center hole 53 of the rotor 5, and the rotor 5 is inserted inside the stator 1 fixed to the shell 30 (step S105 in FIG. 7). After that, the shell 30 is sealed (step S106). As a result, the electric motor 3 including the stator 1 and the rotor 5 is completed.
  • FIG. 9 is a plan view showing divided cores 9A and 9B of a comparative example.
  • the split cores 9A and 9B of the comparative example both have protrusions 15a and 15b at each end of the yoke portion 110 in the circumferential direction.
  • the protrusion 15a reaches the outer circumference 111 of the yoke 11, and the protrusion 15b reaches the inner circumference 112 of the yoke 11.
  • a gap 16a is formed between the protrusions 15a and 15b.
  • compressive stress acts on the split cores 9A and 9B.
  • their magnetic properties change and iron loss increases.
  • compressive stress acts on the protrusions 15a, 15b of the split cores 9A, 9B, but does not act on the portions of the split cores 9A, 9B facing the voids 16, thereby suppressing an increase in iron loss. Can be done.
  • the protruding portion 15b reaches the inner circumference 112 of the yoke portion 110. Therefore, when the protrusion 15b receives compressive stress and deforms inward in the radial direction, the protrusion 15b may enter into the slot 13. Since the winding 20 is accommodated in the slot 13, if the protrusion 15b enters the slot 13, the winding 20 may be damaged.
  • the protrusion 15b located on the innermost circumferential side is located at a position spaced radially outward from the inner circumference 112 of the yoke portion 110. It is formed. Therefore, even if the protrusion 15b deforms inward in the radial direction, it will not enter into the slot 13, and damage to the winding 20 can be prevented.
  • the radial length L1 of the cavity 16b is longer than the circumferential length L2 (L1>L2). Since the air gap 16b is located in the circumferential magnetic path of the yoke 11, the shorter the circumferential length L2 of the air gap 16b, the easier the magnetic flux will pass through the air gap 16b. Damage to the winding 20 can be effectively prevented by setting the radial length L1 of the cavity 16b to a length that does not reach the inside of the slot 13 even if the protrusion 15b is deformed.
  • stator core 10 deforms radially inward due to compressive stress. Accordingly, stress is applied between the split cores 9A and 9B in a direction that reduces the gap 16b in the circumferential direction.
  • the shrink-fitting allowance W is defined by the difference D1-D2 between the outer diameter D1 of the stator core 10 before shrink-fitting (FIG. 8(A)) and the inner diameter D2 of the shell 30 before shrink-fitting (FIG. 8(B)). Ru. Note that both the outer diameter D1 of the stator core 10 and the inner diameter D2 of the shell 30 are average values per revolution around the axis Ax (hereinafter referred to as circumferential average values).
  • the circumferential length L2 of the cavity 16b is in the range of 0.1 ⁇ W ⁇ L2 ⁇ 0.6 ⁇ W with respect to the shrink-fitting allowance W of the stator core 10. The reason for this will be explained below.
  • the outer diameter of the stator core 10 after shrink fitting is set to D3.
  • the inner diameter of the shell 30 is also D3.
  • the outer diameter D3 of the stator core 10 (that is, the inner diameter of the shell 30) is an average value in the circumferential direction.
  • the amount of change ⁇ OUT in the outer diameter of the stator core 10 before and after shrink fitting is expressed as D1-D3.
  • the amount of change ⁇ IN in the inner diameter of the shell 30 before and after shrink fitting is expressed as D2-D3.
  • ⁇ OUT is the amount of change in the outer diameter of the stator core 10, and when converted into the amount of change ⁇ CI in the circumferential direction of the stator core 10, the following equation (4) is obtained.
  • ⁇ CI 2 ⁇ [(K2/K1)/ ⁇ 1+(K2/K1) ⁇ ] ⁇ W...(4)
  • K2/K1 is determined from the thickness of stator core 10 and shell 30, and the Young's modulus of the material forming stator core 10 and shell 30. When the stator core 10 and shell 30 are made of iron, K2/K1 is within the following range. 0.02 ⁇ K2/K1 ⁇ 0.1
  • the circumferential length L2 of the gap 16 is reduced by 10 to 60% of the shrink fitting allowance W. Therefore, by setting the length L2 of the cavity 16b in the range of 0.1 ⁇ W ⁇ L2 ⁇ 0.6 ⁇ W, it is possible to prevent the cavity 16b from collapsing due to compressive stress.
  • the shrink-fitting allowance W is generally calculated as the difference between the outer diameter D1 of the stator core 10 and the inner diameter D2 of the shell 30 before shrink-fitting. However, even after shrink fitting, it is possible to remove the shell 30 from the stator core 10 and calculate the shrink fitting allowance from the difference between the outer diameter of the stator core 10 and the inner diameter of the shell 30.
  • FIGS. 10(A) and 10(B) are views showing the stator core 10 and shell 30, respectively, after the shell 30 has been removed from the stator core 10 after the shrink fitting shown in FIG. 8(C).
  • the shrink-fitting allowance (D5-D6) calculated from the outer diameter D5 of the stator core 10 after removing the shell 30 from the stator core 10 and the inner diameter D6 of the shell 30 is the outer diameter D1 of the stator core 10 before shrink-fitting and the inner diameter D6 of the shell 30.
  • This is an approximation to the shrink-fitting allowance W ( D1-D2) calculated from the inner diameter D2.
  • the inner circumference of the stator core 10 is defined by the tooth tip surfaces of the plurality of teeth 12.
  • the gap between the stator 1 and the rotor 5 is narrow in some areas and wide in others.
  • variations occur in the magnetic attraction force acting between the stator 1 and the rotor 5, causing vibration and noise.
  • the waveform of the induced voltage caused by the magnetic flux of the rotor 5 interlinking with the windings 20 of the stator 1 is distorted, torque pulsation becomes large, and vibrations and noise are generated. It causes
  • the circularity of the inner circumference of the stator core 10 is 5% or less of the radial gap G (FIG. 2) between the stator 1 and the rotor 5.
  • the gap G is the average value in the circumferential direction of the radial gap between the stator 1 and the rotor 5, and is, for example, 0.3 to 1.0 mm.
  • the air gap 16 between the split cores 9A and 9B is a non-magnetic portion that exists in the magnetic path, similar to the gap G between the stator 1 and the rotor 5. Therefore, by setting the circumferential length L2 of the cavity 16 to 5% or less of the gap G between the stator 1 and the rotor 5, vibration and noise can be reduced. That is, by satisfying L2 ⁇ 0.05 ⁇ G, vibration and noise can be reduced.
  • FIG. 11 is a diagram for explaining the radial length L3 of the yoke 11 and the total length L4 of the cavity 16.
  • the split cores 9A and 9B have void portions 16a and 16b at each end of the yoke portion 110.
  • the sum of the radial length L41 of the cavity 16a and the radial length L42 of the cavity 16b is defined as a total length L4.
  • the radial length of the coupling portion 14 of the yoke 11 that is, the shortest distance from the inner circumference 112 to the outer circumference 111, is defined as L3.
  • the contact area of the split cores 9A, 9B becomes narrower the amount of magnetic flux interlinking with the winding 20 decreases, and the induced voltage becomes smaller.
  • the current required to generate the same torque increases, copper loss in the winding 20 increases, and motor efficiency decreases. Therefore, from the viewpoint of suppressing a decrease in motor efficiency, there is an optimum range for the total radial length L4 of the void portion 16.
  • FIG. 12 is a diagram showing the relationship between the ratio L4/L3 of the total radial length L4 of the gap 16 to the radial length L3 of the yoke 11 and motor efficiency.
  • the motor efficiency (relative value) is 0% or more. That is, in the range of 0 ⁇ L4/L3 ⁇ 0.75, a motor efficiency higher than the motor efficiency when the void portion 16 is not provided can be obtained.
  • the stator 1 of the first embodiment is fixed inside the shell 30.
  • the stator 1 includes a stator core 10 having an annular yoke 11 and a slot 13 formed inside the yoke 11 in the radial direction.
  • the stator core 10 includes a split core 9A as a first split core and a split core 9B as a second split core combined in the circumferential direction of the yoke 11.
  • the split core 9A has a protrusion 15a as a first protrusion and a protrusion 15b as a second protrusion located radially inward from the protrusion 15a at the end facing the split core 9B.
  • the protruding portion 15b is spaced radially outward from the inner circumference 112 of the yoke portion 110.
  • a gap 16a serving as a first gap is formed between the protrusion 15a and the protrusion 15b.
  • a gap 16b serving as a second gap is formed between the protrusion 15b and the inner periphery 112 of the yoke 110.
  • the inner protrusion 15b is spaced radially outward from the inner circumference 112 of the yoke part 110, even if the protrusion 15b is deformed inward, the winding 20 in the slot 13 is Damage can be prevented.
  • the protruding portion 15a reaches the outer periphery 111 of the yoke portion 110, the protruding portion 15a abuts against the shell 30 during shrink fitting and is accurately positioned. That is, it is possible to eliminate positional deviation between the protrusions 15a of the split cores 9A and 9B and to bring them into accurate contact.
  • the split cores 9A, 9B further have a protrusion 15c as a third protrusion between the protrusions 15a, 15b, compressive stress can be dispersed by the protrusions 15a, 15b, 15c. .
  • the protrusion 15 of the split core 9A and the protrusion 15 of the split core 9B are in contact with each other, the length of the gap 16 in the circumferential direction can be ensured even if the amount of protrusion of each protrusion 15 is small. . Therefore, deformation of each protrusion 15 due to compressive stress can be suppressed.
  • the radial length L1 and the circumferential length L2 of the cavity 16b satisfy L1>L2, even if the protrusion 15b is deformed, it is difficult to enter the slot 13, thereby preventing damage to the winding 20.
  • the prevention effect can be enhanced.
  • the shrink-fitting allowance W of the stator core 10 and the length L2 in the circumferential direction of the cavity 16b satisfy 0.1 ⁇ W ⁇ L2 ⁇ 0.6 ⁇ W, the compressive stress caused by the shrink-fitting causes the cavity 16b to Even if the gap portion 16b contracts in the circumferential direction, collapse of the void portion 16b can be suppressed.
  • peripheral edge surrounding the gap 16 has curved parts such as the curved corners 162, stress concentration around the gap 16 can be alleviated.
  • the motor due to the provision of the cavity 16 Decrease in efficiency can be suppressed. Further, if the lengths L3 and L4 satisfy 0.35 ⁇ L4/L3 ⁇ 0.45, the motor efficiency can be particularly improved.
  • FIG. 13 is a plan view showing split cores 19A and 19B of the second embodiment.
  • the protrusion 15 of the split core 19A was in contact with the protrusion 15 of the split core 19B.
  • the protrusion 15 of the split core 19A and the flat end surface 21 of the split core 19B abut.
  • FIG. 14 is a plan view showing the split core 19 of the second embodiment. Since the split cores 19A and 19B have the same shape, they will be described as the split core 19.
  • the split core 19 has a protrusion 15a as a first protrusion and a protrusion 15b as a second protrusion at one end in the circumferential direction of the yoke portion 110 (the right end in FIG. 14).
  • the protruding portion 15a reaches the outer circumference 111 of the yoke portion 110, and the protruding portion 15b is spaced radially outward from the inner circumference 112 of the yoke portion 110. Both protrusions 15a and 15b protrude in the circumferential direction.
  • the other circumferential end of the split core 19 (the left end in FIG. 14) is a flat end surface 21.
  • the end surface 21 extends linearly in a plane perpendicular to the axial direction, more specifically, in the radial direction. Therefore, when the two split cores 19A and 19B are combined as shown in FIG. 14, the protrusions 15a and 15b of the split core 19A come into contact with the end surface 21 of the split core 19B.
  • a gap 16a serving as a first gap is formed between the protrusions 15a and 15b.
  • a gap 16b serving as a second gap is formed between the protrusion 15b and the inner periphery 112 of the yoke 110.
  • the protrusions 15a and 15b will be referred to as a protrusion 15 unless there is a need to distinguish them.
  • the void portions 16a and 16b will be referred to as a void portion 16 unless there is a particular need to distinguish them.
  • the protrusions 15 of the split cores 19A and 19B When the protrusions 15 of the split cores 19A and 19B come into contact with each other, the protrusions 15 of the split core 19A and the protrusions 15 of the split core 19B are caused by stress during welding of the protrusions 15 or shrink fitting to the shell 30. There is a possibility that radial positional deviation may occur.
  • the contact area between the protrusion 15 of the split core 19A and the protrusion 15 of the split core 19B may decrease. Furthermore, since the protrusion 15 has a large number of sides and is likely to vary in size, the contact area between the protrusion 15 of the split core 19A and the protrusion 15 of the split core 19B may be reduced. When the contact area decreases in this way, the stress applied to the protrusion 15 increases, which may cause deformation of the protrusion 15.
  • the protrusion 15 of the split core 19A contacts the end surface 21 of the split core 19B, so variations in the contact area can be suppressed. Thereby, compressive stress applied to the protrusion 15 can be reduced, and deformation of the protrusion 15 can be suppressed.
  • the split core 9 is made of laminated electromagnetic steel plates punched with a die, the more complex the shape of the split core 9, the more the die wears out, and the more difficult it becomes to manage the processing dimensions.
  • Making one end of the yoke portion 110 of the split core 9 a flat end surface 21 is also useful in terms of mold management and processing quality management.
  • the split core 19 has protrusions 15a, 15b at one end of the yoke portion 110, but it may also have protrusions 15a, 15b, 15c as shown in FIG. .
  • stator of the second embodiment is configured similarly to the stator 1 of the first embodiment.
  • the end surface 21 of the split core 19B facing the split core 19A is a surface that extends linearly in a plane orthogonal to the axial direction. Therefore, a contact area between the split cores 19A and 19B can be secured, and deformation of the protrusion 15 can be suppressed.
  • FIG. 15 is a plan view showing split cores 29A and 29B of the third embodiment.
  • the fitting portion 23 provided on the split core 29B fits into the recess between the protrusions 15a and 15b of the split core 29A.
  • FIG. 16 is a plan view showing the split core 29 of the third embodiment. Since the split cores 29A and 29B have the same shape, they will be described as a split core 29.
  • the split core 29 has a protrusion 15a as a first protrusion and a protrusion 15b as a second protrusion at one end in the circumferential direction of the yoke portion 110 (the right end in FIG. 16).
  • the protruding portion 15a reaches the outer circumference 111 of the yoke portion 110, and the protruding portion 15b is spaced radially outward from the inner circumference 112 of the yoke portion 110. Both protrusions 15a and 15b protrude in the circumferential direction.
  • the split core 29 has a flat end surface 22 at the other end in the circumferential direction of the yoke portion 110 (the left end in FIG. 16).
  • the end surface 22 extends linearly in a plane perpendicular to the axial direction, more specifically, in the radial direction.
  • the protruding portion 15 a of the end surface 22 reaches the outer periphery 111 of the yoke portion 110 .
  • a fitting portion 23 that protrudes in the circumferential direction is formed at the radially central portion of the end surface 22 of the split core 29 .
  • a recess 24 is formed on the inner peripheral side of the end face 22 of the split core 29 and is retracted from the end face 22 in the circumferential direction.
  • the protrusions 15a and 15b of the split core 29A come into contact with the end surface 22 of the split core 29B. Further, the fitting portion 23 of the split core 29B fits into the recess between the protrusions 15a and 15b of the split core 29A.
  • a gap 16a serving as a first gap is formed between the protrusions 15a and 15b.
  • a gap 16b serving as a second gap is formed between the protrusion 15b and the inner periphery 112 of the yoke 110.
  • the protrusions 15a and 15b will be referred to as a protrusion 15 unless there is a need to distinguish them.
  • the void portions 16a and 16b will be referred to as a void portion 16 unless there is a particular need to distinguish them.
  • the split cores 29A and 29B are The contact state can be stabilized. Thereby, stress concentration on the protrusion 15 can be suppressed, and deformation of the protrusion 15 can be suppressed.
  • the split core 29 has the protrusions 15a, 15b at one end of the yoke part 110, but it may also have the protrusions 15a, 15b, 15c as shown in FIG. .
  • stator of the third embodiment is configured similarly to the stator 1 of the first embodiment.
  • the fitting portion 23 of the split core 29B fits into the recess between the protrusion 15 of the split core 29A, so that the abutting state of the split cores 29A and 29B is stabilized. , deformation of the protrusion 15 due to compressive stress can be suppressed.
  • FIG. 17 is a longitudinal sectional view showing a compressor 500 to which the electric motor of each embodiment can be applied.
  • the compressor 500 is a rotary compressor here, and includes an airtight container 507, a compression mechanism 501 disposed within the airtight container 507, and an electric motor 3 that drives the compression mechanism 501.
  • the compression mechanism 501 includes a cylinder 502 having a cylinder chamber 503, a shaft 70 of the electric motor 3, a rolling piston 504 fixed to the shaft 70, and a vane (not shown) that divides the inside of the cylinder chamber 503 into a suction side and a compression side. and an upper frame 505 and a lower frame 506 into which the shaft 70 is inserted and which close the axial end surface of the cylinder chamber 503.
  • An upper discharge muffler 508 and a lower discharge muffler 509 are attached to the upper frame 505 and the lower frame 506, respectively.
  • the closed container 507 is a cylindrical container and includes the shell 30 shown in FIG. Refrigerating machine oil (not shown) for lubricating each sliding part of the compression mechanism 501 is stored at the bottom of the airtight container 507 .
  • the shaft 70 is rotatably held by an upper frame 505 and a lower frame 506 as bearing parts.
  • the cylinder 502 includes a cylinder chamber 503 therein, and the rolling piston 504 rotates eccentrically within the cylinder chamber 503.
  • the shaft 70 has an eccentric shaft portion, and a rolling piston 504 is fitted into the eccentric shaft portion.
  • the stator 1 of the electric motor 3 is assembled inside the shell 30 of the sealed container 507 by a method such as shrink fitting, press fitting, or welding. Power is supplied to the windings 20 of the stator 1 from glass terminals 511 fixed to the closed container 507.
  • the shaft 70 is fixed to the shaft hole 64 of the rotor 5.
  • An accumulator 510 is attached to the outside of the closed container 507. Refrigerant gas flows into the accumulator 510 from the refrigerant circuit via the suction pipe 514 . When liquid refrigerant flows in together with refrigerant gas from suction pipe 514, the liquid refrigerant is stored in accumulator 510, and refrigerant gas is supplied to compressor 500.
  • a suction pipe 513 is fixed to the closed container 507, and refrigerant gas is supplied from the accumulator 510 to the cylinder 502 through the suction pipe 513. Furthermore, a discharge pipe 512 for discharging the refrigerant to the outside is provided at the upper part of the closed container 507.
  • refrigerant for the compressor 500 for example, R410A, R407C, or R22 may be used, but from the viewpoint of preventing global warming, it is desirable to use a refrigerant with a low GWP (global warming potential).
  • GWP global warming potential
  • the refrigerant with low GWP for example, the following refrigerants can be used.
  • GWP of HFO-1234yf is 4.
  • a hydrocarbon having a carbon double bond in its composition such as R1270 (propylene), may also be used.
  • the GWP of R1270 is 3, lower than that of HFO-1234yf, but the flammability is higher than that of HFO-1234yf.
  • a mixture containing at least either a halogenated hydrocarbon having a carbon double bond in its composition or a hydrocarbon having a carbon double bond in its composition for example, a mixture of HFO-1234yf and R32.
  • HFO-1234yf is a low-pressure refrigerant, it tends to have a large pressure drop, which may lead to a decrease in the performance of the refrigeration cycle (particularly the evaporator). Therefore, it is practically preferable to use a mixture with R32 or R41, which is a higher pressure refrigerant, than HFO-1234yf.
  • the operation of the compressor 500 is as follows. Refrigerant gas supplied from the accumulator 510 is supplied into the cylinder chamber 503 of the cylinder 502 through the suction pipe 513.
  • the shaft 70 rotates together with the rotor 5.
  • the rolling piston 504 fitted into the shaft 70 rotates eccentrically within the cylinder chamber 503, and the refrigerant is compressed within the cylinder chamber 503.
  • the refrigerant compressed in the cylinder chamber 503 passes through the discharge mufflers 508 and 509, and further passes through the through holes 56 and 57 of the rotor 5 and the recess 17 of the stator 1 (FIG. 1), and rises inside the closed container 507.
  • the refrigerant that has risen inside the closed container 507 is discharged from the discharge pipe 512 and supplied to the high pressure side of the refrigeration cycle.
  • the electric motor 3 described in each embodiment has high motor efficiency due to reduced iron loss. Therefore, the operating efficiency of compressor 500 can be improved.
  • FIG. 18 is a diagram showing the configuration of a refrigeration cycle apparatus 400 including the compressor 500 shown in FIG. 17.
  • the refrigeration cycle device 400 is an air conditioner here, it may also be, for example, a refrigerator.
  • the refrigeration cycle device 400 includes a compressor 500, a four-way valve 401 as a switching valve, a condenser 402 that condenses the refrigerant, a pressure reducing device 403 that reduces the pressure of the refrigerant, and an evaporator 404 that evaporates the refrigerant.
  • the compressor 500, condenser 402, pressure reducing device 403, and evaporator 404 are connected by a refrigerant pipe 407, forming a refrigerant circuit.
  • the compressor 500 also includes an outdoor blower 405 facing the condenser 402 and an indoor blower 406 facing the evaporator 404.
  • the operation of the refrigeration cycle device 400 is as follows.
  • the compressor 500 compresses the sucked refrigerant and sends it out as a high-temperature, high-pressure refrigerant gas.
  • the four-way valve 401 switches the flow direction of the refrigerant, and during cooling operation, the refrigerant sent out from the compressor 500 flows into the condenser 402, as shown by the solid line in FIG.
  • the condenser 402 exchanges heat between the refrigerant sent out from the compressor 500 and the outdoor air sent by the outdoor blower 405, condenses the refrigerant, and sends it out as a liquid refrigerant.
  • the pressure reducing device 403 expands the liquid refrigerant sent out from the condenser 402 and sends it out as a low-temperature, low-pressure liquid refrigerant.
  • the evaporator 404 exchanges heat between the low-temperature, low-pressure liquid refrigerant sent out from the pressure reducing device 403 and indoor air, evaporates the refrigerant, and sends it out as refrigerant gas.
  • the air from which heat has been removed by the evaporator 404 is supplied indoors by the indoor blower 406.
  • the four-way valve 401 sends out the refrigerant sent out from the compressor 500 to the evaporator 404.
  • evaporator 404 functions as a condenser and condenser 402 functions as an evaporator.
  • the operating efficiency of the refrigeration cycle device 400 can be improved.
  • stator 1 stator, 3 electric motor, 5 rotor, 9, 19, 29 split core, 9A, 19A, 29A split core (first split core), 9B, 19B, 29B split core (second split core), 10 stator core, 11 yoke, 12 teeth, 12a tooth tip, 13 slot, 14 joint, 15 protrusion, 15a protrusion (first protrusion), 15b protrusion (second protrusion), 15c protrusion (third 16 void, 16a void (first void), 16b void (second void), 16c void (third void), 20 winding, 21, 22 end surface , 23 fitting part, 24 recess, 30 shell, 50 rotor core, 51 magnet insertion hole, 60 permanent magnet, 70 shaft, 110 yoke part, 111 outer periphery, 112 inner periphery, 162 curved corner part, 400 refrigeration cycle device, 401 square valve, 402 condenser, 403 pressure reducing device, 404 evaporator, 405 outdoor blower, 406 indoor blower

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

This stator is provided with a stator core that has an annular yoke as well as a slot formed radially inside the yoke. The stator core has a first split core and a second split core, which are combined in the circumferential direction of the yoke. The first split core has, at an end facing the second split core, a first protrusion and a second protrusion that is located further radially inward than the first protrusion. The second protrusion is spaced radially outward from the inner periphery of the yoke. A first gap is formed between the first protrusion and the second protrusion, and a second gap is formed between the second protrusion and the inner periphery of the yoke.

Description

ステータ、電動機、圧縮機、冷凍サイクル装置および電動機の製造方法Stator, electric motor, compressor, refrigeration cycle equipment, and electric motor manufacturing method
 本開示は、ステータ、電動機、圧縮機、冷凍サイクル装置および電動機の製造方法に関する。 The present disclosure relates to a stator, an electric motor, a compressor, a refrigeration cycle device, and a method of manufacturing an electric motor.
 電動機のステータは、ステータコアと、ステータコアに巻かれた巻線とを有する。ステータコアは、環状のヨークを有し、ヨークの径方向内側には巻線を収容するスロットが形成されている。近年、周方向に複数の分割コアに分割されたステータコアが開発されている。隣り合う分割コアは、ヨークに形成された結合部で互いに結合される。 The stator of the electric motor has a stator core and a winding wound around the stator core. The stator core has an annular yoke, and slots for accommodating the windings are formed on the radially inner side of the yoke. In recent years, stator cores that are divided into a plurality of divided cores in the circumferential direction have been developed. Adjacent split cores are coupled to each other at a coupling portion formed in the yoke.
 ステータが圧縮機等のシェルの内側に固定される場合、シェルから圧縮応力を受け、これにより鉄損が増加する傾向がある。圧縮応力を低減するため、特許文献1に開示されたステータでは、各分割コアが、結合部の内周側と外周側に突出部を有している。分割コアを組み合わせると、隣り合う分割コアの突出部が互いに当接する。 When the stator is fixed inside the shell of a compressor or the like, it receives compressive stress from the shell, which tends to increase core loss. In order to reduce compressive stress, in the stator disclosed in Patent Document 1, each split core has protrusions on the inner circumferential side and the outer circumferential side of the joint portion. When the split cores are combined, the protrusions of adjacent split cores come into contact with each other.
特開2009-118634号公報(要約参照)Japanese Patent Application Publication No. 2009-118634 (see abstract)
 しかしながら、上述した従来のステータでは、結合部の内周側に設けられた突出部が、シェルからの圧縮応力を受けてさらに内周側に変形し、スロット内に入り込む可能性がある。突出部がスロット内に入り込むと、スロットに収容された巻線の損傷を招く可能性がある。 However, in the conventional stator described above, there is a possibility that the protrusion provided on the inner circumferential side of the joint part deforms further inward due to compressive stress from the shell and enters the slot. If the protrusion penetrates into the slot, it may cause damage to the winding housed in the slot.
 本開示は、上記の課題を解決するためになされたものであり、巻線の損傷を防止しながら、圧縮応力による鉄損を低減することを目的とする。 The present disclosure has been made to solve the above problems, and aims to reduce iron loss due to compressive stress while preventing damage to the winding.
 本開示によるステータは、シェルの内側に固定される。ステータは、環状のヨークと、ヨークの径方向の内側に形成されたスロットとを有するステータコアを備える。ステータコアは、ヨークの周方向に組み合わせられた第1の分割コアと第2の分割コアとを有する。第1の分割コアは、第2の分割コアに対向する端部に、第1の突出部と、第1の突出部よりも径方向の内側に位置する第2の突出部とを有する。第2の突出部は、ヨークの内周から径方向の外側に離間している。第1の突出部と第2の突出部との間には、第1の空隙部が形成されている。第2の突出部とヨークの内周との間には、第2の空隙部が形成されている。 The stator according to the present disclosure is fixed inside the shell. The stator includes a stator core having an annular yoke and a slot formed radially inside the yoke. The stator core has a first split core and a second split core combined in the circumferential direction of the yoke. The first split core has a first protrusion and a second protrusion located radially inside the first protrusion at an end facing the second split core. The second protrusion is spaced radially outward from the inner periphery of the yoke. A first gap is formed between the first protrusion and the second protrusion. A second gap is formed between the second protrusion and the inner periphery of the yoke.
 本開示では、第1の分割コアと第2の分割コアとの間に第1の空隙部および第2の空隙部が形成されるため、各分割コアがシェルから受ける圧縮応力を低減し、鉄損を低減することができる。また、第2の突出部がヨークの内周から径方向の外側に離間しているため、第2の突出部の変形によるスロット内の巻線の損傷が防止される。 In the present disclosure, since the first gap and the second gap are formed between the first split core and the second split core, the compressive stress that each split core receives from the shell is reduced, and the Losses can be reduced. Furthermore, since the second protrusion is spaced radially outward from the inner periphery of the yoke, damage to the winding within the slot due to deformation of the second protrusion is prevented.
実施の形態1の電動機を示す断面図である。1 is a cross-sectional view showing an electric motor of Embodiment 1. FIG. 実施の形態1の電動機の一部を拡大して示す断面図である。1 is an enlarged cross-sectional view of a part of the electric motor of Embodiment 1. FIG. 実施の形態1のステータコアを示す平面図である。FIG. 3 is a plan view showing the stator core of the first embodiment. 実施の形態1のステータコアの2つの分割コアを示す平面図である。FIG. 3 is a plan view showing two divided cores of the stator core according to the first embodiment. 実施の形態1のステータコアの2つの分割コアの他の構成例を示す平面図である。7 is a plan view showing another configuration example of two divided cores of the stator core according to the first embodiment. FIG. 実施の形態1のステータコアの空隙部の形状の例を示す模式図(A),(B)である。FIGS. 3A and 3B are schematic diagrams illustrating an example of the shape of a gap in a stator core according to Embodiment 1. FIGS. 実施の形態1の電動機の製造工程を示すフローチャートである。3 is a flowchart showing a manufacturing process of the electric motor of Embodiment 1. FIG. 焼嵌め前のステータコアを示す図(A)、焼嵌め前のシェルを示す図(B)、および焼嵌め後のステータコアとシェルとを示す図(C)である。They are a diagram (A) showing the stator core before shrink fitting, a diagram (B) showing the shell before shrink fitting, and a diagram (C) showing the stator core and shell after shrink fitting. 比較例のステータコアの2つの分割コアを示す平面図である。FIG. 7 is a plan view showing two divided cores of a stator core of a comparative example. 焼嵌め後に取り外されたステータコアの外径およびシェルの内径を示す図(A),(B)である。FIGS. 3A and 3B are diagrams showing the outer diameter of the stator core and the inner diameter of the shell that have been removed after shrink fitting. 実施の形態1のヨークの径方向の長さL3と空隙部の合計長さL4とを説明するための模式図である。FIG. 3 is a schematic diagram for explaining the radial length L3 of the yoke and the total length L4 of the gap portion of the first embodiment. 寸法比L4/L3とモータ効率との関係を示すグラフである。It is a graph showing the relationship between size ratio L4/L3 and motor efficiency. 実施の形態2のステータコアの2つの分割コアを示す平面図である。FIG. 7 is a plan view showing two divided cores of the stator core according to the second embodiment. 実施の形態2の分割コアを示す平面図である。FIG. 7 is a plan view showing a split core according to a second embodiment. 実施の形態3のステータコアの2つの分割コアを示す平面図である。FIG. 7 is a plan view showing two divided cores of the stator core of Embodiment 3; 実施の形態3の分割コアを示す平面図である。FIG. 7 is a plan view showing a split core of Embodiment 3; 各実施の形態の電動機が適用可能な圧縮機を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing a compressor to which the electric motor of each embodiment can be applied. 図17の圧縮機が適用可能な冷凍サイクル装置を示す図である。FIG. 18 is a diagram showing a refrigeration cycle device to which the compressor of FIG. 17 can be applied.
実施の形態1.
<電動機の構成>
 まず、実施の形態1について説明する。図1は、実施の形態1の電動機3を示す断面図である。図1に示す電動機3は、永久磁石埋込型の電動機であり、例えば圧縮機500(図17)に用いられる。
Embodiment 1.
<Configuration of electric motor>
First, Embodiment 1 will be described. FIG. 1 is a sectional view showing the electric motor 3 of the first embodiment. The electric motor 3 shown in FIG. 1 is an embedded permanent magnet electric motor, and is used, for example, in a compressor 500 (FIG. 17).
 電動機3は、回転軸であるシャフト70と、シャフト70に固定されたロータ5と、ロータ5を囲むように設けられたステータ1とを有する。ステータ1とロータ5との間には、例えば0.3~1.0mmの隙間であるエアギャップが形成されている。ステータ1は、後述する圧縮機500(図17)の円筒状の筐体であるシェル30の内側に組み込まれている。 The electric motor 3 includes a shaft 70 that is a rotating shaft, a rotor 5 fixed to the shaft 70, and a stator 1 provided so as to surround the rotor 5. An air gap of, for example, 0.3 to 1.0 mm is formed between the stator 1 and the rotor 5. The stator 1 is assembled inside a shell 30, which is a cylindrical housing of a compressor 500 (FIG. 17), which will be described later.
 以下では、ロータ5の回転中心、すなわちシャフト70の中心軸である軸線Axの方向を「軸方向」とする。軸線Axを中心とする径方向を「径方向」とする。軸線Axを中心とする周方向を「周方向」とする。 Hereinafter, the direction of the axis Ax, which is the center of rotation of the rotor 5, that is, the central axis of the shaft 70, will be referred to as the "axial direction." The radial direction centered on the axis Ax is defined as the "radial direction." The circumferential direction centered on the axis Ax is defined as the "circumferential direction."
<ロータの構成>
 ロータ5は、軸線Axを中心とする環状のロータコア50と、ロータコア50に取り付けられた永久磁石60とを有する。ロータコア50は、電磁鋼板を軸方向に積層した積層体を有する。電磁鋼板の板厚は0.1~0.7mmであり、ここでは0.35mmである。
<Rotor configuration>
The rotor 5 has an annular rotor core 50 centered on the axis Ax, and a permanent magnet 60 attached to the rotor core 50. The rotor core 50 has a laminate in which electromagnetic steel sheets are laminated in the axial direction. The thickness of the electromagnetic steel plate is 0.1 to 0.7 mm, and here it is 0.35 mm.
 ロータコア50の径方向の中心には中心孔53が形成されている。ロータコア50の中心孔53には、シャフト70が焼嵌めまたは圧入等により固定されている。ロータコア50は、また、円周状の外周50aを有する。 A center hole 53 is formed in the radial center of the rotor core 50. A shaft 70 is fixed to the center hole 53 of the rotor core 50 by shrink fitting, press fitting, or the like. The rotor core 50 also has a circumferential outer periphery 50a.
 ロータコア50の外周50aに沿って、複数の磁石挿入孔51が形成されている。各磁石挿入孔51には、永久磁石60が1つずつ配置されている。1つの磁石挿入孔51は1磁極に相当する。ロータコア50は6つの磁石挿入孔51を有するため、ロータ5の極数は6である。但し、ロータ5の極数は6には限定されず、2以上であればよい。また、各磁石挿入孔51に2つ以上の永久磁石60を配置してもよい。 A plurality of magnet insertion holes 51 are formed along the outer periphery 50a of the rotor core 50. One permanent magnet 60 is arranged in each magnet insertion hole 51. One magnet insertion hole 51 corresponds to one magnetic pole. Since the rotor core 50 has six magnet insertion holes 51, the number of poles of the rotor 5 is six. However, the number of poles of the rotor 5 is not limited to six, but may be two or more. Further, two or more permanent magnets 60 may be arranged in each magnet insertion hole 51.
 永久磁石60は、ロータコア50の軸方向に長い平板状の部材であり、周方向に幅を有し、径方向に厚さを有する。各永久磁石60は、厚さ方向に着磁されている。永久磁石60は、例えば、ネオジウム(Nd)、鉄(Fe)およびボロン(B)を含む希土類磁石で構成されている。 The permanent magnet 60 is a flat member that is long in the axial direction of the rotor core 50, has a width in the circumferential direction, and has a thickness in the radial direction. Each permanent magnet 60 is magnetized in the thickness direction. The permanent magnet 60 is made of, for example, a rare earth magnet containing neodymium (Nd), iron (Fe), and boron (B).
 希土類磁石は、温度上昇と共に保磁力が低下する性質を有し、低下率は-0.5~-0.6[%/K]である。圧縮機で想定される最大負荷発生時に希土類磁石の減磁が生じないようにするためには、1100~1500[A/m]の保磁力が必要である。この保磁力を150℃の雰囲気温度下で確保するためには、常温すなわち20[℃]での保磁力が1800~2300[A/m]であることが必要である。 Rare earth magnets have the property that their coercive force decreases as the temperature rises, and the rate of decrease is -0.5 to -0.6 [%/K]. A coercive force of 1100 to 1500 [A/m] is required to prevent demagnetization of the rare earth magnet when the maximum load expected in the compressor is generated. In order to ensure this coercive force at an ambient temperature of 150° C., the coercive force at room temperature, that is, 20 [° C.] must be 1800 to 2300 [A/m].
 そのため、希土類磁石には、ディスプロシウム(Dy)を添加してもよい。希土類磁石の常温での保磁力は、Dyを添加していない状態で1800[A/m]であり、2[重量%]のDyを添加することで2300[A/m]となる。但し、Dyの添加は製造コストの増加の原因となり、また残留磁束密度の低下を招くため、Dyの添加量をできるだけ少なくするか、またはDyを添加しないことが望ましい。 Therefore, dysprosium (Dy) may be added to the rare earth magnet. The coercive force of a rare earth magnet at room temperature is 1800 [A/m] without adding Dy, and becomes 2300 [A/m] with the addition of 2 [wt%] Dy. However, since the addition of Dy causes an increase in manufacturing costs and a decrease in the residual magnetic flux density, it is desirable to reduce the amount of Dy to be added or not to add Dy.
 図2は、ステータ1およびロータ5の各一部を拡大して示す図である。磁石挿入孔51の周方向の中心は、極中心Pである。極中心Pを通る径方向の直線を、極中心線と称する。隣り合う磁極の間には、極間部が形成される。磁石挿入孔51は、ここでは極中心線に直交する方向に直線状に延在している。但し、磁石挿入孔51は、V字状に延在していてもよい。 FIG. 2 is an enlarged view of each part of the stator 1 and rotor 5. The circumferential center of the magnet insertion hole 51 is the polar center P. A straight line in the radial direction passing through the polar center P is referred to as a polar center line. An interpolar portion is formed between adjacent magnetic poles. The magnet insertion hole 51 here extends linearly in a direction perpendicular to the pole center line. However, the magnet insertion hole 51 may extend in a V-shape.
 磁石挿入孔51の周方向両側には、空隙であるフラックスバリア52が形成される。フラックスバリア52とロータコア50の外周50aとの間には、薄肉部が形成される。隣り合う磁極間の漏れ磁束を低減するため、薄肉部の径方向の幅は、例えば、電磁鋼板の板厚と同じに設定される。 Flux barriers 52, which are air gaps, are formed on both sides of the magnet insertion hole 51 in the circumferential direction. A thin wall portion is formed between the flux barrier 52 and the outer periphery 50a of the rotor core 50. In order to reduce leakage magnetic flux between adjacent magnetic poles, the radial width of the thin portion is set to be, for example, the same as the thickness of the electromagnetic steel sheet.
 磁石挿入孔51の径方向外側には、径方向に長いスリット54が形成されている。スリット54は、ロータ5の表面における磁束密度分布を制御するために形成されている。ここでは7つのスリット54が極中心線に対して対称に形成されているが、スリット54の数および配置は任意である。また、ロータコア50には、必ずしもスリット54を設けなくてもよい。 A radially long slit 54 is formed on the radially outer side of the magnet insertion hole 51. The slit 54 is formed to control the magnetic flux density distribution on the surface of the rotor 5. Here, seven slits 54 are formed symmetrically with respect to the polar center line, but the number and arrangement of the slits 54 are arbitrary. Further, the rotor core 50 does not necessarily have to be provided with the slit 54.
 磁石挿入孔51の径方向内側には、貫通穴56,57が形成されている。貫通穴56の周方向位置は極中心Pと一致し、貫通穴57の周方向位置は極間部と一致している。また、周方向に隣り合う貫通穴57の間には、周方向に長い円弧状のスリット58が形成されている。貫通穴56,57およびスリット58はいずれも、ロータコア50を軸方向に貫通しており、冷媒通路を構成する。 Through holes 56 and 57 are formed inside the magnet insertion hole 51 in the radial direction. The circumferential position of the through hole 56 coincides with the pole center P, and the circumferential position of the through hole 57 coincides with the interpolar portion. Furthermore, a circumferentially long arcuate slit 58 is formed between the circumferentially adjacent through holes 57 . The through holes 56 and 57 and the slit 58 all penetrate the rotor core 50 in the axial direction and constitute a refrigerant passage.
 なお、貫通穴56,57およびスリット58の配置は、ここで説明した位置に限定されるものではない。また、ロータコア50には、必ずしも貫通穴56,57およびスリット58を設けなくてもよい。 Note that the arrangement of the through holes 56, 57 and the slit 58 is not limited to the positions described here. Further, the rotor core 50 does not necessarily need to be provided with the through holes 56 and 57 and the slit 58.
 電磁鋼板を固定するカシメ部59は、極間部に対応する周方向位置で、各フラックスバリア52よりも径方向内側に形成されている。但し、カシメ部59の配置は、この位置に限定されるものではない。また、ロータコア50の電磁鋼板は、カシメ以外の方法で固定されていてもよい。 The caulking portion 59 for fixing the electromagnetic steel sheet is formed radially inward from each flux barrier 52 at a circumferential position corresponding to the interpole portion. However, the arrangement of the caulking portion 59 is not limited to this position. Furthermore, the electromagnetic steel plates of the rotor core 50 may be fixed by a method other than caulking.
<ステータの構成>
 図1に示すように、ステータ1は、ロータコア50を径方向外側から囲むステータコア10と、ステータコア10に巻き付けられた巻線20とを有する。ステータコア10は、複数の電磁鋼板を軸方向に積層し、カシメ等により固定したものである。電磁鋼板の板厚は0.1~0.7mmであり、ここでは0.35mmである。
<Stator configuration>
As shown in FIG. 1, the stator 1 includes a stator core 10 that surrounds a rotor core 50 from the outside in the radial direction, and a winding 20 that is wound around the stator core 10. The stator core 10 is made by laminating a plurality of electromagnetic steel plates in the axial direction and fixing them by caulking or the like. The thickness of the electromagnetic steel plate is 0.1 to 0.7 mm, and here it is 0.35 mm.
 ステータコア10は、軸線Axを中心とする環状のヨーク11と、ヨーク11から径方向内側に延在する複数のティース12とを有する。ティース12は、周方向に一定間隔で配置されている。ティース12の数は、ここでは9である。但し、ティース12の数は9に限定されるものではなく、2以上であればよい。 The stator core 10 has an annular yoke 11 centered on the axis Ax, and a plurality of teeth 12 extending radially inward from the yoke 11. The teeth 12 are arranged at regular intervals in the circumferential direction. The number of teeth 12 is nine here. However, the number of teeth 12 is not limited to nine, and may be two or more.
 周方向に隣り合うティース12の間には、巻線20を収容する空間であるスロット13が形成される。スロット13は、巻線20が収容される領域である。スロット13の数は、ティース12の数と同じ9である。 A slot 13, which is a space for accommodating the winding 20, is formed between the circumferentially adjacent teeth 12. Slot 13 is an area in which winding 20 is accommodated. The number of slots 13 is nine, which is the same as the number of teeth 12.
 巻線20は、コイルとしてのマグネットワイヤで形成されており、各ティース12に集中巻きで巻かれている。巻線20には、電動機3の回転速度に応じた周波数の電流が流され、ロータ5を回転させる回転磁界が発生する。 The winding 20 is formed of a magnet wire as a coil, and is wound around each tooth 12 in a concentrated winding manner. A current having a frequency corresponding to the rotational speed of the electric motor 3 is passed through the winding 20, and a rotating magnetic field that rotates the rotor 5 is generated.
 巻線20の線径および1つのティース12への巻線20の巻き数は、回転速度およびトルク等の要求仕様、供給電圧、並びにスロット13の断面積等によって決まる。一例としては、巻線20の線形は1.0mmであり、巻き数は80ターンである。 The wire diameter of the winding 20 and the number of turns of the winding 20 on one tooth 12 are determined by required specifications such as rotational speed and torque, supply voltage, cross-sectional area of the slot 13, etc. As an example, the linearity of the winding 20 is 1.0 mm, and the number of turns is 80 turns.
 ステータコア10と巻線20との間には、例えばポリブチレンテレフタレート(PBT)等の樹脂で構成された絶縁部(例えば、図17に示す絶縁部40)が設けられている。絶縁部は、樹脂の成形体をステータコア10に取り付けるか、または樹脂をステータコア10と一体成形することで形成される。また、スロット13の内面に、ポリエチレンテレフタレート(PET)等の樹脂で構成された絶縁フィルムを設けてもよい。 An insulating part (for example, the insulating part 40 shown in FIG. 17) made of a resin such as polybutylene terephthalate (PBT) is provided between the stator core 10 and the winding 20. The insulating section is formed by attaching a resin molded body to the stator core 10 or by integrally molding the resin with the stator core 10 . Further, an insulating film made of resin such as polyethylene terephthalate (PET) may be provided on the inner surface of the slot 13.
 図3は、ステータコア10を示す平面図である。図3に示すように、ティース12は環状のヨーク11から径方向内側に延在する。ティース12は、ロータ5に対向する歯先部12aを有する。歯先部12aは、ティース12の他の部分よりも周方向幅が広い。歯先部12aのロータ5に対向する歯先面は、軸線Axを中心とする円弧状である。 FIG. 3 is a plan view showing the stator core 10. As shown in FIG. 3, the teeth 12 extend radially inward from the annular yoke 11. The teeth 12 have tooth tips 12a facing the rotor 5. The tooth tip portion 12a has a wider width in the circumferential direction than other portions of the teeth 12. The tooth tip surface of the tooth tip portion 12a facing the rotor 5 has an arc shape centered on the axis Ax.
 ティース12の側面12bは、スロット13に面している。ティース12の幅方向中心を通る径方向の直線を、ティース中心線Tと称する。ティース12の側面12bは、ここではティース中心線Tと平行であるが、ティース中心線Tに対して傾斜していてもよい。 The side surface 12b of the teeth 12 faces the slot 13. A straight line in the radial direction passing through the center of the teeth 12 in the width direction is referred to as a tooth center line T. The side surface 12b of the tooth 12 is parallel to the tooth center line T here, but may be inclined with respect to the tooth center line T.
 ヨーク11の外周はシェル30(図1)の内周に固定され、ヨーク11の内周はスロット13に面している。ヨーク11の外周には、凹部17が形成されている。凹部17は、シェル30との間で冷媒の流路を形成する。凹部17は、ここではティース中心線T上に形成されているが、この位置に限定されるものではない。 The outer circumference of the yoke 11 is fixed to the inner circumference of the shell 30 (FIG. 1), and the inner circumference of the yoke 11 faces the slot 13. A recess 17 is formed on the outer periphery of the yoke 11. The recess 17 forms a coolant flow path with the shell 30. Although the recess 17 is formed on the teeth center line T here, it is not limited to this position.
 ヨーク11には、ステータコア10の電磁鋼板を互いに固定するカシメ部18が形成されている。カシメ部18は、ティース中心線Tの両側に形成されている。但し、カシメ部18の配置は、この位置に限定されるものではない。また、電磁鋼板はカシメ以外の方法で固定されていてもよい。 The yoke 11 is formed with a caulking portion 18 that fixes the electromagnetic steel plates of the stator core 10 to each other. The caulking portions 18 are formed on both sides of the teeth center line T. However, the arrangement of the caulking portion 18 is not limited to this position. Moreover, the electromagnetic steel plate may be fixed by a method other than caulking.
 ステータコア10は、複数の分割コア9を環状に組み合わせることにより形成される。分割コア9は、それぞれ1つのティース12を含むセグメントである。周方向に隣り合う分割コア9は、ヨーク11に形成された結合部14で結合されている。 The stator core 10 is formed by combining a plurality of split cores 9 in a ring shape. The divided cores 9 are segments each including one tooth 12. The split cores 9 that are adjacent to each other in the circumferential direction are connected by a connecting portion 14 formed in the yoke 11.
 結合部14は、ヨーク11において2つのティース12の間、例えば2つのティース12の周方向における中間地点に形成されている。結合部14は、ヨーク11の内周から外周まで径方向に延在している。環状のヨーク11のうち、1つの分割コア9に含まれる円弧状の部分を、ヨーク部110とする。 The coupling portion 14 is formed between the two teeth 12 in the yoke 11, for example, at a midpoint between the two teeth 12 in the circumferential direction. The coupling portion 14 extends in the radial direction from the inner circumference to the outer circumference of the yoke 11. An arcuate portion of the annular yoke 11 included in one split core 9 is referred to as a yoke portion 110.
 図4は、結合部14の両側の2つの分割コア9を示す平面図である。図4では、軸線Ax(図1)を中心とする周方向を、矢印R1で示す。後述する図5,9,11,13~16においても同様である。 FIG. 4 is a plan view showing two split cores 9 on both sides of the coupling portion 14. In FIG. 4, the circumferential direction centered on the axis Ax (FIG. 1) is indicated by an arrow R1. The same applies to FIGS. 5, 9, 11, 13 to 16, which will be described later.
 ステータコア10の分割コア9は全て同一の形状を有しているが、説明の便宜上、結合部14の一方の側(図4における左側)の分割コア9を分割コア9Aと称し、反対側の分割コア9を分割コア9Bと称する。分割コア9Aは第1の分割コアとも称し、分割コア9Bは第2の分割コアとも称する。 All of the split cores 9 of the stator core 10 have the same shape, but for convenience of explanation, the split core 9 on one side of the coupling portion 14 (the left side in FIG. 4) is referred to as the split core 9A, and the split core 9 on the opposite side The core 9 is referred to as a divided core 9B. The divided core 9A is also referred to as a first divided core, and the divided core 9B is also referred to as a second divided core.
 分割コア9A,9Bはいずれも、ヨーク部110の周方向の各端部に、突出部15a,15b,15cを有する。突出部15aは最も径方向外側に配置され、突出部15bは最も径方向内側に配置されている。突出部15cは、径方向において突出部15a,15bの間に配置されている。突出部15a,15b,15cはいずれも、周方向に突出している。 Both of the split cores 9A and 9B have protrusions 15a, 15b, and 15c at each end of the yoke portion 110 in the circumferential direction. The protrusion 15a is disposed at the radially outermost position, and the protrusion 15b is disposed at the radially innermost position. The protrusion 15c is arranged between the protrusions 15a and 15b in the radial direction. The protrusions 15a, 15b, and 15c all protrude in the circumferential direction.
 突出部15aは、ヨーク部110の外周111に達している。一方、突出部15bは、ヨーク部110の内周112に対して径方向外側に離間している。突出部15aは、第1の突出部または外周側突出部とも称する。突出部15bは、第2の突出部または内周側突出部とも称する。 The protruding portion 15a reaches the outer periphery 111 of the yoke portion 110. On the other hand, the protruding portion 15b is spaced apart from the inner circumference 112 of the yoke portion 110 in the radial direction. The protrusion 15a is also referred to as a first protrusion or an outer circumferential protrusion. The protrusion 15b is also referred to as a second protrusion or an inner protrusion.
 分割コア9Aの突出部15aは、分割コア9Bの突出部15aに当接する。分割コア9Aの突出部15bは、分割コア9Bの突出部15bに当接する。分割コア9Aの突出部15cは、分割コア9Bの突出部15cに当接する。 The protrusion 15a of the split core 9A abuts the protrusion 15a of the split core 9B. The protrusion 15b of the split core 9A abuts the protrusion 15b of the split core 9B. The protrusion 15c of the split core 9A abuts the protrusion 15c of the split core 9B.
 分割コア9A,9Bの間で、且つ突出部15aと突出部15cとの間には、空隙部16aが形成される。また、突出部15cと突出部15bとの間には、空隙部16cが形成される。突出部15bとヨーク部110の内周112との間には、空隙部16bが形成される。空隙部16aは第1の空隙部と称し、空隙部16bは第2の空隙部とも称する。 A gap 16a is formed between the split cores 9A and 9B and between the protrusion 15a and the protrusion 15c. Furthermore, a gap 16c is formed between the protrusion 15c and the protrusion 15b. A gap 16b is formed between the protrusion 15b and the inner periphery 112 of the yoke 110. The cavity 16a is also referred to as a first cavity, and the cavity 16b is also referred to as a second cavity.
 空隙部16bは、径方向の長さL1および周方向の長さL2を有する。長さL1,L2は、L1≧L2を満足する。すなわち、空隙部16bは、径方向に長いスリット状である。 The cavity 16b has a radial length L1 and a circumferential length L2. The lengths L1 and L2 satisfy L1≧L2. That is, the cavity 16b has a radially long slit shape.
 また、空隙部16bの径方向の長さL1は、空隙部16a,16cの径方向の各長さよりも長い。また,空隙部16bの周方向の長さL2は、空隙部16a,16cの周方向の各長さと同じである。 Furthermore, the radial length L1 of the cavity 16b is longer than each of the radial lengths of the cavities 16a and 16c. Further, the circumferential length L2 of the gap 16b is the same as each of the circumferential lengths of the gaps 16a and 16c.
 ここでは、ヨーク部110の各端部に突出部15a,15b,15cおよび空隙部16a,16b,16cを形成した例について説明したが、このような例に限定されるものではない。 Here, an example has been described in which the protrusions 15a, 15b, 15c and the voids 16a, 16b, 16c are formed at each end of the yoke portion 110, but the invention is not limited to such an example.
 図5は、分割コア9A,9Bの他の例を示す平面図である。分割コア9A,9Bはいずれも、ヨーク部110の周方向の各端部に、突出部15a,15bを有する。突出部15aは最も径方向外側に配置され、突出部15bは最も径方向内側に配置されている。分割コア9Aの突出部15a,15bは、分割コア9Bの突出部15a,15bに当接する。 FIG. 5 is a plan view showing another example of split cores 9A and 9B. Both of the split cores 9A and 9B have protrusions 15a and 15b at each end of the yoke portion 110 in the circumferential direction. The protrusion 15a is disposed at the radially outermost position, and the protrusion 15b is disposed at the radially innermost position. The protrusions 15a, 15b of the split core 9A abut against the protrusions 15a, 15b of the split core 9B.
 分割コア9A,9Bの間で、且つ突出部15aと突出部15bとの間には、空隙部16aが形成される。また、突出部15bとヨーク部110の内周112との間には、空隙部16bが形成される。 A gap 16a is formed between the split cores 9A and 9B and between the protrusion 15a and the protrusion 15b. Furthermore, a gap 16b is formed between the protrusion 15b and the inner circumference 112 of the yoke portion 110.
 図5においても、空隙部16bは、径方向の長さL1および周方向の長さL2を有する。長さL1,L2は、L1≧L2を満足する。また、空隙部16bの径方向の長さL1は、空隙部16aの径方向の長さよりも長い。空隙部16bの周方向の長さL2は、空隙部16aの周方向の長さと同じである。 Also in FIG. 5, the cavity 16b has a radial length L1 and a circumferential length L2. The lengths L1 and L2 satisfy L1≧L2. Further, the radial length L1 of the cavity 16b is longer than the radial length of the cavity 16a. The circumferential length L2 of the gap 16b is the same as the circumferential length of the gap 16a.
 図4には、ヨーク部110の各端部に3つの突出部15a,15b,15cを設けた例を示し、図5には、ヨーク部110の各端部に2つの突出部15a,15bを設けた例を示したが、ヨーク部110の各端部に4つ以上の突出部を設けてもよい。 4 shows an example in which three protrusions 15a, 15b, 15c are provided at each end of the yoke part 110, and FIG. 5 shows an example in which two protrusions 15a, 15b are provided at each end of the yoke part 110. Although an example in which the protrusions are provided is shown, four or more protrusions may be provided at each end of the yoke portion 110.
 図6(A),(B)は、図5に示した空隙部16aの形状を説明するための模式図である。図6(A)に示す空隙部16aは長方形状であり、4つの角部161を有する。なお、図6(A)に示した空隙部16aは径方向に長い長方形状であるが、周方向に長い長方形状であってもよく、あるいは正方形状であってもよい。 FIGS. 6(A) and 6(B) are schematic diagrams for explaining the shape of the cavity 16a shown in FIG. 5. The cavity 16a shown in FIG. 6(A) has a rectangular shape and has four corners 161. Note that although the void portion 16a shown in FIG. 6(A) has a rectangular shape that is long in the radial direction, it may be in a rectangular shape that is long in the circumferential direction, or may be in a square shape.
 図6(B)に示す空隙部16aは、図6(A)に示した角部161の代わりに、湾曲角部162を有する。湾曲角部162は、軸線Axに直交する面において例えば円弧状に延在しており、曲線部とも称する。 The cavity 16a shown in FIG. 6(B) has a curved corner 162 instead of the corner 161 shown in FIG. 6(A). The curved corner portion 162 extends, for example, in an arc shape in a plane perpendicular to the axis Ax, and is also referred to as a curved portion.
 図6(A)に示した空隙部16aの角部161のように鋭利な形状を有する部分には、応力が集中しやすく、その周囲の応力も高くなり易い。図6(B)に示すように、空隙部16aの周縁の少なくとも1部を曲線状とすることで、空隙部16aの周囲の応力を低減することができる。 Stress tends to concentrate in a portion having a sharp shape, such as the corner 161 of the cavity 16a shown in FIG. 6(A), and the stress around it also tends to increase. As shown in FIG. 6(B), by forming at least a portion of the periphery of the gap 16a into a curved shape, stress around the gap 16a can be reduced.
 なお、図6(B)では空隙部16aの周縁に湾曲角部162が形成されているが、空隙部16aの周縁の少なくとも1部が曲線状であればよい。また、空隙部16aが円形状あるいは楕円形状であってもよい。 Although the curved corner 162 is formed at the periphery of the gap 16a in FIG. 6(B), it is sufficient if at least a part of the periphery of the gap 16a is curved. Further, the cavity 16a may be circular or elliptical.
 また、空隙部16aに限らず、空隙部16bあるいは空隙部16c(図4)の周縁の少なくとも一部または全部が曲線状であっても良い。 Furthermore, at least a part or all of the periphery of not only the gap 16a but also the gap 16b or 16c (FIG. 4) may be curved.
 以下では、図4に示した突出部15a,15b,15cは、特に区別する必要ない場合には、「突出部15」と称する。図5に示した突出部15a,15bについても同様とする。また、図4に示した空隙部16a,16b,16cは、特に区別する必要ない場合には、「空隙部16」と称する。図5に示した空隙部16a,16bについても同様とする。 Hereinafter, the protrusions 15a, 15b, and 15c shown in FIG. 4 will be referred to as "protrusions 15" unless there is a particular need to distinguish them. The same applies to the protrusions 15a and 15b shown in FIG. Furthermore, the voids 16a, 16b, and 16c shown in FIG. 4 will be referred to as "the voids 16" unless there is a need to distinguish them. The same applies to the voids 16a and 16b shown in FIG.
<製造方法>
 次に、電動機3の製造方法について説明する。図7は、電動機3の製造工程を示すフローチャートである。まず、金型を用いて打ち抜いた複数の電磁鋼板を軸方向に積層し、カシメ等により一体的に固定して、分割コア9を形成する(ステップS101)。
<Manufacturing method>
Next, a method of manufacturing the electric motor 3 will be explained. FIG. 7 is a flowchart showing the manufacturing process of the electric motor 3. First, a plurality of electromagnetic steel plates punched using a die are stacked in the axial direction and fixed together by caulking or the like to form the split core 9 (step S101).
 次に、分割コア9に絶縁部を取り付け、絶縁部を介してティース12に巻線20を巻き付ける(ステップS102)。この工程では、分割コア9を環状に組み合わせる前に巻線20を巻き付けるため、巻き付け作業を簡単に行うことができる。 Next, an insulating section is attached to the split core 9, and the winding 20 is wound around the teeth 12 via the insulating section (step S102). In this step, the winding wire 20 is wound before the split cores 9 are combined into an annular shape, so that the winding work can be easily performed.
 次に、複数の分割コア9を環状に組み合わせ、ステータコア10を形成する(ステップS103)。このとき、図4あるいは図5に示した分割コア9Aの突出部15と分割コア9Bの突出部15とが当接し、これらが溶接により固定される。 Next, the plurality of split cores 9 are combined into a ring shape to form the stator core 10 (step S103). At this time, the protrusion 15 of the split core 9A and the protrusion 15 of the split core 9B shown in FIG. 4 or 5 come into contact and are fixed by welding.
 各分割コア9には既に巻線20が巻かれているため、分割コア9を組み合わせてステータコア10とすることにより、ステータ1が完成する。 Since the winding 20 is already wound around each split core 9, the stator 1 is completed by combining the split cores 9 to form the stator core 10.
 次に、円筒状のシェル30に、ステータ1を焼嵌めにより固定する(ステップS104)。焼嵌め工程では、シェル30を加熱して熱膨張させ、シェル30の内側にステータ1を挿入する。 Next, the stator 1 is fixed to the cylindrical shell 30 by shrink fitting (step S104). In the shrink fitting process, the shell 30 is heated to thermally expand, and the stator 1 is inserted inside the shell 30.
 図8(A),(B),(C)は、焼嵌め工程を説明するための模式図である。図8(A),(B)に示すように、焼嵌め前のステータコア10の外径をD1とし、シェル30の内径をD2とする。焼嵌め工程では、シェル30を加熱して熱膨張させ、シェル30の内径をステータコア10の外径D1よりも大きくする。この状態で、シェル30の内側にステータ1を挿入する。 FIGS. 8(A), (B), and (C) are schematic diagrams for explaining the shrink fitting process. As shown in FIGS. 8(A) and 8(B), the outer diameter of the stator core 10 before shrink fitting is set to D1, and the inner diameter of the shell 30 is set to D2. In the shrink fitting process, the shell 30 is heated to thermally expand, and the inner diameter of the shell 30 is made larger than the outer diameter D1 of the stator core 10. In this state, the stator 1 is inserted inside the shell 30.
 その後、シェル30を冷却することにより、図8(C)に示すように、シェル30の内径がD3(<D1)まで収縮する。これにより、ステータコア10の外周がシェル30の内周に嵌合する。 Thereafter, by cooling the shell 30, the inner diameter of the shell 30 contracts to D3 (<D1) as shown in FIG. 8(C). As a result, the outer periphery of the stator core 10 fits into the inner periphery of the shell 30.
 一方、ロータ5は、複数の電磁鋼板を軸方向に積層してロータコア50を形成し、磁石挿入孔51に永久磁石60を挿入することにより形成する。ロータ5の中心孔53にシャフト70を固定し、ロータ5をシェル30に固定されたステータ1の内側に挿入する(図7のステップS105)。その後、シェル30を密閉する(ステップS106)。これにより、ステータ1およびロータ5を含む電動機3が完成する。 On the other hand, the rotor 5 is formed by laminating a plurality of electromagnetic steel sheets in the axial direction to form a rotor core 50, and inserting the permanent magnets 60 into the magnet insertion holes 51. The shaft 70 is fixed in the center hole 53 of the rotor 5, and the rotor 5 is inserted inside the stator 1 fixed to the shell 30 (step S105 in FIG. 7). After that, the shell 30 is sealed (step S106). As a result, the electric motor 3 including the stator 1 and the rotor 5 is completed.
<作用>
 次に、実施の形態1の作用について説明する。図9は、比較例の分割コア9A,9Bを示す平面図である。比較例の分割コア9A,9Bはいずれも、ヨーク部110の周方向の各端部に突出部15a,15bを有する。突出部15aはヨーク11の外周111に達し、突出部15bはヨーク11の内周112に達している。突出部15a,15bの間には、空隙部16aが形成されている。
<Effect>
Next, the operation of the first embodiment will be explained. FIG. 9 is a plan view showing divided cores 9A and 9B of a comparative example. The split cores 9A and 9B of the comparative example both have protrusions 15a and 15b at each end of the yoke portion 110 in the circumferential direction. The protrusion 15a reaches the outer circumference 111 of the yoke 11, and the protrusion 15b reaches the inner circumference 112 of the yoke 11. A gap 16a is formed between the protrusions 15a and 15b.
 上述したシェル30への焼嵌めによって、分割コア9A,9Bには圧縮応力が作用する。電磁鋼板は圧縮応力を受けると磁気特性が変化し、鉄損が増加する。比較例では、圧縮応力は分割コア9A,9Bの突出部15a,15bに作用するが、分割コア9A,9Bの空隙部16に面する部分には作用しないため、鉄損の増加を抑制することができる。 Due to the shrink fitting into the shell 30 described above, compressive stress acts on the split cores 9A and 9B. When electrical steel sheets are subjected to compressive stress, their magnetic properties change and iron loss increases. In the comparative example, compressive stress acts on the protrusions 15a, 15b of the split cores 9A, 9B, but does not act on the portions of the split cores 9A, 9B facing the voids 16, thereby suppressing an increase in iron loss. Can be done.
 但し、比較例では、突出部15bがヨーク部110の内周112に達している。そのため、圧縮応力を受けた突出部15bが径方向内側に変形すると、突出部15bがスロット13内に入り込む可能性がある。スロット13には巻線20が収容されているため、突出部15bがスロット13内に入り込むと、巻線20の損傷につながる可能性がある。 However, in the comparative example, the protruding portion 15b reaches the inner circumference 112 of the yoke portion 110. Therefore, when the protrusion 15b receives compressive stress and deforms inward in the radial direction, the protrusion 15b may enter into the slot 13. Since the winding 20 is accommodated in the slot 13, if the protrusion 15b enters the slot 13, the winding 20 may be damaged.
 これに対し、実施の形態1では、分割コア9A,9Bの突出部15のうち、最も内周側に位置する突出部15bが、ヨーク部110の内周112から径方向外側に離間した位置に形成されている。そのため、突出部15bが径方向内側に変形したとしても、スロット13内に入り込むことがなく、巻線20の損傷を防止することができる。 On the other hand, in the first embodiment, among the protrusions 15 of the split cores 9A and 9B, the protrusion 15b located on the innermost circumferential side is located at a position spaced radially outward from the inner circumference 112 of the yoke portion 110. It is formed. Therefore, even if the protrusion 15b deforms inward in the radial direction, it will not enter into the slot 13, and damage to the winding 20 can be prevented.
 また、実施の形態1では、空隙部16bの径方向の長さL1が周方向の長さL2よりも長い(L1>L2)。空隙部16bはヨーク11の周方向の磁路中に位置するため、空隙部16bの周方向の長さL2が短い方が、空隙部16bを磁束が通過しやすい。空隙部16bの径方向の長さL1は、突出部15bが変形してもスロット13内に達しない長さに設定することにより、巻線20の損傷を効果的に防止することができる。 Furthermore, in the first embodiment, the radial length L1 of the cavity 16b is longer than the circumferential length L2 (L1>L2). Since the air gap 16b is located in the circumferential magnetic path of the yoke 11, the shorter the circumferential length L2 of the air gap 16b, the easier the magnetic flux will pass through the air gap 16b. Damage to the winding 20 can be effectively prevented by setting the radial length L1 of the cavity 16b to a length that does not reach the inside of the slot 13 even if the protrusion 15b is deformed.
 次に、焼嵌め工程(図7のステップS104)における焼嵌め代について説明する。焼き嵌め時には、圧縮応力によりステータコア10が径方向内側に変形する。これに伴い、分割コア9A,9Bの間には、空隙部16bを周方向に縮小させる方向に応力が加わる。 Next, the shrink-fitting allowance in the shrink-fitting process (step S104 in FIG. 7) will be explained. During shrink fitting, stator core 10 deforms radially inward due to compressive stress. Accordingly, stress is applied between the split cores 9A and 9B in a direction that reduces the gap 16b in the circumferential direction.
 焼嵌め代Wは、焼嵌め前のステータコア10の外径D1(図8(A))と、焼嵌め前のシェル30の内径D2(図8(B))との差D1-D2で定義される。なお、ステータコア10の外径D1およびシェル30の内径D2はいずれも、軸線Axを中心とする1周当たりの平均値(以下、周方向の平均値と称する)である。 The shrink-fitting allowance W is defined by the difference D1-D2 between the outer diameter D1 of the stator core 10 before shrink-fitting (FIG. 8(A)) and the inner diameter D2 of the shell 30 before shrink-fitting (FIG. 8(B)). Ru. Note that both the outer diameter D1 of the stator core 10 and the inner diameter D2 of the shell 30 are average values per revolution around the axis Ax (hereinafter referred to as circumferential average values).
 空隙部16bの周方向の長さL2は、ステータコア10の焼嵌め代Wに対して、0.1×W≦L2≦0.6×Wの範囲にあることが望ましい。この理由について、以下に説明する。 It is desirable that the circumferential length L2 of the cavity 16b is in the range of 0.1×W≦L2≦0.6×W with respect to the shrink-fitting allowance W of the stator core 10. The reason for this will be explained below.
 上述した図8(C)に示したように、焼嵌め後のステータコア10の外径をD3とする。この場合、シェル30の内径もD3である。ステータコア10の外径(すなわちシェル30の内径)D3は、周方向の平均値である。 As shown in FIG. 8(C) described above, the outer diameter of the stator core 10 after shrink fitting is set to D3. In this case, the inner diameter of the shell 30 is also D3. The outer diameter D3 of the stator core 10 (that is, the inner diameter of the shell 30) is an average value in the circumferential direction.
 焼嵌め前後のステータコア10の外径の変化量ΔOUTは、D1-D3で表される。焼嵌め前後のシェル30の内径の変化量ΔINは、D2-D3で表される。 The amount of change ΔOUT in the outer diameter of the stator core 10 before and after shrink fitting is expressed as D1-D3. The amount of change ΔIN in the inner diameter of the shell 30 before and after shrink fitting is expressed as D2-D3.
 焼嵌め代Wは、上記の通りD1-D2であるため、次の式(1)のように表すこともできる。
 W=ΔOUT+ΔIN …(1)
Since the shrink-fitting allowance W is D1-D2 as described above, it can also be expressed as in the following equation (1).
W=ΔOUT+ΔIN…(1)
 焼嵌め時には、ステータコア10の弾性荷重とシェル30の弾性荷重とは等しくなる。そのため、ステータコア10の剛性をK1とし、シェル30の剛性をK2とすると、次の式(2)の関係が成立する。
 K1×ΔOUT=K2×ΔIN …(2)
At the time of shrink fitting, the elastic load of the stator core 10 and the elastic load of the shell 30 become equal. Therefore, when the stiffness of the stator core 10 is K1 and the stiffness of the shell 30 is K2, the following equation (2) holds true.
K1×ΔOUT=K2×ΔIN…(2)
 上記の式(1),(2)からΔINを消去すると、以下の式(3)が得られる。
 ΔOUT=[(K2/K1)/{1+(K2/K1)}]×W …(3)
By eliminating ΔIN from the above equations (1) and (2), the following equation (3) is obtained.
ΔOUT=[(K2/K1)/{1+(K2/K1)}]×W...(3)
 ΔOUTはステータコア10の外径の変化量であるが、ステータコア10の周方向の変化量ΔCIに換算すると、以下の式(4)が得られる。
 ΔCI=2×π×[(K2/K1)/{1+(K2/K1)}]×W …(4)
ΔOUT is the amount of change in the outer diameter of the stator core 10, and when converted into the amount of change ΔCI in the circumferential direction of the stator core 10, the following equation (4) is obtained.
ΔCI=2×π×[(K2/K1)/{1+(K2/K1)}]×W…(4)
 K2/K1は、ステータコア10およびシェル30の厚さ、並びに、ステータコア10およびシェル30を構成する材料のヤング率から決まる。ステータコア10およびシェル30が鉄で構成されている場合、K2/K1は以下の範囲内である。
 0.02≦K2/K1≦0.1
K2/K1 is determined from the thickness of stator core 10 and shell 30, and the Young's modulus of the material forming stator core 10 and shell 30. When the stator core 10 and shell 30 are made of iron, K2/K1 is within the following range.
0.02≦K2/K1≦0.1
 このK2/K1の範囲を上記式(4)に代入すると、以下の式(5)が得られる。
 0.1×W≦ΔCI≦0.6×W …(5)
By substituting this range of K2/K1 into the above equation (4), the following equation (5) is obtained.
0.1×W≦ΔCI≦0.6×W…(5)
 すなわち、焼嵌め時の圧縮応力により、空隙部16の周方向の長さL2は、焼嵌め代Wの10~60%だけ縮小する。そのため、空隙部16bの長さL2を、0.1×W≦L2≦0.6×Wの範囲に設定することにより、圧縮応力による空隙部16bの潰れを防止することができる。 That is, due to compressive stress during shrink fitting, the circumferential length L2 of the gap 16 is reduced by 10 to 60% of the shrink fitting allowance W. Therefore, by setting the length L2 of the cavity 16b in the range of 0.1×W≦L2≦0.6×W, it is possible to prevent the cavity 16b from collapsing due to compressive stress.
 ここで、焼嵌め代Wは、焼嵌め前のステータコア10の外径D1と、シェル30の内径D2との差として計算されるのが一般的である。但し、焼嵌め後においても、ステータコア10からシェル30を取り外し、ステータコア10の外径とシェル30の内径の差から、焼嵌め代を計算することも可能である。 Here, the shrink-fitting allowance W is generally calculated as the difference between the outer diameter D1 of the stator core 10 and the inner diameter D2 of the shell 30 before shrink-fitting. However, even after shrink fitting, it is possible to remove the shell 30 from the stator core 10 and calculate the shrink fitting allowance from the difference between the outer diameter of the stator core 10 and the inner diameter of the shell 30.
 図10(A),(B)は、図8(C)に示した焼嵌め後に、ステータコア10からシェル30を取り外した後のステータコア10およびシェル30をそれぞれ示す図である。 FIGS. 10(A) and 10(B) are views showing the stator core 10 and shell 30, respectively, after the shell 30 has been removed from the stator core 10 after the shrink fitting shown in FIG. 8(C).
 図10(A),(B)に示すように、ステータコア10からシェル30を取り外すと、ステータコア10およびシェル30は焼嵌めによる荷重から解放されるため、ステータコア10の外径およびシェル30の内径は、焼嵌め前のステータコア10の外径D1およびシェル30の内径D2を復元する方向に変化する。 As shown in FIGS. 10(A) and 10(B), when the shell 30 is removed from the stator core 10, the stator core 10 and the shell 30 are released from the load due to shrink fitting, so the outer diameter of the stator core 10 and the inner diameter of the shell 30 are , changes in the direction of restoring the outer diameter D1 of the stator core 10 and the inner diameter D2 of the shell 30 before shrink fitting.
 従って、ステータコア10からシェル30を取り外した後のステータコア10の外径D5およびシェル30の内径D6から計算した焼嵌め代(D5-D6)は、焼嵌め前のステータコア10の外径D1とシェル30の内径D2から計算された焼嵌め代W(=D1-D2)に対する近似として成り立つ。 Therefore, the shrink-fitting allowance (D5-D6) calculated from the outer diameter D5 of the stator core 10 after removing the shell 30 from the stator core 10 and the inner diameter D6 of the shell 30 is the outer diameter D1 of the stator core 10 before shrink-fitting and the inner diameter D6 of the shell 30. This is an approximation to the shrink-fitting allowance W (=D1-D2) calculated from the inner diameter D2.
 なお、焼嵌め後にステータコア10からシェル30を取り外す方法としては、シェル30を再加熱により拡張させてステータコア10を引き抜く方法がある。その他にも、シェル30の一部を切断する等、種々の方法がある。 Note that, as a method for removing the shell 30 from the stator core 10 after shrink fitting, there is a method of expanding the shell 30 by reheating and pulling out the stator core 10. There are various other methods, such as cutting off a portion of the shell 30.
 また、ステータコア10の内周は、複数のティース12の歯先面によって規定される。ステータコア10の内周の真円度が大きい場合(すなわち真円からの隔たりが大きい場合)には、ステータ1とロータ5との隙間が狭い部分と広い部分とが生じる。その結果、ステータ1とロータ5との間に作用する磁気的吸引力にばらつきが生じ、振動および騒音の原因となる。 Further, the inner circumference of the stator core 10 is defined by the tooth tip surfaces of the plurality of teeth 12. When the circularity of the inner periphery of the stator core 10 is large (that is, when the distance from the perfect circle is large), the gap between the stator 1 and the rotor 5 is narrow in some areas and wide in others. As a result, variations occur in the magnetic attraction force acting between the stator 1 and the rotor 5, causing vibration and noise.
 また、ステータコア10の内周の真円度が大きい場合、ロータ5の磁束がステータ1の巻線20に鎖交して生じる誘起電圧の波形に歪みが生じ、トルク脈動が大きくなり、振動および騒音の原因となる。 Furthermore, if the inner circumference of the stator core 10 has a large roundness, the waveform of the induced voltage caused by the magnetic flux of the rotor 5 interlinking with the windings 20 of the stator 1 is distorted, torque pulsation becomes large, and vibrations and noise are generated. It causes
 一般に、ステータコア10の内周の真円度が、ステータ1とロータ5との径方向の隙間G(図2)の5%以下であれば、振動および騒音が抑制されることが知られている。なお、隙間Gは、ステータ1とロータ5との径方向の隙間の周方向の平均値であり、例えば0.3~1.0mmである。 Generally, it is known that vibration and noise can be suppressed if the circularity of the inner circumference of the stator core 10 is 5% or less of the radial gap G (FIG. 2) between the stator 1 and the rotor 5. . Note that the gap G is the average value in the circumferential direction of the radial gap between the stator 1 and the rotor 5, and is, for example, 0.3 to 1.0 mm.
 分割コア9A,9Bの間の空隙部16は、ステータ1とロータ5との隙間Gと同様、磁路中に存在する非磁性部分である。そのため、空隙部16の周方向の長さL2を、ステータ1とロータ5との隙間Gの5%以下とすることで、振動および騒音を低減することができる。すなわち、L2≦0.05×Gが成立することにより、振動および騒音を低減することができる。 The air gap 16 between the split cores 9A and 9B is a non-magnetic portion that exists in the magnetic path, similar to the gap G between the stator 1 and the rotor 5. Therefore, by setting the circumferential length L2 of the cavity 16 to 5% or less of the gap G between the stator 1 and the rotor 5, vibration and noise can be reduced. That is, by satisfying L2≦0.05×G, vibration and noise can be reduced.
 次に、ヨーク11の径方向の長さL3と、空隙部16の径方向の長さの合計(以下、合計長さと称する)L4との関係について説明する。図11は、ヨーク11の径方向の長さL3および空隙部16の合計長さL4を説明するための図である。 Next, the relationship between the radial length L3 of the yoke 11 and the total radial length L4 of the cavity 16 (hereinafter referred to as total length) will be described. FIG. 11 is a diagram for explaining the radial length L3 of the yoke 11 and the total length L4 of the cavity 16.
 図11では、分割コア9A,9Bは、ヨーク部110の各端部に空隙部16a,16bを有する。空隙部16aの径方向の長さL41と、空隙部16bの径方向の長さL42の合計を、合計長さL4とする。また、ヨーク11の結合部14における径方向の長さ、すなわち内周112から外周111までの最短距離を、L3とする。 In FIG. 11, the split cores 9A and 9B have void portions 16a and 16b at each end of the yoke portion 110. The sum of the radial length L41 of the cavity 16a and the radial length L42 of the cavity 16b is defined as a total length L4. Further, the radial length of the coupling portion 14 of the yoke 11, that is, the shortest distance from the inner circumference 112 to the outer circumference 111, is defined as L3.
 なお、図4に示したように分割コア9A,9Bが結合部14に空隙部16a,16b,16cを有する場合には、空隙部16a,16b,16cの径方向の長さの合計を、合計長さL4とする。 In addition, as shown in FIG. 4, when the split cores 9A, 9B have voids 16a, 16b, 16c in the joint portion 14, the sum of the radial lengths of the voids 16a, 16b, 16c is The length is L4.
 空隙部16の径方向の長さが長いほど、圧縮応力の緩和による鉄損の低減効果は向上するが、分割コア9A,9Bの当接面積が狭くなる。分割コア9A,9Bの当接面積が狭くなると、巻線20に鎖交する磁束の量が減少し、誘起電圧が小さくなる。その結果、同じトルクを発生するために必要な電流が大きくなり、巻線20の銅損が増加し、モータ効率の低下につながる。そのため、モータ効率の低下抑制という観点から、空隙部16の径方向の合計長さL4には最適範囲が存在する。 The longer the length of the cavity 16 in the radial direction is, the more the effect of reducing iron loss due to the relaxation of compressive stress is improved, but the contact area of the split cores 9A and 9B becomes narrower. When the contact area of the split cores 9A, 9B becomes narrower, the amount of magnetic flux interlinking with the winding 20 decreases, and the induced voltage becomes smaller. As a result, the current required to generate the same torque increases, copper loss in the winding 20 increases, and motor efficiency decreases. Therefore, from the viewpoint of suppressing a decrease in motor efficiency, there is an optimum range for the total radial length L4 of the void portion 16.
 図12は、ヨーク11の径方向の長さL3に対する空隙部16の径方向の合計長さL4の比L4/L3と、モータ効率との関係を示す図である。モータ効率は、空隙部16を設けない場合、すなわちL4/L3=0の場合を基準とした相対値で表している。 FIG. 12 is a diagram showing the relationship between the ratio L4/L3 of the total radial length L4 of the gap 16 to the radial length L3 of the yoke 11 and motor efficiency. The motor efficiency is expressed as a relative value based on the case where the gap 16 is not provided, that is, the case where L4/L3=0.
 図12に示すように、0≦L4/L3≦0.75の範囲では、モータ効率(相対値)が0%以上である。すなわち、0≦L4/L3≦0.75の範囲では、空隙部16を設けない場合のモータ効率以上のモータ効率が得られる。 As shown in FIG. 12, in the range of 0≦L4/L3≦0.75, the motor efficiency (relative value) is 0% or more. That is, in the range of 0≦L4/L3≦0.75, a motor efficiency higher than the motor efficiency when the void portion 16 is not provided can be obtained.
 また、0.35≦L4/L3≦0.45の範囲では、特に高いモータ効率、より具体的には、空隙部16を設けない場合のモータ効率に対して25%以上高いモータ効率が得られる。 Further, in the range of 0.35≦L4/L3≦0.45, particularly high motor efficiency can be obtained, more specifically, a motor efficiency that is 25% or more higher than the motor efficiency when the air gap 16 is not provided. .
 図12の結果から、0≦L4/L3≦0.75の範囲であればモータ効率の低下を抑制することができ、0.35≦L4/L3≦0.45の範囲であればモータ効率を特に向上することができることが分かる。 From the results in Fig. 12, it is possible to suppress a decrease in motor efficiency in the range of 0≦L4/L3≦0.75, and to reduce the motor efficiency in the range of 0.35≦L4/L3≦0.45. It can be seen that this can be particularly improved.
<実施の形態の効果>
 以上説明したように、実施の形態1のステータ1は、シェル30の内側に固定される。ステータ1は、環状のヨーク11と、ヨーク11の径方向内側に形成されたスロット13とを有するステータコア10を備える。ステータコア10は、ヨーク11の周方向に組み合わされた第1の分割コアとしての分割コア9Aと第2の分割コアとしての分割コア9Bとを有する。分割コア9Aは、分割コア9Bに対向する端部に、第1の突出部としての突出部15aと、これよりも径方向内側に位置する第2の突出部としての突出部15bとを有する。突出部15bは、ヨーク部110の内周112から径方向外側に離間している。突出部15aと突出部15bとの間には、第1の空隙部としての空隙部16aが形成されている。突出部15bとヨーク部110の内周112との間には、第2の空隙部としての空隙部16bが形成されている。
<Effects of the embodiment>
As explained above, the stator 1 of the first embodiment is fixed inside the shell 30. The stator 1 includes a stator core 10 having an annular yoke 11 and a slot 13 formed inside the yoke 11 in the radial direction. The stator core 10 includes a split core 9A as a first split core and a split core 9B as a second split core combined in the circumferential direction of the yoke 11. The split core 9A has a protrusion 15a as a first protrusion and a protrusion 15b as a second protrusion located radially inward from the protrusion 15a at the end facing the split core 9B. The protruding portion 15b is spaced radially outward from the inner circumference 112 of the yoke portion 110. A gap 16a serving as a first gap is formed between the protrusion 15a and the protrusion 15b. A gap 16b serving as a second gap is formed between the protrusion 15b and the inner periphery 112 of the yoke 110.
 このように、分割コア9A,9Bの間に空隙部16a,16bが形成されているため、圧縮応力を低減し、鉄損を低減することができる。鉄損の増加の抑制により、より少ない電流で所望のトルクを発生することが可能になり、モータ効率が向上する。 In this way, since the voids 16a and 16b are formed between the split cores 9A and 9B, compressive stress can be reduced and iron loss can be reduced. By suppressing the increase in iron loss, it becomes possible to generate desired torque with less current, improving motor efficiency.
 加えて、内周側の突出部15bがヨーク部110の内周112から径方向外側に離間しているため、突出部15bが内周側に変形したとしても、スロット13内の巻線20の損傷を防止することができる。 In addition, since the inner protrusion 15b is spaced radially outward from the inner circumference 112 of the yoke part 110, even if the protrusion 15b is deformed inward, the winding 20 in the slot 13 is Damage can be prevented.
 また、突出部15aがヨーク部110の外周111に達しているため、焼嵌め時に突出部15aがシェル30に当接し、正確に位置決めされる。すなわち、分割コア9A,9Bの突出部15a同士の位置ずれをなくし、正確に接触させることができる。 Furthermore, since the protruding portion 15a reaches the outer periphery 111 of the yoke portion 110, the protruding portion 15a abuts against the shell 30 during shrink fitting and is accurately positioned. That is, it is possible to eliminate positional deviation between the protrusions 15a of the split cores 9A and 9B and to bring them into accurate contact.
 また、分割コア9A,9Bが、突出部15a,15bとの間に、第3の突出部としての突出部15cをさらに有するため、圧縮応力を突出部15a,15b,15cで分散することができる。 Moreover, since the split cores 9A, 9B further have a protrusion 15c as a third protrusion between the protrusions 15a, 15b, compressive stress can be dispersed by the protrusions 15a, 15b, 15c. .
 また、分割コア9Aの突出部15と分割コア9Bの突出部15とが当接するため、各突出部15の突出量が少なくても、空隙部16の周方向の長さを確保することができる。そのため、圧縮応力による各突出部15の変形を抑制することができる。 Furthermore, since the protrusion 15 of the split core 9A and the protrusion 15 of the split core 9B are in contact with each other, the length of the gap 16 in the circumferential direction can be ensured even if the amount of protrusion of each protrusion 15 is small. . Therefore, deformation of each protrusion 15 due to compressive stress can be suppressed.
 また、空隙部16bの径方向の長さL1と周方向の長さL2とがL1>L2を満足するため、突出部15bが変形してもスロット13内に入り込みにくく、巻線20の損傷の防止効果を高めることができる。 Furthermore, since the radial length L1 and the circumferential length L2 of the cavity 16b satisfy L1>L2, even if the protrusion 15b is deformed, it is difficult to enter the slot 13, thereby preventing damage to the winding 20. The prevention effect can be enhanced.
 また、ステータコア10の焼嵌め代Wと空隙部16bの周方向の長さL2とが、0.1×W≦L2≦0.6×Wを満足するため、焼嵌めによる圧縮応力で空隙部16bが周方向に縮んでも、空隙部16bの潰れを抑制することができる。 Furthermore, since the shrink-fitting allowance W of the stator core 10 and the length L2 in the circumferential direction of the cavity 16b satisfy 0.1×W≦L2≦0.6×W, the compressive stress caused by the shrink-fitting causes the cavity 16b to Even if the gap portion 16b contracts in the circumferential direction, collapse of the void portion 16b can be suppressed.
 また、空隙部16を囲む周縁が湾曲角部162等の曲線部を有するため、空隙部16の周囲の応力集中を緩和することができる。 Furthermore, since the peripheral edge surrounding the gap 16 has curved parts such as the curved corners 162, stress concentration around the gap 16 can be alleviated.
 また、ヨーク11の径方向の長さL3と、空隙部16の径方向の合計長さL4とが、0≦L4/L3≦0.75を満足するため、空隙部16を設けたことによるモータ効率の低下を抑制することができる。また、長さL3,L4が0.35≦L4/L3≦0.45を満足すれば、モータ効率を特に向上することができる。 Furthermore, since the radial length L3 of the yoke 11 and the total radial length L4 of the cavity 16 satisfy 0≦L4/L3≦0.75, the motor due to the provision of the cavity 16 Decrease in efficiency can be suppressed. Further, if the lengths L3 and L4 satisfy 0.35≦L4/L3≦0.45, the motor efficiency can be particularly improved.
実施の形態2.
 次に、実施の形態2について説明する。図13は、実施の形態2の分割コア19A,19Bを示す平面図である。実施の形態1では、分割コア19Aの突出部15と、分割コア19Bの突出部15とが当接していた。これに対し、実施の形態2では、分割コア19Aの突出部15と、分割コア19Bの平坦な端面21が当接する。
Embodiment 2.
Next, a second embodiment will be described. FIG. 13 is a plan view showing split cores 19A and 19B of the second embodiment. In the first embodiment, the protrusion 15 of the split core 19A was in contact with the protrusion 15 of the split core 19B. In contrast, in the second embodiment, the protrusion 15 of the split core 19A and the flat end surface 21 of the split core 19B abut.
 図14は、実施の形態2の分割コア19を示す平面図である。分割コア19A,19Bは同一形状を有するため、分割コア19として説明する。分割コア19は、ヨーク部110の周方向の一端部(図14における右端部)に、第1の突出部としての突出部15aと、第2の突出部としての突出部15bとを有する。 FIG. 14 is a plan view showing the split core 19 of the second embodiment. Since the split cores 19A and 19B have the same shape, they will be described as the split core 19. The split core 19 has a protrusion 15a as a first protrusion and a protrusion 15b as a second protrusion at one end in the circumferential direction of the yoke portion 110 (the right end in FIG. 14).
 突出部15aはヨーク部110の外周111に達しており、突出部15bはヨーク部110の内周112に対して径方向外側に離間している。突出部15a,15bはいずれも、周方向に突出している。 The protruding portion 15a reaches the outer circumference 111 of the yoke portion 110, and the protruding portion 15b is spaced radially outward from the inner circumference 112 of the yoke portion 110. Both protrusions 15a and 15b protrude in the circumferential direction.
 一方、分割コア19の周方向の他端部(図14における左端部)は、平坦な端面21である。端面21は、軸方向に直交する面において直線状に、より具体的には径方向に延在している。そのため、図14のように2つの分割コア19A,19Bを組み合わせると、分割コア19Aの突出部15a,15bが分割コア19Bの端面21に当接する。 On the other hand, the other circumferential end of the split core 19 (the left end in FIG. 14) is a flat end surface 21. The end surface 21 extends linearly in a plane perpendicular to the axial direction, more specifically, in the radial direction. Therefore, when the two split cores 19A and 19B are combined as shown in FIG. 14, the protrusions 15a and 15b of the split core 19A come into contact with the end surface 21 of the split core 19B.
 突出部15a,15bの間には、第1の空隙部としての空隙部16aが形成される。突出部15bとヨーク部110の内周112との間には、第2の空隙部としての空隙部16bが形成される。突出部15a,15bは、特に区別する必要がない場合には、突出部15と称する。空隙部16a,16bは、特に区別する必要がない場合には、空隙部16と称する。 A gap 16a serving as a first gap is formed between the protrusions 15a and 15b. A gap 16b serving as a second gap is formed between the protrusion 15b and the inner periphery 112 of the yoke 110. The protrusions 15a and 15b will be referred to as a protrusion 15 unless there is a need to distinguish them. The void portions 16a and 16b will be referred to as a void portion 16 unless there is a particular need to distinguish them.
 分割コア19A,19Bの突出部15同士が当接する場合には、突出部15の溶接時あるいはシェル30への焼嵌め時の応力により、分割コア19Aの突出部15と分割コア19Bの突出部15との径方向の位置ずれが生じる可能性がある。 When the protrusions 15 of the split cores 19A and 19B come into contact with each other, the protrusions 15 of the split core 19A and the protrusions 15 of the split core 19B are caused by stress during welding of the protrusions 15 or shrink fitting to the shell 30. There is a possibility that radial positional deviation may occur.
 このような位置ずれが生じると、分割コア19Aの突出部15と分割コア19Bの突出部15との当接面積が減少する可能性がある。また、突出部15は辺の数が多く、寸法ばらつきが生じ易いため、分割コア19Aの突出部15と分割コア19Bの突出部15との当接面積が減少する可能性がある。このように当接面積が減少すると、突出部15に加わる応力が増加し、突出部15の変形が生じる可能性がある。 If such a positional shift occurs, the contact area between the protrusion 15 of the split core 19A and the protrusion 15 of the split core 19B may decrease. Furthermore, since the protrusion 15 has a large number of sides and is likely to vary in size, the contact area between the protrusion 15 of the split core 19A and the protrusion 15 of the split core 19B may be reduced. When the contact area decreases in this way, the stress applied to the protrusion 15 increases, which may cause deformation of the protrusion 15.
 実施の形態2では、分割コア19Aの突出部15が分割コア19Bの端面21に当接するため、当接面積のばらつきを抑えることができる。これにより、突出部15に加わる圧縮応力を低減させることができ、突出部15の変形を抑制することができる。 In the second embodiment, the protrusion 15 of the split core 19A contacts the end surface 21 of the split core 19B, so variations in the contact area can be suppressed. Thereby, compressive stress applied to the protrusion 15 can be reduced, and deformation of the protrusion 15 can be suppressed.
 また、分割コア9は、金型で打ち抜かれた電磁鋼板を積層したものであるため、分割コア9の形状が複雑であるほど金型の消耗が進み、加工寸法の管理も難しくなる。分割コア9のヨーク部110の一端部を平坦な端面21とすることは、金型の管理および加工品質の管理の点でも有用である。 Furthermore, since the split core 9 is made of laminated electromagnetic steel plates punched with a die, the more complex the shape of the split core 9, the more the die wears out, and the more difficult it becomes to manage the processing dimensions. Making one end of the yoke portion 110 of the split core 9 a flat end surface 21 is also useful in terms of mold management and processing quality management.
 なお、ここでは、分割コア19がヨーク部110の一端部に突出部15a,15bを有する場合について説明したが、図4に示したように突出部15a,15b,15cを有していてもよい。 Here, a case has been described in which the split core 19 has protrusions 15a, 15b at one end of the yoke portion 110, but it may also have protrusions 15a, 15b, 15c as shown in FIG. .
 上述した点を除き、実施の形態2のステータは、実施の形態1のステータ1と同様に構成されている。 Except for the above-mentioned points, the stator of the second embodiment is configured similarly to the stator 1 of the first embodiment.
 以上説明したように、実施の形態2では、分割コア19Bの分割コア19Aに対向する端面21が、軸方向に直交する面において直線状に延在する面である。そのため、分割コア19A,19Bの当接面積を確保することができ、突出部15の変形を抑制することができる。 As explained above, in the second embodiment, the end surface 21 of the split core 19B facing the split core 19A is a surface that extends linearly in a plane orthogonal to the axial direction. Therefore, a contact area between the split cores 19A and 19B can be secured, and deformation of the protrusion 15 can be suppressed.
実施の形態3.
 次に、実施の形態3について説明する。図15は、実施の形態3の分割コア29A,29Bを示す平面図である。実施の形態3では、分割コア29Bに設けた嵌合部23が、分割コア29Aの突出部15a,15bの間の凹部に嵌合する。
Embodiment 3.
Next, Embodiment 3 will be described. FIG. 15 is a plan view showing split cores 29A and 29B of the third embodiment. In the third embodiment, the fitting portion 23 provided on the split core 29B fits into the recess between the protrusions 15a and 15b of the split core 29A.
 図16は、実施の形態3の分割コア29を示す平面図である。分割コア29A,29Bは同一形状を有するため、分割コア29として説明する。分割コア29は、ヨーク部110の周方向の一端部(図16における右端部)に、第1の突出部としての突出部15aと、第2の突出部としての突出部15bとを有する。 FIG. 16 is a plan view showing the split core 29 of the third embodiment. Since the split cores 29A and 29B have the same shape, they will be described as a split core 29. The split core 29 has a protrusion 15a as a first protrusion and a protrusion 15b as a second protrusion at one end in the circumferential direction of the yoke portion 110 (the right end in FIG. 16).
 突出部15aはヨーク部110の外周111に達しており、突出部15bはヨーク部110の内周112に対して径方向外側に離間している。突出部15a,15bはいずれも、周方向に突出している。 The protruding portion 15a reaches the outer circumference 111 of the yoke portion 110, and the protruding portion 15b is spaced radially outward from the inner circumference 112 of the yoke portion 110. Both protrusions 15a and 15b protrude in the circumferential direction.
 分割コア29は、ヨーク部110の周方向の他端部(図16における左端部)に、平坦な端面22を有する。端面22は、軸方向に直交する面内で直線状に、より具体的には径方向に延在している。端面22は、突出部15aはヨーク部110の外周111に達している。 The split core 29 has a flat end surface 22 at the other end in the circumferential direction of the yoke portion 110 (the left end in FIG. 16). The end surface 22 extends linearly in a plane perpendicular to the axial direction, more specifically, in the radial direction. The protruding portion 15 a of the end surface 22 reaches the outer periphery 111 of the yoke portion 110 .
 また、分割コア29の端面22の径方向における中央部には、周方向に突出する嵌合部23が形成されている。また、分割コア29の端面22よりも内周側には、端面22よりも周方向に退避した凹部24が形成されている。 Furthermore, a fitting portion 23 that protrudes in the circumferential direction is formed at the radially central portion of the end surface 22 of the split core 29 . Further, a recess 24 is formed on the inner peripheral side of the end face 22 of the split core 29 and is retracted from the end face 22 in the circumferential direction.
 そのため、図16のように2つの分割コア29A,29Bを組み合わせると、分割コア29Aの突出部15a,15bが分割コア29Bの端面22に当接する。さらに、分割コア29Bの嵌合部23が分割コア29Aの突出部15a,15bの間の凹部に嵌合する。 Therefore, when the two split cores 29A and 29B are combined as shown in FIG. 16, the protrusions 15a and 15b of the split core 29A come into contact with the end surface 22 of the split core 29B. Further, the fitting portion 23 of the split core 29B fits into the recess between the protrusions 15a and 15b of the split core 29A.
 突出部15a,15bの間には、第1の空隙部としての空隙部16aが形成される。突出部15bとヨーク部110の内周112との間には、第2の空隙部としての空隙部16bが形成される。突出部15a,15bは、特に区別する必要がない場合には、突出部15と称する。空隙部16a,16bは、特に区別する必要がない場合には、空隙部16と称する。 A gap 16a serving as a first gap is formed between the protrusions 15a and 15b. A gap 16b serving as a second gap is formed between the protrusion 15b and the inner periphery 112 of the yoke 110. The protrusions 15a and 15b will be referred to as a protrusion 15 unless there is a need to distinguish them. The void portions 16a and 16b will be referred to as a void portion 16 unless there is a particular need to distinguish them.
 分割コア29Bの嵌合部23が分割コア29Aの突出部15の間の凹部に嵌合することにより、分割コア29A,29Bの突出部15同士が当接する場合よりも、分割コア29A,29Bの当接状態を安定させることができる。これにより、突出部15への応力集中を抑え、突出部15の変形を抑制することができる。 By fitting the fitting portion 23 of the split core 29B into the recess between the protrusions 15 of the split core 29A, the split cores 29A and 29B are The contact state can be stabilized. Thereby, stress concentration on the protrusion 15 can be suppressed, and deformation of the protrusion 15 can be suppressed.
 なお、ここでは、分割コア29がヨーク部110の一端部に突出部15a,15bを有する場合について説明したが、図4に示したように突出部15a,15b,15cを有していてもよい。 Here, a case has been described in which the split core 29 has the protrusions 15a, 15b at one end of the yoke part 110, but it may also have the protrusions 15a, 15b, 15c as shown in FIG. .
 上述した点を除き、実施の形態3のステータは、実施の形態1のステータ1と同様に構成されている。 Except for the above-mentioned points, the stator of the third embodiment is configured similarly to the stator 1 of the first embodiment.
 以上説明したように、実施の形態3では、分割コア29Bの嵌合部23が分割コア29Aの突出部15の間の凹部に嵌合するため、分割コア29A,29Bの当接状態を安定させ、圧縮応力による突出部15の変形を抑制することができる。 As explained above, in the third embodiment, the fitting portion 23 of the split core 29B fits into the recess between the protrusion 15 of the split core 29A, so that the abutting state of the split cores 29A and 29B is stabilized. , deformation of the protrusion 15 due to compressive stress can be suppressed.
<圧縮機>
 次に、各実施の形態の電動機が適用可能な圧縮機について説明する。図17は、各実施の形態の電動機が適用可能な圧縮機500を示す縦断面図である。圧縮機500は、ここではロータリ圧縮機であり、密閉容器507と、密閉容器507内に配設された圧縮機構501と、圧縮機構501を駆動する電動機3とを備えている。
<Compressor>
Next, a compressor to which the electric motor of each embodiment can be applied will be described. FIG. 17 is a longitudinal sectional view showing a compressor 500 to which the electric motor of each embodiment can be applied. The compressor 500 is a rotary compressor here, and includes an airtight container 507, a compression mechanism 501 disposed within the airtight container 507, and an electric motor 3 that drives the compression mechanism 501.
 圧縮機構501は、シリンダ室503を有するシリンダ502と、電動機3のシャフト70と、シャフト70に固定されたローリングピストン504と、シリンダ室503内を吸入側と圧縮側に分けるベーン(図示せず)と、シャフト70が挿入されてシリンダ室503の軸方向端面を閉鎖する上部フレーム505および下部フレーム506とを有する。上部フレーム505および下部フレーム506には、上部吐出マフラ508および下部吐出マフラ509がそれぞれ装着されている。 The compression mechanism 501 includes a cylinder 502 having a cylinder chamber 503, a shaft 70 of the electric motor 3, a rolling piston 504 fixed to the shaft 70, and a vane (not shown) that divides the inside of the cylinder chamber 503 into a suction side and a compression side. and an upper frame 505 and a lower frame 506 into which the shaft 70 is inserted and which close the axial end surface of the cylinder chamber 503. An upper discharge muffler 508 and a lower discharge muffler 509 are attached to the upper frame 505 and the lower frame 506, respectively.
 密閉容器507は円筒状の容器であり、図1に示したシェル30を含む。密閉容器507の底部には、圧縮機構501の各摺動部を潤滑する冷凍機油(図示せず)が貯留されている。シャフト70は、軸受部としての上部フレーム505および下部フレーム506によって回転可能に保持されている。 The closed container 507 is a cylindrical container and includes the shell 30 shown in FIG. Refrigerating machine oil (not shown) for lubricating each sliding part of the compression mechanism 501 is stored at the bottom of the airtight container 507 . The shaft 70 is rotatably held by an upper frame 505 and a lower frame 506 as bearing parts.
 シリンダ502は、内部にシリンダ室503を備えており、ローリングピストン504は、シリンダ室503内で偏心回転する。シャフト70は偏心軸部を有し、その偏心軸部にローリングピストン504が嵌合している。 The cylinder 502 includes a cylinder chamber 503 therein, and the rolling piston 504 rotates eccentrically within the cylinder chamber 503. The shaft 70 has an eccentric shaft portion, and a rolling piston 504 is fitted into the eccentric shaft portion.
 電動機3のステータ1は、焼き嵌め、圧入または溶接等の方法により、密閉容器507のシェル30の内側に組み込まれている。ステータ1の巻線20には、密閉容器507に固定されたガラス端子511から電力が供給される。シャフト70は、ロータ5のシャフト孔64に固定されている。 The stator 1 of the electric motor 3 is assembled inside the shell 30 of the sealed container 507 by a method such as shrink fitting, press fitting, or welding. Power is supplied to the windings 20 of the stator 1 from glass terminals 511 fixed to the closed container 507. The shaft 70 is fixed to the shaft hole 64 of the rotor 5.
 密閉容器507の外部には、アキュムレータ510が取り付けられている。アキュムレータ510には、吸入管514を介して冷媒回路から冷媒ガスが流入する。吸入管514から冷媒ガスと共に液冷媒が流入した場合には、液冷媒がアキュムレータ510内に貯留され、冷媒ガスが圧縮機500に供給される。 An accumulator 510 is attached to the outside of the closed container 507. Refrigerant gas flows into the accumulator 510 from the refrigerant circuit via the suction pipe 514 . When liquid refrigerant flows in together with refrigerant gas from suction pipe 514, the liquid refrigerant is stored in accumulator 510, and refrigerant gas is supplied to compressor 500.
 密閉容器507には吸入パイプ513が固定され、この吸入パイプ513を介してアキュムレータ510からシリンダ502に冷媒ガスが供給される。また、密閉容器507の上部には、冷媒を外部に吐出する吐出パイプ512が設けられている。 A suction pipe 513 is fixed to the closed container 507, and refrigerant gas is supplied from the accumulator 510 to the cylinder 502 through the suction pipe 513. Furthermore, a discharge pipe 512 for discharging the refrigerant to the outside is provided at the upper part of the closed container 507.
 圧縮機500の冷媒としては、例えば、R410A、R407CまたはR22等を用いてもよいが、地球温暖化防止の観点からは、GWP(地球温暖化係数)の低い冷媒を用いることが望ましい。GWPの低い冷媒としては、例えば、以下の冷媒を用いることができる。 As the refrigerant for the compressor 500, for example, R410A, R407C, or R22 may be used, but from the viewpoint of preventing global warming, it is desirable to use a refrigerant with a low GWP (global warming potential). As the refrigerant with low GWP, for example, the following refrigerants can be used.
(1)まず、組成中に炭素の二重結合を有するハロゲン化炭化水素、例えばHFO(Hydro-Fluoro-Orefin)-1234yf(CFCF=CH)を用いることができる。HFO-1234yfのGWPは4である。
(2)また、組成中に炭素の二重結合を有する炭化水素、例えばR1270(プロピレン)を用いてもよい。R1270のGWPは3であり、HFO-1234yfより低いが、可燃性はHFO-1234yfより高い。
(3)また、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくとも何れかを含む混合物、例えばHFO-1234yfとR32との混合物を用いてもよい。上述したHFO-1234yfは低圧冷媒のため圧損が大きくなる傾向があり、冷凍サイクル(特に蒸発器)の性能低下を招く可能性がある。そのため、HFO-1234yfよりも高圧冷媒であるR32またはR41との混合物を用いることが実用上は望ましい。
(1) First, a halogenated hydrocarbon having a carbon double bond in its composition, such as HFO (Hydro-Fluoro-Orefin)-1234yf (CF 3 CF=CH 2 ), can be used. GWP of HFO-1234yf is 4.
(2) Additionally, a hydrocarbon having a carbon double bond in its composition, such as R1270 (propylene), may also be used. The GWP of R1270 is 3, lower than that of HFO-1234yf, but the flammability is higher than that of HFO-1234yf.
(3) Also, a mixture containing at least either a halogenated hydrocarbon having a carbon double bond in its composition or a hydrocarbon having a carbon double bond in its composition, for example, a mixture of HFO-1234yf and R32. May be used. Since the above-mentioned HFO-1234yf is a low-pressure refrigerant, it tends to have a large pressure drop, which may lead to a decrease in the performance of the refrigeration cycle (particularly the evaporator). Therefore, it is practically preferable to use a mixture with R32 or R41, which is a higher pressure refrigerant, than HFO-1234yf.
 圧縮機500の動作は、以下の通りである。アキュムレータ510から供給された冷媒ガスは、吸入パイプ513を通ってシリンダ502のシリンダ室503内に供給される。巻線20への電流供給によって電動機3が駆動されると、ロータ5と共にシャフト70が回転する。そして、シャフト70に嵌合するローリングピストン504がシリンダ室503内で偏心回転し、シリンダ室503内で冷媒が圧縮される。 The operation of the compressor 500 is as follows. Refrigerant gas supplied from the accumulator 510 is supplied into the cylinder chamber 503 of the cylinder 502 through the suction pipe 513. When the electric motor 3 is driven by supplying current to the winding 20, the shaft 70 rotates together with the rotor 5. Then, the rolling piston 504 fitted into the shaft 70 rotates eccentrically within the cylinder chamber 503, and the refrigerant is compressed within the cylinder chamber 503.
 シリンダ室503で圧縮された冷媒は、吐出マフラ508,509を通り、さらにロータ5の貫通穴56,57およびステータ1の凹部17(図1)を通って密閉容器507内を上昇する。密閉容器507内を上昇した冷媒は、吐出パイプ512から吐出され、冷凍サイクルの高圧側に供給される。 The refrigerant compressed in the cylinder chamber 503 passes through the discharge mufflers 508 and 509, and further passes through the through holes 56 and 57 of the rotor 5 and the recess 17 of the stator 1 (FIG. 1), and rises inside the closed container 507. The refrigerant that has risen inside the closed container 507 is discharged from the discharge pipe 512 and supplied to the high pressure side of the refrigeration cycle.
 なお、シリンダ室503で圧縮された冷媒には冷凍機油が混入しているが、ロータ5の貫通穴56,57あるいはステータ1の凹部17を通過する際に、冷媒と冷凍機油との分離が促進され、冷凍機油の吐出パイプ512への流入が防止される。 Note that although the refrigerant compressed in the cylinder chamber 503 is mixed with refrigerating machine oil, separation between the refrigerant and the refrigerating machine oil is facilitated when passing through the through holes 56 and 57 of the rotor 5 or the recess 17 of the stator 1. This prevents refrigerating machine oil from flowing into the discharge pipe 512.
 各実施の形態で説明した電動機3は、鉄損の低減により高いモータ効率を有する。そのため、圧縮機500の運転効率を向上することができる。 The electric motor 3 described in each embodiment has high motor efficiency due to reduced iron loss. Therefore, the operating efficiency of compressor 500 can be improved.
<冷凍サイクル装置>
 図18は、図17に示した圧縮機500を備えた冷凍サイクル装置400の構成を示す図である。冷凍サイクル装置400は、ここでは空気調和装置であるが、例えば冷蔵庫等であってもよい。
<Refrigerating cycle equipment>
FIG. 18 is a diagram showing the configuration of a refrigeration cycle apparatus 400 including the compressor 500 shown in FIG. 17. Although the refrigeration cycle device 400 is an air conditioner here, it may also be, for example, a refrigerator.
 冷凍サイクル装置400は、圧縮機500と、切り替え弁としての四方弁401と、冷媒を凝縮する凝縮器402と、冷媒を減圧する減圧装置403と、冷媒を蒸発させる蒸発器404とを備える。 The refrigeration cycle device 400 includes a compressor 500, a four-way valve 401 as a switching valve, a condenser 402 that condenses the refrigerant, a pressure reducing device 403 that reduces the pressure of the refrigerant, and an evaporator 404 that evaporates the refrigerant.
 圧縮機500、凝縮器402、減圧装置403および蒸発器404は、冷媒配管407によって連結され、冷媒回路を構成している。また、圧縮機500は、凝縮器402に対向する室外送風機405と、蒸発器404に対向する室内送風機406とを備える。 The compressor 500, condenser 402, pressure reducing device 403, and evaporator 404 are connected by a refrigerant pipe 407, forming a refrigerant circuit. The compressor 500 also includes an outdoor blower 405 facing the condenser 402 and an indoor blower 406 facing the evaporator 404.
 冷凍サイクル装置400の動作は、次の通りである。圧縮機500は、吸入した冷媒を圧縮して高温高圧の冷媒ガスとして送り出す。四方弁401は、冷媒の流れ方向を切り替えるものであるが、冷房運転時には、図18に実線で示すように、圧縮機500から送り出された冷媒を凝縮器402に流す。 The operation of the refrigeration cycle device 400 is as follows. The compressor 500 compresses the sucked refrigerant and sends it out as a high-temperature, high-pressure refrigerant gas. The four-way valve 401 switches the flow direction of the refrigerant, and during cooling operation, the refrigerant sent out from the compressor 500 flows into the condenser 402, as shown by the solid line in FIG.
 凝縮器402は、圧縮機500から送り出された冷媒と、室外送風機405により送られた室外空気との熱交換を行い、冷媒を凝縮して液冷媒として送り出す。減圧装置403は、凝縮器402から送り出された液冷媒を膨張させて、低温低圧の液冷媒として送り出す。 The condenser 402 exchanges heat between the refrigerant sent out from the compressor 500 and the outdoor air sent by the outdoor blower 405, condenses the refrigerant, and sends it out as a liquid refrigerant. The pressure reducing device 403 expands the liquid refrigerant sent out from the condenser 402 and sends it out as a low-temperature, low-pressure liquid refrigerant.
 蒸発器404は、減圧装置403から送り出された低温低圧の液冷媒と室内空気との熱交換を行い、冷媒を蒸発させ、冷媒ガスとして送り出す。蒸発器404で熱が奪われた空気は、室内送風機406により室内に供給される。 The evaporator 404 exchanges heat between the low-temperature, low-pressure liquid refrigerant sent out from the pressure reducing device 403 and indoor air, evaporates the refrigerant, and sends it out as refrigerant gas. The air from which heat has been removed by the evaporator 404 is supplied indoors by the indoor blower 406.
 なお、暖房運転時には、四方弁401が、圧縮機500から送り出された冷媒を蒸発器404に送り出す。この場合、蒸発器404が凝縮器として機能し、凝縮器402が蒸発器として機能する。 Note that during heating operation, the four-way valve 401 sends out the refrigerant sent out from the compressor 500 to the evaporator 404. In this case, evaporator 404 functions as a condenser and condenser 402 functions as an evaporator.
 圧縮機500の駆動源として、実施の形態1~3で説明した電動機3を備えることにより、冷凍サイクル装置400の運転効率を向上することができる。 By providing the electric motor 3 described in Embodiments 1 to 3 as a drive source for the compressor 500, the operating efficiency of the refrigeration cycle device 400 can be improved.
 以上、望ましい実施の形態について具体的に説明したが、本開示は上記の実施の形態に限定されるものではなく、各種の改良または変形を行なうことができる。 Although the preferred embodiments have been specifically described above, the present disclosure is not limited to the above embodiments, and various improvements and modifications can be made.
 1 ステータ、 3 電動機、 5 ロータ、 9,19,29 分割コア、 9A,19A,29A 分割コア(第1の分割コア)、 9B,19B,29B 分割コア(第2の分割コア)、 10 ステータコア、 11 ヨーク、 12 ティース、 12a 歯先部、 13 スロット、 14 結合部、 15 突出部、 15a 突出部(第1の突出部)、 15b 突出部(第2の突出部)、 15c 突出部(第3の突出部)、 16 空隙部、 16a 空隙部(第1の空隙部)、 16b 空隙部(第2の空隙部)、 16c 空隙部(第3の空隙部)、 20 巻線、 21,22 端面、 23 嵌合部、 24 凹部、 30 シェル、 50 ロータコア、 51 磁石挿入孔、 60 永久磁石、 70 シャフト、 110 ヨーク部、 111 外周、 112 内周、 162 湾曲角部、 400 冷凍サイクル装置、 401 四方弁、 402 凝縮器、 403 減圧装置、 404 蒸発器、 405 室外送風機、 406 室内送風機、 407 冷媒配管、 500 圧縮機、 501 圧縮機構、 507 密閉容器。
 
 
1 stator, 3 electric motor, 5 rotor, 9, 19, 29 split core, 9A, 19A, 29A split core (first split core), 9B, 19B, 29B split core (second split core), 10 stator core, 11 yoke, 12 teeth, 12a tooth tip, 13 slot, 14 joint, 15 protrusion, 15a protrusion (first protrusion), 15b protrusion (second protrusion), 15c protrusion (third 16 void, 16a void (first void), 16b void (second void), 16c void (third void), 20 winding, 21, 22 end surface , 23 fitting part, 24 recess, 30 shell, 50 rotor core, 51 magnet insertion hole, 60 permanent magnet, 70 shaft, 110 yoke part, 111 outer periphery, 112 inner periphery, 162 curved corner part, 400 refrigeration cycle device, 401 square valve, 402 condenser, 403 pressure reducing device, 404 evaporator, 405 outdoor blower, 406 indoor blower, 407 refrigerant piping, 500 compressor, 501 compression mechanism, 507 closed container.

Claims (17)

  1.  シェルの内側に固定されるステータであって、
     環状のヨークと、前記ヨークの径方向の内側に形成されたスロットとを有するステータコアを備え、
     前記ステータコアは、前記ヨークの周方向に組み合わせられた第1の分割コアと第2の分割コアとを有し、
     前記第1の分割コアは、前記第2の分割コアに対向する端部に、第1の突出部と、前記第1の突出部よりも前記径方向の内側に位置する第2の突出部とを有し、
     前記第2の突出部は、前記ヨークの内周から前記径方向の外側に離間しており、
     前記第1の突出部と前記第2の突出部との間には、第1の空隙部が形成され、
     前記第2の突出部と前記ヨークの前記内周との間には、第2の空隙部が形成されている
     ステータ。
    A stator fixed inside the shell,
    a stator core having an annular yoke and a slot formed radially inside the yoke;
    The stator core has a first divided core and a second divided core combined in the circumferential direction of the yoke,
    The first split core has a first protrusion and a second protrusion located radially inside the first protrusion at an end opposite to the second split core. has
    The second protrusion is spaced outward in the radial direction from the inner circumference of the yoke,
    A first gap is formed between the first protrusion and the second protrusion,
    A stator, wherein a second gap is formed between the second protrusion and the inner periphery of the yoke.
  2.  前記第1の突出部は、前記ヨークの外周に達している
     請求項1に記載のステータ。
    The stator according to claim 1, wherein the first protrusion reaches an outer periphery of the yoke.
  3.  前記第1の分割コアは、前記第2の分割コアに対向する前記端部に、前記第1の突出部と前記第2の突出部との間に、さらに第3の突出部を有する
     請求項1または2に記載のステータ。
    The first split core further has a third protrusion between the first protrusion and the second protrusion at the end opposite to the second split core. 3. The stator according to item 1 or 2.
  4.  前記第2の分割コアは、前記第1の分割コアに対向する端部に、前記第1の突出部に当接する突出部と、前記第2の突出部に当接する突出部とを有する
     請求項1から3までのいずれか1項に記載のステータ。
    The second divided core has, at an end opposite to the first divided core, a protrusion that abuts the first protrusion and a protrusion that abuts the second protrusion. The stator according to any one of items 1 to 3.
  5.  前記第2の分割コアの前記第1の分割コアに対向する端部は、前記ヨークの軸方向に直交する面において直線状に延在している
     請求項1から3までのいずれか1項に記載のステータ。
    According to any one of claims 1 to 3, an end of the second divided core facing the first divided core extends linearly in a plane perpendicular to the axial direction of the yoke. The stated stator.
  6.  前記第2の分割コアは、前記第1の分割コアに対向する端部に、前記第1の突出部と前記第2の突出部との間に嵌合する嵌合部を有する
     請求項1から3までのいずれか1項に記載のステータ。
    The second split core has a fitting part that fits between the first protrusion and the second protrusion at an end opposite to the first split core. 3. The stator according to any one of items 3 to 3.
  7.  前記第2の空隙部の前記径方向の長さL1と、前記第2の空隙部の前記周方向の長さL2とは、L1>L2を満足する
     請求項1から6までのいずれか1項に記載のステータ。
    Any one of claims 1 to 6, wherein the radial length L1 of the second gap and the circumferential length L2 of the second gap satisfy L1>L2. stator as described in .
  8.  前記ステータコアは、前記シェルに焼き嵌めによって固定され、
     前記ステータコアの焼嵌め代Wと、前記第2の空隙部の前記周方向の長さL2とが、
     0.1×W≦L2≦0.6×W
     を満足する
     請求項7に記載のステータ。
    the stator core is fixed to the shell by shrink fitting;
    The shrink-fitting allowance W of the stator core and the length L2 of the second gap in the circumferential direction are
    0.1×W≦L2≦0.6×W
    The stator according to claim 7, which satisfies the following.
  9.  前記第1の空隙部の周縁および前記第2の空隙部の周縁の少なくとも一方が、曲線部を有する
     請求項1から8までのいずれか1項に記載のステータ。
    The stator according to any one of claims 1 to 8, wherein at least one of a peripheral edge of the first cavity and a peripheral edge of the second cavity has a curved part.
  10.  前記ヨークの前記径方向の長さL3と、
     前記第1の分割コアと前記第2の分割コアとの間の、前記第1の空隙部および前記第2の空隙部を含む空隙部の前記径方向の長さの合計である合計長さL4とが、
     0≦L4/L3≦0.75を満足する
     請求項1から9までのいずれか1項に記載のステータ。
    the radial length L3 of the yoke;
    A total length L4 between the first divided core and the second divided core, which is the sum of the lengths in the radial direction of the gap including the first gap and the second gap. Toga,
    The stator according to any one of claims 1 to 9, which satisfies 0≦L4/L3≦0.75.
  11.  前記長さL3,L4が、0.35≦L4/L3≦0.45を満足する
     請求項10に記載のステータ。
    The stator according to claim 10, wherein the lengths L3 and L4 satisfy 0.35≦L4/L3≦0.45.
  12.  請求項1から11までのいずれか1項に記載のステータと、
     前記ステータの内側に配置されたロータと
     を備えた電動機。
    A stator according to any one of claims 1 to 11;
    and a rotor disposed inside the stator.
  13.  前記ステータと前記ロータとの前記径方向の隙間Gと、前記第2の空隙部の前記周方向の長さL2とが、L2≦0.05×Gを満足する
     請求項12に記載の電動機。
    The electric motor according to claim 12, wherein the radial gap G between the stator and the rotor and the circumferential length L2 of the second gap satisfy L2≦0.05×G.
  14.  請求項12または13に記載の電動機と、
     前記電動機によって駆動される圧縮機構と
     を備えた圧縮機。
    The electric motor according to claim 12 or 13;
    A compressor comprising: a compression mechanism driven by the electric motor.
  15.  請求項14に記載の圧縮機と、凝縮器と、減圧装置と、蒸発器とを備えた
     冷凍サイクル装置。
    A refrigeration cycle device comprising the compressor according to claim 14, a condenser, a pressure reducing device, and an evaporator.
  16.  第1の分割コアと第2の分割コアとを周方向に組み合わせることにより、環状のヨークとその径方向の内側のスロットとを有するステータコアを備えたステータを形成する工程と、
     前記ステータをシェルの内側に焼嵌めにより固定する工程と、
     前記ステータの内側にロータを挿入する工程と
     を有し、
     前記第1の分割コアは、前記第2の分割コアに対向する端部に、第1の突出部と、前記第1の突出部よりも前記径方向の内側に位置する第2の突出部とを有し、
     前記第2の突出部は、前記ヨークの内周から前記径方向の外側に離間しており、
     前記第1の突出部と前記第2の突出部との間には、第1の空隙部が形成され、
     前記第2の突出部と前記ヨークの前記内周との間には、第2の空隙部が形成されている
     電動機の製造方法。
    forming a stator including a stator core having an annular yoke and a radially inner slot thereof by combining the first divided core and the second divided core in the circumferential direction;
    fixing the stator inside the shell by shrink fitting;
    inserting a rotor inside the stator;
    The first split core has a first protrusion and a second protrusion located radially inside the first protrusion at an end opposite to the second split core. has
    The second protrusion is spaced outward in the radial direction from the inner circumference of the yoke,
    A first gap is formed between the first protrusion and the second protrusion,
    A method for manufacturing an electric motor, wherein a second gap is formed between the second protrusion and the inner periphery of the yoke.
  17.  前記ステータコアの焼嵌め代Wと、前記第2の空隙部の前記周方向の長さL2とが、
     0.1≦L2/W≦0.6
     を満足する
     請求項16に記載の電動機の製造方法。
    The shrink-fitting allowance W of the stator core and the length L2 of the second gap in the circumferential direction are
    0.1≦L2/W≦0.6
    The method for manufacturing an electric motor according to claim 16, which satisfies the following.
PCT/JP2022/025324 2022-06-24 2022-06-24 Stator, electric motor, compressor, refrigeration cycle device, and method of producing electric motor WO2023248466A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025324 WO2023248466A1 (en) 2022-06-24 2022-06-24 Stator, electric motor, compressor, refrigeration cycle device, and method of producing electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025324 WO2023248466A1 (en) 2022-06-24 2022-06-24 Stator, electric motor, compressor, refrigeration cycle device, and method of producing electric motor

Publications (1)

Publication Number Publication Date
WO2023248466A1 true WO2023248466A1 (en) 2023-12-28

Family

ID=89379343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025324 WO2023248466A1 (en) 2022-06-24 2022-06-24 Stator, electric motor, compressor, refrigeration cycle device, and method of producing electric motor

Country Status (1)

Country Link
WO (1) WO2023248466A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10155248A (en) * 1996-09-30 1998-06-09 Matsushita Electric Ind Co Ltd Core manufacture for electric rotary machine and core
JP2007531484A (en) * 2004-03-23 2007-11-01 エマーソン エレクトリック カンパニー Segmented stator end cap
JP2009118634A (en) * 2007-11-06 2009-05-28 Toyota Motor Corp Dynamo-electric machine
JP2014050215A (en) * 2012-08-31 2014-03-17 Ebara Corp Divided stator core component in electric motor having can structure, stator core using the same and electric motor
WO2017175664A1 (en) * 2016-04-08 2017-10-12 三菱電機株式会社 Laminated core and manufacturing method therefor
WO2018168610A1 (en) * 2017-03-17 2018-09-20 三菱電機株式会社 Rotary electric machine and manufacturing method therefor
WO2020067250A1 (en) * 2018-09-28 2020-04-02 日本電産株式会社 Stator, motor, and method for manufacturing stator
WO2021024318A1 (en) * 2019-08-02 2021-02-11 三菱電機株式会社 Electric motor stator core

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10155248A (en) * 1996-09-30 1998-06-09 Matsushita Electric Ind Co Ltd Core manufacture for electric rotary machine and core
JP2007531484A (en) * 2004-03-23 2007-11-01 エマーソン エレクトリック カンパニー Segmented stator end cap
JP2009118634A (en) * 2007-11-06 2009-05-28 Toyota Motor Corp Dynamo-electric machine
JP2014050215A (en) * 2012-08-31 2014-03-17 Ebara Corp Divided stator core component in electric motor having can structure, stator core using the same and electric motor
WO2017175664A1 (en) * 2016-04-08 2017-10-12 三菱電機株式会社 Laminated core and manufacturing method therefor
WO2018168610A1 (en) * 2017-03-17 2018-09-20 三菱電機株式会社 Rotary electric machine and manufacturing method therefor
WO2020067250A1 (en) * 2018-09-28 2020-04-02 日本電産株式会社 Stator, motor, and method for manufacturing stator
WO2021024318A1 (en) * 2019-08-02 2021-02-11 三菱電機株式会社 Electric motor stator core

Similar Documents

Publication Publication Date Title
CN108352737B (en) Motor, rotor, compressor, and refrigeration and air-conditioning apparatus
WO2017119102A1 (en) Permanent magnet embedded motor, compressor, and refrigeration and air conditioning device
WO2015083274A1 (en) Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
CN108352741B (en) Motor, rotor, compressor, and refrigeration and air-conditioning apparatus
CN109155541B (en) Stator, motor, compressor and refrigeration air conditioner
JP7003267B2 (en) Motors, compressors and air conditioners
JP6651019B2 (en) Electric motor, compressor, refrigeration air conditioner, and method of manufacturing electric motor
WO2016056065A1 (en) Embedded-permanent-magnet-type electric motor, compressor, and refrigeration and air conditioning apparatus
WO2018179063A1 (en) Rotor, electric motor, compressor, fan, and air conditioning device
JP6824333B2 (en) Electric motors, rotors, compressors and refrigeration and air conditioners
JP6656429B2 (en) Stator, electric motor, compressor, and refrigeration air conditioner
WO2019215865A1 (en) Rotor, motor, compressor, and air conditioning device
JP7038827B2 (en) Stator, motor, compressor and air conditioner
JP7237178B2 (en) Rotors, electric motors, compressors, and air conditioners
JP7105999B2 (en) Electric motor, compressor, air conditioner, and method for manufacturing electric motor
JP2023168510A (en) Motor, compressor, air blower, and refrigerating air conditioner
JP7204897B2 (en) Rotors, motors, compressors, and air conditioners
JP6956881B2 (en) Motors, compressors, and air conditioners
WO2023248466A1 (en) Stator, electric motor, compressor, refrigeration cycle device, and method of producing electric motor
JP7433420B2 (en) Rotors, motors, compressors and air conditioners
JP7154373B2 (en) Electric motors, compressors, and air conditioners
JP7433419B2 (en) Rotor, motor, compressor, air conditioner, and rotor manufacturing method
WO2023233629A1 (en) Stator, electric motor, compressor, and refrigeration cycle device
JP7450805B2 (en) Motors, compressors and refrigeration cycle equipment
WO2015198444A1 (en) Interior permanent magnet electric motor, compressor, and refrigerating and air-conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948026

Country of ref document: EP

Kind code of ref document: A1