WO2023248458A1 - Shaping method and shaping device - Google Patents

Shaping method and shaping device Download PDF

Info

Publication number
WO2023248458A1
WO2023248458A1 PCT/JP2022/025269 JP2022025269W WO2023248458A1 WO 2023248458 A1 WO2023248458 A1 WO 2023248458A1 JP 2022025269 W JP2022025269 W JP 2022025269W WO 2023248458 A1 WO2023248458 A1 WO 2023248458A1
Authority
WO
WIPO (PCT)
Prior art keywords
modeling
structural layer
thickness
distribution
height information
Prior art date
Application number
PCT/JP2022/025269
Other languages
French (fr)
Japanese (ja)
Inventor
祐一 柴崎
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2022/025269 priority Critical patent/WO2023248458A1/en
Publication of WO2023248458A1 publication Critical patent/WO2023248458A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding

Definitions

  • the present invention relates to a molding method and a molding apparatus for forming a molded object using, for example, an additive manufacturing (AM) method.
  • AM additive manufacturing
  • a modeling apparatus that forms a modeled object by stacking a plurality of structural layers (modeling layers) by repeating resolidification (see Patent Document 1). In such a modeling apparatus, it is required to improve the surface precision of the surface of the modeled object.
  • a modeling method in which a structure is formed by stacking a plurality of structural layers, and the thickness of the modeling material is determined according to the height information of the surface of the first structural layer.
  • a modeling method is provided that controls the thickness distribution of a modeling material of a second structural layer that is formed in an overlapping manner.
  • the first method includes controlling the thickness distribution of a building material of a second structural layer formed overlying the first structural layer by using a different first method and a second method in combination;
  • the second method includes changing the relative positional relationship between the material supply unit that supplies the modeling material and the modeling surface, and the second method includes controlling the intensity of the light beam irradiated to the modeling material.
  • a modeling method is provided.
  • a modeling apparatus that forms a structure by stacking a plurality of structural layers, and includes an irradiation section that irradiates a light beam onto a modeling surface, and an area that is irradiated with the light beam.
  • a material supply section that supplies the modeling material, a moving section that relatively moves the light beam and the modeling material, a first thickness control section that controls the thickness of the modeling material, and the first thickness control section.
  • a second thickness control section that controls the thickness of the modeling material at a spatial frequency higher than a compatible spatial frequency; and first and second thickness control sections thereof according to height information of the surface of the first structural layer.
  • a modeling apparatus is provided, which includes a modeling control unit that uses the modeling controller in combination with the modeling controller to control the thickness distribution of the modeling material of a second structural layer formed overlying the first structural layer.
  • a modeling apparatus that forms a structure by stacking a plurality of structural layers, including an irradiation section that irradiates a light beam onto a modeling surface, and an area that is irradiated with the light beam.
  • a material supply section that supplies a modeling material, and first and second thickness control sections whose corresponding spatial frequency components differ from each other according to the height information of the surface of the first structure layer are used together to create the first structure.
  • a modeling control section that controls the thickness distribution of the modeling material of the second structural layer formed in layers, and the first thickness control section controls the relative thickness distribution between the material supply section and the modeling surface.
  • a shaping device is provided, in which the second thickness control section is a change section that changes the positional relationship, and the second thickness control section is an intensity control section that controls the intensity of the light beam.
  • FIG. 1 is a cross-sectional view showing the modeling apparatus of the first embodiment.
  • (A) is a plan view showing an example of the arrangement of a plurality of light projectors
  • (B) and (C) are views showing an example of the relationship between the height of the modeling surface and the interval between two projected patterns.
  • (A) is a diagram showing when the distance between the material nozzle and the modeling surface is at the center of the variable range
  • (B) and (C) are diagrams showing when the distance is the longest and shortest in the variable range, respectively.
  • (A), (B), (C), and (D) are diagrams showing a process in which a convex pattern is formed on a workpiece by irradiating the modeling material with processing light and cooling it.
  • (A) is a cross-sectional view showing a state in which a pattern of the first structural layer is formed and the height distribution of the pattern after the formation is measured;
  • (B) is a view showing an example of a spatial frequency component with a low error distribution;
  • (C) is a diagram showing an example of a high spatial frequency component, and
  • (D) is a cross-sectional view showing a state in which the pattern of the second structural layer is formed and the height distribution of the pattern after the formation is measured.
  • (A), (B), and (C) are cross-sectional views showing the process of forming a line pattern as a three-dimensional structure.
  • (A), (B), and (C) are cross-sectional views each showing a process of modeling a three-dimensional structure.
  • (A) is a flowchart showing an example of the modeling method
  • (B) is a flowchart showing the operation of a modified example.
  • (A) is a cross-sectional view showing a state in which the pattern of the second structural layer is formed while measuring the height distribution of the surface of the first structural layer in a modified example
  • (B) is a cross-sectional view showing the state in which the pattern of the second structural layer is formed while measuring the height distribution of the surface of the first structural layer.
  • (C) is a diagram showing an example of a high spatial frequency component.
  • (A) is a diagram showing the case where the inclination angle of the material nozzle is at the center of the variable range
  • (B) and (C) are diagrams showing the case where the inclination angle is at the maximum and minimum of the variable range, respectively.
  • (A) is a cross-sectional view showing a state in which the height distribution of the surface of the pattern of the second structural layer is measured while measuring the height distribution of the surface of the first structural layer in the second embodiment;
  • (B) 3 is a diagram showing an example of a low spatial frequency component of an error distribution,
  • (C) is a diagram showing an example of a high spatial frequency component, and
  • (D) is a diagram showing an example of an error distribution when feedback control is also used.
  • a three-dimensional model is modeled (manufactured) using an additive manufacturing (AM) method in which materials such as metal or synthetic resin are sequentially added like a 3D printer.
  • AM additive manufacturing
  • the additive manufacturing method will also be referred to as the AM method.
  • a laser metal deposition (LMD) method (hereinafter referred to as "LMD"), which uses light such as a laser beam as an energy beam, is used as an AM method in a directed energy deposition method (DED method).
  • DED method directed energy deposition method
  • LMD methods can also be referred to as direct metal deposition, direct energy deposition, laser cladding, laser powder deposition, laser additive manufacturing, or laser rapid forming. .
  • FIG. 1 shows a modeling device 4 consisting of a 3D printer using the LMD method.
  • the positional relationships of various components constituting the modeling device 4 will be described using an XYZ orthogonal coordinate system defined by mutually orthogonal X, Y, and Z axes.
  • the plane formed by the X-axis and the Y-axis is parallel to the horizontal plane, and the Z-axis is perpendicular to the horizontal plane.
  • the direction parallel to the Z axis (Z direction) is parallel to the vertical direction
  • the -Z direction is the vertical direction.
  • the modeling device 4 places a three-dimensional structure ST (see FIG. 7(C)) (in any three-dimensional direction It is possible to form objects with size.
  • the modeling device 4 can form the three-dimensional structure ST on the stage 28.
  • the modeling device 4 can add a new structure onto the existing structure to form the three-dimensional structure ST.
  • the modeling device 4 may form a three-dimensional structure ST that is integrated with an existing structure.
  • the modeling device 4 may form a three-dimensional structure ST that is separable from an existing structure, or may form a three-dimensional structure ST so as to repair a damaged portion of an existing structure.
  • the modeling device 4 includes an irradiation optical system 30 that irradiates the workpiece W with a modeling light beam (hereinafter referred to as processing light) EL, and material nozzles 32A and 32B (material supply section) that supply the modeling material M to the workpiece W.
  • a drive system 26 that moves the printing head 24, a material supply device 12, a gas supply device 18, a recovery device 22 that recovers unsolidified modeling material, and controls the operation of the entire device.
  • a control device 20 is provided. Processing light EL generated by the light source 10 is supplied to the irradiation optical system 30 via an optical fiber 36.
  • the control device 20 controls the intensity (energy per unit time) of the processing light EL generated by the light source 10 via the light source control section 16.
  • the modeling section 14 includes a modeling head 24, a drive system 26, and a stage 28.
  • the intensity of the processing light EL emitted from the light source 10 may be controlled using a modulation device using, for example, an acousto-optic device (AOM) or the like.
  • AOM acousto-optic device
  • the material supply device 12 supplies the material nozzles 32A, 32B of the modeling head 24 with the amount of modeling material M required per unit time for the modeling unit 14 to form the three-dimensional structure ST.
  • the modeling material M is a material that can be melted by irradiation with processing light EL having a predetermined intensity or higher.
  • a modeling material M for example, at least one of a metallic material and a resinous material can be used.
  • the modeling material M other materials different from metal materials and resin materials may be used.
  • the modeling material M is a powder or granular material (powder material).
  • the modeling material M does not have to be a powder or granule, and for example, a wire-shaped modeling material or a gaseous modeling material may be used.
  • the modeling unit 14 processes the modeling material M supplied from the material supply device 12 to form a three-dimensional structure ST.
  • the modeling head 24 of the modeling section 14 includes an irradiation optical system 30 and material nozzles (supply system for supplying the modeling material M) 32A, 32B.
  • a suction port 22a connected to the collection device 22 via a flexible pipe (not shown) is supported by the modeling head 24 via a support member (not shown), for example.
  • the modeling head 24, drive system 26, and stage 28 are housed in a space 8IN within the chamber 8.
  • the irradiation optical system 30 is optically connected to the light source 10 via an optical fiber 36.
  • a light transmission member such as a light guide can be used instead of the optical fiber 36.
  • the light emitted from the light source 10 may be directly supplied to the irradiation optical system 30.
  • the light source 10 is, for example, a laser light source that emits laser light of at least one wavelength among infrared, visible, and ultraviolet wavelengths as processing light EL. However, other types of light may be used as the processing light EL.
  • a gas laser such as a CO 2 laser or an excimer laser
  • a solid laser such as a neodymium YAG (Nd:YAG) laser or a yttrium (YVO 4 ) laser
  • a semiconductor laser LD Laser Diode
  • the light source 10 may emit continuous light or pulsed light.
  • the processing light EL does not need to be a laser beam, and the light source 10 may include any light source (for example, at least one of an LED (Light Emitting Diode) or a discharge lamp).
  • the timing and intensity of light emission (energy per unit time) of the light source 10 are controlled by the light source control unit 16.
  • the irradiation optical system 30 includes a condenser lens system (not shown) that condenses the processed light EL emitted from the optical fiber 36 and converts it into a parallel beam, and a condenser lens that focuses the processed light EL on the modeling surface CS. system 30a.
  • the modeling surface CS is arranged at a focusing plane (focus position) near the rear focal plane of the condenser lens system 30a, and the optical axis AX of the condenser lens system 30a is parallel to the Z axis.
  • the irradiation optical system 30 emits the processing light EL propagated from the light source 10 via the optical fiber 36 downward (in the ⁇ Z direction) along the optical axis AX.
  • the irradiation optical system 30 irradiates the processing light EL toward the workpiece W on the stage 28.
  • the irradiation optical system 30 can irradiate the irradiation area EA set on the workpiece W with the processing light EL.
  • the state of the irradiation optical system 30 is switchable under the control of the control device 20 between a state in which the irradiation area EA is irradiated with the processing light EL and a state in which the irradiation area EA is not irradiated with the processing light EL.
  • the direction of the processing light EL emitted from the irradiation optical system 30 is not limited to directly below (-Z direction), but may be, for example, a direction inclined at a predetermined angle with respect to the Z axis.
  • the modeling head 24 also includes light projecting units 44A and 44B that are arranged to sandwich the irradiation optical system 30 in the Y direction and project two circular spot lights GLA and GLB obliquely onto the modeling surface, respectively, and Light projecting units 44C and 44D (see FIG. 2A) that are arranged to sandwich the optical system 30 in the X direction and project two circular spot lights GLC and GLD obliquely onto the modeling surface, respectively, and irradiation optics.
  • Light projecting units 44E, 44F, 44G, and 44H are arranged to sandwich the system 30 in an oblique direction and project two circular spot lights GLE, GLF, GLG, and GLH obliquely onto the modeling surface, respectively (Fig.
  • the light projecting sections 44A to 44H, the imaging device 46, and the imaging signal processing section 48 constitute a height measuring device 42 that measures the height distribution of the surface of the printing surface CS or the pattern formed.
  • an error calculation section 50 a high-pass filter section 52H, and a low-pass filter section 52L for processing the height distribution signal RS are also provided (the functions of these sections will be described later). Note that any method may be used to measure the height of the modeling surface, etc., and for example, the height may be measured using a proximity sensor, an air micrometer, or the like.
  • the material nozzles 32A and 32B connected to the material supply device 12 are arranged symmetrically and inclined so as to sandwich the irradiation optical system 30 in the Y direction.
  • the modeling head 24 is provided with drive mechanisms 34A and 34B for controlling the positions of the material nozzles 32A and 32B in the Z direction. Note that the number of material nozzles 32A, 32B may be three or more.
  • the control device 20 can control the positions of the material nozzles 32A, 32B in the Z direction (relative positions in the Z direction with respect to the modeling surface CS) by driving the drive mechanisms 34A, 34B via the nozzle control unit 60.
  • the material nozzles 32A and 32B each supply (specifically, inject, jet, or spray) the modeling material M from the supply port in an oblique direction to the modeling surface CS.
  • the material nozzles 32A, 32B are physically connected to the material supply device 12, which is a supply source of the modeling material M, via a flexible pipe 54 or the like.
  • the material nozzles 32A, 32B may force-feed the modeling material M supplied from the material supply device 12 via the pipe 54 or the like to the modeling surface CS.
  • a mixture of the modeling material M from the material supply device 12 and a transporting gas (for example, an inert gas such as nitrogen or argon) is fed under pressure to the material nozzles 32A and 32B via the pipe 54, and the material nozzle The mixture may be pumped from 32A and 32B.
  • a transporting gas for example, an inert gas such as nitrogen or argon
  • the material nozzles 32A and 32B are drawn in a tube shape in FIG. 1, the shape of the material nozzle 32 is not limited to this shape.
  • the material nozzles 32A and 32B supply the modeling material M toward the workpiece W on the stage 28.
  • the traveling direction of the modeling material M supplied from the material nozzles 32A and 32B is a direction symmetrically inclined by a predetermined angle (an acute angle as an example) with respect to the Z axis.
  • the material nozzles 32A and 32B supply the modeling material M toward the irradiation area EA where the irradiation optical system 30 irradiates the processing light EL.
  • the material nozzles 32A, 32B and the irradiation optical system 30 are aligned.
  • a drive system 26 including, for example, a motor and an encoder for position detection moves the modeling head 24 along at least one of the X-axis, Y-axis, and Z-axis.
  • the irradiation area EA moves on the workpiece W along at least one of the X-axis and the Y-axis.
  • the drive system 26 may tilt the printing head 24 in at least one of the ⁇ x direction, the ⁇ y direction, and the ⁇ z direction, which are rotational directions around axes parallel to the X, Y, and Z axes. good.
  • the control device 20 is provided with a control section 56 that controls the operation of the drive system 26.
  • the drive system 26 may move the irradiation optical system 30 and the material nozzles 32A, 32B separately. Specifically, for example, the drive system 26 can adjust at least one of the position and direction of the emission part (tip part) of the irradiation optical system 30, the position of the supply ports of the material nozzles 32A and 32B, and the direction thereof. It may be. In this case, the irradiation area EA where the irradiation optical system 30 irradiates the processing light EL and the supply area MA where the material nozzles 32A and 32B supply the modeling material M can be controlled separately. Note that the drive system 26 may allow the modeling head 24 to rotate around an axis parallel to an axis (rotation axis) that is inclined with respect to an axis parallel to the X axis and the Y axis.
  • the stage 28 can hold and release the workpiece W via a mechanical chuck, a vacuum suction chuck, or the like.
  • the stage 28 can move and/or rotate the workpiece W relative to the modeling head 24 in directions along the X, Y, and Z axes, and in rotational directions in the ⁇ x, ⁇ y, and ⁇ z directions.
  • the control device 20 is provided with a control section 58 that controls the operation of the stage 28.
  • the irradiation optical system 30 irradiates the processing light EL, and the material nozzles 32A and 32B supply the modeling material M.
  • the modeling device 4 includes a recovery device 22 that collects the modeling material M that remains unsolidified on the stage 28 or the workpiece W (modeling layer) and the modeling material M that has been scattered or fallen around the stage 28. We are prepared.
  • the gas supply device 18 is a supply source of purge gas.
  • the purge gas includes an inert gas (nitrogen gas, helium gas, argon gas, etc.).
  • Gas supply device 18 supplies purge gas into chamber 8 via pipe 38 .
  • the internal space 8IN of the chamber 8 becomes a space filled with purge gas.
  • the gas supply device 18 may be a cylinder storing inert gas, or if the inert gas is nitrogen gas, it may be a device that separates nitrogen gas from the atmosphere. A part of the purge gas is also supplied from the gas supply device 18 to the material supply device 12 as needed.
  • the control device 20 controls the operation of the modeling device 4.
  • the control device 20 includes, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a memory, an input/output unit, etc., and a storage device (storage medium) 40.
  • three-dimensional model data of a modeling object is output from a server (not shown) to the control device 20.
  • the control device 20 slices the three-dimensional model data to create modeling data of a plurality of structural layers.
  • the modeling material M is supplied to the supply area MA on the workpiece W
  • the light EL is supplied to the irradiation area EA, which is at least partially the same as the supply area MA.
  • the structure is modeled on the workpiece W by controlling the irradiation, the movement of the modeling head 24 by the drive system 26, and/or the movement of the workpiece W by the stage 28.
  • the control device 20 functions as a device that controls the operation of the modeling device 4 by the CPU executing a computer program.
  • This computer program is a computer program for causing the control device 20 (for example, CPU) to execute operations to be performed by the modeling device 4.
  • the computer program executed by the CPU may be recorded in the storage device 40 or in a storage medium (for example, a hard disk, CD-ROM, DVD-RAM, semiconductor memory, etc.) that can be connected to the storage device 42. You can leave it there.
  • the control device 20 may download the computer program to be executed from a device external to the control device 20 via a network interface.
  • the control device 20 does not need to be installed inside the room in which the chamber 8 of the modeling device 4 is installed, and may be installed as a server or the like outside the room, for example.
  • the control device 20 controls the emission mode of the light EL by the irradiation device 10 via the light source control section 16.
  • the injection mode includes, for example, at least one of the intensity of the processing light EL and the injection timing of the processing light EL.
  • the emission mode is, for example, the emission frequency of the pulsed light, the length of the emission time of the pulsed light, and the ratio of the emission time and extinction time of the pulsed light (so-called duty ratio). It may contain at least one of the following.
  • the control device 20 controls the movement mode of the modeling head 24 by the drive system 26 via the control unit 56 and controls the movement mode of the stage 28 via the control unit 58.
  • the movement mode includes, for example, at least one of a movement amount, a movement speed, a movement direction, and a movement timing. Furthermore, the control device 20 controls the supply mode of the modeling material M by the material nozzles 32A and 32B.
  • the supply mode includes, for example, at least one of the supply amount (particularly the supply amount per unit time), the thickness of the modeling material to be supplied, and the supply timing.
  • the irradiation optical system 30 is directed at a constant distance from the irradiation optical system 30 to the building surface CS.
  • the processing light EL is irradiated with the output of The EL moves at a constant scanning speed with respect to the modeling material M. Therefore, ideally, the surface of each structural layer after modeling should be almost completely flat.
  • the shape of the structural layer stacked below the layer concerned is not uniform, and therefore the heat capacity is also not uniform. Heat diffusion due to the supplied processing light EL is not uniform.
  • the diameter and depth of the molten pool will vary; for example, if the molten pool is large, more modeling material will be melted and a thicker layer will be added, and if the molten pool is small, less material will be added. As the layer becomes thinner, irregularities occur on the surface of the structural layer after modeling. In other words, even if modeling is performed under the above-mentioned constant conditions, the height distribution of the surface of each structural layer after modeling will have an error with respect to the target distribution.
  • such height distribution errors are corrected by controlling the thickness distribution of the modeling material M supplied to the modeling surface CS and controlling the intensity of the processing light EL as described below.
  • processing by the irradiation optical system 30 is performed from a plurality of (eight in this case) light projecting parts 44A to 44H of the height measuring device 42 arranged so as to surround the irradiation optical system 30.
  • Two spot lights GLA to GLH are diagonally projected onto areas distant from the irradiation area EA of the light EL toward the light projecting units 44A to 44H.
  • the two spot lights GLA to GLH are projected so that the interval becomes gradually narrower.
  • the position Zbf means the Z position of the focusing plane (the plane on which the processing light EL is focused the smallest) with respect to the irradiation optical system 30.
  • the interval h1 of the spot lights GLA is smaller than the interval h2
  • Z1 is, for example, the upper limit of the expected amount of variation
  • the interval h3 between the two spot lights GLA is larger than the interval h2. Therefore, if the interval between the spot lights GLA is h, the relationship with the height Z of the modeling surface CS using the coefficients a and b is, for example, as follows.
  • the coefficients a, b and the position Zbf are determined in advance, for example, by actual measurement, and the coefficients a, b and the position Zbf are stored in the imaging signal processing unit 48 in FIG. 1.
  • h a+b(Z-Zbf)...(1)
  • the imaging signal processing unit 48 processes the imaging signal of the imaging device 46 to determine the interval h between the corresponding spot lights GLA to GLH for each of the light projectors 44A to 44H, and calculates the interval h between the corresponding spot lights GLA to GLH with respect to each of the light projecting units 44A to 44H. Using the position Zbf, the height (Z position) of the portion where the spot lights GLA to GLH are projected can be calculated from equation (1).
  • the height (position Z) determined from the spot light GLA of the light projecting section 44A is This is the height of the surface of the layer after modeling
  • the height (position Z) determined from the spot light GLB of the light projecting section 44B is the height of the surface of the structural layer below the structural layer. Therefore, by determining the height from the interval between the front and rear spot lights GLA to GLH in the moving direction relative to the printing surface CS of the printing head 24, the height of the structural layer after printing and the structure below can be calculated. The height of the surface of the layer can be measured.
  • a height distribution signal RS (indicating the relationship between the relative movement direction and the height (Z position) signal) is output to the error calculation section 50.
  • the error calculation unit 50 is supplied with information on the target distribution of the surface height distribution of each structural layer from the control device 20.
  • the error calculation section 50 subtracts the signal representing the target distribution from the height distribution signal RS to obtain a signal representing the error component, and supplies the signal representing the error component to the high-pass filter section 52H and the low-pass filter section 52L.
  • the high-pass filter section 52H extracts a high spatial frequency signal HS whose spatial frequency is higher than a predetermined threshold SPF from the signal representing the error component
  • the low-pass filter section 52L extracts a high spatial frequency signal HS whose spatial frequency is lower than the threshold SPF from the signal representing the error component.
  • Extract the spatial frequency signal LS extracts the spatial frequency signal LS.
  • the high spatial frequency signal HS and the low spatial frequency signal LS are each supplied to the control device 20.
  • the spatial frequency threshold SPA is, for example, about 0.1 mm ⁇ 1 (about 10 mm in terms of wavelength).
  • the threshold value SPA is a value that changes depending on the relative speed between the printing head 24 and the workpiece W by the drive system 26 and/or the stage 28, and the threshold value SPA is, for example, about 0.05 to 0.2 mm -1 (wavelength (about 20 to 5 mm) may be sufficient.
  • the control device 20 also controls the output (intensity per unit time) of the light source 10 via the light source control unit 16 so as to correct errors in the height distribution of high spatial frequencies corresponding to the high spatial frequency signal HS. Then, the distances of the material nozzles 32A and 32B to the modeling surface CS are controlled via the nozzle control unit 60 so as to correct errors in the height distribution of low spatial frequencies corresponding to the low spatial frequency signal LS.
  • the material nozzles 32A and 32B are symmetrically inclined so that the irradiation optical system 30 is sandwiched therebetween.
  • the modeling surface CS coincides with the focal plane BF of the irradiation optical system 30 in a normal modeling operation.
  • the modeling material M supplied from the material nozzles 32A, 32B is It is assumed that the angles of the material nozzles 32A and 32B are set so that they overlap in the concentrated region 62 by a predetermined amount below the focal plane BF (in the -Z direction). The distance ⁇ z in the Z direction between the focused area 62 and the focal plane BF is determined from the drive amount of the drive mechanisms 34A and 34B.
  • the amount of the modeling material 64 supplied to the modeling surface CS per unit time can be increased.
  • the thickness th can be largely controlled, and the thickness of the pattern finally formed on the modeling surface CS can also be largely controlled. Therefore, in FIG. 3A, there is a difference between the distance ⁇ z of the concentrated region 62 in the ⁇ Z direction with respect to the focusing plane BF and the thickness th of the modeling material 64 supplied per unit time to the modeling surface CS.
  • the control device 20 determines the interval ⁇ z by driving the drive mechanisms 34A and 34B, and uses this interval ⁇ z and the known coefficients c and d to calculate the amount of modeling that is supplied from the material nozzles 32A and 32B to the modeling surface CS per unit time.
  • the thickness th of the material 64 can be determined.
  • the control device 20 can control the thickness th of the modeling material 64 supplied to the modeling surface CS by controlling the positions of the material nozzles 32A, 32B in the Z direction with the nozzle control unit 60.
  • the thickness of the pattern of the modeling material formed by irradiating the modeling material 64 with the processing light EL, melting, cooling, and solidification can also be controlled.
  • the thickness th of the modeling material 64 can be greatly changed, and the thickness of the pattern that is finally formed can also be greatly controlled.
  • the control of the positions of the material nozzles 32A and 32B is mechanical control, and the response speed is not very high, so it is not suitable for controlling the height of the high spatial frequency component corresponding to the high spatial frequency signal HS. do not have. Therefore, in this embodiment, the height of the low spatial frequency component corresponding to the low spatial frequency signal LS is controlled by controlling the thickness of the modeling material by controlling the positions of the material nozzles 32A and 32B.
  • FIGS. 4(A) to 4(D) a method for controlling the thickness of the modeling material by controlling the intensity of the processing light EL will be explained with reference to FIGS. 4(A) to 4(D).
  • FIG. 4(A) when the processing light EL is irradiated onto the modeling surface CS of the workpiece W and the modeling material M is supplied to the irradiation area, as shown in FIG. 4(B), the modeling surface CS is A molten pool MP is formed. Then, as shown in FIG. 4C, a part of the material 66 of the supplied modeling material M is fused by the molten pool MP.
  • the processing light EL passes therethrough, and as a result of cooling and solidification, the portion corresponding to the material 66 becomes a convex pattern 66A, as shown in FIG. 4(D).
  • the intensity of the processing light EL emitted from the light source 10 increases under the control of the light source control unit 16 in FIG. Since the amount to be fused increases, the finally formed pattern 66B is higher than the pattern 66A. Conversely, when the intensity of the processing light EL decreases, the pattern finally formed will be lower than the pattern 66A.
  • the thickness of the pattern formed in the structural layer can be controlled. Furthermore, electrical (or optical) control of the intensity of the light source 10 by the light source control unit 16 can be performed faster than mechanical control of the positions of the material nozzles 32A, 32B. However, the amount of control of the thickness of the pattern formed in the structural layer by controlling the intensity of the light source 10 is smaller than the amount of control of the thickness of the pattern by mechanically controlling the positions of the material nozzles 32A, 32B. Therefore, controlling the intensity of the processing light EL is suitable for controlling the height of the high spatial frequency component corresponding to the high spatial frequency signal HS.
  • FIGS. 5(A) to 5(D). First, as shown in FIG. 5(A), the surface of the workpiece W is irradiated with processing light EL from the irradiation optical system 30, the modeling material M is supplied from the material nozzles 32A and 32B to the irradiation area of the processing light EL, and the workpiece It is assumed that the pattern of the first structural layer 68A is formed by moving the printing head 24 relative to W, for example, in the -Y direction.
  • the target shape of the surface of the first structural layer 68A is, for example, a flat target distribution 70A shown by a dotted line.
  • an image of spot light GLA is projected onto the surface of the pattern immediately after printing from the light projection unit 44A located at the rear in the scanning direction from the irradiation optical system 30 in the printing head 24.
  • An image is captured by the imaging device 46 in FIG. 1, and the height distribution of the surface 68Aa of the pattern of the first structural layer 68A immediately after modeling is measured.
  • the error signal is obtained by subtracting the signal of the target distribution in the error calculation section 50 from the distribution signal RS output from the imaging signal processing section 48 in FIG.
  • the low-pass filter section 52L and the high-pass filter section 52H produce a low spatial frequency signal LS with a low spatial frequency (long wavelength) as shown in FIG.
  • a high spatial frequency signal HS with a high spatial frequency (short wavelength) of 5(C) is supplied to the control device 20.
  • the high spatial frequency signal HS in FIG. 5(C) corresponds to the small wavelength and small amplitude fluctuation portions 69A and 69B of the height distribution in FIG. 5(A).
  • the material nozzles 32A and 32B are used to form the material in the irradiation area of the processing light EL.
  • the control device 20 corrects the Z positions of the material nozzles 32A and 32B via the nozzle control section 60 using a feedforward control method.
  • control device 20 controls the output (intensity) of the light source 10 via the light source control unit 16 using the feedforward control method so as to correct the error in the height distribution indicated by the high spatial frequency signal HS in FIG. 5(C). Control.
  • the low spatial frequency signal LS and the high spatial frequency signal HS are measured in advance, when modeling the second structural layer 68B, the thickness of the modeling material M at each position is measured in advance. It can be controlled using a feedforward method to cancel out the errors that occur.
  • the target shape of the surface of the second structural layer 68B is also a flat target distribution 70B shown by a dotted line, for example.
  • the unevenness of the surface 68Ba after modeling by build-up of the second structural layer 68B becomes small, and the surface accuracy (flatness) after modeling becomes small. etc.) will be improved.
  • the image of the spot light GLA projected onto the surface of the pattern immediately after printing from the light projection unit 44A located behind the irradiation optical system 30 in the scanning direction in the printing head 24 is also shown.
  • the first imaging device 46 takes an image and measures the height distribution of the surface 68Ba of the pattern of the second structural layer 68B immediately after modeling.
  • This error in the height distribution from the target distribution 70B is corrected when forming the third structural layer (not shown) on the second structural layer 68B.
  • this control method even if printing is performed under certain conditions, the height distribution of the surface after printing of each structural layer will have an error distribution with respect to the target distribution due to the non-uniformity of thermal diffusion as described above.
  • By controlling the thickness distribution of the structural layer above it so as to cancel out the error distribution when printing the structural layer above it it is possible to target the surface accuracy of the surface of the structure after printing. It can be finished to the desired precision.
  • the modeling device 4 forms a three-dimensional structure ST on a workpiece W based on three-dimensional model data (for example, CAD (Computer Aided Design) data) of the three-dimensional structure ST to be formed.
  • the three-dimensional model data (hereinafter also referred to as 3D data) is supplied to the control device 20 of the modeling device 4 from, for example, a server (not shown).
  • 3D data measurement data of a three-dimensional object measured by a shape measuring device etc. (not shown) provided in the modeling device 4, measurement data of a three-dimensional shape measuring device etc. provided separately from the modeling device 4. may also be used.
  • the modeling device 4 creates a plurality of partial structures (hereinafter also referred to as structural layers) SL obtained by, for example, cutting the three-dimensional structure ST into rounds along the Z direction. are formed one layer at a time.
  • structural layers hereinafter also referred to as structural layers
  • a three-dimensional structure ST which is a layered structure in which a plurality of structural layers SL are stacked, is formed.
  • a flow of operations for forming a three-dimensional structure ST by sequentially forming a plurality of structural layers SL one by one will be described.
  • the modeling device 4 sets an irradiation area EA in a desired area on the modeling surface CS corresponding to the surface of the workpiece W or the surface of the formed structural layer SL, and Processing light EL is irradiated from the irradiation optical system 30.
  • the focal plane (that is, the condensing position) of the processing light EL coincides with the modeling surface CS.
  • a molten pool (that is, a pool of metal melted by the light EL) MP is formed in a desired area on the modeling surface CS by the processing light EL emitted from the irradiation optical system 30. be done. Furthermore, under the control of the control device 20, the modeling device 4 sets a supply area MA in a desired area on the modeling surface CS, and supplies the modeling material M to the supply area MA from the material nozzles 32A, 32B. Here, the supply area MA is set in the area where the molten pool MP is formed. For this reason, the modeling device 4 supplies the modeling material M from the material nozzles 32A and 32B to the molten pool MP, as shown in FIG. 6(B).
  • the modeling material M supplied to the molten pool MP is melted.
  • the modeling material M melted in the molten pool MP is cooled and solidified again (that is, solidified).
  • the solidified modeling material M (part of the object) is deposited on the object surface CS.
  • a series of modeling processes including forming a molten pool MP by irradiating the light EL, supplying the modeling material M to the molten pool MP, melting the supplied modeling material M, and resolidifying the melted modeling material M, This process is repeated while moving the printing head 24 relatively to the printing surface CS along the XY plane. That is, when the printing head 24 moves relative to the printing surface CS, the irradiation area EA also moves relatively to the printing surface CS. Therefore, a series of modeling processes are repeated while moving the irradiation area EA along the XY plane (that is, within a two-dimensional plane) relative to the modeling surface CS.
  • the processing light EL is selectively irradiated to the irradiation area EA set in the area where the object is to be formed on the object to be formed on the object to be formed on the object to be formed on the object to be formed on the object to be formed on the object to be formed on the object to be formed on the object to be formed on the object to be formed on the object to be formed.
  • the irradiation area EA set in the area is not selectively irradiated (it can also be said that the irradiation area EA is not set in the area where it is not desired to form a modeled object).
  • the modeling device 4 moves the irradiation area EA along a predetermined movement locus on the modeling surface CS, and adjusts the pattern according to the distribution pattern of the area in which the object is to be formed (that is, the object in the structural layer SL).
  • the processing light EL is irradiated onto the modeling surface CS at the appropriate timing.
  • the molten pool MP also moves on the modeling surface CS along a movement trajectory corresponding to the movement trajectory of the irradiation area EA.
  • the molten pool MP is sequentially formed on the modeling surface CS in the portions irradiated with the processing light EL among the regions along the movement locus of the irradiation area EA.
  • the supply area MA also moves on the modeling surface CS along a movement trajectory corresponding to the movement trajectory of the irradiation area EA. Become.
  • a structural layer SL corresponding to an aggregate of objects made of the solidified modeling material M is formed on the modeling surface CS.
  • a structural layer SL corresponding to an aggregate of shaped objects formed on the shaped surface CS in a pattern according to the movement locus of the molten pool MP is formed.
  • the supply of the modeling material M may be stopped while irradiating the processing light EL to the irradiation area EA.
  • the modeling material M is supplied to the irradiation area EL, and the irradiation area EL is irradiated with light EL with an intensity that does not create a molten pool MP. You can.
  • the movement trajectory of the irradiation area EA on the workpiece W may be either a movement trajectory corresponding to scanning in so-called raster scanning or a movement trajectory corresponding to scanning in so-called vector scanning.
  • the irradiation area EA was moved with respect to the printing surface CS by moving the printing head 24 (that is, the light EL) with respect to the printing surface CS, but even if the printing surface CS is moved, Alternatively, both the printing head 24 (that is, the processing light EL) and the printing surface CS may be moved.
  • step 102 the control device 20 creates slice data by slicing the three-dimensional model data at a stacking pitch, and stores the slice data in the storage device 40. Note that data obtained by partially modifying this slice data according to the characteristics of the modeling device 4 may be used. Then, the control device 20 reads the modeling pattern data for the next structural layer to be modeled. In the next step 104, the control device 20 causes the light source 10 to start emitting the processing light EL via the light source control unit 16.
  • step 106 the supply of the modeling material M from the material nozzles 32A and 32B is started, and in step 108, the processing light EL (light beam) and the modeling material M are moved relative to each other by the drive system 26 and/or the stage 28. Then, modeling is done by overlaying.
  • step 110 in parallel with the operations in steps 106 and 108, the height distribution of the surface of the part (pattern) formed by this structural layer is measured using the height measuring device 42, as in FIG. 5(A). is measured.
  • step 112 it is determined whether or not the modeling of this layer has been completed. If the modeling has not been completed, the operations of steps 106 and 108 and the operation of step 110 are executed in parallel.
  • the supply of the modeling material is stopped and the light source 10 stops emitting light.
  • a first structural layer SL#1 is formed on the modeling surface CS corresponding to the surface of the workpiece W.
  • the process moves to step 114, and the error calculation unit 50 calculates an error distribution signal from the height distribution signal RS of the formed structural layer.
  • step 116 the error distribution signal is supplied to the low-pass filter section 52L and the high-pass filter section 52H, and a low spatial frequency signal LS and a high spatial frequency signal HS are extracted, respectively.
  • the extracted signals LS and HS are stored in the storage device 40.
  • the control device 20 reads the modeling pattern data for the next structural layer to be modeled. Then, as shown in FIG. 7(B), the surface of the structural layer SL#1 is set as a new modeling surface CS, and a second structural layer SL#2 is formed on this new modeling surface CS. do.
  • the control device 20 first controls the drive system 26 so that the printing head 24 moves along the Z-axis. Specifically, the control device 20 controls the drive system 26 to set the +Z The printing head 24 is moved in the direction. Thereby, the focal plane of the processing light EL coincides with the new modeling surface CS.
  • the low spatial frequency component is corrected by controlling the Z positions of the material nozzles 32A and 32B in step 120, and the output of the processing light EL emitted from the light source 10 is corrected in step 122.
  • Correction of high spatial frequency components by control and modeling by relative movement of the processing light EL and the modeling material M in step 124 are performed. Note that the operations of steps 120, 122, and 124 are performed substantially in parallel.
  • step 126 similarly to step 110, the height distribution of the surface of the portion (pattern) formed by this structural layer is measured using the height measuring device 42. be done.
  • the output (intensity per unit time) of the processing light EL is, for example, , when the thickness of the modeling material supplied to the modeling surface CS is the thickest, the output may be set such that the entire thickness of the modeling material can be melted.
  • the output of the processing light EL is set to an output that can melt the thickness of the modeling material when the thickness of the modeling material is at the median of the variable range, and the material nozzle 32A , 32B, the output of the processing light EL may be increased or decreased depending on the thickness.
  • step 124 even if the thickness of the supplied modeling material is constant, the thickness of the modeling material after modeling can be controlled within a certain range by controlling the output of the processing light EL.
  • step 128 if the modeling of this layer is not completed, the operations of steps 120 to 124 and step 126 are repeated. If the modeling of this layer is finished, the operation moves to step 130, where it is determined whether the modeling is finished. If the modeling is not completed, the operation moves to step 114, where the modeling of the next structural layer is performed while correcting the thickness distribution of the building material to correct the error in the height distribution of the previous layer. It will be done. In this way, as shown in FIG. 7(C), a three-dimensional structure ST is formed by a layered structure in which a plurality of structural layers SL are stacked.
  • the height distribution after printing is measured when printing the previous layer, and when printing the next layer, the thickness of the printing material is controlled so as to cancel out the error distribution of the height distribution of the previous layer. Accordingly, the surface precision (flatness, etc.) of the surface of the structure after modeling can be improved.
  • the modeling method of the modeling apparatus 4 of this embodiment is a modeling method in which a structure is formed by stacking a plurality of structural layers, and the height distribution signal of the surface of the first structural layer 68A is A first method of controlling the thickness of the modeling material according to RS (height information) (a method of controlling the Z position of the material nozzles 32A, 32B), and a method of controlling the thickness of the modeling material according to the spatial frequency component corresponding to the first method.
  • the second structural layer 68B formed overlapping the first structural layer 68A is combined with the second method of controlling the thickness of the modeling material regarding high spatial frequency components (method of controlling the intensity of the processing light EL).
  • the thickness distribution of the modeling material is controlled (steps 120, 122, 124).
  • the modeling apparatus 4 of this embodiment is a modeling apparatus that forms a structure by stacking a plurality of structural layers, and includes an irradiation optical system 30 ( irradiation unit), material nozzles 32A, 32B (material supply unit) that supplies the modeling material M to the area irradiated with the processing light EL, a drive system 26 and a stage 28 that relatively move the processing light EL and the modeling material M. (moving unit), drive mechanisms 34A, 34B and a nozzle control unit 60 (hereinafter also referred to as a first thickness control unit) that control the Z positions of the material nozzles 32A, 32B in order to control the thickness of the modeling material.
  • irradiation optical system 30 irradiation unit
  • material nozzles 32A, 32B material supply unit
  • drive system 26 and a stage 28 that relatively move the processing light EL and the modeling material M.
  • a nozzle control unit 60 hereinafter also referred to as a first thickness control unit
  • a light source control section 16 (hereinafter referred to as a second thickness control section) that controls the intensity of the processing light EL in order to control the thickness of the modeling material at a spatial frequency higher than the spatial frequency that the first thickness control section can handle. ), and the first thickness control section and the second thickness control section are used in combination according to the height distribution signal RS (height information) of the surface of the first structure layer 68A.
  • the thickness of the modeling material (the build-up amount ) is controlled. Therefore, even if the height distribution on the surface of the first structural layer 68A deviates from the target distribution due to non-uniformity of thermal diffusion or the like during the modeling of the first structural layer 68A, the second structural layer 68B By controlling the thickness distribution of the modeling material during modeling, the surface accuracy (flatness, etc.) of the surface of the second structural layer 68B can be improved.
  • the thickness distribution includes not only the unevenness distribution on the surface but also the distribution of the thickness itself. For example, by flattening the unevenness distribution as the thickness distribution, the surface accuracy (flatness, etc.) of the surface of the structure can be improved. Moreover, by controlling the thickness distribution of the modeling material so that it becomes a target distribution, it is possible to model the structural layer with a desired thickness distribution or a uniform thickness distribution.
  • the height measurement device 42 measures the height distribution of the surface of the pattern of the first structural layer 68A after forming, and this measurement result is used in the next step. It is used when forming the pattern of the two-structure layer 68B. For this reason, modeling can be performed more efficiently than when the height distribution of the surface of the pattern of the first structural layer 68A is separately measured.
  • a measurement process for measuring the height distribution of the surface of the first structural layer 68A may be provided between the forming process of the first structural layer 68A and the forming process of the second structural layer 68B.
  • step 126 in FIG. 8A of the above-described embodiment the height distribution of the surface of the portion where the modeling has been completed is measured during the modeling of the structural layer.
  • step 126A of FIG. 8(B) as shown in FIG. 9(A), when printing the second structural layer 68B, the irradiation optical system is An image of the spot light GLB projected onto the surface of the first structural layer 68A from the light projecting unit 44B located in front of the scanning direction from 30 is captured by the imaging device 46 of FIG. The distribution of heights may also be measured.
  • an error distribution signal of the height distribution of the surface 68Aa of the first structural layer 68A is obtained, and in the next step 116A, a low spatial frequency signal LS and a high spatial frequency signal are obtained from the error distribution signal. Extract the signal HS.
  • steps 126A, 114A, and 116A are performed on the area in front of the area where the processing light EL is irradiated and the printing material M is supplied from the printing head 24 in FIG. 9(A). It is being said.
  • the position Y2 is A low spatial frequency signal LS and a high spatial frequency signal HS are obtained up to the forward position Y1.
  • the second structural layer 68B is formed in a feedforward manner so as to cancel out the error distribution on the surface of the first structural layer 68A determined in step 116A.
  • the second structural layer 68A can be shaped while correcting the thickness of the material. That is, in this modification, it is possible to measure the height distribution of the surface of the previous layer and to control the thickness of the modeling material of the layer in almost real time using this measurement result. Therefore, there is no need to measure and store the height distribution of the surface of the previous layer in advance when modeling the previous layer.
  • the correction of the low spatial frequency components of the error distribution of the height distribution is performed by controlling the positions of the material nozzles 32A and 32B in the Z direction.
  • the error distribution may be corrected by controlling the angles of the material nozzles 32A and 32B.
  • material nozzles 32A and 32B for supplying the modeling material M are symmetrically provided in the modeling head 24 so as to sandwich the irradiation optical system 30 therebetween.
  • the material nozzles 32A, 32B are rotatably supported relative to the modeling head 24.
  • drive mechanisms 34C and 34D for rotating the material nozzles 32A and 32B with respect to the modeling head 24 are provided.
  • the configuration other than this is the same as the above embodiment.
  • the modeling surface CS matches the focal plane BF of the irradiation optical system 30 in normal modeling operations.
  • the modeling material M supplied from the material nozzles 32A, 32B is It is assumed that the angles of the material nozzles 32A and 32B are set so that they overlap in the concentrated region 62 by a predetermined amount below (-Z direction) with respect to BF.
  • the distance in the Z direction between the focused area 62 and the focal plane BF is determined from the drive amount of the drive mechanisms 34A and 34B.
  • the thickness th2 of the modeling material 64 supplied to the modeling surface CS per unit time is approximately 1/2 of the thickness th1.
  • the thickness th of the building material 64 supplied to the building surface CS per unit time can be greatly controlled. can do. Therefore, the thickness distribution of the pattern finally formed on the modeling surface CS can also be greatly controlled.
  • the distance is determined by driving the drive mechanisms 34C and 34D, and from this distance, the thickness th of the modeling material 64 supplied from the material nozzles 32A and 32B to the modeling surface CS per unit time is determined. be able to.
  • the control device 20 can control the thickness th of the modeling material 64 supplied to the modeling surface CS by controlling the rotation angles of the material nozzles 32A, 32B with the nozzle control unit 60.
  • the thickness of the pattern of the modeling material formed by irradiating the modeling material 64 with the processing light EL, melting, cooling, and solidification can also be controlled.
  • Rotation control of the material nozzles 32A, 32B is mechanical control, and although the response speed is not very high, the control range of the thickness of the modeling material is wide. Therefore, by controlling the rotation of the material nozzles 32A and 32B, it is possible to control the thickness of the modeling material with a low spatial frequency component and with a wide correction range.
  • the thickness of the modeling material M supplied to the modeling surface CS is controlled by controlling the relative positions of the material nozzles 32A, 32B and the modeling surface CS.
  • the thickness of the modeling material M may be controlled. In this way, when controlling the supply amount per unit time of the modeling material sent from the material supply device 12 to the material nozzles 32A, 32B, only one material nozzle (for example, 32A) of the material nozzles 32A, 32B is controlled. It is possible to provide the following information.
  • FIG. 11 Next, a second embodiment will be described with reference to FIG. 11. Although this embodiment also uses the modeling apparatus 4 of FIG. 1, the method of controlling the thickness distribution of the modeling material of the structural layer is different. An example of the operation when forming the first structural layer on the workpiece W and forming the second structural layer thereon in this embodiment will be described with reference to FIGS. 11(A) to 11(D).
  • the first structural layer 68A is formed on the surface of the workpiece W using the modeling apparatus 4. At this time, it is not necessarily necessary to measure the height distribution of the surface 68Aa of the first structural layer 68A.
  • the processing light EL is irradiated from the irradiation optical system 30 onto the first structural layer 68A, and the modeling material M is supplied from the material nozzles 32A and 32B to the irradiation area of the processing light EL, and the work W is modeled.
  • the head 24 is relatively moved, for example, in the ⁇ Y direction, and the pattern of the second structural layer 68B is built up and modeled.
  • the target shapes of the surfaces of the first structural layer 68A and the second structural layer 68B are, for example, flat target distributions 70A and 70B shown by dotted lines, respectively.
  • the image of the spot light GLB projected onto the surface 68Aa of the first structural layer 68A from the light projecting section 44B located in front of the irradiation optical system 30 in the scanning direction in the printing head 24 is illustrated.
  • the first imaging device 46 takes an image, and the height distribution of the surface 68Aa of the pattern of the first structural layer 68A, which is the previous layer, is measured. Then, an error signal is obtained by subtracting the signal of the target distribution from the signal RS of the height distribution in the error calculating section 50.
  • the low-pass filter section 52L and the high-pass filter section 52H produce a low spatial frequency signal LS shown in FIG. 11(B) and a high spatial frequency signal LS shown in FIG. 11(C), respectively.
  • a signal HS is supplied to the control device 20.
  • the position in the Y direction where the processing light EL is irradiated from the irradiation optical system 30 is Y4, then by capturing the image of the spot light GLB, As shown, the low spatial frequency signal LS and high spatial frequency signal HS are obtained up to position Y3 in front of position Y4. Therefore, by controlling the positions of the material nozzles 32A and 32B in the Z direction and the intensity of the processing light EL using the low spatial frequency signal LS and the high spatial frequency signal HS, the height of the surface of the first structural layer 68A can be adjusted.
  • the thickness distribution of the modeling material can be controlled substantially in real time and in a feedforward manner during the modeling of the second structural layer 68B so as to offset errors in the distribution.
  • the light projecting section 44A located behind the irradiation optical system 30 in the scanning direction in the printing head 24 is The image of the spot light GLA projected onto the surface of the pattern immediately after is captured by the imaging device 46 of FIG. 1, and the height distribution of the surface 68Ba of the pattern of the second structural layer 68B immediately after modeling is also measured.
  • the thickness distribution of the modeling material of the second structural layer 68B based on the measured value of the height distribution of the surface of the first structural layer 68A, the surface of the pattern formed so far Although 68Ba is close to the target distribution 70B, there is still a slight error.
  • the signal HB corresponding to the error has only low spatial frequency components, as shown by a curve 71A in FIG. 11(D).
  • the position of the irradiation optical system 30 is Y4
  • the signal HB is measured up to a position Y5 at the rear with respect to the scanning direction of the irradiation optical system 30. Therefore, in this embodiment, the Z positions of the material nozzles 32A and 32B are controlled by feedback control so as to cancel out the error in the height distribution corresponding to the signal HB.
  • the signal HB indicating the error of the height distribution of the surface 68Ba of the pattern formed on the second structural layer 68B with respect to the target distribution 70B becomes small as shown by the dotted curve 71B in FIG. 11(D).
  • the thickness distribution of the modeling material of the second structural layer 68B is controlled by the feedforward method so as to offset the measurement result of the error distribution of the height distribution of the surface of the first structural layer 68A.
  • the thickness distribution of the modeling material of the second structural layer 68B is adjusted in a feedback manner so as to cancel out the measurement result of the error distribution of the height distribution of the surface of the pattern formed so far in the second structural layer 68B. It's in control. Therefore, even if the error in the height distribution of the surface of the first structural layer 68A is large, the surface accuracy of the pattern of the second structural layer 68B can be formed with higher precision.
  • the error in the height distribution of the surface 68Ba of the pattern of the second structural layer 68B with respect to the target distribution 70B is calculated.
  • the low spatial frequency signal LS and the high spatial frequency signal HS may be extracted from the signal HB shown.
  • the thickness distribution includes not only the unevenness distribution on the surface but also the distribution of the thickness itself.
  • the surface of the second structural layer 68B is It is possible to print with higher precision.
  • the modeling apparatus 4 of each of the above-described embodiments uses a laser metal deposition method (LMD) of the directional energy deposition method (DED).
  • LMD laser metal deposition method
  • DED directed energy deposition method
  • the configuration of the modeling device 4 of the above-described embodiment is not limited to the above-described configuration, and any other configuration is possible.
  • the number and arrangement of the material nozzles 32A, 32B may be arbitrary, and the configuration of the height measuring device 42 and the like may also be arbitrary. Further, as the height measuring device 42, it is also possible to use a device that projects a bright and dark pattern.
  • a modeling method that includes changing the relative positional relationship between the material supply section and the modeling surface, and the second method includes controlling the intensity of the light beam irradiated to the modeling material.
  • Forming the second structural layer includes supplying a modeling material from a material supply unit to a region to be irradiated with a light beam, and relatively moving the light beam and the modeling material, The method includes controlling the thickness of the modeling material supplied from the material supply unit to the modeling surface when the light beam and the modeling material are moved relative to each other.
  • the modeling method according to 5 wherein the first method includes controlling the distance between the material supply section and the modeling surface.
  • Supplying the building material from the material supply section includes supplying the building material in an oblique direction from a plurality of material supply sections, and the first method includes controlling the angle of the material supply section. 5.
  • Forming the second structural layer includes supplying a modeling material from a material supply unit to a region to be irradiated with a light beam, and relatively moving the light beam and the modeling material, and forming the second structural layer.
  • 9) When forming the second structural layer measuring the height information of the surface of the first structural layer in a region before applying the modeling material of the second structural layer, The modeling method according to any one (or 1). 10) From 1 to 1, including measuring height information of the surface of the first structural layer in a region after the modeling material of the first structural layer is piled up when forming the first structural layer. 8. The modeling method according to any one of item 8 (or 1).
  • any one of 1 to 8 including a step of measuring height information of the surface of the first structural layer between the step of forming the first structural layer and the step of forming the second structural layer.
  • the modeling method according to any one of 1 to 11 (or 1) including controlling the thickness of the modeling material in the area where the modeling material is applied.
  • a modeling device that forms a structure by stacking a plurality of structural layers, including an irradiation unit that irradiates a modeling surface with a light beam, and a material that supplies a modeling material to a region that is irradiated with the light beam. a supply unit, a moving unit that relatively moves the light beam and the modeling material, a first thickness control unit that controls the thickness of the modeling material, and a spatial frequency that can be handled by the first thickness control unit.
  • a second thickness control section that controls the thickness of the modeling material at a high spatial frequency, and the first and second thickness control sections are used together according to the height information of the surface of the first structural layer
  • a modeling device comprising: a modeling control section that controls the thickness distribution of a modeling material of a second structural layer formed to overlap the first structural layer.
  • a modeling device that forms a structure by stacking a plurality of structural layers, comprising: an irradiation unit that irradiates a modeling surface with a light beam; and a material that supplies a modeling material to an area irradiated with the light beam.
  • the first structural layer is formed so as to be superimposed on the first structural layer by using a supply section and first and second thickness control sections whose corresponding spatial frequency components are different from each other according to the height information of the surface of the first structural layer.
  • a modeling control section that controls the thickness distribution of the modeling material of the second structural layer, the first thickness control section changing the relative positional relationship between the material supply section and the modeling surface.
  • a modeling apparatus wherein the second thickness control section is an intensity control section that controls the intensity of the light beam.
  • a calculation unit that extracts a low frequency component and a high frequency component related to spatial frequency from the height information of the surface of the first structural layer, and the modeling control unit extracts the low frequency component and the high frequency component regarding the spatial frequency from the height information of the surface of the first structural layer
  • the first thickness control section is used to control the thickness distribution of the modeling material of the second structural layer
  • the second thickness control section is used to control the thickness distribution of the modeling material of the second structural layer
  • the second thickness control section is used to control the thickness distribution of the modeling material of the second structural layer.
  • the modeling control unit controls the first thickness control unit and the second thickness control unit in a feedforward manner using the height information of the surface of the first structural layer, and 17.
  • the modeling device according to any one of 14 to 16 (or 14), which controls the thickness distribution of the modeling material of the structural layer.
  • the material supply unit has a plurality of material supply units that supply the modeling material obliquely, and the first thickness control unit controls the angle of the plurality of material supply units,
  • the modeling device according to any one (or 14).
  • the measurement unit includes a measurement light irradiation unit that irradiates the surface of the structural layer with a plurality of measurement lights obliquely, an imaging unit that receives the measurement light reflected by the structural layer, and an imaging unit of the imaging unit. 23.
  • the modeling apparatus further comprising: an imaging signal processing unit that processes a signal to determine the height of a portion of the structural layer that is irradiated with the measurement light.
  • the measurement unit measures height information of the surface of the second structural layer in a region where the modeling material of the second structural layer is piled up, and measures the height information of the surface of the second structural layer.
  • the control unit uses the first and second thickness control units to apply the next modeling material in the second structural layer according to the height information of the surface of the second structural layer measured by the measuring unit.
  • the modeling device according to 22 or 23 (or 22), which controls the thickness of the modeling material in the region where the material is piled up. 25)
  • the modeling apparatus according to any one of 14 to 24, wherein the surface height information of the first structural layer includes an error distribution of the surface height distribution with respect to a target distribution.
  • W... Workpiece EL... Processing light, M... Modeling material, 4... Modeling device, 10... Light source, 12... Material supply device, 16... Light source control section, 18... Gas supply device, 20... Control device, 26... Drive system , 28... Stage, 30... Irradiation optical system, 32A, 32B... Material nozzle, 34A, 34B... Drive mechanism, 42... Height measurement device, 44A to 44H... Light projection unit, 46... Imaging device, 48... Imaging signal processing Section, 50... Error calculation section, 52H... High pass filter section, 52L... Low pass filter section, 60... Nozzle control section

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)

Abstract

This shaping method for shaping a structure by forming a plurality of structural layers in a superimposed manner involves controlling the thickness distribution of a shaping material of a second structural layer formed by being superimposed on the first structural layer, by using, in combination: a first method for controlling the thickness of a shaping material in accordance with height information about a surface of a first structural layer; and a second method for controlling the thickness of the shaping material for a spatial frequency component differing from a spatial frequency component corresponding to the first method. The present invention makes it possible to improve the accuracy of the surface of the structure shaped by an additive manufacturing (AM) method.

Description

造形方法及び造形装置Molding method and device
 本発明は、例えば付加製造(AM:Additive Manufacturing)方式で造形物を形成する造形方法及び造形装置に関する。 The present invention relates to a molding method and a molding apparatus for forming a molded object using, for example, an additive manufacturing (AM) method.
 例えば3Dプリンタのように付加製造(AM)方式で造形物を形成する装置として、エネルギービームの照射領域に粉末状の造形材料を供給し、造形材料をエネルギービームで溶融した後、溶融した材料を再固化させることを繰り返して複数の構造層(造形層)を積み重ねて造形物を形成する造形装置が知られている(特許文献1参照)。このような造形装置では、造形物の表面の面精度の向上を図ることが求められている。 For example, in a device that forms objects using an additive manufacturing (AM) method, such as a 3D printer, powdered modeling material is supplied to the energy beam irradiation area, the modeling material is melted by the energy beam, and then the melted material is BACKGROUND ART A modeling apparatus is known that forms a modeled object by stacking a plurality of structural layers (modeling layers) by repeating resolidification (see Patent Document 1). In such a modeling apparatus, it is required to improve the surface precision of the surface of the modeled object.
米国特許出願公開第2016/0375521号明細書US Patent Application Publication No. 2016/0375521
 本発明の第1の態様によれば、複数の構造層を重ねて形成して構造物を造形する造形方法であって、第1構造層の表面の高さ情報に応じて、造形材料の厚さを制御する第1の方法、及びその第1の方法が対応する空間周波数成分と異なる空間周波数成分に関して造形材料の厚さを制御する第2の方法を併用して、その第1構造層に重ねて形成される第2構造層の造形材料の厚さ分布を制御する造形方法が提供される。
 第2の態様によれば、複数の構造層を重ねて形成して構造物を造形する造形方法であって、第1構造層の表面の高さ情報に応じて、対応する空間周波数成分が互いに異なる第1の方法及び第2の方法を併用して、その第1構造層に重ねて形成される第2構造層の造形材料の厚さ分布を制御することを含み、その第1の方法は、造形材料を供給する材料供給部と造形面との相対的な位置関係を変更することを含み、その第2の方法は、造形材料に照射される光ビームの強度を制御することを含む、造形方法が提供される。
According to a first aspect of the present invention, there is provided a modeling method in which a structure is formed by stacking a plurality of structural layers, and the thickness of the modeling material is determined according to the height information of the surface of the first structural layer. a first method of controlling the thickness of the building material with respect to a spatial frequency component that is different from the spatial frequency component to which the first method corresponds; A modeling method is provided that controls the thickness distribution of a modeling material of a second structural layer that is formed in an overlapping manner.
According to the second aspect, there is provided a modeling method for forming a structure by stacking a plurality of structural layers, in which corresponding spatial frequency components are mutually differentiated according to height information of the surface of the first structural layer. The first method includes controlling the thickness distribution of a building material of a second structural layer formed overlying the first structural layer by using a different first method and a second method in combination; The second method includes changing the relative positional relationship between the material supply unit that supplies the modeling material and the modeling surface, and the second method includes controlling the intensity of the light beam irradiated to the modeling material. A modeling method is provided.
 第3の態様によれば、複数の構造層を重ねて形成して構造物を造形する造形装置であって、造形面に光ビームを照射する照射部と、その光ビームが照射される領域に造形材料を供給する材料供給部と、その光ビームとその造型材料とを相対移動する移動部と、造形材料の厚さを制御する第1厚さ制御部と、その第1厚さ制御部が対応可能な空間周波数より高い空間周波数で造形材料の厚さを制御する第2厚さ制御部と、第1構造層の表面の高さ情報に応じて、その第1及び第2厚さ制御部を併用して、その第1構造層に重ねて形成される第2構造層の造形材料の厚さ分布を制御する造形制御部と、を備える造形装置が提供される。 According to a third aspect, there is provided a modeling apparatus that forms a structure by stacking a plurality of structural layers, and includes an irradiation section that irradiates a light beam onto a modeling surface, and an area that is irradiated with the light beam. A material supply section that supplies the modeling material, a moving section that relatively moves the light beam and the modeling material, a first thickness control section that controls the thickness of the modeling material, and the first thickness control section. a second thickness control section that controls the thickness of the modeling material at a spatial frequency higher than a compatible spatial frequency; and first and second thickness control sections thereof according to height information of the surface of the first structural layer. A modeling apparatus is provided, which includes a modeling control unit that uses the modeling controller in combination with the modeling controller to control the thickness distribution of the modeling material of a second structural layer formed overlying the first structural layer.
 第4の態様によれば、複数の構造層を重ねて形成して構造物を造形する造形装置であって、造形面に光ビームを照射する照射部と、その光ビームが照射される領域に造形材料を供給する材料供給部と、第1構造層の表面の高さ情報に応じて、対応する空間周波数成分が互いに異なる第1及び第2厚さ制御部を併用して、その第1構造層に重ねて形成される第2構造層の造形材料の厚さ分布を制御する造形制御部と、を備え、その第1厚さ制御部は、その材料供給部と造形面との相対的な位置関係を変更する変更部であり、その第2厚さ制御部は、その光ビームの強度を制御する強度制御部である、造形装置が提供される。 According to a fourth aspect, there is provided a modeling apparatus that forms a structure by stacking a plurality of structural layers, including an irradiation section that irradiates a light beam onto a modeling surface, and an area that is irradiated with the light beam. A material supply section that supplies a modeling material, and first and second thickness control sections whose corresponding spatial frequency components differ from each other according to the height information of the surface of the first structure layer are used together to create the first structure. a modeling control section that controls the thickness distribution of the modeling material of the second structural layer formed in layers, and the first thickness control section controls the relative thickness distribution between the material supply section and the modeling surface. A shaping device is provided, in which the second thickness control section is a change section that changes the positional relationship, and the second thickness control section is an intensity control section that controls the intensity of the light beam.
[規則91に基づく訂正 30.06.2022] 
第1の実施形態の造形装置を示す断面図である。 (A)は複数の投光部の配置例を示す平面図、(B)及び(C)は造形面の高さと投影される2つのパターンの間隔の関係の一例を示す図である。 (A)は材料ノズルと造形面との距離が可変範囲の中央にあるときを示す図、(B)及び(C)はそれぞれその距離が可変範囲の最長及び最短の場合を示す図である。 (A)、(B)、(C)、及び(D)は造形材料への加工光の照射及び冷却によってワークに凸のパターンが形成される過程を示す図である。 (A)は第1構造層のパターンを形成しつつ、その形成後のパターンの高さ分布を計測する状態を示す断面図、(B)は誤差分布の低い空間周波数成分の一例を示す図、(C)は高い空間周波数成分の一例を示す図、(D)は第2構造層のパターンを形成しつつ、その形成後のパターンの高さ分布を計測する状態を示す断面図である。 (A)、(B)、(C)は3次元構造物としてのラインパターンを造形する過程を示す断面図である。 (A)、(B)、(C)はそれぞれ3次元構造物を造形する過程を示す断面図である。 (A)は造形方法の一例を示すフローチャート、(B)は変形例の動作を示すフローチャートである。 (A)は変形例において、第1構造層の表面の高さ分布を計測しつつ、第2構造層のパターンを形成する状態を示す断面図、(B)は誤差分布の低い空間周波数成分の一例を示す図、(C)は高い空間周波数成分の一例を示す図である。 (A)は材料ノズルの傾斜角が可変範囲の中央にあるときを示す図、(B)及び(C)はそれぞれその傾斜角が可変範囲の最大及び最小の場合を示す図である。 (A)は第2の実施形態において、第1構造層の表面の高さ分布を計測しつつ、第2構造層のパターンの表面の高さ分布を計測する状態を示す断面図、(B)は誤差分布の低い空間周波数成分の一例を示す図、(C)は高い空間周波数成分の一例を示す図、(D)はフィードバック制御を併用した場合の誤差分布の一例を示す図である。
[Amendment under Rule 91 30.06.2022]
FIG. 1 is a cross-sectional view showing the modeling apparatus of the first embodiment. (A) is a plan view showing an example of the arrangement of a plurality of light projectors, and (B) and (C) are views showing an example of the relationship between the height of the modeling surface and the interval between two projected patterns. (A) is a diagram showing when the distance between the material nozzle and the modeling surface is at the center of the variable range, and (B) and (C) are diagrams showing when the distance is the longest and shortest in the variable range, respectively. (A), (B), (C), and (D) are diagrams showing a process in which a convex pattern is formed on a workpiece by irradiating the modeling material with processing light and cooling it. (A) is a cross-sectional view showing a state in which a pattern of the first structural layer is formed and the height distribution of the pattern after the formation is measured; (B) is a view showing an example of a spatial frequency component with a low error distribution; (C) is a diagram showing an example of a high spatial frequency component, and (D) is a cross-sectional view showing a state in which the pattern of the second structural layer is formed and the height distribution of the pattern after the formation is measured. (A), (B), and (C) are cross-sectional views showing the process of forming a line pattern as a three-dimensional structure. (A), (B), and (C) are cross-sectional views each showing a process of modeling a three-dimensional structure. (A) is a flowchart showing an example of the modeling method, and (B) is a flowchart showing the operation of a modified example. (A) is a cross-sectional view showing a state in which the pattern of the second structural layer is formed while measuring the height distribution of the surface of the first structural layer in a modified example, and (B) is a cross-sectional view showing the state in which the pattern of the second structural layer is formed while measuring the height distribution of the surface of the first structural layer. A diagram showing an example, (C) is a diagram showing an example of a high spatial frequency component. (A) is a diagram showing the case where the inclination angle of the material nozzle is at the center of the variable range, and (B) and (C) are diagrams showing the case where the inclination angle is at the maximum and minimum of the variable range, respectively. (A) is a cross-sectional view showing a state in which the height distribution of the surface of the pattern of the second structural layer is measured while measuring the height distribution of the surface of the first structural layer in the second embodiment; (B) 3 is a diagram showing an example of a low spatial frequency component of an error distribution, (C) is a diagram showing an example of a high spatial frequency component, and (D) is a diagram showing an example of an error distribution when feedback control is also used.
 [第1の実施形態]
 以下、第1の実施形態につき図1~図8を参照して説明する。
 本実施形態では、三次元の造形物を、3Dプリンタのように金属又は合成樹脂等の材料を逐次付加する付加製造(AM:Additive Manufacturing)方式で造形(製造)する。以下では付加製造方式をAM方式とも称する。本実施形態では、AM方式として指向性エネルギー堆積法(Directed Energy Deposition: DED法)の中で、エネルギービームとしてレーザ光等の光を使用するレーザ肉盛堆積法(Laser Metal Deposition:LMD)(以下、LMD法ともいう。)を使用するものとして説明する。LMD法は、ダイレクト・メタル・デポジション、ダイレクト・エナジー・デポジション、レーザ・クラッディング、レーザ・パウダー・デポジション、レーザ・アディティブ・マニュファクチャリング、又はレーザ・ラピッド・フォーミング等と称することもできる。
[First embodiment]
The first embodiment will be described below with reference to FIGS. 1 to 8.
In this embodiment, a three-dimensional model is modeled (manufactured) using an additive manufacturing (AM) method in which materials such as metal or synthetic resin are sequentially added like a 3D printer. In the following, the additive manufacturing method will also be referred to as the AM method. In this embodiment, a laser metal deposition (LMD) method (hereinafter referred to as "LMD"), which uses light such as a laser beam as an energy beam, is used as an AM method in a directed energy deposition method (DED method). , also referred to as the LMD method). LMD methods can also be referred to as direct metal deposition, direct energy deposition, laser cladding, laser powder deposition, laser additive manufacturing, or laser rapid forming. .
 図1は、LMD法を用いる3Dプリンタよりなる造形装置4を示す。図1において、互いに直交するX軸、Y軸及びZ軸から定義されるXYZ直交座標系を用いて、造形装置4を構成する各種構成要素の位置関係について説明する。以下では、X軸及びY軸によって形成される面は水平面に平行であり、Z軸は水平面に直交しているものとする。この場合、Z軸に平行な方向(Z方向)は鉛直方向に平行であり、-Z方向を鉛直方向とする。 FIG. 1 shows a modeling device 4 consisting of a 3D printer using the LMD method. In FIG. 1, the positional relationships of various components constituting the modeling device 4 will be described using an XYZ orthogonal coordinate system defined by mutually orthogonal X, Y, and Z axes. In the following, it is assumed that the plane formed by the X-axis and the Y-axis is parallel to the horizontal plane, and the Z-axis is perpendicular to the horizontal plane. In this case, the direction parallel to the Z axis (Z direction) is parallel to the vertical direction, and the -Z direction is the vertical direction.
 造形装置4は、3次元構造物を形成するための基礎(つまり、母材)となるワークW上に、3次元構造物ST(図7(C)参照)(3次元のいずれの方向においても大きさを持つ物体)を形成可能である。ワークWがステージ28である場合には、造形装置4は、ステージ28上に3次元構造物STを形成可能である。ワークWがステージ28によって保持されている既存構造物である場合には、造形装置4は、既存構造物上に、新たな構造物を付加して3次元構造物STを形成可能である。この場合、造形装置4は、既存構造物と一体化された3次元構造物STを形成してもよい。又は、造形装置4は、既存構造物と分離可能な3次元構造物STを形成してもよいし、既存構造物の破損部を修復するよう3次元構造物STを形成してもよい。以下では、ワークWがステージ28によって保持されている既存構造物であるとして説明する。 The modeling device 4 places a three-dimensional structure ST (see FIG. 7(C)) (in any three-dimensional direction It is possible to form objects with size. When the work W is the stage 28, the modeling device 4 can form the three-dimensional structure ST on the stage 28. When the workpiece W is an existing structure held by the stage 28, the modeling device 4 can add a new structure onto the existing structure to form the three-dimensional structure ST. In this case, the modeling device 4 may form a three-dimensional structure ST that is integrated with an existing structure. Alternatively, the modeling device 4 may form a three-dimensional structure ST that is separable from an existing structure, or may form a three-dimensional structure ST so as to repair a damaged portion of an existing structure. In the following description, it will be assumed that the workpiece W is an existing structure held by the stage 28.
 造形装置4は、造形用の光ビーム(以下、加工光という)ELをワークWに照射する照射光学系30と、ワークWに造形材料Mを供給する材料ノズル32A,32B(材料供給部)とを有する造形ヘッド24と、造形ヘッド24を移動させる駆動系26と、材料供給装置12と、ガス供給装置18と、固化されなかった造形材料を回収する回収装置22と、装置全体の動作を制御する制御装置20とを備えている。照射光学系30には、光源10で発生される加工光ELが光ファイバ36を介して供給されている。制御装置20は光源制御部16を介して光源10で発生される加工光ELの強度(単位時間当たりのエネルギー)を制御する。造形ヘッド24と、駆動系26と、ステージ28とから造形部14が構成されている。なお、光源制御部16の代わりに、あるいはそれと併用し、光源10から射出される加工光ELの強度を例えば音響光学素子(AOM)等を用いる変調装置を用いて制御してもよい。 The modeling device 4 includes an irradiation optical system 30 that irradiates the workpiece W with a modeling light beam (hereinafter referred to as processing light) EL, and material nozzles 32A and 32B (material supply section) that supply the modeling material M to the workpiece W. A drive system 26 that moves the printing head 24, a material supply device 12, a gas supply device 18, a recovery device 22 that recovers unsolidified modeling material, and controls the operation of the entire device. A control device 20 is provided. Processing light EL generated by the light source 10 is supplied to the irradiation optical system 30 via an optical fiber 36. The control device 20 controls the intensity (energy per unit time) of the processing light EL generated by the light source 10 via the light source control section 16. The modeling section 14 includes a modeling head 24, a drive system 26, and a stage 28. Note that, in place of the light source control unit 16 or in combination with it, the intensity of the processing light EL emitted from the light source 10 may be controlled using a modulation device using, for example, an acousto-optic device (AOM) or the like.
 材料供給装置12は、造形部14が3次元構造物STを形成するために単位時間当たりに必要とする量の造形材料Mを造形ヘッド24の材料ノズル32A,32Bに供給する。造形材料Mは、所定強度以上の加工光ELの照射によって溶融可能な材料である。このような造形材料Mとして、例えば、金属性の材料及び樹脂性の材料の少なくとも一方が使用可能である。但し、造形材料Mとして、金属性の材料及び樹脂性の材料とは異なるその他の材料が用いられてもよい。造形材料Mは、粉状又は粒状の材料(粉粒体)である。但し、造形材料Mは、粉粒体でなくてもよく、例えばワイヤ状の造形材料やガス状の造形材料が用いられてもよい。 The material supply device 12 supplies the material nozzles 32A, 32B of the modeling head 24 with the amount of modeling material M required per unit time for the modeling unit 14 to form the three-dimensional structure ST. The modeling material M is a material that can be melted by irradiation with processing light EL having a predetermined intensity or higher. As such a modeling material M, for example, at least one of a metallic material and a resinous material can be used. However, as the modeling material M, other materials different from metal materials and resin materials may be used. The modeling material M is a powder or granular material (powder material). However, the modeling material M does not have to be a powder or granule, and for example, a wire-shaped modeling material or a gaseous modeling material may be used.
 造形部14は、材料供給装置12から供給される造形材料Mを加工して3次元構造物STを形成する。造形材料Mを加工するために、造形部14の造形ヘッド24は、照射光学系30と、材料ノズル(造形材料Mを供給する供給系)32A,32Bとを備えている。回収装置22に不図示の可撓性を持つパイプ等を介して接続されている吸引口22aが、一例として造形ヘッド24に不図示の支持部材を介して支持されている。造形ヘッド24と、駆動系26と、ステージ28とは、チャンバ8内の空間8INに収容されている。 The modeling unit 14 processes the modeling material M supplied from the material supply device 12 to form a three-dimensional structure ST. In order to process the modeling material M, the modeling head 24 of the modeling section 14 includes an irradiation optical system 30 and material nozzles (supply system for supplying the modeling material M) 32A, 32B. A suction port 22a connected to the collection device 22 via a flexible pipe (not shown) is supported by the modeling head 24 via a support member (not shown), for example. The modeling head 24, drive system 26, and stage 28 are housed in a space 8IN within the chamber 8.
 照射光学系30は、光ファイバ36を介して光源10と光学的に接続されている。光ファイバ36の代わりにライトガイド等の光伝送部材を使用可能である。なお、光源10から射出される光を直接に照射光学系30に供給してもよい。
 光源10は、例えば、赤外、可視及び紫外のうちの少なくとも一つの波長のレーザ光を加工光ELとして射出するレーザ光源である。但し、加工光ELとして、その他の種類の光が用いられてもよい。レーザ光源としては、CO レーザやエキシマレーザ等の気体レーザ、ネオジム・ヤグ(Nd:YAG)レーザ又はイットリウム(YVO4 )レーザ等の固体レーザ、半導体レーザLD(Laser Diode)、又はファイバ・レーザ等が使用できる。また、光源10は連続発光又はパルス発光のいずれでもよい。なお、加工光ELはレーザ光でなくともよく、光源10は任意の光源(例えば、LED(Light Emitting Diode)又は放電ランプ等の少なくとも一つ)を含んでいてもよい。光源10の発光のタイミング及び発光強度(単位時間当たりのエネルギー)は光源制御部16によって制御される。
The irradiation optical system 30 is optically connected to the light source 10 via an optical fiber 36. A light transmission member such as a light guide can be used instead of the optical fiber 36. Note that the light emitted from the light source 10 may be directly supplied to the irradiation optical system 30.
The light source 10 is, for example, a laser light source that emits laser light of at least one wavelength among infrared, visible, and ultraviolet wavelengths as processing light EL. However, other types of light may be used as the processing light EL. As a laser light source, a gas laser such as a CO 2 laser or an excimer laser, a solid laser such as a neodymium YAG (Nd:YAG) laser or a yttrium (YVO 4 ) laser, a semiconductor laser LD (Laser Diode), a fiber laser, etc. can be used. Furthermore, the light source 10 may emit continuous light or pulsed light. Note that the processing light EL does not need to be a laser beam, and the light source 10 may include any light source (for example, at least one of an LED (Light Emitting Diode) or a discharge lamp). The timing and intensity of light emission (energy per unit time) of the light source 10 are controlled by the light source control unit 16.
 照射光学系30は、光ファイバ36から射出される加工光ELを集光して平行光束に変換するコンデンサレンズ系(不図示)と、その加工光ELを造形面CSに集光する集光レンズ系30aとを有する。一例として、造形面CSは集光レンズ系30aの後側焦点面の近傍の合焦面(フォーカス位置)に配置されており、集光レンズ系30aの光軸AXはZ軸に平行である。照射光学系30は、光ファイバ36を介して光源10から伝搬してくる加工光ELを光軸AXに沿って下方(-Z方向)に射出する。 The irradiation optical system 30 includes a condenser lens system (not shown) that condenses the processed light EL emitted from the optical fiber 36 and converts it into a parallel beam, and a condenser lens that focuses the processed light EL on the modeling surface CS. system 30a. As an example, the modeling surface CS is arranged at a focusing plane (focus position) near the rear focal plane of the condenser lens system 30a, and the optical axis AX of the condenser lens system 30a is parallel to the Z axis. The irradiation optical system 30 emits the processing light EL propagated from the light source 10 via the optical fiber 36 downward (in the −Z direction) along the optical axis AX.
 ステージ28にワークWが搭載されている場合には、照射光学系30は、ステージ28上のワークWに向けて加工光ELを照射する。照射光学系30は、ワークW上に設定される照射領域EAに加工光ELを照射可能である。更に、照射光学系30の状態は、制御装置20の制御下で、照射領域EAに加工光ELを照射する状態と、照射領域EAに加工光ELを照射しない状態との間で切替可能である。なお、照射光学系30から射出される加工光ELの方向は真下(-Z方向)には限定されず、例えば、Z軸に対して所定角度だけ傾いた方向であってもよい。 When the workpiece W is mounted on the stage 28, the irradiation optical system 30 irradiates the processing light EL toward the workpiece W on the stage 28. The irradiation optical system 30 can irradiate the irradiation area EA set on the workpiece W with the processing light EL. Furthermore, the state of the irradiation optical system 30 is switchable under the control of the control device 20 between a state in which the irradiation area EA is irradiated with the processing light EL and a state in which the irradiation area EA is not irradiated with the processing light EL. . Note that the direction of the processing light EL emitted from the irradiation optical system 30 is not limited to directly below (-Z direction), but may be, for example, a direction inclined at a predetermined angle with respect to the Z axis.
 また、造形ヘッド24には、照射光学系30をY方向に挟むように配置されて、それぞれ造形面に2つの円形のスポット光GLA,GLBを斜めに投影する投光部44A,44Bと、照射光学系30をX方向に挟むように配置されて、それぞれ造形面に2つの円形のスポット光GLC,GLDを斜めに投影する投光部44C,44D(図2(A)参照)と、照射光学系30を斜め方向に挟むように配置されて、それぞれ造形面に2つの円形のスポット光GLE,GLF,GLG,GLHを斜めに投影する投光部44E,44F,44G,44H(図2(A)参照)と、スポット光GLA~GLHの像を撮像する撮像装置46とが保持されている。なお、投光部44A~44Hの数は任意であり、撮像装置46は造形ヘッド24とは別の支持部材に支持されていてもよい。撮像装置46の撮像信号を撮像信号処理部48で処理することによって、スポット光GLA~GLHが投影されている位置の造形面又はパターンの高さ(Z方向の位置又はZ位置)の分布を示す高さ分布信号RSが得られる(詳細後述)。投光部44A~44H、撮像装置46、及び撮像信号処理部48から、造形面CS又は造形されたパターンの表面の高さ分布を計測する高さ計測装置42が構成されている。また、高さ分布信号RSを処理するための誤差算出部50、ハイパスフィルタ部52H、及びローパスフィルタ部52Lも設けられている(これらの作用については後述)。なお、造形面等の高さを計測する方法は任意であり、例えば近接センサ又は空気マイクロメータ等を用いてその高さを計測してもよい。 The modeling head 24 also includes light projecting units 44A and 44B that are arranged to sandwich the irradiation optical system 30 in the Y direction and project two circular spot lights GLA and GLB obliquely onto the modeling surface, respectively, and Light projecting units 44C and 44D (see FIG. 2A) that are arranged to sandwich the optical system 30 in the X direction and project two circular spot lights GLC and GLD obliquely onto the modeling surface, respectively, and irradiation optics. Light projecting units 44E, 44F, 44G, and 44H are arranged to sandwich the system 30 in an oblique direction and project two circular spot lights GLE, GLF, GLG, and GLH obliquely onto the modeling surface, respectively (Fig. 2(A) )) and an imaging device 46 that captures images of the spot lights GLA to GLH are held. Note that the number of light projectors 44A to 44H is arbitrary, and the imaging device 46 may be supported by a support member separate from the modeling head 24. By processing the imaging signal of the imaging device 46 in the imaging signal processing unit 48, the distribution of the height (Z-direction position or Z position) of the modeling surface or pattern at the position where the spot lights GLA to GLH are projected is shown. A height distribution signal RS is obtained (details will be described later). The light projecting sections 44A to 44H, the imaging device 46, and the imaging signal processing section 48 constitute a height measuring device 42 that measures the height distribution of the surface of the printing surface CS or the pattern formed. Further, an error calculation section 50, a high-pass filter section 52H, and a low-pass filter section 52L for processing the height distribution signal RS are also provided (the functions of these sections will be described later). Note that any method may be used to measure the height of the modeling surface, etc., and for example, the height may be measured using a proximity sensor, an air micrometer, or the like.
 材料供給装置12に連結される材料ノズル32A,32Bは、一例として照射光学系30をY方向に挟むように対称に傾斜して配置されている。造形ヘッド24には、材料ノズル32A,32BのZ方向の位置を制御するための駆動機構34A,34Bが設けられている。なお、材料ノズル32A,32Bの個数は3個以上でもよい。制御装置20は、ノズル制御部60を介して駆動機構34A,34Bを駆動することで、材料ノズル32A,32BのZ方向の位置(造形面CSに対するZ方向の相対位置)を制御できる。材料ノズル32A,32Bは、それぞれ供給口から造形材料Mを造形面CSに対して斜め方向に供給(具体的には、噴射、噴出、又は吹き付け)する。材料ノズル32A,32Bは、造形材料Mの供給源である材料供給装置12と、可撓性を持つパイプ54等を介して物理的に接続されている。材料ノズル32A,32Bは、パイプ54等を介して材料供給装置12から供給される造形材料Mを造形面CSに圧送してもよい。即ち、材料供給装置12からの造形材料Mと搬送用の気体(例えば、窒素やアルゴン等の不活性ガス)とを混合した混合物をパイプ54を介して材料ノズル32A,32Bに圧送し、材料ノズル32A,32Bからその混合物を圧送してもよい。なお、図1において材料ノズル32A,32Bは、チューブ状に描かれているが、材料ノズル32の形状は、この形状に限定されない。 For example, the material nozzles 32A and 32B connected to the material supply device 12 are arranged symmetrically and inclined so as to sandwich the irradiation optical system 30 in the Y direction. The modeling head 24 is provided with drive mechanisms 34A and 34B for controlling the positions of the material nozzles 32A and 32B in the Z direction. Note that the number of material nozzles 32A, 32B may be three or more. The control device 20 can control the positions of the material nozzles 32A, 32B in the Z direction (relative positions in the Z direction with respect to the modeling surface CS) by driving the drive mechanisms 34A, 34B via the nozzle control unit 60. The material nozzles 32A and 32B each supply (specifically, inject, jet, or spray) the modeling material M from the supply port in an oblique direction to the modeling surface CS. The material nozzles 32A, 32B are physically connected to the material supply device 12, which is a supply source of the modeling material M, via a flexible pipe 54 or the like. The material nozzles 32A, 32B may force-feed the modeling material M supplied from the material supply device 12 via the pipe 54 or the like to the modeling surface CS. That is, a mixture of the modeling material M from the material supply device 12 and a transporting gas (for example, an inert gas such as nitrogen or argon) is fed under pressure to the material nozzles 32A and 32B via the pipe 54, and the material nozzle The mixture may be pumped from 32A and 32B. In addition, although the material nozzles 32A and 32B are drawn in a tube shape in FIG. 1, the shape of the material nozzle 32 is not limited to this shape.
 ステージ28にワークWが搭載されている場合には、材料ノズル32A,32Bは、ステージ28上のワークWに向けて造形材料Mを供給する。一例として、材料ノズル32A,32Bから供給される造形材料Mの進行方向はZ軸に対して所定角度(一例として鋭角)だけ対称に傾いた方向である。本実施形態では、材料ノズル32A,32Bは、照射光学系30が加工光ELを照射する照射領域EAに向けて造形材料Mを供給する。つまり、材料ノズル32A,32Bが造形材料Mを供給するワークW上の供給領域MAと照射領域EAとが一致する(又は、少なくとも部分的に重複する)ように、材料ノズル32A,32Bと照射光学系30とが位置合わせされている。なお、照射光学系30から射出された加工光ELによって形成される溶融池MP(図6(A)参照)に、材料ノズル32A,32Bが造形材料Mを供給するように位置合わせされていてもよい。 When the workpiece W is mounted on the stage 28, the material nozzles 32A and 32B supply the modeling material M toward the workpiece W on the stage 28. As an example, the traveling direction of the modeling material M supplied from the material nozzles 32A and 32B is a direction symmetrically inclined by a predetermined angle (an acute angle as an example) with respect to the Z axis. In this embodiment, the material nozzles 32A and 32B supply the modeling material M toward the irradiation area EA where the irradiation optical system 30 irradiates the processing light EL. In other words, the material nozzles 32A, 32B and the irradiation optical system 30 are aligned. Note that even if the material nozzles 32A, 32B are aligned so as to supply the modeling material M to the molten pool MP (see FIG. 6(A)) formed by the processing light EL emitted from the irradiation optical system 30, good.
 例えばモータ及び位置検出用のエンコーダ等を含む駆動系26は、造形ヘッド24をX軸、Y軸及びZ軸の少なくともいずれかに沿って移動させる。造形ヘッド24がX軸及びY軸の少なくとも一方に沿って移動すると、照射領域EAは、ワークW上をX軸及びY軸の少なくとも一方に沿って移動する。更に、駆動系26は、X軸、Y軸、及びZ軸に平行な軸の回りの回転方向であるθx方向、θy方向、及びθz方向の少なくとも一つの方向に造形ヘッド24を傾斜させてもよい。制御装置20には駆動系26の動作を制御する制御部56が設けられている。なお、駆動系26は、照射光学系30と材料ノズル32A,32Bとを別々に移動させてもよい。具体的には、例えば、駆動系26は、照射光学系30の射出部(先端部)の位置、その方向、材料ノズル32A,32Bの供給口の位置、及びその方向の少なくとも一つを調整可能であってもよい。この場合、照射光学系30が加工光ELを照射する照射領域EAと、材料ノズル32A,32Bが造形材料Mを供給する供給領域MAとが別々に制御可能となる。なお、駆動系26は、造形ヘッド24をX軸、Y軸に平行な軸に対して傾斜した軸(回転軸)に平行な軸の回りに回転可能にしてもよい。 A drive system 26 including, for example, a motor and an encoder for position detection moves the modeling head 24 along at least one of the X-axis, Y-axis, and Z-axis. When the modeling head 24 moves along at least one of the X-axis and the Y-axis, the irradiation area EA moves on the workpiece W along at least one of the X-axis and the Y-axis. Furthermore, the drive system 26 may tilt the printing head 24 in at least one of the θx direction, the θy direction, and the θz direction, which are rotational directions around axes parallel to the X, Y, and Z axes. good. The control device 20 is provided with a control section 56 that controls the operation of the drive system 26. Note that the drive system 26 may move the irradiation optical system 30 and the material nozzles 32A, 32B separately. Specifically, for example, the drive system 26 can adjust at least one of the position and direction of the emission part (tip part) of the irradiation optical system 30, the position of the supply ports of the material nozzles 32A and 32B, and the direction thereof. It may be. In this case, the irradiation area EA where the irradiation optical system 30 irradiates the processing light EL and the supply area MA where the material nozzles 32A and 32B supply the modeling material M can be controlled separately. Note that the drive system 26 may allow the modeling head 24 to rotate around an axis parallel to an axis (rotation axis) that is inclined with respect to an axis parallel to the X axis and the Y axis.
 ステージ28は、機械式チャックや真空吸着チャック等を介してワークWを保持及びリリース可能である。ステージ28は、造形ヘッド24に対してX軸、Y軸、及びZ軸に沿った方向、並びにθx方向、θy方向、及びθz方向の回転方向にワークWを移動及び/又は回転できる。制御装置20にはステージ28の動作を制御する制御部58が設けられている。ステージ28がワークWを保持している期間の少なくとも一部において、照射光学系30は加工光ELを照射し、材料ノズル32A,32Bは造形材料Mを供給する。なお、材料ノズル32A,32Bが供給した造形材料Mの一部は、ワークWの表面からワークWの外部へと(例えば、ステージ28の周囲へと)散乱するか又は落下するとともに、加工光ELで溶融されずに固化しなかった造形材料Mはステージ28上(ワークW上)又は造形された層上に残留する。このため、造形装置4は、ステージ28上又はワークW(造形層)上に固化されずに残留する造形材料M、及びステージ28の周囲に散乱又は落下した造形材料Mを回収する回収装置22を備えている。 The stage 28 can hold and release the workpiece W via a mechanical chuck, a vacuum suction chuck, or the like. The stage 28 can move and/or rotate the workpiece W relative to the modeling head 24 in directions along the X, Y, and Z axes, and in rotational directions in the θx, θy, and θz directions. The control device 20 is provided with a control section 58 that controls the operation of the stage 28. During at least part of the period during which the stage 28 holds the workpiece W, the irradiation optical system 30 irradiates the processing light EL, and the material nozzles 32A and 32B supply the modeling material M. Note that a part of the modeling material M supplied by the material nozzles 32A and 32B scatters or falls from the surface of the workpiece W to the outside of the workpiece W (for example, around the stage 28), and the processing light EL The modeling material M that is not melted and solidified remains on the stage 28 (on the workpiece W) or on the modeled layer. For this reason, the modeling device 4 includes a recovery device 22 that collects the modeling material M that remains unsolidified on the stage 28 or the workpiece W (modeling layer) and the modeling material M that has been scattered or fallen around the stage 28. We are prepared.
 ガス供給装置18は、パージガスの供給源である。パージガスは、不活性ガス(窒素ガス及びヘリウムガスやアルゴンガス等)を含む。ガス供給装置18は、チャンバ8内にパイプ38を介してパージガスを供給する。その結果、チャンバ8の内部空間8INは、パージガスが満たされた空間となる。なお、ガス供給装置18は、不活性ガスが格納されたボンベであってもよく、不活性ガスが窒素ガスである場合には、大気から窒素ガスを分離する装置であってもよい。ガス供給装置18からは、必要に応じてパージガスの一部が材料供給装置12にも供給される。 The gas supply device 18 is a supply source of purge gas. The purge gas includes an inert gas (nitrogen gas, helium gas, argon gas, etc.). Gas supply device 18 supplies purge gas into chamber 8 via pipe 38 . As a result, the internal space 8IN of the chamber 8 becomes a space filled with purge gas. Note that the gas supply device 18 may be a cylinder storing inert gas, or if the inert gas is nitrogen gas, it may be a device that separates nitrogen gas from the atmosphere. A part of the purge gas is also supplied from the gas supply device 18 to the material supply device 12 as needed.
 制御装置20は、造形装置4の動作を制御する。制御装置20は、例えばCPU(Central Processing Unit)、GPU(Graphics Processing Unit)、メモリ、入出力部等、及び記憶装置(記憶媒体)40を含んでいる。一例として、不図示のサーバから制御装置20に、造形対象物の3次元モデルデータが出力される。制御装置20は、その3次元モデルデータをスライスして複数の構造層の造形データを作成する。そして、各層の造形時に、制御装置20の制御のもとで、ワークW上の供給領域MAに造形材料Mを供給することと、供給領域MAと少なくとも一部が同じ照射領域EAに光ELを照射することと、駆動系26による造形ヘッド24の移動、及び/又はステージ28によるワークWの移動とを制御することで、ワークW上にその構造物が造形される。 The control device 20 controls the operation of the modeling device 4. The control device 20 includes, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a memory, an input/output unit, etc., and a storage device (storage medium) 40. As an example, three-dimensional model data of a modeling object is output from a server (not shown) to the control device 20. The control device 20 slices the three-dimensional model data to create modeling data of a plurality of structural layers. When modeling each layer, under the control of the control device 20, the modeling material M is supplied to the supply area MA on the workpiece W, and the light EL is supplied to the irradiation area EA, which is at least partially the same as the supply area MA. The structure is modeled on the workpiece W by controlling the irradiation, the movement of the modeling head 24 by the drive system 26, and/or the movement of the workpiece W by the stage 28.
 制御装置20は、CPUがコンピュータプログラムを実行することで、造形装置4の動作を制御する装置として機能する。このコンピュータプログラムは、造形装置4が行うべき動作を制御装置20(例えば、CPU)の制御で実行させるためのコンピュータプログラムである。CPUが実行するコンピュータプログラムは、記憶装置40に記録されていてもよいし、記憶装置42に連結可能な記憶媒体(例えば、ハードディスク、CD-ROM、DVD-RAM、又は半導体メモリ等)に記録されていてもよい。或いは、制御装置20は、実行するべきコンピュータプログラムを、ネットワークインタフェースを介して、制御装置20の外部の装置からダウンロードしてもよい。制御装置20は、造形装置4のチャンバ8が設置されている部屋の内部に設置されていなくてもよく、例えば、その部屋の外部にサーバ等として設置されていてもよい。 The control device 20 functions as a device that controls the operation of the modeling device 4 by the CPU executing a computer program. This computer program is a computer program for causing the control device 20 (for example, CPU) to execute operations to be performed by the modeling device 4. The computer program executed by the CPU may be recorded in the storage device 40 or in a storage medium (for example, a hard disk, CD-ROM, DVD-RAM, semiconductor memory, etc.) that can be connected to the storage device 42. You can leave it there. Alternatively, the control device 20 may download the computer program to be executed from a device external to the control device 20 via a network interface. The control device 20 does not need to be installed inside the room in which the chamber 8 of the modeling device 4 is installed, and may be installed as a server or the like outside the room, for example.
 本実施形態において、制御装置20は、光源制御部16を介して照射装置10による光ELの射出態様を制御する。射出態様は、例えば、加工光ELの強度及び加工光ELの射出タイミングの少なくとも一方を含む。加工光ELがパルス光である場合には、射出態様は、例えば、パルス光の発光周波数、パルス光の発光時間の長さ及びパルス光の発光時間と消光時間との比(いわゆる、デューティ比)の少なくとも一つを含んでいてもよい。更に、制御装置20は、制御部56を介して駆動系26による造形ヘッド24の移動態様を制御し、制御部58を介してステージ28の移動態様を制御する。移動態様は、例えば、移動量、移動速度、移動方向及び移動タイミングの少なくとも一つを含む。更に、制御装置20は、材料ノズル32A,32Bによる造形材料Mの供給態様を制御する。供給態様は、例えば、供給量(特に、単位時間当たりの供給量)、供給される造形材料の厚さ、及び供給タイミングの少なくとも一つを含む。 In this embodiment, the control device 20 controls the emission mode of the light EL by the irradiation device 10 via the light source control section 16. The injection mode includes, for example, at least one of the intensity of the processing light EL and the injection timing of the processing light EL. When the processing light EL is pulsed light, the emission mode is, for example, the emission frequency of the pulsed light, the length of the emission time of the pulsed light, and the ratio of the emission time and extinction time of the pulsed light (so-called duty ratio). It may contain at least one of the following. Furthermore, the control device 20 controls the movement mode of the modeling head 24 by the drive system 26 via the control unit 56 and controls the movement mode of the stage 28 via the control unit 58. The movement mode includes, for example, at least one of a movement amount, a movement speed, a movement direction, and a movement timing. Furthermore, the control device 20 controls the supply mode of the modeling material M by the material nozzles 32A and 32B. The supply mode includes, for example, at least one of the supply amount (particularly the supply amount per unit time), the thickness of the modeling material to be supplied, and the supply timing.
 次に、通常のLMD法(レーザ肉盛堆積法)(他のDED法(指向性エネルギー堆積法)でも同様)による造形時には、各構造層の造形時に、照射光学系30から造形面CSに一定の出力で加工光ELが照射され、材料ノズル32A,32Bから造形面CSに対して一定の単位時間当たりの供給量で造形材料Mが供給され、駆動系26及び/又はステージ28によって、加工光ELは造形材料Mに対して一定の走査速度で移動する。このため、理想的には各構造層の造形後の表面はほぼ完全な平面になるはずである。
 しかしながら、実際には、当該層の下層に積み上げられた構造層の形状等が一様ではなく、このため熱容量も一様ではないため、上述の一定の条件で造形を行っても、当該層に供給される加工光ELによる熱の拡散が一様ではない。このため、溶融池の径や深さが変動し、例えば溶融池が大きい場合には、より多くの造形材料が溶けて、付加される層が厚くなり、溶融池が小さい場合には、付加される層が薄くなるため、当該構造層の造形後の表面に凹凸が発生する。言い替えると、上述の一定の条件で造形を行っても、各構造層の造形後の表面の高さ分布が目標とする分布に対して誤差を持つようになる。
Next, when modeling by the normal LMD method (laser metal deposition method) (the same applies to other DED methods (directed energy deposition method)), when building each structural layer, the irradiation optical system 30 is directed at a constant distance from the irradiation optical system 30 to the building surface CS. The processing light EL is irradiated with the output of The EL moves at a constant scanning speed with respect to the modeling material M. Therefore, ideally, the surface of each structural layer after modeling should be almost completely flat.
However, in reality, the shape of the structural layer stacked below the layer concerned is not uniform, and therefore the heat capacity is also not uniform. Heat diffusion due to the supplied processing light EL is not uniform. For this reason, the diameter and depth of the molten pool will vary; for example, if the molten pool is large, more modeling material will be melted and a thicker layer will be added, and if the molten pool is small, less material will be added. As the layer becomes thinner, irregularities occur on the surface of the structural layer after modeling. In other words, even if modeling is performed under the above-mentioned constant conditions, the height distribution of the surface of each structural layer after modeling will have an error with respect to the target distribution.
 そこで、本実施形態では、以下のようにそのような高さ分布の誤差を造形面CSに供給される造形材料Mの厚さ分布の制御、及び加工光ELの強度の制御によって補正する。そのように高さ分布の誤差を補正するためには、まず高さ計測装置42を用いてその高さ分布を高精度に計測する必要がある。図2(A)に示すように、照射光学系30を囲むように配置された高さ計測装置42の複数(ここでは8個)の投光部44A~44Hから、それぞれ照射光学系30による加工光ELの照射領域EAから投光部44A~44H側に離れた領域に斜めに2つのスポット光GLA~GLHが投影されている。2つのスポット光GLA~GLHは次第に間隔が狭くなるように投影されている。 Therefore, in the present embodiment, such height distribution errors are corrected by controlling the thickness distribution of the modeling material M supplied to the modeling surface CS and controlling the intensity of the processing light EL as described below. In order to correct errors in the height distribution in this way, it is first necessary to use the height measurement device 42 to measure the height distribution with high precision. As shown in FIG. 2A, processing by the irradiation optical system 30 is performed from a plurality of (eight in this case) light projecting parts 44A to 44H of the height measuring device 42 arranged so as to surround the irradiation optical system 30. Two spot lights GLA to GLH are diagonally projected onto areas distant from the irradiation area EA of the light EL toward the light projecting units 44A to 44H. The two spot lights GLA to GLH are projected so that the interval becomes gradually narrower.
 このため、図2(B)に示すように、例えばスポット光GLAが投影される造形面CSの高さ(Z位置)が位置Zbfであるときに、2つのスポット光GLAの間隔がh2であるとする。一例として、位置Zbfは照射光学系30に対する合焦面(加工光ELが最も小さく集光される面)のZ位置を意味している。この場合、造形面CSの高さが-Z1だけ低い場合(Z=Zbf-Z1)(Z1は例えば想定される変動量の上限値)にはスポット光GLAの間隔h1は間隔h2より小さくなり、造形面CSの高さがZ1だけ高い場合(Z=Zbf+Z1)には、2つのスポット光GLAの間隔h3は間隔h2より大きくなる。このため、スポット光GLAの間隔をhとすると、係数a,bを用いて造形面CSの高さZとの関係は例えば次のようになる。本実施形態では、予め例えば実測によって、係数a,b及び位置Zbfが求められており、係数a,b及び位置Zbfは図1の撮像信号処理部48に記憶されている。
 h=a+b(Z-Zbf)  …(1)
Therefore, as shown in FIG. 2(B), for example, when the height (Z position) of the modeling surface CS on which the spot light GLA is projected is the position Zbf, the interval between the two spot lights GLA is h2. shall be. As an example, the position Zbf means the Z position of the focusing plane (the plane on which the processing light EL is focused the smallest) with respect to the irradiation optical system 30. In this case, when the height of the modeling surface CS is lower by -Z1 (Z=Zbf-Z1) (Z1 is, for example, the upper limit of the expected amount of variation), the interval h1 of the spot lights GLA is smaller than the interval h2, When the height of the modeling surface CS is higher by Z1 (Z=Zbf+Z1), the interval h3 between the two spot lights GLA is larger than the interval h2. Therefore, if the interval between the spot lights GLA is h, the relationship with the height Z of the modeling surface CS using the coefficients a and b is, for example, as follows. In this embodiment, the coefficients a, b and the position Zbf are determined in advance, for example, by actual measurement, and the coefficients a, b and the position Zbf are stored in the imaging signal processing unit 48 in FIG. 1.
h=a+b(Z-Zbf)...(1)
 撮像信号処理部48では、撮像装置46の撮像信号を処理して投光部44A~44Hのそれぞれに関して対応するスポット光GLA~GLHの間隔hを求め、この間隔hと上述の係数a,b及び位置Zbfとを用いて、式(1)からスポット光GLA~GLHが投影されている部分の高さ(Z位置)を算出できる。例えば造形ヘッド24(照射光学系30)が造形面CSに対して相対的に-Y方向に移動する場合には、投光部44Aのスポット光GLAから求められる高さ(位置Z)は当該構造層の造形後の表面の高さであり、投光部44Bのスポット光GLBから求められる高さ(位置Z)は当該構造層の下の構造層の表面の高さである。このため、造形ヘッド24の造形面CSに対する相対的な移動方向の前方又は後方のスポット光GLA~GLHの間隔から高さを求めることによって、当該構造層の造形後の高さ、及び下の構造層の表面の高さを計測することができる。 The imaging signal processing unit 48 processes the imaging signal of the imaging device 46 to determine the interval h between the corresponding spot lights GLA to GLH for each of the light projectors 44A to 44H, and calculates the interval h between the corresponding spot lights GLA to GLH with respect to each of the light projecting units 44A to 44H. Using the position Zbf, the height (Z position) of the portion where the spot lights GLA to GLH are projected can be calculated from equation (1). For example, when the printing head 24 (irradiation optical system 30) moves in the -Y direction relative to the printing surface CS, the height (position Z) determined from the spot light GLA of the light projecting section 44A is This is the height of the surface of the layer after modeling, and the height (position Z) determined from the spot light GLB of the light projecting section 44B is the height of the surface of the structural layer below the structural layer. Therefore, by determining the height from the interval between the front and rear spot lights GLA to GLH in the moving direction relative to the printing surface CS of the printing head 24, the height of the structural layer after printing and the structure below can be calculated. The height of the surface of the layer can be measured.
 本実施形態では、図1の撮像信号処理部48から造形面CSの計測された高さの分布を示す高さ分布信号RS(相対的な移動方向と高さ(Z位置)との関係を示す信号)が誤差算出部50に出力される。誤差算出部50には、各構造層の表面の高さ分布の目標分布の情報が制御装置20から供給されている。誤差算出部50は、高さ分布信号RSから目標分布を表す信号を差し引いて誤差成分を表す信号を求め、この誤差成分を表す信号をハイパスフィルタ部52H及びローパスフィルタ部52Lに供給する。 In this embodiment, a height distribution signal RS (indicating the relationship between the relative movement direction and the height (Z position) signal) is output to the error calculation section 50. The error calculation unit 50 is supplied with information on the target distribution of the surface height distribution of each structural layer from the control device 20. The error calculation section 50 subtracts the signal representing the target distribution from the height distribution signal RS to obtain a signal representing the error component, and supplies the signal representing the error component to the high-pass filter section 52H and the low-pass filter section 52L.
 ハイパスフィルタ部52Hでは、誤差成分を表す信号から空間周波数が所定の閾値SPFより高い高空間周波数信号HSを抽出し、ローパスフィルタ部52Lでは、誤差成分を表す信号から空間周波数が閾値SPFより低い低空間周波数信号LSを抽出する。高空間周波数信号HS及び低空間周波数信号LSはそれぞれ制御装置20に供給される。空間周波数の閾値SPAは、一例として0.1mm-1程度(波長で10mm程度)である。なお、閾値SPAは、駆動系26及び/又はステージ28による造形ヘッド24とワークWとの相対速度等によって変化する値であり、閾値SPAは、例えば0.05~0.2mm-1程度(波長で20~5mm程度)でもよい。 The high-pass filter section 52H extracts a high spatial frequency signal HS whose spatial frequency is higher than a predetermined threshold SPF from the signal representing the error component, and the low-pass filter section 52L extracts a high spatial frequency signal HS whose spatial frequency is lower than the threshold SPF from the signal representing the error component. Extract the spatial frequency signal LS. The high spatial frequency signal HS and the low spatial frequency signal LS are each supplied to the control device 20. The spatial frequency threshold SPA is, for example, about 0.1 mm −1 (about 10 mm in terms of wavelength). Note that the threshold value SPA is a value that changes depending on the relative speed between the printing head 24 and the workpiece W by the drive system 26 and/or the stage 28, and the threshold value SPA is, for example, about 0.05 to 0.2 mm -1 (wavelength (about 20 to 5 mm) may be sufficient.
 また、制御装置20では、高空間周波数信号HSに対応する高い空間周波数の高さ分布の誤差を補正するように、光源制御部16を介して光源10の出力(単位時間当たりの強度)を制御し、低空間周波数信号LSに対応する低い空間周波数の高さ分布の誤差を補正するようにノズル制御部60を介して材料ノズル32A,32Bの造形面CSに対する距離を制御する。
 本実施形態では、図1に示すように、材料ノズル32A,32Bは照射光学系30を挟むように対称に傾斜している。以下では、通常の造形動作では造形面CSは照射光学系30の合焦面BFに合致しているものとする。そして、図3(A)に示すように、駆動機構34A,34Bによって材料ノズル32A,32Bが可動範囲のZ方向の中央にある場合、材料ノズル32A,32Bから供給される造形材料Mは、合焦面BFに対して所定量だけ下方(-Z方向)の集中領域62で重なるように、材料ノズル32A,32Bの角度が設定されているものとする。合焦面BFに対する集中領域62のZ方向の間隔δzは、駆動機構34A,34Bの駆動量から求められる。
The control device 20 also controls the output (intensity per unit time) of the light source 10 via the light source control unit 16 so as to correct errors in the height distribution of high spatial frequencies corresponding to the high spatial frequency signal HS. Then, the distances of the material nozzles 32A and 32B to the modeling surface CS are controlled via the nozzle control unit 60 so as to correct errors in the height distribution of low spatial frequencies corresponding to the low spatial frequency signal LS.
In this embodiment, as shown in FIG. 1, the material nozzles 32A and 32B are symmetrically inclined so that the irradiation optical system 30 is sandwiched therebetween. In the following, it is assumed that the modeling surface CS coincides with the focal plane BF of the irradiation optical system 30 in a normal modeling operation. As shown in FIG. 3(A), when the material nozzles 32A, 32B are located at the center of the movable range in the Z direction by the drive mechanisms 34A, 34B, the modeling material M supplied from the material nozzles 32A, 32B is It is assumed that the angles of the material nozzles 32A and 32B are set so that they overlap in the concentrated region 62 by a predetermined amount below the focal plane BF (in the -Z direction). The distance δz in the Z direction between the focused area 62 and the focal plane BF is determined from the drive amount of the drive mechanisms 34A and 34B.
 これに対して、図3(B)に示すように、駆動機構34A,34Bを介して材料ノズル32A,32Bを+Z方向に移動させて、集中領域62が合焦面BFに近づくと、合焦面BFに対する集中領域62の間隔δz1はかなり小さい値になる。そして、造形面CSに単位時間に供給される造形材料64の厚さth1は最も大きくなる。一方、図3(C)に示すように、駆動機構34A,34Bを介して材料ノズル32A,32Bを-Z方向に移動させて、集中領域62が合焦面BFから離れると、合焦面BFに対する集中領域62の間隔δz2はかなり大きい値になる。そして、造形面CSに単位時間に供給される造形材料64の厚さth2は厚さth1のほぼ1/2になる。 On the other hand, as shown in FIG. 3(B), when the material nozzles 32A and 32B are moved in the +Z direction via the drive mechanisms 34A and 34B and the concentrated area 62 approaches the focusing plane BF, the focus The distance δz1 between the concentrated region 62 and the surface BF becomes a considerably small value. Then, the thickness th1 of the modeling material 64 supplied to the modeling surface CS per unit time becomes the largest. On the other hand, as shown in FIG. 3(C), when the material nozzles 32A, 32B are moved in the -Z direction via the drive mechanisms 34A, 34B, and the concentrated area 62 leaves the focal plane BF, the focal plane BF The distance δz2 between the concentrated regions 62 relative to each other becomes a considerably large value. The thickness th2 of the modeling material 64 supplied to the modeling surface CS per unit time is approximately 1/2 of the thickness th1.
 すなわち、材料ノズル32A,32Bの造形面CSに対する相対位置を変化させ、合焦面BFに対する集中領域62の間隔δzを変化させることによって、造形面CSに単位時間当たりに供給される造形材料64の厚さthを大きく制御することができ、最終的に造形面CSに形成されるパターンの厚さも大きく制御できる。このため、図3(A)において、合焦面BFに対する集中領域62の-Z方向の間隔δzと、造形面CSに単位時間当たりに供給される造形材料64の厚さthとの間には、例えば実測で求められる係数c,dを用いて次のような関係がある。なお、厚さthの造形材料64の中で加工光ELが照射された部分だけが溶融後の冷却及び固化によって構造層の一部となる。
 δz=c+d・th   …(2)
That is, by changing the relative positions of the material nozzles 32A, 32B with respect to the modeling surface CS and changing the interval δz of the concentrated area 62 with respect to the focusing plane BF, the amount of the modeling material 64 supplied to the modeling surface CS per unit time can be increased. The thickness th can be largely controlled, and the thickness of the pattern finally formed on the modeling surface CS can also be largely controlled. Therefore, in FIG. 3A, there is a difference between the distance δz of the concentrated region 62 in the −Z direction with respect to the focusing plane BF and the thickness th of the modeling material 64 supplied per unit time to the modeling surface CS. For example, the following relationship exists using coefficients c and d found through actual measurements. Note that only the portion of the modeling material 64 having the thickness th that is irradiated with the processing light EL becomes part of the structural layer by cooling and solidifying after melting.
δz=c+d・th...(2)
 制御装置20では、駆動機構34A,34Bの駆動によって間隔δzを求め、この間隔δzと既知の係数c,dとを用いて材料ノズル32A,32Bから造形面CSに単位時間当たりに供給される造形材料64の厚さthを求めることができる。言い替えると、制御装置20は、ノズル制御部60で材料ノズル32A,32BのZ方向の位置を制御することで、造形面CSに供給される造形材料64の厚さthを制御できる。この結果、造形材料64に加工光ELを照射し、溶融、冷却、及び固化によって形成される造形材料のパターンの厚さも制御できる。なお、材料ノズル32A,32Bの位置を制御する場合には、造形材料64の厚さthを大きく変化させることができ、最終的に形成されるパターンの厚さも大きく制御できる。その一方で、材料ノズル32A,32Bの位置の制御は機械的な制御であり、応答速度があまり高くないため、高空間周波数信号HSに対応する高い空間周波数成分の高さの制御にはあまり適さない。このため、本実施形態では、材料ノズル32A,32Bの位置の制御による造形材料の厚さの制御によって、低空間周波数信号LSに対応する低い空間周波数成分の高さの制御を行う。 The control device 20 determines the interval δz by driving the drive mechanisms 34A and 34B, and uses this interval δz and the known coefficients c and d to calculate the amount of modeling that is supplied from the material nozzles 32A and 32B to the modeling surface CS per unit time. The thickness th of the material 64 can be determined. In other words, the control device 20 can control the thickness th of the modeling material 64 supplied to the modeling surface CS by controlling the positions of the material nozzles 32A, 32B in the Z direction with the nozzle control unit 60. As a result, the thickness of the pattern of the modeling material formed by irradiating the modeling material 64 with the processing light EL, melting, cooling, and solidification can also be controlled. Note that when controlling the positions of the material nozzles 32A and 32B, the thickness th of the modeling material 64 can be greatly changed, and the thickness of the pattern that is finally formed can also be greatly controlled. On the other hand, the control of the positions of the material nozzles 32A and 32B is mechanical control, and the response speed is not very high, so it is not suitable for controlling the height of the high spatial frequency component corresponding to the high spatial frequency signal HS. do not have. Therefore, in this embodiment, the height of the low spatial frequency component corresponding to the low spatial frequency signal LS is controlled by controlling the thickness of the modeling material by controlling the positions of the material nozzles 32A and 32B.
 次に、加工光ELの強度を制御して造形材料の厚さを制御する方法につき図4(A)~(D)を参照して説明する。図4(A)に示すように、ワークWの造形面CSに加工光ELを照射し、その照射領域に造形材料Mを供給する場合、図4(B)に示すように、造形面CSに溶融池MPが形成される。そして、図4(C)に示すように、溶融池MPによって、供給される造形材料Mの一部の材料66が融着される。その後、加工光ELが通過して冷却及び固化によって、図4(D)に示すように、材料66に対応する部分が凸のパターン66Aとなる。この際に、図1の光源制御部16の制御によって光源10から射出される加工光ELの強度が大きくなると、溶融池MPが溶融池MP1のように大きくなり、供給される造形材料Mの、融着される量が多くなるため、最終的に形成されるパターン66Bはパターン66Aよりも高くなる。逆に、加工光ELの強度が小さくなると、最終的に形成されるパターンはパターン66Aよりも低くなる。 Next, a method for controlling the thickness of the modeling material by controlling the intensity of the processing light EL will be explained with reference to FIGS. 4(A) to 4(D). As shown in FIG. 4(A), when the processing light EL is irradiated onto the modeling surface CS of the workpiece W and the modeling material M is supplied to the irradiation area, as shown in FIG. 4(B), the modeling surface CS is A molten pool MP is formed. Then, as shown in FIG. 4C, a part of the material 66 of the supplied modeling material M is fused by the molten pool MP. Thereafter, the processing light EL passes therethrough, and as a result of cooling and solidification, the portion corresponding to the material 66 becomes a convex pattern 66A, as shown in FIG. 4(D). At this time, when the intensity of the processing light EL emitted from the light source 10 increases under the control of the light source control unit 16 in FIG. Since the amount to be fused increases, the finally formed pattern 66B is higher than the pattern 66A. Conversely, when the intensity of the processing light EL decreases, the pattern finally formed will be lower than the pattern 66A.
 このように加工光ELの単位時間当たりの強度の制御によって、当該構造層に形成されるパターンの厚さを制御できる。また、光源制御部16による光源10の強度の電気的な(あるいは光学的な)制御は、材料ノズル32A,32Bの位置の機械的な制御よりも高速に行うことができる。但し、光源10の強度の制御による当該構造層に形成されるパターンの厚さの制御量は、材料ノズル32A,32Bの位置の機械的な制御によるパターンの厚さの制御量よりも小さくなる。このため、加工光ELの強度の制御は、高空間周波数信号HSに対応する高い空間周波数成分の高さの制御に適している。 In this way, by controlling the intensity per unit time of the processing light EL, the thickness of the pattern formed in the structural layer can be controlled. Furthermore, electrical (or optical) control of the intensity of the light source 10 by the light source control unit 16 can be performed faster than mechanical control of the positions of the material nozzles 32A, 32B. However, the amount of control of the thickness of the pattern formed in the structural layer by controlling the intensity of the light source 10 is smaller than the amount of control of the thickness of the pattern by mechanically controlling the positions of the material nozzles 32A, 32B. Therefore, controlling the intensity of the processing light EL is suitable for controlling the height of the high spatial frequency component corresponding to the high spatial frequency signal HS.
 次に、本実施形態においてワークW上に第1構造層を形成し、この上に第2構造層を形成する場合の動作の一例につき図5(A)~(D)を参照して説明する。まず、図5(A)に示すように、ワークWの表面に照射光学系30から加工光ELを照射し、加工光ELの照射領域に材料ノズル32A,32Bから造形材料Mを供給し、ワークWに対して造形ヘッド24を例えば-Y方向に相対的に移動して、第1構造層68Aのパターンを造形するものとする。この際に、第1構造層68Aの表面の目標とする形状は、例えば点線で示す平坦な目標分布70Aであるとする。本実施形態では、第1構造層68Aの造形時に、造形ヘッド24において照射光学系30から走査方向に関して後方にある投光部44Aから造形直後のパターンの表面に投影されるスポット光GLAの像を図1の撮像装置46で撮像し、造形直後の第1構造層68Aのパターンの表面68Aaの高さの分布を計測する。
 この例において、図1の撮像信号処理部48から出力される分布信号RSから誤差算出部50において目標分布の信号を差し引くことで誤差信号が得られる。この誤差信号をハイパスフィルタ部52H及びローパスフィルタ部52Lに供給すると、ローパスフィルタ部52L及びハイパスフィルタ部52Hからそれぞれ図5(B)の低い空間周波数(長い波長)の低空間周波数信号LS、及び図5(C)の高い空間周波数(短い波長)の高空間周波数信号HSが制御装置20に供給される。図5(C)の高空間周波数信号HSは、図5(A)の高さ分布のうちの小さい波長で小さい振幅の変動部69A,69Bに対応している。
Next, an example of the operation when forming the first structural layer on the workpiece W and forming the second structural layer thereon in this embodiment will be described with reference to FIGS. 5(A) to 5(D). . First, as shown in FIG. 5(A), the surface of the workpiece W is irradiated with processing light EL from the irradiation optical system 30, the modeling material M is supplied from the material nozzles 32A and 32B to the irradiation area of the processing light EL, and the workpiece It is assumed that the pattern of the first structural layer 68A is formed by moving the printing head 24 relative to W, for example, in the -Y direction. At this time, it is assumed that the target shape of the surface of the first structural layer 68A is, for example, a flat target distribution 70A shown by a dotted line. In this embodiment, when printing the first structural layer 68A, an image of spot light GLA is projected onto the surface of the pattern immediately after printing from the light projection unit 44A located at the rear in the scanning direction from the irradiation optical system 30 in the printing head 24. An image is captured by the imaging device 46 in FIG. 1, and the height distribution of the surface 68Aa of the pattern of the first structural layer 68A immediately after modeling is measured.
In this example, the error signal is obtained by subtracting the signal of the target distribution in the error calculation section 50 from the distribution signal RS output from the imaging signal processing section 48 in FIG. When this error signal is supplied to the high-pass filter section 52H and the low-pass filter section 52L, the low-pass filter section 52L and the high-pass filter section 52H produce a low spatial frequency signal LS with a low spatial frequency (long wavelength) as shown in FIG. A high spatial frequency signal HS with a high spatial frequency (short wavelength) of 5(C) is supplied to the control device 20. The high spatial frequency signal HS in FIG. 5(C) corresponds to the small wavelength and small amplitude fluctuation portions 69A and 69B of the height distribution in FIG. 5(A).
 その後、図5(D)に示すように、第1構造層68A上に肉盛りをして第2構造層68Bを造形する場合には、加工光ELの照射領域に材料ノズル32A,32Bから造形材料Mを供給し、ワークWに対して造形ヘッド24を例えば-Y方向に相対的に移動する際に、図5(B)の低空間周波数信号LSが示す高さ分布の誤差を相殺するように、フィードフォワード制御方式で制御装置20はノズル制御部60を介して材料ノズル32A,32BのZ位置を補正する。さらに、図5(C)の高空間周波数信号HSが示す高さ分布の誤差を補正するように、フィードフォワード制御方式で制御装置20は光源制御部16を介して光源10の出力(強度)を制御する。この際に、低空間周波数信号LS及び高空間周波数信号HSは予め計測されているため、第2構造層68Bの造形を行う際に、各位置での造形材料Mの厚さをその予め計測されている誤差を相殺するようにフィードフォワード方式で制御できる。また、第2構造層68Bの表面の目標とする形状も、例えば点線で示す平坦な目標分布70Bであるとする。 After that, as shown in FIG. 5(D), when building up on the first structural layer 68A to form the second structural layer 68B, the material nozzles 32A and 32B are used to form the material in the irradiation area of the processing light EL. When supplying the material M and moving the printing head 24 relative to the workpiece W, for example, in the −Y direction, the error in the height distribution indicated by the low spatial frequency signal LS in FIG. 5(B) is canceled out. Next, the control device 20 corrects the Z positions of the material nozzles 32A and 32B via the nozzle control section 60 using a feedforward control method. Furthermore, the control device 20 controls the output (intensity) of the light source 10 via the light source control unit 16 using the feedforward control method so as to correct the error in the height distribution indicated by the high spatial frequency signal HS in FIG. 5(C). Control. At this time, since the low spatial frequency signal LS and the high spatial frequency signal HS are measured in advance, when modeling the second structural layer 68B, the thickness of the modeling material M at each position is measured in advance. It can be controlled using a feedforward method to cancel out the errors that occur. Further, it is assumed that the target shape of the surface of the second structural layer 68B is also a flat target distribution 70B shown by a dotted line, for example.
 この制御方法によれば、第1構造層68Aの表面68Aaの凹凸が大きい場合でも、第2構造層68Bの肉盛りによる造形後の表面68Baの凹凸は小さくなり、造形後の面精度(平面度等)が改善される。さらに、この第2構造層68Bの造形時にも、造形ヘッド24において照射光学系30から走査方向に関して後方にある投光部44Aから造形直後のパターンの表面に投影されるスポット光GLAの像を図1の撮像装置46で撮像し、造形直後の第2構造層68Bのパターンの表面68Baの高さの分布を計測する。この高さ分布の目標分布70Bからの誤差は、第2構造層68Bの上の第3構造層(不図示)の造形時に補正される。この制御方法によれば、仮に一定の条件で造形を行っても、上述の熱拡散の不均一性等によって各構造層の造形後の表面の高さ分布が目標とする分布に対して誤差分布を持つような場合にも、その上の構造層の造形時にその誤差分布を相殺するように当該構造層の厚さ分布を制御することによって、造形後の構造物の表面の面精度を目標とする精度に仕上げることができる。 According to this control method, even if the surface 68Aa of the first structural layer 68A has large irregularities, the unevenness of the surface 68Ba after modeling by build-up of the second structural layer 68B becomes small, and the surface accuracy (flatness) after modeling becomes small. etc.) will be improved. Furthermore, when printing the second structural layer 68B, the image of the spot light GLA projected onto the surface of the pattern immediately after printing from the light projection unit 44A located behind the irradiation optical system 30 in the scanning direction in the printing head 24 is also shown. The first imaging device 46 takes an image and measures the height distribution of the surface 68Ba of the pattern of the second structural layer 68B immediately after modeling. This error in the height distribution from the target distribution 70B is corrected when forming the third structural layer (not shown) on the second structural layer 68B. According to this control method, even if printing is performed under certain conditions, the height distribution of the surface after printing of each structural layer will have an error distribution with respect to the target distribution due to the non-uniformity of thermal diffusion as described above. By controlling the thickness distribution of the structural layer above it so as to cancel out the error distribution when printing the structural layer above it, it is possible to target the surface accuracy of the surface of the structure after printing. It can be finished to the desired precision.
 続いて、造形装置4による造形動作(つまり、3次元構造物STを形成するための動作)について説明する。造形装置4は、形成するべき3次元構造物STの3次元モデルデータ(例えば、CAD(Computer Aided Design)データ)等に基づいて、ワークW上に3次元構造物STを形成する。3次元モデルデータ(以下、3Dデータともいう)は、例えば不図示のサーバから造形装置4の制御装置20に供給されたものである。さらに、3Dデータとして、造形装置4内に設けられた形状測定装置等(不図示)で計測された立体物の計測データ、造形装置4とは別に設けられた3次元形状測定装置等の計測データを用いてもよい。なお、3Dデータとしては、例えばSTL(Stereo Lithography)フォーマット、VRML(Virtual Reality Modeling Language)フォーマット、AMF(Additive Manufacturing File Format)、又はビットマップフォーマット等を用いることができる。造形装置4は、3次元構造物STを形成するために、一例として3次元構造物STをZ方向に沿って輪切りにすることで得られる複数の部分構造物(以下、構造層とも称する)SLを1層ずつ順に形成していく。その結果、複数の構造層SLが積層された積層構造体である3次元構造物STが形成される。以下、複数の構造層SLを1層ずつ順に形成していくことで3次元構造物STを形成する動作の流れについて説明する。 Next, the modeling operation by the modeling device 4 (that is, the operation for forming the three-dimensional structure ST) will be explained. The modeling device 4 forms a three-dimensional structure ST on a workpiece W based on three-dimensional model data (for example, CAD (Computer Aided Design) data) of the three-dimensional structure ST to be formed. The three-dimensional model data (hereinafter also referred to as 3D data) is supplied to the control device 20 of the modeling device 4 from, for example, a server (not shown). Furthermore, as 3D data, measurement data of a three-dimensional object measured by a shape measuring device etc. (not shown) provided in the modeling device 4, measurement data of a three-dimensional shape measuring device etc. provided separately from the modeling device 4. may also be used. Note that as the 3D data, for example, STL (Stereo Lithography) format, VRML (Virtual Reality Modeling Language) format, AMF (Additive Manufacturing File Format), or bitmap format can be used. In order to form the three-dimensional structure ST, the modeling device 4 creates a plurality of partial structures (hereinafter also referred to as structural layers) SL obtained by, for example, cutting the three-dimensional structure ST into rounds along the Z direction. are formed one layer at a time. As a result, a three-dimensional structure ST, which is a layered structure in which a plurality of structural layers SL are stacked, is formed. Hereinafter, a flow of operations for forming a three-dimensional structure ST by sequentially forming a plurality of structural layers SL one by one will be described.
 まず、各構造層SLを形成する動作について説明する。造形装置4は、制御装置20の制御下で、ワークWの表面又は形成済みの構造層SLの表面に相当する造形面CS上の所望領域に照射領域EAを設定し、照射領域EAに対して照射光学系30から加工光ELを照射する。本実施形態においては、加工光ELの合焦面(つまり、集光位置)が造形面CSに一致している。その結果、図6(A)に示すように、照射光学系30から射出された加工光ELによって造形面CS上の所望領域に溶融池(つまり、光ELによって溶融した金属のプール)MPが形成される。更に、造形装置4は、制御装置20の制御下で、造形面CS上の所望領域に供給領域MAを設定し、供給領域MAに対して材料ノズル32A,32Bから造形材料Mを供給する。ここで、供給領域MAは、溶融池MPが形成された領域に設定されている。このため、造形装置4は、図6(B)に示すように、溶融池MPに対して、材料ノズル32A,32Bから造形材料Mを供給する。その結果、溶融池MPに供給された造形材料Mが溶融する。造形ヘッド24の相対移動に伴って溶融池MPに光ELが照射されなくなると、溶融池MPにおいて溶融した造形材料Mは、冷却されて再度固化(つまり、凝固)する。その結果、図6(C)に示すように、再度固化した造形材料M(造形物の一部)が造形面CS上に堆積される。 First, the operation of forming each structural layer SL will be explained. Under the control of the control device 20, the modeling device 4 sets an irradiation area EA in a desired area on the modeling surface CS corresponding to the surface of the workpiece W or the surface of the formed structural layer SL, and Processing light EL is irradiated from the irradiation optical system 30. In this embodiment, the focal plane (that is, the condensing position) of the processing light EL coincides with the modeling surface CS. As a result, as shown in FIG. 6A, a molten pool (that is, a pool of metal melted by the light EL) MP is formed in a desired area on the modeling surface CS by the processing light EL emitted from the irradiation optical system 30. be done. Furthermore, under the control of the control device 20, the modeling device 4 sets a supply area MA in a desired area on the modeling surface CS, and supplies the modeling material M to the supply area MA from the material nozzles 32A, 32B. Here, the supply area MA is set in the area where the molten pool MP is formed. For this reason, the modeling device 4 supplies the modeling material M from the material nozzles 32A and 32B to the molten pool MP, as shown in FIG. 6(B). As a result, the modeling material M supplied to the molten pool MP is melted. When the molten pool MP is no longer irradiated with the light EL due to the relative movement of the modeling head 24, the modeling material M melted in the molten pool MP is cooled and solidified again (that is, solidified). As a result, as shown in FIG. 6(C), the solidified modeling material M (part of the object) is deposited on the object surface CS.
 このような光ELの照射による溶融池MPの形成、溶融池MPへの造形材料Mの供給、供給された造形材料Mの溶融及び溶融した造形材料Mの再固化を含む一連の造形処理が、造形面CSに対して造形ヘッド24をXY平面に沿って相対的に移動させながら繰り返される。つまり、造形面CSに対して造形ヘッド24が相対的に移動すると、造形面CSに対して照射領域EAもまた相対的に移動する。従って、一連の造形処理が、造形面CSに対して照射領域EAをXY平面に沿って(つまり、二次元平面内において)相対的に移動させながら繰り返される。この際、加工光ELは、造形面CS上において造形物を形成したい領域に設定された照射領域EAに対して選択的に照射される一方で、造形面CS上において造形物を形成したくない領域に設定された照射領域EAに対して選択的に照射されない(造形物を形成したくない領域には照射領域EAが設定されないとも言える)。つまり、造形装置4は、造形面CS上を所定の移動軌跡に沿って照射領域EAを移動させながら、造形物を形成したい領域の分布パターン(つまり、構造層SL内の造形物)に応じたタイミングで加工光ELを造形面CSに照射する。その結果、溶融池MPもまた、照射領域EAの移動軌跡に応じた移動軌跡に沿って造形面CS上を移動することになる。具体的には、溶融池MPは、造形面CS上において、照射領域EAの移動軌跡に沿った領域のうち加工光ELが照射された部分に順次形成される。 A series of modeling processes including forming a molten pool MP by irradiating the light EL, supplying the modeling material M to the molten pool MP, melting the supplied modeling material M, and resolidifying the melted modeling material M, This process is repeated while moving the printing head 24 relatively to the printing surface CS along the XY plane. That is, when the printing head 24 moves relative to the printing surface CS, the irradiation area EA also moves relatively to the printing surface CS. Therefore, a series of modeling processes are repeated while moving the irradiation area EA along the XY plane (that is, within a two-dimensional plane) relative to the modeling surface CS. At this time, the processing light EL is selectively irradiated to the irradiation area EA set in the area where the object is to be formed on the object to be formed on the object to be formed on the object to be formed on the object to be formed on the object to be formed on the object to be formed. The irradiation area EA set in the area is not selectively irradiated (it can also be said that the irradiation area EA is not set in the area where it is not desired to form a modeled object). In other words, the modeling device 4 moves the irradiation area EA along a predetermined movement locus on the modeling surface CS, and adjusts the pattern according to the distribution pattern of the area in which the object is to be formed (that is, the object in the structural layer SL). The processing light EL is irradiated onto the modeling surface CS at the appropriate timing. As a result, the molten pool MP also moves on the modeling surface CS along a movement trajectory corresponding to the movement trajectory of the irradiation area EA. Specifically, the molten pool MP is sequentially formed on the modeling surface CS in the portions irradiated with the processing light EL among the regions along the movement locus of the irradiation area EA.
 更に、上述したように照射領域EAと供給領域MAとが一致しているため、供給領域MAもまた、照射領域EAの移動軌跡に応じた移動軌跡に沿って造形面CS上を移動することになる。その結果、造形面CS上に、凝固した造形材料Mによる造形物の集合体に相当する構造層SLが形成される。つまり、溶融池MPの移動軌跡に応じたパターンで造形面CS上に形成された造形物の集合体に相当する構造層SLが形成される。なお、造形物を形成したくない領域に照射領域EAが設定されている場合、加工光ELを照射領域EAに照射するとともに、造形材料Mの供給を停止してもよい。また、造形物を形成したくない領域に照射領域EAが設定されている場合に、造形材料Mを照射領域ELに供給するとともに、溶融池MPができない強度の光ELを照射領域ELに照射してもよい。 Furthermore, as described above, since the irradiation area EA and the supply area MA coincide, the supply area MA also moves on the modeling surface CS along a movement trajectory corresponding to the movement trajectory of the irradiation area EA. Become. As a result, a structural layer SL corresponding to an aggregate of objects made of the solidified modeling material M is formed on the modeling surface CS. In other words, a structural layer SL corresponding to an aggregate of shaped objects formed on the shaped surface CS in a pattern according to the movement locus of the molten pool MP is formed. In addition, when the irradiation area EA is set in a region where it is not desired to form a modeled object, the supply of the modeling material M may be stopped while irradiating the processing light EL to the irradiation area EA. In addition, when the irradiation area EA is set in an area where you do not want to form a modeled object, the modeling material M is supplied to the irradiation area EL, and the irradiation area EL is irradiated with light EL with an intensity that does not create a molten pool MP. You can.
 なお、ワークW上の照射領域EAの移動軌跡は、いわゆるラスタスキャンでの走査に対応する移動軌跡、又はいわゆるベクタースキャンでの走査に対応する移動軌跡のいずれでもよい。なお、上述の説明では、造形面CSに対して造形ヘッド24(すなわち光EL)を移動させることにより、造形面CSに対して照射領域EAを移動させたが、造形面CSを移動させてもよいし、造形ヘッド24(すなわち加工光EL)と造形面CSの両方を動かしてもよい。 Note that the movement trajectory of the irradiation area EA on the workpiece W may be either a movement trajectory corresponding to scanning in so-called raster scanning or a movement trajectory corresponding to scanning in so-called vector scanning. Note that in the above explanation, the irradiation area EA was moved with respect to the printing surface CS by moving the printing head 24 (that is, the light EL) with respect to the printing surface CS, but even if the printing surface CS is moved, Alternatively, both the printing head 24 (that is, the processing light EL) and the printing surface CS may be moved.
 次に、本実施形態の造形装置4の造形動作の一例につき図8(A)のフローチャートを参照して説明する。まずステップ102において、制御装置20は、3次元モデルデータを積層ピッチでスライス処理してスライスデータを作成して、記憶装置40に記憶させる。なお、造形装置4の特性に応じてこのスライスデータを一部修正したデータを用いてもよい。そして、制御装置20は次に造形する構造層の造形パターンデータを読み込む。次のステップ104において、制御装置20は、光源制御部16を介して光源10に加工光ELの発光を開始させる。 Next, an example of the modeling operation of the modeling device 4 of this embodiment will be described with reference to the flowchart in FIG. 8(A). First, in step 102, the control device 20 creates slice data by slicing the three-dimensional model data at a stacking pitch, and stores the slice data in the storage device 40. Note that data obtained by partially modifying this slice data according to the characteristics of the modeling device 4 may be used. Then, the control device 20 reads the modeling pattern data for the next structural layer to be modeled. In the next step 104, the control device 20 causes the light source 10 to start emitting the processing light EL via the light source control unit 16.
 次のステップ106で材料ノズル32A,32Bからの造形材料Mの供給が開始され、ステップ108において、駆動系26及び/又はステージ28によって加工光EL(光ビーム)と造形材料Mとが相対移動して、肉盛りによる造形が行われる。また、ステップ106,108の動作と並行してステップ110において、図5(A)と同様に、高さ計測装置42を用いてこの構造層で造形された部分(パターン)の表面の高さ分布が計測される。 In the next step 106, the supply of the modeling material M from the material nozzles 32A and 32B is started, and in step 108, the processing light EL (light beam) and the modeling material M are moved relative to each other by the drive system 26 and/or the stage 28. Then, modeling is done by overlaying. In addition, in step 110 in parallel with the operations in steps 106 and 108, the height distribution of the surface of the part (pattern) formed by this structural layer is measured using the height measuring device 42, as in FIG. 5(A). is measured.
 次のステップ112でこの層の造形が終了かどうかを判定し、造形が終了していない場合には、ステップ106,108の動作とステップ110の動作とが並行して実行される。ステップ112でこの層の造形が終了したときには、造形材料の供給が停止され、光源10の発光が停止される。これによって、例えば図7(A)に示すように、ワークWの表面に相当する造形面CS上に1層目の構造層SL#1が形成される。
 そして、ステップ114に移行して、造形された構造層の高さの分布信号RSから誤差算出部50において誤差分布信号が求められる。さらにステップ116において、その誤差分布信号がローパスフィルタ部52L及びハイパスフィルタ部52Hに供給され、それぞれ低空間周波数信号LS及び高空間周波数信号HSが抽出される。抽出された信号LS,HSは記憶装置40に記憶される。
In the next step 112, it is determined whether or not the modeling of this layer has been completed. If the modeling has not been completed, the operations of steps 106 and 108 and the operation of step 110 are executed in parallel. When the modeling of this layer is completed in step 112, the supply of the modeling material is stopped and the light source 10 stops emitting light. As a result, as shown in FIG. 7A, for example, a first structural layer SL#1 is formed on the modeling surface CS corresponding to the surface of the workpiece W.
Then, the process moves to step 114, and the error calculation unit 50 calculates an error distribution signal from the height distribution signal RS of the formed structural layer. Furthermore, in step 116, the error distribution signal is supplied to the low-pass filter section 52L and the high-pass filter section 52H, and a low spatial frequency signal LS and a high spatial frequency signal HS are extracted, respectively. The extracted signals LS and HS are stored in the storage device 40.
 次のステップ118において、制御装置20は次に造形する構造層の造形パターンデータを読み込む。そして、図7(B)に示すように、構造層SL#1の表面を新たな造形面CSに設定した上で、この新たな造形面CS上に2層目の構造層SL#2を形成する。この場合、制御装置20は、まず、造形ヘッド24がZ軸に沿って移動するように駆動系26を制御する。具体的には、制御装置20は、駆動系26を制御して、照射領域EA及び供給領域MAが構造層SL#1の表面(つまり、新たな造形面CS)に設定されるように、+Z方向に向かって造形ヘッド24を移動させる。これにより、加工光ELの合焦面が新たな造形面CSに一致する。 In the next step 118, the control device 20 reads the modeling pattern data for the next structural layer to be modeled. Then, as shown in FIG. 7(B), the surface of the structural layer SL#1 is set as a new modeling surface CS, and a second structural layer SL#2 is formed on this new modeling surface CS. do. In this case, the control device 20 first controls the drive system 26 so that the printing head 24 moves along the Z-axis. Specifically, the control device 20 controls the drive system 26 to set the +Z The printing head 24 is moved in the direction. Thereby, the focal plane of the processing light EL coincides with the new modeling surface CS.
 次に、第1構造層の造形と同様に、ステップ120の材料ノズル32A,32BのZ位置の制御による低空間周波数成分の補正と、ステップ122の光源10から射出される加工光ELの出力の制御による高空間周波数成分の補正と、ステップ124の加工光ELと造形材料Mとの相対移動による造形とが行われる。なお、ステップ120,122,124の動作は実質的に並行に実行される。また、ステップ120~124の動作と並行して、ステップ126において、ステップ110と同様に、高さ計測装置42を用いてこの構造層で造形された部分(パターン)の表面の高さ分布が計測される。
 なお、ステップ120において、材料ノズル32A,32BのZ位置の制御によって造形面CSに供給される造形材料の厚さを制御する際に、加工光ELの出力(単位時間当たりの強度)は一例として、造形面CSに供給される造形材料の厚さが最も厚いときに、その造形材料の厚さ方向の全部を溶融できるような出力に設定されていてもよい。また、別の例として、加工光ELの出力は、造形材料の厚さが可変範囲の中央値であるときにその厚さの造形材料を溶融できるような出力に設定しておき、材料ノズル32A,32BのZ位置の制御によって造形材料の厚さを制御する場合には、その厚さに応じて加工光ELの出力を増減してもよい。そして、ステップ124においては、供給される造形材料の厚さが一定であっても、加工光ELの出力の制御によって造形後の造形材料の厚さをある程度の範囲で制御できる。
Next, similarly to the modeling of the first structural layer, the low spatial frequency component is corrected by controlling the Z positions of the material nozzles 32A and 32B in step 120, and the output of the processing light EL emitted from the light source 10 is corrected in step 122. Correction of high spatial frequency components by control and modeling by relative movement of the processing light EL and the modeling material M in step 124 are performed. Note that the operations of steps 120, 122, and 124 are performed substantially in parallel. In addition, in parallel with the operations in steps 120 to 124, in step 126, similarly to step 110, the height distribution of the surface of the portion (pattern) formed by this structural layer is measured using the height measuring device 42. be done.
In addition, in step 120, when controlling the thickness of the modeling material supplied to the modeling surface CS by controlling the Z positions of the material nozzles 32A and 32B, the output (intensity per unit time) of the processing light EL is, for example, , when the thickness of the modeling material supplied to the modeling surface CS is the thickest, the output may be set such that the entire thickness of the modeling material can be melted. As another example, the output of the processing light EL is set to an output that can melt the thickness of the modeling material when the thickness of the modeling material is at the median of the variable range, and the material nozzle 32A , 32B, the output of the processing light EL may be increased or decreased depending on the thickness. In step 124, even if the thickness of the supplied modeling material is constant, the thickness of the modeling material after modeling can be controlled within a certain range by controlling the output of the processing light EL.
 その後、ステップ128において、この層の造形が終了していない場合には、ステップ120から124の動作とステップ126の動作とが繰り返される。この層の造形が終了した場合には、動作はステップ130に移行して、造形終了かどうかが判定される。造形が終了していない場合には、動作はステップ114に移行して、前層の高さ分布の誤差を補正するように造形材料の厚さ分布の補正を行いながら次の構造層の造形が行われる。このようにして、図7(C)に示すように、複数の構造層SLが積層された積層構造物によって、3次元構造物STが形成される。この造形方法では、前層の造形時に造形後の高さ分布を計測し、次の層の造形時に、前層の高さ分布の誤差分布を相殺するように造形材料の厚さを制御することによって、造形後の構造物の表面の面精度(平面度等)を向上できる。 Thereafter, in step 128, if the modeling of this layer is not completed, the operations of steps 120 to 124 and step 126 are repeated. If the modeling of this layer is finished, the operation moves to step 130, where it is determined whether the modeling is finished. If the modeling is not completed, the operation moves to step 114, where the modeling of the next structural layer is performed while correcting the thickness distribution of the building material to correct the error in the height distribution of the previous layer. It will be done. In this way, as shown in FIG. 7(C), a three-dimensional structure ST is formed by a layered structure in which a plurality of structural layers SL are stacked. In this printing method, the height distribution after printing is measured when printing the previous layer, and when printing the next layer, the thickness of the printing material is controlled so as to cancel out the error distribution of the height distribution of the previous layer. Accordingly, the surface precision (flatness, etc.) of the surface of the structure after modeling can be improved.
 上述のように、本実施形態の造形装置4の造形方法は、複数の構造層を重ねて形成して構造物を造形する造形方法であって、第1構造層68Aの表面の高さ分布信号RS(高さ情報)に応じて、造形材料の厚さを制御する第1の方法(材料ノズル32A,32BのZ位置を制御する方法)、及びその第1の方法が対応する空間周波数成分より高い空間周波数成分に関して造形材料の厚さを制御する第2の方法(加工光ELの強度を制御する方法)を併用して、第1構造層68Aに重ねて形成される第2構造層68Bの造形材料の厚さ分布を制御している(ステップ120,122,124)。 As described above, the modeling method of the modeling apparatus 4 of this embodiment is a modeling method in which a structure is formed by stacking a plurality of structural layers, and the height distribution signal of the surface of the first structural layer 68A is A first method of controlling the thickness of the modeling material according to RS (height information) (a method of controlling the Z position of the material nozzles 32A, 32B), and a method of controlling the thickness of the modeling material according to the spatial frequency component corresponding to the first method. The second structural layer 68B formed overlapping the first structural layer 68A is combined with the second method of controlling the thickness of the modeling material regarding high spatial frequency components (method of controlling the intensity of the processing light EL). The thickness distribution of the modeling material is controlled (steps 120, 122, 124).
 また、本実施形態の造形装置4は、複数の構造層を重ねて形成して構造物を造形する造形装置であって、造形面に加工光EL(光ビーム)を照射する照射光学系30(照射部)と、加工光ELが照射される領域に造形材料Mを供給する材料ノズル32A,32B(材料供給部)と、加工光ELと造型材料Mとを相対移動する駆動系26及びステージ28(移動部)と、造形材料の厚さを制御するために材料ノズル32A,32BのZ位置を制御する駆動機構34A,34B及びノズル制御部60(以下、第1厚さ制御部とも称する)と、その第1厚さ制御部が対応可能な空間周波数より高い空間周波数で造形材料の厚さを制御するために加工光ELの強度を制御する光源制御部16(以下、第2厚さ制御部とも称する)と、第1構造層68Aの表面の高さ分布信号RS(高さ情報)に応じて、その第1厚さ制御部及び第2厚さ制御部を併用して、第1構造層68Aに重ねて形成される第2構造層68Bの造形材料の厚さ分布を制御する制御装置20(以下、造形制御部とも称する)と、を備えている。 Moreover, the modeling apparatus 4 of this embodiment is a modeling apparatus that forms a structure by stacking a plurality of structural layers, and includes an irradiation optical system 30 ( irradiation unit), material nozzles 32A, 32B (material supply unit) that supplies the modeling material M to the area irradiated with the processing light EL, a drive system 26 and a stage 28 that relatively move the processing light EL and the modeling material M. (moving unit), drive mechanisms 34A, 34B and a nozzle control unit 60 (hereinafter also referred to as a first thickness control unit) that control the Z positions of the material nozzles 32A, 32B in order to control the thickness of the modeling material. , a light source control section 16 (hereinafter referred to as a second thickness control section) that controls the intensity of the processing light EL in order to control the thickness of the modeling material at a spatial frequency higher than the spatial frequency that the first thickness control section can handle. ), and the first thickness control section and the second thickness control section are used in combination according to the height distribution signal RS (height information) of the surface of the first structure layer 68A. It includes a control device 20 (hereinafter also referred to as a modeling control section) that controls the thickness distribution of the modeling material of the second structural layer 68B that is formed to overlap the second structural layer 68A.
 本実施形態によれば、第1構造層68Aの表面の高さ分布の誤差分布を相殺(補正)するように、第2構造層68Bの肉盛りによる造形時に造形材料の厚さ(肉盛り量)を制御している。このため、第1構造層68Aの造形時に熱拡散の不均一性等によって、第1構造層68Aの表面の高さ分布に目標分布からの誤差が生じている場合でも、第2構造層68Bの造形時に造形材料の厚さ分布を制御することによって、第2構造層68Bの表面の面精度(平面度等)を向上できる。さらに、低い空間周波数成分を材料ノズル32A,32Bと造形面CSとの間隔の制御によって補正し、高い空間周波数成分を光源10から射出される加工光ELの強度の制御によって補正しているため、広い空間周波数領域で、かつ低い空間周波数領域では大きい振幅の誤差を高精度に補正することができる。
 なお、その厚さ分布には表面の凹凸分布のみならず、厚さそのものの分布も含まれる。例えば厚さ分布として凹凸分布を平坦にすることによって、構造物の表面の面精度(平面度等)を高めることができる。また、厚さ分布として造形材料の厚さの分布が目標とする分布になるように制御することによって、所望の厚さ分布、又は均一な膜厚分布で構造層を造形可能である。
According to this embodiment, the thickness of the modeling material (the build-up amount ) is controlled. Therefore, even if the height distribution on the surface of the first structural layer 68A deviates from the target distribution due to non-uniformity of thermal diffusion or the like during the modeling of the first structural layer 68A, the second structural layer 68B By controlling the thickness distribution of the modeling material during modeling, the surface accuracy (flatness, etc.) of the surface of the second structural layer 68B can be improved. Furthermore, since the low spatial frequency components are corrected by controlling the distance between the material nozzles 32A, 32B and the modeling surface CS, and the high spatial frequency components are corrected by controlling the intensity of the processing light EL emitted from the light source 10, Large amplitude errors can be corrected with high precision in a wide spatial frequency range and in a low spatial frequency range.
Note that the thickness distribution includes not only the unevenness distribution on the surface but also the distribution of the thickness itself. For example, by flattening the unevenness distribution as the thickness distribution, the surface accuracy (flatness, etc.) of the surface of the structure can be improved. Moreover, by controlling the thickness distribution of the modeling material so that it becomes a target distribution, it is possible to model the structural layer with a desired thickness distribution or a uniform thickness distribution.
 また、本実施形態では、第1構造層68Aの造形時に同時に、高さ計測装置42によって造形後の第1構造層68Aのパターンの表面の高さ分布を計測し、この計測結果を次の第2構造層68Bのパターンの造形時に使用している。このため、別途、第1構造層68Aのパターンの表面の高さ分布を計測する場合に比べて、効率的に造形を行うことができる。但し、第1構造層68Aの造形工程と、第2構造層68Bの造形工程との間に、第1構造層68Aの表面の高さ分布を計測する計測工程を設けてもよい。 Further, in this embodiment, at the same time when the first structural layer 68A is formed, the height measurement device 42 measures the height distribution of the surface of the pattern of the first structural layer 68A after forming, and this measurement result is used in the next step. It is used when forming the pattern of the two-structure layer 68B. For this reason, modeling can be performed more efficiently than when the height distribution of the surface of the pattern of the first structural layer 68A is separately measured. However, a measurement process for measuring the height distribution of the surface of the first structural layer 68A may be provided between the forming process of the first structural layer 68A and the forming process of the second structural layer 68B.
 また、上述の実施形態の図8(A)のステップ126では、当該構造層の造形時に、造形の終わった部分の表面の高さ分布を計測している。これに対して、上述の実施形態の変形例として、図8(B)のステップ126Aにおいて、図9(A)に示すように、第2構造層68Bの造形時に、造形ヘッド24において照射光学系30から走査方向に関して前方にある投光部44Bから第1構造層68Aの表面に投影されるスポット光GLBの像を図1の撮像装置46で撮像し、第1構造層68Aのパターンの表面68Aaの高さの分布を計測してもよい。この変形例では、次のステップ114Aにおいて、第1構造層68Aの表面68Aaの高さ分布の誤差分布信号を求め、次のステップ116Aにおいて、その誤差分布信号から低空間周波数信号LS及び高空間周波数信号HSを抽出する。 Furthermore, in step 126 in FIG. 8A of the above-described embodiment, the height distribution of the surface of the portion where the modeling has been completed is measured during the modeling of the structural layer. On the other hand, as a modification of the above-described embodiment, in step 126A of FIG. 8(B), as shown in FIG. 9(A), when printing the second structural layer 68B, the irradiation optical system is An image of the spot light GLB projected onto the surface of the first structural layer 68A from the light projecting unit 44B located in front of the scanning direction from 30 is captured by the imaging device 46 of FIG. The distribution of heights may also be measured. In this modification, in the next step 114A, an error distribution signal of the height distribution of the surface 68Aa of the first structural layer 68A is obtained, and in the next step 116A, a low spatial frequency signal LS and a high spatial frequency signal are obtained from the error distribution signal. Extract the signal HS.
 さらに、この変形例では、ステップ126A,114A,116Aの動作は、図9(A)の造形ヘッド24から加工光ELの照射及び造形材料Mの供給が行われる領域の前方の領域に対して行われている。例えば図9(A)において、照射光学系30から加工光ELが照射されるY方向の位置をY2とすると、ステップ116Aでは、図9(B)及び(C)に示すように、位置Y2の前方の位置Y1まで低空間周波数信号LS及び高空間周波数信号HSが求められている。 Furthermore, in this modification, the operations of steps 126A, 114A, and 116A are performed on the area in front of the area where the processing light EL is irradiated and the printing material M is supplied from the printing head 24 in FIG. 9(A). It is being said. For example, in FIG. 9(A), if the position in the Y direction where the processing light EL is irradiated from the irradiation optical system 30 is Y2, in step 116A, as shown in FIGS. 9(B) and (C), the position Y2 is A low spatial frequency signal LS and a high spatial frequency signal HS are obtained up to the forward position Y1.
 このため、図8(B)のステップ120,122,124では、ステップ116Aで求められた第1構造層68Aの表面の誤差分布を相殺するように、フィードフォワード方式で第2構造層68Bの造形材料の厚さを補正しながら第2構造層68Aの造形を行うことができる。すなわち、この変形例では、前層の表面の高さ分布の計測と、この計測結果を用いるほぼリアルタイムでの当該層の造形材料の厚さの制御とを行うことができる。このため、予め前層の造形時に前層の表面の高さ分布を計測して記憶しておく必要がない。 Therefore, in steps 120, 122, and 124 of FIG. 8(B), the second structural layer 68B is formed in a feedforward manner so as to cancel out the error distribution on the surface of the first structural layer 68A determined in step 116A. The second structural layer 68A can be shaped while correcting the thickness of the material. That is, in this modification, it is possible to measure the height distribution of the surface of the previous layer and to control the thickness of the modeling material of the layer in almost real time using this measurement result. Therefore, there is no need to measure and store the height distribution of the surface of the previous layer in advance when modeling the previous layer.
 また、上述の実施形態では、高さ分布の誤差分布のうち低い空間周波周成分の補正を材料ノズル32A,32BのZ方向の位置の制御で行っている。これに対して、図10(A)~(C)の変形例で示すように、その誤差分布の補正を材料ノズル32A,32Bの角度の制御で行うようにしてもよい。
 図10(A)において、造形ヘッド24に照射光学系30を挟むように造形材料Mを供給する材料ノズル32A,32Bが対称に設けられている。この変形例では、材料ノズル32A,32Bは、造形ヘッド24に対して回転可能に支持されている。さらに、造形ヘッド24に対して材料ノズル32A,32Bを回転するための駆動機構34C,34Dが設けられている。これ以外の構成は上述の実施形態と同様である。
Furthermore, in the embodiment described above, the correction of the low spatial frequency components of the error distribution of the height distribution is performed by controlling the positions of the material nozzles 32A and 32B in the Z direction. On the other hand, as shown in the modified examples of FIGS. 10(A) to 10(C), the error distribution may be corrected by controlling the angles of the material nozzles 32A and 32B.
In FIG. 10(A), material nozzles 32A and 32B for supplying the modeling material M are symmetrically provided in the modeling head 24 so as to sandwich the irradiation optical system 30 therebetween. In this modification, the material nozzles 32A, 32B are rotatably supported relative to the modeling head 24. Furthermore, drive mechanisms 34C and 34D for rotating the material nozzles 32A and 32B with respect to the modeling head 24 are provided. The configuration other than this is the same as the above embodiment.
 以下では、通常の造形動作では造形面CSは照射光学系30の合焦面BFに合致しているものとする。そして、図10(A)に示すように、駆動機構34C,34Dによって材料ノズル32A,32Bが可動回転範囲の中央にある場合、材料ノズル32A,32Bから供給される造形材料Mは、合焦面BFに対して所定量だけ下方(-Z方向)の集中領域62で重なるように材料ノズル32A,32Bの角度が設定されているものとする。合焦面BFに対する集中領域62のZ方向の間隔は、駆動機構34A,34Bの駆動量から求められる。 In the following, it is assumed that the modeling surface CS matches the focal plane BF of the irradiation optical system 30 in normal modeling operations. As shown in FIG. 10(A), when the material nozzles 32A, 32B are located at the center of the movable rotation range by the drive mechanisms 34C, 34D, the modeling material M supplied from the material nozzles 32A, 32B is It is assumed that the angles of the material nozzles 32A and 32B are set so that they overlap in the concentrated region 62 by a predetermined amount below (-Z direction) with respect to BF. The distance in the Z direction between the focused area 62 and the focal plane BF is determined from the drive amount of the drive mechanisms 34A and 34B.
 これに対して、図10(B)に示すように、駆動機構34C,34Dを介して材料ノズル32A,32Bを照射光学系30側に回転させて、集中領域62が合焦面BFに近づくと、合焦面BFに対する集中領域62の間隔はかなり小さい値になる。そして、造形面CSに単位時間に供給される造形材料64の厚さth1は大きくなる。一方、図10(C)に示すように、駆動機構34C,34Dを介して材料ノズル32A,32Bを照射光学系30から離れる方向に回転させて、集中領域62が合焦面BFから離れると、合焦面BFに対する集中領域62の間隔はかなり大きい値になる。そして、造形面CSに単位時間に供給される造形材料64の厚さth2は厚さth1のほぼ1/2になる。 On the other hand, as shown in FIG. 10(B), when the material nozzles 32A and 32B are rotated toward the irradiation optical system 30 side via the drive mechanisms 34C and 34D, and the concentrated area 62 approaches the focusing plane BF, , the distance between the focused area 62 and the focal plane BF is quite small. Then, the thickness th1 of the modeling material 64 supplied to the modeling surface CS per unit time increases. On the other hand, as shown in FIG. 10(C), when the material nozzles 32A and 32B are rotated in a direction away from the irradiation optical system 30 via the drive mechanisms 34C and 34D, and the concentrated area 62 is moved away from the focusing plane BF, The distance between the focused area 62 and the focal plane BF is quite large. The thickness th2 of the modeling material 64 supplied to the modeling surface CS per unit time is approximately 1/2 of the thickness th1.
 すなわち、材料ノズル32A,32Bの回転角を変化させ、合焦面BFに対する集中領域62の間隔を変化させることによって、造形面CSに単位時間に供給される造形材料64の厚さthを大きく制御することができる。このため、最終的に造形面CSに形成されるパターンの厚さ分布も大きく制御できる。
 図1の制御装置20では、駆動機構34C,34Dの駆動によってその間隔を求め、この間隔から材料ノズル32A,32Bから造形面CSに単位時間当たりに供給される造形材料64の厚さthを求めることができる。言い替えると、制御装置20は、ノズル制御部60で材料ノズル32A,32Bの回転角を制御することで、造形面CSに供給される造形材料64の厚さthを制御できる。この結果、造形材料64に加工光ELを照射し、溶融、冷却、及び固化によって形成される造形材料のパターンの厚さも制御できる。材料ノズル32A,32Bの回転制御は機械的な制御であり、応答速度があまり高くないが、造形材料の厚さの制御範囲は広い。このため、材料ノズル32A,32Bの回転制御によって、低い空間周波数成分で、かつ補正範囲が広い場合の造形材料の厚さ制御を行うことができる。
That is, by changing the rotation angles of the material nozzles 32A, 32B and changing the interval of the concentrated area 62 with respect to the focusing plane BF, the thickness th of the building material 64 supplied to the building surface CS per unit time can be greatly controlled. can do. Therefore, the thickness distribution of the pattern finally formed on the modeling surface CS can also be greatly controlled.
In the control device 20 of FIG. 1, the distance is determined by driving the drive mechanisms 34C and 34D, and from this distance, the thickness th of the modeling material 64 supplied from the material nozzles 32A and 32B to the modeling surface CS per unit time is determined. be able to. In other words, the control device 20 can control the thickness th of the modeling material 64 supplied to the modeling surface CS by controlling the rotation angles of the material nozzles 32A, 32B with the nozzle control unit 60. As a result, the thickness of the pattern of the modeling material formed by irradiating the modeling material 64 with the processing light EL, melting, cooling, and solidification can also be controlled. Rotation control of the material nozzles 32A, 32B is mechanical control, and although the response speed is not very high, the control range of the thickness of the modeling material is wide. Therefore, by controlling the rotation of the material nozzles 32A and 32B, it is possible to control the thickness of the modeling material with a low spatial frequency component and with a wide correction range.
 上述の実施形態及びその変形例では、材料ノズル32A,32Bと造形面CSとの相対位置を制御して造形面CSに供給される造形材料Mの厚さを制御している。これに対して、図1の材料供給装置12から材料ノズル32A,32Bに送出される造形材料の単位時間値の供給量自体を制御することによって、材料ノズル32A,32Bから造形面CSに供給される造形材料Mの厚さを制御してもよい。このように材料供給装置12から材料ノズル32A,32Bに送出される造形材料の単位時間当たりの供給量自体を制御する場合、材料ノズル32A,32Bのうちの一方の材料ノズル(例えば32A)のみを設けるようにすることができる。 In the above embodiment and its modified examples, the thickness of the modeling material M supplied to the modeling surface CS is controlled by controlling the relative positions of the material nozzles 32A, 32B and the modeling surface CS. On the other hand, by controlling the supply amount per unit time value of the modeling material sent from the material supply device 12 of FIG. The thickness of the modeling material M may be controlled. In this way, when controlling the supply amount per unit time of the modeling material sent from the material supply device 12 to the material nozzles 32A, 32B, only one material nozzle (for example, 32A) of the material nozzles 32A, 32B is controlled. It is possible to provide the following information.
 [第2の実施形態]
 次に第2の実施形態につき図11を参照して説明する。本実施形態でも図1の造形装置4を使用するが、構造層の造形材料の厚さ分布の制御方法が異なっている。本実施形態においてワークW上に第1構造層を形成し、この上に第2構造層を形成する場合の動作の一例につき図11(A)~(D)を参照して説明する。まず、図11(A)に示すように、造形装置4を用いてワークWの表面に第1構造層68Aを形成する。この際に第1構造層68Aの表面68Aaの高さ分布を計測する必要は必ずしもない。次に、第1構造層68Aの上に、照射光学系30から加工光ELを照射し、加工光ELの照射領域に材料ノズル32A,32Bから造形材料Mを供給し、ワークWに対して造形ヘッド24を例えば-Y方向に相対的に移動して、第2構造層68Bのパターンを肉盛りして造形するものとする。この際に、第1構造層68A及び第2構造層68Bの表面の目標とする形状は、それぞれ例えば点線で示す平坦な目標分布70A及び70Bであるとする。
[Second embodiment]
Next, a second embodiment will be described with reference to FIG. 11. Although this embodiment also uses the modeling apparatus 4 of FIG. 1, the method of controlling the thickness distribution of the modeling material of the structural layer is different. An example of the operation when forming the first structural layer on the workpiece W and forming the second structural layer thereon in this embodiment will be described with reference to FIGS. 11(A) to 11(D). First, as shown in FIG. 11(A), the first structural layer 68A is formed on the surface of the workpiece W using the modeling apparatus 4. At this time, it is not necessarily necessary to measure the height distribution of the surface 68Aa of the first structural layer 68A. Next, the processing light EL is irradiated from the irradiation optical system 30 onto the first structural layer 68A, and the modeling material M is supplied from the material nozzles 32A and 32B to the irradiation area of the processing light EL, and the work W is modeled. It is assumed that the head 24 is relatively moved, for example, in the −Y direction, and the pattern of the second structural layer 68B is built up and modeled. At this time, it is assumed that the target shapes of the surfaces of the first structural layer 68A and the second structural layer 68B are, for example, flat target distributions 70A and 70B shown by dotted lines, respectively.
 そして、第2構造層68Bの造形時に、造形ヘッド24において照射光学系30から走査方向に関して前方にある投光部44Bから第1構造層68Aの表面68Aaに投影されるスポット光GLBの像を図1の撮像装置46で撮像し、前層である第1構造層68Aのパターンの表面68Aaの高さ分布を計測する。そして、その高さ分布の信号RSから誤差算出部50において目標分布の信号を差し引くことで誤差信号が得られる。この誤差信号をハイパスフィルタ部52H及びローパスフィルタ部52Lに供給すると、ローパスフィルタ部52L及びハイパスフィルタ部52Hからそれぞれ図11(B)の低空間周波数信号LS、及び図11(C)の高空間周波数信号HSが制御装置20に供給される。 Then, when printing the second structural layer 68B, the image of the spot light GLB projected onto the surface 68Aa of the first structural layer 68A from the light projecting section 44B located in front of the irradiation optical system 30 in the scanning direction in the printing head 24 is illustrated. The first imaging device 46 takes an image, and the height distribution of the surface 68Aa of the pattern of the first structural layer 68A, which is the previous layer, is measured. Then, an error signal is obtained by subtracting the signal of the target distribution from the signal RS of the height distribution in the error calculating section 50. When this error signal is supplied to the high-pass filter section 52H and the low-pass filter section 52L, the low-pass filter section 52L and the high-pass filter section 52H produce a low spatial frequency signal LS shown in FIG. 11(B) and a high spatial frequency signal LS shown in FIG. 11(C), respectively. A signal HS is supplied to the control device 20.
 この場合、図11(A)において、照射光学系30から加工光ELが照射されるY方向の位置をY4とすると、スポット光GLBの像の撮像によって、図11(B)及び(C)に示すように、位置Y4の前方の位置Y3まで低空間周波数信号LS及び高空間周波数信号HSが求められている。このため、低空間周波数信号LS及び高空間周波数信号HSを用いて材料ノズル32A,32BのZ方向の位置、及び加工光ELの強度を制御することによって、第1構造層68Aの表面の高さ分布の誤差を相殺するように、第2構造層68Bの造形時に実質的にリアルタイムでかつフィードフォワード方式で造形材料の厚さ分布を制御できる。 In this case, in FIG. 11(A), if the position in the Y direction where the processing light EL is irradiated from the irradiation optical system 30 is Y4, then by capturing the image of the spot light GLB, As shown, the low spatial frequency signal LS and high spatial frequency signal HS are obtained up to position Y3 in front of position Y4. Therefore, by controlling the positions of the material nozzles 32A and 32B in the Z direction and the intensity of the processing light EL using the low spatial frequency signal LS and the high spatial frequency signal HS, the height of the surface of the first structural layer 68A can be adjusted. The thickness distribution of the modeling material can be controlled substantially in real time and in a feedforward manner during the modeling of the second structural layer 68B so as to offset errors in the distribution.
 さらに、本実施形態では、図11(A)に示すように、第2構造層68Bの肉盛りによる造形時に、造形ヘッド24において照射光学系30から走査方向に関して後方にある投光部44Aから造形直後のパターンの表面に投影されるスポット光GLAの像を図1の撮像装置46で撮像し、造形直後の第2構造層68Bのパターンの表面68Baの高さの分布をも計測する。この場合、第1構造層68Aの表面の高さ分布の計測値に基づく第2構造層68Bの造形材料の厚さ分布の制御によって、第2構造層68Bのこれまでに形成されたパターンの表面68Baは目標分布70Bに近づいているが、それでもわずかに誤差がある。 Furthermore, in this embodiment, as shown in FIG. 11A, when building the second structural layer 68B by overlaying, the light projecting section 44A located behind the irradiation optical system 30 in the scanning direction in the printing head 24 is The image of the spot light GLA projected onto the surface of the pattern immediately after is captured by the imaging device 46 of FIG. 1, and the height distribution of the surface 68Ba of the pattern of the second structural layer 68B immediately after modeling is also measured. In this case, by controlling the thickness distribution of the modeling material of the second structural layer 68B based on the measured value of the height distribution of the surface of the first structural layer 68A, the surface of the pattern formed so far Although 68Ba is close to the target distribution 70B, there is still a slight error.
 一例として、その誤差に対応する信号HBは、図11(D)の曲線71Aで示すように、低い空間周波数成分のみであるとする。このとき、照射光学系30の位置をY4とすると、信号HBは照射光学系30の走査方向に対して後方の位置Y5まで計測されている。そこで、本実施形態では、その信号HBに対応する高さ分布の誤差を相殺するように、フィードバック制御によって、材料ノズル32A,32BのZ位置を制御する。この制御によって、第2構造層68Bに形成されたパターンの表面68Baの高さ分布の目標分布70Bに対する誤差を示す信号HBは、図11(D)の点線の曲線71Bのように小さくなる。 As an example, assume that the signal HB corresponding to the error has only low spatial frequency components, as shown by a curve 71A in FIG. 11(D). At this time, if the position of the irradiation optical system 30 is Y4, the signal HB is measured up to a position Y5 at the rear with respect to the scanning direction of the irradiation optical system 30. Therefore, in this embodiment, the Z positions of the material nozzles 32A and 32B are controlled by feedback control so as to cancel out the error in the height distribution corresponding to the signal HB. By this control, the signal HB indicating the error of the height distribution of the surface 68Ba of the pattern formed on the second structural layer 68B with respect to the target distribution 70B becomes small as shown by the dotted curve 71B in FIG. 11(D).
 このように本実施形態によれば、第1構造層68Aの表面の高さ分布の誤差分布の計測結果を相殺するようにフィードフォワード方式で第2構造層68Bの造形材料の厚さ分布を制御するとともに、第2構造層68Bでそれまでに形成されたパターンの表面の高さ分布の誤差分布の計測結果を相殺するように、フィードバック方式で第2構造層68Bの造形材料の厚さ分布を制御している。このため、第1構造層68Aの表面の高さ分布の誤差が大きい場合でも、第2構造層68Bのパターンの表面の面精度をより高精度に造形できる。 As described above, according to the present embodiment, the thickness distribution of the modeling material of the second structural layer 68B is controlled by the feedforward method so as to offset the measurement result of the error distribution of the height distribution of the surface of the first structural layer 68A. At the same time, the thickness distribution of the modeling material of the second structural layer 68B is adjusted in a feedback manner so as to cancel out the measurement result of the error distribution of the height distribution of the surface of the pattern formed so far in the second structural layer 68B. It's in control. Therefore, even if the error in the height distribution of the surface of the first structural layer 68A is large, the surface accuracy of the pattern of the second structural layer 68B can be formed with higher precision.
 なお、本実施形態において、フィードバック方式で第2構造層68Bの造形材料の厚さ分布を制御する際にも、第2構造層68Bのパターンの表面68Baの高さ分布の目標分布70Bに対する誤差を示す信号HBから低空間周波数信号LS及び高空間周波数信号HSを抽出してもよい。なお、その厚さ分布には表面の凹凸分布のみならず、厚さそのものの分布も含まれる。そして、低空間周波数信号LSを用いて材料ノズル32A,32BのZ位置を制御し、高空間周波数信号HSを用いて加工光ELの強度を制御することによって、第2構造層68Bの表面の面精度をより高精度に造形できる。さらに、厚さそのものの分布を制御する場合には、所望の厚さの分布で、かつ均一な膜厚で対象とする構造層を造形可能である。 In addition, in this embodiment, when controlling the thickness distribution of the modeling material of the second structural layer 68B using the feedback method, the error in the height distribution of the surface 68Ba of the pattern of the second structural layer 68B with respect to the target distribution 70B is calculated. The low spatial frequency signal LS and the high spatial frequency signal HS may be extracted from the signal HB shown. Note that the thickness distribution includes not only the unevenness distribution on the surface but also the distribution of the thickness itself. Then, by controlling the Z positions of the material nozzles 32A and 32B using the low spatial frequency signal LS and controlling the intensity of the processing light EL using the high spatial frequency signal HS, the surface of the second structural layer 68B is It is possible to print with higher precision. Furthermore, when controlling the distribution of the thickness itself, it is possible to form a target structural layer with a desired thickness distribution and a uniform thickness.
 また、上述の各実施形態の造形装置4は、指向性エネルギー堆積法(DED)のうちのレーザ肉盛堆積法(LMD)を使用している。上述の各実施形態において、造装置4の代わりに、LMD法以外の指向性エネルギー堆積法(DED)(例えば熱源をレーザ光以外のアークプラズマや電子ビームとする方法など)を用いる造形装置を使用する場合にも上述の実施形態及びその変形例が適用できる。また、上述の実施形態の造形装置4の構成は上述の構成に限られず、その他の任意の構成が可能である。例えば材料ノズル32A,32Bの数や配置は任意であり、高さ計測装置42などの構成も含めて任意で良い。さらに、高さ計測装置42としては明暗パターンを投影するものなども用いることが可能である。 Furthermore, the modeling apparatus 4 of each of the above-described embodiments uses a laser metal deposition method (LMD) of the directional energy deposition method (DED). In each of the embodiments described above, instead of the manufacturing device 4, a modeling device that uses a directed energy deposition method (DED) other than the LMD method (for example, a method using an arc plasma or an electron beam as a heat source other than a laser beam) is used. The above-described embodiment and its modified examples can also be applied to the case where Further, the configuration of the modeling device 4 of the above-described embodiment is not limited to the above-described configuration, and any other configuration is possible. For example, the number and arrangement of the material nozzles 32A, 32B may be arbitrary, and the configuration of the height measuring device 42 and the like may also be arbitrary. Further, as the height measuring device 42, it is also possible to use a device that projects a bright and dark pattern.
 また、本明細書には、以下の発明の態様も記載されている。
1)複数の構造層を重ねて形成して構造物を造形する造形方法であって、第1構造層の表面の高さ情報に応じて、造形材料の厚さを制御する第1の方法、及び前記第1の方法が対応する空間周波数成分と異なる空間周波数成分に関して造形材料の厚さを制御する第2の方法を併用して、前記第1構造層に重ねて形成される第2構造層の造形材料の厚さ分布を制御する造形方法。2)複数の構造層を重ねて形成して構造物を造形する造形方法であって、第1構造層の表面の高さ情報に応じて、対応する空間周波数成分が互いに異なる第1の方法及び第2の方法を併用して、前記第1構造層に重ねて形成される第2構造層の造形材料の厚さ分布を制御することを含み、前記第1の方法は、造形材料を供給する材料供給部と造形面との相対的な位置関係を変更することを含み、前記第2の方法は、造形材料に照射される光ビームの強度を制御することを含む、造形方法。3)前記第1構造層の表面の高さ情報のうち、空間周波数に関する低周波数成分を補正するように、前記第1の方法で前記第2構造層の造形材料の厚さ分布を制御し、前記高さ情報のうち空間周波数に関する高周波数成分を補正するように、前記第2の方法で前記第2構造層の造形材料の厚さ分布を制御する、1又は2(又は1)に記載の造形方法。4)前記第1構造層の表面の高さ情報を用いて、フィードフォワード方式で前記第1の方法及び前記第2の方法を併用して、前記第2構造層の造形材料の厚さ分布を制御する、1から3のいずれか一項(又は1)に記載の造形方法。5)前記第2構造層を形成することは、光ビームを照射する領域に材料供給部から造形材料を供給し、前記光ビームと前記造型材料とを相対移動することを含み、前記第1の方法は、前記光ビームと前記造型材料とを相対移動するときに、前記材料供給部から造形面に供給される造形材料の厚さを制御することを含む1から4のいずれか一項(又は1)に記載の造形方法。6)前記第1の方法は、前記材料供給部と造形面との距離を制御することを含む5に記載の造形方法。7)前記材料供給部から造形材料を供給することは、複数の材料供給部から斜め方向に造形材料を供給することを含み、前記第1の方法は、前記材料供給部の角度を制御することを含む5に記載の造形方法。
The following aspects of the invention are also described in this specification.
1) A first method of forming a structure by stacking a plurality of structural layers, in which the thickness of the building material is controlled according to height information of the surface of the first structural layer; and a second structural layer formed over the first structural layer by using a second method of controlling the thickness of the building material with respect to a spatial frequency component different from the spatial frequency component corresponding to the first method. A printing method that controls the thickness distribution of the printing material. 2) A first method of forming a structure by stacking a plurality of structural layers, in which corresponding spatial frequency components differ from each other according to surface height information of the first structural layer; controlling the thickness distribution of a building material of a second structural layer formed over the first structural layer by using a second method in combination, the first method supplying the building material; A modeling method that includes changing the relative positional relationship between the material supply section and the modeling surface, and the second method includes controlling the intensity of the light beam irradiated to the modeling material. 3) controlling the thickness distribution of the modeling material of the second structural layer using the first method so as to correct a low frequency component related to spatial frequency among the height information of the surface of the first structural layer; 1 or 2 (or 1), wherein the thickness distribution of the building material of the second structural layer is controlled by the second method so as to correct a high frequency component related to spatial frequency in the height information. Modeling method. 4) Using the height information of the surface of the first structural layer, combine the first method and the second method in a feedforward manner to determine the thickness distribution of the modeling material of the second structural layer. The modeling method according to any one of 1 to 3 (or 1), which controls. 5) Forming the second structural layer includes supplying a modeling material from a material supply unit to a region to be irradiated with a light beam, and relatively moving the light beam and the modeling material, The method includes controlling the thickness of the modeling material supplied from the material supply unit to the modeling surface when the light beam and the modeling material are moved relative to each other. The modeling method described in 1). 6) The modeling method according to 5, wherein the first method includes controlling the distance between the material supply section and the modeling surface. 7) Supplying the building material from the material supply section includes supplying the building material in an oblique direction from a plurality of material supply sections, and the first method includes controlling the angle of the material supply section. 5. The modeling method according to 5.
 8)前記第2構造層を形成することは、光ビームを照射する領域に材料供給部から造形材料を供給し、前記光ビームと前記造型材料とを相対移動することを含み、前記第2の方法は、前記光ビームの強度を制御することを含む1から7のいずれか一項(又は1)に記載の造形方法。9)前記第2構造層を形成する際に、前記第2構造層の造形材料を盛る前の領域で、前記第1構造層の表面の高さ情報を計測することを含む、1から8のいずれか一項(又は1)に記載の造形方法。10)前記第1構造層を形成する際に、前記第1構造層の造形材料が盛られた後の領域で、前記第1構造層の表面の高さ情報を計測することを含む、1から8のいずれか一項(又は1)に記載の造形方法。11)前記第1構造層を形成する工程と、前記第2構造層を形成する工程との間に、前記第1構造層の表面の高さ情報を計測する工程を含む、1から8のいずれか一項(又は1)に記載の造形方法。12)前記第2構造層を形成する際に、前記第2構造層の造形材料が盛られた領域で、前記第2構造層の表面の高さ情報を計測することと、前記第2構造層の造形材料が盛られた領域の表面の高さ情報の計測結果と目標分布との誤差に応じて、前記第1の方法及び前記第2の方法を併用して、前記第2構造層に関して次に造形材料が盛られる領域における造形材料の厚さを制御することと、を含む1から11のいずれか一項(又は1)に記載の造形方法。13)前記第1構造層の表面の高さ情報は、前記表面の高さ分布の目標分布に対する誤差分布を含む1から12のいずれか一項に記載の造形方法。14)複数の構造層を重ねて形成して構造物を造形する造形装置であって、造形面に光ビームを照射する照射部と、前記光ビームが照射される領域に造形材料を供給する材料供給部と、前記光ビームと前記造型材料とを相対移動する移動部と、造形材料の厚さを制御する第1厚さ制御部と、前記第1厚さ制御部が対応可能な空間周波数より高い空間周波数で造形材料の厚さを制御する第2厚さ制御部と、第1構造層の表面の高さ情報に応じて、前記第1及び第2厚さ制御部を併用して、前記第1構造層に重ねて形成される第2構造層の造形材料の厚さ分布を制御する造形制御部と、を備える造形装置。15)複数の構造層を重ねて形成して構造物を造形する造形装置であって、造形面に光ビームを照射する照射部と、前記光ビームが照射される領域に造形材料を供給する材料供給部と、第1構造層の表面の高さ情報に応じて、対応する空間周波数成分が互いに異なる第1及び第2厚さ制御部を併用して、前記第1構造層に重ねて形成される第2構造層の造形材料の厚さ分布を制御する造形制御部と、を備え、前記第1厚さ制御部は、前記材料供給部と造形面との相対的な位置関係を変更する変更部であり、前記第2厚さ制御部は、前記光ビームの強度を制御する強度制御部である、造形装置。 8) Forming the second structural layer includes supplying a modeling material from a material supply unit to a region to be irradiated with a light beam, and relatively moving the light beam and the modeling material, and forming the second structural layer. 8. The modeling method according to any one of 1 to 7 (or 1), wherein the method includes controlling the intensity of the light beam. 9) When forming the second structural layer, measuring the height information of the surface of the first structural layer in a region before applying the modeling material of the second structural layer, The modeling method according to any one (or 1). 10) From 1 to 1, including measuring height information of the surface of the first structural layer in a region after the modeling material of the first structural layer is piled up when forming the first structural layer. 8. The modeling method according to any one of item 8 (or 1). 11) Any one of 1 to 8, including a step of measuring height information of the surface of the first structural layer between the step of forming the first structural layer and the step of forming the second structural layer. The modeling method according to item 1 (or 1). 12) When forming the second structural layer, measuring height information of the surface of the second structural layer in a region where the modeling material of the second structural layer is piled up; According to the error between the measurement result of the surface height information of the area where the modeling material is piled up and the target distribution, the first method and the second method are used together to perform the following regarding the second structural layer. 12. The modeling method according to any one of 1 to 11 (or 1), including controlling the thickness of the modeling material in the area where the modeling material is applied. 13) The modeling method according to any one of 1 to 12, wherein the surface height information of the first structural layer includes an error distribution of the surface height distribution with respect to a target distribution. 14) A modeling device that forms a structure by stacking a plurality of structural layers, including an irradiation unit that irradiates a modeling surface with a light beam, and a material that supplies a modeling material to a region that is irradiated with the light beam. a supply unit, a moving unit that relatively moves the light beam and the modeling material, a first thickness control unit that controls the thickness of the modeling material, and a spatial frequency that can be handled by the first thickness control unit. A second thickness control section that controls the thickness of the modeling material at a high spatial frequency, and the first and second thickness control sections are used together according to the height information of the surface of the first structural layer, A modeling device comprising: a modeling control section that controls the thickness distribution of a modeling material of a second structural layer formed to overlap the first structural layer. 15) A modeling device that forms a structure by stacking a plurality of structural layers, comprising: an irradiation unit that irradiates a modeling surface with a light beam; and a material that supplies a modeling material to an area irradiated with the light beam. The first structural layer is formed so as to be superimposed on the first structural layer by using a supply section and first and second thickness control sections whose corresponding spatial frequency components are different from each other according to the height information of the surface of the first structural layer. a modeling control section that controls the thickness distribution of the modeling material of the second structural layer, the first thickness control section changing the relative positional relationship between the material supply section and the modeling surface. A modeling apparatus, wherein the second thickness control section is an intensity control section that controls the intensity of the light beam.
 16)前記第1構造層の表面の高さ情報から空間周波数に関する低周波数成分及び高周波数成分を抽出する演算部を備え、前記造形制御部は、前記低周波数成分を補正するように、前記第1厚さ制御部を用いて前記第2構造層の造形材料の厚さ分布を制御し、前記高周波数成分を補正するように、前記第2厚さ制御部を用いて前記第2構造層の造形材料の厚さ分布を制御する、14又は15(又は14)に記載の造形装置。17)前記造形制御部は、前記第1構造層の表面の高さ情報を用いて、フィードフォワード方式で前記第1厚さ制御部及び前記第2厚さ制御部を制御して、前記第2構造層の造形材料の厚さ分布を制御する、14から16のいずれか一項(又は14)に記載の造形装置。18)前記第1厚さ制御部は、前記材料供給部から造形面に供給される造形材料の厚さを制御する、14から17のいずれか一項(又は14)に記載の造形装置。19)前記第1厚さ制御部は、前記材料供給部と造形面との距離を制御する、14から18のいずれか一項(又は14)に記載の造形装置。20)前記材料供給部は、それぞれ斜めに造形材料を供給する複数の材料供給部を有し、前記第1厚さ制御部は、複数の前記材料供給部の角度を制御する、14から18のいずれか一項(又は14)に記載の造形装置。21)前記第2厚さ制御部は、前記光ビームの強度を制御する、14から20のいずれか一項(又は14)に記載の造形装置。22)構造層の表面の高さを計測する計測部と、前記計測部で計測された前記構造層の表面の高さ情報を記憶する記憶部と、を備える14から21のいずれか一項(又は14)に記載の造形装置。23)前記計測部は、前記構造層の表面に斜めに複数の計測光を照射する計測光照射部と、前記構造層で反射される前記計測光を受光する撮像部と、前記撮像部の撮像信号を処理して前記構造層の前記計測光が照射されている部分の高さを求める撮像信号処理部と、を有する22に記載の造形装置。24)前記計測部は、前記第2構造層を形成する際に、前記第2構造層の造形材料が盛られた領域で、前記第2構造層の表面の高さ情報を計測し、前記造形制御部は、前記計測部で計測される前記第2構造層の表面の高さ情報に応じて、前記第1及び第2厚さ制御部を用いて、前記第2構造層において次に造形材料が盛られる領域における造形材料の厚さを制御する、22又は23(又は22)に記載の造形装置。25)前記第1構造層の表面の高さ情報は、前記表面の高さ分布の目標分布に対する誤差分布を含む14から24のいずれか一項に記載の造形装置。 16) A calculation unit that extracts a low frequency component and a high frequency component related to spatial frequency from the height information of the surface of the first structural layer, and the modeling control unit extracts the low frequency component and the high frequency component regarding the spatial frequency from the height information of the surface of the first structural layer, The first thickness control section is used to control the thickness distribution of the modeling material of the second structural layer, and the second thickness control section is used to control the thickness distribution of the modeling material of the second structural layer, and the second thickness control section is used to control the thickness distribution of the modeling material of the second structural layer. 15. The modeling device according to 14 or 15 (or 14), which controls the thickness distribution of the modeling material. 17) The modeling control unit controls the first thickness control unit and the second thickness control unit in a feedforward manner using the height information of the surface of the first structural layer, and 17. The modeling device according to any one of 14 to 16 (or 14), which controls the thickness distribution of the modeling material of the structural layer. 18) The modeling apparatus according to any one of 14 to 17 (or 14), wherein the first thickness control section controls the thickness of the modeling material supplied from the material supply section to the modeling surface. 19) The modeling apparatus according to any one of 14 to 18 (or 14), wherein the first thickness control section controls the distance between the material supply section and the modeling surface. 20) The material supply unit has a plurality of material supply units that supply the modeling material obliquely, and the first thickness control unit controls the angle of the plurality of material supply units, The modeling device according to any one (or 14). 21) The modeling apparatus according to any one of 14 to 20 (or 14), wherein the second thickness control section controls the intensity of the light beam. 22) Any one of 14 to 21 ( Or the modeling device according to 14). 23) The measurement unit includes a measurement light irradiation unit that irradiates the surface of the structural layer with a plurality of measurement lights obliquely, an imaging unit that receives the measurement light reflected by the structural layer, and an imaging unit of the imaging unit. 23. The modeling apparatus according to 22, further comprising: an imaging signal processing unit that processes a signal to determine the height of a portion of the structural layer that is irradiated with the measurement light. 24) When forming the second structural layer, the measurement unit measures height information of the surface of the second structural layer in a region where the modeling material of the second structural layer is piled up, and measures the height information of the surface of the second structural layer. The control unit uses the first and second thickness control units to apply the next modeling material in the second structural layer according to the height information of the surface of the second structural layer measured by the measuring unit. 23. The modeling device according to 22 or 23 (or 22), which controls the thickness of the modeling material in the region where the material is piled up. 25) The modeling apparatus according to any one of 14 to 24, wherein the surface height information of the first structural layer includes an error distribution of the surface height distribution with respect to a target distribution.
 W…ワーク、EL…加工光、M…造形材料、4…造形装置、10…光源、12…材料供給装置、16…光源制御部、18…ガス供給装置、20…制御装置、26…駆動系、28…ステージ、30…照射光学系、32A,32B…材料ノズル、34A,34B…駆動機構、42…高さ計測装置、44A~44H…投光部、46…撮像装置、48…撮像信号処理部、50…誤差算出部、52H…ハイパスフィルタ部、52L…ローパスフィルタ部、60…ノズル制御部 W... Workpiece, EL... Processing light, M... Modeling material, 4... Modeling device, 10... Light source, 12... Material supply device, 16... Light source control section, 18... Gas supply device, 20... Control device, 26... Drive system , 28... Stage, 30... Irradiation optical system, 32A, 32B... Material nozzle, 34A, 34B... Drive mechanism, 42... Height measurement device, 44A to 44H... Light projection unit, 46... Imaging device, 48... Imaging signal processing Section, 50... Error calculation section, 52H... High pass filter section, 52L... Low pass filter section, 60... Nozzle control section

Claims (25)

  1.  複数の構造層を重ねて形成して構造物を造形する造形方法であって、
     第1構造層の表面の高さ情報に応じて、造形材料の厚さを制御する第1の方法、及び前記第1の方法が対応する空間周波数成分と異なる空間周波数成分に関して造形材料の厚さを制御する第2の方法を併用して、前記第1構造層に重ねて形成される第2構造層の造形材料の厚さ分布を制御する造形方法。
    A method for forming a structure by stacking and forming a plurality of structural layers, the method comprising:
    A first method of controlling the thickness of the building material according to height information of a surface of a first structural layer, and the first method controlling the thickness of the building material with respect to a spatial frequency component different from a corresponding spatial frequency component. A modeling method that controls the thickness distribution of a modeling material of a second structural layer formed to overlap the first structural layer by using a second method of controlling the above-mentioned first structural layer.
  2.  複数の構造層を重ねて形成して構造物を造形する造形方法であって、
     第1構造層の表面の高さ情報に応じて、対応する空間周波数成分が互いに異なる第1の方法及び第2の方法を併用して、前記第1構造層に重ねて形成される第2構造層の造形材料の厚さ分布を制御することを含み、
     前記第1の方法は、造形材料を供給する材料供給部と造形面との相対的な位置関係を変更することを含み、
     前記第2の方法は、造形材料に照射される光ビームの強度を制御することを含む、造形方法。
    A method for forming a structure by stacking and forming a plurality of structural layers, the method comprising:
    A second structure formed over the first structural layer by using a first method and a second method in which corresponding spatial frequency components differ from each other according to surface height information of the first structural layer. controlling the thickness distribution of the build material of the layer;
    The first method includes changing the relative positional relationship between the material supply unit that supplies the modeling material and the modeling surface,
    The second method is a modeling method including controlling the intensity of a light beam irradiated onto the modeling material.
  3.  前記第1構造層の表面の高さ情報のうち、空間周波数に関する低周波数成分を補正するように、前記第1の方法で前記第2構造層の造形材料の厚さ分布を制御し、
     前記高さ情報のうち空間周波数に関する高周波数成分を補正するように、前記第2の方法で前記第2構造層の造形材料の厚さ分布を制御する、請求項1又は2に記載の造形方法。
    controlling the thickness distribution of the modeling material of the second structural layer using the first method so as to correct a low frequency component related to spatial frequency among the height information of the surface of the first structural layer;
    The modeling method according to claim 1 or 2, wherein the thickness distribution of the modeling material of the second structural layer is controlled by the second method so as to correct a high frequency component related to a spatial frequency in the height information. .
  4.  前記第1構造層の表面の高さ情報を用いて、フィードフォワード方式で前記第1の方法及び前記第2の方法を併用して、前記第2構造層の造形材料の厚さ分布を制御する、請求項1から3のいずれか一項に記載の造形方法。 Using the height information of the surface of the first structural layer, the first method and the second method are used together in a feedforward manner to control the thickness distribution of the modeling material of the second structural layer. , The modeling method according to any one of claims 1 to 3.
  5.  前記第2構造層を形成することは、光ビームを照射する領域に材料供給部から造形材料を供給し、前記光ビームと前記造型材料とを相対移動することを含み、
     前記第1の方法は、前記光ビームと前記造型材料とを相対移動するときに、前記材料供給部から造形面に供給される造形材料の厚さを制御することを含む請求項1から4のいずれか一項に記載の造形方法。
    Forming the second structural layer includes supplying a modeling material from a material supply unit to a region to be irradiated with a light beam, and relatively moving the light beam and the modeling material,
    5. The method according to claim 1, wherein the first method includes controlling the thickness of the modeling material supplied from the material supply unit to the modeling surface when the light beam and the modeling material are moved relative to each other. The modeling method described in any one of the items.
  6.  前記第1の方法は、前記材料供給部と造形面との距離を制御することを含む請求項5に記載の造形方法。 The modeling method according to claim 5, wherein the first method includes controlling a distance between the material supply section and the modeling surface.
  7.  前記材料供給部から造形材料を供給することは、複数の材料供給部から斜め方向に造形材料を供給することを含み、
     前記第1の方法は、前記材料供給部の角度を制御することを含む請求項5に記載の造形方法。
    Supplying the modeling material from the material supply unit includes supplying the modeling material in an oblique direction from a plurality of material supply units,
    6. The modeling method according to claim 5, wherein the first method includes controlling an angle of the material supply section.
  8.  前記第2構造層を形成することは、光ビームを照射する領域に材料供給部から造形材料を供給し、前記光ビームと前記造型材料とを相対移動することを含み、
     前記第2の方法は、前記光ビームの強度を制御することを含む請求項1から7のいずれか一項に記載の造形方法。
    Forming the second structural layer includes supplying a modeling material from a material supply unit to a region to be irradiated with a light beam, and relatively moving the light beam and the modeling material,
    The modeling method according to any one of claims 1 to 7, wherein the second method includes controlling the intensity of the light beam.
  9.  前記第2構造層を形成する際に、前記第2構造層の造形材料を盛る前の領域で、前記第1構造層の表面の高さ情報を計測することを含む、請求項1から8のいずれか一項に記載の造形方法。 9. The method according to claim 1, further comprising measuring height information of the surface of the first structural layer in a region before applying the modeling material of the second structural layer when forming the second structural layer. The modeling method described in any one of the items.
  10.  前記第1構造層を形成する際に、前記第1構造層の造形材料が盛られた後の領域で、前記第1構造層の表面の高さ情報を計測することを含む、請求項1から8のいずれか一項に記載の造形方法。 From claim 1, further comprising measuring height information of the surface of the first structural layer in a region after the modeling material of the first structural layer is piled up when forming the first structural layer. 8. The modeling method according to any one of 8.
  11.  前記第1構造層を形成する工程と、前記第2構造層を形成する工程との間に、
     前記第1構造層の表面の高さ情報を計測する工程を含む、請求項1から8のいずれか一項に記載の造形方法。
    Between the step of forming the first structural layer and the step of forming the second structural layer,
    The modeling method according to any one of claims 1 to 8, comprising the step of measuring surface height information of the first structural layer.
  12.  前記第2構造層を形成する際に、前記第2構造層の造形材料が盛られた領域で、前記第2構造層の表面の高さ情報を計測することと、
     前記第2構造層の造形材料が盛られた領域の表面の高さ情報の計測結果と目標分布との誤差に応じて、前記第1の方法及び前記第2の方法を併用して、前記第2構造層に関して次に造形材料が盛られる領域における造形材料の厚さを制御することと、を含む請求項1から11のいずれか一項に記載の造形方法。
    When forming the second structural layer, measuring height information of the surface of the second structural layer in a region where the modeling material of the second structural layer is piled up;
    The first method and the second method are used in combination according to the error between the measurement result of the surface height information of the area where the modeling material of the second structural layer is piled up and the target distribution. 12. The method according to claim 1, further comprising: controlling the thickness of the building material in the region where the building material is applied next with respect to the two structural layers.
  13.  前記第1構造層の表面の高さ情報は、前記表面の高さ分布の目標分布に対する誤差分布を含む請求項1から12のいずれか一項に記載の造形方法。 13. The modeling method according to claim 1, wherein the surface height information of the first structural layer includes an error distribution of the surface height distribution with respect to a target distribution.
  14.  複数の構造層を重ねて形成して構造物を造形する造形装置であって、
     造形面に光ビームを照射する照射部と、
     前記光ビームが照射される領域に造形材料を供給する材料供給部と、
     前記光ビームと前記造型材料とを相対移動する移動部と、
     造形材料の厚さを制御する第1厚さ制御部と、
     前記第1厚さ制御部が対応可能な空間周波数より高い空間周波数で造形材料の厚さを制御する第2厚さ制御部と、
     第1構造層の表面の高さ情報に応じて、前記第1及び第2厚さ制御部を併用して、前記第1構造層に重ねて形成される第2構造層の造形材料の厚さ分布を制御する造形制御部と、
    を備える造形装置。
    A modeling device that shapes a structure by stacking and forming a plurality of structural layers,
    an irradiation unit that irradiates a light beam onto the modeling surface;
    a material supply unit that supplies a modeling material to a region irradiated with the light beam;
    a moving unit that relatively moves the light beam and the molding material;
    a first thickness control section that controls the thickness of the modeling material;
    a second thickness control section that controls the thickness of the modeling material at a higher spatial frequency than the spatial frequency that the first thickness control section can handle;
    Depending on the height information of the surface of the first structural layer, the thickness of the modeling material of the second structural layer formed to overlap the first structural layer is determined by using the first and second thickness control units together. a modeling control unit that controls distribution;
    A modeling device equipped with.
  15.  複数の構造層を重ねて形成して構造物を造形する造形装置であって、
     造形面に光ビームを照射する照射部と、
     前記光ビームが照射される領域に造形材料を供給する材料供給部と、
     第1構造層の表面の高さ情報に応じて、対応する空間周波数成分が互いに異なる第1及び第2厚さ制御部を併用して、前記第1構造層に重ねて形成される第2構造層の造形材料の厚さ分布を制御する造形制御部と、を備え、
     前記第1厚さ制御部は、前記材料供給部と造形面との相対的な位置関係を変更する変更部であり、
     前記第2厚さ制御部は、前記光ビームの強度を制御する強度制御部である、造形装置。
    A modeling device that shapes a structure by stacking and forming a plurality of structural layers,
    an irradiation unit that irradiates a light beam onto the modeling surface;
    a material supply unit that supplies a modeling material to a region irradiated with the light beam;
    A second structure formed overlying the first structural layer by using first and second thickness controllers having different corresponding spatial frequency components in accordance with surface height information of the first structural layer. a modeling control unit that controls the thickness distribution of the modeling material of the layer;
    The first thickness control section is a changing section that changes the relative positional relationship between the material supply section and the modeling surface,
    In the modeling apparatus, the second thickness control section is an intensity control section that controls the intensity of the light beam.
  16.  前記第1構造層の表面の高さ情報から空間周波数に関する低周波数成分及び高周波数成分を抽出する演算部を備え、
     前記造形制御部は、前記低周波数成分を補正するように、前記第1厚さ制御部を用いて前記第2構造層の造形材料の厚さ分布を制御し、前記高周波数成分を補正するように、前記第2厚さ制御部を用いて前記第2構造層の造形材料の厚さ分布を制御する、請求項14又は15に記載の造形装置。
    comprising a calculation unit that extracts a low frequency component and a high frequency component regarding spatial frequency from the height information of the surface of the first structural layer,
    The modeling control unit controls the thickness distribution of the modeling material of the second structural layer using the first thickness control unit so as to correct the low frequency component, and corrects the high frequency component. 16. The modeling apparatus according to claim 14, wherein the second thickness control section is used to control the thickness distribution of the modeling material of the second structural layer.
  17.  前記造形制御部は、前記第1構造層の表面の高さ情報を用いて、フィードフォワード方式で前記第1厚さ制御部及び前記第2厚さ制御部を制御して、前記第2構造層の造形材料の厚さ分布を制御する、請求項14から16のいずれか一項に記載の造形装置。 The modeling control section controls the first thickness control section and the second thickness control section in a feedforward manner using the height information of the surface of the first structural layer, and controls the first thickness control section and the second thickness control section to form the second structural layer. The modeling device according to any one of claims 14 to 16, wherein the modeling device controls the thickness distribution of the modeling material.
  18.  前記第1厚さ制御部は、前記材料供給部から造形面に供給される造形材料の厚さを制御する、請求項14から17のいずれか一項に記載の造形装置。 The modeling apparatus according to any one of claims 14 to 17, wherein the first thickness control section controls the thickness of the modeling material supplied from the material supply section to the modeling surface.
  19.  前記第1厚さ制御部は、前記材料供給部と造形面との距離を制御する、請求項14から18のいずれか一項に記載の造形装置。 The modeling apparatus according to any one of claims 14 to 18, wherein the first thickness control section controls a distance between the material supply section and the modeling surface.
  20.  前記材料供給部は、それぞれ斜めに造形材料を供給する複数の材料供給部を有し、
     前記第1厚さ制御部は、複数の前記材料供給部の角度を制御する、請求項14から18のいずれか一項に記載の造形装置。
    The material supply section has a plurality of material supply sections that each supply the modeling material diagonally,
    The modeling apparatus according to any one of claims 14 to 18, wherein the first thickness control section controls angles of the plurality of material supply sections.
  21.  前記第2厚さ制御部は、前記光ビームの強度を制御する、請求項14から20のいずれか一項に記載の造形装置。 The modeling apparatus according to any one of claims 14 to 20, wherein the second thickness control section controls the intensity of the light beam.
  22.  構造層の表面の高さを計測する計測部と、
     前記計測部で計測された前記構造層の表面の高さ情報を記憶する記憶部と、
    を備える請求項14から21のいずれか一項に記載の造形装置。
    a measurement unit that measures the height of the surface of the structural layer;
    a storage unit that stores height information of the surface of the structural layer measured by the measurement unit;
    The modeling apparatus according to any one of claims 14 to 21, comprising:
  23.  前記計測部は、前記構造層の表面に斜めに複数の計測光を照射する計測光照射部と、前記構造層で反射される前記計測光を受光する撮像部と、前記撮像部の撮像信号を処理して前記構造層の前記計測光が照射されている部分の高さを求める撮像信号処理部と、を有する請求項22に記載の造形装置。 The measurement unit includes a measurement light irradiation unit that irradiates a plurality of measurement lights diagonally onto the surface of the structural layer, an imaging unit that receives the measurement light reflected by the structural layer, and an imaging signal of the imaging unit. 23. The modeling apparatus according to claim 22, further comprising: an imaging signal processing unit that processes and determines the height of a portion of the structural layer that is irradiated with the measurement light.
  24.  前記計測部は、前記第2構造層を形成する際に、前記第2構造層の造形材料が盛られた領域で、前記第2構造層の表面の高さ情報を計測し、
     前記造形制御部は、前記計測部で計測される前記第2構造層の表面の高さ情報に応じて、前記第1及び第2厚さ制御部を用いて、前記第2構造層において次に造形材料が盛られる領域における造形材料の厚さを制御する、請求項22又は23に記載の造形装置。
    When forming the second structural layer, the measuring unit measures height information of the surface of the second structural layer in a region where the modeling material of the second structural layer is piled up,
    The modeling control section uses the first and second thickness control sections to determine the next step in the second structural layer according to the height information of the surface of the second structural layer measured by the measuring section. The modeling device according to claim 22 or 23, wherein the thickness of the modeling material in the area where the modeling material is piled up is controlled.
  25.  前記第1構造層の表面の高さ情報は、前記表面の高さ分布の目標分布に対する誤差分布を含む請求項14から24のいずれか一項に記載の造形装置。 The modeling apparatus according to any one of claims 14 to 24, wherein the surface height information of the first structural layer includes an error distribution of the surface height distribution with respect to a target distribution.
PCT/JP2022/025269 2022-06-24 2022-06-24 Shaping method and shaping device WO2023248458A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025269 WO2023248458A1 (en) 2022-06-24 2022-06-24 Shaping method and shaping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025269 WO2023248458A1 (en) 2022-06-24 2022-06-24 Shaping method and shaping device

Publications (1)

Publication Number Publication Date
WO2023248458A1 true WO2023248458A1 (en) 2023-12-28

Family

ID=89379334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025269 WO2023248458A1 (en) 2022-06-24 2022-06-24 Shaping method and shaping device

Country Status (1)

Country Link
WO (1) WO2023248458A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020069662A (en) * 2018-10-29 2020-05-07 東芝機械株式会社 Laminate molding apparatus, laminate molding method, and program
JP3231517U (en) * 2021-01-28 2021-04-08 株式会社ニコン Processing system
WO2022018853A1 (en) * 2020-07-22 2022-01-27 株式会社ニコン Processing system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020069662A (en) * 2018-10-29 2020-05-07 東芝機械株式会社 Laminate molding apparatus, laminate molding method, and program
WO2022018853A1 (en) * 2020-07-22 2022-01-27 株式会社ニコン Processing system
JP3231517U (en) * 2021-01-28 2021-04-08 株式会社ニコン Processing system

Similar Documents

Publication Publication Date Title
TWI726855B (en) Modeling apparatus and modeling method
CN112955270B (en) Lamination shaping device
US20170008126A1 (en) An additive manufacturing system with a multi-energy beam gun and method of operation
JP5981474B2 (en) Nozzle device, additive manufacturing apparatus, and additive manufacturing method
JP7380769B2 (en) Processing equipment and processing methods, processing methods, and modeling equipment and modeling methods
JP2023015180A (en) Processing equipment, processing method, marking method, and modeling method
JP6765569B1 (en) Laminated modeling equipment, laminated modeling method, and laminated modeling program
JP2023085256A (en) Modeling system and modeling method
JP6964801B2 (en) Laminated modeling equipment
WO2023248458A1 (en) Shaping method and shaping device
WO2022018853A1 (en) Processing system
KR102340525B1 (en) Control method of slicing thickness with constant deposition and melting volume
JP7186898B2 (en) Additive manufacturing equipment
JP6896193B1 (en) Laminated modeling equipment
CN112930241A (en) Machining system and machining method
WO2024057496A1 (en) Processing system, data structure, and processing method
WO2021019644A1 (en) Processing system, processing method, controller, computer program, recording medium, and processing apparatus
CN113939394B (en) Modeling unit
WO2019151239A1 (en) Processing system, processing method, computer program, recording medium, and control device
WO2022003870A1 (en) Processing system and optical device
WO2023042341A1 (en) Fabrication system
WO2023238319A1 (en) Processing system and processing method
WO2023188005A1 (en) Shaping system, radiation condition setting method, input system, computer program, and recording medium
CN112236253B (en) Three-dimensional modeling apparatus and three-dimensional modeling method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948019

Country of ref document: EP

Kind code of ref document: A1