WO2023246812A1 - 一种眼球追踪光学装置、***和虚拟现实设备 - Google Patents

一种眼球追踪光学装置、***和虚拟现实设备 Download PDF

Info

Publication number
WO2023246812A1
WO2023246812A1 PCT/CN2023/101518 CN2023101518W WO2023246812A1 WO 2023246812 A1 WO2023246812 A1 WO 2023246812A1 CN 2023101518 W CN2023101518 W CN 2023101518W WO 2023246812 A1 WO2023246812 A1 WO 2023246812A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
light
lens
reflective
eye tracking
Prior art date
Application number
PCT/CN2023/101518
Other languages
English (en)
French (fr)
Inventor
黄通兵
尚娟娟
费文波
Original Assignee
北京七鑫易维信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京七鑫易维信息技术有限公司 filed Critical 北京七鑫易维信息技术有限公司
Publication of WO2023246812A1 publication Critical patent/WO2023246812A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present disclosure relates to the field of optical technology, and in particular to an eye tracking optical device, system and virtual reality equipment.
  • Eye tracking technology can be implemented using optical recording methods.
  • the principle of the optical recording method is to use an infrared camera to record the subject's eye movements, that is, to obtain eye images that can reflect eye movements, and to extract eye features from the acquired eye images to establish a line of sight estimation model.
  • the eye features may include: pupil position, pupil shape, iris position, iris shape, eyelid position, eye canthus position, light spot position (or Purchin spot), etc.
  • Optical recording methods include the pupillary-corneal reflex method.
  • the principle of the pupil-corneal reflection method is that a near-infrared light source is illuminated at the eye, and the eye is photographed by an infrared camera. At the same time, the reflection point of the light source on the cornea, which is the light spot, is captured, thereby obtaining an eye image with the light spot.
  • the eye tracking recognition equipment currently used in virtual reality glasses and augmented reality glasses consists of an image acquisition part and a Purkin spot mapping part.
  • the image collection part mainly tracks the position of the eyeball by collecting the reflected light spot of the eyeball 2.
  • the following solutions are mainly used for collection:
  • the image collector 3 directly collects images through the eyepiece 1.
  • the image collector 3 uses the surface reflection of other internal lenses 4 and then passes through the eyepiece 1 to collect images.
  • an internal reflector 4 is used to collect images through the eyepiece 1 and the image collector 3.
  • the light path first enters the inside of the eyepiece 1, is reflected on the outer surface of the eyepiece 1, and the image collector 3 collects images.
  • adding lenses will cause the overall volume of the device to become larger, and the reflected light of eyeball 2 will easily occur on the surface of eyepiece 1, or total reflection will occur on the surface of the added lens, making it impossible for image collector 3 to collect the light of eyeball 2. Reflecting light makes it impossible to track the eyeballs.
  • the present disclosure provides an eye tracking optical device, system and virtual reality equipment to solve the problem of total reflection of reflected light from the eyeball without increasing the overall volume of the equipment.
  • an embodiment of the present disclosure proposes an eye tracking optical device, including: a light source component, a lens component, a reflection component and an image acquisition component; wherein,
  • the lens assembly includes a first lens portion and a second lens portion arranged in sequence away from the eyeball.
  • the first lens portion has a concave surface on a side surface away from the eyeball
  • the second lens portion has a concave surface on a side surface adjacent to the eyeball.
  • a convex surface, the concave surface and the convex surface are bonded to form a glued surface, the glued surface is provided with a first reflective layer, and the first lens part and the second lens part form a glued lens;
  • the reflective component is located near the lens component and adjacent to the image acquisition component;
  • the light source component is configured to emit a first light to the eyeball
  • the first reflective layer is configured to reflect the reflected light of the first light to form a first reflected light
  • the reflective component is configured to reflect the first light at least once.
  • One reflected light forms the light to be imaged
  • the image acquisition component is configured to collect the light to be imaged to track the eyeball.
  • the reflective component includes: a second reflective layer that is attached to a portion of the surface of the first lens portion adjacent to the eyeball.
  • the second reflective layer is located in a non-visible area of the lens assembly.
  • the reflective component further includes: one of a reflective prism, a reflective plane mirror, or a reflective curved mirror, configured to adjust the direction of the second reflected light reflected from the second reflective layer to form The light to be imaged.
  • one of the reflecting prism, the reflecting plane mirror or the reflecting curved mirror is fixedly attached to the first lens part.
  • the diameter of the concave surface or the convex surface is greater than or equal to the visible area of the lens assembly.
  • the light source component is an infrared light source component
  • the first reflective layer is an infrared reflective layer
  • the reflective component is an infrared reflective component
  • the image acquisition component includes one of COMS or CCD photosensitive chips.
  • the second embodiment of the present disclosure proposes an eye tracking optical system, including: two eye tracking optical devices as described in any embodiment of the present disclosure, and
  • a left eye viewing assembly one of the eye tracking optical devices is installed on the left eye viewing assembly;
  • a right eye viewing assembly one of the eye tracking optical devices is installed on the right eye viewing assembly;
  • the left eye viewing component and the right eye viewing component are symmetrically distributed left and right.
  • a third embodiment of the present disclosure provides a virtual reality device, including the eye tracking optical system proposed in the present disclosure.
  • the eye-tracking optical device includes: a light source component, a lens component, a reflection component and an image acquisition component; and its lens component includes a first lens arranged in sequence away from the eyeball. and the second lens part, the first lens part has a concave surface on a side away from the eyeball, and the second lens part has a convex surface on a side close to the eyeball, the concave surface and the convex surface are bonded to form a glued surface, and the glued surface is provided with a first reflective layer.
  • a lens part and a second lens part form a cemented lens;
  • the reflective component is located near the lens component adjacent to the image acquisition component;
  • the light source component is configured to emit the first light to the eyeball, and the first reflective layer is configured to reflect the reflected light of the first light to form a third A reflected light, the reflective component is configured to reflect the first reflected light at least once to form the light to be imaged;
  • the image acquisition component is configured to collect the light to be imaged to track the eyeball.
  • the reflected light of the first light can be reflected to form the first reflected light, and then the reflective assembly can reflect the first reflected light It is reflected at least once to form the light to be imaged, which is incident on the image acquisition component, thereby improving the problem that the reflected light of the first light existing in the original image acquisition part is easily fully reflected by the eyepiece or the added lens, and the image acquisition component cannot collect the light to be imaged. .
  • Figure 1 is an optical path diagram of a light to be imaged in the related art
  • Figure 2 is an optical path diagram of another light to be imaged in the related art
  • Figure 3 is another optical path diagram of light to be imaged in the related art
  • Figure 4 is another optical path diagram of light to be imaged in the related art
  • Figure 5 is a schematic diagram of the optical path of the eye tracking optical device proposed by the present disclosure.
  • Figure 6 is a front view of the middle lens assembly of the eye tracking optical device proposed by the present disclosure.
  • Figure 7 is a schematic diagram of an optical path of an eye tracking optical device proposed by another embodiment of the present disclosure.
  • Figure 8 is a schematic diagram of an optical path of an eye tracking optical device proposed by another embodiment of the present disclosure.
  • Figure 9 is a schematic diagram of an optical path of an eye tracking optical device proposed by yet another embodiment of the present disclosure.
  • Figure 10 is a block diagram of the eye tracking optical system proposed by the present disclosure.
  • Figure 11 is a block schematic diagram of the virtual reality device proposed by the present disclosure.
  • Eye tracking optical device 101. Light source component; 102. Lens component; 1021. First lens part; 1022. Second lens part; 1023. First reflective layer; 1024. Non-visible area; 1025. Visible area ; 103. Reflective component; 1031. Second reflective layer; 1032. Reflective prism; 1033. Reflective plane mirror; 1034. Reflective curved mirror; 104. Image acquisition component; 105. Eyeball; 106. First light; 107. Reflected light; 108. First reflected light; 109. Light to be imaged; 110. Second reflected light; 200. Eye tracking optical system; 201. Left eye viewing component; 202. Right eye viewing component; 300. Virtual display device.
  • Figures 1 to 4 are optical path diagrams of light to be imaged in related technologies.
  • direct image collection is greatly affected by the volume of the optical path, and when passing through the lens, total reflection is prone to occur and cannot be collected;
  • the solution shown in Figure 2 uses other internal lenses, so the reflection effect is limited and cannot be optimized, and total reflection is prone to occur.
  • the solution shown in Figure 3 has serious space limitations for adding reflectors internally, making it impossible to implement many scenarios;
  • the solution shown in Figure 4 uses reflection from the other side of the eyepiece.
  • the reflective surface must be convex. The concave surface will cause total reflection and cannot be collected.
  • the present disclosure proposes an eye-tracking optical device, system and virtual reality equipment.
  • the eye-tracking optical device includes: a light source component, a lens component, a reflection component and an image acquisition component; and its lens component includes a lens far away from the eyeball in sequence.
  • the first lens part and the second lens part are provided.
  • the side of the first lens part away from the eyeball has a concave surface, and the side of the second lens part close to the eyeball has a convex surface.
  • the concave surface and the convex surface are bonded to form a glued surface, and the glued surface is provided with a third A reflective layer, the first lens part and the second lens part form a lens; the reflective component is located near the image acquisition component of the lens component; the light source component is configured to emit the first light to the eyeball, and the first reflective layer is configured to reflect the first light The reflected light forms the first reflected light, the reflective component is configured to reflect the first reflected light at least once to form the light to be imaged, and the image acquisition component is configured to collect the light to be imaged to track the eyeball.
  • the reflected light of the first light can be reflected to form the first reflected light, and then the reflective assembly can reflect the first reflected light It is reflected at least once to form the light to be imaged, which is incident on the image acquisition component, thereby improving the problem that the reflected light of the first light existing in the original image acquisition part is easily fully reflected by the eyepiece or the added lens, and the image acquisition component cannot collect the light to be imaged. .
  • FIG. 5 is a schematic diagram of the optical path of the eye tracking optical device proposed by the present disclosure.
  • the eye tracking optical device 100 includes: a light source component 101, a lens component 102, a reflective component 103 and an image acquisition component 104; wherein,
  • the lens assembly 102 includes a first lens portion 1021 and a second lens portion 1022 that are arranged in sequence away from the eyeball 105.
  • the first lens portion 1021 has a concave surface on a side away from the eyeball 105
  • the second lens portion 1022 has a convex surface on a side adjacent to the eyeball 105.
  • the concave surface and the convex surface are bonded to form a glued surface, the glued surface is provided with a first reflective layer 1023, and the first lens part 1021 and the second lens part 1022 form a glued lens;
  • the reflective component 103 is located near the lens component 102 and adjacent to the image acquisition component 104;
  • the light source assembly 101 is configured to emit the first light ray 106 to the eyeball 105 , the first reflective layer 1023 is configured to reflect the reflected light 107 of the first light 106 to form the first reflected light 108 , and the reflective component 103 is configured to reflect the first reflected light 108 at least once. Form the light to be imaged 109;
  • the image acquisition component 104 is configured to collect the light ray 109 to be imaged to track the eyeball 105 .
  • the light source assembly 101 may be arranged around the lens assembly 102, of which the light source assembly 101 shown in FIG. 5 is only a part.
  • the light source assembly 101 emits the first light 106 to the eyeball 105, forming a light spot on the eyeball 105.
  • the eyeball 105 reflects the first light 106 to form the reflected light 107, and the reflected light 107 is reflected by the first reflective layer 1023 to form the first reflected light 108.
  • the first reflected light 108 is reflected by the reflective component 103 to form the light ray 109 to be imaged, and is incident on the image acquisition component 104.
  • the image acquisition component 104 images the light 109 to be imaged to track the eyeball 105.
  • the concave surface of the first lens part 1021 and the convex surface of the second lens part 1022 are bonded to form a bonding surface.
  • the bonding material may be transparent optical glue, such as polyimide material.
  • the first lens part 1021 and the second lens part 1022 are different components of the same lens. After the first lens part 1021 and the second lens part 1022 are bonded, they form a lens (such as an eyepiece) in a related device.
  • the first reflective layer 1023 can reflect the light in the waveband emitted by the light source component 101 .
  • the first reflective layer 1023 may be coated on the concave surface of the first lens part 1021 and/or the convex surface of the second lens part 1022.
  • the intermediate surface shape (curvature of the glued surface) of the first lens part 1021 and the second lens part 1022 can be optimized in a targeted manner.
  • the refractive index is the same (or different, the refractive index needs to be selected according to the specific use scenario), and the reflective surface type suitable for the application scenario can be optimized (generally convex, with the bulge facing the eye side).
  • the first reflective layer 1023 does not affect the presentation of the visual image of the related device.
  • the image acquisition component 104 may be a CMOS camera or a CCD camera. That is to say, the image acquisition component 104 may include one of COMS or CCD photosensitive chips.
  • the image capture component 104 captures eye images without affecting the original optical path system design. Furthermore, the gluing of the first lens part 1021 and the second lens part 1022 changes the optical path direction of the light to be imaged without changing the original optical path design and adding new lenses, making the device compact and solving the related technical problems. The problem of total reflection is prone to occur.
  • the reflective component 103 is located at the position of the lens component 102 adjacent to the image acquisition component 104, and is configured to re-reflect the first reflected light 108 formed by the reflection of the first reflective layer 1023, thereby preventing the first reflected light 108 from being emitted from the lens component 102 adjacent to the eyeball 105.
  • One side emerges, which facilitates the image acquisition component 104 to be integrated inside the device.
  • the arrangement of the reflective component 103 facilitates the positioning of the image collection component 104 .
  • the reflective component 103 includes: a second reflective layer 1031 , and the second reflective layer 1031 is attached to a portion of the surface of the first lens portion 1021 adjacent to the side of the eyeball 105 .
  • the second reflective layer 1031 may reflect the light in the waveband emitted by the light source component 101 .
  • the second reflective layer 1031 is located in a non-viewable area of the lens assembly 102 .
  • the lens assembly 102 has a visible area 1025 and a non-visible area 1024 .
  • the visible area 1025 is configured to display the picture when the user uses the device.
  • the non-visible area 1024 is the idle area of the lens assembly 102 .
  • a second reflective layer 1031 can be provided on the portion of the cemented lens in the lens assembly 102 adjacent to the image collection assembly 104 (non-visible area 1024), so as to reflect the first reflected light 108 to form the light 109 to be imaged from the first lens.
  • the purpose of the part 1021 emitting from the side away from the eyeball is to facilitate the image acquisition component 104 to be arranged inside the entire device and to facilitate the integration of the entire device. This solves the problem that the first reflected light 108 exits along the side of the cemented lens adjacent to the eyeball, which ultimately requires the image acquisition component 104 to be installed outside the device, making the device relatively large.
  • the arrangement of the first reflective layer 1023 and the second reflective layer 1031 changes the original optical path design of the first reflected light 108 without adding new lenses, and solves the problem that the reflected light 107 of the first light 106 is prone to occur. Due to total reflection, the image acquisition component 104 cannot collect the light to be imaged.
  • the reflective component 103 further includes: a reflective prism 1032 , a reflective plane mirror 1033 , or a reflective curved mirror 1034 , configured to adjust the reflection from the second reflective layer 1031
  • the direction of the second reflected light 110 forms the light 109 to be imaged.
  • one of the reflecting prism 1032, the reflecting plane mirror 1033, or the reflecting curved mirror 1034 is fixedly attached to the first lens part 1021.
  • bonding can be achieved through optical adhesive bonding.
  • a third reflective layer is provided on one side of the reflective prism 1032 or the reflective plane mirror 1033 or the reflective curved mirror 1034.
  • the second reflected light 110 formed by the second reflective layer 1031 enters the reflective prism 1032. , is reflected again by the third reflective layer to form the light ray 109 to be imaged, and the light ray 109 to be imaged is collected by the image acquisition component 104 . Therefore, flexible setting of the position of the image acquisition component 104 is facilitated.
  • the diameter of the concave or convex surface is greater than or equal to the viewing area 1025 of the lens assembly 102 . Therefore, the edge of the glued surface is located in the non-visible area 1024 of the lens assembly 102 to prevent the glued edge from affecting the visible image in the visible area 1024 . As shown in Figure 6, the dividing line between the visible area 1025 and the non-visible area 1024 can be used as the outer contour edge of the glued surface.
  • the light source component 101 is an infrared light source component
  • the first reflective layer 1023 is an infrared reflective layer
  • the reflective component 103 is an infrared reflective component.
  • the light source component 101 can be an infrared light source component
  • the first reflective layer 1023 can be an infrared reflective layer
  • the second reflective layer 1031 in the reflective component 103 can also be an infrared reflective layer
  • the second reflective layer 1031 in the reflective component 103 can also be an infrared reflective layer.
  • the third reflective layer provided on one side of the reflective prism 1032, the reflective plane mirror 1033, or the reflective curved mirror 1034 may also be an infrared reflective layer
  • the infrared light source component may be a plurality of infrared LED lamps arranged around the lens component 102.
  • Image acquisition component 104 may include a corresponding infrared imaging system.
  • the gluing solution proposed in the present disclosure can improve the problems.
  • the gluing solution splits the eyepiece into two parts. , the split face shape can be targeted and optimized to adapt to different usage scenarios, and the magnification of the angle can be freely selected.
  • the usage scenario of the light path in Figure 1 is limited. In a system with a short exit pupil distance, the image acquisition distance is too short to meet the needs of a large field of view.
  • the eye tracking optical device proposed in this disclosure circumvents this problem by folding the optical path and increasing the length of the optical path.
  • the reflective surface of the original system cannot be optimized, and good collection effects may not be obtained.
  • the eye tracking optical device proposed in this disclosure solves this problem well by optimizing the gluing surface.
  • adding a reflector internally requires an air gap of at least 2cm. Many devices cannot meet this condition.
  • the eye tracking optical device proposed in this disclosure is not subject to this limitation.
  • the second surface of the eyepiece in Figure 4 is generally a concave surface, which is prone to severe total reflection, and the shooting effect will deteriorate sharply at this time.
  • the reflective surface of the eye tracking optical device proposed in the present disclosure can be a convex surface, thereby avoiding this problem.
  • FIG. 10 is a block diagram of the eye tracking optical system proposed by the present disclosure.
  • the eye tracking optical system 200 includes: two eye tracking optical devices 100 according to any embodiment of the present disclosure, and
  • an eye tracking optical device 100 is installed on the left eye viewing assembly 201;
  • an eye tracking optical device 100 is mounted on the right eye viewing assembly 202;
  • the left eye viewing component 201 and the right eye viewing component 202 are symmetrically distributed.
  • Figure 11 is a block schematic diagram of the virtual reality device proposed by the present disclosure.
  • the virtual display device 300 includes the eye tracking optical system 200 proposed by the present disclosure.
  • the eye-tracking optical device includes: a light source component, a lens component, a reflection component and an image acquisition component; and the lens component includes a lens away from the eyeball in sequence
  • the first lens part and the second lens part are provided.
  • the side of the first lens part away from the eyeball has a concave surface, and the side of the second lens part close to the eyeball has a convex surface.
  • the concave surface and the convex surface are bonded to form a glued surface, and the glued surface is provided with a third A reflective layer, the first lens part and the second lens part form a lens; the reflective component is located near the image acquisition component of the lens component; the light source component is configured to emit the first light to the eyeball, and the first reflective layer is configured to reflect the first light The reflected light forms the first reflected light, the reflective component is configured to reflect the first reflected light at least once to form the light to be imaged, and the image acquisition component is configured to collect the light to be imaged to track the eyeball.
  • the reflected light of the first light can be reflected to form the first reflected light, and then the reflective assembly can reflect the first reflected light It is reflected at least once to form the light to be imaged, which is incident on the image acquisition component, thereby improving the problem that the reflected light of the first light existing in the original image acquisition part is easily fully reflected by the eyepiece or the added lens, and the image acquisition component cannot collect the light to be imaged. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本公开提供了一种眼球追踪光学装置、***和虚拟现实设备,装置中透镜组件包括远离眼球依次设置的第一透镜部和第二透镜部,第一透镜部远离眼球的一侧面具有凹面,第二透镜部近邻眼球的一侧面具有凸面,凹面与凸面贴合形成胶合面,胶合面设有第一反射层,第一透镜部和第二透镜部形成透镜;反射组件位于透镜组件近邻图像采集组件的位置;光源组件出射第一光线至眼球,第一反射层设置为反射第一光线的反射光线形成第一反射光线,反射组件设置为至少反射一次第一反射光线形成待成像光线;图像采集组件设置为采集待成像光线,以对眼球进行追踪。从而改善了原先图像采集部分存在的第一光线的反射光线易被目镜或增加的镜片全反射,采集不到待成像光线的问题。

Description

一种眼球追踪光学装置、***和虚拟现实设备
本申请要求于2022年06月21日提交中国专利局、申请号为202210706576.4、申请名称“一种眼球追踪光学装置、***和虚拟现实设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及光学技术领域,尤其涉及一种眼球追踪光学装置、***和虚拟现实设备。
背景技术
眼球追踪技术可以采用光学记录法实现。光学记录法的原理是,利用红外相机记录被测试者的眼睛运动情况,即获取能够反映眼睛运动的眼部图像,从获取到的眼部图像中提取眼部特征,以建立视线的估计模型。其中,眼部特征可以包括:瞳孔位置、瞳孔形状、虹膜位置、虹膜形状、眼皮位置、眼角位置、光斑位置(或者普尔钦斑)等。光学记录法包括瞳孔-角膜反射法。瞳孔-角膜反射法的原理是,近红外光源照向眼睛,由红外相机对眼部进行拍摄,同时拍摄到光源在角膜上的反射点即光斑,由此获取到带有光斑的眼部图像。
目前应用在虚拟现实眼镜和增强现实眼镜上的眼球追踪识别设备,由采集图像部分与普尔钦斑映射部分组成。其中,采集图像部分,主要通过采集眼球2的反射光斑来对眼球的位置进行追踪,通常的应用场景中,主要使用以下方案进行采集:
(1)如图1所示,图像采集器3直接透过目镜1进行图像采集。
(2)如图2所示,利用内部其他镜片4的表面反射,再透过目镜1,图像采集器3进行图像采集。
(3)如图3所示,利用内部增加反射镜4,再透过目镜1,图像采集器3进行图像采集。
(4)如图4所示,光路先入射目镜1内部,在目镜1的外表面进行反射,图像采集器3进行图像采集。
在以上采集方案中,增加镜片会导致设备整体的体积变大,并且眼球2的反射光线容易在目镜1的表面,或者增加的镜片表面发生全反射,使得图像采集器3无法采集到眼球2的反射光线,进而导致无法对眼球进行追踪。
发明内容
本公开提供了一种眼球追踪光学装置、***和虚拟现实设备,以实现在不增加设备整体的体积的基础上,解决眼球的反射光线发生全反射的问题。
为实现上述目的,本公开一方面实施例提出了一种眼球追踪光学装置,包括:光源组件、透镜组件、反射组件和图像采集组件;其中,
所述透镜组件包括远离眼球依次设置的第一透镜部和第二透镜部,所述第一透镜部远离所述眼球的一侧面具有凹面,所述第二透镜部近邻所述眼球的一侧面具有凸面,所述凹面与所述凸面贴合形成胶合面,所述胶合面设置有第一反射层,所述第一透镜部和所述第二透镜部形成胶合透镜;
所述反射组件位于所述透镜组件近邻所述图像采集组件的位置;
所述光源组件设置为出射第一光线至所述眼球,所述第一反射层设置为反射所述第一光线的反射光线形成第一反射光线,所述反射组件设置为至少反射一次所述第一反射光线形成待成像光线;
所述图像采集组件设置为采集所述待成像光线,以对所述眼球进行追踪。
根据本公开的一个实施例,所述反射组件包括:第二反射层,所述第二反射层贴合于所述第一透镜部近邻所述眼球的一侧的部分表面上。
根据本公开的一个实施例,所述第二反射层位于所述透镜组件的非可视区域。
根据本公开的一个实施例,所述反射组件还包括:反射棱镜或反射平面镜或反射曲面镜中的一种,设置为调整自所述第二反射层反射形成的第二反射光线的方向,形成所述待成像光线。
根据本公开的一个实施例,所述反射棱镜或所述反射平面镜或反射曲面镜中的一种与所述第一透镜部固定贴合设置。
根据本公开的一个实施例,所述凹面或所述凸面的直径大于或等于所述透镜组件的可视区域。
根据本公开的一个实施例,所述光源组件为红外光源组件,所述第一反射层为红外反射层,所述反射组件为红外反射组件。
根据本公开的一个实施例,所述图像采集组件包括COMS或CCD感光芯片中的一种。
为实现上述目的,本公开第二方面实施例提出了一种眼球追踪光学***,包括:两个如本公开任一实施例所述的眼球追踪光学装置,以及
左眼观看组件,一个所述眼球追踪光学装置安装在所述左眼观看组件上;
右眼观看组件,一个所述眼球追踪光学装置安装在所述右眼观看组件上;
所述左眼观看组件和所述右眼观看组件左右对称分布。
为实现上述目的,本公开第三方面实施例提出了一种虚拟现实设备,包括本公开提出的所述的眼球追踪光学***。
根据本公开提出的眼球追踪光学装置、***和虚拟现实设备,其中,眼球追踪光学装置,包括:光源组件、透镜组件、反射组件和图像采集组件;其透镜组件包括远离眼球依次设置的第一透镜部和第二透镜部,第一透镜部远离眼球的一侧面具有凹面,第二透镜部近邻眼球的一侧面具有凸面,凹面与凸面贴合形成胶合面,胶合面设置有第一反射层,第一透镜部和第二透镜部形成胶合透镜;反射组件位于透镜组件近邻图像采集组件的位置;光源组件设置为出射第一光线至眼球,第一反射层设置为反射第一光线的反射光线形成第一反射光线,反射组件设置为至少反射一次第一反射光线形成待成像光线;图像采集组件设置为采集待成像光线,以对眼球进行追踪。由此,通过将原透镜组件中的透镜设置为胶合透镜,并将胶合面设置第一反射层,进而对第一光线的反射光线可以反射形成第一反射光线,然后反射组件对第一反射光线至少反射一次形成待成像光线,入射至图像采集组件,从而改善了原先图像采集部分存在的第一光线的反射光线易被目镜或增加的镜片全反射,图像采集组件采集不到待成像光线的问题。
应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术中一种待成像光线的光路图;
图2是相关技术中另一种待成像光线的光路图;
图3是相关技术中又一种待成像光线的光路图;
图4是相关技术中再一种待成像光线的光路图;
图5是本公开提出的眼球追踪光学装置的光路原理图;
图6是本公开提出的眼球追踪光学装置的中透镜组件的正视图;
图7是本公开另一个实施例提出的眼球追踪光学装置的光路原理图;
图8是本公开又一个实施例提出的眼球追踪光学装置的光路原理图;
图9是本公开再一个实施例提出的眼球追踪光学装置的光路原理图;
图10是本公开提出眼球追踪光学***的方框示意图;
图11是本公开提出的虚拟现实设备的方框示意图。
附图标记:
100、眼球追踪光学装置;101、光源组件;102、透镜组件;1021、第一透镜部;1022、第二透镜部;1023、第一反射层;1024、非可视区域;1025、可视区域;103、反射组件;1031、第二反射层;1032、反射棱镜;1033、反射平面镜;1034、反射曲面镜;104、图像采集组件;105、眼球;106、第一光线;107、反射光线;108、第一反射光线;109、待成像光线;110、第二反射光线;200、眼球追踪光学***;201、左眼观看组件;202、右眼观看组件;300、虚拟显示设备。
具体实施方式
为了使本技术领域的人员更好地理解本公开方案,下面将结合本公开中的附图,对本公开中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分的实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据基于适当情况可以互换,以便这里描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
图1至图4是相关技术中的待成像光线的光路图,其中,图1中所示方案,直接采集图像受光路体积影响较大,且透过镜片时,容易发生全反射而无法采集;图2中所示方案采用内部其他镜片,反射效果受限制,无法进行针对性优化,也容易发生全反射;图3中所示方案,在内部增加反射镜空间受限严重,很多场景无法实现;图4中所示方案利用目镜另一个面反射,受限于反射面必须为凸面,凹面会全反射无法采集。
针对上述问题,本公开提出了一种眼球追踪光学装置、***和虚拟现实设备,其中,眼球追踪光学装置,包括:光源组件、透镜组件、反射组件和图像采集组件;其透镜组件包括远离眼球依次设置的第一透镜部和第二透镜部,第一透镜部远离眼球的一侧面具有凹面,第二透镜部近邻眼球的一侧面具有凸面,凹面与凸面贴合形成胶合面,胶合面设置有第一反射层,第一透镜部和第二透镜部形成透镜;反射组件位于透镜组件近邻图像采集组件的位置;光源组件设置为出射第一光线至眼球,第一反射层设置为反射第一光线的反射光线形成第一反射光线,反射组件设置为至少反射一次第一反射光线形成待成像光线;图像采集组件设置为采集待成像光线,以对眼球进行追踪。由此,通过将原透镜组件中的透镜设置为胶合透镜,并将胶合面设置第一反射层,进而对第一光线的反射光线可以反射形成第一反射光线,然后反射组件对第一反射光线至少反射一次形成待成像光线,入射至图像采集组件,从而改善了原先图像采集部分存在的第一光线的反射光线易被目镜或增加的镜片全反射,图像采集组件采集不到待成像光线的问题。
图5是本公开提出的眼球追踪光学装置的光路原理图。如图5所示,该眼球追踪光学装置100,包括:光源组件101、透镜组件102、反射组件103和图像采集组件104;其中,
透镜组件102包括远离眼球105依次设置的第一透镜部1021和第二透镜部1022,第一透镜部1021远离眼球105的一侧面具有凹面,第二透镜部1022近邻眼球105的一侧面具有凸面,凹面与凸面贴合形成胶合面,胶合面设置有第一反射层1023,第一透镜部1021和第二透镜部1022形成胶合透镜;
反射组件103位于透镜组件102近邻图像采集组件104的位置;
光源组件101设置为出射第一光线106至眼球105,第一反射层1023设置为反射第一光线106的反射光线107形成第一反射光线108,反射组件103设置为至少反射一次第一反射光线108形成待成像光线109;
图像采集组件104设置为采集待成像光线109,以对眼球105进行追踪。
需要说明的是,光源组件101可以布置在透镜组件102周围,图5所示的光源组件101仅为其中的一部分。光源组件101出射第一光线106至眼球105,在眼球105上形成光斑,眼球105对第一光线106反射形成反射光线107,反射光线107经过第一反射层1023的反射形成第一反射光线108,第一反射光线108经过反射组件103反射形成待成像光线109出射,并入射至图像采集组件104,图像采集组件104对待成像光线109进行成像,以对眼球105进行追踪。
其中,第一透镜部1021的凹面和第二透镜部1022的凸面贴合形成胶合面,贴合的材料可以为透明的光学胶,比如聚酰亚胺材料。第一透镜部1021和第二透镜部1022是同一透镜的不同组成部分,在第一透镜部1021和第二透镜部1022贴合后形成相关设备中的一片透镜(比如目镜)。另外,第一反射层1023可以反射光源组件101出射的波段的光线。第一反射层1023可以涂覆在第一透镜部1021的凹面上,和/或,第二透镜部1022的凸面上。另外,可以在眼球追踪光路方案设计阶段,对第一透镜部1021和第二透镜部1022的中间面型(胶合面的曲率)进行针对性优化,第一透镜部1021和第二透镜部1022的折射率相同(或不同,需要根据具体使用场景选择折射率),可优化找出适合应用场景的反射面型(一般为凸面,凸起朝向眼睛一侧)。第一反射层1023不影响相关设备的可视画面的呈现。图像采集组件104可以为CMOS相机或者CCD相机,也就是说,图像采集组件104可以包括COMS或CCD感光芯片中的一种。至此,图像采集组件104在对眼部图像采集的同时,不影响原有光路***设计。进而,第一透镜部1021和第二透镜部1022的胶合,基于无需改变原有的光路设计,无需增加新的镜片,改变了待成像光线的光路走向,使得设备结构紧凑,并解决了相关技术中易发生全反射的问题。
反射组件103位于透镜组件102近邻图像采集组件104的位置,设置为对第一反射层1023反射形成的第一反射光线108进行再次反射,避免了第一反射光线108自透镜组件102近邻眼球105的一侧面出射,有利于图像采集组件104位于设备内部进行集成。
由此,反射组件103的设置便于图像采集组件104的位置摆放。
可选地,如图5所示,反射组件103包括:第二反射层1031,第二反射层1031贴合于第一透镜部1021近邻眼球105的一侧的部分表面上。
其中,第二反射层1031可以为反射光源组件101出射的波段的光线。可选地,第二反射层1031位于透镜组件102的非可视区域。
如图6所示,透镜组件102具有可视区域1025和非可视区域1024,可视区域1025设置为在用户使用设备时,进行画面的呈现显示,非可视区域1024为透镜组件102的闲置非显示边框区域。进而,可以将透镜组件102中的胶合透镜近邻图像采集组件104的部分(非可视区域1024)设置第二反射层1031,以达到将第一反射光线108反射形成待成像光线109自第一透镜部1021远离眼球的一侧面出射的目的,这样有利于图像采集组件104设置在设备整体内部,有利于设备整体的集成。解决了第一反射光线108沿胶合透镜近邻眼球的一侧面出射,最终使得图像采集组件104需要安装在设备外部,设备体积比较大的问题。
由此,第一反射层1023和第二反射层1031的设置使得在不增加新镜片的基础上,改变了原来第一反射光线108的光路设计,解决了第一光线106的反射光线107容易发生全反射,图像采集组件104无法采集到待成像光线的问题。
根据本公开的一个实施例,如图7至图9所示,反射组件103还包括:反射棱镜1032或反射平面镜1033或反射曲面镜1034中的一种,设置为调整自第二反射层1031反射形成的第二反射光线110的方向,形成待成像光线109。
可选地,反射棱镜1032或反射平面镜1033或反射曲面镜1034中的一种与第一透镜部1021固定贴合设置。其中,贴合可通过光学胶粘合实现。
如图7至图9所示,反射棱镜1032或反射平面镜1033或反射曲面镜1034的一侧设置有第三反射层,经第二反射层1031反射形成的第二反射光线110进入反射棱镜1032之后,经过第三反射层的再次反射形成待成像光线109,待成像光线109由图像采集组件104采集。从而,有利于图像采集组件104的位置的灵活设置。
根据本公开明的一个实施例,凹面或凸面的直径大于或等于透镜组件102的可视区域1025。由此,使得胶合面的边缘位于透镜组件102的非可视区域1024之中,以避免胶合边缘对可视区域1024中的可视画面造成影响。如图6中所示,可视区域1025与非可视区域1024的分界线可以作为胶合面的外轮廓边缘。
可选地,光源组件101为红外光源组件,第一反射层1023为红外反射层,反射组件103为红外反射组件。
在上述所有实施例中,光源组件101可以为红外光源组件,第一反射层1023可以为红外反射层,反射组件103中的第二反射层1031也可以为红外反射层,以及反射组件103中的反射棱镜1032或反射平面镜1033或反射曲面镜1034的一侧设置的第三反射层也可以为红外反射层,红外光源组件可以为多个红外LED灯排列在透镜组件102周围。图像采集组件104可以包括相应的红外成像***。
由此,针对图1至图4相关技术中所示的方案,在使用时都有相应的受限场景的问题,本公开提出的胶合方案可以改善其中问题,胶合方案将目镜拆分成两部分,拆分后的面型可以进行针对性优化,以适应不同的使用场景,自由选择角度的放大倍率。具体地,图1中的光路使用场景受限,在出瞳距离较近的***中,图像采集距离太短,无法满足大视野的需求。本公开提出的眼球追踪光学装置通过折叠光路,增加光路长度,从而规避了此问题。图2中受到原有***设计制约,原有的***的反射面无法进行优化,可能无法得到很好的采集效果。本公开提出的眼球追踪光学装置通过对胶合面进行优化很好的解决了这个问题。图3中内部增加反射镜需要至少2cm的空气间隙,很多设备无法满足此条件,本公开提出的眼球追踪光学装置不受此限制。图4中目镜的第二个面一般为凹面,容易发生严重的全反射,此时拍摄效果会急剧变差。本公开提出的眼球追踪光学装置的反射面可为凸面,从而规避了此问题。
图10是本公开提出眼球追踪光学***的方框示意图。如图10所示,该眼球追踪光学***200,包括:两个如本公开任一实施例的眼球追踪光学装置100,以及
左眼观看组件201,一个眼球追踪光学装置100安装在左眼观看组件201上;
右眼观看组件202,一个眼球追踪光学装置100安装在右眼观看组件202上;
左眼观看组件201和右眼观看组件202左右对称分布。
[根据细则91更正 21.07.2023]
图11是本公开提出的虚拟现实设备的方框示意图。如图11所示,该虚拟显示设备300包括本公开提出的眼球追踪光学***200。
综上所述,根据本公开提出的眼球追踪光学装置、***和虚拟现实设备,其中,眼球追踪光学装置,包括:光源组件、透镜组件、反射组件和图像采集组件;其透镜组件包括远离眼球依次设置的第一透镜部和第二透镜部,第一透镜部远离眼球的一侧面具有凹面,第二透镜部近邻眼球的一侧面具有凸面,凹面与凸面贴合形成胶合面,胶合面设置有第一反射层,第一透镜部和第二透镜部形成透镜;反射组件位于透镜组件近邻图像采集组件的位置;光源组件设置为出射第一光线至眼球,第一反射层设置为反射第一光线的反射光线形成第一反射光线,反射组件设置为至少反射一次第一反射光线形成待成像光线;图像采集组件设置为采集待成像光线,以对眼球进行追踪。由此,通过将原透镜组件中的透镜设置为胶合透镜,并将胶合面设置第一反射层,进而对第一光线的反射光线可以反射形成第一反射光线,然后反射组件对第一反射光线至少反射一次形成待成像光线,入射至图像采集组件,从而改善了原先图像采集部分存在的第一光线的反射光线易被目镜或增加的镜片全反射,图像采集组件采集不到待成像光线的问题。
上述具体实施方式,并不构成对本公开保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本公开的精神和原则之内所作的修改、等同替换和改进等,均应包含在本公开保护范围之内。

Claims (10)

  1. 一种眼球追踪光学装置,包括:光源组件、透镜组件、反射组件和图像采集组件;其中,
    所述透镜组件包括远离眼球依次设置的第一透镜部和第二透镜部,所述第一透镜部远离所述眼球的一侧面具有凹面,所述第二透镜部近邻所述眼球的一侧面具有凸面,所述凹面与所述凸面贴合形成胶合面,所述胶合面设置有第一反射层,所述第一透镜部和所述第二透镜部形成胶合透镜;
    所述反射组件位于所述透镜组件近邻所述图像采集组件的位置;
    所述光源组件设置为出射第一光线至所述眼球,所述第一反射层设置为反射所述第一光线的反射光线形成第一反射光线,所述反射组件设置为至少反射一次所述第一反射光线形成待成像光线;
    所述图像采集组件设置为采集所述待成像光线,以对所述眼球进行追踪。
  2. 根据权利要求1所述的眼球追踪光学装置,其中,所述反射组件包括:第二反射层,所述第二反射层贴合于所述第一透镜部近邻所述眼球的一侧的部分表面上。
  3. 根据权利要求2所述的眼球追踪光学装置,其中,所述第二反射层位于所述透镜组件的非可视区域。
  4. 根据权利要求2所述的眼球追踪光学装置,其中,所述反射组件还包括:反射棱镜或反射平面镜或反射曲面镜中的一种,设置为调整自所述第二反射层反射形成的第二反射光线的方向,形成所述待成像光线。
  5. 根据权利要求4所述的眼球追踪光学装置,其中,所述反射棱镜或所述反射平面镜或反射曲面镜中的一种与所述第一透镜部固定贴合设置。
  6. 根据权利要求1至5中任一项所述的眼球追踪光学装置,其中,所述凹面或所述凸面的直径大于或等于所述透镜组件的可视区域。
  7. 根据权利要求1至5中任一项所述的眼球追踪光学装置,其中,所述光源组件为红外光源组件,所述第一反射层为红外反射层,所述反射组件为红外反射组件。
  8. 根据权利要求1至5中任意一项所述的眼球追踪光学装置,其中,所述图像采集组件包括COMS或CCD感光芯片中的一种。
  9. 一种眼球追踪光学***,包括:两个如权利要求1至8中任一项所述的眼球追踪光学装置,以及
    左眼观看组件,一个所述眼球追踪光学装置安装在所述左眼观看组件上;
    右眼观看组件,一个所述眼球追踪光学装置安装在所述右眼观看组件上;
    所述左眼观看组件和所述右眼观看组件左右对称分布。
  10. 一种虚拟现实设备,包括如权利要求9所述的眼球追踪光学***。
PCT/CN2023/101518 2022-06-21 2023-06-20 一种眼球追踪光学装置、***和虚拟现实设备 WO2023246812A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210706576.4A CN117310977A (zh) 2022-06-21 2022-06-21 一种眼球追踪光学装置、***和虚拟现实设备
CN202210706576.4 2022-06-21

Publications (1)

Publication Number Publication Date
WO2023246812A1 true WO2023246812A1 (zh) 2023-12-28

Family

ID=89272443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101518 WO2023246812A1 (zh) 2022-06-21 2023-06-20 一种眼球追踪光学装置、***和虚拟现实设备

Country Status (2)

Country Link
CN (1) CN117310977A (zh)
WO (1) WO2023246812A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240027753A1 (en) * 2022-07-22 2024-01-25 Apple Inc. Electronic Devices With Rearward-Facing Sensors

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850256A (ja) * 1994-08-05 1996-02-20 Canon Inc 視線検出系を有した表示装置
CN105408801A (zh) * 2013-06-25 2016-03-16 微软技术许可有限责任公司 用于头戴式显示器的眼睛跟踪***
US20180149863A1 (en) * 2016-11-30 2018-05-31 Thalmic Labs Inc. Systems, devices, and methods for laser eye tracking in wearable heads-up displays
CN108205374A (zh) * 2018-01-02 2018-06-26 京东方科技集团股份有限公司 一种视频眼镜的眼球追踪模组及其方法、视频眼镜
US20180203505A1 (en) * 2017-01-17 2018-07-19 Oculus Vr, Llc Varifocal head-mounted display including modular air spaced optical assembly
CN109766820A (zh) * 2019-01-04 2019-05-17 北京七鑫易维信息技术有限公司 一种眼球追踪装置、头戴式设备和眼部图像获取方法
US20200125169A1 (en) * 2018-10-18 2020-04-23 Eyetech Digital Systems, Inc. Systems and Methods for Correcting Lens Distortion in Head Mounted Displays
CN112346558A (zh) * 2019-08-06 2021-02-09 苹果公司 眼睛跟踪***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850256A (ja) * 1994-08-05 1996-02-20 Canon Inc 視線検出系を有した表示装置
CN105408801A (zh) * 2013-06-25 2016-03-16 微软技术许可有限责任公司 用于头戴式显示器的眼睛跟踪***
US20180149863A1 (en) * 2016-11-30 2018-05-31 Thalmic Labs Inc. Systems, devices, and methods for laser eye tracking in wearable heads-up displays
US20180203505A1 (en) * 2017-01-17 2018-07-19 Oculus Vr, Llc Varifocal head-mounted display including modular air spaced optical assembly
CN108205374A (zh) * 2018-01-02 2018-06-26 京东方科技集团股份有限公司 一种视频眼镜的眼球追踪模组及其方法、视频眼镜
US20200125169A1 (en) * 2018-10-18 2020-04-23 Eyetech Digital Systems, Inc. Systems and Methods for Correcting Lens Distortion in Head Mounted Displays
CN109766820A (zh) * 2019-01-04 2019-05-17 北京七鑫易维信息技术有限公司 一种眼球追踪装置、头戴式设备和眼部图像获取方法
CN112346558A (zh) * 2019-08-06 2021-02-09 苹果公司 眼睛跟踪***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240027753A1 (en) * 2022-07-22 2024-01-25 Apple Inc. Electronic Devices With Rearward-Facing Sensors

Also Published As

Publication number Publication date
CN117310977A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
RU2721661C2 (ru) Оптическое устройство со светопроводящей подложкой
WO2017173847A1 (zh) 视频眼镜的眼球追踪模组
JP2023159123A5 (zh)
WO2023246812A1 (zh) 一种眼球追踪光学装置、***和虚拟现实设备
CN213934926U (zh) 一种眼球追踪模组
CN106725293B (zh) 透镜模组及使用该透镜模组的眼底成像设备
US11226682B2 (en) Lens for eye-tracking and device with such a lens
CN109143583A (zh) 一种投影式增强现实眼镜
WO2017107910A1 (zh) 一种全景光学镜头及影像采集装置
WO2022262581A1 (zh) 虚拟现实显示设备、画面呈现方法、存储介质及程序产品
CN108132538A (zh) Ar光学***以及ar显示设备
CN108646413A (zh) 一种含多层自由曲面光波导的眼球追踪装置的头戴式设备
CN104049368B (zh) 一种瞳距可调的穿透式视频眼镜光学引擎***
CN110658625B (zh) 全息眼睛成像设备
CN104914651B (zh) 投影镜头
CN109893085A (zh) 一种光纤导入照明光源的手持式眼底相机
KR101780669B1 (ko) 단일 카메라를 이용한 양안 촬영 장치
WO2023246813A1 (zh) 一种眼球追踪光学装置、***和虚拟现实设备
CN108535866A (zh) 虚拟现实眼镜
US11906751B2 (en) Lens for eye-tracking applications and head-worn device
CN110728184A (zh) 一种可消除成像区域光影的多光源虹膜图像采集装置
WO2022111601A1 (zh) 眼动追踪装置及电子设备
CN108681400A (zh) 一种基于多层自由曲面光波导的眼球追踪装置
WO2023246814A1 (zh) 一种眼球追踪光学***及头戴式设备
WO2023246815A1 (zh) 一种眼球追踪光学***及头戴式设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826459

Country of ref document: EP

Kind code of ref document: A1