WO2023246506A1 - 一种启动控制电路及开关电源*** - Google Patents

一种启动控制电路及开关电源*** Download PDF

Info

Publication number
WO2023246506A1
WO2023246506A1 PCT/CN2023/098772 CN2023098772W WO2023246506A1 WO 2023246506 A1 WO2023246506 A1 WO 2023246506A1 CN 2023098772 W CN2023098772 W CN 2023098772W WO 2023246506 A1 WO2023246506 A1 WO 2023246506A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
resistor
terminal
control circuit
power supply
Prior art date
Application number
PCT/CN2023/098772
Other languages
English (en)
French (fr)
Inventor
杨志
陈耀
潘成章
程志勇
Original Assignee
广州金升阳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州金升阳科技有限公司 filed Critical 广州金升阳科技有限公司
Publication of WO2023246506A1 publication Critical patent/WO2023246506A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load

Definitions

  • the present invention relates to the technical field of switching power supplies, and in particular to a starting control circuit and a switching power supply system.
  • the existing switching power supply system usually includes an auxiliary power supply system and a high-voltage starting circuit, a starting energy storage capacitor, and a control chip that are connected in sequence.
  • the input end of the auxiliary power supply system is connected to the output end of the control chip, and the output end of the auxiliary power supply system is connected to the control chip.
  • the input terminal is connected; when the system input is established, the high-voltage start-up circuit provides short-term power supply to the control chip so that the switching power supply system can start normally.
  • the control chip When the control chip is turned on, it will control the auxiliary power supply system to establish the supply voltage so that the auxiliary power supply system can be established.
  • the power supply voltage supports the stable operation of the control chip.
  • the high-voltage starting circuit has the advantages of simple circuit structure and low cost. In a switching power supply system with a high-voltage starting circuit, no additional flyback power supply is required, which effectively improves the overall efficiency of the system.
  • the starting current that the conventional high-voltage starting circuit can provide is small, and the capacity of the starting energy storage capacitor cannot be set too large to meet the starting time requirements, and once the voltage across the starting energy storage capacitor reaches the chip operating threshold voltage, the system control The chip starts to work. At this time, the charge stored in the energy storage capacitor will be quickly released. Before the power supply voltage of the auxiliary power supply system is established, the voltage at the end of the energy storage capacitor is lower than the control chip shutdown working threshold, and the control chip is shut down. Therefore, conventional high-voltage start-up circuits cannot satisfy the normal operation of control chips that draw large currents at the start-up moment. The system needs to be restarted multiple times before the system can work stably, which indirectly causes the system start-up time to increase, and it is difficult to ensure that the output voltage rises monotonically during the startup process.
  • the present invention provides a technical solution for a starting control circuit, which can store the charge in the starting energy storage capacitor through a high-voltage starting circuit.
  • a starting control circuit which can store the charge in the starting energy storage capacitor through a high-voltage starting circuit.
  • the control circuit will not provide power to the chip until the amount of charge stored in the startup energy storage capacitor is sufficient to support the energy required for the chip to start up, and the voltage at the startup energy storage capacitor drops to the chip shutdown voltage.
  • the power supply voltage of the auxiliary power supply system can be established, and the auxiliary power supply system continues to supply power to the control chip, allowing the switching power supply system to operate normally.
  • a startup control circuit which is applied to a switching power supply system.
  • the switching power supply system includes a high-voltage startup circuit, a startup energy storage capacitor C 0 , a control chip and an auxiliary power supply system;
  • the startup control circuit includes: voltage detection And action unit, hysteresis compensation and starting control unit and linear voltage stabilizing unit;
  • the first input end of the voltage detection and action unit is used to connect to the output end of the high-voltage start-up circuit and the positive end of the start-up energy storage capacitor C0 , and the second input end is connected to the first input end of the hysteresis compensation and start-up control unit.
  • the output end is connected, and the output end is connected to the first input end of the hysteresis compensation and start control unit;
  • the second input terminal of the hysteresis compensation and startup control unit is used to connect to the output terminal of the high-voltage startup circuit and the positive terminal of the startup energy storage capacitor C0 , and the third input terminal is connected to the output terminal of the linear voltage stabilizing unit. , the second output terminal is used to connect with the control chip;
  • the input end of the linear voltage stabilizing unit is used to connect to the auxiliary power supply system
  • the voltage detection and action unit is used to detect the voltage V CC1 at the positive terminal of the starting energy storage capacitor C 0 in real time, compare the voltage V CC1 with the preset starting threshold, and send a signal when the voltage V CC1 is greater than the preset starting threshold. Turn on the signal to the hysteresis compensation and start control unit;
  • the hysteresis compensation and start-up control unit is used to generate a hysteresis voltage and transmit it to the voltage detection and action unit after receiving the turn-on signal and transmit it to its own power supply capacitor C 5 through the start-up energy storage capacitor C 0 After charging, power is supplied to the control chip to turn on the control chip, so that the supply voltage V CC2 of the auxiliary power supply system is established;
  • the voltage detection and action unit is also used to compare the voltage V CC1 with the hysteresis voltage in real time after receiving the hysteresis voltage, and when the voltage V CC1 is less than the hysteresis voltage, send a shutdown signal to the hysteresis compensation and a start control unit to control the hysteresis compensation and start control unit to turn off;
  • the linear voltage stabilizing unit is used to stabilize the power supply voltage V CC2 input to the auxiliary power supply system after the power supply voltage V CC2 of the auxiliary power supply system is established and the hysteresis compensation and start-up control unit is turned off, and provide the voltage for the feedback voltage V CC2 .
  • the power supply capacitor C 5 of the difference compensation and start control unit is charged, so that the power supply capacitor C 5 is charged to supply power to the control chip.
  • the voltage detection and action unit includes: resistor R 1 , resistor R 2 , resistor R 3 , resistor R 6 , precision voltage stabilizing source U 1 and capacitor C 2 , one end of resistor R 1 serves as the voltage detection and action unit.
  • the first input end of the action unit, the other end of the resistor R 1 is connected to one end of the resistor R 2 ; the other end of the resistor R 2 is connected to one end of the resistor R 3 , one end of the capacitor C 2 , and the first end of the precision voltage stabilizing source U 1 After the terminals are connected together, as the voltage detection
  • the second input end of the voltage detection and action unit; the second end of the precision voltage regulator U 1 is connected to one end of the resistor R 6 , and the other end of the resistor R 6 serves as the output end of the voltage detection and action unit; the second end of the resistor R 3
  • the other end, the other end of the capacitor C 2 and the third end of the precision voltage regulator U 1 are connected to the reference ground.
  • the hysteresis compensation and startup control unit includes: a hysteresis compensation circuit, a main control circuit, a startup control circuit and a power supply capacitor C 5 ; the first end of the hysteresis compensation circuit serves as the hysteresis compensation and startup control unit.
  • the first output terminal of the control unit is connected to the second input terminal of the voltage detection and action unit; the second terminal of the hysteresis compensation circuit is connected to the third terminal of the main control circuit and the third terminal of the startup control.
  • the first end of the main control circuit serves as the first input end of the hysteresis compensation and starting control unit and is connected to the output end of the voltage detection and action unit; the second end of the main control circuit After the terminal is connected to the first terminal of the startup control circuit, it serves as the second input terminal of the hysteresis compensation and startup control unit and is used to connect to the output terminal of the high-voltage startup circuit and the positive terminal of the startup energy storage capacitor C 0 ; After the third terminal of the startup control circuit is connected to the positive terminal of the power supply capacitor C 5 , it simultaneously serves as the third input terminal and the second output terminal of the hysteresis compensation and startup control unit, and is connected with the linear voltage stabilizing unit The output terminal and the control chip are connected; the negative terminal of the power supply capacitor C 5 is connected to the reference ground;
  • the main control circuit is used to receive the turn-on signal, and control the hysteresis compensation circuit to generate a hysteresis voltage and send a start signal to the start control circuit;
  • the hysteresis compensation circuit is used to generate a hysteresis voltage to the voltage detection and action unit;
  • the startup control circuit is used to conduct after receiving the startup signal, so that the startup energy storage capacitor C 0 and the power supply capacitor C 5 form a path.
  • the main control circuit includes: a resistor R 4 , a capacitor C 1 and a transistor Q 1 .
  • One end of the resistor R 4 , one end of the capacitor C 1 and the collector of the transistor Q 1 are commonly connected as the second terminal of the main control circuit.
  • the other end of the resistor R 4 and the other end of the capacitor C 1 are commonly connected to the base of the transistor Q 1 as the first end of the main control circuit, and the emitter of the transistor Q 1 serves as the third end of the main control circuit.
  • the hysteresis compensation circuit includes: a resistor R 5 and a diode VD 1 , one end of the resistor R 5 serves as the first end of the hysteresis compensation circuit, and the other end of the resistor R 5 is connected to the cathode of the diode VD 1 , The anode of diode VD 1 serves as the second terminal of the hysteresis compensation circuit.
  • the startup control circuit includes: resistor R 7 , resistor R 8 , resistor R 9 , resistor R 10 , capacitor C 3 , transistor Q 2 and transistor Q 3 ; one end of resistor R 7 serves as the start control circuit. The second end and the other end are connected to one end of resistor R 8 , one end of capacitor C 3 and the base of transistor Q 3 ; the collector of transistor Q 3 The electrode is connected to one end of the resistor R 10 ; the other end of the resistor R 10 is connected to one end of the resistor R 9 and the base of the transistor Q 2 ; after the other end of the resistor R 9 is connected to the emitter of the transistor Q 2 , as the startup The first end of the control circuit; the drain of transistor Q2 serves as the third end of the startup control circuit; the other end of resistor R8 , the other end of capacitor C3 , and the emitter of transistor Q3 are connected to the reference ground.
  • the linear voltage stabilizing unit includes: resistor R 11 , capacitor C 4 , voltage stabilizing tube ZD 1 , diode VD 2 and transistor Q 4 ; the positive end of capacitor C 4 is connected to one end of resistor R 11 and the transistor Q 4 After the collectors are connected together, they serve as the input end of the linear voltage stabilizing unit; the other end of the resistor R 11 is connected to the cathode of the voltage stabilizing tube ZD 1 and the base of the transistor Q 4 , and the emitter set of the transistor Q 4 is connected to the diode VD 2 The anode is connected, and the cathode of diode VD 2 serves as the output terminal of the linear voltage stabilizing unit.
  • a switching power supply system including a high-voltage starting circuit, a starting energy storage capacitor C 0 , a control chip, an auxiliary power supply system and a starting control circuit as described above; the output end of the high-voltage starting circuit is connected to the starting energy storage
  • the positive terminal of the capacitor C 0 is connected to the first input terminal of the startup control circuit, the output terminal of the startup control circuit is connected to the input terminal of the control chip, and the output terminal of the control chip is connected to the auxiliary power supply system.
  • the input end of the auxiliary power supply system is connected to the second input end of the start control circuit.
  • the present invention has the following beneficial effects:
  • the control circuit will not provide power to the chip until the amount of charge stored in the startup energy storage capacitor is sufficient to support the chip startup moment.
  • the starting ability of the high-voltage starting circuit prevents the system from restarting repeatedly;
  • the preset startup threshold u th1 can be reasonably adjusted, or the startup energy storage capacitor C 0 can be adjusted to store energy to meet the startup requirements of different systems and increase the applicable scope of the product.
  • Figure 1 is a schematic diagram of the starting control circuit of the present invention
  • FIG. 2 is a working timing diagram of the startup control circuit of the present invention.
  • a startup control circuit is provided for use in a switching power supply system.
  • the switching power supply system includes a high-voltage startup circuit and a startup energy storage capacitor C 0 , control chip and auxiliary power supply system;
  • the startup control circuit includes: voltage detection and action unit 100, hysteresis compensation and startup control unit 200 and linear voltage stabilizing unit 300;
  • the first input terminal of the voltage detection and action unit 100 is used to connect to the output terminal of the high-voltage startup circuit and the positive terminal of the startup energy storage capacitor C 0 , and the second input terminal is connected to the first output terminal of the hysteresis compensation and startup control unit 200 Connect, the output end is connected to the first input end of the hysteresis compensation and start control unit 200;
  • the second input terminal of the hysteresis compensation and startup control unit 200 is used to connect to the output terminal of the high-voltage startup circuit and the positive terminal of the startup energy storage capacitor C 0 , and the third input terminal is connected to the output terminal of the linear voltage stabilizing unit 300 .
  • the second output terminal is used to connect with the control chip;
  • the input end of the linear voltage stabilizing unit 300 is used to connect to the auxiliary power supply system
  • the voltage detection and action unit 100 is used to detect the voltage V CC1 at the positive terminal of the starting energy storage capacitor C 0 in real time, compare the voltage V CC1 with the preset starting threshold, and send a conductive signal when the voltage V CC1 is greater than the preset starting threshold. Pass a signal to the hysteresis compensation and start control unit 200;
  • the hysteresis compensation and startup control unit 200 is used to generate a hysteresis voltage after receiving the turn-on signal and transmit it to the voltage detection and action unit 100, and charge its own power supply capacitor C 5 through the startup energy storage capacitor C 0 , powering the control chip to turn on the control chip, so that the power supply voltage V CC2 of the auxiliary power supply system is established;
  • the voltage detection and action unit 100 is also used to compare the voltage V CC1 with the hysteresis voltage in real time after receiving the hysteresis voltage, and when the voltage V CC1 is less than the hysteresis voltage, send a shutdown signal to the hysteresis compensation and start control unit 200 to control hysteresis compensation and start the control unit 200 to turn off;
  • the linear voltage stabilizing unit 300 is used to stabilize the power supply voltage V CC2 input to the auxiliary power supply system and provide hysteresis compensation after the power supply voltage V CC2 of the auxiliary power supply system is established and the hysteresis compensation and starting control unit 200 is turned off. And start charging the power supply capacitor C 5 of the control unit 200, so that the power supply capacitor C 5 is charged to supply power to the control chip.
  • the high-voltage startup circuit first charges the startup energy storage capacitor C 0 , the voltage V CC1 at the positive terminal of the startup energy storage capacitor C 0 rises, and the voltage detection and action unit 100 detects the startup in real time.
  • the voltage V CC1 at the positive terminal of the energy storage capacitor C 0 .
  • the voltage detection and action unit 100 sends a turn-on signal to the hysteresis compensation and startup control unit 200 , and the hysteresis compensation and startup control unit 200 After it is turned on, the starting energy storage capacitor C 0 forms a path with the hysteresis compensation and starting control unit 200's own power supply capacitor C 5 , the voltage V CC1 charges the power supply capacitor C 5 , and the voltage V CC3 at the positive end of the power supply capacitor C 5 rises.
  • the voltage detection and action unit 100 controls the hysteresis compensation and start control unit 200 to turn off, thereby ensuring that the voltage V CC3 drops to the control chip turn-off threshold before the voltage V CC1 drops to the hysteresis voltage u th4 .
  • the power supply voltage V CC2 of the auxiliary power supply system is established, and supplies power to the power supply capacitor C 5 through the linear voltage stabilizing unit 300, so that the system completes the startup process and solves the problem that the conventional high-voltage startup circuit cannot satisfy the control chip that draws a large current at the startup moment.
  • the system needs to be restarted multiple times before it can work stably, which indirectly causes the system startup time to increase, and it is difficult to ensure that the output voltage rises monotonically during the startup process.
  • the voltage detection and action unit 100 includes: resistor R 1 , resistor R 2 , resistor R 3 , resistor R 6 , precision voltage stabilizing source U 1 and capacitor C 2 , the resistor R One end of 1 serves as the first input end of the resistor voltage detection and action unit 100, the other end of the resistor R 1 is connected to one end of the resistor R 2 ; the other end of the resistor R 2 is connected to one end of the resistor R 3 , one end of the capacitor C 2 , After the first end of the precision voltage stabilizing source U 1 is connected together, it serves as the second input terminal of the voltage detection and action unit 100; the second end of the precision voltage stabilizing source U 1 is connected to one end of the resistor R 6 , and the other end of the resistor R 6 One end serves as the output end of the voltage detection and action unit 100; the other end of the resistor R3 , the other end of the capacitor C2 , and the third end of the precision voltage stabilizing source U
  • the hysteresis compensation and startup control unit 200 includes: a hysteresis compensation circuit, a main control circuit, a startup control circuit and a power supply capacitor C 5 ; the first component of the hysteresis compensation circuit The terminal serves as the first output terminal of the hysteresis compensation and start control unit 200 and is connected to the second input terminal of the voltage detection and action unit 100; the second terminal of the hysteresis compensation circuit is connected to the third terminal of the main control circuit and the start control terminal.
  • the second end is connected; the first end of the main control circuit serves as the first input end of the hysteresis compensation and starting control unit 200, and is connected to the output end of the voltage detection and action unit 100; the main After the second end of the control circuit is connected to the first end of the start control circuit, it serves as the second input end of the hysteresis compensation and start control unit 200 and is used to communicate with the output end of the high-voltage start circuit and the positive terminal of the start energy storage capacitor C 0 terminal connection; after the third terminal of the startup control circuit is connected to the positive terminal of the power supply capacitor C 5 , it simultaneously serves as the third input terminal and the second output terminal of the hysteresis compensation and startup control unit 200, and is connected with the output of the linear voltage stabilizing unit 300 terminal and the control chip are connected; the negative terminal of the power supply capacitor C 5 is connected to the reference ground;
  • the main control circuit is used to receive the turn-on signal, and control the hysteresis compensation circuit to generate the hysteresis voltage and send the start signal to the start control circuit;
  • the hysteresis compensation circuit is used to generate the hysteresis voltage to the voltage detection and action unit 100;
  • the startup control circuit is used to conduct after receiving the startup signal, so that the startup energy storage capacitor C 0 and the power supply capacitor C 5 form a path.
  • the main control circuit includes: resistor R 4 , capacitor C 1 and transistor Q 1 .
  • resistor R 4 One end of resistor R 4 , one end of capacitor C 1 and the collector of transistor Q 1 are connected together as the main control circuit.
  • the second end of the control circuit, the other end of the resistor R 4 and the other end of the capacitor C 1 are commonly connected to the base of the transistor Q 1 as the first end of the main control circuit, and the emitter of the transistor Q 1 serves as the main control circuit.
  • the hysteresis compensation circuit includes: a resistor R 5 and a diode VD 1 , one end of the resistor R 5 serves as the first end of the hysteresis compensation circuit, and the other end of the resistor R 5 is connected to the diode VD 1 The cathode is connected , and the anode of diode VD 1 serves as the second terminal of the hysteresis compensation circuit.
  • the startup control circuit includes: resistor R 7 , resistor R 8 , resistor R 9 , resistor R 10 , capacitor C 3 , transistor Q 2 and transistor Q 3 ; one end of the resistor R 7 serves as a starter The second end of the control circuit and the other end are connected to one end of the resistor R 8 , one end of the capacitor C 3 and the base of the transistor Q 3 ; the collector of the transistor Q 3 is connected to one end of the resistor R 10 ; the other end of the resistor R 10 Connect one end of the resistor R 9 and the base of the transistor Q 2 ; the other end of the resistor R 9 is connected to the emitter of the transistor Q 2 and serves as the first end of the startup control circuit; the drain of the transistor Q 2 serves as the startup control circuit The third end of the resistor R 8 , the other end of the capacitor C 3 , and the emitter of the transistor Q 3 are connected to the reference ground.
  • the linear voltage stabilizing unit 300 includes: a resistor R 11 , a capacitor C 4 , a voltage stabilizing tube ZD 1 , a diode VD 2 and a transistor Q 4 ; the positive end of the capacitor C 4 and the resistor R One end of resistor R 11 and the collector of triode Q 4 are connected together and serve as the input end of linear voltage stabilizing unit 300; the other end of resistor R 11 is connected to the cathode of voltage stabilizing tube ZD 1 and the base of triode Q 4 , and triode Q 4 emission set It is connected to the anode of the diode VD 2 , and the cathode of the diode VD 2 serves as the output terminal of the linear voltage stabilizing unit 300 .
  • the high-voltage start-up circuit first charges the start-up energy storage capacitor C 0 , and the voltage V CC1 at the end of the start-up energy storage capacitor C 0 rises.
  • the resistor R 1 , the resistor R 2 and the resistor R 3 charge the voltage V in real time.
  • cc1 performs voltage division sampling.
  • the voltage V CC1 is greater than the startup threshold u th1 , that is, the voltage u 1 on the resistor R 3 is greater than the reference voltage value u ref of the precision voltage regulator U 1 , the precision voltage regulator U 1 is turned on. Its second terminal outputs low level.
  • the base of the transistor Q 1 is divided by the resistor R 4 and the resistor R 6 to a high level, and the transistor Q 1 is turned on.
  • the diode VD 1 is turned on, and then a voltage ⁇ u, which is the hysteresis voltage u th4 , is injected into the first end of the chip U1 through the resistor R 5 . Therefore, only when the voltage V CC1 drops below the hysteresis After the voltage u th4 , the precision voltage regulator U 1 is turned off.
  • the voltage V CC1 is divided by the resistor R 7 and the resistor R 8 so that the base of the transistor Q 3 is at a high level, and the transistor Q 3 is turned on.
  • the base of the transistor Q 2 is pulled down through the resistor R 10 , and the transistor Q 2 is turned on.
  • the voltage V CC1 charges the power supply capacitor C 5 through the transistor Q 2 , and the voltage V CC3 rises.
  • the voltage V CC3 rises to the turn-on threshold voltage of the control chip, the system starts to work, and the voltage V CC1 and the voltage V CC3 begins to drop.
  • the power supply voltage V CC2 of the auxiliary power supply system is established, and the voltage is supplied through the first-level linear voltage stabilizing unit 300 V CC3 , the system completes the startup process.
  • the starting threshold u th1 can be appropriately increased to increase the energy storage capacity of the starting electric energy storage capacity C 0 to ensure that the system starts successfully at one time and avoids multiple restarts.
  • the general high-voltage startup circuit is difficult to provide sufficient operating current.
  • the voltage V cc1 and the voltage V cc3 have dropped to
  • the control chip turns off the voltage, causing the startup to fail. It needs to be restarted multiple times until enough charge is stored in the startup energy storage capacitor C 0 before it can start normally.
  • a switching power supply system including a high-voltage starting circuit, a starting energy storage capacitor C 0 , a control chip, an auxiliary power supply system and a starting control circuit of the first embodiment; the output end of the high-voltage starting circuit is connected to the positive direction of the starting energy storage capacitor C 0 terminal, the first input terminal of the starting control circuit is connected, the output terminal of the starting control circuit is connected with the input terminal of the control chip, the output terminal of the control chip is connected with the input terminal of the auxiliary power supply system, and the output terminal of the auxiliary power supply system is connected with the starting control circuit The second input terminal is connected.
  • the high-voltage starting circuit first charges the starting energy storage capacitor C 0 , the voltage V CC1 at the positive terminal of the starting energy storage capacitor C 0 rises, and the voltage detection and action unit 100 detects the starting energy storage capacitor C 0 in real time.
  • the voltage V CC1 at the positive terminal when the voltage V CC1 is greater than the startup threshold u th1 , the voltage detection and action unit 100 sends a turn-on signal to the hysteresis compensation and startup control unit 200 , and the hysteresis compensation and startup control unit 200 is turned on to enable startup.
  • the energy storage capacitor C 0 forms a path with the power supply capacitor C 5 of the hysteresis compensation and start control unit 200 itself.
  • the voltage V CC1 power supply capacitor C 5 is charged.
  • the voltage V CC3 at the positive end of the power supply capacitor C 5 rises.
  • the voltage V CC3 rises to the control After the chip turns on the threshold voltage, the system starts to work, so that the amount of charge stored in the start-up energy storage capacitor C 0 is enough to support the energy required for the control chip to start up; because after the switching power supply system starts to work, the voltage V CC1 and the voltage V CC3 will begin to decrease.
  • a hysteresis voltage u th4 is also generated to the voltage detection and action unit 100. Only when the voltage V CC1 is less than the hysteresis voltage u th4 , the voltage detection Only then does the action unit 100 control the hysteresis compensation and start control unit 200 to turn off, thereby ensuring that before the voltage V CC1 drops to the hysteresis voltage u th4 , Before the voltage V CC3 drops to the control chip turn-off threshold voltage, the power supply voltage V CC2 of the auxiliary power supply system is established, and supplies power to the power supply capacitor C 5 through the linear voltage stabilizing unit 300, so that the system completes the startup process and solves the difficulty of conventional high-voltage startup circuits.
  • the startup control circuit described in this embodiment effectively improves the startup time of the switching power supply system and solves the problems of multiple restarts caused by insufficient startup energy of the conventional high-voltage startup circuit. In practical applications, this solution can be slightly modified according to the actual situation. Make improvements to achieve the goal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种启动控制电路及开关电源***,该电路包括:电压检测与动作单元、回差补偿与启动控制单元以及线性稳压单元;本发明通过高压启动电路将启动储能电容中的电荷量存储起来,通过所述启动控制电路即使启动储能电容端电压达到了控制芯片工作电压阈值,控制电路也不会给芯片供电,直到储存在启动储能电容中的电荷量足以支撑芯片启动瞬间所需要的能量,且在启动储能电容端电压跌到芯片关断电压阈值之前,能使辅助供电***的供电电压建立,由辅助供电***继续给控制芯片供电,使开关电源***正常工作。

Description

一种启动控制电路及开关电源*** 技术领域
本发明涉及开关电源技术领域,具体涉及一种启动控制电路及开关电源***。
背景技术
现有的开关电源***通常包括辅助供电***和依次连接的高压启动电路、启动储能电容、控制芯片,辅助供电***的输入端与控制芯片的输出端连接,辅助供电***的输出端与控制芯片的输入端连接;高压启动电路在***输入建立时,为控制芯片提供短暂的供电,使开关电源***能正常启动,当控制芯片开启后会控制辅助供电***建立供电电压,以使辅助供电***建立的供电电压支撑控制芯片稳定工作。高压启动电路具备电路结构简单,成本低等优点,且在具有高压启动电路的开关电源***中,不需要额外的反激供电电源,有效提升了***的整机效率。
但是,常规高压启动电路能提供的启动电流较小,且对为满足启动时间要求启动储能电容容量不能取的过大,且一旦启动储能电容两端电压达到芯片工作阈值电压之后,***控制芯片开始工作,此时储能电容中存储的电荷量会快速被放掉,在辅助供电***的供电电压建立之前启动储能电容端电压低于控制芯片关断工作阈值,控制芯片关断。因此常规高压启动电路难以满足启动瞬间拉电流较大的控制芯片正常工作,需要进行多次重启之后***才能稳定工作,间接导致***启动时间增长,且输出电压在开机过程难以保证单调上升。
发明内容
针对以上问题,本发明提供了一种启动控制电路技术方案,该方案可通过高压启动电路将启动储能电容中的电荷量存储起来,通过所述启动控制电路即使启动储能容端电压达到了控制芯片工作电压阈值,控制电路也不会给芯片供电,直到储存在启动储能电容中的电荷量足以支撑芯片启动瞬间所需要的能量,且在启动储能电容端电压跌到芯片关断电压阈值之前,能使辅助供电***的供电电压建立,由辅助供电***继续给控制芯片供电,使开关电源***正常工作。
本发明是通过以下技术方案来实现的:
第一方面,提供一种启动控制电路,应用于开关电源***,所述开关电源***包括高压启动电路、启动储能电容C0、控制芯片和辅助供电***;所述启动控制电路包括:电压检测与动作单元、回差补偿与启动控制单元和线性稳压单元;
所述电压检测与动作单元的第一输入端用于与高压启动电路的输出端、启动储能电容C0的正端连接,第二输入端与所述回差补偿与启动控制单元的第一输出端连接,输出端与所述回差补偿与启动控制单元的第一输入端连接;
所述回差补偿与启动控制单元的第二输入端用于与高压启动电路的输出端、启动储能电容C0的正端连接,第三输入端与所述线性稳压单元的输出端连接,第二输出端用于与控制芯片连接;
所述线性稳压单元的输入端用于与辅助供电***连接;
所述电压检测与动作单元用于实时检测启动储能电容C0正端的电压VCC1,将电压VCC1与预设的启动阈值进行比较,并在电压VCC1大于预设的启动阈值时,发送导通信号至所述回差补偿与启动控制单元;
所述回差补偿与启动控制单元用于在接收导通信号导通后,生成回滞电压并传输至所述电压检测与动作单元,并通过启动储能电容C0给自身的供电电容C5充电后,为控制芯片供电使控制芯片开启,以使辅助供电***的供电电压VCC2建立;
所述电压检测与动作单元还用于在接收回滞电压后,实时将电压VCC1与回滞电压进行比较,并在电压VCC1小于回滞电压时,发送关断信号至所述回差补偿与启动控制单元,以控制所述回差补偿与启动控制单元关断;
所述线性稳压单元用于在辅助供电***的供电电压VCC2建立且回差补偿与启动控制单元关断后,对辅助供电***输入的供电电压VCC2进行稳压处理,并为所述回差补偿与启动控制单元的供电电容C5充电,以使供电电容C5充电为控制芯片供电。
优选地,所述电压检测与动作单元包括:电阻R1、电阻R2、电阻R3、电阻R6、精密稳压源U1和电容C2,电阻R1的一端作为所述电压检测与动作单元的第一输入端,电阻R1的另一端与电阻R2的一端连接;电阻R2的另一端与电阻R3的一端、电容C2的一端、精密稳压源U1的第一端共同连接后,作为所述电压检 测与动作单元的第二输入端;精密稳压源U1的第二端与电阻R6的一端连接,电阻R6的另一端作为所述电压检测与动作单元的输出端;电阻R3的另一端、电容C2的另一端、精密稳压源U1的第三端接参考地。
优选地,所述回差补偿与启动控制单元包括:回差补偿电路、主控制电路、启动控制电路和供电电容C5;所述回差补偿电路的第一端作为所述回差补偿与启动控制单元的第一输出端,与所述电压检测与动作单元的第二输入端连接;所述回差补偿电路的第二端与所述主控制电路的第三端、所述启动控制的第二端连接;所述主控制电路的第一端作为所述回差补偿与启动控制单元的第一输入端,与所述电压检测与动作单元的输出端连接;所述主控制电路的第二端与所述启动控制电路的第一端连接后,作为所述回差补偿与启动控制单元的第二输入端,用于与高压启动电路的输出端、启动储能电容C0的正端连接;所述启动控制电路的第三端与供电电容C5的正端连接后,同时作为所述回差补偿与启动控制单元的第三输入端和第二输出端,与所述线性稳压单元的输出端、控制芯片连接;供电电容C5的负端接参考地;
所述主控制电路用于接收所述导通信号,并控制所述回差补偿电路生成回滞电压和发送启动信号至所述启动控制电路;
所述回差补偿电路用于生成回滞电压至所述电压检测与动作单元;
所述启动控制电路用于接收所述启动信号后导通,以使启动储能电容C0和供电电容C5形成通路。
优选地,所述主控制电路包括:电阻R4、电容C1和三极管Q1,电阻R4的一端、电容C1的一端与三极管Q1的集电极共同连接后作为主控制电路的第二端,电阻R4的另一端、电容C1的另一端与三极管Q1的基极共同连接后作为主控制电路的第一端,三极管Q1的发射极作为主控制电路的第三端。
优选地,所述回差补偿电路包括:电阻R5和二极管VD1,电阻R5的一端作为所述回差补偿电路的第一端,电阻R5的另一端与二极管VD1的阴极连接二极管VD1的阳极作为所述回差补偿电路的第二端。
优选地,所述启动控制电路包括:电阻R7、电阻R8、电阻R9、电阻R10、电容C3、三极管Q2和三极管Q3;电阻R7的一端作为所述启动控制电路的第二端,另一端与电阻R8的一端、电容C3的一端、三极管Q3的基极连接;三极管Q3的集 电极与电阻R10的一端连接;电阻R10的另一端与电阻R9的一端、三极管Q2的基极连接;电阻R9的另一端与三极管Q2的发射极连接后,作为所述启动控制电路的第一端;三极管Q2的漏极作为所述启动控制电路的第三端;电阻R8的另一端、电容C3的另一端、三极管Q3的发射极接参考地。
优选地,所述线性稳压单元包括:电阻R11、电容C4、稳压管ZD1、二极管VD2和三极管Q4;电容C4的正端与电阻R11的一端、三极管Q4的集电极共同连接后,作为所述线性稳压单元的输入端;电阻R11的另一端与稳压管ZD1的阴极、三极管Q4的基极连接,三极管Q4的发射集与二极管VD2的阳极连接,二极管VD2的阴极作为所述线性稳压单元的输出端。
第二方面,提供一种开关电源***,包括高压启动电路、启动储能电容C0、控制芯片、辅助供电***和如上所述的启动控制电路;所述高压启动电路的输出端与启动储能电容C0的正端、所述启动控制电路的第一输入端连接,所述启动控制电路的输出端与所述控制芯片的输入端连接,所述控制芯片的输出端与所述辅助供电***的输入端连接,所述辅助供电***的输出端与所述启动控制电路的第二输入端连接。
相比现有技术,本发明具有如下有益效果:
1)本发明通过所述启动控制电路即使启动储能电容端电压达到了控制芯片工作电压阈值,控制电路也不会给芯片供电,直到储存在启动储能电容中的电荷量足以支撑芯片启动瞬间所需要的能量,且在启动储能电容端电压跌到芯片关断电压阈值之前,能使辅助供电***的供电电压建立,由辅助供电***继续给控制芯片供电,使开关电源***正常工作,提升高压启动电路的启动能力,防止***反复重启;
2)电路结构简单,只需要较少模拟器件既可实现启动控制,成本相对较低;
3)可以通过合理调整预设的启动阈值uth1,或可调整启动储能电容C0存储能量,以满足不同***的启动需求,增大产品的适用范围。
附图说明
图1为本发明启动控制电路原理图;
图2为本发明启动控制电路工作时序图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细说明。
第一实施例
参考图1,为本实施例所述启动控制电路的原理图,在本实施例中,提供一种启动控制电路,应用于开关电源***,开关电源***包括高压启动电路、启动储能电容C0、控制芯片和辅助供电***;启动控制电路包括:电压检测与动作单元100、回差补偿与启动控制单元200和线性稳压单元300;
电压检测与动作单元100的第一输入端用于与高压启动电路的输出端、启动储能电容C0的正端连接,第二输入端与回差补偿与启动控制单元200的第一输出端连接,输出端与回差补偿与启动控制单元200的第一输入端连接;
回差补偿与启动控制单元200的第二输入端用于与高压启动电路的输出端、启动储能电容C0的正端连接,第三输入端与线性稳压单元300的输出端连接,第二输出端用于与控制芯片连接;
线性稳压单元300的输入端用于与辅助供电***连接;
电压检测与动作单元100用于实时检测启动储能电容C0正端的电压VCC1,将电压VCC1与预设的启动阈值进行比较,并在电压VCC1大于预设的启动阈值时,发送导通信号至回差补偿与启动控制单元200;
回差补偿与启动控制单元200用于在接收导通信号导通后,生成回滞电压并传输至电压检测与动作单元100,并通过启动储能电容C0给自身的供电电容C5充电后,为控制芯片供电使控制芯片开启,以使辅助供电***的供电电压VCC2建立;
电压检测与动作单元100还用于在接收回滞电压后,实时将电压VCC1与回滞电压进行比较,并在电压VCC1小于回滞电压时,发送关断信号至回差补偿与启动控制单元200,以控制回差补偿与启动控制单元200关断;
线性稳压单元300用于在辅助供电***的供电电压VCC2建立且回差补偿与启动控制单元200关断后,对辅助供电***输入的供电电压VCC2进行稳压处理,并为回差补偿与启动控制单元200的供电电容C5充电,以使供电电容C5充电为控制芯片供电。
具体的,当***输入建立时,高压启动电路工作先给启动储能电容C0充电,启动储能电容C0正端的电压VCC1上升,电压检测与动作单元100实时检测启动 储能电容C0正端的电压VCC1,当电压VCC1大于启动阈值uth1,电压检测与动作单元100才发送导通信号至回差补偿与启动控制单元200,回差补偿与启动控制单元200导通后使启动储能电容C0与回差补偿与启动控制单元200自身的供电电容C5形成通路,电压VCC1为供电电容C5充电,供电电容C5正端的电压VCC3上升,当电压VCC3上升至控制芯片开启阈值电压之后,***开始工作,从而可以使储存在启动储能电容C0中的电荷量足以支撑控制芯片启动瞬间所需要的能量;由于在开关电源***开始工作后,电压VCC1和电压VCC3会开始下降,在回差补偿与启动控制单元200导通后,还生成一个回滞电压uth4给电压检测与动作单元100,只有当电压VCC1小于回滞电压uth4时,电压检测与动作单元100才会控制回差补偿与启动控制单元200关断,从而可以保证在电压VCC1下降至回滞电压uth4之前,电压VCC3下降至控制芯片关断阈值电压之前,辅助供电***的供电电压VCC2完成建立,并通过线性稳压单元300给供电电容C5供电,使***完成启动过程,解决常规高压启动电路难以满足启动瞬间拉电流较大的控制芯片正常工作,需要进行多次重启之后***才能稳定工作,间接导致***启动时间增长,且输出电压在开机过程难以保证单调上升的问题。
作为电压检测与动作单元100的一个具体实施方式,电压检测与动作单元100包括:电阻R1、电阻R2、电阻R3、电阻R6、精密稳压源U1和电容C2,电阻R1的一端作为电阻电压检测与动作单元100的第一输入端,电阻R1的另一端与电阻R2的一端连接;电阻R2的另一端与电阻R3的一端、电容C2的一端、精密稳压源U1的第一端共同连接后,作为电压检测与动作单元100的第二输入端;精密稳压源U1的第二端与电阻R6的一端连接,电阻R6的另一端作为电压检测与动作单元100的输出端;电阻R3的另一端、电容C2的另一端、精密稳压源U1的第三端接参考地。
作为回差补偿与启动控制单元200的一个具体实施方式,回差补偿与启动控制单元200包括:回差补偿电路、主控制电路、启动控制电路和供电电容C5;回差补偿电路的第一端作为回差补偿与启动控制单元200的第一输出端,与电压检测与动作单元100的第二输入端连接;回差补偿电路的第二端与主控制电路的第三端、启动控制的第二端连接;主控制电路的第一端作为回差补偿与启动控制单元200的第一输入端,与电压检测与动作单元100的输出端连接;主 控制电路的第二端与启动控制电路的第一端连接后,作为回差补偿与启动控制单元200的第二输入端,用于与高压启动电路的输出端、启动储能电容C0的正端连接;启动控制电路的第三端与供电电容C5的正端连接后,同时作为回差补偿与启动控制单元200的第三输入端和第二输出端,与线性稳压单元300的输出端、控制芯片连接;供电电容C5的负端接参考地;
主控制电路用于接收导通信号,并控制回差补偿电路生成回滞电压和发送启动信号至启动控制电路;
回差补偿电路用于生成回滞电压至电压检测与动作单元100;
启动控制电路用于接收启动信号后导通,以使启动储能电容C0和供电电容C5形成通路。
作为主控制电路的一个具体实施方式,主控制电路包括:电阻R4、电容C1和三极管Q1,电阻R4的一端、电容C1的一端与三极管Q1的集电极共同连接后作为主控制电路的第二端,电阻R4的另一端、电容C1的另一端与三极管Q1的基极共同连接后作为主控制电路的第一端,三极管Q1的发射极作为主控制电路的第三端。
作为回差补偿电路的一个具体实施方式,回差补偿电路包括:电阻R5和二极管VD1,电阻R5的一端作为回差补偿电路的第一端,电阻R5的另一端与二极管VD1的阴极连接二极管VD1的阳极作为回差补偿电路的第二端。
作为启动控制电路的一个具体实施方式,启动控制电路包括:电阻R7、电阻R8、电阻R9、电阻R10、电容C3、三极管Q2和三极管Q3;电阻R7的一端作为启动控制电路的第二端,另一端与电阻R8的一端、电容C3的一端、三极管Q3的基极连接;三极管Q3的集电极与电阻R10的一端连接;电阻R10的另一端与电阻R9的一端、三极管Q2的基极连接;电阻R9的另一端与三极管Q2的发射极连接后,作为启动控制电路的第一端;三极管Q2的漏极作为启动控制电路的第三端;电阻R8的另一端、电容C3的另一端、三极管Q3的发射极接参考地。
作为线性稳压单元300的一个具体实施方式,线性稳压单元300包括:电阻R11、电容C4、稳压管ZD1、二极管VD2和三极管Q4;电容C4的正端与电阻R11的一端、三极管Q4的集电极共同连接后,作为线性稳压单元300的输入端;电阻R11的另一端与稳压管ZD1的阴极、三极管Q4的基极连接,三极管Q4的发射集 与二极管VD2的阳极连接,二极管VD2的阴极作为线性稳压单元300的输出端。
具体的,当***输入建立时,高压启动电路工作先给启动储能电容C0充电,启动储能电容C0端电压VCC1上升,电阻R1、电阻R2以及电阻R3实时对电压Vcc1进行分压采样,当电压VCC1电压大于启动阈值uth1,也即电阻R3上的电压u1大于精密稳压源U1参考电压值uref之后,精密稳压源U1导通,其第二端输出低电平。当精密稳压源U1的第二端输出低电平后,三极管Q1的基极通过电阻R4和电阻R6分压之后为高电平,三极管Q1导通。三极管Q1导通之后,二极管VD1导通,然后通过电阻R5给芯片U1的第一端注入一个电压Δu,也即回滞电压uth4,因此只有当电压VCC1下降到低于回滞电压uth4之后,精密稳压源U1才关断。三极管Q1导通之后,电压VCC1通过电阻R7和电阻R8分压使三极管Q3的基极为高电平,三极管Q3导通。三极管Q3导通之后通过电阻R10将三极管Q2的基极拉低,三极管Q2导通。三极管Q2导通后,电压VCC1通过三极管Q2给供电电容C5充电,电压VCC3上升,当电压VCC3上升至控制芯片的开启阈值电压之后,***开始工作,电压VCC1和电压VCC3开始下降,在电压VCC1下降至回滞电压uth4之前,电压VCC3下降至控制芯片关断阈值电压之前,辅助供电***的供电电压VCC2建立,通过一级线性稳压单元300给电压VCC3,***完成启动过程。
参考图2,为工作时序图,以下结合图2对本实施例启动控制电路的工作过程进行详细描述:
[t0-t1]过程:t0时刻开关电源***输入端开始供电,高压启动电路开始工作,给启动储能电容C0充电,电压Vcc1开始上升,电阻R1、电阻R2以及电阻R3对电压Vcc1进行分压采样,当电压Vcc1≥开启阈值uth1时,电阻R3端的电压u1≥uref(精密稳压源U1的参考电压)。
[t1-t2]过程:t1时刻,电阻R3端电压u1≥uref。此时精密稳压源U1的第二端输出低电平,三极管Q1的基极电压经过电阻R4和电阻R6分压之后低于电压Vcc1-0.7V后,三极管Q1导通。三极管Q1导通后,二极管VD1导通,通过电阻R5给精密稳压源U1一回滞电压,只有当电压Vcc1≤回滞电压uth4时,精密稳压源U1才关断。同时使得三极管Q3的基极为高电平,三极管Q3导通,三极管Q2因此导通,电压Vcc1通过三极管Q2给供电电容C5充电,电压Vcc3开始上升,电压Vcc1开始下降。
[t2-t3]过程:t2时刻,电压Vcc3达到uth2,***的控制芯片开始工作,由于控制芯片在启动瞬间消耗电流较大(特别是包含数字控制芯片的***),电压Vcc1和电压Vcc3开始跌落,由于在启动前启动储能电容C0已存储较多的电荷量,足以支撑辅助供电***的供电电压VCC2建立至控制芯片稳态工作电压uth3,因此***能正常且快速启动。
具体的,在实际调试过程中如发现启动能量不足可适当提高的启动阈值uth1来增加启动电储能容C0的储能能力,保证***一次启动成功,避免多次重启。
在t3时刻如果没有本实施例启动控制电路,一般的高压启动电路难以提供足够的工作电流,在辅助供电***的供电电压VCC2建立在uth3之前,电压Vcc1和电压Vcc3已经跌落至控制芯片关断电压,导致启动失败,需要经过多次重启,直至将启动储能电容C0电荷量存储足够之后才能正常启动。
第二实施例
提供一种开关电源***,包括高压启动电路、启动储能电容C0、控制芯片、辅助供电***和第一实施例的启动控制电路;高压启动电路的输出端与启动储能电容C0的正端、启动控制电路的第一输入端连接,启动控制电路的输出端与控制芯片的输入端连接,控制芯片的输出端与辅助供电***的输入端连接,辅助供电***的输出端与启动控制电路的第二输入端连接。
具体的,当***输入建立时,高压启动电路工作先给启动储能电容C0充电,启动储能电容C0正端的电压VCC1上升,电压检测与动作单元100实时检测启动储能电容C0正端的电压VCC1,当电压VCC1大于启动阈值uth1,电压检测与动作单元100才发送导通信号至回差补偿与启动控制单元200,回差补偿与启动控制单元200导通后使启动储能电容C0与回差补偿与启动控制单元200自身的供电电容C5形成通路,电压VCC1供电电容C5充电,供电电容C5正端的电压VCC3上升,当电压VCC3上升至控制芯片开启阈值电压之后,***开始工作,从而可以使储存在启动储能电容C0中的电荷量足以支撑控制芯片启动瞬间所需要的能量;由于在开关电源***开始工作后,电压VCC1和电压VCC3会开始下降,在回差补偿与启动控制单元200导通后,还生成一个回滞电压uth4给电压检测与动作单元100,只有当电压VCC1小于回滞电压uth4时,电压检测与动作单元100才会控制回差补偿与启动控制单元200关断,从而可以保证在电压VCC1下降至回滞电压uth4之前, 电压VCC3下降至控制芯片关断阈值电压之前,辅助供电***的供电电压VCC2完成建立,并通过线性稳压单元300给供电电容C5供电,使***完成启动过程,解决常规高压启动电路难以满足启动瞬间拉电流较大的控制芯片正常工作,需要进行多次重启之后***才能稳定工作,间接导致***启动时间增长,且输出电压在开机过程难以保证单调上升的问题。
综上所述,本实施例所述启动控制电路有效提升了开关电源***启动时间,解决了常规高压启动电路启动能量不足导致多次重启等问题,在实际应用中,可以根据实际情况对本方案稍作改进,达到的目的。
本发明的上述实施范例仅仅是为说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化和变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引申出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (8)

  1. 一种启动控制电路,应用于开关电源***,所述开关电源***包括高压启动电路、启动储能电容C0、控制芯片和辅助供电***;其特征在于,所述启动控制电路包括:电压检测与动作单元、回差补偿与启动控制单元和线性稳压单元;
    所述电压检测与动作单元的第一输入端用于与高压启动电路的输出端、启动储能电容C0的正端连接,第二输入端与所述回差补偿与启动控制单元的第一输出端连接,输出端与所述回差补偿与启动控制单元的第一输入端连接;
    所述回差补偿与启动控制单元的第二输入端用于与高压启动电路的输出端、启动储能电容C0的正端连接,第三输入端与所述线性稳压单元的输出端连接,第二输出端用于与控制芯片连接;
    所述线性稳压单元的输入端用于与辅助供电***连接;
    所述电压检测与动作单元用于实时检测启动储能电容C0正端的电压VCC1,将电压VCC1与预设的启动阈值进行比较,并在电压VCC1大于预设的启动阈值时,发送导通信号至所述回差补偿与启动控制单元;
    所述回差补偿与启动控制单元用于在接收导通信号导通后,生成回滞电压并传输至所述电压检测与动作单元,并通过启动储能电容C0给自身的供电电容C5充电后,为控制芯片供电使控制芯片开启,以使辅助供电***的供电电压VCC2建立;
    所述电压检测与动作单元还用于在接收回滞电压后,实时将电压VCC1与回滞电压进行比较,并在电压VCC1小于回滞电压时,发送关断信号至所述回差补偿与启动控制单元,以控制所述回差补偿与启动控制单元关断,所述回滞电压小于所述启动阈值;
    所述线性稳压单元用于在辅助供电***的供电电压VCC2建立且回差补偿与启动控制单元关断后,对辅助供电***输入的供电电压VCC2进行稳压处理,并为所述回差补偿与启动控制单元的供电电容C5充电,以使供电电容C5充电为控制芯片供电。
  2. 根据权利要求1所述的启动控制电路,其特征在于,所述电压检测与动作单元包括:电阻R1、电阻R2、电阻R3、电阻R6、精密稳压源U1和电容C2,电阻R1的一端作为所述电压检测与动作单元的第一输入端,电阻R1的另一端与电 阻R2的一端连接;电阻R2的另一端与电阻R3的一端、电容C2的一端、精密稳压源U1的第一端共同连接后,作为所述电压检测与动作单元的第二输入端;精密稳压源U1的第二端与电阻R6的一端连接,电阻R6的另一端作为所述电压检测与动作单元的输出端;电阻R3的另一端、电容C2的另一端、精密稳压源U1的第三端接参考地。
  3. 根据权利要求1所述的启动控制电路,其特征在于,所述回差补偿与启动控制单元包括:回差补偿电路、主控制电路、启动控制电路和供电电容C5;所述回差补偿电路的第一端作为所述回差补偿与启动控制单元的第一输出端,与所述电压检测与动作单元的第二输入端连接;所述回差补偿电路的第二端与所述主控制电路的第三端、所述启动控制的第二端连接;所述主控制电路的第一端作为所述回差补偿与启动控制单元的第一输入端,与所述电压检测与动作单元的输出端连接;所述主控制电路的第二端与所述启动控制电路的第一端连接后,作为所述回差补偿与启动控制单元的第二输入端,用于与高压启动电路的输出端、启动储能电容C0的正端连接;所述启动控制电路的第三端与供电电容C5的正端连接后,同时作为所述回差补偿与启动控制单元的第三输入端和第二输出端,与所述线性稳压单元的输出端、控制芯片连接;供电电容C5的负端接参考地;
    所述主控制电路用于接收所述导通信号,并控制所述回差补偿电路生成回滞电压和发送启动信号至所述启动控制电路;
    所述回差补偿电路用于生成回滞电压至所述电压检测与动作单元;
    所述启动控制电路用于接收所述启动信号后导通,以使启动储能电容C0和供电电容C5形成通路。
  4. 根据权利要求3所述的启动控制电路,其特征在于,所述主控制电路包括:电阻R4、电容C1和三极管Q1,电阻R4的一端、电容C1的一端与三极管Q1的集电极共同连接后作为主控制电路的第二端,电阻R4的另一端、电容C1的另一端与三极管Q1的基极共同连接后作为主控制电路的第一端,三极管Q1的发射极作为主控制电路的第三端。
  5. 根据权利要求3所述的启动控制电路,其特征在于,所述回差补偿电路包括:电阻R5和二极管VD1,电阻R5的一端作为所述回差补偿电路的第一端, 电阻R5的另一端与二极管VD1的阴极连接二极管VD1的阳极作为所述回差补偿电路的第二端。
  6. 根据权利要求3所述的启动控制电路,其特征在于,所述启动控制电路包括:电阻R7、电阻R8、电阻R9、电阻R10、电容C3、三极管Q2和三极管Q3;电阻R7的一端作为所述启动控制电路的第二端,另一端与电阻R8的一端、电容C3的一端、三极管Q3的基极连接;三极管Q3的集电极与电阻R10的一端连接;电阻R10的另一端与电阻R9的一端、三极管Q2的基极连接;电阻R9的另一端与三极管Q2的发射极连接后,作为所述启动控制电路的第一端;三极管Q2的漏极作为所述启动控制电路的第三端;电阻R8的另一端、电容C3的另一端、三极管Q3的发射极接参考地。
  7. 根据权利要求1所述的启动控制电路,其特征在于,所述线性稳压单元包括:电阻R11、电容C4、稳压管ZD1、二极管VD2和三极管Q4;电容C4的正端与电阻R11的一端、三极管Q4的集电极共同连接后,作为所述线性稳压单元的输入端;电阻R11的另一端与稳压管ZD1的阴极、三极管Q4的基极连接,三极管Q4的发射集与二极管VD2的阳极连接,二极管VD2的阴极作为所述线性稳压单元的输出端。
  8. 一种开关电源***,其特征在于,包括高压启动电路、启动储能电容C0、控制芯片、辅助供电***和如权利要求1-7任一项所述的启动控制电路;所述高压启动电路的输出端与启动储能电容C0的正端、所述启动控制电路的第一输入端连接,所述启动控制电路的输出端与所述控制芯片的输入端连接,所述控制芯片的输出端与所述辅助供电***的输入端连接,所述辅助供电***的输出端与所述启动控制电路的第二输入端连接。
PCT/CN2023/098772 2022-06-25 2023-06-07 一种启动控制电路及开关电源*** WO2023246506A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210731612.2A CN115149790A (zh) 2022-06-25 2022-06-25 一种启动控制电路及开关电源***
CN202210731612.2 2022-06-25

Publications (1)

Publication Number Publication Date
WO2023246506A1 true WO2023246506A1 (zh) 2023-12-28

Family

ID=83408591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098772 WO2023246506A1 (zh) 2022-06-25 2023-06-07 一种启动控制电路及开关电源***

Country Status (2)

Country Link
CN (1) CN115149790A (zh)
WO (1) WO2023246506A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115149790A (zh) * 2022-06-25 2022-10-04 广州金升阳科技有限公司 一种启动控制电路及开关电源***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102969782A (zh) * 2012-10-26 2013-03-13 深圳市英威腾电气股份有限公司 芯片启动电路
CN205566097U (zh) * 2016-04-22 2016-09-07 上海晶丰明源半导体有限公司 供电电路、控制芯片、开关电源***
JP2018148676A (ja) * 2017-03-03 2018-09-20 富士電機株式会社 スイッチング電源制御用半導体装置
CN109861514A (zh) * 2018-11-13 2019-06-07 广州金升阳科技有限公司 一种启动控制方法及电路
CN113472048A (zh) * 2021-07-30 2021-10-01 阳光电源股份有限公司 一种开关机控制***和开关电源供电***
CN115149790A (zh) * 2022-06-25 2022-10-04 广州金升阳科技有限公司 一种启动控制电路及开关电源***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102969782A (zh) * 2012-10-26 2013-03-13 深圳市英威腾电气股份有限公司 芯片启动电路
CN205566097U (zh) * 2016-04-22 2016-09-07 上海晶丰明源半导体有限公司 供电电路、控制芯片、开关电源***
JP2018148676A (ja) * 2017-03-03 2018-09-20 富士電機株式会社 スイッチング電源制御用半導体装置
CN109861514A (zh) * 2018-11-13 2019-06-07 广州金升阳科技有限公司 一种启动控制方法及电路
CN113472048A (zh) * 2021-07-30 2021-10-01 阳光电源股份有限公司 一种开关机控制***和开关电源供电***
CN115149790A (zh) * 2022-06-25 2022-10-04 广州金升阳科技有限公司 一种启动控制电路及开关电源***

Also Published As

Publication number Publication date
CN115149790A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
US6850047B2 (en) Switching regulator and power supply using the same
WO2023246506A1 (zh) 一种启动控制电路及开关电源***
WO2022143736A1 (zh) 一种掉电延时电路及其检测控制电路
CN107508458B (zh) 一种超宽电压辅助电源pwm芯片的启动电路
CN108507103B (zh) 干烧保护电路、加湿器和空调器
CN113162382B (zh) 一种浪涌电流抑制电路
CN116800090B (zh) 一种开关电源的驱动电路及开关电源
CN111030077B (zh) 一种太阳电池阵开关分流调节电路及基于其的调节方法
CN108696113B (zh) 一种开关电源关机延时线路
CN108963999B (zh) 一种浪涌电流抑制器
CN113691116B (zh) 电源控制器启动控制***
CN113114027B (zh) 开关电源***及用于开关电源***的自供电装置
CN112968425B (zh) 一种开关电源次级短路保护电路
CN113037070B (zh) 开关电源快速启动电路
CN108258889A (zh) 光伏逆变器辅助电源***
CN110165880B (zh) 一种稳定开关电路输出电压的电路及方法
CN107249235B (zh) 一种兼容带指示灯开关的led驱动电路
CN212969439U (zh) 一种使芯片待机快速下电的低功耗电路
CN111628560A (zh) 一种太阳能电源
CN105471248A (zh) 一种开关电源启动电路
CN111725787A (zh) 一种boost直流升压短路保护电路
CN217183014U (zh) 一种电容充电自锁电路
CN217037048U (zh) 断电防重启电路及电子设备
CN218100030U (zh) 电压补偿电路及电子设备
CN117411159B (zh) 一种太阳能充电智能控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826155

Country of ref document: EP

Kind code of ref document: A1