WO2023245964A1 - 一种螺栓孔裂纹相控阵超声检测装置及方法 - Google Patents

一种螺栓孔裂纹相控阵超声检测装置及方法 Download PDF

Info

Publication number
WO2023245964A1
WO2023245964A1 PCT/CN2022/131680 CN2022131680W WO2023245964A1 WO 2023245964 A1 WO2023245964 A1 WO 2023245964A1 CN 2022131680 W CN2022131680 W CN 2022131680W WO 2023245964 A1 WO2023245964 A1 WO 2023245964A1
Authority
WO
WIPO (PCT)
Prior art keywords
phased array
bolt hole
array ultrasonic
sound
ultrasonic detection
Prior art date
Application number
PCT/CN2022/131680
Other languages
English (en)
French (fr)
Inventor
王志强
赵仑
蔡晖
王鹏
秦承鹏
李东江
陈征
王福贵
王强
邱张维佳
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2023245964A1 publication Critical patent/WO2023245964A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/048Marking the faulty objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • This application belongs to the technical field of non-destructive testing and relates to a phased array ultrasonic testing device and method for bolt hole cracks.
  • the purpose of this application is to overcome the shortcomings of the above-mentioned prior art and provide a phased array ultrasonic detection device and method for bolt hole cracks.
  • the device and method can perform phased array ultrasonic detection of cracks and defects in the area where the bolt hole is located. All defects affecting the quality of the area where the bolt holes are located can be quickly and comprehensively discovered.
  • the phased array ultrasonic detection device for bolt hole cracks described in this application includes a phased array ultrasonic detector, an oblique probe, a component to be tested and a number of wafers;
  • the component to be tested is provided with a threaded hole.
  • the sound-transmitting wedge in the oblique probe is located on the component to be tested.
  • the top of the sound-transmitting wedge is provided with an inclined surface.
  • Each chip is located on the inclined surface.
  • the phased array The ultrasonic detector is connected to the wafer.
  • the phased array ultrasonic detector is connected to the wafer through cables.
  • Each wafer is distributed in parallel.
  • Each wafer is equally spaced.
  • a handle is provided on the oblique probe.
  • phased array ultrasonic detection method for bolt hole cracks described in this application includes the following steps:
  • phased array ultrasonic sector scan to a symmetrical angle.
  • the sound beam generated by the chip passes through the sound-transmitting wedge and the refracted sound beam formed reaches the location of the bolt hole.
  • Move the oblique probe until the signal reflected by the bolt hole is in the sector scan image.
  • the phased array signal representing the quality of the area where the bolt hole is located is received by the phased array ultrasonic detector, and finally the quality of the area where the bolt hole is located is judged based on the received phased array signal.
  • Phased array ultrasonic inspection of the entire bolt hole area is achieved by moving the oblique probe along the circumference.
  • the phased array adopts a symmetrical fan scanning method.
  • the oblique probe is placed on the plane where the bolt hole is located, and the probe is moved left and right to the structural wave of the bolt hole.
  • you can judge whether there are defect wave signals on both sides of the fan scan you can judge whether there are defects near the bolt hole; by moving the probe along the circumferential direction of the bolt hole, you can achieve the detection of the bolt. Defect detection around the entire hole is simple and convenient to operate and avoids misjudgments.
  • Figure 1 is a cross-sectional view of the present application
  • Figure 2 is a top view of the present application
  • Figure 3 is a schematic diagram of the detection effect of this application.
  • 1 is the phased array ultrasonic detector
  • 2 is the cable
  • 3 is the handle
  • 4 is the angle probe
  • 5 is the chip
  • 6 is the sound-transmitting wedge
  • 7 is the sound beam
  • 8 is the component to be tested
  • 9 is the bolt. hole.
  • FIG. 1 A schematic structural diagram of an embodiment disclosed in the present application is shown in the accompanying drawings.
  • the drawings are not to scale, some details are exaggerated and may be omitted for purposes of clarity.
  • the shapes of the various regions and layers shown in the figures and the relative sizes and positional relationships between them are only exemplary. In practice, there may be deviations due to manufacturing tolerances or technical limitations, and those skilled in the art will base their judgment on actual situations. Additional regions/layers with different shapes, sizes, and relative positions can be designed as needed.
  • the phased array ultrasonic detection device for bolt hole cracks described in this application includes a phased array ultrasonic detector 1, a cable 2, a handle 3, an oblique probe 4, a sound-transmitting wedge 6, and the component to be tested. 8 and a number of chips 5;
  • the component to be tested 8 is provided with a threaded hole, and the sound-transmitting wedge 6 in the oblique probe 4 is located on the component to be tested 8.
  • the top of the sound-transmitting wedge 6 is provided with an inclined surface, and each chip 5 is located on the inclined surface.
  • the phased array ultrasonic detector 1 is connected to the wafers 5 through cables 2, and the wafers 5 are parallel and equally spaced.
  • the sound beam 7 generated by the chip 5 passes through the sound-transmitting wedge 6 and is incident on the bolt hole 9 obliquely. After being reflected by the bolt hole 9, it is received by the chip 5 and then sent to the phased array ultrasonic detector 1.
  • the oblique probe 4 There is a handle on the top.
  • phased array ultrasonic detection method for bolt hole cracks described in this application includes the following steps:
  • phased array ultrasonic sector scan After power on, set the phased array ultrasonic sector scan to a symmetrical angle.
  • the sound beam 7 generated by the chip 5 passes through the sound-transmitting wedge 6 and the refracted sound beam formed reaches the position of the bolt hole 9.
  • the signal reflected by hole 9 is in the center of the fan-shaped scan image. Due to the reflection from the wall of bolt hole 9, the signal will gradually weaken from near to far.
  • the signals on both wings of the fan-shaped scan are used to indicate whether there are defects in the detection area and to indicate the quality of bolt hole 9.
  • the phased array signal is received by the phased array ultrasonic detector 1, and finally the quality of the area where the bolt hole 9 is located is judged based on the received phased array signal.
  • phased array ultrasonic inspection of the entire bolt hole 9 area can be achieved by moving the oblique probe 4 along the circumference, or the bolt hole 9 can be inspected by changing the angle of the sound-transmitting wedge 6 and moving the oblique probe 4 left or right. Phased array ultrasonic testing is performed on the entire depth area, thereby achieving phased array ultrasonic testing on the entire depth area of the bolt hole 9 without causing misjudgment.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种螺栓孔裂纹相控阵超声检测装置及方法,检测装置包括相控阵超声检测仪(1)、斜探头(4)、待测部件(8)及若干晶片(5);待测部件(8)上设置有螺栓孔(9),斜探头(4)中的透声楔块(6)位于待测部件(8)上,透声楔块(6)的顶部设置有倾斜面,各晶片(5)位于倾斜面上,相控阵超声检测仪(1)与晶片(5)相连接。能够对螺栓孔(9)所在区域的裂纹及缺陷进行相控阵超声检测,快速、全面发现影响螺栓孔(9)所在区域质量的所有缺陷。

Description

一种螺栓孔裂纹相控阵超声检测装置及方法
交叉引用
本申请要求在2022年6月23日提交中国国家知识产权局、申请号为202210720194.7、发明名称为“一种螺栓孔裂纹相控阵超声检测装置及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于无损检测技术领域,涉及一种螺栓孔裂纹相控阵超声检测装置及方法。
背景技术
现阶段,螺栓孔附近裂纹由于其深度深,采用涡流、磁粉等方法不能实现其缺陷检测;其上部有垫片、螺母和螺栓等装置影响,采用常规超声和相控阵超声检测容易被结构回波影响,造成误判,因此严重的影响对螺栓孔所在区域质量的检测。
为了确保螺栓孔裂纹相控阵超声检测不会误判,且操作方便、省时,有必要开发一种螺栓孔裂纹相控阵超声检测装置及方法,可以快速、全面发现螺栓孔附近出现的裂纹和其他缺陷,为各种有螺栓孔的装备的安全运行和高效监督管理提供技术支持,也可对其寿命评估提供技术参考,然而现有技术中并没有给出类似的公开。
发明内容
本申请的目的在于克服上述现有技术的缺点,提供了一种螺栓孔裂 纹相控阵超声检测装置及方法,该装置及方法能够对螺栓孔所在区域的裂纹及缺陷进行相控阵超声检测,能够快速、全面发现影响螺栓孔所在区域质量的所有缺陷。
为达到上述目的,本申请所述的螺栓孔裂纹相控阵超声检测装置包括相控阵超声检测仪、斜探头、待测部件及若干晶片;
待测部件上设置有螺纹孔,斜探头中的透声楔块位于所述待测部件上,所述透声楔块的顶部设置有倾斜面,各晶片位于所述倾斜面上,相控阵超声检测仪与晶片相连接。
相控阵超声检测仪通过电缆线与晶片相连接。
各晶片平行分布。
各晶片等间距分布。
斜探头上设置有把手。
本申请所述的螺栓孔裂纹相控阵超声检测方法包括以下步骤:
设置相控阵超声扇形扫查为对称角度,晶片产生的声束穿出透声楔块后形成的折射声束到达螺栓孔所在位置,移动斜探头,直至螺栓孔反射的信号处于扇形扫查图像的中央,表征螺栓孔所在区域质量的相控阵信号被相控阵超声检测仪接收,最后根据接收到的相控阵信号判断螺栓孔所在区域的质量。
通过沿圆周移动斜探头实现对整个螺栓孔所在区域的相控阵超声检测。
通过改变透声楔块的角度,左右移动斜探头,实现对螺栓孔整个深度所在区域进行相控阵超声检测。
本申请具有以下有益效果:
本申请所述的螺栓孔裂纹相控阵超声检测装置及方法在具体操作时,相控阵采用对称的扇扫描方式,将斜探头放置在螺栓孔所在平面上,左右移动探头至螺栓孔结构波处于扇扫描的中间,即可上下移动探头开始检测,通过判断扇扫描两侧有无缺陷波信号,即可判断螺栓孔附近有无缺陷;通过沿螺栓孔圆周方向移动探头,即可实现对螺栓孔整个周边的缺陷检测,操作简单、方便,且避免产生误判。
附图说明
图1为本申请的剖面图;
图2为本申请的俯视图;
图3为本申请的检测效果示意图。
其中,1为相控阵超声检测仪、2为电缆线、3为手柄、4为斜探头、5为晶片、6为透声楔块、7为声束、8为待测部件、9为螺栓孔。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,不是全部的实施例,而并非要限制本申请公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要的混淆本申请公开的概念。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
在附图中示出了根据本申请公开实施例的结构示意图。这些图并非 是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
参考图1至图3,本申请所述的螺栓孔裂纹相控阵超声检测装置包括相控阵超声检测仪1、电缆线2、手柄3、斜探头4、透声楔块6、待测部件8及若干晶片5;
待测部件8上设置有螺纹孔,斜探头4中的透声楔块6位于所述待测部件8上,所述透声楔块6的顶部设置有倾斜面,各晶片5位于所述倾斜面上,相控阵超声检测仪1通过电缆线2与晶片5相连接,各晶片5平行且等间距分布。
晶片5产生的声束7穿出透声楔块6后倾斜入射到螺栓孔9上,再经螺栓孔9反射后被晶片5接收,然后送入相控阵超声检测仪1中,斜探头4上设置有把手。
本申请所述的螺栓孔裂纹相控阵超声检测方法包括以下步骤:
通电后,设置相控阵超声扇形扫查为对称角度,晶片5产生的声束7穿出透声楔块6后形成的折射声束到达螺栓孔9的位置,上下移动斜探头4,直至螺栓孔9反射的信号处于扇形扫查图像的中央,由于螺栓孔9壁面的反射,信号将由近到远逐渐减弱,扇形扫查两翼的信号,以表征检测区域是否有缺陷,表征螺栓孔9质量的相控阵信号被相控阵超声检测仪1接收,最后根据接收到的相控阵信号判断螺栓孔9所在区域 的质量。
在检测时,可以通过沿圆周移动斜探头4实现对整个螺栓孔9所在区域的相控阵超声检测,也可以通过改变透声楔块6的角度和左右移动斜探头4,实现对螺栓孔9整个深度所在区域进行相控阵超声检测,从而实现对螺栓孔9整个深度所在区域的相控阵超声检测,且不会造成误判。

Claims (8)

  1. 一种螺栓孔裂纹相控阵超声检测装置,其特征在于,包括相控阵超声检测仪(1)、斜探头(4)、待测部件(8)及若干晶片(5);
    待测部件(8)上设置有螺纹孔,斜探头(4)中的透声楔块(6)位于所述待测部件(8)上,所述透声楔块(6)的顶部设置有倾斜面,各晶片(5)位于所述倾斜面上,相控阵超声检测仪(1)与晶片(5)相连接。
  2. 根据权利要求1所述的螺栓孔裂纹相控阵超声检测装置,其特征在于,相控阵超声检测仪(1)通过电缆线(2)与晶片(5)相连接。
  3. 根据权利要求1所述的螺栓孔裂纹相控阵超声检测装置,其特征在于,各晶片(5)平行分布。
  4. 根据权利要求1所述的螺栓孔裂纹相控阵超声检测装置,其特征在于,各晶片(5)等间距分布。
  5. 根据权利要求1所述的螺栓孔裂纹相控阵超声检测装置,其特征在于,斜探头(4)上设置有把手。
  6. 一种螺栓孔裂纹相控阵超声检测方法,其特征在于,包括以下步骤:
    设置相控阵超声扇形扫查为对称角度,晶片(5)产生的声束(7)穿出透声楔块(6)后形成的折射声束到达螺栓孔(9)所在位置,移动斜探头(4),直至螺栓孔(9)反射的信号处于扇形扫查图像的中央,表征螺栓孔(9)所在区域质量的相控阵信号被相控阵超声检测仪(1)接收,最后根据接收到的相控阵信号判断螺栓孔(9)所在区域的质量。
  7. 根据权利要求6所述的螺栓孔裂纹相控阵超声检测方法,其特征在于,通过沿圆周移动斜探头(4)实现对整个螺栓孔(9)所在区域的相控阵超声检测。
  8. 根据权利要求6所述的螺栓孔裂纹相控阵超声检测方法,其特征在于,通过改变透声楔块(6)的角度,左右移动斜探头(4),实现对螺栓孔(9)整个深度所在区域进行相控阵超声检测。
PCT/CN2022/131680 2022-06-23 2022-11-14 一种螺栓孔裂纹相控阵超声检测装置及方法 WO2023245964A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210720194.7A CN115015391A (zh) 2022-06-23 2022-06-23 一种螺栓孔裂纹相控阵超声检测装置及方法
CN202210720194.7 2022-06-23

Publications (1)

Publication Number Publication Date
WO2023245964A1 true WO2023245964A1 (zh) 2023-12-28

Family

ID=83076840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131680 WO2023245964A1 (zh) 2022-06-23 2022-11-14 一种螺栓孔裂纹相控阵超声检测装置及方法

Country Status (2)

Country Link
CN (1) CN115015391A (zh)
WO (1) WO2023245964A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115015391A (zh) * 2022-06-23 2022-09-06 西安热工研究院有限公司 一种螺栓孔裂纹相控阵超声检测装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535657A (zh) * 2015-01-13 2015-04-22 广东汕头超声电子股份有限公司 一种薄板工件相控阵超声导波成像检测***及其检测方法
CN204514866U (zh) * 2015-01-13 2015-07-29 广东汕头超声电子股份有限公司 一种薄板工件相控阵超声导波成像检测***
CN106680374A (zh) * 2016-12-28 2017-05-17 中国核工业二三建设有限公司 一种带不锈钢堆焊层的大厚壁合金钢焊缝相控阵超声成像检测方法
WO2018040117A1 (zh) * 2016-08-30 2018-03-08 广东汕头超声电子股份有限公司 一种基于双阵列探头的钢轨焊缝超声波成像检测方法及***
CN108414622A (zh) * 2018-02-08 2018-08-17 中兴海陆工程有限公司 不锈钢管对接焊缝相控阵超声检测方法
CN112858478A (zh) * 2021-01-26 2021-05-28 西安热工研究院有限公司 一种锅炉管道接管座角焊缝超声检测装置及方法
CN115015391A (zh) * 2022-06-23 2022-09-06 西安热工研究院有限公司 一种螺栓孔裂纹相控阵超声检测装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535657A (zh) * 2015-01-13 2015-04-22 广东汕头超声电子股份有限公司 一种薄板工件相控阵超声导波成像检测***及其检测方法
CN204514866U (zh) * 2015-01-13 2015-07-29 广东汕头超声电子股份有限公司 一种薄板工件相控阵超声导波成像检测***
WO2018040117A1 (zh) * 2016-08-30 2018-03-08 广东汕头超声电子股份有限公司 一种基于双阵列探头的钢轨焊缝超声波成像检测方法及***
CN106680374A (zh) * 2016-12-28 2017-05-17 中国核工业二三建设有限公司 一种带不锈钢堆焊层的大厚壁合金钢焊缝相控阵超声成像检测方法
CN108414622A (zh) * 2018-02-08 2018-08-17 中兴海陆工程有限公司 不锈钢管对接焊缝相控阵超声检测方法
CN112858478A (zh) * 2021-01-26 2021-05-28 西安热工研究院有限公司 一种锅炉管道接管座角焊缝超声检测装置及方法
CN115015391A (zh) * 2022-06-23 2022-09-06 西安热工研究院有限公司 一种螺栓孔裂纹相控阵超声检测装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANSHENG YU: "Study on The Ultrasonic-Phased-Arrays Inspection of The High-Pressure TubeE", DRILLING & PRODUCTION TECHNOLOGY, vol. 39, no. 3, 25 May 2016 (2016-05-25), pages 80 - 83, XP093120009 *

Also Published As

Publication number Publication date
CN115015391A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
Yuan et al. Ultrasonic phased array detection of internal defects in composite insulators
WO2023245964A1 (zh) 一种螺栓孔裂纹相控阵超声检测装置及方法
CN106568843A (zh) 一种用于u肋双侧角焊缝的超声相控阵检测方法
CN113138227B (zh) 一种高温状态下焊接接头组合检测方法
CN114894901A (zh) 一种在役盆式绝缘子缺陷相控阵检测及运行寿命评估方法
WO2017014344A1 (ko) 비파괴 초음파 검사장치용 자동 캘리브레이션 장치 및 그 제어 방법
CN111458415B (zh) 一种超声相控阵换能器与待测工件耦合状态的检测方法
CN112858478A (zh) 一种锅炉管道接管座角焊缝超声检测装置及方法
CN110824008B (zh) 一种控制棒导向筒开口销的超声检测探头及检测方法
JP2000352563A (ja) 被覆管用超音波探傷装置
JP3350491B2 (ja) 自動超音波探傷装置
CN112213385A (zh) 一种薄壁型材对接焊缝超声爬波检测方法
CN217466803U (zh) 一种螺栓孔裂纹缺陷超声检测装置
JP2966515B2 (ja) 超音波検査方法及び超音波検査装置
CN205581057U (zh) 一种斜入射非线性超声检测定位装置
Shi et al. Research on welding defect examination technique based on phased array ultrasonic for high voltage transformer oil tank welds
JPH08297190A (ja) 原子炉用燃料案内ピンの検査方法
丁宁 et al. Research on near surface dead zone reduction of TOFD based on mode-converted theory
CN109358117B (zh) 远程水下可移动式多功能超声检查二次标定装置
Doyle et al. Ultrasonic method for inspection of the propellant grain in the space shuttle solid rocket booster
Friedl et al. Ultrasonic phased array inspection of seeded titanium billet
CN115112769A (zh) 变压器薄壁壳体单道焊缝内部缺陷的阵列超声检测成像方法
CN118067846A (zh) 基于超声检测的电力***绝缘子缺陷识别方法及***
CN112461923A (zh) 一种基于相控阵超声横波的发电机护环检测方法
LIANG et al. Research on Phased Array Detection Technology of Inserted fillet weld

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947700

Country of ref document: EP

Kind code of ref document: A1